
Converting Java Programs to Use Generic Libraries

Alan Donovan Adam Kie.zun Matthew S. Tschantz Michael D. Ernst

MIT Computer Science & Artificial Intelligence Lab
32 Vassar St, Cambridge, MA 02139 USA

{adonovan,akiezun,tschantz,mernst}@csail.mit.edu

ABSTRACT
Java 1.5 will include a type system (called JSR-14) that supports
parametric polymorphism, or generic classes. This will bring many
benefits to Java programmers, not least because current Java prac-
tice makes heavy use of logically-generic classes, including con-
tainer classes.

Translation of Java source code into semantically equivalent JSR-
14 source code requires two steps: parameterization (adding type
parameters to class definitions) and instantiation (adding the type
arguments at each use of a parameterized class). Parameteriza-
tion need be done only once for a class, whereas instantiation must
be performed for each client, of which there are potentially many
more. Therefore, this work focuses on the instantiation problem.
We present a technique to determine sound and precise JSR-14
types at each use of a class for which a generic type specifica-
tion is available. Our approach uses a precise and context-sensitive
pointer analysis to determine possible types at allocation sites, and
a set-constraint-based analysis (that incorporates guarded, or con-
ditional, constraints) to choose consistent types for both allocation
and declaration sites. The technique handles all features of the
JSR-14 type system, notably the raw types that provide backward
compatibility. We have implemented our analysis in a tool that au-
tomatically inserts type parameters into Java code, and we report
its performance when applied to a number of real-world Java pro-
grams.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Programming;
D.2.2 [Software Engineering]: Design Tools and Techniques—
modules and interfaces; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—data types and structures

General Terms
languages, theory, experimentation

Keywords
generic types, parameterized types, parametric polymorphism, type
inference, instantiation types, JSR-14, Java 1.5, Java 5, raw types

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 ...$5.00.

1. INTRODUCTION
The next release of the Java programming language [21] will

include support for generic types. Generic types (or parametric
polymorphism [7]) make it possible to write a class or procedure
abstracted over the types of its method arguments.

In the absence of generic types, Java programmers have been
writing and using pseudo-generic classes, which are usually ex-
pressed in terms of Object. Clients of such classes widen (up-cast)
all the actual parameters to methods and narrow (down-cast) all the
return values to the type at which the result is used — which can
be thought of as the type at which the pseudo-generic class is ‘in-
stantiated’ in a fragment of client code. This leads to at least two
problems:

1. The possibility of error: Java programmers often think in
terms of generic types when using pseudo-generic classes.
However, the Java type system is unable to prove that such
types are consistently used. This disparity allows the pro-
grammer to write, inadvertently, type-correct Java source code
that manipulates objects of pseudo-generic classes in a man-
ner inconsistent with the desired truly-generic type. A pro-
grammer’s first indication of such an error is typically a run-
time exception due to a failing cast; compile time checking
is preferable.

2. An incomplete specification: The types in a Java program
serve as a rather weak specification of the behavior of the
program and the intention of the programmer. Generic types
provide better documentation, and the type checker guaran-
tees their accuracy.

Non-generic solutions to the problems (e.g., wrapper classes such
as StringVector) are unsatisfying. They introduce nonstandard
and sometimes inconsistent abstractions that require extra effort
for programmers to understand. Furthermore, code duplication is
error-prone.

Java with generic types (which we call JSR-14 after the Java
Specification Request [4] that is being worked into Java 1.5) solves
these problems while maintaining full interoperability with existing
Java code.

Currently, programmers who wish to take advantage of the ben-
efits of genericity in Java must translate their source code by hand;
this process is time-consuming, tedious, and error-prone. We pro-
pose to automate the translation of existing Java source files into
JSR-14. There are two parts to this task: adding type parameters
to class definitions (‘parameterization’), and modifying uses of the
classes to supply the type parameters (‘instantiation’).

Parameterization must be performed just once for each library
class. The process might be done (perhaps with automated assis-
tance) by an expert familiar with the library and how it is intended

15



to be used. Even for a non-expert, this task may be relatively easy.
For example, the javac compiler, the htmlparser program and the
antlr parser generator define their own container classes in addi-
tion to, or in lieu of, the JDK collections. One of us (who had
never seen the code before) fully annotated the javac libraries with
generic types (135 annotations in a 859-line codebase) in 15 min-
utes, the antlr libraries in 20 minutes (72 annotations in a 532-line
codebase) and the htmlparser libraries in 8 minutes (27 annotations
in a 430-line codebase).

This paper focuses on the instantiation problem. Instantiation
must be performed for every library client; there are typically many
more clients than libraries, and many more programmers are in-
volved. When a library is updated to use generic types, it is desir-
able to perform instantiation for legacy code that uses the library,
though no one may be intimately familiar with the legacy code.
Generic libraries are likely to appear before many programs that are
written in a generic style (for example, Java 1.5 will be distributed
with generic versions of the JDK libraries), and are likely to be
a motivator for converting those programs to use generic types.
Generically typed libraries permit programmers to incrementally
add generics to their programs and gain benefits in a pay-as-you-go
fashion.

Figures 2, 3, and 4 give an example of a (generic) library, non-
generic client code, and the client code after being transformed by
our tool. The library defines the class Cell, which is a container
holding one element, and its subclass Pair, which holds two ele-
ments, possibly of different types. The client code defines a number
of methods that create and manipulate Cells and Pairs. The paper
uses this code as a running example.

In brief, the generic type instantiation problem is as follows. The
input is a set of generic (i.e., JSR-14 annotated) classes (which we
call library code) and a set of non-generic (i.e., pre-JSR-14) classes
(client code) that use the library code. The goal is to annotate the
client code with generic type information in such a way that (a) the
program’s behavior remains unchanged, and (b) as many casts as
possible can be removed. Later sections expand on this goal.

The remainder of this paper is organized as follows. Section 2
introduces JSR-14, a generic version of Java that is expected to be
adopted for Java 1.5. Section 3 lays out our design goals and as-
sumptions, and Section 4 overviews our algorithm. The next two
sections describe the two parts of the algorithm, namely alloca-
tion type inference (Section 5) and declaration type inference (Sec-
tion 6). Section 7 discusses the implementation of our prototype
tool, and Section 8 presents preliminary experimental results. Sec-
tion 9 discusses related work. Finally, Section 10 proposes future
work, and Section 11 concludes.

2. JSR-14: JAVA WITH GENERIC TYPES
This section briefly introduces the syntax and semantics of JSR-

14.
Generic types are an example of bounded parametric polymor-

phism [7]. Parametric polymorphism is an abstraction mechanism
that permits a single piece of code to work uniformly over many
distinct types in a type-safe manner. Type parameters stand for the
types over which the code is (conceptually) instantiated.

2.1 Syntax
Figure 2 shows the definition of two generic classes in Java. The

name of the generic class is followed by a list of type variables (V
for class Cell, and F and S for class Pair). Each type variable has
an optional upper bound or bounds. The default bound is extends
Object, which may be omitted for brevity. The type variables may
be used within the class just as ordinary types are, except that in-

Cell<Number>

Cell

Cell<Integer>Integer

Number

Object

Pair

Pair<Number,Boolean>Pair<Integer,Boolean>

Figure 1: A portion of the type hierarchy for JSR-14 (Java with generic
types), which uses invariant parametric subtyping. Arrows point from sub-
types to supertypes. Classes Cell in Pair are defined in Figure 2.

stances of the type variables may not be constructed by an instance
creation expression, as in new V(). The Pair class shows that one
generic type can extend (subclass) another. The scope of a class’s
type variable is essentially the same as the scope of this: all in-
stance methods and declarations of instance fields, and any inner
classes, but not static members or static nested classes. Also, a
type parameter can be referred to in the class’s declaration.

A generic class may be instantiated (used) by supplying type ar-
guments that are consistent with the bounds on the type variables
(Figure 4). Type-checking ensures that the code is type-correct, no
matter what type arguments that satisfy the bounds are used. (See
below for a caveat regarding raw types.)

Methods may also be generic, adding their own additional type
variables. In Figure 2, replaceValue is a generic method, which
is preceded by a list of (bounded) type variables. (The type vari-
able U has a non-trivial bound.) Type arguments at uses of generic
methods need not be specified by the programmer; they are auto-
matically inferred by the compiler. (Line 11 in Figure 4 contains a
use of a generic method.) The scope of a method type variable is
just the method itself.

A raw type is a generic type used without any type parameters.
(On line 30 of Figure 4, parameter c6 in displayValue is raw.)
Raw types are a concession to backward compatibility, and they
behave exactly like types in non-generic Java.

2.2 Type system
This section informally overviews salient points of the type sys-

tem of JSR-14 [4]. Figure 1 shows part of the type hierarchy.
Invariant parametric subtyping. Different instantiations of a

parameterized type are unrelated by the type hierarchy.1 Cell〈Integer〉
is not a subtype of Cell〈Number〉, even though Integer is a subtype
of Number; this is the right choice because Cell〈Integer〉 does not
support the set(Number) operation. Cell〈Number〉 is not a sub-
type of Cell〈Integer〉; this is the right choice because Cell〈Number〉
does not support the Integer get() operation.

Raw types. Great effort was expended in the design of JSR-14
to ensure maximum compatibility with existing non-generic code,
in both directions. As a result, the type system of JSR-14 sub-
sumes that of non-generic Java, with the un-parameterized types of
generic classes such as Cell being known as raw types, and raw
types being supertypes of parameterized versions. (A raw type can

1By contrast, Java arrays use covariant subtyping: Integer[] is a
subtype of Number[] because Integer is a subtype of Number. This
violates the substitutability principle of subtyping [28]. In order to
preserve type safety, the JVM implementation must perform a run-
time check at array stores. Since JSR-14 uses homogeneous trans-
lation by type erasure (see below), run-time checking for generics
is impossible, and soundness must be ensured statically through
invariant subtyping.

16



// A Cell is a container that contains exactly one item, of type V.

class Cell<V extends Object> {

V value;

Cell(V value) { set(value); }

void set(V value) { this.value = value; }

V get() { return value; }

<U extends V> void replaceValue(Cell<U> that) {

this.value = that.value;

}

}

// A Pair has a first and a second element, possibly of different types.

class Pair<F, S> extends Cell<F> {

S second;

Pair(F first, S second) { super(first); this.second = second; }

}

Figure 2: Example generic library code: definitions of Cell and Pair. Access modifiers are omitted for brevity throughout.

1 static void example() {

2 Cell c1 = new Cell(new Float(0.0));

3 Cell c2 = new Cell(c1);

4 Cell c3 = (Cell) c2.get();

5 Float f = (Float) c3.get();

6 Object o = Boolean.TRUE;

7 Pair p =

8 new Pair(f, o);

9

10 Cell c4 = new Cell(new Integer(0));

11 c4.replaceValue(c1);

12

13 displayValue(c1);

14 displayValue(c2);

15

16 setPairFirst(p);

17

18 displayNumberValue(p);

19 displayNumberValue(c4);

20

21 Boolean b = (Boolean) p.second;

22 }

23 static void setPairFirst(Pair p2) {

24 p2.value = new Integer(1);

25 }

26 static void displayNumberValue(Cell c5) {

27 Number n = (Number) c5.get();

28 System.out.println(n.intValue());

29 }

30 static void displayValue(Cell c6) {

31 System.out.println(c6.get());

32 }

Figure 3: Example non-generic client code that uses the library code of
Figure 2. The code illustrates a number of features of JSR-14, but it does
not compute a meaningful result.

be considered equivalent to a type instantiated with a bounded exis-
tential type, e.g., Cell〈∃x . x ≤ Object〉, because clients using a raw
type expect some instantiation of the corresponding generic class,
but have no information as to what it is [25].)

Unchecked operations. In standard Java, the type system en-
sures that the type of an expression is a conservative approxima-
tion to the kind of objects that may flow to that expression at run

1 static void example() {

2 Cell<Float> c1 = new Cell<Float>(new Float(0.0));

3 Cell<Cell<Float>> c2 = new Cell<Cell<Float>>(c1);

4 Cell<Float> c3 = (Cell) c2.get();

5 Float f = (Float) c3.get();

6 Boolean o = Boolean.TRUE;

7 Pair<Number,Boolean> p =

8 new Pair<Number,Boolean>(f, o);

9

10 Cell<Number> c4 = new Cell<Number>(new Integer(0));

11 c4.replaceValue(c1);

12

13 displayValue(c1);

14 displayValue(c2);

15

16 setPairFirst(p);

17

18 displayNumberValue(p);

19 displayNumberValue(c4);

20

21 Boolean b = (Boolean) p.second;

22 }

23 static void setPairFirst(Pair<Number,Boolean> p2) {

24 p2.value = new Integer(1);

25 }

26 static void displayNumberValue(Cell<Number> c5) {

27 Number n = (Number) c5.get();

28 System.out.println(n.intValue());

29 }

30 static void displayValue(Cell c6) {

31 System.out.println(c6.get());

32 }

Figure 4: Example client code of Figure 3, after being automatically up-
dated to use generic types. Changed declarations are underlined. Elimi-
nated casts are struck through.

time. However, in JSR-14, it is possible to construct programs in
which this is not the case, since raw types create a loophole in the
soundness of the type system.

Calls to methods and accesses of fields whose type refers to the
type variable T of a raw type are unchecked, meaning that they may
violate the invariants maintained by the non-raw types, resulting in
a class cast exception being thrown at run time. The compiler is-

17



sues a warning when it compiles such operations. (The operations
are legal in non-generic Java, and all the same hazards apply, ex-
cept that the compiler issues no warnings. Use of raw types is no
less safe than the original code, though it is less safe than use of
non-raw parameterized types.) For example, coercion is permitted
from a raw type to any instantiation of it, and vice versa. As an-
other example, one may safely call the method Vector.size()

on an expression of raw type, since it simply returns an int. On the
other hand, a call to Vector.add(x) on an expression of type raw
Vector would be unchecked, because there may exist an alias to the
same object whose declared type is Vector〈Y〉, where the type of x
is not a subtype of Y. Subsequent operations on the object through
the alias may then fail due to a type error. It is the programmer’s
responsibility to ensure that all unchecked operations are in fact
safe.

Type erasure. The type rules of JSR-14 suggest the implemen-
tation strategy of type erasure, in which after the parameterized
types have been checked, they are erased by the compiler (which
inserts casts as necessary), yielding the type that would have been
specified in the original non-generic code. For example, the erasure
of method Cell.set(V) is Cell.set(Object).

Homogeneous translation. Implementation by type erasure im-
plies a homogeneous translation. A single class file contains the
implementation for every instantiation of the generic class it de-
fines, and the execution behavior is identical to that of the same
program written without the use of generic types. Parametric type
information is not available at run time, so one cannot query the pa-
rameterized type of an object using instanceof or reflection, nor
can the Java Virtual Machine (JVM) check for type violations at
run time as it does with accesses to the built-in array classes. Ho-
mogeneous translation is in contrast with approaches that change
the JVM [31], and with C++ [40, 41] and other languages [9] in
which different code is generated for each instantiation.

2.2.1 Versions of JSR-14
JSR-14 [27] was inspired by GJ (Generic Java) [6, 5]. Differ-

ent versions of JSR-14 have introduced and eliminated a variety of
features related to parametric polymorphism. Our work uses the
version of JSR-14 implemented by version 1.3 of the early-access
JSR-14 compiler2. This particular version proved longer-lived and
more stable than other versions, and it is quite similar to the latest
proposal (as of July 2004), implemented by Java 1.5 Beta 2.

Java 1.5 Beta 2 has one substantive difference from JSR-14-1.3:
Java 1.5 Beta 2’s type system is enriched by wildcard types [45]
such as Vector〈? extends Number〉, which represents the set of
Vector types whose elements are instances of Number, and Vector〈?
super Integer〉, which represents the set of Vector types into which
an Integer may be stored. Like raw types, wildcard types are ef-
fectively parameterized types whose arguments are bounded exis-
tential types, but wildcard types generalize this idea, allowing the
bounds to express either subtype or supertype constraints [25, 26].
Wildcard types obviate some (though not all) uses of raw types.
Wildcard types will improve the precision of our analysis by per-
mitting closer least upper bounds to be computed for some sets of
types; see Section 6.5.1 for further detail. This will benefit both
the union elimination (Section 6.5) and constraint resolution (Sec-
tion 6.4) components of our algorithm.

A second, minor difference is that Java 1.5 Beta 2 forbids array
creation expressions for arrays of parameterized types, such as new
Cell<String>[..], or type variables, such as new Cell<T>[..],
or new T[..] where T is a type variable. Other constructs, such
as List.toArray(), permit working around this restriction.
2
http://java.sun.com/developer/earlyAccess/adding_generics/

We do not foresee any major obstacles to the adaptation of our
type rules, algorithms, and implementation to Java 1.5; such adap-
tation is important to the usability of our tools once Java 1.5 is
finalized.

3. DESIGN PRINCIPLES
We designed our analysis in order to be sound, behavior preserv-

ing, compatible, complete, and practical. This section describes
each of these inter-related principles, then gives the metric (cast
elimination) that we use to choose among multiple solutions that
fit the constraints. Finally, we explicitly note the assumptions upon
which our approach relies.

3.1 Soundness
The translation must be sound: the result of the analysis must be

a type-correct JSR-14 program. Crucially, however, in the presence
of unchecked operations, simply satisfying the compiler’s type-
checker does not ensure type safety.

For instance, there exist type-correct programs in which a vari-
able of type Cell〈Float〉 may refer to a Cell containing an Integer.
Such typings arise from the unsafe use of unchecked operations.

We require that all unchecked operations in the translated pro-
gram are safe, and are guaranteed not to violate the invariants of
any other type declaration. This guarantee cannot be made using
only local reasoning, and requires analysis of the whole program.

3.2 Behavior preservation
The translation must preserve the dynamic behavior of the code

in all contexts. In particular, it must not throw different exceptions
or differ in other observable respects. It must interoperate with ex-
isting Java code, and with JVMs, in exactly the same way that the
original code did. The translation should also preserve the static
structure and the design of the code, and it should not require man-
ual rewriting before or after the analysis.

To help achieve these goals, we require that our analysis changes
only type declarations and types at allocation sites; no other mod-
ifications are permitted. Changing other program elements could
change behavior, cause the code to diverge from its documentation
(and from humans’ understanding), and degrade its design, leading
to difficulties in understanding and maintenance. This implies that
inconvenient idioms may not be rewritten, nor may dead code be
eliminated. (The type-checker checks dead code, and so should an
analysis.) We leave such refactoring to humans or other tools.

Furthermore, we do not permit the erasure of any method signa-
ture or field type to change. For instance, a field type or method
parameter or return type could change from Cell to Cell〈String〉,
but not from Object to String. Changing field or method signatures
would have far-ranging effects; for instance, method overriding re-
lationships would change, affecting the semantics of clients or sub-
classes that might not be in the scope of the analysis. If the tool
is working under a closed-world assumption, then it may offer the
option to change field and method signatures as long as the behav-
ior is preserved. We permit changing the declared types of local
variables, so long as the new type is a subtype of the old, because
such changes have no externally visible effect.3

Finally, we do not permit any changes to the source code of
the library or the generic information contained in the compiled
3This statement is not strictly true, even though the type of local
variables is not captured in the byte codes. The types of locals
can affect method overloading resolution and which version of a
field (that is re-declared to shadow one in a superclass) is accessed.
Therefore, an implementation should ensure that such behavioral
changes do not occur.

18



bytecode of the library. The analysis should not even need library
source code, which is often unavailable.

It is straightforward to see that these constraints ensure behavior
preservation. The new code differs only in its type erasure and
in the types of local variables; neither of these is captured in the
bytecodes that run on the JVM, so the bytecodes are identical. (The
signature attribute, which records the type parameters, is ignored by
the virtual machine.)

3.3 Compatibility
We constrain ourselves to the confines of the JSR-14 language

rather than selecting or inventing a new language that permits eas-
ier inference or makes different tradeoffs. (For example, some other
designs are arguably simpler, more powerful, or more expressive,
but they lack JSR-14’s integration with existing Java programs and
virtual machines.) Invariant parametric subtyping, raw types, and
other features of the JSR-14 type system may be inconvenient for
an analysis, but ignoring them sheds no light on JSR-14 and is of
no direct practical interest to Java programmers. Therefore, we
must address the (entire) JSR-14 language, accepting the engineer-
ing tradeoffs made by its designers.

3.4 Completeness
We strive to provide a nontrivial translation for all Java code,

rather than a special-case solution or a set of heuristics. Java code is
written in many styles and paradigms, and relies on many different
libraries. The absolute amount of code not covered by a partial
solution is likely to be very large.

A few important libraries, such as those distributed with the JDK,
are very widely used. Special-case solutions for them may be valu-
able [42], and such an approach is complementary to ours. How-
ever, such an approach is limited by the fact that many substantial
programs (two examples are javac and antlr) define their own con-
tainer classes rather than using the JDK versions.

Our approach works equally well with non-containers. Many
generic classes implement container abstractions, but not all do.
For example, class java.lang.Class, or the java.lang.ref

package which uses generics to provide support for typed ‘weak’
references. Our implementation also uses them for I/O adapters
that convert an object of one type to another (say, type T to String),
and the C++ Standard Template Library [37] provides additional
examples.

3.5 Practicality
Our goal is not just an algorithm for computing type arguments,

but also a practical, automated tool that will be of use to Java pro-
grammers. For any legal Java program, the tool should output legal
JSR-14 code. Furthermore, if it is to be widely useful, it should not
rely on any specific compiler, JVM, or programming environment.
(On the other hand, integrating it with a programming environment,
without relying on that environment, might make it easier to use.)

A practical tool should not require any special manual work for
each program or library, and touch-ups of the inputs or results
should not be necessary. Equally importantly, as a follow-on to
a point made above, special preparation of each library is not ac-
ceptable, because library code is often unavailable (for example, it
was not provided with the JSR-14 compiler that we are using), be-
cause library writers are unlikely to cater to such tools, and because
human tweaking is error-prone and tedious.

3.6 Success metric: cast elimination
There are multiple type-correct, behavior-preserving JSR-14 trans-

lations of a given Java codebase. Two trivial solutions are as fol-

interface I {}
class A {}

class B1 extends A implements I {}
class B2 extends A implements I {}

// Three possible typings:

void foo(boolean b) { // #1 | #2 | #3
Cell cb1 = new Cell(new B1()); // Cell<A> | Cell<I> | Cell<B1>

Cell cb2 = new Cell(new B2()); // Cell<A> | Cell<I> | Cell<B2>
Cell c = b ? cb1 : cb2; // Cell<A> | Cell<I> | Cell

// Casts eliminated:

A a = (A)c.get(); // yes | no | no
I i = (I)c.get(); // no | yes | no

B1 b1 = (B1)cb1.get(); // no | no | yes
B2 b2 = (B2)cb2.get(); // no | no | yes

}

Figure 5: Java code with multiple non-trivial JSR-14 translations.

lows. (1) The null translation, using no type arguments. JSR-14
is a superset of Java, so any valid Java program is a valid JSR-14
program in which each type is a JSR-14 raw type. (2) Instantiate
every use of a generic type at its upper bounds, and retain all casts
that appear in the Java program. For example, each use of Cell
would become Cell〈Object〉. These trivial solutions reap none of
the benefits of parametric polymorphism.

Figure 5 shows an example fragment of code for which multiple
translations are possible. As shown in the figure, three possible
typings are

1. cb1, cb2, and c are all typed as Cell〈A〉
2. cb1, cb2, and c are all typed as Cell〈I〉
3. cb1 is typed as Cell〈B1〉; cb2 is typed as Cell〈B2〉; and c is

typed as (raw) Cell. In this case c cannot be given a non-raw
type due to invariant subtyping.

Because the intent of the library and client programmers is un-
knowable, and because different choices capture different proper-
ties about the code and are better for different purposes, there is no
one best translation into JSR-14.

As a measure of success, we propose counting the number of
casts that can be eliminated by a particular typing. Informally, a
cast can be eliminated when removing it does not affect the pro-
gram’s type-correctness. Cast elimination is an important reason
programmers might choose to use generic libraries, and the metric
measures both reduction in code clutter and the amount of infor-
mation captured in the generic types. (Casts are used for other pur-
poses than for generic data types — as just two examples, to express
invariants known to the application, or to resolve method overload-
ing — so the final JSR-14 program is likely to still contain casts.) If
two possible typings eliminate the same number of casts, then we
prefer the one that makes less use of raw types. Tools could prior-
itize removing raw types over removing casts if desired. However,
some use of raw types is often required in practice.

In practice, when we have examined analysis results for real-
world code, this metric has provided a good match to what we be-
lieved a programmer would consider the best result. As an example
of the metric, Figure 5 shows that the first two typings remove one
cast each; the third removes two casts, leaving c as a raw type.

It is not always desirable to choose the most precise possible
type for a given declaration, because it may lead to a worse solu-
tion globally: precision can often be traded off between declaration
sites. In Figure 5, as a result of invariant parametric subtyping, the
types of c, cb1, and cb2 may all be equal, or cb1 and cb2 can have
more specific types if c has a less specific type. Another situation
in which the use of raw types is preferred over the use of non-raw
types is illustrated by the method displayValue on lines 30–32
of Figure 4. If its parameter were to be made non-raw, the type

19



argument must be Object, due to constraints imposed by the calls
at lines 13 and 14. This has many negative ramifications. For ex-
ample, c1 and c2 would have type Cell〈Object〉 and c3 would have
raw Cell, and the casts at lines 4 and 5 could not be eliminated.

3.7 Assumptions
In this section we note some assumptions of our approach.
We assume that the original library and client programs conform

to the type-checking rules of JSR-14 and Java, respectively. (This
is easy to check by running the compilers.)

The client code is Java code containing no type variables or pa-
rameters; that is, we do not refine existing JSR-14 types in client
code.

We do not introduce new type parameters; for instance, we do
not parameterize either classes or methods in client code. (The
type parameterization problem is beyond the scope of this paper
and appears to be of less practical importance.)

Our analysis is whole-program rather than modular; this is nec-
essary in order to optimize the number of casts removed and to
ensure the use of raw types is sound (Section 3.1). Furthermore,
we make the closed-world assumption, because we use constraints
generated from uses in order to choose declaration types.

4. ALGORITHM SYNOPSIS
Our goal is to select sound type arguments for each use of a

generic type anywhere in the program. We divide this task into
two parts: allocation type inference and declaration type inference.

Allocation type inference (Section 5) proposes types for each al-
location site (use of new) in the client code. It does so in three
steps. First, it performs a context-sensitive pointer analysis that de-
termines the set of allocation sites to which each expression may
refer. Second, for each use (method call or field access) of an ob-
ject of generic type, it unifies the pointer analysis information with
the declared type of the use, thereby constraining the possible in-
stantiation types of the relevant allocation sites. Third, it resolves
the context-sensitive types used in the analysis into JSR-14 param-
eterised types. The output of the allocation type inference is a pre-
cise but conservative parameterised type for each object allocation
site.

For example, in Figure 4, the results of allocation type inference
for the three allocations of Cell on lines 2, 3, and 10 are Cell〈Float〉,
Cell〈Cell〈Float〉〉, and Cell〈Number〉, respectively.

Declaration type inference (Section 6) starts with the allocation
type inference’s output, and selects types for all uses of parame-
terized types, including declarations (fields, locals, and method pa-
rameters and returns), casts, and allocation sites. At allocation sites,
it need not necessarily choose the type proposed by the allocation-
site inference (though our current implementation does; see Sec-
tion 6.4). It operates in two steps. The first step creates a type con-
straint graph that expresses the requirements of the JSR-14 type
system; this graph includes variables (type unknowns) that stand
for the type arguments at generic instantiations. The second step
solves the type constraints, yielding a JSR-14 typing of the entire
program. Finally, our tools insert type parameters into the original
program’s source code.

The allocation type inference is a whole-program analysis; this
is required for safety, as explained in Section 3.1, as local analysis
cannot provide a guarantee in the presence of unchecked opera-
tions. It is context-sensitive, and is potentially more precise than
the JSR-14 type system.

The declaration type inference is context-insensitive, and its out-
put is sound with respect to the JSR-14 type system. It can be
supplied a whole program, but can also be run on any subpart of a

τ ::= C raw type
| C〈τ1, . . . , τn〉 class type
| T type variable
| obj(Ci) type identifier for allocation site Ci

| {τ1, . . . , τn} union type
| Null the null type

Figure 6: Type grammar for allocation type inference.

program, in which case it ‘frames’ the boundaries — constrains the
types at the interface so that they will not change — giving possibly
inferior results.

5. ALLOCATION TYPE INFERENCE
Allocation type inference determines possible instantiations of

type parameters for each allocation site — that is, each use of new
in the client code. The goal is to soundly infer the most precise type
(that is, the least type in the subtype relation) for each allocation
site.

Soundness requires that the allocation-site type be consistent with
all uses of objects allocated there, no matter where in the program
those uses occur. As an example, suppose that the allocation type
inference examined only part of the code and decided to convert an
instance of c = new Cell() into c = new Cell<Integer>(). If
some unexamined code executed c.set(new Float(0.0)), then
that code would not type-check against the converted part (or, if it
was already compiled or it used a raw type reference, it would sim-
ply succeed and cause havoc at run time). Alternatively, the pointer
analysis can avoid examining the whole program by making con-
servative approximations for the unanalyzed code, at the cost of re-
duced precision. Thus, our allocation type inference could be made
modular, by running over a scope smaller than the whole program,
but at the cost of unsoundness, reduced precision, or both.

5.1 Definitionsand terminology
Figure 6 gives the type grammar used by the allocation type in-

ference. It is based on the grammar of reference types from the
JSR-14 type system. For brevity, we omit array types, including
primitive array types, although our formalism can be easily ex-
tended to accommodate them.

By convention we use C for class names and T for type variables;
the distinction between these is clear from the class declarations in
a program. In addition to JSR-14 types, the grammar includes three
other types used only during the analysis.

Allocation site types: Every allocation site of each generic class
C is given a unique label, Ci, and for each such label a unique type
identifier obj(Ci) is created [48]. This type identifier represents the
type of all objects created at that allocation site. Some allocation
sites within generic library code may be analyzed many times, due
to context-sensitivity (see Section 5.4), and for such sites, a new
label and type identifier are created each time. All allocations of a
non-generic class share the same label.

Union types: A union type represents the least common super-
type (‘join’) of a set of types without computing it immediately.
Union types defer the computation of a join until the complete set of
types is known, minimizing loss of precision from arbitrary choices
when a set of Java types does not have a unique join due to multi-
ple inheritance. The use of union types is not strictly necessary for
correctness; we could eliminate them earlier (at each point where
they would otherwise be introduced), but at the cost of reduced pre-
cision.

The Null type: The Null type denotes the type of the null pointer,
and is a subtype of every other type.

20



5.2 Allocation type inference overview
The allocation type inference consists of three steps: pointer

analysis, s-unification, and resolution of parametric types. The out-
put of the allocation-type inference is a parameterized type for each
allocation site that conservatively approximates all subsequent uses
of the allocated object.

1. Pointer analysis (Section 5.4) abstracts every expression e
in the program by a set of allocation-site labels, -(e). The
presence of a label Ci in this set indicates that objects created at Ci

may flow to e, or, equivalently, that e may point to objects created
at Ci. - sets generated by a sound pointer analysis are a
conservative over-approximation of all possible executions of the
program: the results can indicate that e may point to Ci when this
cannot actually occur. A more precise pointer analysis produces a
smaller - set.

Many different pointer analysis algorithms exist, differing in pre-
cision, complexity, and cost [23]. We use a context-sensitive pointer
analysis based on the Cartesian Product Algorithm [1].

2. S-unification (Section 5.5) combines the results of pointer
analysis with the declarations of generic library classes in order to
generate subtype constraints. Its name comes from its similarity to
conventional unification: both generate constraints by structural in-
duction over types. ‘S-unification’ stands for ‘unification with sub-
typing’. Whereas conventional unification identifies two terms by
equating variables with their corresponding subterms, s-unification
generates subtype constraints between variables and terms.

At each invocation of a generic library method, one s-unification
is performed for the result, if any, and one is performed for each
method parameter. Furthermore, for each allocation site of a generic
library class, one s-unification is performed for each field of the
class.

S-unification is a worklist algorithm. Generic classes can refer
to other generic classes (for instance, when inferring nested generic
types such as Cell〈Cell〈Integer〉〉), so if more information becomes
available, previous s-unifications may need to be re-done.

The result of s-unification is a set of constraints on the values
of the type variables at each generic class allocation site. For ex-
ample, Cell〈V〉 has method set(V). If we determine that for the
code c.set(x), -(x) = {obj(String)} and -(c) =
{obj(Cell2)}, then we know that the instantiation of V in obj(Cell2)
must allow a String to be assigned to it. In other words, we know
that String is a subtype of the instantiation of V in obj(Cell2). We
write this as String ≤ Vobj(Cell2); see Section 5.5.

The s-unification step is necessary because while pointer analy-
sis can distinguish different instances of a given class (for example,
two distinct allocations of Cell), it does not directly tell us the type
arguments of the parameterized types: it doesn’t know that one is
a Cell〈Number〉 while another is a Cell〈Cell〈Number〉〉. The s-
unification step examines the uses of those Cells, such as calls to
set, to determine the instantiation of their type variables.

3. Resolution of parametric types (Section 5.6). For each pa-
rameter of every allocation site of a generic class, the s-unification
algorithm infers a set of subtype constraints. Taken together, each
set can be considered a specification of the instantiation type of
one type-parameter as a union type. For example, in Figure 9,
obj(Cell10) has two constraints, Integer ≤ Vobj(Cell10) and Float ≤
Vobj(Cell10); equivalently, we say that obj(Cell10) has the union type
{Integer,Float}.

If the program being analyzed uses generic types in a nested
fashion, such as Cell〈Cell〈Float〉〉,4 then the union types may re-

4This use of ‘nested’ refers to lexical nesting of generic type ar-
guments. It is unrelated to the Java notion of a nested class (class

Local - set
c1 {obj(Cell2)}
c2 {obj(Cell3)}
c3 {obj(Cell2)}
c4 {obj(Cell10)}
f {obj(Float)}

Figure 7: - sets for local variables in the example of Figure 8.

fer to other allocation types rather than classes. In this case, the
types must be resolved to refer to classes. See .

5.3 Example
We illustrate the algorithm with a code fragment from Figure 3:

2 Cell c1 = new Cell2(new Float(0.0));
3 Cell c2 = new Cell3(c1);
4 Cell c3 = (Cell) c2.get();
5 Float f = (Float) c3.get();

10 Cell c4 = new Cell10(new Integer(0));
11 c4.replaceValue(c1);

The allocation sites at lines 2, 3, and 10 are labeled Cell2, Cell3,
and Cell10, and their types are obj(Cell2), obj(Cell3), and obj(Cell10).
obj(Float) and obj(Integer) are not numbered: Float and Integer
are not generic classes, so all of their instances are considered iden-
tical.

Figures 7–9 demonstrate the operation of the allocation type in-
ference algorithm.

The first step is pointer analysis. Figure 7 shows the -
sets (the output of the pointer analysis) for local variables, and Fig-
ure 8 shows the - sets of other expressions of interest. For
each expression, the result of the pointer analysis is the set of allo-
cation sites that it may point to at run-time. In this example, only
Cell10.value points to more than a single site.

The second step is s-unification, which is performed for each
generic class field, method call result, and method call parame-
ter. The S-unifications column of Figure 8 shows the s-unifications
(calls to the - procedure), and the resulting inferences about
the instantiations of type variables. Informally, -(context, lhs,
rhs) means ‘within the context of allocation site context, constrain
the free type variables in lhs so that rhs ≤ lhs’. Section 5.5 discusses
s-unification for this example in more detail.

The third step is resolution of the s-unification type constraints.
Figure 9 illustrates this process. S-unification produced two differ-
ent constraints for Vobj(Cell10) — obj(Integer) ≤ V and obj(Float) ≤ V
— so we represent the type of Vobj(Cell10) by the union type {obj(Float),
obj(Integer)}. Union types may be eliminated (Section 6.5) by
selecting a most precise JSR-14 type that is a supertype of this
union — in this case, it would be V ≡ Number, resulting in the
type Cell〈Number〉 for obj(Cell10) — but this step is not required
as union types may be passed on to the next phase of the algorithm.

5.4 Pointer analysis
Pointer analysis is the problem of soundly approximating what

possible allocation sites may have created the object to which an
expression refers; thus, it also approximates the possible classes of
the expression. This information has many uses in program analy-
sis, for example in static dispatch of virtual methods [10, 11, 3, 44],
construction of precise call graphs [14, 22], and static elimination
of casts [48].

whose declaration occurs within the body of another class or inter-
face) [21].

21



Line Expression - set S-unifications
2 new Cell2(•) {obj(Float)} -(obj(Cell2), V, {obj(Float)})

=⇒16 -(obj(Cell2), V, obj(Float))
=⇒29 obj(Float) ≤ Vobj(Cell2)

3 new Cell3(•) {obj(Cell2)} -(obj(Cell3), V, {obj(Cell2)})
=⇒16 -(obj(Cell3), V, obj(Cell2))
=⇒29 obj(Cell2) ≤ Vobj(Cell3)

4 Cell3.get() {obj(Cell2)} (same as for new Cell3(•))
5 Cell2.get() {obj(Float)} (same as for new Cell2(•))

10 new Cell10(•) {obj(Integer)} -(obj(Cell10), V, {obj(Integer)})
=⇒16 -(obj(Cell10), V, obj(Integer))
=⇒29 obj(Integer) ≤ Vobj(Cell10)

11 Cell10.replaceValue(•) {obj(Cell2)} -(obj(Cell10), Cell〈U〉, {obj(Cell2)})
=⇒16 -(obj(Cell10), Cell〈U〉, obj(Cell2)) (*)
=⇒42 -(obj(Cell10), Cell〈U〉, Cell〈{obj(Float)}〉)
=⇒38 -(obj(Cell10), U, {obj(Float)})
=⇒22 -(obj(Cell10), V, {obj(Float)})
=⇒16 -(obj(Cell10), V, obj(Float))
=⇒29 obj(Float) ≤ Vobj(Cell10)

Cell2.value {obj(Float)} (same as for new Cell2(•))
Cell3.value {obj(Cell2)} (same as for new Cell3(•))
Cell10.value {obj(Integer), obj(Float)} -(obj(Cell10), V, {obj(Integer), obj(Float)})

=⇒16 -(obj(Cell10), V, obj(Integer))
=⇒29 obj(Integer) ≤ Vobj(Cell10)

=⇒16 -(obj(Cell10), V, obj(Float))
=⇒29 obj(Float) ≤ Vobj(Cell10)

Figure 8: Example of s-unification, for lines 2–5 and 10–11 of Figure 3. The table shows, for each field and method call of a generic class, its - set,
and the calls to - issued for it. A bullet • indicates that the - set is for the value of an actual parameter to a method call. A ‘snapshot’ (see
Section 5.5) of obj(Cell2) is taken where indicated by the asterisk (*). Subscripts on arrows indicate the line number in Figure 10 at which the recursive call
appears or the constraint is added.

S-unification constraints  values Resolved types JSR-14 types
obj(Float) ≤ Vobj(Cell2)

obj(Cell2) ≤ Vobj(Cell3)

obj(Integer) ≤ Vobj(Cell10)

obj(Float) ≤ Vobj(Cell10)

Vobj(Cell2) = {obj(Float)}
Vobj(Cell3) = {obj(Cell2)}

Vobj(Cell10) = {obj(Integer), obj(Float)}

obj(Cell2) = Cell〈Float〉

obj(Cell3) = Cell〈Cell〈Float〉〉

obj(Cell10) = Cell〈{Integer,Float}〉

obj(Cell2) = Cell〈Float〉

obj(Cell3) = Cell〈Cell〈Float〉〉

obj(Cell10) = Cell〈Number〉

Figure 9: Resolution of s-unification constraints. The first column shows the constraints arising from the - calls of Figure 8. The second column shows
the equivalent union types; note that obj(Cell3) depends on the type of obj(Cell2). The third column shows the final allocation-site types after type resolution.
The fourth column shows what the result would be, if union types were eliminated at this stage.

To achieve greater precision, a context-sensitive analysis may
repeatedly examine the effect of a statement, or the value of a
variable, in differing contexts. Our pointer analysis employs both
kinds of context sensitivity, call and data. This permits distinguish-
ing among different instances of a single generic class: one new

Cell() expression may create Cell〈Integer〉, while another cre-
ates Cell〈Float〉. By ‘Celli creates Cell〈Integer〉’, we mean that
instances of class Cell allocated at Celli are used only to contain
Integers. Our method applies equally well to generic classes that
are not containers.

A call context-sensitive pointer analysis may analyze a method
more than once depending on where it was called from or what
values were passed to it. Each specialized analysis of the same
method is called a contour, and a contour selection function maps
from information statically available at the call-site to a contour.
The contour selection function may either return an existing con-
tour or create a new one. If the contour is new, the method must
be analyzed from scratch. For an existing contour, re-analysis of
the method is necessary only if the new use of the contour causes
new classes to flow to it; if the re-analysis causes the results to

change, then additional contours that depend on the result must be
re-analyzed until a fixed point is reached.

Data context-sensitivity concerns the number of separate abstrac-
tions of a single variable in the source code. An insensitive algo-
rithm maintains a single abstraction of each field, and is unable
to distinguish between the values of corresponding fields in differ-
ent instances of the same class. In contrast, a data context-sensitive
scheme models fields of class C separately for each distinctly-labeled
allocation-site of class C. Data context-sensitivity is sometimes
called ‘field cloning’ or the ‘creation type scheme’ [48]. Limiting
either call or data context-sensitivity reduces execution time but
may also reduce the precision of the analysis results.

Our technique uses a variant of Agesen’s Cartesian Product Al-
gorithm (CPA) [1]. We briefly explain that algorithm, then explain
our variation on it.

CPA is a widely-used call-context-sensitive pointer analysis al-
gorithm. CPA uses an n-tuple of allocation-site labels 〈c1, . . . , cn〉

as the contour key for an n-ary method f (x1, . . . , xn). The key is an
element of C1 × . . . × Cn, where each Ci is the set of classes that
flow to argument xi of method f at the call-site being analyzed.

22



The execution time of CPA is potentially exponential, due to the
number of keys — the size of the cross-product of classes flowing to
the arguments at a call-site. To enable CPA to scale, it is necessary
to limit its context-sensitivity. Typically, this is achieved by im-
posing a threshold L on the size of each argument set. When more
than L classes flow to a particular argument, the contour selection
function effectively ignores the contribution of that argument to the
cross-product by replacing it with the singleton set {?}, where ? is
a special marker. Call-sites treated in this way are said to be meg-
amorphic. The reduction in precision in this approach is applied to
only those call sites at which the threshold is exceeded; at another
call-site of the same method, analysis of the same parameter may
be fully context-sensitive.

CPA is primarily used for determining which classes flow to each
use, so in the explanation of CPA above, the abstract values de-
scribed were classes. The abstraction in our variant of CPA is al-
location site type identifiers, which is more precise since it distin-
guishes allocations of the same class.

Our variant of CPA limits both call and data context-sensitivity
so that they apply only to the generic parts of the program. This
policy fits well with our intended application, for it reduces analysis
costs while limiting negative impacts on precision.

First, to reduce call sensitivity, our contour selection function
makes all non-generic method parameter positions megamorphic.
More precisely, only those parameter positions (and this) whose
declared type contains a type variable are analyzed polymorphi-
cally. Thus, only generic methods, and methods of generic classes,
may be analyzed polymorphically. We do not employ a limit-based
megamorphic threshold.

For example, Cell.set(V) may be analyzed arbitrarily many
times, but a single contour is used for all calls to PrintStream

.println(Object x), because neither its this nor x parameters
contains a type variable. Calls to a method f(Set<T> x, Object

y) would be analyzed context-sensitively with respect to parameter
x, but not y.

A few heavily-used non-generic methods, such as Object.clone
and System.arraycopy, need to be treated context-sensitively.
We provide annotations to the analysis to ensure this treatment and
prevent a loss of precision. Additional methods can be annotated
using the same mechanism to ensure precise treatment as required.

Second, to reduce data sensitivity, we use the generic type infor-
mation in libraries to limit the application of data context-sensitivity
to fields. Only fields of generic classes, whose declared type in-
cludes a type variable, are analyzed sensitively. For example, a
separate abstraction of field Cell.value (declared type: V) is cre-
ated for each allocation site of a Cell, but only a single abstraction
of field PrintStream.textOut (of type BufferedWriter) is cre-
ated for the entire program.

Our implementation of the pointer analysis is similar to the frame-
work for context-sensitive constraint-based type inference for ob-
jects presented by Wang and Smith [48]. Their framework per-
mits use of different contour-selection functions and data context-
sensitivity functions (such as their DCPA [48]); our choices for
these functions were explained immediately above. Our implemen-
tation adopts their type constraint system and closure rules. The
analysis generates a set of initial type constraints from the program,
and iteratively applies a set of closure rules to obtain a fixed point
solution to them. Once the closure is computed, the - sets
can be read off the resulting type-constraint graph.

In summary, pointer analysis discovers the types that flow to the
fields and methods of a class, for each allocation site of that class.
However, this information alone does not directly give a parame-
terized type for that allocation site: we must examine the uses of

1 // - unifies lhs with rhs, in the process constraining, in
2 // , the type variables of context so that rhs ≤ lhs.
3 // context is an allocation site of a generic class C.
4 // lhs is the type of a JSR-14 declaration appearing within class
5 // C, typically containing free type variables of C.
6 // rhs is a type, typically a union of obj(Ci) types denoting a
7 // --set; it never contains free type variables.
8 procedure -(context, lhs, rhs)
9 if lhs has no free type variables then

10 return
11 // First, switch based on rhs
12 if rhs = Null then
13 return
14 else if rhs = {τ1,. . . ,τn} then // Union type
15 for all τi ∈ rhs do
16 -(context, lhs, τi)
17 return
18 // Second, switch based on lhs
19 if lhs = T then // Type variable
20 if T is declared by a generic method then
21 for all b ∈ (T) do
22 -(context, b, rhs)
23 return
24 let tclass := the class that declares T
25 if tclass , (context) then
26 let lhs′ := instantiation expression of T in (context)
27 -(context, lhs′, rhs)
28 return
29 (context, lhs) := (context, lhs) ∪ {rhs}
30 if  changed then
31 for all (c, l, r) ∈  | r = lhs do
32 -(c, l, r)
33 return
34 else if lhs = C〈τ1, . . . , τn〉 then // Class type
35 if rhs = D〈τ′1, . . . , τ

′

m〉 then
36 let rhs′ := (rhs,C) // rhs′ = C〈τ′′1 , . . . , τ

′′

n 〉

37 for 1 ≤ i ≤ n do
38 -(context, τi, τ

′′

i )
39 return
40 else if rhs = obj(Ci) then
41  :=  ∪ {(context, lhs, rhs)}
42 -(context, lhs, (rhs))
43 return
44 else
45 error: This cannot happen
46 else // There are no other possibilities for lhs
47 error: This cannot happen

Figure 10: S-unification algorithm.

the objects (allocated at the site) in order to determine the type ar-
guments. It is necessary to unify the pointer analysis results for
fields and methods with their declared types in order to discover
constraints on the instantiation type for the allocation site. The uni-
fication process is the topic of the next section.

5.5 S-unification
S-unification combines the results of pointer analysis with the

declarations of generic library classes in order to generate subtype
constraints. S-unification has some similarity to the unification
used in type inference of ML and other languages. Both are de-
fined by structural induction over types. Conventional unification

23



-(expr) is the pointer-analysis result for expr: a union
type whose elements are the allocation site type identifiers
obj(Ci) that expr may point to.

(context, typevar) is the (mutable) union type whose ele-
ments are the discovered lower-bounds on type variable type-
var within allocation site type context.

(obj(Ci)) = C〈S1, . . . ,Sn〉

where Sj = (obj(Ci),T j)
and T j is C’s jth type variable.

 is a global set of triples (obj(Ci), τ, obj(Dj)). The presence
of a triple (context, lhs, rhs) ∈  indicates that a call
to - with those arguments depended upon the current
value of (rhs), and that if that value should change,
the call should be re-issued.

(T) returns the set of upper bounds of a type variable T.

(D〈τ1, . . . , τn〉,C) returns the (least) supertype of
D〈τ1, . . . , τn〉 whose erasure is C.

(obj(Ci)) = C is the class that is constructed at allocation site
Ci.

Figure 11: S-unification helper definitions.

identifies two terms by finding a consistent substitution of the vari-
ables in each term with the corresponding subterm; the substitution,
or unifier, is a set of equalities between variables and subterms. In
s-unification, the unifier is a set of inequalities, or subtype con-
straints. S-unification also differs in that it is a worklist algorithm:
as new information becomes available, it may be necessary to re-
peat some s-unifications.

S-unification is performed by the - procedure of Figure 10.
It can be thought of as inducing the subtype constraint rhs ≤ lhs
resulting from the Java assignment ‘lhs = rhs;’. The three parame-
ters of the - procedure are as follows. The context argument
is the type identifier of an allocation site of generic class C, whose
variables are to be constrained. The lhs argument is the declared
type of a JSR-14 field or method parameter declaration appearing
within class C. The rhs argument is typically the corresponding
- set — that is, a union of allocation site types — for decla-
ration lhs inferred by the pointer analysis of Section 5.4. Figure 11
lists several helper definitions used by the s-unification algorithm.

S-unification infers, for each type variable T of each distinct al-
location site type obj(Ci), a set of types, each of which is a lower
bound on the instantiation of the type variable; in other words, it in-
fers a union type. When s-unification is complete, this union type
captures all the necessary constraints on the instantiation of the type
variable.

These lower bounds are denoted (context, typevar), where
context is an allocation site type, and typevar is a type variable be-
longing to the class of the allocation. (Vobj(Cell10) is shorthand for
(obj(Cell10),V).) All  are initialized to the empty
union type, and types are added to them as s-unification proceeds.

After the pointer analysis of Section 5.4 is complete, - is
called for each field and method defined in the generic classes in
the program. Specifically, it is called for each context-sensitive
abstraction of a field or method parameter or result.

Our example has three different Cell allocation sites, each with
a distinct abstraction of field value, so - is called once for
each. The information in Figure 8 is therefore data context-sensitive.

In these calls to -, the context argument is the allocation site
type, lhs is the declared type of the field, and rhs is the -
set of the field. (See the last three rows of Figure 8.) In contrast,
a single abstraction is used for all instances of Float, since it is
non-generic (- is not called for non-generic types).

Similarly, there may be many context-sensitive method-call ab-
stractions for a single source-level call site (although in our small
example, they are one-to-one). - is called once for each for-
mal parameter and return parameter at each such call. The in-
formation in Figure 8 is therefore call context-sensitive. In these
calls to -, the context argument is the allocation site type of
the receiver expression (in our example it is the sole element of
-(this)), lhs is the declared type of the method parame-
ter, and rhs is the - set of the argument or result. In con-
trast, a single abstraction would be maintained for all calls to a
non-generic method such as PrintStream.println (not shown).
See Section 5.4 for more details.

To build some initial intuitions of the workings of the algorithm
before showing all details of its operation, we present the steps per-
formed for some expressions of Figure 8.

The Cell constructor’s formal parameter type is V, and at new
Cell3(•) on line 3, the actual parameter points to obj(Cell2). There-
fore, whatever type is ascribed to obj(Cell2), it must be assignable
to (i.e., a subtype of) the type of V in obj(Cell3). This requirement
is expressed by issuing a call to -(obj(Cell3), V, {obj(Cell2)}).
When processing Cell10.value, unification against a non-trivial
union type results in multiple recursive calls to -.

In the second line of the replaceValue s-unification call, in-
dicated by the asterisk (*) in Figure 8, - must unify Cell〈U〉
with obj(Cell2). However, the type of obj(Cell2) is not yet known —
the goal of allocation type inference is to determine constraints on
the obj types. To permit unification to proceed, - uses, in
place of obj(Cell2), a snapshot: the type implied by its current
constraints. In this case, because the only constraint on Cell2 is
obj(Float) ≤ Vobj(Cell2), the snapshot is Cell〈{obj(Float)}〉. If subse-
quent unifications add any new constraints on obj(Cell2), then the
snapshot changes and the unification must be re-performed. Re-
unification is not necessary in our example.

As can be seen from the duplicated entries in the S-unifications
column of Figure 8, there is significant redundancy in the Cell ex-
ample. The formal parameter to method set (which is not used
by this part of the client code), the result of method get, and the
field value are all of declared type V. Since the - sets
for all three of these will typically be identical, many of the uni-
fications issued will be identical. In this particular case, it would
suffice for the algorithm to examine just the value field. However,
in more complex generic classes (e.g., Vector or HashSet), there
may be no single declaration in the class whose - set can
be examined to determine the instantiation, and in such cases, the
analysis must use information from fields, method parameters, and
method results. (Also, this ensures correct results even in the pres-
ence of unchecked operations, such as a cast to a type variable T.
An approach that assumes that any such cast succeeds may choose
incorrect type parameters.)

5.5.1 S-unificationalgorithm details
This section discusses the - algorithm presented in Fig-

ure 10. Readers who are not interested in a justification of the de-
tails of the algorithm may skip this section. Line numbers refer to
the pseudocode of Figure 10.

The first few cases in the algorithm are straightforward. If there
are no free type variables to constrain (lines 9–10), or only the null
value flows to a type variable (lines 12–13), then no constraints

24



can be inferred. When the rhs of a unification is a union type (as
for Cell10.value in Figure 8), - descends into the set and
unifies against each element in turn (lines 14–17).

Otherwise, lhs contains free type variables, so it is either a type
variable or a (parameterized) class type. First, consider the case
when it is a type variable (lines 19–33).

JSR-14 source code need not explicitly instantiate type variables
declared by generic methods, so our algorithm need not track con-
straints on such variables. Without loss of precision, unifications
against type variables declared by a method are replaced by uni-
fications against the method variable’s type bound (lines 20–23),
which may refer to a class variable. Care must be exercised to pre-
vent infinite recursion in the presence of F-bounded variables such
as T extends Comparable<T>; for clarity, this is not shown in
the algorithm of Figure 10.

The call to replaceValue gives a concrete example. In the
fourth call to - (see Figure 8), lhs is the type variable U. This
variable is declared by the generic method

<U extends V> replaceValue(Cell<U>)

and not by the generic class of context, which is Cell. Since we
cannot meaningfully constrain U in this context, we replace this
type variable by its bound, which is V, and - again, eventually
obtaining a Float constraint on V.

The type variable may be declared in a different class than
context — for example, when processing inherited methods and
fields, which may refer to type variables declared by a superclass of
the receiver. Lines 24–28 handle this case. For example, Pair〈F,S〉
inherits field V value from class Cell〈V〉. It would be meaningless
to constrain V in the context of a Pair allocation, since Pair has no
type variable V. The instantiation expression of Cell’s V in Pair is
F. So, a unification in Pair context, whose lhs is V, becomes a uni-
fication against F. This produces the correct results for arbitrarily
complex instantiation expressions in extends-clauses.

The last possibility for a type variable is that it is declared by the
class being constrained — that is, the class of context. In this case,
(obj(Cell2), V) is updated by adding rhs to it (line 29). This
is the only line in the algorithm that adds a type constraint.

Now, consider the case when lhs is a class type (lines 34–43);
rhs is either a class type or an allocation site type.

If rhs is a class type, then corresponding type parameters of lhs
and rhs can be unified (lines 37–38). This is only sensible if the
classes of lhs and rhs are the same, so that their type parameters
correspond. The class of rhs is widened to satisfy this requirement.
In our example, while processing Cell10.replaceValue(•), the
widening is the identity operation since the classes of lhs and rhs
already match: they are both Cell.

The algorithm’s final case handles the possibility that rhs is an
allocation type (lines 40–43). In this case, the allocation type is
replaced by a snapshot: the type implied by the current set of type
constraints on the allocation type.

A snapshot uses the current state of information about a type
variable, but this information is subject to change if the variable’s
-set grows. If this happens, unifications that depended upon
 information must be recomputed (lines 30–32). Each time
an allocation-site type o appears as the rhs of a call to -, a
 of it is used, and a triple (context, lhs, rhs) is added to the
set  ⊆ (A×τ×A), where A is the set of allocation-site types.
This set is global (its value is preserved across calls to -), and
initially empty. Each triple in  is the set of arguments to the
call to - in which a  was used. Whenever the value
of (o) grows, (o) becomes stale, so we must again
call -(c, l, r), for each triple (c, l, r) ∈  such that r = o.

Since the process of s-unification is idempotent with respect to the
same argument values, and monotonic with respect to larger rhs
argument values, this is sound.

5.6 Resolution of parametric types
The result of s-unification is an  union type for each type

variable of each generic allocation-site type, where the union ele-
ments are allocation-site types. For our example, these are illus-
trated in the  values column of Figure 9. The step of reso-
lution uses these unions to determine a type for each allocation site;
we call this type the resolved type.

For a non-generic allocation site type such as Float, the resolved
type is just the type of the class itself. However, one allocation
site type can depend on another allocation site type. In particular,
the resolved type of a generic allocation depends on other resolved
types: obj(Cell2) depends upon obj(Float), and obj(Cell3) depends
upon obj(Cell2). Intuitively, if obj(Cell3) ‘is a Cell of obj(Cell2)’,
then we need to know the resolved type of obj(Cell2) before we can
give a resolved type to obj(Cell3). To perform resolution, we re-
solve allocation site types in reverse topological order of resolution
dependencies.

For our running example, the resolution dependency graph is:

obj(Cell 10) obj(Integer)

obj(Float)obj(Cell 3) obj(Cell 2)

Additional code (included in our implementation) is required for
correct handling of type variable bounds constraints, out-of-bounds
types, and to prevent infinite recursion for F-bounded variables
such as T extends Comparable<T>.

The graph of resolution dependencies is not necessarily acyclic:
an expression such as cell.set(cell) gives rise to a cycle. A
type system with support for recursive types could assign a type
such as fix λx.Cell〈x〉. However, JSR-14 has no means of express-
ing recursive types, so we instantiate all types within a strongly-
connected component of the dependency graph as raw types (e.g.,
raw Cell). We have not yet observed cycles in any real-world pro-
grams. The semantic contract of some generic interfaces makes
cycles unlikely: for example, the specification of the Set interface
expressly prohibits a set from containing itself.

6. DECLARATION TYPE INFERENCE
The allocation type inference produces a precise parameterized

type for each allocation site of a generic class. The next step, called
declaration type inference, uses this information to derive a new
type for every variable declaration in the client code, including
fields and method parameters.

We note two requirements and one goal for the new types. (1)
They must be mutually consistent, so that the resulting program
obeys the type rules of the language. (2) They must be sound, so
that they embody true statements about the execution of the pro-
gram; we cannot give a declaration the type Cell〈Float〉 if its ele-
ment may be an Integer. (3) They should to be precise, ascribing
the the most specific type possible to each declaration.

The consistency requirement is enforced by type constraints [35],
which expresses relationships between the types of program vari-
ables and expressions in the form of a collection of monotonic in-
equalities on the types of those expressions. A solution to such a
system of constraints corresponds to a well-typed program.

The soundness requirement is satisfied by using the results of
allocation type inference for the type of each allocation site. Since

25



τ ::= C raw type
| C〈τ1, . . . , τn〉 class type
| T type variable
| Xi type unknown
| {τ1, . . . , τn} union type
| Null the null type

Figure 12: Type grammar for declaration type inference.

the behavior of the whole program was examined in order to derive
these types, they represent all possible uses. Since the types of
allocation sites are sound, all other type declarations are also sound
in any consistent solution.

To achieve the goal of precision, we would like to obtain a min-
imal solution to the system of type constraints, if possible. As we
have seen, there may be no unique minimal solution, so we have to
content ourselves with solutions composed of local minima.

Sections 6.1 and 6.2 discuss the form of the type constraints.
Section 6.3 describes how they are generated from the input pro-
gram, with an explanation of the need for conditional constraints
to properly handle raw types. Finally, Sections 6.4 and 6.5 how
the system of type constraints can be solved to obtain a translated
program.

Due to space limitations, we illustrate the generation of type con-
straints for a core subset of the features of the JSR-14 language.
The ideas can be extended naturally to support all features of the
real language, as in our implementation.

6.1 Type Constraints
A constraint α1

R
−→ α2 is a manifestation of a relationship R be-

tween two terms α1 and α2. A constraint is satisfied if and only if
the pair (α1, α2) is a member of relation R. If the terms are par-
tially unknown — in other words, they contain variables — then the
satisfaction of the constraint depends upon the values of those vari-
ables. The problem of constraint solving is therefore to find a set
of assignments to the variables that satisfies the complete system of
constraints.

Type constraints [35] express relationships between the types of
program elements, such as fields and method formal parameters.
The relation R is the subtype relation ≤, and the grammar of terms
is the grammar of types. Type constraint solving assigns to each
type constraint variable, a value from the type domain.

For this problem, we use the type grammar τ, shown in Fig-
ure 12. This grammar modifies the type grammar of Figure 6 by
removing allocation site types and augmenting it with variables,
which we call type unknowns or constraint variables, to distinguish
them from the normal usage of ‘type variable’ in JSR-14 as a syn-
onym for ‘type parameter’.

The subtype relation can be viewed as a directed graph whose
nodes are types and edges are constraints. The subtype relation
is transitive, reflexive, and antisymmetric, so we use the equality
notation α1 = α2 as an abbreviation for a pair of subtype constraints
α1 ≤ α2 and α2 ≤ α1.

Our algorithm contains three different constraint systems (de-
scribed in Sections 5.4, 5.5, and 6), because different parts of the
algorithm have different purposes and require different technical
machinery. The pointer analysis (Section 5.4) is context-sensitive
for precision in computing value flow; we adopt the constraints
directly from previous work [48]. By contrast, the results of dec-
laration type inference (Section 6) must satisfy the type-checker,
which is context-insensitive, so that constraint system is most natu-
rally context-insensitive. The s-unification constraints (Section 5.5)

Suppose we have declarations:
class B〈U1, . . . ,Ui〉

class C〈T1 / S 1, . . . ,Tn / S n〉 / B〈τ1, . . . , τi〉

where ‘/’ is an abbreviation for extends/implements

Then:

(C,C) = ∅
(C, A) = [U1 B τ1, . . . ,Ui B τi] ◦ (B,A)

where A , C

(C) = C〈X1, . . . , Xn〉 (Xi are fresh)
Generates constraints: Xi ≤ S i θ

where θ = [T1 B X1, . . . ,Tn B Xn]

(E.x) = (~E�) ◦ (C,A)
where class A declares member x

(C〈τ1, . . . , τi〉) = [T1 B τ1, . . . ,Ti B τi]

Figure 13: Auxiliary definitions for declaration type inference: ,
which models the widening conversion of parameterized types; ,
which creates a fresh elaboration of a parametric class with type unknowns;
and , which defines the substitution applied to the type of class
instance members due to the parameterized type of the receiver.

bridge these two different abstractions, essentially collapsing the
context-sensitivity. It might be possible to unify some of these con-
straint systems, but to do so would complicate them and intertwine
conceptually distinct phases of our algorithm.

6.2 Definitions
This section defines terminology used in the description of the

declaration type inference.
The term instantiation denotes a ground type resulting from the

application of a generic type to a set of type arguments. A type ar-
gument is an actual type parameter used for a generic instantiation.
A generic instantiation is either a parameterized type, if the generic
type is applied to one or more type arguments, or a raw type, if it is
applied without explicit type arguments. For example, the parame-
terized type Cell〈String〉 is the generic instantiation resulting from
the application of generic type Cell〈V〉 to the type argument String.

In our notation, the metavariable C ranges over class names, E
ranges over expressions, F ranges over field names, and M ranges
over method names. F and M denote the declaration of a specific
field or method, including its type and the name of the class in
which it is declared. Metavariable X ranges over type unknowns.

We say that a method M in class C overrides a method M′ in
class C′ if M and M′ have identical names and formal parameter
types, and C is a subclass of C′.

[A B T ] denotes the substitution of the type variable A with type
(or type unknown) T . Substitutions are denoted by the metavariable
θ. We denote the empty substitution with ∅, the composition of two
substitutions with θ ◦ θ′, and the application of substitution θ to
type T with T θ. The result of substitution application is a type
(or a type unknown). For example, given class Pair of Figure 2,
Pair〈F,S〉[F B X1,S B X2] = Pair〈X1, X2〉.

Figure 13 defines auxiliary functions.
The  function defines the widening conversion [21] of

(generic) types: it indicates which instantiation of a superclass is a
supertype of a given instantiation of a subclass. For example, in the
context of types shown in Figures 1 and 2, (Pair,Cell) =
[V B F], which informally means that Pair is a subtype of Cell
when the type variable V of Cell is substituted by F of Pair, so
Pair〈String,Boolean〉 is a subtype of Cell〈String〉.

26



The  function takes a class type C and returns the elab-
oration of the type — the type obtained by applying C’s generic
type to a set of fresh type unknowns, one for each type parameter
of the class. In addition, this function generates type constraints
that ensure the fresh type unknowns are within their bound. For
example, (Pair) might return Pair〈X1, X2〉 and generate
constraints X1 ≤ Object and X2 ≤ Object, since both variables F
and S are bounded at Object. (We occasionally refer to the type
unknowns created during the elaboration of a particular declaration
as ‘belonging’ to that declaration.)

The  function returns the receiver-type substitution for
an instance member (field or method) expression. This substitu-
tion, when applied to the declared type of the member, yields the
apparent type of the member through that reference. For exam-
ple, in Figure 4, variable p has type Pair〈Number,Boolean〉, so
the receiver substitution (p.value) is [V B Number].
There are two components to the receiver substitution; the first
corresponds to the parameterization of the declaration of p, and
is [F B Number,S B Boolean]. The second corresponds to the
extends clauses between the declared class of p (Pair) and the class
that declared the member value (Cell); in this case, it is [V B F].
The result of  is the composition of these substitutions,
[V B Number].

The  function (not shown) returns the erased [6, 27] ver-
sion of a generic type. For example, (Pair〈String,Boolean〉)
= Pair and (Return(Cell.get)) = (V) = Object.

6.3 Creating the type constraint system
Generation of type constraints consists of two steps. First, dec-

larations are elaborated to include type unknowns for all type argu-
ments. Each use of a generic type in the client program, whether
in a declaration (e.g., of a field or method parameter), or in an op-
erator (e.g., a cast or new), is elaborated with fresh type unknowns
standing for type arguments. For example, consider the types in
Figure 2 and the statement Pair p = new Pair(f, o) on lines 7–8
of Figure 3. The declaration type inference creates four fresh type
unknowns X1, . . . , X4, so the elaborated code is Pair<X1,X2> p =

new Pair<X3,X4>().
Second, the declaration type inference algorithm creates type

constraints for various program elements. Some type constraints
are unconditionally required by the JSR-14 (and Java) type system,
or to ensure behavior preservation; see Section 6.3.1. Other type
constraints may be in effect or not, depending on the values given
to type unknowns. In particular, declaring a generic instantiation to
be raw induces different constraints on the rest of the program than
does selecting specific type arguments for the generic instantiation;
see Section 6.3.2.

6.3.1 Ordinary type constraints
Figure 14 shows type constraints induced by the key features of

JSR-14. To cover the entire language, additional constraints are
required for exceptions, arrays, instanceof expressions, etc. We
omit their presentation here because they are similar to those pre-
sented. For a more detailed list of various program features and
type constraints for them, see [43].

Also, to ensure certain properties of the translation (i.e., princi-
ples presented in Section 3), an additional set of constraints is gen-
erated. Informally, we must ensure that the erasure of the program
remains unchanged (which places constraints on declared types of
method parameters and return types, fields, etc.) and that, in the
translated program, the declared types of all program elements are
no less specific than in the original program (and in the case of li-
brary code the types must remain exactly the same). This approach

is similar to that taken in [43] and [13]. These type constraints are
straightforward and are omitted here.

Constraint generation is achieved by descent over the syntax of
all the method bodies within the client code. Figure 14 defines the
metasyntactic function ~·�, pronounced ‘type of’, which maps from
expression syntax to types, generating constraints as a side effect.
The figure also defines three other metafunctions, Field, Param,
and Return, for the types of fields, method parameters, and results.
Terms of the form ~E� , (. . . ) are not constraints, but form the
definition of ~·�.

As an example, consider line 11 of Figure 3:
c4.replaceValue(c1), where c1’s declaration, elaborated
by the introduction of a type unknown, is Cell〈X1〉 and the
declaration of c4 is elaborated to Cell〈X4〉. Thus, we have that:

• ~c1� , Cell〈V〉[V B X1]
• ~c4� , Cell〈V〉[V B X4]
• θ = [V B X4]
• θfresh = [U B XU] (XU is fresh)

Rules (10)–(11) give us, respectively:

• ~c1� ≤ Cell〈U〉[V B X4][U B XU]
i.e., Cell〈X1〉 ≤ Cell〈XU〉

• XU ≤ X4

6.3.2 Guarded type constraints
Generic instantiations are of two kinds: parameterized types and

raw types. For parameterized types, the generated type constraints
represent type arguments by a type unknown.

For raw types, there is no X for which raw Cell is a Cell〈X〉;
constraints that try to refer to this X are meaningless. Type con-
straints are invalid if they refer to type unknowns arising from an
elaboration of a generic declaration that is later assigned a raw type.
In that case, a different set of constraints is required, in which the
types that previously referred to the ‘killed’ type unknown are now
replaced by their .

For example, consider the following code:

void foo(Cell c) {

x = c.get();

c.set("foo");

}

If the declaration of c is parameterized (say, Cell〈X1〉), then the
constraint X1 ≤ ~x� must be satisfied (rules (1) and (9) in Fig-
ure 14). On the other hand, if the declaration is raw, then the con-
straint (Return(Cell.get)) = Object ≤ ~x� must be satis-
fied. Similar constraints arise from the call to set: if the declara-
tion is parameterized, then ~"foo"� ≤ X1; otherwise, ~"foo"� ≤
(Param(set, 1)) = Object.

Each method invocation (or field reference) on an object whose
declaration is a generic instantiation gives rise to two alternative
sets of conditional constraints. Any constraint that references a
type unknown must be predicated upon the ‘parameterizedness’ of
the type of the receiver expression; we call such expressions guard
expressions. (Actually, our implementation uses a representation
in which all temporaries are explicit, so we call them guard vari-
ables.) When the type of a guard variable is raw, the alternative
constraint after  is used instead, so the killed type unknown
is no longer mentioned. For example, the guarded type constraints
created for the second line in the example above are ~X1� ≤c ~x�

(c is the guarding variable), which is interpreted only if ~c� is non-
raw, and Object ≤c ~x� (the left-hand side is erased), which is
interpreted only if ~c� is raw. Depending on c, exactly one of these
two constraints is interpreted, and the other is ignored.

27



program construct implied type constraint(s)
statement E1 := E2; ~E2� ≤ ~E1� (1)

statement return E; (in method M) ~E� ≤ Return(M) (2)
expression this (in class B) ~this� , B (3)

expression null ~null� , Null (4)
expression xi (in method M) ~xi� , Param(M, i) (5)
expression new B〈τ1, . . . , τk〉 ~new B〈τ1, . . . , τk〉� , B〈τ1, . . . , τk〉 (6)

B has type variables 〈T1 / S 1, . . . ,Tk / S k〉 τ j ≤ S j θ (7)
θ = [T1 B τ1, . . . ,Tk B τk]

expression E. f (field F of class B) ~E. f � , Field(F) θ (8)
θ = (E. f )

expression E.m(E1 , . . . , En) (method M of class B) ~E.m(E1, . . . , En)� , Return(M) θ θfresh (9)
θ = (E.m) ~Ei� ≤ Param(M, i) θ θfresh (10)

M has type variables 〈T1 / S 1, . . . ,Tk / S k〉 T j θ f resh ≤ S j θ θ f resh (11)
θfresh = [T1 B X1, . . . ,Tk B Xk] (fresh Xi)

method M overrides method M′ Param(M′, i) = Param(M, i) (12)
Return(M) ≤ Return(M′) (13)

method M is defined in library code as: Return(M) , τ (14)
〈T1 / S 1, . . . ,Tn / S n〉 τ M(τ1 x1, . . . , τn xn) Param(M, i) , τi (15)

method M is defined in client code as: Return(M) , (τ) (16)
τ M(τ1 x1, . . . , τn xn) Param(M, i) , (τi) (17)

field F is defined in library code as: τ F Field(F) , τ (18)
field F is defined in client code as: τ F Field(F) , (τ) (19)

Figure 14: Type constraints for key features of JSR-14. The type for an expression E or a metasyntactic expression such as Field(F) is defined using the
notation ~E� , (. . . ). The generation of constraints is explained in Section 6.3.1. The three sections of the table show the constraints generated for statements,
expressions, and declarations, respectively.

6.3.3 Allocation Types
For soundness, the types of allocation sites must be consistent

with the types inferred by the allocation type inference of Section 5.
The most straightforward way to incorporate the results of alloca-
tion type inference into the constraint system is simply to define
the types of each generic allocation site (as used in rule (6)) to be
exactly the type inferred for it.

This is simple and easy to implement (and is what our imple-
mentation does). It is, though, somewhat overconstrained beyond
what is necessary for correctness. A slightly more flexible approach
would be to instantiate the new expression with a set of fresh type
unknowns, and to constrain each of these unknowns to be a subtype
of the corresponding parameter type from the inferred type. This
approach permits choosing a less specific assignment for a type un-
known, which may be desirable, as illustrated by Figure 5.

For example, allocation type inference reports the type
Pair〈Number,Boolean〉 for the allocation on line 8 of Figure 4.
The first approach would simply make this the type of the new ex-
pression. The second approach would instead make the type of the
expression Pair〈X1, X2〉, where X1 and X2 are fresh type unknowns
constrained in the following way: Number ≤ X1, Boolean ≤ X2.

6.4 Solving the type constraints
The algorithm of Section 6.3 creates type unknowns for each

type argument, and creates (ordinary and guarded) type constraints
that relate the type unknowns to one another and to types of other
program elements, such as fields, method parameters, etc. The final
type constraint graph expresses the type rules of JSR-14, plus our
additional constraints created for behavior preservation. Any solu-
tion to the constraint graph (i.e., assignment of types to constraint
variables) therefore represents a well-typed and semantically equiv-
alent translation of the program.

Conceptually, solving the constraints is simple: for each con-

straint variable in turn, assign a type that satisfies its current con-
straints. If this choice leads to a contradiction (i.e., there is no
satisfying assignment to the remaining constraint variables), then
choose a different type for the constraint variable. If all choices for
this constraint variable lead to a contradiction, then backtrack and
make a different choice for some previously-assigned constraint
variable. Because valid typings always exist (Section 3.7), the pro-
cess is guaranteed to terminate.5 In principle, the space of type
assignments could be exhaustively searched to find the best typing
(that eliminates the largest number of casts, per Section 3.6).

This section outlines one practical algorithm for finding a solu-
tion to the type constraints; it is based upon a backtracking search,
but attempts to reduce the degree of backtracking to a practical
level. We have implemented this technique, and it performs well
in practice. See Section 8 for the results.

The algorithm constructs a graph, initially containing edges only
for the unconditional constraints. The algorithm iterates over all
the guard variables in order, trying, for each guard variable g, first
to find a solution in which g’s type is parameterized (non-raw), and
if that fails, to find a solution in which g has a raw type. If no
solution can be found due to a contradiction, such as a graph edge
whose head is a proper subtype of its tail, or an attempt to assign
two unequal values to the same type unknown, then a previously-
made decision must be to blame, and the algorithm backtracks.

Each time it begins a search rooted at a (tentative) decision on the
type for a particular guard, the algorithm adds to the graph all of
the conditional edges predicated upon that guard decision, whether
parameterized or raw. Backtracking removes these edges.

As the edges are added, several closure rules are applied. For

5Strictly speaking, the set of possible types is infinite, so it cannot
be enumerated. However, it is rare to find completely unconstrained
type unknowns, and in any case, a k-limited subset of the Herbrand
universe of types is enumerable.

28



REIFIED

KILLED

ASSIGNED

INITIAL

Figure 15: States in the declaration type inference algorithm for each type
unknown. At each step, every type unknown is associated with a state:
initially the  state, and at completion, either the  or 

state. Edges indicate the permitted transitions between states; only during
backtracking is a previous state restored.

example, if the graph contains a path from Cell〈X〉 to Cell〈Y〉, then
the interpretation of this path is Cell〈X〉 ≤ Cell〈Y〉, and by the rules
of invariant parametric subtyping, this implies X = Y . This causes
the addition of two new constraints, X ≤ Y and Y ≤ X. This process
is iterated until no further closure rules are applicable. The other
closure rules are omitted for brevity.

Once the conditional edges have been added, if the search is try-
ing to infer a parameterized type for guard variable g, then for each
unknown Xu belonging to g, the algorithm computes the union of
the types that reach X through paths in the graph. This is the set of
lower bounds on Xu, and the least upper bound of this union is the
type that will be assigned to Xu.

6.4.1 Dependency graph
This section describes how to order the guard variables so as to

minimize the backtracking required. This strategy nearly or com-
pletely eliminates backtracking in every case we have observed.

We create a dependency graph that indicates all nodes whose as-
signment might affect a node, under any type assignment. The set
of nodes in this graph is the same as of the type constraint graph.
The set of edges consists of every ordinary edge (from the type
constraint graph of Section 6.3.1), every guarded edge (from Sec-
tion 6.3.2), and, for every guarded edge, an edge from the type of
the guard to the head.

In the absence of cycles in the dependency graph, no backtrack-
ing is required: the nodes can be visited and their types assigned
in the topological order. If the dependency graph has cycles, then
backtracking (undoing decisions and their consequences) may be
required, but only within a strongly connected component. As a
heuristic, within a strongly connected component, we decide any
nodes that are guards for some constraints first, because such choices
are likely to have the largest impact.

6.4.2 Deciding guards, assigning types
In the declaration type inference algorithm, each type unknown

is in one of four states, illustrated in Figure 15. Each type unknown
starts in the  state (or is reset to it via backtracking), which
means that it has not yet been considered by the algorithm. A type
unknown is in the  state if the guard variable to which it be-
longs has has been assigned a raw type. The  state indicates
that the algorithm decided to give a parameterized type to the guard
variable to which the type unknown belongs, but that the choice of
which type to assign it has not yet been made. As soon as a type
unknown becomes  or , the algorithm adds the relevant
conditional edges.

Finally, the  state means that the type is parameterized,
and the type arguments have been decided upon. (The type argu-
ments themselves are indicated by a separate table of assignments.)
When the algorithm finishes, every type unknown is in the 
or  state.

We use the term decide for the process of moving a type un-

known from the  state to one of the other states. All the type
unknowns belonging to the same guard variable are decided simul-
taneously.

We distinguish between  and  to permit deferring
the choice of assigned type. Unconstrained type unknowns remain
in the  state until a constraint is added. This prevents pre-
mature assignment from causing unnecessary contradictions and
backtracking, and yields more precise results.

Section 6.5 presents a join algorithm that determines the least
upper bound of a set of JSR-14 types. The solving algorithm uses
that procedure extended to handle  type unknowns. The al-
gorithm treats  type unknowns as a free choice, so long as
that choice is used consistently. This is best illustrated with an ex-
ample:

-({Pair〈Number, X1〉,Pair〈X2,Boolean〉})
= Pair〈Number,Boolean〉

-({Pair〈Number, X3〉,Pair〈X3,Boolean〉}) = Pair

The function - can unify the reified type unknowns
with other types to achieve a more precise result. In the first exam-
ple, it successfully assigns types to X1 and X2.

Allocation type inference returns Null as the element type of an
empty container; leaving the type unknown standing for the type ar-
gument fully unconstrained (Null ≤ X is a vacuous constraint). The
declaration type inference algorithm can select a non-null type for
the element based upon other constraints. For example, if an allo-
cation of an empty cell only flows to a variable of type Cell〈String〉,
then we can assign Cell〈String〉 to the empty cell also.

Any  unknowns remaining when all the guards have been
decided can be assigned a type arbitrarily; our implementation
chooses the upper bound on the unknown, typically Object.

6.5 Join algorithm
Union types are converted into JSR-14 types that represent their

least common supertype (or join) by the following procedure.
Consider a union type u as a set of types. For each non-Null

element t ∈ u, compute the set of all its supertypes, including itself.
The set of common supertypes is the intersection of these sets.

common supertypes(u) =
⋂

t ∈ u

{ s | t ≤ s }

This set always contains at least Object. At this point, we dis-
card marker interfaces from the set. Marker interfaces — such as
Serializable, Cloneable, and RandomAccess — declare no meth-
ods, but are used to associate semantic information with classes that
can be queried with an instanceof test. Such types are not use-
ful for declarations because they permit no additional operations
beyond what is allowed on Object. Furthermore, they are mis-
leadingly frequent superclasses, which would lead to use of (say)
Serializable in many places that Object is preferable.

We also discard the raw Comparable type. Even though it is not
strictly a marker, this widely-used interface has no useful meth-
ods in the case where its instantiation type is not known: calling
compareTo without specific knowledge of the expected type usu-
ally causes an exception to be thrown. Parameterized instantiations
of this interface, such as Comparable〈Integer〉, are retained.

From the resulting set, we now discard any elements that are a
strict supertype of other elements of the set, yielding the set of least
common supertypes of u:

least common supertypes(u) = { t ∈ cs | ¬∃ t′ ∈ cs. t′ < t}
where cs = filtered common supertypes(u)

Again, this set is non-empty, and usually, there is just a single
item remaining. (Though the java.util package makes extensive

29



use of multiple inheritance, least common supertypes are always
uniquely defined for these classes. Also, the boxed types such as
Integer, Float, etc., have common supertype Number once the rules
for marker interfaces are applied.) However, if after application of
these rules the set has not been reduced to a single value, the union
elimination procedure chooses arbitrarily. This occurred only once
in all of our experiments.

The procedure just described is derived directly from the subtyp-
ing rules of the JSR-14 specification, and thus implements invariant
parametric subtyping. So, for example:

Cell〈{Integer,Float}〉
union elim
−−−−−−−−→ Cell〈Number〉

{

Cell〈Integer〉,Cell〈Float〉
} union elim
−−−−−−−−→ raw Cell

6.5.1 Wildcard types
Java 1.5 has not yet been finalized, but it appears that it will

include wildcard types, which generalize the use of bounded ex-
istentials as type arguments. Every parameterized type such as
Cell〈Number〉 has two corresponding wildcard supertypes, which
are written Cell<? extends Number> and Cell<? super Number>
in the proposed syntax.

The syntax Cell<? extends Number> denotes the type
Cell〈∃T.T ≤ Number〉, which is the type of all Cells whose ele-
ments are some (unspecified) subtype of Number. It is therefore
a supertype of Cell〈Integer〉 and Cell〈Float〉, but a more specific
one than raw Cell: it allows one to get elements at type Number,
and forbids potentially dangerous calls to set, since the required
argument type T is unknown.
Cell<? super Number> denotes the type Cell〈∃T.Number ≤ T〉,

whose elements are of some unspecified supertype of Number. It is
a supertype of Cell〈Number〉 and Cell〈Object〉. This type permits
one to set elements that are instances of Number, but the result
type T of get is unknown, i.e., Object.

Use of wildcard types may increase the precision our results, as
they represent a closer and more appropriate least upper bound than
a raw type in many situations. However, the methods of Cell that
reference a type variable from both their parameter and result types
belong to neither wildcard type, because Cell〈∃T. T ≤ Number〉
has only the get-like methods while Cell〈∃T.Number ≤ T〉 has all
the set-like ones.

In order to ascribe a wildcard type to a variable declaration,
an analysis must solve an additional set of constraints that restrict
which members may be accessed through that variable. Investigat-
ing this problem would be an interesting direction for future work.

7. IMPLEMENTATION
We have implemented the algorithms described in this paper as a

fully-automated translation tool called Jiggetai. Jiggetai’s output is
a type-correct, behaviorally equivalent JSR-14 version of the orig-
inal Java program. Figure 16 shows the tool’s architecture. This
section notes a few salient points of the implementation.

7.1 Program representation
Since the allocation-type inference is a whole-program analysis,

and we cannot demand that source be available for pre-compiled
libraries, the analysis must be performed on the bytecode (class-
file) representation of the program. However, the declaration-type
inference is logically a source-level analysis. For uniformity, we
implement both analyses at the bytecode level.

The first component of our system is called the lossless compiler,
which is a modified version of the standard JSR-14 compiler that
preserves source-level information by inserting additional tables of

(generic)

Client Class Files
(with source info)

Library Class Files
(translated)

Client Source Files

Client Source Files
(original)

"Lossless"
Compiler

Declaration
Type

Inference

Allocation
Type

Inference

Allocation
Source File

EditorTypes Types
Declaration

Figure 16: Architecture of the Jiggetai tool for automatic translation from
Java to JSR-14. Inputs and outputs are shown with heavy outlines. The
dashed border contains Jiggetai itself.

data as attributes (comments) in the class file. This information in-
cludes: (i) the mappings between source variables and virtual ma-
chine registers; (ii) the type of each source variable; and (iii) the
type and lexical extent of every declaration or other use of a type-
name in the program (locals, fields, methods, casts, allocation sites,
extends-clauses, etc.).

In addition, the compiler disables certain optimizations such as
dead-code elimination. Dead program statements are still subject
to type checking and must be visible to the analysis.

We have extended the Soot [46] class-file analysis package to
perform analysis at the source level of abstraction by mapping un-
typed JVM registers to typed source variables. Our lossless com-
piler and Soot extensions may be useful to other researchers and
tool builders who desire the relative simplicity of the bytecode for-
mat while retaining tight integration with source code.

7.2 Allocation type inference
JSR-14 requires that bytecode classfiles that define generic types

include a Signature attribute that gives information about the type
parameters that they define. This attribute is ignored by the JVM,
but is required for type-checking client code: Due to JSR-14’s type
erasure strategy for compilation, it is the only way to know that a
classfile represents a generic type, or how many type parameters
that class takes.

Generic type information (Signature attributes) is missing from
all private and anonymous classes in JSR-14-1.3’s java.util pack-
age.

Our analysis interprets classes without a Signature attribute
as non-generic, so the context sensitivity policy of Section 5.4 an-
alyzes them only once, effectively merging all instances of them
together. For example, this effect occurs with (the second type pa-
rameter of) Hashtable and HashMap.

We have implemented two solutions to this problem.

1. Perform more comprehensive retrofitting, which effectively
adds Signature attributes to all classes, not just named pub-
lic ones. This approach is sound, regardless of the accuracy
of the retrofitting, because the retrofitted types on private li-
brary classes are used only as a context-sensitivity hint by the
pointer analysis. The retrofitting can be done by hand or via
heuristics. For instance, the following heuristic captures the
missing information in the JDK libraries almost perfectly:
‘If a private or anonymous class extends a generic container
class, inherit all generic annotations from the superclass.’

30



Program Lines NCNB Casts Gen. casts
antlr 47621 26349 161 50
htmlparser 27640 13062 488 33
JavaCUP 11048 4433 595 472
JLex 7841 4737 71 56
junit 10174 5727 54 26
TelnetD 11190 3976 46 38
v poker 6316 4703 40 31

Figure 17: Subject programs. Lines is the total number of lines of Java
code, and NCNB is the number of non-comment, non-blank lines. Casts
is the number of casts in the original Java program, and Gen. casts is the
number of those that are due to use of raw types.

Program Gen. casts Elim % Elim Time (sec)
antlr 50 49 98 % 396
htmlparser 33 26 78 % 462
JavaCUP 472 466 99 % 235
JLex 57 56 98 % 35
junit 26 16 62 % 181
TelnetD 38 37 97 % 32
v poker 31 24 77 % 47

Figure 18: Experimental results. Gen. casts is the number of generic casts
(resulting from use of raw types) in the original Java program; Elim is the
number of casts eliminated by our translation to JSR-14, and % Elim ex-
presses that number as a percentage.

2. Create a type-correct stub version of the library, and use it in
place of the real library when compiling. (This approach is
taken by Tip et al. [42].) This approach is labor-intensive and
unsound, because the stub method bodies do not necessarily
induce the same generic type constraints as the original li-
brary would. We implemented it to compare its performance
and results with the retrofitting approach.
Aggregated over all the benchmarks in Figure 18, the use of
stubs enabled an additional 0.7% of casts to be eliminated,
and execution took 1% longer. The use of stubs roughly
halved the running time of the pointer analysis, although the
contribution of this phase to the overall runtime was rela-
tively small.

As with all whole-program static analyses, our pointer analysis
requires hand-written annotations to summarize the effects of call-
ing native methods and reflective code; without them, soundness
cannot be ensured. Currently, we use very naive and conservative
annotations for such methods; none of our benchmarks makes sig-
nificant use of them.

8. EXPERIMENTS
In order to evaluate our analyses and tools, we ran our imple-

mentation over the programs listed in Figure 17. The programs are
as follows: antlr is a scanner/parser generator toolkit6; htmlparser
is a library of parsing routines for HTML7. JavaCUP is an LALR
parser generator8; JLex is a lexical analyzer generator9; junit is a
unit-testing framework10; TelnetD is a Telnet daemon11; v poker is

6http://www.antlr.org/
7http://htmlparser.sourceforge.net/
8http://www.cs.princeton.edu/~appel/modern/java/CUP/
9http://www.cs.princeton.edu/~appel/modern/java/JLex/

10http://www.junit.org/
11http://telnetd.sourceforge.net/

a video poker game12. Figure 17 gives their sizes. The notable
number of generic casts in the JavaCUP parser generator is due to
its parser, which is implemented by a machine-generated source file
that makes heavy use of a Stack of grammar symbols. Figure 18
shows the results of our experiments.

As our library, we used all generic library classes from pack-
age java.util, as shipped with the JSR-14-1.3 compiler. This
package contains 166 classes, of which 37 are non-generic, 30 are
generic top-level classes, and 99 are generic inner classes.

As noted in Section 3.6, casts are used for other purposes than
for downcasting elements retrieved from generic classes, so even a
perfect translation would not eliminate all casts from the program.
We counted the number of generic casts by hand, determining for
each cast whether or not it was statically safe, based on human
inspection of the values stored into each generic container. (For
four of the benchmarks, we performed a complete manual generic
translation and counted the number of casts eliminated.)

We executed our tools within Sun’s 1.4.1 HotSpot Client JVM
with a maximum heap size of 200 MB, running under Linux kernel
2.4 on a 3GHz Pentium 4. Our unoptimized implementation took
no more than 8 minutes to translate any program.

The execution time of the larger benchmarks was overwhelm-
ingly dominated by the naive implementation of the resolution al-
gorithm of Section 6.4. We believe that the running time of this
phase could be brought down to a small number of seconds, en-
abling applications based upon interactive refinement of the solu-
tion.

8.1 Evaluation
For most of the benchmarks Jiggetai eliminated over 95% of the

generic casts. For the other programs, a few specific causes can be
identified.

Conservative extends parameterization. Whenever the anal-
ysis encounters a client class that extends a generic library class,
the extends clause is parameterized very conservatively, with each
type variable instantiated at its erasure. For example, the declara-
tion class PersonList extends List is translated to extends

List<Object>, even if the elements of PersonList are always of
class Person.

Without this conservative assumption, extends-clause informa-
tion would be only partial during analysis, but our algorithm re-
quires it to be complete. This assumption was responsible for the 7
generic casts remaining in v poker.

Missing clone covariance. The declared result type of the
clone method in existing Java code is Object, even though clone

always returns an instance of the same class as its receiver. JSR-14
allows one to specify covariant result types that capture this fact,
so for example, the clone method of HashSet〈T〉 could be de-
clared HashSet<T> clone(). Nonetheless, the Set interface, via
which instances of HashSet may be frequently manipulated, does
not covariantly specialize clone, since it does not require that its
instances be cloneable.13 Therefore, type information is lost during
calls to Set.clone.

This is the reason for the low score obtained for junit. We re-
peated the experiment after replacing (C) c.clone() with just c,
and the score went up to 100%. This suggests that type constraint
generation for the clone method should be handled with a covari-
ant special case.

‘Filter’ idiom. One particular pathological case, which we have
named the filter idiom, is typified by the following code:

12http://vpoker.sourceforge.net/
13Or, for compatibility, clone may not have been covariantly spe-
cialized, as is the case for HashSet.

31



List strings = new ArrayList();

void filterStrings(Object o) {

if (o instanceof String)

strings.add(o);

}

Here, strings contains only instances of String, but the call to
add(o) generates a constraint that the element type is Object. If
the programmer had explicitly cast o to String before the call to
add, the desired type List〈String〉 would have been inferred. But in
non-generic Java, there is no need for such a cast, because List will
accept values of any type, so it was omitted14.

The filter idiom is heavily used by the htmlparser benchmark.
This problem could be addressed by exploiting path-dependent data-
flow information arising from the instanceof test.

Declaration splitting. Occasionally, a single variable declara-
tion was used sequentially for two different webs (du-ud chains),
such as using Iterator i to traverse first one list, then another
of a different type. Even though the webs are disjoint, the single
declaration of i means the analysis infers a single type for i. Sim-
ilarly, multiple variables declared in the same statement, such as
Iterator i, j;, are constrained to have the same type.

In JavaCUP, we found one example of each. After we manually
split the declarations, the analysis eliminated 6 more casts (100%).

9. RELATED WORK
Our primary contribution in this paper is a practical refactoring

tool for automated migration of existing Java programs into JSR-
14. We first discuss work related to our goal; namely, existing work
on introducing generic types into programs to broaden the applica-
bility of a pre-existing components. Then, we briefly discuss work
related to our techniques: type constraint systems and type infer-
ence.

9.1 Generalization for re-use
Two notable previous papers [39, 17] use automated inference of

polymorphism with the goal of source-code generalization for re-
use — for example, to permit the code to be used in more situations
or to provide compile-time type correctness guarantees. Since the
result is source code for human consumption, rather than deduc-
tions for later analysis or optimization, a primary goal is restricting
the degree of polymorphism so that the results do not overwhelm
the user. Typically, programs contain much more ‘latent’ polymor-
phism than that actually exploited by the program.

Siff and Reps [39] aim to translate C to C++. They use type
inference to detect latent polymorphism in C functions designed
for use with parameters of primitive type, and the result of gen-
eralization is a collection of C++ function templates that oper-
ate on a larger set of types. A major issue addressed by Siff and
Reps is that C++ classes can overload arithmetic operators for class
types. Their algorithm determines — and documents — the set of
constraints imposed by the generalized function on its argument.
(They give as an example the xy function pow(), which is defined
only for numbers but could be applied to any type for which mul-
tiplication is defined, such as Matrix or Complex.) Their work
focuses exclusively on generic functions, not classes, and tries to
detect latent reusability; in contrast, our work seeks to enforce
stronger typing where reusability was intended by the programmer.
The problem domain is quite different than ours, because unlike
JSR-14, C++ templates need not type-check and are never sepa-
rately compiled; the template is instantiated by simple textual sub-

14Interestingly, this is an example of a JSR-14 program that requires
more casts than its non-generic counterpart.

stitution, and only the resulting code need type-check. This permits
the template to impose arbitrary (implicit) constraints on its type
variables, in contrast to JSR-14’s erasure approach.

Duggan [17] presents a type analysis for inferring genericity in a
Java-like language. Duggan gives a modular (intra-class) constraint-
based parameterization analysis that translates a monomorphic
object-oriented kernel language called MiniJava into a polymor-
phic variant, PolyJava, that permits abstracting classes over type
variables. The translation creates generic classes and parameterized
instantiations of those classes, and it makes some casts provably re-
dundant. PolyJava differs from JSR-14 in a number of important re-
spects. In particular, it supports a very restricted model of paramet-
ric subtyping: abstract classes and interfaces are not supported, and
each class must declare exactly as many type variables as its super-
class. The type hierarchy is thus a forest of trees, each of which has
exactly the same number of type variables on all classes within it.
(Each tree inherits from Object〈〉 via a special-case rule.) Because
the analysis does not use client information to reduce genericity,
we suspect the discovered generic types are unusably over-generic;
however, the system is not implemented, so we are unable to con-
firm this.

Von Dincklage and Diwan [47] address both the parameteriza-
tion and instantiation problems. They use a constraint-based al-
gorithm employing a number of heuristics to find likely type pa-
rameters. Their Ilwith tool determined the correct generalization
of several classes from the standard libraries, after hand editing to
rewrite constructs their analysis does not handle. The technique
requires related classes to be analyzed as a unit. However, it does
not perform a whole-program analysis and so can make no guaran-
tees about the correctness of its choices of type arguments. In con-
trast to our sound approach, they try to capture common patterns of
generic classes using an unsound collection of heuristics. For ex-
ample, their implementation assumes that public fields are not ac-
cessed from outside the class and that the argument of equals has
the same type as the receiver. Their approach can change method
signatures without preserving the overriding relation, or change the
erasure of parameterized classes, making them possibly incompat-
ible with their existing clients. Also in contrast to our work, their
approach fails for certain legal Java programs, they do not handle
raw types, their implementation does not perform source transla-
tion, and they do not yet have any experience with real-world appli-
cations. (We previously explored a similar approach to the parame-
terization and instantiation problems [16]. We restricted ourselves
to a sound approach, and abandoned the approach after discovering
that heuristics useful in specific circumstances caused unacceptable
loss of generality in others.)

Tip et al. [42] present a technique for migrating non-generic Java
code to use generic container classes. Tip et al.’s algorithm em-
ploys a variant of CPA to create contexts for methods and then uses
these contexts in type constraint generation and solving. In our
approach, CPA is used for pointer analysis, the results of which
are then used to compute allocation site type arguments and, lastly,
context-less type constraints are used to compute type arguments
for all declarations in the client code. Their tool is implemented
as a source-code analysis and a refactoring in the Eclipse [18] inte-
grated development environment (IDE). Because it focuses only on
the standard collections library and it is source-code-based, their
approach uses hand-made models of the collection classes. While
they do not handle raw types, their method is capable of discover-
ing type parameters for methods, thus changing them into generic
methods. This may help reduce the number of (possibly danger-
ous) unchecked warnings and raw references without sacrificing the
number of eliminated casts. For example, the method display-

32



Value in Figure 3 could be changed into a generic method, rather
than leaving the reference raw. The authors do not discuss sound-
ness or behavior preservation.

Tip, Kieżun, and Baümer [43] present the use of type constraints
for refactoring (i.e., modifying the program’s source code without
affecting its behavior). While their work focused on refactoring for
generalization, ours can be seen as refactoring for specialization,
changing types from raw to non-raw.

The CodeGuide [12] IDE offers a ‘Generify’ refactoring with
broadly the same goal as our work. It can operate over a whole
program or a single class; we have verified that the latter mode is
unsound, but because no details are provided regarding its imple-
mentation, we cannot compare it to our own. The IDEA [24] IDE
also supports a Generify refactoring; again, no details about the
analysis techniques are available, and we have not experimented
with this tool.

9.2 Type constraint systems
Both our allocation type inference and declaration type infer-

ence are type-constraint-based algorithms in the style of Aiken and
Wimmers [2], who give a general algorithm for solving systems of
inclusion constraints over type expressions. Our type constraints
are different in that they include guarded constraints in order to
model JSR-14’s special rules for raw types. Most work in type in-
ference for OO languages is based on the theory of type constraint
systems; a general theory of statically typed object-oriented lan-
guages is laid out in [36].

Our pointer analysis makes use of the conceptual framework of
Wang and Smith [48]; we instantiate it with a particular set of
choices for polymorphism that fit well with our problem. Plevyak
and Chien [38] provide an iterative class analysis that derives con-
trol and data flow information simultaneously, with the goal of opti-
mizations such as static binding, inlining, and unboxing. Some rep-
resentative applications are statically discharging run-time casts [8,
48], eliminating virtual dispatch [3], and alias analysis [33, 32].

9.3 Polymorphic type inference
There is a vast literature on polymorphic type inference dating

from Milner [30], who introduced the notion in the context of the
ML programming language. Our goal is quite different than that of
Algorithm W, since we are not trying to infer generic types, only the
type arguments with which existing generic types are instantiated.
Subsequent work [34, 35] extends Hindley-Milner typechecking to
object-oriented languages and to many other application domains.
More recent work that extends it to object-oriented languages uses
type constraints instead of equality constraints [19, 17], just as our
- algorithm does, though the technical machinery is different.
McAdam et al. [29] extend ML with Java’s subtyping and method
overloading. The application of type inference algorithms gener-
ally falls into two categories: (1) enabling the implementation of
languages in which principal typings for terms are inferred auto-
matically, which saves the programmer from writing them explic-
itly, and (2) as a means of static program analysis, e.g., to eliminate
casts or to resolve virtual method dispatches.

Gagnon et al. [20] present a modular, constraint-based technique
for inference of static types of local variables in Java bytecode; this
analysis is typically unnecessary for bytecode generated from Java
code, but is sometimes useful for bytecode generated from other
sources. No polymorphic types are inferred, however.

10. FUTURE WORK
We would like to extend our tool into an interactive application

that would allow the user to manually correct suboptimal results,

and iteratively re-solve the constraint system after the user’s anno-
tations have been incorporated. This would make it very easy for
users to achieve the ideal results.

Once the Java 1.5 specification is finalized, we would like to
update the tool to include support for it. It is largely a superset
of the version of JSR-14 we have been studying; its most signifi-
cant difference is the introduction of wildcard types, as discussed
in Section 6.5.1. We plan to make our tool available, once licens-
ing issues are resolved (the implementation currently depends upon
Sun’s prototype compiler).

The C# language is a experiencing a parallel evolution towards
generic types [49]; the ideas in our approach may be applicable to
that language.

In order to further increase the number of casts eliminated from
client code, we could replace our type constraint solution proce-
dure (Section 6.4) with one that performs more exhaustive search
or other optimizations. Addressing the parameterization problem
(i.e., introduction of type parameters to class definitions) is another
area of potential future work, though in our experience that part of
the process is not particularly difficult or time-consuming.

11. CONCLUSION
With the release of Java 1.5, many programmers will wish to con-

vert their programs to take advantage of the improved type safety
provided by generic libraries. We have presented a general algo-
rithm for the important practical problem of converting non-generic
Java sources to use generic libraries, and an implementation capa-
ble of translating real applications.

Our algorithm achieves the goals laid out in Section 3. It is
sound: it never infers an unsafe type for a declaration. It is behavior-
preserving: it does not change method signatures, the erasure of
parameterized classes, or other observable aspects of a program. It
is complete: it produces a valid result for arbitrary Java input and
arbitrary generic libraries. It is compatible with the JSR-14 gener-
ics proposal: in particular, its type system addresses all features of
the proposal, including raw types. It is practical: we have produced
an implementation that automatically inserts type parameters into
Java code, without any manual intervention. It is precise: it elimi-
nated the overwhelming majority of generic casts in real-world ap-
plications, and the translation was little different than the result of
manual annotation.

As another contribution, our approach is, to our knowledge, the
first analysis for Java that uses generic type annotations for target-
ing the use of context-sensitivity, such targeting is critical to over-
come poor scalability. Our application is type analysis, but this
technique could equally well be used for many other abstractions,
such as interprocedural dataflow problems.

Raw types require the use of conditional constraints, since the
type rules for accessing members through raw types and through
parameterized types are quite different. The presence of raw types
in the type system is a loophole allowing potentially unsafe oper-
ations; analyzing the effects of such operations requires a whole-
program analysis. (In the absence of raw types and unchecked op-
erations, it would be possible to solve the type inference problem
soundly — although perhaps not as precisely — without pointer anal-
ysis.) Because of unchecked operations, the assignability relation
in JSR-14 is not antisymmetric; in other words, x=y; y=x; may
be permitted even when the types of x and y are unequal. This has
some subtle ramifications for subtype constraint-based analyses, as
the assignment constraint graph may have no subtype interpretation
in pathological cases. Our work is unique in supporting raw types,
which is essential for producing good results without forbidding
many realistic programs.

Additional details on our work can be found in [15].

33



Acknowledgments
Comments from Todd Millstein and the anonymous referees im-
proved the presentation of our work. This research was funded in
part by NSF grants CCR-0133580 and CCR-0234651, the Oxygen
project, and gifts from IBM and NTT.

REFERENCES
[1] O. Agesen. The cartesian product algorithm: Simple and precise type

inference of parametric polymorphism. In ECOOP, pages 2–26, Aug.
1996.

[2] A. Aiken and E. L. Wimmers. Type inclusion constraints and type
inference. In Functional Programming Languages and Computer
Architecture, pages 31–41, June 1993.

[3] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual
function calls. In OOPSLA, pages 324–341, Oct. 1996.

[4] G. Bracha, N. Cohen, C. Kemper, S. Mark, M. Odersky, S.-E. Panitz,
D. Stoutamire, K. Thorup, and P. Wadler. Adding generics to the Java
programming language: Participant draft specification. Technical
report, Sun Microsystems, Apr. 27, 2001.

[5] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. GJ
specification. http://www.cis.unisa.edu.au/~pizza/gj/
Documents/#gj-specification, May 1998.

[6] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the
future safe for the past: Adding genericity to the Java programming
language. In OOPSLA, pages 183–200, Oct. 1998.

[7] L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymorphism. ACM Computing Surveys, 17(4):471–522, Dec.
1985.

[8] R. Cartwright and M. Fagan. Soft typing. In PLDI, pages 278–292,
June 1991.

[9] R. Cartwright and G. L. Steele Jr. Compatable genericity with
run-time types for the Java programming language. In OOPSLA,
pages 201–215, Oct. 1998.

[10] C. Chambers and D. Ungar. Customization: Optimizing compiler
technology for Self, a dynamically-typed object-oriented language.
In PLDI, pages 146–160, Portland, OR, USA, June 1989.

[11] C. Chambers, D. Ungar, and E. Lee. An efficient implementation of
Self, a dynamically-typed object-oriented language based on
prototypes. In OOPSLA, pages 49–70, Oct. 1989.

[12] OmniCore CodeGuide.
http://www.omnicore.com/codeguide.htm.

[13] B. De Sutter, F. Tip, and J. Dolby. Customization of Java library
classes using type constraints and profile information. In ECOOP,
June 2004.

[14] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In ECOOP, pages
77–101, Aug. 1995.

[15] A. Donovan. Converting Java programs to use generic libraries.
Master’s thesis, MIT Dept. of EECS, Sept. 2004.

[16] A. Donovan and M. D. Ernst. Inference of generic types in Java.
Technical Report MIT/LCS/TR-889, MIT Lab for Computer Science,
Mar. 22, 2003.

[17] D. Duggan. Modular type-based reverse engineering of
parameterized types in Java code. In OOPSLA, pages 97–113, Nov.
1999.

[18] Eclipse project. http://www.eclipse.org/.
[19] J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic type

inference for objects. In OOPSLA, pages 169–184, Oct. 1995.
[20] E. Gagnon, L. J. Hendren, and G. Marceau. Efficient inference of

static types for Java bytecode. In Static Analysis Symposium, pages
199–219, June 2000.

[21] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification. Addison Wesley, Boston, MA, second edition, 2000.

[22] D. Grove and C. Chambers. A framework for call graph construction
algorithms. ACM Transactions on Programming Languages and
Systems, 23(6):685–746, Nov. 2001.

[23] M. Hind and A. Pioli. Evaluating the effectiveness of pointer alias
analyses. Science of Computer Programming, 39(1):31–55, Jan.
2001.

[24] JetBrains IntelliJ IDEA. http://www.intellij.com/idea/.
[25] A. Igarashi, B. C. Pierce, and P. Wadler. A recipe for raw types. In

FOOL, London, Jan. 2001.
[26] A. Igarashi and M. Viroli. On variance-based subtyping for

parametric types. In ECOOP, pages 441–469, June 2002.
[27] JavaSoft, Sun Microsystems. Prototype for JSR014: Adding generics

to the Java programming language v. 1.3.
http://jcp.org/jsr/detail/14.html, May 7, 2001.

[28] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM
TOPLAS, 16(6):1811–1841, Nov. 1994.

[29] B. McAdam, A. Kennedy, and N. Benton. Type inference for MLj. In
Scottish Functional Programming Workshop, pages 159–172, 2001.
Trends in Functional Programming, volume 2, Chapter 13.

[30] R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17(3):348–375, 1978.

[31] A. C. Myers, J. A. Bank, and B. Liskov. Parameterized types for
Java. In POPL, pages 132–145, Jan. 1997.

[32] R. O’Callahan. Generalized Aliasing as a Basis for Program
Analysis Tools. PhD thesis, Carnegie-Mellon University, Pittsburgh,
PA, May 2001.

[33] R. O’Callahan and D. Jackson. Lackwit: A program understanding
tool based on type inference. In ICSE, pages 338–348, May 1997.

[34] A. Ohori and P. Buneman. Static type inference for parametric
classes. In OOPSLA, pages 445–456, Oct. 1989.

[35] J. Palsberg and M. I. Schwartzbach. Object-oriented type inference.
In OOPSLA, pages 146–161, Oct. 1991.

[36] J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Systems.
John Wiley and Sons, 1994.

[37] P. Plauger, A. A. Stepanov, M. Lee, and D. R. Musser. The C++
Standard Template Library. Prentice Hall PTR, 2000.

[38] J. Plevyak and A. A. Chien. Precise concrete type inference for
object-oriented languages. In OOPSLA, pages 324–340, Oct. 1994.

[39] M. Siff and T. Reps. Program generalization for software reuse:
From C to C++. In FSE, pages 135–146, Oct. 1996.

[40] B. Stroustrup. The Design and Evolution of C++. Addison-Wesley,
Reading, Massachusetts, 1994.

[41] B. Stroustrup. The C++ Programming Language. Addison-Wesley,
Boston, MA, special edition, 2000.

[42] F. Tip, R. Fuhrer, J. Dolby, and A. Kieżun. Refactoring techniques
for migrating applications to generic Java container classes. IBM
Research Report RC 23238, IBM T.J. Watson Research Center,
Yorktown Heights, NY, USA, June 2, 2004.

[43] F. Tip, A. Kieżun, and D. Bäumer. Refactoring for generalization
using type constraints. In OOPSLA, pages 13–26, Nov. 2003.

[44] F. Tip and J. Palsberg. Scalable propagation-based call graph
construction algorithms. In OOPSLA, pages 281–293, Oct. 2000.

[45] M. Torgersen, C. P. Hansen, E. Ernst, P. von der Ahé, G. Bracha, and
N. Gafter. Adding wildcards to the Java programming language. In
SAC, pages 1289–1296, Mar. 2004.

[46] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and
P. Co. Soot - a Java bytecode optimization framework. In CASCON,
pages 125–135, Nov. 1999.

[47] D. von Dincklage and A. Diwan. Converting Java classes to use
generics. In OOPSLA, pages 1–14, Oct. 2004.

[48] T. Wang and S. Smith. Precise constraint-based type inference for
Java. In ECOOP, pages 99–117, June 2001.

[49] D. Yu, A. Kennedy, and D. Syme. Formalization of generics for the
.NET common language runtime. In POPL, pages 39–51, Jan. 2004.

34


