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Abstract

General purpose computing architectures are being
called on to work on a more diverse application mix ev-
ery day. This has been fueled by the need for reduced time
to market and economies of scale that are the hallmarks
of software on general purpose microprocessors. As this
application mix expands, application domains such as bit-
level computation, which has primarily been the domain
of ASICs and FPGAs, will need to be effectively handled
by general purpose hardware. Examples of bit-level appli-
cations include Ethernet framing, forward error correction
encoding/decoding, and efficient state machine implementa-
tion.

In this paper we compare how differing computational
structures such as ASICs, FPGAs, tiled architectures, and
superscalar microprocessors are able to compete on bit-
level communication applications. A quantitative compar-
ison in terms of absolute performance and performance
per area will be presented. These results show that al-
though modest gains (2-3x) in absolute performance can be
achieved when using FPGAs versus tuned microprocessor
implementations, it is the significantly larger gains (2-3 or-
ders of magnitude) that can be achieved in performance per
area that will motivate work on supporting bit-level compu-
tation in a general purpose fashion in the future.

1 Introduction

Recent trends in computer systems have been to move
applications that were previously only implemented in hard-
ware into software on microprocessors. This has been mo-
tivated by several factors. Firstly, microprocessor perfor-
mance has been steadily increasing over time. This has
allowed more and more applications that previously could
only be done in ASICs and special purpose hardware, due to
their large computation requirements, to be done in software
on microprocessors. Also, added advantages such as de-
creased development time, ease of programming, the ability
to change the computation in the field, and the economies of

scale due to the reuse of the same microprocessor for many
applications have influenced this change.

If we believe that this trend will continue, then in the
future we will have one computational fabric that will need
to do the work that is currently done by all of the chips inside
of a modern computer. Thus we will need to pull all of the
computation that is currently being done inside of helper
chips onto our microprocessors. We have already seen this
being done in current computer systems with the advent of
all-software modems and software radios.

Two consequences follow from the desire to implement
all parts of a computer system in one computational fabric.
First, the computational requirements of this one compu-
tational fabric are now much higher. Second, the mix of
computation that it will be doing is significantly different
from applications that current day microprocessors are opti-
mized for. Thus if we want to build future architectures that
can handle this new application mix, we need to develop ar-
chitectural mechanisms that efficiently handle conventional
applications, Specint and SpecFP, multimedia applications,
which have been the focus of significant research recently,
and the before mentioned applications which we will call
software circuits.

In modern computer systems most of the helper chips
are there to communicate with different devices and medi-
ums. Examples include sound cards, Ethernet cards, wire-
less communication cards, memory controllers and 1/O pro-
tocols such as SCSI and Firewire. This research work will
focus on the subset of software circuits for communication
systems, examples being Ethernet cards (802.3) and wire-
less communication cards (802.11a, 802.11b). Communi-
cation systems are chosen as a starting point for this re-
search for two reasons. One, it is a significant fraction of
the software circuits domain. Secondly, if communication
bandwidth is to continue to grow as is foreseen, the compu-
tation needed to handle it will become a significant portion
of our future processing power. This is mostly due to the fact
that communication bandwidth is on a steep exponentially
increasing curve. Accordingly, this research will further fo-
cus on bit-level computation contained in communication
processing. Fine grain bit-level computation is an interest-



ing sub-area of communications processing, because unlike
much of the rest of communications processing, it is not
easily parallelizable on word oriented systems because very
fine grain, bit-level, communication is needed. Examples
of this type of computation include error-correcting codes,
convolutional codes, framers, and source coding.

In this paper we investigate how bit-level computation
in communication applications maps to differing architec-
tures. Our methodology is to make very carefully optimized
implementations on many differing architectures and then
study the applications in terms of absolute performance and
performance per area. The architectures examined include
an IBM ASIC flow (SA-27E), a Xilinx FPGA (Virtex I1), the
Pentium 3, the Pentium 4, and the tiled Raw architecture.

Through this work we found some surprising results.
To our surprise FGPAs did not have as large of an abso-
lute performance gain versus microprocessors as we had ex-
pected, especially considering that the bit-level application
mix heavily favored reconfigurable architectures. Rather,
FPGAs only had a 2-3x performance improvement versus a
microprocessor implementation. This was due largely to the
high clock rates of microprocessors and that using lookup
tables in a high speed microprocessor does a good job of
emulating combinational logic. What we did find is that the
real reason to implement bit-level communication process-
ing in FPGAs or ASICs is their large area wins. For our
application mix we found that ASICs provide 5-6 orders of
magnitude and FPGAs provide 2-3 orders of magnitude bet-
ter performance per area than software in a microprocessor.

The rest of this paper is organized as follows. Section 2
describes the applications that we explored and how they
are used in the world. Section 3 describes the target archi-
tectures that we mapped the applications to, the tools used,
and assumptions made. We then go on to present our results
in Section 4 and analyze them in Section 5. Section 6 re-
lates this paper to previous work. Finally we outline future
directions and conclude in Sections 7 and 8.

2 Applications

In this section we describe the applications that were
used in this study. One of the guiding principles that we
followed when choosing applications was to pick applica-
tions that are actually used and not simply contrived appli-
cations. To accomplish this these applications are compo-
nents of current day communication systems.

2.1 802.11a Convolutional Encoder

The first application that we studied was the convolu-
tional encoder in 802.11a. IEEE 802.11a is the wireless
Ethernet standard [13] used in the 5GHz. Industrial, Sci-
entific and Medical (ISM) band. In this band, 802.11a pro-
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Figure 1. Generalized Convolutional Encoder

vides for transmission of information up to 54Mbps. Other
wireless standards that have similar convolutional encoders
to that of 802.11a include IEEE 802.11b [14], the current
WiFi standard and most widely used wireless data network-
ing standard, and Bluetooth [2], a popular standard for short
distance wireless data transmission.

Convolutional encoders are a forward error correction
scheme which unlike block codes do not translate a fixed
sized block into another fixed sized block. Rather convolu-
tional encoders work on a bit at a time and contain storage.
The basic structure of a convolutional encoder has & storage
elements chained together. The input bits are shifted into
these storage elements. The older data which is still stored
in the storage elements shift over as the new data is added.
The shift amount s can be one (typical) or more than one.
The output is computed as a function of the state elements.
A new output is computed whenever new data is shifted
in. In convolutional encoders, multiple functions are many
times computed simultaneously to add redundancy. Thus
multiple output bits can be generated per input bit. Figure 1
shows a generalized convolutional encoder. The boxes with
numbers in them are storage elements that shift over by s
bits every encoding cycle. The function box, denoted with
£, can actually represent multiple differing functions.

This application study uses the default convolutional en-
coder that 802.11a uses in poor channel quality. It is a rate
1/2 convolutional encoder and contains seven storage ele-
ments. 802.11a has differing encoders for different channel
quality with rates of 1/2, 3/4, and 2/3. The shift amount
for this convolutional encoder is one (s = 1). Figure 2 is
a block level diagram of the studied encoder. This encoder
has two outputs with differing tap locations, and uses XOR
as the function it computes. The generator polynomials used
are go = 133gand g; = 171s.
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Figure 3. Overview of the 8b/10b encoder taken
from [24]

2.2 8b/10b Block Encoder

The second application we explore is IBM’s 8b/10b
block encoder. 8b/10b encoding is a byte oriented binary
transmission code which translates 8 bits at a time into
10-bit codewords. This particular block encoder was de-
signed by Widmer and Franszek and is described in [24]
and patented in [8]. This encoding scheme has some nice
features such as being DC balanced, detection of single bit
errors, clock recovery, addition of control words and com-
mas, and ease of implementation in hardware.

One may wonder why 8b/10b encoding is important. It is
important because it is a widely used line encoder for both
fiber-optic and wired applications. Most notably it is used
to encode data right before it is transmitted in fiber optic Gi-
gabit Ethernet [15] and 10 Gigabit Ethernet physical layers.
Also, because it is used in such high speed applications, it
is a performance critical application.

This 8b/10b encoder is a partitioned code, meaning it is
made up of two smaller encoders, a 5b/6b and a 3b/4b en-
coder. This partitioning can be seen in Figure 3. To achieve
the DC balanced nature of this code, the Disparity control
box contains one bit of state which is the running disparity
of the code. It is this state which lets the code change its out-

put codewords such that the overall parity of the line is never
more than +3 bits, and the parity at sub-word boundaries is
always either +1 or —1. The coder changes its output code-
words by simply complementing the individual subwords in
accordance with the COMPL6 and COMPLA4 signals. All
of the blocks in Figure 3 with the exception of the Dis-
parity control simply contain feed forward combinational
logic therefore this design is somewhat pipelinable. But due
to the tight parity feedback calculation it is not inherently
parallelizable otherwise. Tables are provided in [24] which
show the functions implemented in these blocks along with
a more minimal combinational implementation.

3 Experimental Setup

One of the greatest challenges of this project was simply
finding a way to objectively compare very disparate com-
puting platforms which range from a blank slate of silicon
all the way up to a state of the art out-of-order superscalar
microprocessor. The first step in objectively comparing ar-
chitectures is to choose targets that very nearly reflect each
other in terms of semiconductor process. While it is possi-
ble to scale between different semiconductor feature sizes,
not everything simply scales. Characteristics that do not
scale include wire delay and the proportions of gate sizes.
Thus a nominal feature size of 0.15um. drawn was cho-
sen. All of the targets chosen with the exception of the
Pentium 4 (0.11pm.) are fabricated with this drawn fea-
ture size. Those architectures that were not fabricated on
0.15um. were scaled to 0.15um. by linearly scaling perfor-
mance and quadratically scaling area. No attempt was made
to take into account the operational voltage differences. Ta-
ble 1 shows the process parameters for the differing targets
used in this study.

Complicating this experiment more, the different targets
use differing programming models that vary from Verilog
to ’C’. To combat this, the best model was chosen for each
architecture and optimized programs were written for each
architecture. Also the best algorithm was picked for each
programming model and architecture pair. We chose this
approach because we favored careful, detailed implementa-
tions of a few applications on many architectures over quick
implementations of many applications on less platforms.

Following is a description of the different target architec-
tures that were investigated. The programming environment
and tools used are also described.

3.1 IBM SA-27E

The IBM SA-27E process is an ASIC flow that is a 6
layer copper metal process with a drawn transistor size of
0.15um. [12] This is considered to be the best case archi-
tecture for this study. While this standard cell approach is



Target Foundry | Process Larawn | Leffective | Nominal | Layers Type
Generation (um.) | (um.) (um.) \Woltage | of Metal | of Metal

IBM SA-27E ASIC IBM 0.18 0.15 0.11 1.8 6 Al & Cu

Xilinx Virtex 11 UMC 0.18 0.15 0.12 1.5 8 Al

Intel Pentium 4 Intel 0.13 0.11 0.07 1.75 6 Cu

Northwood 2.2GHz.

Intel Pentium 3 Intel 0.18 0.15 0.10 1.7 6 Al

Coppermine 993MHz.

Raw 425MHz. IBM 0.18 0.15 0.11 1.8 6 Al & Cu

Table 1. Summary of Semiconductor Process Specifications

not as optimal as a full-custom realization of the circuits,
the trends found here should be characteristic of those if the
applications in this study were implemented in full-custom
logic. The programming model for this architecture is syn-
thesizable behavioral Verilog and the designs were syn-
thesized with Synopsys’s Design Compiler Il using IBM’s
technology libraries. Performance and area results are gen-
erated with Synopsys’s tools and the IBM technology li-
braries in the form of area and performance reports.

3.2 Xilinx Virtex 11

This target is Xilinx’s Virtex Il, [25] a Field Pro-
grammable Gate Array (FPGA). Thisisa LUT based recon-
figurable fabric. The tool flow starts by using the same Ver-
ilog source as was used in the ASIC flow. The Verilog was
then synthesized with Synopsys’s FPGA Compiler Il. Then
the design was processed by Xilinx’s backend tools to gen-
erate bit files, performance reports, and area reports. One
interesting problem that came up with this flow is that Xil-
inx’s tools provide area in terms of Slices (what CLBs have
been renamed to) but that does not provide for an easy area
comparison outside of Xilinx’s FPGA families. To calculate
accurate area numbers for this target, a Xilinx XC2V-40 was
purchased and cannibalized to figure out total die area which
then provided an easy way to calculate the area of a Slice in
mm?. Because the Slice size calculation is based off of the
entire die size of a Xilinx XC2V-40, this measurement is
likely an overestimate due to the 1/O pads, 1/O drivers, and
block RAMs being included in a Slice’s area estimate. The
area calculated for this target is only the area used by the
application and not the entire die size. This models a de-
signer’s ability to choose an appropriately sized FPGA to fit
an application.

3.3 Pentium

Intel’s Pentium 4 and Pentium 3 were used in this study.
The programming model used for this target was 'C’ com-
piled with gcc 2.95.3 with optimization level of -O3 and
the -finline option turned on. Also, on the Pentium 3,

the -funroll-all-loops option was also turned on, while this
yielded lower performance on a Pentium 4 where it was not
used. To gather the speed at which the applications run, the
time stamp counter (TSC) was used. The TSC is a 64-bit
counter on Intel processors (above a Pentium) which mono-
tonically increases on every clock cycle. With this counter,
accurate cycle counts can be determined for execution of
a particular piece of code. To prevent memory hierarchy
from unduly hurting performance, all source and result ar-
rays were touched to make sure they were within the level
of cache being tested before the test’s timing commenced.
To calculate the overall speed, the tests were run over many
iterations of the loop and the overall time as per the TSC
was divided by the iterations completed normalized to the
clock speed to come up with the resultant performance. To
calculate the area size, the overall chip area was used.

3.4 Raw Microprocessor

The Raw microprocessor is a tiled computer architecture,
designed in the Computer Architecture Group at MIT [21],
used for this study. The trends found for Raw should also be
characteristic of other tiled and parallel wire exposed archi-
tectures such as Smart Memories [17], Grid [19], ILDP [16],
and M3T [22]. The Raw processor contains 16 replicated
tiles in a 4x4 mesh. Tiles are connected to each of their four
nearest neighbors via register mapped communication by
two sets of static network interconnect and two sets of dy-
namic network interconnect. Many of the ideas in Raw were
inspired by FPGAs [1], especially the manner in which the
wires connecting tiles are reconfigurable though the static
network. Each tile contains a main processor which is
roughly equivalent to a MIPS R4000 processor. The Raw
processor was fabricated by IBM, runs at 425MHz. and is
in daily use at MIT for research.

The applications in this study for Raw were written in
"C’ and assembly and were hand parallelized with commu-
nication happening over the static network for peak perfor-
mance. In this paper we will discuss Raw in two different
versions. One version contains the rotate left and mask”
instruction, denoted by the opcode ’rlm’, and the “rotate left



and mask with insert” instruction, denoted by the opcode
rimi’, while the other version of Raw does not use these
instructions. ’rlm’ and ’rlmi” are very similar to insert and
extract operations found on other architectures, and allow
for rotation, masking, and insertion into another register all
in one cycle. These instructions form a crude level of fast
bit manipulation which helped significantly on the presented
applications. While the Raw processor hardware has both of
these instructions in it, we split the discussion into two cases
because these two instructions are not in the standard MIPS
ISA and the results would have been misleading to not dis-
cuss how this crude level of bit manipulation improved per-
formance.

Four versions of the convolutional encoder were de-
signed for this target. Three of the designs used only one
tile and one used all 16 tiles. The lookup table design was
improved through the use of the rim/rImi instruction while
the distributed 802.11a encoder did not benefit from this in-
struction, but instead used spatial pipelining to gain parallel
performance. For the 8b/10b encoder, three implementa-
tions on Raw were designed. Two of the implementations
use a lookup table, with and without rim/rimi. And the dis-
tributed implementation uses six tiles and requires the use
of rim/rimi. It was only through the use of these two in-
structions that this application was able to be parallelized.
The reason for this is that the 8b/10b encoder has a tight
feedback path through the use of the disparity state from
the previously calculated word. Thus without the use of
the rlm/rlmi instructions, a load was needed in the feed-
back path which had high enough instruction latency that
it negated the benefits from parallelizing the application. To
calculate the area used for each implementation, the num-
ber of tiles used by the implementation was multiplied by
the area used by one tile. Thus the measured area for sin-
gle tile and six tile implementations was 1/16 and 3/8 of
the whole chip area respectively. To collect accurate perfor-
mance information, applications were simulated on Raw’s
cycle accurate simulator ’btl” and cycle counts were gath-
ered. The ’btl” simulator is cycle accurate and has been
verified against the real Raw processor silicon. For each
of the tests, the input data was streamed from off-chip via
the static network and the results were streamed off via the
static network.

4 Results
4,1 802.11a Convolutional Encoder

Table 2 shows the results of the convolutional encoder
running on the differing targets. The area and performance
columns are both measured metrics while the performance
per area column is a derived metric. Figure 4 shows the ab-
solute, normalized to 0.15um., performance. This metric is

1300
1200
1100
1000

© 900
2 800
£ 700
5 600
5 500
2 400
300
200
100

ASIC IBM SA27E

FPGA XILINX VIRTEX 2
Reference Pentium 4 L1
Reference Pentium 4 L2
Reference Pentium 4 NC
Lookup Table Pentium 4 L1
Lookup Table Pentium 4 L2
Lookup Table Pentium 4 NC
Reference Pentium 3 L1
Reference Pentium 3 L2
Reference Pentium 3 NC
Lookup Table Pentium 3 L1
Lookup Table Pentium 3 L2
Lookup Table Pentium 3 NC
POPCOUNT Raw 1 tile
Lookup Table Raw 1 tile
ookup Table with rim/rimi Raw 1 tile
Distributed Raw 16 tiles

-
Figure 4. 802.11a Encoding Performance. Perfor-
mance is measured as the rate (in MHz.) at which
the encoder produces one bit of output.

tagged with the units of MHz. which is the rate at which this
application produces one bit of output. The trailing letters
on the Pentium identifiers denote which cache the encoding
matrices fit in. ”L1” represents that all of data fits in the L1
cache, "L2” the L2 cache, and "NC” represents no cache, or
the data set size is larger than the cache size. These differing
levels of memory hierarchy were exercised by varying the
data set size on the Pentiums, while on the other architec-
tures more direct means were used for the input and output
of data which did not require the use of the memory hierar-
chy.

Figure 4 shows trends that one would expect. The
ASIC implementation provides the highest performance at
1.25GHz. The FPGA and parallelized Raw implementation
are the second fastest at approximately 3 times slower. Of
the microprocessors without bit manipulation support, the
Pentium 4 shows the fastest non-parallel implementation.
The Raw processor provides interesting results. It is signifi-
cantly slower than the Pentium 4 using a single tile without
rim/rImi, which is to be expected considering that the Raw
processor runs at 425MHz. versus 2GHz. and is only a sin-
gle issue in-order processor. But by using Raw’s parallel
architecture a parallel mapping can be made which provides
10x the performance of one tile when using all 16 tiles. Note



Target Implementation | Area (mm?2) Performance | Performance
(Normalized to (MHz.) per Area
0.15um. Lgrawn) | (Normalized) | (MHz./mm?2.)

IBM SA-27E ASIC 0.0016670976 1250 749806

Xilinx Virtex 11 0.77 364 472.7

Intel Pentium 4 reference L1 271.49 42.45 0.1564

Northwood reference L2 271.49 41.37 0.1524

2.2GHz. reference NC 271.49 39.35 0.1449

Normalized to lookup table L1 | 271.49 100.8 0.3714

1.613GHz. lookup table L2 | 271.49 80.67 0.2971

lookup table NC | 271.49 64.53 0.2377

Intel Pentium 3 reference L1 106 22.56 0.2128

Coppermine reference L2 106 20.26 0.1911

993MHz. reference NC 106 15.52 0.1464

lookup table L1 | 106 62.06 0.5855
lookup table L2 | 106 52.26 0.4930
lookup table NC | 106 21.0 0.1981
Raw 1 tile POPCOUNT 16 42 2.625
425 MHz. lookup table 16 44.74 2.796
lookup table 16 106.3 6.641
with rim/rlmi
Raw 16 tiles distributed 256 425 1.641

Table 2. 802.11a Convolutional Encoder Results

that this shows sub-linear performance scaling of this ap-
plication. Also, the Raw single tile implementation with
rim/rimi sports similar performance to that of the Pentium
4. These performance numbers show for a real world ap-
plication how much more adept an ASIC is than an FPGA
and how much more adept an FPGA is than a conventional
processor at bit-level computation.

Figure 5 shows a much more interesting metric. It plots
the performance per area for all of the differing targets. This
metric measures how efficiently each target uses the silicon
area for convolutional encoding. One would want to use a
metric like this if an application was fully parallel and you
wanted to build the most efficient design for a given sili-
con area. Also, this metric gives an idea of how to com-
pare architectures when it comes down to area comparison
and helps answer the age old question of quantitatively how
much better is an FPGA or ASIC compared to architecture
”X”. As can be seen from Figure 5, the ASIC is 5-6 orders
of magnitude better than processor implementations on this
bit-level application. FPGAs are 2-3 orders of magnitude
more efficient than any of the tested processors. With re-
spect to the processors, they are all within an order of mag-
nitude of each other. It is interesting to see that the Pen-
tium 4 is less efficient than Pentium 3 for performance per
area while it does have better peak performance. This is be-
cause the area used by the Pentium 4 is proportionally more
than the gained performance when compared to a Pentium
3. Likewise, because of Raw’s simpler data-path, its grain

size more closely matches the application’s grain size and
thus it gets a smaller area punishment. Lastly, it is inter-
esting to note that the parallelized 16-tile distributed Raw
version has lower performance per area than the single tile
Raw implementations. This is due to the sub-linear scaling
of this application. While this implementation is able to re-
alize 10x the performance of the single tile implementation
without rim/rImi, it uses 16x the area and thus if absolute
performance is not a concern a single tile implementation is
more efficient with respect to area.

4.2 8b/10b Block Encoder

The trends of the 802.11a encoder are also shared with
the second application. Table 3 contains full results for all
implementations. Figure 6 shows the absolute encoding per-
formance. Note, that one cannot easily compare this to Fig-
ure 4 because the units are different. The performance met-
ric used in Figure 6 is the rate at which 10-bit output blocks
are produced, while Figure 4 is the rate at which bits are
produced for a totally different application. As can be seen
from the performance chart, the pipelined ASIC implemen-
tation is approximately 3x faster than the FGPA implemen-
tation, and the FPGA is 3x faster than a software implemen-
tation. As is to be expected due to clock speed, the Pentium
4 is faster than the Pentium 3 which is faster than a single
Raw tile in absolute performance.

Figure 7 shows the performance per area for 8b/10b en-



Target Implementation Area (mm?2) Performance | Performance
(Normalized to (MHz.) per Area
0.15um. Lgrawn) | (Normalized) | (MHz./mm?2.)

IBM SA-27E non-pipelined .005117952 570 111372.67

ASIC pipelined .00756464032 860 113695.98

Xilinx Virtex Il | non-pipelined 1.4706 159.109 108.1933

pipelined 3.1514 272.554 86.4866

Intel Pentium 4 | lookup table L1 271.5 107.6 0.3962

Northwood lookup table L2 271.4 107.6 0.3962

2.2GHz. lookup table NC 271.4 107.6 0.3962

Normalized to

1.613GHz.

Intel Pentium 3 | lookup table L1 106.0 99.30 0.9367

Coppermine lookup table L2 106.0 82.75 0.7807

993MHz. lookup table NC 106.0 29.20 0.2755

Raw 1 tile lookup table 16 38.64 2.415

425 MHz. lookup table 16 106.3 6.641

with rim/rimi
Raw 6 tile distributed lookup | 96 425 4.427
425 MHz. table with rIm/rlmi

Table 3. 8b/10b Encoder Results

coding. These results corroborate the results for the con-
volutional encoder. The ASIC provides 5 orders of mag-
nitude better area efficiency than a microprocessor. Also,
an FPGA has two orders of magnitude better area efficiency
than a software implementation on a conventional processor.
Likewise the efficiency of the processors parallel the grain
size of the differing architectures. One interesting thing that
is not totally intuitive about Figure 7 is how pipelining this
application has differing effects on different targets. In per-
formance per area, pipelining the ASIC implementation is a
net win as can be seen from the first two bars. This means
that the added performance outpaced the added area of extra
pipeline flip-flops. But the opposite story is true for the Xil-
inx Virtex Il. While a 1.7x performance gain was achieved
by pipelining this application, the area for this application
increased by a factor of 2.14. This result shows off the rel-
ative difference between flip-flop costs of these two targets.
In an FPGA, because of the relative sparseness of flip-flops
and the larger flip flops due to the added reconfiguration
complexities, the cost of pipelining an application is much
higher than in an ASIC where the flip-flops cost less in both
direct area, and that they restrict the placement of the circuit
far less than in an FPGA.

5 Analysis

When one looks at the results of this paper, there are a
couple of quantitative Rules of Thumb that present them-
selves with respect to bit-level processing.

1. ASICs provide a 2-3x absolute performance improve-
ment over an FPGA implementation.

2. FPGAs provide a 2-3x absolute performance improve-
ment over a microprocessor implementation.

3. ASICs provide 5-6 orders of magnitude better perfor-
mance per area than software implementation on a mi-
Croprocessor.

4. FPGAs provide 2-3 orders of magnitude better perfor-
mance per area than software implementation on a mi-
Croprocessor.

5. Parallel implementations on Tiled architectures yield
competitive absolute performance to that of FPGAs but
use at least an order of magnitude more area to do so.

These Rules of Thumb at first may be relatively surpris-
ing. The first question that people may wonder is why
is the FPGA only 2-3 times faster than a microprocessor?
And why is the absolute performance of an ASIC only 4-
9 times that of a microprocessor? Many people may think
that the absolute performance of ASICs and FPGAs should
be higher than that shown here. There are two reasons that
the performance difference is not larger. One, when using a
microprocessor as a lookup table it does a surprisingly good
job of running bit-level applications. The use of a lookup ta-
ble on microprocessors is essentially an emulation layer that
uses a microprocessor as a very high speed lookup table.
Second, the hardware implementations used in this study
are base implementations done not to bloat the area of the
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Figure 5. 802.11a Encoding Performance Per Area
(MHz./mm?2.)

designs. Thus it is believed that higher performance imple-
mentations could be made, but this would be at the cost of
complexity and silicon area. But one must keep in mind that
there are diminishing performance returns when a design is
made more complex for the purpose of speed.

Another question that these results inspire is why is there
a larger performance per area gain than simply word size
when comparing an ASIC to a microprocessor? This can be
reposed as asking why is using a 32-bit processor as a one-
bit processor more than 32 times area inefficient? There
are several factors at work here. One reason why smaller
grain size applications can actually have super-linear per-
formance speed up is that the relative cost of communi-
cation is cheaper. An example of this can be seen in the
Raw processor which is a 32-bit processor. If this processor
was shrunk to a 16-bit processor, we will assume roughly
half the area, the distance that is needed to be traversed to
communicate with the nearest other tile will not simply stay
constant. Rather, the distance that is traversed will decrease
to roughly 70% ! of the 32-bit example’s distance. Sec-
ondly, both ASIC and FPGA technology gain performance

1This can easily be calculated if you know that the area is decreasing
by 1/2 this corresponds to scaling in each direction by 4/1/2 = 0.707.
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Figure 6. 8b/10b Encoding Performance. Perfor-
mance is measured as the rate (in MHz.) at which
the encoder produces a 10-bit word of output.

increases due to datapath and control specialization. Why
build complicated general purpose structures when all you
need is something small and specific? Specialization can in-
crease clock rate by having the custom dataflow needed to
match the computation and it also uses less area by simply
not needing all of the complexity of a microprocessor such
as instruction fetch, register renaming, reorder buffers, etc.
The control can be reduced to either hardwired control or
small state machines.

One problem with the performance per area metric that
should be acknowledged, is the fact that it does not properly
credit the ability of a microprocessor to time multiplex its
hardware area. In a microprocessor, instructions are stored
in a very dense instruction memory or possibly in an even
denser main memory store, DRAM. It is via this time mul-
tiplexed use of the hardware area resources that the perfor-
mance per area efficiency goes up. This is difficult to quan-
tize though because it requires total knowledge of all of the
applications that are ever going to be run on the computa-
tional target. But, if all that is going to be run on a target,
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Figure 7. 8b/10b Encoding Performance Per Area
(MHz./mm?2.)

in a small period of time, is one application, then the perfor-
mance per area metric is a worthwhile metric.

Finally, the most important thing that these results point
to is the fact that computational grain size is very impor-
tant. If an architecture only has one grain size, emulation of
a differing grain size can in many cases be emulated rela-
tively efficiently with respect to performance. An example
of this is how a processor can creatively use a lookup ta-
ble to emulate random logic. But, when it comes down to
efficient area utilization, proper grain size is critical.

6 Reated Work

Several reconfigurable architectures have investigated
bit-level computation. Garp [5, 6], PRISC [20], and
Chimaera [11] have investigated mixing reconfigurable
logic with microprocessor cores. The PipeRench proces-
sor [10] and MATRIX [18] investigated how to make hy-
brid microprocessor-reconfigurable architectures. Lastly re-

search into how to make improved FPGA architectures have
studied mappings of bit-level applications to reconfigurable
architectures. Examples include RaPiD [7], DPGA [3] and
the High-Speed, Hierarchical Synchronous Reconfigurable
Array [23].

Comparisons such as this study, but with less target ar-
chitectures, have been carried out by Babb et al. in the Raw
benchmark suite [1]. Also a large number of applications
have been mapped to FPGAs in the Splash [9] and Splash
2 [4] projects.

7 Future Work

In the future we would like to investigate several more
applications in the bit-level application domain. This would
be done with the hope of gaining more insight into these ap-
plications. Specifically we would like to be able to quantify
how much each factor, specialization, parallelization, and
wire length, effects performance and performance per area.
The next application that we want to implement is a finite
state machine as this is a bit-level computation that is used
in almost every system.

Also we would like to move this work into studying
power wins that can be gained from fine grain computational
fabrics. We think that the trends found with the performance
per area metric will be consistent with performance per en-
ergy wins. Unfortunately, the tools to explore power make
it difficult to make objective comparisons.

The results in this paper are very promising and we be-
lieve that by using some form of hybrid architecture that
mixes microprocessors and reconfigurable logic, that bit-
level and general purpose computation can be supported in
a general purpose way. This new general purpose architec-
ture would reduce the area inefficiency that microprocessors
exhibit on bit-level computation. One possible architecture
that can be imagined is to take a modern tiled architecture
such as Raw and add to each tile a small tightly integrated
array of sequencable lookup tables (LUT). These would be
able to work like an FPGA fabric and implement bit-level
computation. Also, by adding a LUT array to each tile, this
architecture would be able to scale the amount of reconfig-
urable logic.

8 Conclusion

This work has studied how different architectures are
able to handle bit-level communication processing. To study
this, two characteristic applications were selected and ex-
perimentally mapped onto common computational struc-
tures of differing grain size including microprocessors, tiled
architectures, FPGAs, and ASICs. From these results it can
be concluded that for these applications, fine grain compu-
tational fabrics (FPGAS) can provide a 2-3x absolute per-



formance improvement over a best case microprocessor in
the same fabrication process. And more importantly a fine
grain computational fabric is able to provide 2-3 orders of
magnitude better performance per area than software on a
microprocessor.

From these results we conclude that it is usually possible
to use one grain size to run an application with a smaller
grain size with not too large of an absolute performance
degradation through some emulation mechanism. In this
case this emulation mechanism is the ability to use a mi-
croprocessor’s cache as a lookup table to substitute for cus-
tom logic. But, unfortunately these forms of grain size mis-
match cause large, multiple orders of magnitude, inefficien-
cies when it comes to area utilization. Thus we need to
study integration of fine grain computational structures with
architectures that have larger grain size such as word-based
microprocessors to be able to support both bit-level and gen-
eral purpose computation in an area efficient manner.
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