MIT Technical Report MIT-CSAIL-TR-945, April 2004

M&M: A Passive Toolkit for Measuring, Correlating, and
Tracking Path Characteristics

Sachin Katti
MIT CSAIL

Dina Katabi
MIT CSAIL

ABSTRACT

This paper presents M&M, a passive measurement toolkit
suitable for large-scale studies of Internet path characteristics.
The multiQ tool uses equally-spaced mode gaps in TCP flows’
packet interarrival time distributions to detect multiple bottle-
neck capacities and their relative order. Unlike previous tools,
multiQ can discover up to three bottlenecks from the tcpdump
trace of a single flow, and can work with acknowledgment as
well as data interarrivals. We also describe the mystery tool, a
simple TCP loss event, packet loss, and RTT analyzer designed
to work in concert with multiQ. The M&M toolkit can mea-
sure simple path properties; correlate different types of mea-
surement of the same path, producing new kinds of results; and
because M&M is passive, it can use publicly-available traces to
track the value of a measurement over multiple years.

We validate our tools in depth using the RON overlay net-
work [4], which provides more than 400 heterogeneous Inter-
net paths and detailed information about their characteristics.
We compare multiQ with Nettimer and Pathrate, two other
capacity measurement tools, in the first wide-area, real-world
validation of capacity measurement techniques. Each tool ac-
curately discovers minimum capacities (85% of measurements
are within 10% of the true value); multiQ additionally discov-
ers multiple bottlenecks and their orderings. We also use our
toolkit to perform several measurement studies using a reser-
voir of 375 million traced packets spanning the last two years.
Among the results of these studies are that bottleneck capacity
on our traced links has gone up by around an order of magnitude
from 2002 to 2004, and that differences in levels of statistical
multiplexing on 10 Mb/s and 100 Mb/s bottleneck links result
in flows over those links having similar fair-share bandwidths.

1 INTRODUCTION

A mental model of the network is the set of significant as-
sumptions about the network made in the course of a piece of
research. For example, we may assume that congestion only
happens at the edge of the network; that the level of statistical
multiplexing on the bottleneck link is low; that there is no con-
gestion on the reverse path; that the distribution of flow sizes is
heavy-tailed; and so forth. These assumptions must arise from
a good understanding of the current state of the network, or
how it may be expected to behave in future. Research based
on erroneous assumptions has little to say about how the actual
network should evolve [13].

How, then, can we create a useful description of the cur-
rent Internet? The best answer is to measure those properties

Eddie Kohler

Jacob Strauss

UCLA/ICIR MIT CSAIL

important for a given research question, in the widest range of
expected conditions, and extract from the results any parame-
ters you need.

But this kind of measurement presents a different set of
problems than measurement for application use. For example,
while an application might only care about the available band-
width on a path, a good simulation scenario for evaluating trans-
port protocol effects needs to know the characteristics of cross
traffic and the capacities of all the bottleneck links (not just the
tightest bottleneck). Application measurements often use active
probe traffic, which becomes difficult on very large scales be-
cause of probe overhead and the need to avoid perturbing the
very characteristics being measured. Furthermore, active mea-
surements cannot be run in the past, making it difficult to see
how the Internet has evolved over time. We believe, therefore,
that developing a comprehensive set of accurate, passive, trace-
based measurement tools is essential for creating more faithful
representations of the Internet, and evaluating the ones we al-
ready use.

This paper presents M&M, a suite of passive measurement
tools suitable for constructing transport-centric descriptions of
the Internet. The M&M tools can extract, from passive TCP
traces, broad and deep information about the capacities of mul-
tiple bottlenecks traversed by TCP flows, and the losses and
RTT changes those flows experience. Combining the tools’ out-
put is easy, and can produce higher-level information about, for
example, levels of statistical multiplexing— information impor-
tant for transport-level mental models. We validate the tools in
real-world conditions, and apply them to large, diverse traces
in several example measurement studies. The tools (particularly
multiQ) and their validation are our main contribution, but the
studies also produce interesting results: for example, 10 Mb/s
and 100 Mb/s bottleneck links both have significant levels of
statistical multiplexing, and very similar ranges of loss rates.

The M&M suite consists of a novel passive capacity mea-
surement tool, multiQ, and a multi-function TCP analyzer,
mystery. Both tools analyze medium-to-long TCP flows con-
tained in trace files.

multiQ uses packet interarrivals to investigate questions
about the capacities along a path. Its basic insight is that packet
interarrival times, shown as a distribution, demonstrate equally-
spaced mode gaps caused by intervening cross traffic packets
on bottleneck links in the path. multiQ is both passive and
precise. Unlike earlier capacity-measurement work [29, 21, 8,
23, 2], it can passively discover capacities from sender-side
ack packets, as well as from receiver-side data packets; and
uniquely for passive tools, it can discover the capacities and
relative order of up to three bottleneck links along a path.

[Term Definition

Significant flow

A TCP flow that achieves an average packet rate > 10 pps (~ 1 pkt/RTT), contains at least 50 packets,
and has an MTU of 1500 bytes. (The vast majority of medium-to-long data flows have this MTU.)

Bottleneck Link where traffic faces queuing

Capacity The maximum rate at which packets can be transmitted by a link
Narrow link The link with the smallest capacity along a path

Tight link The link with minimum available bandwidth along a path

Cross-traffic burst

Traffic intervening between two consecutive packets of a traced flow

Path capacity

Capacity of the narrowest link on that path

Table 1—Definitions of the terms used in this paper.

mystery reports loss events, lost packets, and fine-grained
semi-RTT measurements throughout the length of each flow.
Its techniques aren’t fundamentally new, although incremen-
tal changes improve its results for difficult traces; but where
previous tools have used basic measurements as a means to
an end, such as the characterization of factors limiting flow
performance [39, 30] (a useful and complementary approach),
mystery concentrates on fine-grained, accurate measurements
of basic properties. These measurements easily combine with
each other, and with multiQ’s results.

Section 7, which validates mult iQ, presents the first wide-
scale Internet evaluation of recent advancements in capacity
measurement. Using over 10,000 experiments on 400 heteroge-
neous Internet paths with known likely capacities, we evaluate
multiQ’s accuracy and compare it with Nettimer [21], another
passive capacity measurement tool, and Pathrate [11], an active
tool. Our results confirm that link capacity measurement tools
are mature and accurate; more than 85% of their measurements
are within 10% of their correct value. With sender side traces
consisting mainly of acks, multiQ is still correct in 70% of
the estimates, and it can accurately and automatically report
non-minimum-capacity bottlenecks 64% of the time. We also
discover several cases where the active and passive tools detect
differences in traffic limit behavior.

We close the paper with four quick, large-scale (375 million-
packet) measurement studies of 258 diverse NLANR traces taken
over the past two years. The M&M suite makes it easy to sum-
marize important properties from these traces, including the
distribution of bottleneck link capacities (which has increased
markedly over the last two years), the levels of statistical mul-
tiplexing on bottlenecks (there is a wide range on both small-
and large-capacity bottlenecks), and loss event rates for packets
with different minimum-capacity bottlenecks.

Table 1 defines several important terms used throughout the

paper.

2 RELATED WORK

Much of the substantial literature on Internet measurements
is complementary to our approach. Prior work, particularly on
extracting properties from passive traces, would combine natu-
rally with results from the M&M tools; we have observed that
the power of a suite of tools is greater than the sum of its parts,
and look forward to integrating other measurements into our
framework.

Internet measurements can be divided into two classes, ac-
tive and passive. Active measurements send probe traffic along

a studied path to induce a network reaction that reflects the state
of the path, where passive measurements extract information
from packet traces or data flows that have already traversed the
studied path. Active measurements are usually more powerful
because the investigator can control the timing and the sending
rate of the probes, but the extra load generated by probes can
be undesirable, and active measurements cannot be executed
on paths not controlled or accessible to the measurement tool.

Our work is particularly related to prior work on capacity
measurements and tight link discovery. Capacity measurement
is already a mature field with many relatively accurate tools.
Currently, Nettimer [21] is the main passive tool for discover-
ing path capacity. Our work builds on the insight gained from
Nettimer, but achieves higher accuracy and can discover multi-
ple bottleneck capacities. Further, our tool can discover bottle-
neck capacities from sender side traces or receiver side traces,
whereas Nettimer requires the receiver side trace to achieve any
accuracy. Jiang and Dovrolis [18] describe a passive method of
capacity estimation based on histogram modes.

There are many active tools for measuring path capacity.
Some of these tools try to find the capacities of all links along
the path [29, 23]. Others, such as Pathrate, focus on the mini-
mum capacity of a path [10]. The accuracy and the amount of
generated traffic vary considerably from one tool to another. In
Section 7, we evaluate multiQ alongside Nettimer and Path-
rate.

Prior work that detects tight links—non-minimum-capacity
bottlenecks—has all been active to our knowledge [2, 23]. There
are also tools for discovering the available bandwidth along a
path [15, 25, 37, 33, 34, 14], which all actively probe the net-
work.

Shifting focus from tools to the underlying techniques, much
prior work used packet inter-arrival times to estimate link ca-
pacities. Keshav proposed the concept of “Packet Pair” for use
with Fair Queuing [19]. This refers to sending two back-to-back
packets and computing the bottleneck capacity as the packet
size divided by the pair dispersion at the receiver side. Packet
pair is at the heart of many capacity and available bandwidth
estimation methods, including ours.

Cross traffic can cause errors in packet pair-based capacity
estimates. In particular, Paxson observed that the distribution
of packet-pair capacity measurements is multi-modal [32], and
Dovrolis et al [11] show that the true capacity is a local mode
of the distribution, often different from its global mode. Many
researchers have noted that some of the modes in the inter-
arrival distribution may be created by secondary bottlenecks or

post-narrow links [11, 20, 28]. Various mechanisms to filter out
the cross traffic effects were proposed, such as using the min-
imum dispersion in a bunch of packet pairs, using the global
mode in the dispersion distribution [21, 18], and using variable
size packet pairs [11]. This paper complements the above prior
work, but takes the opposite tactic—rather than filtering out the
impact of cross traffic, we leverage the useful structure in the
packet dispersion distribution created by cross-traffic to detect
the capacities of multiple bottlenecks.

Prior work to mystery includes tools for measuring TCP
characteristics such as RTT, loss rates and loss characteriza-
tion. The T-RAT tool [39] is closest in spirit to our goal; it
uses passive traces —sometimes more restricted than mystery
can cope with—to classify TCP flows based on the main fac-
tors limiting their rates. tcpanaly [30] automatically ana-
lyzes TCP behavior from packet traces, and focuses on find-
ing implementation anomalies. Jiang and Dovrolis [17] present
a technique for passive estimation of RTTs from traces. The
tcpeval tool for critical path analysis [6] detects various causes
of transfer delay. Balakrishnan et al [5] used TCP traces at a
WWW server to reproduce the evolution of several TCP state
variables. Allman [3] presents algorithms for estimation of cor-
rect values of retransmission timeout settings and available band-
widths, aiming to optimize a connection’s usage of the network
as it begins. Lu and Li [22] present a passive half-RTT estima-
tor exactly complementary to ours: where mystery matches
data packets to the acks they cause, Lu and Li match acks to the
data packets they liberate.

Finally, our work greatly benefits from CAIDA and NLANR’s
efforts to collect packet traces and analyze Internet traffic [7,
27].

3 CApPACITY ESTIMATION WITH EMG

We begin by explaining the operation of our capacity-es-
timation tool, multiQ, and its underlying basis: the equally-
spaced mode gaps (EMGs) induced by cross traffic on packet
interarrival time distributions.

4 ARCHITECTURE
4.1 Motivation

Current practices for detecting intrusions employ firewalls
or IDS (Intrusion Detection Systems). Firewalls are choke points
for network traffic whcih filter traffic according to the security
policies of the organisation. IDS are passive monitors of traffic
which either look for specific signatures (misuse detection) or
deviations from normal traffic (anomaly detection). Snort and
Bro are examples of systems which employ misuse detection.
Current NIDS systems suffer from two drawbacks - high rate
of false alarms and perspective from single vantage point which
limits their ability to detect distributed attacks. The perspective
from a single vantage point limits the ability to detect intrusions
quickly and consequently increases the reaction time. Further
alerts which might not be classified as malicious by a single
IDS could be seen to be part of a larger distributed attack if a a
global view was available.

Presently the above concerns are addressed by aggregating
all alerts at a centralized location. Manual operators then go

thorugh these logs to analyze and classify intrusions. Due to the
volume of alerts involved and the high false positive rate, this
is an ardous process resulting in a large detection time. Conse-
quently an attack continues unabated during this time lag be-
tween commencement of attack and detection by which time it
might have caused unrecoverable damage. For example Shan-
non and Moore (Infocom paper) show that reaction times on the
order of 30 minutes are necessary to contain worm outbreaks.
Clearly there is a need for an effective, automated and real-
time system which can detect attacks and initiate appropriate
defence strategies.

A promising approach to alleviate the above shortcomings
is to correlation of alerts from different IDS systems i.e. a Dis-
tributed Intrusion Detection System (DIDS). In this envirnoment
IDS systems exchange information with each other offering the
tantalizing benefit of near global knowledege at the cost of com-
municating with peers. However several critical problems need
to be adressed before intrusion detection information can be
safely distributed among cooperating peers. Exchanging alert
data in a full mesh with all participating peers is prohibitively
expensive given the sheer volume from each IDS. Consequently
scheduling algorithms to limit the group size to a managae-
able size are necessary. Even among small groups there is a
need to be economical in the amount of information exchanged.
Clearly exchanging offending packet payloads or high volume
signature information is expensive. Hence compressed yet rea-
sonably descriptive means of communication are imperative.
Another important concern is that of privacy - if we have IDS
systems from different organisations exchanging information,
mechanisms for safely exhanging sensitive data without com-
promising the cooperating peers need to be evolved.

The assumptions we make about the environment we op-
erate in are important considerations. Our motivation to build
such a system came out of the difficulties experienced in using
a deployed IDS system in a Tier 1 ISP. These IDS sensors were
placed at different locations in the network, ranging from bor-
ders with other ISPs to internal assets. Each IDS system was
autonomous and reported all iots alerts to a centralized system
where the detection was done manually. The sheer volume of
the alerts generated at each sensor was overhelming (*1 will put
some numbers here*), which resulted in delays in detection and
consequently containment and defence. The obvious benefits of
distributed analyses and consequent reduction in the number of
false positives were the main motivations for this system. Hence
we envision an architecture where a ste of IDSes are deployed
over a large ISP, which communicate with each other. Since
all the IDS sensors belong to the same organisation, we do not
consider issues of privacy in this paper.

4.2 Our Approach

A distributed system for scalable intrusion detection is not
unlike other large distributed information sharing systems. Hence
it must satisfy the same set of requirements:

e Availability - the detection system must be resilient to fail-
ures as well as attacks againt the system itself

e Scalability - The system should be scalable as the number
of sensors in the system grows.

e Distributed Failure modes - There should not ne single points
of failures in the system and responsibilities and consequently
vulnerabilities should be distributed

e Heterogeneity - A distributed IDS system must be able to
include different IDS systems

4.3 Scalable Correlation Mechanisms

In building a scalable technique, the first major hurdle to
be passed is the communication cost. Clearly every IDS sys-
tem cant talk to every other sensor, the resulting communi-
cation overhead would be unmanageable. Also the benefits of
such a system are questionable - the time taken to communicate
with everyone and evolve a consensus on a suspected intrusion
would be comparable to manual detection. Hence we take a step
back and ask the question - Is it necessary for all the sensors to
talk to each other for detecting an intrusion?

Sophisticated approaches to the above problem take two dif-
fernt tacks. The first approach creates mappings from particular
alerts (IP addresses, type of alerts, ports) to specific sensors.
These sensors are then responsible for those kind of attacks.
With all alert data of a a particular nature being collected at
one node, all processing can be done there without the need for
communicating with other nodes. But nodes become a special
case of the centralized model: they are single points of failure
corresponding to the IP address being hashed. Collecting raw
information might also not be attractive due to issues of trust,
nodes might be uncomfortable to place raw alert information at
a single node.

Essentially what is necessary is a way to generate optimal
groups of sensors which need to communicate with each other
when all of them are seeing a particular attack. This optimal
schedule should allow any node to correctly guess which other
subset of sensors it should talk to in order to ascertain the na-
ture of an attack. In order to mimic this behavior the (approxi-
mately) correct nodes must talk to each other at (approximately)
the right time. One way of accomplishing this is to pick groups
at random and change groups at a fast rate. Howvere a more
robust model than the random approach provides some control
over the rate at which groups are formed and change. We evolve
such an algorithm and explain it in the following paragraphs.

Consider a typical distributed attack - a distributed denial
of service attack. DDOS attacks have proliferated over the past
few years and the evidence [cite CERT warnings] is that many
more are on the way. Staging such an attack requires several
steps - an attacker compromises a number of machines, using
well known software vulnerabilities. Backdoors for later access
are installed in each such machine. Sophisticated automated
tools are available which make it very simple for an attacker to
achieve the above. Finally an attacker configures all the com-
promised machines to launch a targeted attack at a specifc re-
source over the Internet. The resource could be a popular web-
site, a service (ex DNS) or the routing fabric of the Internet.
The compromised machines are organised in a hierachy to hide
the identity of the true attacker. Spoofing source addresses is a
common technique to prevent traceback.

But any distributed attack contains some common proper-
ties which offer points of localisation for a detection system.

For the DDOS attack above, if a particular website is being tar-
geted, the destination subnet is a good starting point for com-
monality among alerts. It is likely that many sensors are going
to generate alerts which correspond to the same destination sub-
net when such an attack takes place, given the distributed nature
of the attack. It is also likely that sensors close to the destina-
tion subnet will be seeing more of the attack traffic than other
sensors. Hence if a sensor detects suspicious activity aimed at
a particular destination subnet, at a good first approximation
forming a group consisting of sensors which are going to see
traffic to the particular destination will help in detecting the ve-
racity of its suspicions.

The essential idea hidden above is that of using hints in the
attack for determining the set of sensors which could possibly
be seeing the same attack. The hints are properties which will
be common to all alerts corresponding to the same attack. In the
above DDOS example, it was the destination subnet being at-
tacked. If a particular resource in the Internet is being attacked,
it would be the commonality among the resource being attacked
(for example DNS servers). During the early parts of a worm
outbreak it is the identity of the source subnets which will be
common to all the alerts being generated. If a worm has reached
a significant level of contamination, the signature of thw worm
will be the common property across sensors. In Section evalu-
ation we show that there are many dimensions along which an
attack shares properties across sensors.

4.4 Taxonomy

For a sensor to construct the set of sensors which are likely
to see the same kind of attack without talking to them, it needs
information about every other IDS in the system. This infomra-
tion should contain a sketch of the nature of traffic each sensor
has encountered in the past and expects to in the future. This im-
plies a certain assumption of stationarity in the nature of attacks
at each sensor which we show to be true in the susequent sec-
tion. Hence every IDS contains a profile of every other sensor
in the system. The profile is a summary of the source subnets
a sensor sees attacks from, the destination subnets it protects
and also sees attacks for, the nature of signatures of attacks it
encounters, the traffic profile classified according to port, pro-
tocol etc. When a sensor sees an alert, it identifies the property
and consults the profiles of other sensors to determine the group
of sensors each IDS stores a profile of every other IDS in the
system.

Clearly the property along which to localise depends on the
nature of the alert. For the DDOS example above it was the
destination subnet, for a worm it would be the source subnet or
the signature and so on. This underlines the need for classifying
alerts into a taxonomy which lets us localise the property which
is likely to be common among the distributed set of alerts. The
essential intuition is for each sensor to classify an alert accord-
ing to the taxonomy, it picks the property which is likely to be
common among alerts of that kind and consult the subset of
sensors which are known to see traffic satisfying the particular
property of that class of alerts.

The taxonomy above is intended to be a starting point and
extendable and hence not comprehensive. Each leaf node in the

0.24

CMU->CCICOM ——
0.2 A
-l
‘s 0.16 4
c
5%
o 012 4
¥el
o 0.08 4
o
0.04 -
0 — T T T T T T T T T T T T T
0 02040608 1 12141618 2 22242628 3

Interarrival times in milliseconds
(a) Main mode at around 1.2ms shows the 10Mb/s CMU link

0.09
0.08 CMU->CCICOM ——

0.07 0.12ms

0.06
0.05
0.04
0.03
0.02

SIS

0.01

0 02040608 1 12141618 2 22242628 3
Inter-arrival times in milliseconds
(b) Gaps of 0.12ms show the 100Mb/s CCICOM link

Figure 1—The data from Figure 4b at two different resolutions.

Prob. Density

tree above corresponds to a distinct type of attack for which a
unique common property can be found in all alerts belonging to
that specific attack in progress. The sensor classifies every alert
it deems to be suspicious according to the taxonomy and then
identifies the set of sensors whose profiles indicate the likeli-
hood of seeing the same attack. These sensors then communi-
cate with each other and exchange alert information to deter-
mine the validity of their suspicions.

4.5 Communication Mechanisms

Alerts grow rapidly given the substantial traffic on each sen-
sor, hence even among small groups it is necessary to encode
and represent alerts in a compact manner. Drawing from lessons
learned in the deployment of web proxies we propose Bloom
filters as efficient mechanisms to exchange compact informa-
tion about alerts. Bloom filters are compact bit vectors and serve
as probabilistic data structures. Entries are indexed by k inde-
pendent hashes of the data (in our case the alert information,
which could be IP addresses, ports, alert types etc). The bit in-
dex pointed toby the hash opf the data is set to 1. This is re-
peated multiple times for resiliency and redundancy. In order to
determine membership of a particular data item the same pro-
cess is executed, the data item is hashed and the corresponding
indices are checked. If those bits are set, it implies membership.

Bloom filters therefore offer the following advantages

o Efficient representation of alert information. A Bloom filter
around 10k bits in size is still able to verify tens of thou-
sands of entries

e The tradeoff is the amount of compression and the false pos-
itive ratio, but Bloom filters do not create false negatives.
The false positive ratio can be reduced by appropriate tun-
ing and using redundancy by multiple alert lists.

. Compute flow interarrivals from trace file

. Set scale := 10 us

. While scale < 10,000ps:

Compute kernel PDF estimate with width = scale

Find the modes

If there’s only one mode, at M:
Output a capacity of (1500%8/M) Mb/s
Exit

9. Compute the mode gaps

10. Compute the PDF of the gaps

11. Set G := the tallest mode in the gap PDF

12. If the probability in G > 0.5:

13. Output a capacity of (1500*8/G) Mb/s

14. Increment scale

Figure 2—Pseudocode for multiQ.

© NV AW~

5 MULTIQ: AUTOMATING EMG

The multiQ passive bottleneck detection tool automates
the EMG capacity detection technique. It takes as input a tcpdump
trace, and automatically discovers and estimates the capacity of
the bottlenecks traversed by particular flows specified by the
user.

Automating multiple bottleneck discovery is tricky because
it requires interpreting the visual image of the interarrival PDF
to extract the relevant information and ignore the noise. To do
this, multiQ analyzes the interarrival PDF at a progression
of resolutions corresponding to a known set of common link
speeds. To demonstrate this, Figure 1 plots the CMU-to-CCICOM
data from Figure ??b at two different resolutions. At the lower
resolution, we see one large mode in the distribution, which
corresponds to the upstream lower-capacity bottleneck. As we
increase the resolution, the large mode becomes fractured into
smaller spikes corresponding to the higher-capacity bottleneck.
The envelope traced by the peaks of the smaller spikes follows
the original broader mode.

The procedure works as follows. At each resolution, starting
with the highest resolution, multiQ constructs a kernel den-
sity estimate of the PDF and scans it for statistically-significant
modes. The gaps between these modes are computed. Then,
multiQ finds the probability distribution of the gaps them-
selves. A mode in the gap’s PDF corresponds to a highly re-
peated gap length —the hallmark of a congested link. f multiQ
finds a significantly dominant mode in the gap distribution at
the current resolution, it decides that mode represents the trans-
mission time of 1500 bytes on some bottleneck, and outputs that
bottleneck’s capacity. If there is no dominant gap at the current
resolution, multiQ decreases the resolution and repeats the
procedure. Figure 2 shows this procedure in pseudocode.

A few details are worth discussing. First, since we are look-
ing at the interarrival PDF at different resolutions, we need to
use a kernel PDF estimator to detect the modes—the flat bins
of a histogram would prevent precise mode estimation. Second,
modes are identified as local maxima in the density estimate
that have statistically significant dips.! Finally, when multiQ
analyzes ack inter-arrival PDFs, it uses a slightly different pro-

I'A significant dip [35] is defined as one in which the dips on either side of a
local maximum drop by more than the standard deviation of the kernel density

cedure to deal with the first mode in the PDF: a large spike
close to zero is a sign of compressed acks and should be ig-
nored, whereas a spike located at twice as much as the repeated
gap in the PDF is a sign of delayed acks and corresponds to the
transmission time of 3000 bytes on the bottleneck link.

5.1 Limitations

EMG estimation is more robust on receiver-side data-packet
traces than sender-side ack traces. When run on ack traces, the
current version of multiQ does not try to discover bottlenecks
whose capacity is higher than 155 Mb/s.

Our method relies on the cross-traffic burst structure, which
depends on the packet size distribution. If 1500 bytes stops be-
ing the dominant large-packet mode, our technique will fail.
Fortunately, this distribution appears to be changing towards
further emphasis of the 40-byte and 1500-byte modes; for in-
stance, compare the 1998 and 2001 packet size distributions in
Claffy’s papers [9, 36].

6 MYSTERY

The mystery tool investigates the network characteristics
of loss event rate, packet loss rate, and RTT variability. The loss
event detector works at either the sender or receiver side, and
only requires access to the data packets. The lost packet detec-
tor and the ack correspondence detector (which measures RTT
variability) are designed for the sender side—they work at the
receiver side, but produce uninteresting results—and require
access to both data and acks. These techniques are not funda-
mentally new; loss event detection, for example, goes back at
least to tcpanaly [30]. mystery differs from earlier work
in the granularity of its results. Other tools report anomalies
or broadly classify TCP flow behavior [39]; mistakes in fine-
grained measurements, such as RTTs, may be acceptable as
long they don’t affect the broad result. mystery complements
this work by providing good-quality raw data, such as ack cor-
respondences. It doesn’t, however, contain any of the higher-
level intelligence built into the other tools.

mystery operates on tcpdump, NLANR, or other format
traces containing one or more TCP flows. Its output is in XML
format. Section 7.7 presents a validation.

6.1 Loss Events

The loss event detector reports all loss events in the trace,
where a loss event begins with a lost packet and ends when
the sender retransmits that packet. A loss event may contain
more than one lost packet; modern TCP implementations halve
their congestion windows once per loss event, rather than once
per packet loss. mystery’s loss event detector behaves sim-
ilarly to those in T-RAT and other tools [39, 16]: It detects a
new loss event every time it sees a reordered or retransmitted
packet whose original transmission was not part of a previous
loss event.

estimate at the local maximum. The standard deviation is given by
StdDev(g(x)) = \/g(x) x R(K)/nh, (D

where g(x) is the estimate at point x, R(K) is the roughness of the kernel func-
tion, n is the number of points, and 4 is the kernel’s width.

, .
E 1 I <
E L I .
= [
: r
o 1
=
g II . | Data packet |
172 Lost data packet |
rI L Ack x
4 ‘ ‘ ‘
Elapsed time

Figure 3—Time-sequence plot showing a loss event (shaded box), lost packets
(thin I-beams), and ack correspondences (lines between data packets and acks).

An incremental improvement in mystery’s loss event de-
tector is the use of ack timing to distinguish false retransmis-
sions from true loss events. A loss event is false if the original
“lost” packet was actually received. To our knowledge, previous
tools detect a false retransmission when the relevant ack arrives
strictly before the retransmission. mystery takes the flow’s
minimum ack delay into account. The min-ack-delay equals the
minimum time difference between any data packet in the trace
and its corresponding acknowledgment; a loss event is false
if the delay between the retransmission and the ack is much
smaller than this. (Since min-ack-delay measures the minimum
time it takes for an ack to arrive, any ack sent quicker than this
must have corresponded to the original “lost” packet.)

The loss event detector cannot detect events all of whose
packets were dropped upstream of the trace point, and false
loss events can only be distinguished when acks are available in
the trace. In our validation experiment (Section 7.7), mystery
finds 5776 loss events in 155 traces, 99 of which are labeled
false. Manual trace examination indicates the main causes of
false loss events are reordering, bad RTT estimates, and confu-
sion caused by earlier loss events.

6.2 Lost Packets

The lost packet detector uses ack information to decide which
packets in a loss event were actually lost. Aside from its inde-
pendent interest, we found lost packet detection necessary to
obtain good ack correspondences.

The lost packet detector again uses the obvious algorithm
plus some incremental improvements. It is based on TCP’s cu-
mulative ack, which indicates the delivery of every preceding
sequence number. When a new ack a arrives, mystery moves
backwards over the data packets. Each data packet p with last
sequence number < a is marked unless other packets cover-
ing p’s sequence numbers have already been marked. Once the
whole trace is processed, any unmarked packets are identified
as lost. An improvement is to avoid marking packets that must
have arrived after the ack was sent, again using min-ack-delay.
We also needed special handling for TCPs that don’t imple-
ment Fast Recovery: two or more candidates covering the same
sequence numbers may need to be marked.

This algorithm behaves independently of the number of du-
plicate acks. One might expect us to count duplicates instead,
since each dup-ack generally indicates that another packet has
been received; but reordering, interference from prior retrans-
missions, and lost acks make it more robust to ignore duplicate

acks. SACK and DSACK information would be valuable, and if
these options were ubiquitous, the loss detector would become
trivial.

The lost packet detector can incorrectly identify packets as
lost if the RTT grows significantly over the connection’s life-
time, or if acks are dropped.

6.3 Ack Correspondence

The ack correspondence tool generates a mapping AC from
ack packets to data packets, where AC(a) equals the data packet
that caused a to be sent. The last sequence number on AC(a)
will not equal a’s ack number if there was loss or reordering.
Ack correspondence is complementary to, but easier than, data
correspondence [22], which determines the data packets that
were liberated by each ack. An ack correspondence mapping
expresses properties of the TCP session, such as whether the re-
ceiver delays acks; but we’re mainly interested in it for sender-
side traces, where a complete mapping provides fine-grained
measurements of the round-trip time throughout the connec-
tion’s life. Existing passive RTT measurements look mostly at
the initial portion of the connection [17].

Given an ack packet a, the ack correspondence algorithm
chooses as AC(a) the earliest data packet that could plausibly
work. Heuristics used to determine plausibility include:

e The delay between AC(a) and a must be at least 0.8 X
min-ack-delay.

e AC(a) cannot be a lost packet (we use the packet loss
detector here), and no data packet corresponds to more than
one ack.

o Keep track of ack-highwater, the maximum sequence num-
ber that we believe was received. If a acknowledges more than
ack-highwater, then a was not sent in response to a retransmis-
sion, and AC(a)’s last sequence number should equal a’s ack
number.

e If g isn’t a duplicate, then it was sent in response to new
data at the top of the window, or a successful retransmission. In
either case, AC(a)’s last sequence number can’t be greater than
a’s ack number.

e If a is a duplicate, then there was loss or reordering. Skip
any data packet whose initial sequence number equals a’s ack
number.

Section 7.7 validates the ack correspondence detector on
155 diverse traces.

7 VALIDATION

We evaluate the accuracy of multiQ using 10,000 exper-
iments over 400 diverse Internet paths from the RON overlay
network, and compare it both with known topology informa-
tion and with two other capacity measurement tools, Pathrate
and Nettimer. Our results show the following:

e When measuring minimum-capacity bottlenecks, multiQ
is as accurate as Pathrate, an active measurement tool; 85%
of its measurements are within 10% of the true value. Net-
timer is equally accurate if operated with both sender and

receiver traces, but its accuracy goes down to 74% with only
receiver side traces and 10% with only sender side traces.

e On sender side traces, which consist mainly of acks, 70%
of multiQ’s measurements are within 20% of their correct
value.

o As for tight links (i.e. non-minimum capacity links), multiQ
automatically detects 64% of them, misses 21% (though a
human could detect them visually on an interarrival PDF),
and mislabels 15%.

e The average error of both multiQ and Nettimer is highly
independent of flow size for flows larger than 50 packets.

e We also validate mystery using 155 diverse paths from
RON. When run at the sender side (the hard case), its er-
ror rate for lost packets is under 1% for more than 80% of
the paths we tested, and under 10% for all paths. Ack cor-
respondence is slightly less reliable.

7.1 Experimental Methodology

Ideally, we would like to have information about all the ca-
pacities and loss rates along a large number of heterogeneous
paths that form a representative cross section of the network.
This is inherently difficult on the Internet, of course, but we
have tried to evaluate our tools on as representative a network
as possible. We use the RON overlay network [4], whose 22
geographically-distributed nodes have a diverse set of access
links, ranging from DSL to 100 Mb/s connections,?> and ISPs
on both the commercial Internet and Internet2. RON has 462
heterogeneous paths, 25% of which use Internet2. We therefore
have good reason to believe that these paths’ characteristics are
representative of what we would encounter on the Internet.

We compare the capacity tools’ estimates for each RON
path against that path’s “true” bottleneck capacity. A fair amount
of legwork was required to determine these values. We con-
tacted each node’s hosting site and obtained a list of all their
access links and the capacities of the local networks to which
the nodes are connected. For multi-homed nodes, we learned
the access capacities of each upstream ISP. RON nodes not
on Internet2 have low-speed access links ranging from DSL to
10 Mb/s; paths terminating at one of these nodes are unlikely to
encounter a lower-capacity link on the Internet backbone. For
RON nodes in Internet2, we additionally obtained information
about all Internet2 links on the relevant paths. On top of this,
we used a wealth of information obtained from the RON over-
lay operator about path characteristics over the last 3 years.

To verify the consistency of these “true” capacities, we ran
all three capacity measurement tools and a number of ttcp
and UDP flows of varying rates on each path. If a path’s re-
sults pointed out an inconsistency —for example, if ttcp or
UDP obtained more bandwidth than the “true” capacity —then
we eliminated the path from our experiments. Only 57 out of a
total of 462 paths needed to be eliminated.

29 nodes have 100 Mb/s uplinks, 6 have 10 Mb/s, 3 have T1, and 4 have DSL.

1 »m...nnunun.'-'-'-;;;-'. ---------------
0.8 -
L 06 1
8
041 _ MuliQ ——
02 | ‘ Nettimer-SR e
] Nettimer-R
0 f f T T T
-1 -0.5 0 0.5 1

Relative Error

Figure 4—Comparison of the accuracy of MultiQ, Nettimer and Pathrate.
Graphs show the CDF of the relative error.

7.2 Timestamp Errors

An important source of possible error is the timestamps we
get from tcpdump. Our tools work on single passive traces,
so we don’t need to worry about calibrating timestamps from
multiple sites [31]; only errors in time differences are relevant.
These errors may arise from fluctuations in the time it takes to
go from an on-the-wire packet delivery to the network interrupt
handler, which timestamps the packet on tcpdump’s behalf.

We analyzed a data set that contains both DAG hardware
timestamps and tcpdump timestamps collected at RIPE [38].
Although tcpdump timestamps can differ from DAG hard-
ware timestamps by 20 us, the errors in the timestamps of con-
secutive packets are highly correlated. Hence, compared to in-
terarrival times calculated from the DAG timestamps, the errors
in interarrivals of successive packets computed from tcpdump
timestamps are only a few ps. Such small errors should not af-
fect our results.

7.3 Minimum Capacity Estimation

We now turn to an evaluation of multiQ’s minimum ca-
pacity estimation. We compute the relative error of multiQ’s
estimates compared with the “true” minimum capacities, and
compare that relative error with two other capacity measure-
ment tools—Pathrate, which is active, and Nettimer, which is
passive. We find that multiQ is very precise.

We tried to ensure that the three tools encountered the same
path characteristics, such as loss rate and delay, by running the
tools immediately after one another on each path. We first con-
duct a 2 minute run of ttcp and collect traces at both end-
points. These traces serve as data sets for multiQ and Net-
timer. Immediately thereafter, we run Pathrate on the same path
and compute its estimate; we use the average of Pathrate’s high
and low estimates. This procedure is repeated five times, and
we report the average of those 5 trials. Finally, the same set
of experiments is run both at day and night, to compensate for
any traffic fluctuations due to the time of the day. In total, we
performed more than 10000 experiments.

We plot the relative error £ for each capacity estimate C,,
which is defined as
_ Ce - Ct
s

where C; is the path’s “true” capacity.

Figure 4 shows the cumulative distribution function (CDF)
of the relative errors of multiQ, Nettimer, and Pathrate esti-
mates on RON’s 405 paths. Nettimer has two lines: Nettimer-

£)

Capacity estimate (Mb/s)
Source Destination | multiQ | Nettimer | Pathrate
jfk1-gblx | speakeasy 1.354 1.366 99
nyu 1.353 1.361 98.5
cornell 1.392 1.358 9.55
ar 1.354 1.362 99.5
cmu 1.354 1.36 9.65
jfk1-gblx | cybermesa 10.519 11.89 .998
nyu 10.563 10.514 .9985
cornell 8.134 8.1 997
ar 8.134 8.139 .9985
cmu 8.13 8.121 .996

Table 2—Estimate differences between Pathrate and the other tools (see § 7.3).

SR uses traces from both sides, while Nettimer-R uses only
receiver-side traces. multiQ also uses only receiver-side traces.
Ideally, the CDF should be a step function at “0”, meaning that
all experiments reported the “true” capacity. A negative rela-
tive error means that the tool has underestimated the capacity,
whereas a positive relative error means that the tool has overes-
timated it.

Our results show that minimum capacity measurements are
relatively accurate. On 85% of the paths, multiQ, Pathrate,
and Nettimer-SR all report estimates within 10% of the “true”
value. When Nettimer is given only the receiver-side trace, how-
ever, only 74% of its estimates are within 10% of the actual val-
ues. All three methods are biased towards underestimating the
capacity.

Next, we look more closely at the errors exhibited by each
tool. multiQ errors are caused mainly by over-smoothing in
the iterative procedure for discovering mode gaps, which flat-
tens the modes and prevents accurate computation of the gaps.
Pathrate’s logs indicate that its errors happen when the inter-
arrival’s distribution exhibits many modes. Though the correct
bottleneck capacity is usually one of the modes discovered by
Pathrate, the tool picks a different mode as the bottleneck ca-
pacity. When Nettimer made errors, we found that often the
path has low RTT (< 16 ms). The tool mistakes the RTT mode
in the inter-arrival PDF for the transmission time over the bot-
tleneck. The effect is most pronounced when Nettimer is op-
erating with only traces at the receiver side; when it has both
traces, we theorize that it can estimate the RTT and eliminate
the corresponding mode.

Our experiments show that different tools can disagree on
the capacity of a particular path, but can all be correct. We
noticed that, on some paths, the Pathrate estimate differs sub-
stantially from the Nettimer and multiQ estimates. In particu-
lar, Pathrate repeatedly reports capacities of 100 Mb/s for paths
going to the speakeasy RON node and 1 Mb/s for paths go-
ing to cybermesa, while Nettimer and multiQ estimate them
as 1.5 Mb/s and 10 Mb/s (Table 2). Further investigation re-
vealed that the differences are due to the flows being rate lim-
ited. Speakeasy rate-limits TCP traffic to 1.5 Mb/s, which is the
Nettimer and multiQ estimate. UDP flows are not limited, so
Pathrate, which sends UDP packets, sees a link of 100Mb/s.
In contrast, the cybermesa access link capacity of 10 Mb/s is
correctly estimated by Nettimer and multiQ. Pathrate’s rela-
tively long trains of back-to-back packets, however, trigger cy-
bermesa’s leaky bucket rate limit; they exceed the maximum

0.8 -
0.6 -

CDF

0.4

0.2 -

0 MultiQ (Ack packets)
f T T T

-1 -0.5 0 0.5 1
Relative Error

Figure 5—The accuracy of capacity estimates based on ack interarrivals.

0.7
_ 061 MultiQ —A—
8 05
(5}
g 041
£ 031
2 o2

0.1

0 | | P

10 100 1000 10000

No of packets in trace

Figure 6 —The relative error of MultiQ and Nettimer as a function of the traced
flow size. Both average error and deviation are lower in the case of MultiQ.

burst size of the leaky bucket and becomes limited by the to-
ken rate, which is 1 Mb/s. TCP windows stay smaller than the
bucket size, and so its packets are spaced by the actual link.
This information has been confirmed by the owner sites.

7.4 Minimum Capacity Estimation Using Acks

Unlike existing tools, multiQ can obtain a reasonable ca-
pacity estimate exclusively using a sender-side trace, using the
interarrival times of ack packets. Figure 5 shows the relative
error of multiQ’s sender-side ack estimation, compared with
its receiver-side data-packet estimation; the data comes from
the experiments described in § 7.1. Since acks contain informa-
tion about both forward and reverse links, we define the true
capacity C, for sender-side multiQ measurements as the min-
imum of the forward and reverse paths’ capacities. Sender-side
ack interarrivals produce lower-quality results than receiver-
side data packet interarrivals, but still, 70% of the measure-
ments are within 20% of the “true” value. Unlike receiver-side
multiQ, the errors on sender-side multiQ tend towards over-
estimation.

7.5 Relative Error and Flow Size

We would expect capacity estimate error to be dependent on
the amount of data available: more data should mean a better
estimate. In this section, we quantify this effect.

Figure 6 plots the absolute value of the relative error of
Nettimer-SR and multiQ’s estimates, as a function of the num-
ber of packets in the traced flow. We use the traces generated for
§ 7.1, truncated to various lengths; the relative errors are aver-
aged over the whole set of RON paths. The bars show one stan-
dard deviation away from the average error. multiQ’s error is
lower than Nettimer’s for smaller numbers of packets. In fact,
multiQ’s average error does not depend much on the number
of packets, but the error variance decreases substantially as the

number of traced packets increases. This means that there are
particular flows in the data set that were hard to analyze and
required a large number of packets for correct estimation. Also,
the average error and error variance converge to nonzero val-
ues as the number of packets increases. This means that there
are certain very noisy paths which neither multiQ nor Net-
timer can correctly analyze, regardless of the number of traced
packets.

Pathrate, on the other hand, is active. On our tests, it uses
an average of 1317 probe packets, with a standard deviation of
1888 packets; but since it uses probes of varying sizes, a better
metric is the amount of traffic it sends: 1.75 MB on average,
with a standard deviation of 2.56 MB. The large standard devi-
ation indicates that Pathrate uses far more traffic on paths that
are hard to estimate.

7.6 Tight Links

This section evaluates multiQ’s ability to discover non-
minimum-capacity bottlenecks, or tight links; as discussed above,
multiQ can report up to three bottleneck capacities per flow.
Unfortunately, we usually cannot say with confidence what the
tight links along a path could be, and we can’t correlate any re-
sults with other tools. To deal with this issue, we limit this test
to Internet2 paths. Internet2 has a very low utilization (MRTG
plots a maximum utilization < 10% [1]), so any observed queu-
ing should be at the edges. Thus, for these paths we are reason-
ably confident that congestion happens at one or both access
links, whose capacities we know. Also, because downstream
narrow links tend to erase the effect of upstream bottlenecks
(see § ??), we limit this test to paths in which the downstream
bottleneck capacity is larger than the upstream bottleneck ca-
pacity.

We run ttcp over each of these paths and log the packet
arrival times at the receiver using tcpdump. The experiment
is repeated multiple times during both peak and off-peak hours.
We run multiQ on the resulting traces and record the various
link capacities which are output. Each of these estimates could
be a link on the path. We say that a tight link on a path is cor-
rectly estimated if one of the non-minimum-capacity estimates
from multiQ is within 20% of the actual tight link capacity.
All other estimates for that path are considered to be incorrect.
If only the minimum capacity is found for a path, the answer
for that path is logged as "not estimated”. Tables 3 and 4 sum-
marize the results: 64% of the experiments reported a tight link
present on the path, 15% reported an invalid tight link (a bot-
tleneck that differed from the correct value by more than 20%),
and the remainder only reported the minimum bottleneck. The
experiments that correctly found a tight link had an average rel-
ative error of 0.156.

7.7 Lost Packets and Ack Correspondence

To validate mystery, we used 155 pairs of traces from
the RON testbed, similar to those described in § 7.3. We run
mystery on the sender-side trace (the hard case) and collect
its main results—a set of lost data packets, and an ack corre-
spondence mapping AC. These results can contain four kinds
of mistakes: “lost” packets that were actually received; “deliv-

=155)

CDF (# paths, n:

[Result | Fraction |
Correct 64%
Incorrect 15%

Not estimated | 21%

Table 3—multiQ tight link estimates

Avg. Relative Error | Std. Deviation in Error
0.156 0.077

Table 4— Average relative error and standard deviation in the correctly esti-

mated tight links.

0.4 + A+ X% XX
+ X
& 03 + X
E + X
» 0.2 + X
]
S X
Lost Packets 01 X x K x| ost Packets +
0 Ack Correspondence ------- 0 X X Ack Correspondence x
T T T T
0 0.1 0.2 0.3 0 0.1 0.2 0.3
Error Rate Error Rate

Figure 7—Error rates for mystery’s lost-packet and ack-correspondence de-
tectors. On the left: error rate CDF; on the right: loss rate vs. error rate.

ered” packets that were actually lost; incorrect ack correspon-
dences; and missing ack correspondences. All of these results
are easy to check given the receiver-side trace. If we assume
that all drops happen inside the network, then packets are de-
livered iff they show up in the receiver-side trace;* and ack cor-
respondences is easy to determine at the receiver side, where
acks show up in a few milliseconds rather than an RTT.

Figure 7 shows the results. Each graph has error rate as its
X axis, where the error rate is the number of mistakes divided
by the total number of events (data or ack packets sent). The
lost packet detector is quite reliable, achieving 99% accuracy
on 80% of the 155 paths; the ack correspondence detector is
also reliable, but less so. Both error rates rise with the loss rate
(right-hand graph), but the lost packet detector still achieves
90% accuracy on all paths. We investigated particular traces
with high error rates, and found that many of the errors are im-
possible to fix without DSACK information or other explicit
feedback. In particular, reverse-path losses cause problems for
the tool. When the network drops the single ack sent in response
to a packet, mystery cannot hope to detect that the packet was
delivered.

8 MEASUREMENT STUDIES

We now turn to four multiQ- and mystery-based mea-
surement studies of Internet path characteristics that could en-
able the construction of more realistic simulation scenarios. These
studies are not intended to be complete; they are simply exam-
ples of results that are relatively easy to find using our measure-
ment methodology and tools.

Several of these studies depend on the tools working to-
gether. This requirement points out another advantage of pas-
sive measurement: To combine the results of two active mea-
surements, one might need to perform both measurements si-
multaneously, increasing measurement impact on the network;
to combine the results of two passive measurements, you just

3We do account for the very few packets that are dropped after the receiver
trace point.

10

1
0.9 -
0.8 -
0.7 A
0.6 -
0.5 -

CDF

0.4
0.3
0.2
0.1 /i
0 7 T T

0.1 1 10
Link capacity in Mbps

Figure 8 —The empirical cumulative distribution of bottleneck capacity in the
2002 and 2004 NLANR datasets.

run them both on the same trace.

¢ Evolution of bottleneck capacity. We use multiQ to de-
termine the bottleneck capacities in two large sets of NLANR
traces [27], taken in 2002 and 2004.

e Statistical multiplexing. We estimate the level of statistical
multiplexing on the NLANR traces’ bottleneck links using
multiQ (to measure capacity) and mystery (to measure
throughput and RTT).

e Loss and RTT. mystery is used to plot how round-trip
time changes around losses.

e Loss and bottleneck capacity. mystery calculates the
loss event rate for packets in the NLANR traces; we plot
this against bottleneck capacity calculated by multiQ.

The NLANR traces contain more than 375 million packets
in 258 traces, collected on one OC-48, five OC-12, and fifteen
OC-3 links. There are two sets of traces, one collected in 2002
and one in 2004. The traces contained over 50,000 significant
flows. Although this data is not representative of all Internet
traffic—for example, it all comes from within the US—it is
large and diverse, and was collected at major connection points
to the backbone.

8.1 Bottleneck Capacity Distribution

We analyzed both the 2002 and 2004 NLANR trace sets us-
ing multiQ, extracting the bottleneck capacities experienced
by every significant flow. Figure 8 demonstrates shows the shift
in path capacity that occurred between the sets. In 2002, less
than 20% of the significant flows were bottlenecked at a 100 Mb/s
or higher capacity link. This number increased to 60% in 2004,
showing a substantial and rapid growth in the capacity of bot-
tleneck links. The highest bottleneck capacity that we identified
in the 2002 data set is an OC-3 link. In contrast, the highest bot-
tleneck capacity in the 2004 data set is an OC-12 link. Although
this increase in bottleneck capacity is not uniformly distributed
across all traces, it is impressive that the average bottleneck ca-
pacity has grown so much in a short period.

8.2 Statistical Multiplexing

Many published simulation scenarios assume low levels of
statistical multiplexing on bottleneck links [13]. With multiQ
and mystery, we can check this assumption.

We took the same NLANR traces from January, 2002 and
2004, and computed the level of statistical multiplexing for the

CDF
o
o

0 =l ; .
100
Number of flows

(a) 10Mb paths

10000

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

CDF

100
Number of flows
(b) 100Mb paths

Figure 9—Distribution of statistical multiplexing on 10 and 100 Mb/s links in
the 2002 and 2004 datasets.

10000

normalized RTT

(4] T T T T T T T T

20> 10> 5> 2> 1> 0

normalized RTTs to closest loss

<1<2 <5<10 <20

Figure 10—RTTs from a RON trace (from aros to anal-gblx), plotted by time
distance to the nearest lost packet.

two prevalent bottlenecks, the 10 Mb/s and the 100 Mb/s links.
multiQ tells us the minimum-capacity bottleneck link; be-
cause this link is likely congested, we assume, as a first ap-
proximation, that the bottleneck capacity is distributed fairly
among flows on that link. We then estimate the number of flows
on a bottleneck as the ratio of the bottleneck’s capacity to the
throughput of the flow. Because TCP flows share a link in in-
verse proportion to their respective RTTs, we first normalize
each flow’s throughput with respect to the average RTT across

all flows traversing the same bottleneck capacity. We usedmultiQ

to determine the bottleneck capacity of each flow and mystery
to compute its RTT. We did not calculate statistical multiplex-
ing for traces with incomplete TCP header information.

Figure 9 shows CDFs of the level of statistical multiplex-
ing on these paths. For the 10 Mb/s links, the median degree
in the 2002 traces was 30, whereas it is 60 in the 2004 traces,
corresponding to a fair share changing from 330 to 160 Kb/s.
For the 100 Mb/s links, the median degree in 2002 was 450,
and in 2004 was 650. The fair share bandwidth for these paths
was somewhat lower than the 10 Mb/s links, decreasing from
220 Kb/s to 150 Kb/s. Contrary somewhat to conventional wis-
dom, we notice that the fair share bandwidth is not proportional
to the bottleneck link capacity.

11

& ~1 Mbr/s
o ~10 Mb/s -------
> 01 ~100 Mb/s --------
g ~600 Mb/s
()
£
8 001 4
o
£
8 TTTeln,

0.001 , : : . ‘

0 0.05 0.1 0.15 0.2 0.25 0.3

Loss Event Rate

Figure 11—Complementary CDF of loss event rates for 13,627 significant
flows from 2004 NLANR traces, divided into 4 bins by bottleneck capacity.

8.3 Losses and RTT

Together, mystery’s lost-packet and ack-correspondence
detectors can produce plots that correlate RTT changes with
losses. This has been an active area of research, motivated by
the desire to deploy delay-based congestion control schemes;
previous studies have depended on active probing [26] or on
a limited set of RTT measurements, corresponding roughly to
those that might be extracted on-line by a non-SACK TCP [24].
A mystery-based measurement offers both the relative ease
of passive measurement, and a near-complete set of RTTs.

Figure 10 shows a representative graph taken from 155 runs
over the RON traces described above; we show only one graph
due to lack of space. As in prior work, little correlation be-
tween loss and delay is visible, even with mystery’s complete
RTT information. More interesting are the differences between
traces. For example, some traces show RTT decreasing before
losses. Some cybermesa traces show no RTT variation what-
soever around losses, which might be explained by the leaky
bucket rate limiter deployed there (§ 7.3).

8.4 Loss Rate and Bottleneck Bandwidth

Finally, Figure 11 shows a direct combination of results
frommultiQ and mystery: a plot of the loss event rates for
flows differentiated by bottleneck capacity. We used multiQ
to determine the bottleneck capacities of 15,000 significant flows
from 2004 NLANR traces, and mystery to determine the loss
event rate for each. We use TFRC’s definition for loss event
rate, namely the inverse of the average number of packets be-
tween loss events [12]; this is easily extracted frommystery’s
output, a list of true loss events in the trace.

Loss events occur at all bottleneck capacities. Somewhat
unexpectedly, the range of loss rates on 100 Mb/s-bottleneck
flows is the same as for 10 Mb/s-bottleneck flows. Flows with
600 Mb/s bottleneck links still experience losses, but less so
than flows with smaller bottlenecks.

9 CONCLUSIONS

We have presented the M&M set of passive tools for large-
scale measurements and analysis of Internet path properties.
The first tool, multiQ, is based on the insight that equally-
spaced mode gaps (EMGs) in the packet interrarrival PDF cor-
respond to the transmission time of 1500-byte packets on some
congested link along the path. Uniquely to passive measure-
ment tools, multiQ can discover the capacity of up to three
bottlenecks and their relative location from a tcpdump trace
of a flow. The second tool, mystery, detects several end-to-

end parameters, such as loss rate and RTT. We calibrated these
tools using extensive tests on 400 heterogeneous Internet paths.

To demonstrate the M&M tools in action, we applied them
to a large collection of Internet traces containing over 375 mil-
lion packets, investigating four properties of the network. Al-
though these studies are not our main contribution, they pro-
duced interesting results —for example, that flows with 100 Mb/s
bottleneck capacities achieve lower fair share bandwidth than
flows with smaller capacities, due to higher levels of statisti-
cal multiplexing on the bottleneck links. The ease of creating
these results given our tools, and their application to historical
as well as current traces, show how M&M and tools like it can
help achieve our goal: building and maintaining better mental
models of the network.

For future work, we would like touse multiQ and mystery

to address the following questions: “How many bottlenecks is a
flow likely to encounter?” “When multiple queuing points exist,
can one tell which among them is dropping the packets?” “Do
published TCP equations accurately estimate the throughput
obtained by real TCP flows?”” Additionally, by runningmultiQ
on both sender and receiver traces of the same flow, we would
like to investigate whether bottlenecks on the reverse path are
the same as those on the forward path. Most of multiQ’s er-
rors identifying tight links are visually detectable by a human,
indicating a potential for improved accuracy. Finally, we would
like to integrate other measurement tools into the suite.

The M&M tools will be made publicly available under an
open-source license by final publication.

REFERENCES

[1] Abilene. http://monon.uits.iupui.edu/.

[2] A. Akella, S. Seshan, and A. Shaikh. An Empirical Evaluation
of Wide-Area Internet Bottlenecks. In Proc. IMC, Oct. 2003.

[3] M. Allman and V. Paxson. On Estimating End-to-End Network
Path Properties. In ACM SIGCOMM, 1999.

[4] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.
Resilient Overlay Networks. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP ’01), Oct.
2001.

[5] H. Balakrishnan, V. Padmanabhan, and R. Katz. TCP Behavior
of a Busy Internet Server: Analysis and Improvements. In
INFOCOM (1), 1998.

[6] P. Barford and M. Crovella. Critical path analysis of TCP
transactions. In SIGCOMM, 2000.

[7] Cooperative Association for Internet Data Analysis (CAIDA).
http://www.caida.org/.

[8] R. Carter and M. Crovella. Measuring Bottleneck link Speed in
Packet-Switched Network. Technical Report TR-96-006, Boston
University, Mar. 1996.

[9] K. Clafty, G. Miller, and K. Thompson. The Nature of the Beast:
Recent Traffic Measurements from an Internet Backbone, Apr.
1998.
http://www.caida.org/outreach/resources/learn/packetsizes/.

[10] C. Dovrolis, P. Ramanathan, and D. Moore. Packet Dispersion
Techniques and Capacity Estimation. submitted to IEEE/ACM
Transactions in Neworking.

[11] C. Dovrolis, P. Ramanathan, and D. Moore. What do Packet
Dispersion Techniques Measure? In IEEE INFOCOM 01, 2001.

[12] S. Floyd, M. Handley, J. Padhye, and J. Widmer.

12

Equation-Based Congestion Control for Unicast Applications.
In Proc. SIGCOMM, Aug. 2000.

[13] S. Floyd and E. Kohler. Internet Research Needs Better Models.
In HotNets-1, Oct. 2002.

[14] N. Hu and P. Steenkiste. Evaluation and Characterization of
Available Bandwidth Techniques. IEEE JSAC Special Issue in
Internet and WWW Measurement, Mapping, and Modeling,
2003.

[15] M. Jain and C. Dovrolis. Pathload: A Measurement Tool for
End-to-End Available Bandwidth. In Passive and Active
Measurements, March 2002.

[16] S.Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley.
Measurement and Classification of Out-of-Sequence Packets in
a Tier-1 IP Backbone. In Proc. IEEE INFOCOM, Mar. 2003.

[17] H.Jiang and C. Dovrolis. Passive Estimation of TCP
Round-Trip Times, 2002. To appear in ACM CCR.

[18] H.Jiang and C. Dovrolis. Source-Level IP Packet Bursts:
Causes and Effects. In Proc. IMC, Oct. 2003.

[19] S. Keshav. A Control-Theoretic Approach to Flow Control. In
ACM SIGCOMM °88, September 1991.

[20] K. Lai and M. Baker. Measuring Bandwidth. In INFOCOM,
1999.

[21] K. Lai and M. Baker. Nettimer: A Tool for Measuring
Bottleneck Link Bandwidth. In Proc. USENIX, 2001.

[22] G.Lu and X. Li. On the Correspondency between TCP
Acknowledgement Packet and Data Packet. In Proc. IMC, Oct.
2003.

[23] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User
Level Internet Path Diagnosis. In Proc. ACM SOSP, Oct. 2003.

[24] J. Martin, A. Nilsson, and I. Rhee. The Incremental

Deployability of RTT-Based Congestion Avoidance for High

Speed TCP Internet Connections. In Measurement and

Modeling of Computer Systems, pages 134—144, 2000.

B. Melander, M. Bjorkman, and P. Gunningberg. A New

End-to-End Probing and Analysis Method for Estimating

Bandwidth Bottlenecks. In In Global Internet Symposium, 2000.

S. B. Moon, J. Kurose, P. Skelly, and D. Towsley. Correlation of

Packet Delay and Loss in the Internet. Technical Report

TR 98-11, Dept. of Computer Science, University of

Massachusetts, Amherst, 1998.

[27] National Laboratory for Applied Network Research.
http://pma.nlanr.net/.

[28] A. Pasztor and D. Veitch. The Packet Size Dependence of
Packet Pair Methods. In Proc. of 10th IWQoS, 2003.

[29] pathchar. ftp://ee.lbl.gov/pathchar.tar.Z.

[30] V. Paxson. Automated Packet Trace Analysis of TCP
Implementations. In ACM SIGCOMM, pages 167-179, 1997.

[31] V. Paxson. On Calibrating Measurements of Packet Transit
Times. In Proc. SIGMETRICS 1998, June 1998.

[32] V. E. Paxson. Measurements and Analysis of End-to-End
Internet Dynamics. PhD thesis, University of California,
Berkeley, 1997.

[33] V.. Ribeiro, M. Coates, R. H. Riedi, S. Sarvotham, and R. G.
Baraniuk. Multifractal Cross Traffic Estimation. In Proc. of ITC
Specialist Seminar on IP Traffic Measurement, September 2000.

[34] V.J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and
L. Cottrell. pathChirp: Efficient Available Bandwidth
Estimation for Network Paths. In Passive and Active
Measurement Workshop, 2003.

[35] D. Scott. Multivariate Density Estimation. John Wiley, 1992.

[25]

[26]

[36] C. Shannon, D. Moore, and K. Claffy. Beyond Folklore:
Observations on Fragmented Traffic. In IEEE/ACM
Transactions on Networking, Dec. 2002.

[37] J. Strauss, D. Katabi, and F. Kaashoek. A Measurement Study of
Available Bandwidth Estimation Tools. In Proc. IMC, Oct. 2003.

[38] H. Uijiterwall and M. Santcroos. Bandwidth Estimations for
Test Traffic Measurement Project, Dec. 2003.
http://www.caida.org/outreach/isma/0312/slides/msantcroos.pdf.

[39] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the
Characteristics and Origins of Internet Flow Rates. In ACM
SIGCOMM 2002, 2002.

13

