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Abstract. We present a correctness proof for a basic file system imple-
mentation. This implementation contains key elements of standard Unix
file systems such as inodes and fixed-size disk blocks. We prove the im-
plementation correct by establishing a simulation relation between the
specification of the file system (which models the file system as an ab-
stract map from file names to sequences of bytes) and its implementation
(which uses fixed-size disk blocks to store the contents of the files).
We used the Athena proof checker to represent and validate our proof.
Our experience indicates that Athena’s use of block-structured natural
deduction, support for structural induction and proof abstraction, and
seamless connection with high-performance automated theorem provers
were essential to our ability to successfully manage a proof of this size.
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1 Introduction

In this paper we explore the challenges of verifying the core operations of a stan-
dard Unix file system [20, 16]. We formalize the specification of the file system as
a map from file names to sequences of bytes, then formalize an implementation
that uses such standard file system data structures as inodes and fixed-sized disk
blocks. We verify the correctness of the implementation by proving the existence
of a simulation relation between the specification and the implementation.

The proof is expressed and checked in Athena, an interactive theorem-proving
environment based on denotational proof languages (DPLs [3]) for first-order
logic with sorts and polymorphism. Athena uses a Fitch-style natural deduction
calculus, formalized via the abstraction of assumption bases. High-level idioms
that are frequently encountered in common mathematical reasoning (such as
“pick any x and y · · · ” or “assume P in · · · ”) are directly available to the user.
Athena also includes a higher-order functional language in the style of Scheme
and ML and offers flexible mechanisms for expressing proof-search algorithms
in a trusted manner (akin to the “tactics” and “tacticals” of LCF-like systems
such as HOL [11]).

The proof comprises 283 lemmas and theorems, and took 1.5 person-months
of full-time work to complete. It consists of roughly 5,000 lines of Athena code,
for an average of about 18 lines per lemma. It takes about 9 minutes to check on
a high-end Pentium, for an average of 1.9 seconds per lemma. Athena seamlessly
integrates cutting-edge automated theorem provers (ATPs) such as Vampire [21]
and Spass [22] to mechanically prove tedious steps, leaving the user to focus on
the interesting parts of the proof. Athena invokes Vampire and Spass over 2,000
times during the course of the proof. That the proof is still several thousand
lines long reflects the sheer size of the problem. For instance, we needed to prove
12 invariants and there are 10 state-transforming operations, which translates
to 120 lemmas for each invariant/operation pair (I, f), each guaranteeing that
f preserves I . Most of these lemmas are non-trivial; many require induction,
and several require a number of other auxiliary lemmas. Further complicating
matters is the fact that we can show that some of these invariants are preserved
only if we assume that certain other invariants hold. In these cases we must
consider simultaneously the conjunction of several invariants. The resulting for-
mulas are several pages long and have dozens of quantified variables. We believe
that Athena’s combination of natural deduction, versatile mechanisms for proof
abstraction, and seamless incorporation of very efficient ATPs were crucial to
our ability to successfully complete a proof effort of this scale.

To place our results in a broader context, consider that organizations rely
on storage systems in general and file systems in particular to store critical
persistent data. Because errors can cause the file system to lose this data, it is
important for the implementation to be correct. The standard wisdom is that
core system components such as file systems will always remain beyond the
reach of full correctness proofs, leaving extensive testing—and the possibility
of undetected residual errors—as the only option. Our results, however, suggest
that correctness proofs for crucial system components (especially for the key
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algorithms and data structures at the heart of such components) may very well
be within reach.

The remainder of the paper is structured as follows. Section 2 informally
describes a simplified file system. Section 3 presents an abstract specification of
the file system. This specification hides the complexity of implementation-specific
data structures such as inodes and data blocks by representing files simply as in-
dexable sequences of bytes. Section 4 presents our model of the implementation
of the file system. This implementation contains many more details, e.g., the
mapping from file names to inodes, as well as the representation of file contents
using sequences of non-contiguous data blocks that are dynamically allocated on
the disk. Section 5 presents the statement of the correctness criterion. This crite-
rion uses an abstraction function [15] that maps the state of the implementation
to the state of the specification. Section 5 also sketches out the overall strategy of
the proof. Section 6 and Section 7 address the key role that invariants and proof
tactics played in this project. Section 8 gives a flavor of our correctness proof by
presenting a proof of a frame-condition lemma. Section 9 presents related work,
and Section 10 concludes. The Appendix contains a description of the relevant
parts of certain Athena libraries that were used in this project.

2 A Simple File System

In this section we describe the high-level structure of a simple file system. In
Section 4 we present a formal model of such a file system.

In our file system the physical media is divided into blocks containing a fixed
number of bytes. The contents of a file are divided into block-sized segments,
and stored in a series of blocks that are not necessarily consecutive.

The file system associates each file with an inode, which is a data structure
that contains information about the file, including the file size and which blocks
contain the file data. Unlike actual UNIX file systems, the inodes in our system
do not contain other information such as access privileges and time stamps.

There is only one directory, the root directory, which maps file names to inode
numbers. No two file names can refer to the same file, so no two file identifiers can
map to the same inode number. We also assume that the disk is unbounded—the
file system has access to an infinite number of inodes and blocks.

To read a byte from a given file, the file system first looks up the file name in
the root directory, and obtains the number of the corresponding inode. Assuming
the file exists, the file system then looks up the inode. From the information in
the inode, the file system determines if it is reading a byte that is within the
bounds of the file size, and if so, which block contains the relevant byte. Finally,
the file system reads the byte from that block and returns the value read.

A similar look-up process occurs when writing a byte in a file. In this case,
if the file system is writing a byte that is within the bounds of the existing file
size, it simply stores the new value to the appropriate byte. Otherwise, the file
system extends the file up to the index of the byte it is writing. It then stores
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the appropriate value to the byte it is writing, and a default pad value to the
bytes in between.

Our formalization consists of a set of axioms in first-order logic with sorts,
polymorphism, and structural induction. We use generic Athena libraries that
contain axiomatizations of natural numbers, value options, finite maps, and re-
sizable arrays; see the Appendix for a brief description of those libraries.

3 Abstract specification of the file system

Our specification is an abstract model of the file system that hides the com-
plexity of data structures such as inodes and data blocks by representing files as
indexable sequences of bytes.

The specification uses the following sorts (the first two are introduced as new
primitive domains, while the latter two are defined as sort abbreviations):

sorts Byte ,FileID
define File = RSArrayOf (Byte)
define AbState = FMap(FileID,File)

The sort Byte is an abstract type whose values represent the units of file content.
FileID is also an abstract type; its values represent file identifiers. We define File

as a resizable array of Byte . The abstract state of the file system, AbState, is
represented as a finite map from file identifiers (FileID) to file contents (File).
We also introduce a distinguished element of Byte , called fillByte , which is used
to pad a file in the case of an attempt to write at a position exceeding the file
size: declare fillByte : Byte.

3.1 Specification of the abstract read operation

We begin by giving the signature of the abstract read operation, absRead :

declare absRead : FileID × Nat × AbState → ReadResult

Thus absRead takes a file identifier fid , an index i in the file, and an abstract
file system state s; and returns an element of ReadResult . The latter is defined
as the following datatype:

datatype ReadResult = EOF
| Ok(Byte)
| FileNotFound

Therefore, the result of any absRead operation is one of three things: EOF , if
the index is out of bounds; FileNotFound , if the file does not exist; or, if all
goes well, a value of the form Ok(v) for some byte v, representing the content of
file fid at position i. More precisely, the semantics of absRead are given by the
following three axioms:
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[AR1] ∀ fid i s . lookUp (fid, s) = NONE ⇒ read(fid , i, s) = FileNotFound

[AR2] ∀ fid i s file . [lookUp (fid, s) = SOME (file) ∧ arrayLen(file) ≤ i] ⇒

read(fid , i, s) = EOF

[AR3] ∀ fid i s v file . [lookUp (fid, s) = SOME (file) ∧ arrayRead (file, i) = SOME (v)]

⇒ read(fid , i, s) = Ok(v)

Using the equality conditions for finite maps and resizable arrays, we are able
to prove the following extensionality theorem for abstract states:

∀ s1 s2 . s1 = s2 ⇔ [∀ fid i . read(fid , i, s1) = read(fid , i, s2)]. (1)

3.2 Specification of the abstract write operation

The abstract write operation has the following signature:

declare write : FileID × Nat × Byte × AbState → AbState

This is the operation that defines state transitions in our file system. It takes
as arguments a file identifier fid , an index i indicating a file position, a byte v
representing the value to be written, and a file system state s. The result is a
new state where the contents of the file associated with fid have been updated by
storing v at position i. Note that if i exceeds the length of the file in state s, then
in the resulting state the file will be extended to size i+1 and all newly allocated
positions below i will be padded with the fillByte value. Finally, if fid does not
correspond to a file in s, then an empty file of size i + 1 is first created and then
the value v is written. More precisely, we introduce the following axioms:

[AW1] ∀ fid i v s . lookUp (fid, s) = NONE ⇒

write(fid , i, v, s) = update(s, fid , arrayWrite(makeArray(fillByte, i + 1), i, v, fillByte))

[AW2] ∀ fid i v s file . lookUp (fid, s) = SOME (file) ⇒

write(fid , i, v, s) = update(s, fid , arrayWrite(file, i, v, fillByte))

4 File system implementation

Standard Unix file systems store the contents of each file in separate disk blocks,
and maintain a table of structures called inodes that index those blocks and
store various types of information about the file. Our implementation operates
directly on the inodes and disk blocks and therefore models the operations that
the file system performs on the disk. We omit details such as file permissions,
dates, links, multi-layered directories, and optimizations such as caching. Some
of these (e.g., permissions and date stamps) are orthogonal to the verification
obligation and could be included with minimal changes to our proof, while others
(e.g., caching) would likely introduce additional complexity.

File data is organized in Block units. A Block is an array of blockSize bytes,
where blockSize is a positive constant. Specifically, we model a Block as a finite
map from natural numbers to Byte :

define Block = FMap(Nat , Byte)
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We also define a distinguished element of Block , called initialBlock , such that:

∀ i . i < blockSize ⇒ lookUp (i, initialBlock) = SOME(fillByte)
∀ i . blockSize ≤ i ⇒ lookUp (i, initialBlock) = NONE

In other words, an initialBlock consists of blockSize copies of fillByte .
File meta-data is stored in inodes:

datatype INode = inode(fileSize : Nat , blockCount : Nat , blockList : FMap(Nat ,Nat))

An INode is a datatype consisting of the file size in bytes and in blocks, and a
list of block numbers. The list of block numbers is an array of the block numbers
that contain the file data. We model this array as a finite map from natural
numbers (array indices) to natural numbers (block numbers).

The data type State represents the file system state:

datatype State = state(inodeCount : Nat , stateBlockCount : Nat ,
inodes : FMap(Nat , INode), blocks : FMap(Nat , Block), root : FMap(FileID,Nat))

A State consists of a count of the inodes in use; a count of the blocks in use; an
array of inodes; an array of blocks; and the root directory. We model the array of
inodes as a finite map from natural numbers (array indices) to INode (inodes).
Likewise, we model the array of blocks as a finite map from natural numbers
(array indices) to Block (blocks). We model the root directory as a finite map
from FileID (file identifiers) to natural numbers (inode numbers).

We also define initialState , a distinguished element of State, which describes
the initial state of the file system. In the initial state, no inodes or blocks are in
use, and the root directory is empty:

declare initialState : State
initialState = state(0, 0, empty-map, empty-map, empty-map)

4.1 Definition of the concrete read operation

The concrete read operation, read , has the following signature:

declare read : FileID × Nat × State → ReadResult

The read1 operation takes a file identifier fid , an index i in the file, and a concrete
file system state s, and returns an element of ReadResult . It first determines if
fid is present in the root directory of s. If not, read returns FileNotFound .
Otherwise, it looks up the corresponding inode. If i is not less than the file size,
read returns EOF . Otherwise, read looks up the block containing the data and
returns the relevant byte. The following axioms capture these semantics (for ease
of presentation, we omit universal quantifiers from now on; all variables can be
assumed to be universally quantified):

1 As a convention, we use bold italic font to indicate the abstract-state version of
something: e.g., abstract read vs. concrete read , an abstract state s vs. a concrete
state s, etc.
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[CR1] lookUp (fid , root (s)) = NONE ⇒ read(fid , i, s) = FileNotFound
[CR2] [lookUp (fid , root(s)) = SOME (n) ∧

lookUp (n, inodes(s)) = SOME (inode(fs, bc, bl)) ∧ (fs ≤ i)] ⇒ read (fid , i, s) = EOF
[CR3] [lookUp (fid , root(s)) = SOME (n) ∧

lookUp (n, inodes(s)) = SOME (inode(fs, bc, bl)) ∧ (i < fs) ∧
lookUp (i div blockSize , bl) = SOME(bn) ∧ lookUp (bn, blocks(s)) = SOME (block) ∧

lookUp (i mod blockSize, block) = SOME (v)] ⇒ read (fid , i, s) = Ok(v)

4.2 Definition of the concrete write operation

The concrete write operation, write , takes a file identifier fid , a byte index i, the
byte value v to write, and a state s, and returns the updated state:

declare write : FileID × Nat × Byte × State → State
[CW1] lookUp (fid , root(s)) = SOME (n) ⇒write(fid , i, v, s) = writeExisting(n, i, v, s)

[CW2] let s′ = allocINode(fid , s) in

[lookUp (fid , root(s)) = NONE ∧ lookUp (fid , root(s′)) = SOME (n)] ⇒
write(fid , i, v, s) = writeExisting(n, i, v, s′)

If the file associated with fid already exists, write delegates the write to the helper
function writeExisting . If the file does not exist, write first invokes allocINode ,
which creates a new, empty file, then calls writeExisting with the inode number
of the new file.

allocINode takes a file identifier fid and a state s, and returns an updated
state:

declare allocINode : FileID × State → State
getNextINode(s) = state(inc + 1, bc, inm, bm, root) ⇒

allocINode(fid , s) = state(inc + 1, bc, inm, bm,update(root, fid , inc))

allocINode creates a new inode by invoking getNextINode, then associates fid

with the new inode.
getNextINode takes a state and returns an updated state. It allocates and

initializes a new inode:

declare getNextINode : State → State
getNextINode(state(inc, bc, inm, bm, root)) =

state(inc + 1, bc, update(inm, inc, inode(0, 0, empty-map)), bm, root)

writeExisting takes an inode number n, a byte index i, the byte value v to
write, and a state s, and returns the updated state:

declare writeExisting : Nat × Nat ×Byte × State → State
[WE1] [lookUp (n, inodes(s)) = SOME (inode) ∧

(i div blockSize) < blockCount (inode) ∧ i < fileSize(inode)] ⇒
writeExisting(n, i, v, s) = writeNoExtend (n, i, v, s)
[WE2] [lookUp (n, inodes(s)) = SOME (inode) ∧

(i div blockSize) < blockCount (inode) ∧ fileSize(inode) ≤ i] ⇒
writeExisting(n, i, v, s) = writeSmallExtend (n, i, v, s)

[WE3] [lookUp (n, inodes(s)) = SOME (inode) ∧
blockCount (inode) ≤ (i div blockSize)] ⇒

writeExisting(n, i, v, s) = writeNoExtend (n, i, v, extendFile(n, i, s))
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If i is less than the file size, writeExisting delegates the writing to writeNoExtend ,
which stores the value v in the appropriate location. If i is not less than the
file size but is located in the last block of the file, writeExisting delegates to
writeSmallExtend , which stores the value v in the appropriate position and up-
dates the file size. Otherwise, writeExisting first invokes extendFile , which ex-
tends the file by the appropriate number of blocks, and then calls writeNoExtend

on the updated state.
writeNoExtend takes an inode number n, a byte index i, the byte value v to

write, and a state s, and returns the updated state after writing v at index i:

declare writeNoExtend : Nat × Nat ×Byte × State → State
[lookUp (n, inodes(s)) = SOME(inode) ∧

lookUp (i div blockSize , blockList(inode)) = SOME(bn) ∧
lookUp (bn, blocks(s)) = SOME (block)] ⇒

writeNoExtend(n, i, v, s) = updateStateBM (s, bn, update(block, i mod blockSize , v))

writeNoExtend uses the helper function updateStateBM . The function
updateStateBM takes the state, the block number bn, and the block block, and
returns an updated state where bn maps to block:

declare updateStateBM : State × Nat × Block → State
updateStateBM (state(inc, bc, inm, bm, root), bn, block) =

state(inc, bc, inm, update(bm, bn, block), root)

writeSmallExtend takes an inode number n, a byte index i, the byte value v
to write, and a state. It updates the file size and writes the byte value v at byte
index i for the file associated with the inode number n, and returns the updated
state:

declare writeSmallExtend : Nat × Nat ×Byte × State → State
[lookUp (n, inm) = SOME(inode(fs, bc, bl)) ∧
lookUp (i div blockSize , bl) = SOME(bn) ∧

lookUp (bn, bm) = SOME (block) ∧ fs ≤ i] ⇒
writeSmallExtend (n, i, v, state(snc, sbc, inm, bm, root)) =

state(snc, sbc, update(inm, n, inode(i + 1, bc, bl)),
update(bm, bn, update(block, i mod blockSize , v)), root)

extendFile takes an inode number n, the byte index of the write, and the
state s. It delegates the task of allocating the necessary blocks to allocBlocks :

declare extendFile : Nat × Nat × State → State
[lookUp (n, inodes(s)) = SOME (inode) ∧ blockCount (inode) ≤ (j div blockSize)] ⇒
extendFile(n, j, s) = allocBlocks(n, (j div blockSize) − blockCount (inode) + 1, j, s)

allocBlocks takes an inode number n, the number of blocks to allocate, the
byte index j, and the state s. We define it by primitive recursion:

declare allocBlocks : Nat × Nat × Nat × State → State
[AB1] allocBlocks(n, 0, j, s) = s

[AB2] [getNextBlock (s) = state(inc, bc + 1, inm, bm, root) ∧
lookUp (n, inm) = SOME (inode(fs, inbc, inbl))] ⇒

allocBlocks(n, k + 1, j, s) = allocBlocks(n, k, j, state(inc, bc + 1,

update(inm, n, inode(j + 1, inbc + 1, update(inbl, inbc, bc))), bm, root))
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Fig. 1. The call graph of write.

allocBlocks uses the helper function getNextBlock , which takes the state s, allo-
cates and initializes the next free block, and returns the updated state:

declare getNextBlock : State → State
getNextBlock (state(inc, bc, inm, bm, root)) =

state(inc, bc + 1, inm, update(bm, bc, initialBlock), root)

The call graph summarizing the write operation is shown in Figure 1. This
call graph largely determines the auxiliary lemmas that need to be established
every time we wish to prove a result about write . That is, whenever we need
to prove a result L about write, we prove appropriate lemmas L1 and L2

about allocINode and writeExisting . In turn, L1 will rely on a lemma L11

about getNextINode and L2 will reference lemmas L21, L22, and L23 about
writeNoExtend , writeSmallExtend , and extendFile , respectively; and so on. In
this way we obtain a lemma dependency graph for L whose structure mirrors
that of the call graph for write .

In what follows we will restrict our attention to reachable states, those that
can be obtained from the initial state by some finite sequence of write operations.
Specifically, we define a predicate reachableN (“reachable in n steps”) via two
axioms: reachableN(s, 0) ⇔ s = initialState , and

reachableN(s, n + 1) ⇔∃ s′ fid i v . reachableN(s′, n) ∧ s = write(fid , i, v, s′)

We then set reachable(s) ⇔∃ n . reachableN(s, n). We will write Ŝtate for the
set of all reachable states, and we will use the symbol ŝ to denote a reachable
state. Propositions of the form ∀ · · · ŝ · · · . P (· · · ŝ · · · ) and ∃ · · · ŝ · · · . P (· · · ŝ · · · )
should be taken as abbreviations for ∀ · · · s · · · . reachable(s) ⇒P (· · · s · · · ) and
∃ · · · s · · · . reachable(s) ∧ P (· · · s · · · ), respectively.
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5 The correctness proof

5.1 State abstraction and homomorphic simulation

This section presents a correctness criterion for the implementation. The cor-
rectness criterion is specified using an abstraction function [15] that maps the
state of the implementation to the state of the specification.

Consider the following binary relation A from concrete to abstract states:

∀ s s . A(s, s) ⇔ [∀ fid i . read(fid , i, s) = read(fid , i, s)]

It follows directly from the extensionality principle on abstract states (1) that
A is functional:

∀ s s1 s2 . A(s, s1) ∧ A(s, s2) ⇒ s1 = s2.

Accordingly, we postulate the existence of an abstraction function α : State →
AbState such that:

∀ s s . α(s) = s ⇔A(s, s).

That is, an abstracted state α(s) has the exact same contents as s: reading any
position of a file in one state yields the same result as reading that position of
the file in the other state.

FileID × Nat × Ŝtate
Q

QQs

?
FileID × Nat × AbState

i × i × α

�
��3

read

re
ad

ReadResult

FileID × Nat × Byte × Ŝtate -write
Ŝtate

?
FileID × Nat × Byte × AbState

i × i × i × α

-write
AbState

?
α

Fig. 2. Commuting diagrams for the read and write operations.

A standard way of formalizing the requirement that an implementation I is
faithful to a specification S is to express I and S as many-sorted algebras and
establish a homomorphism from one to the other. In our case the two algebras

are I = (FileID ,Nat ,Byte , Ŝtate; read ,write) and

S = (FileID ,Nat ,Byte,AbState; read,write)

The embeddings from I to S for the carriers FileID , Nat , and Byte are simply

the identity functions on these domains; while the embedding from Ŝtate to
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AbState is the abstraction mapping α. In order to prove that this translation
yields a homomorphism we need to show that the two diagrams shown in Figure 2
commute. Symbolically, we need to prove the following:

∀fid i ŝ . read(fid , i, ŝ) = read(fid , i, α(ŝ)) (2)

and
∀fid i v ŝ . α(write(fid , i, v, ŝ)) = write(fid , i, v, α(ŝ)) (3)

5.2 Proof outline

Goal (2) follows immediately from the definition of the abstraction function α.
For (3), since the consequent is equality between two abstract states and we
have already proven that two abstract states s1 and s2 are equal iff any abstract
read operation yields identical results on s1 and s2, we transform (3) into the
following:

∀ fid i v bs fid ′ j . read(fid ′, j, α(write(fid , i, v, bs))) = read(fid ′, j, write(fid , i, v, α(bs)))

Finally, using (2) on the above gives:

∀ fid fid ′ i j v bs . read (fid ′, j,write(fid , i, v, bs)) = read(fid ′, j, write(fid , i, v, α(bs)))

Therefore, choosing arbitrary fid ,fid ′, j, v, i, and ŝ, we need to show L = R,
where L = read(fid ′, i,write(fid , j, v, ŝ)) and

R = read(fid ′, i,write(fid , j, v, α(bs)))

Showing L = R is the main goal of the proof. We proceed by a case analysis
as shown in Fig. 3. The decision tree of Fig. 3 has the following property: if the
conditions that appear on a path from the root of the tree to an internal node u

are all true, then the conditions at the children of u are mutually exclusive and
jointly exhaustive (given that certain invariants hold, as discussed in Section 6).
There are ultimately eight distinct cases to be considered, C1 through C8, ap-
pearing at the leaves of the tree. Exactly one of those eight cases must be true
for any given fid ,fid ′, j, v, ŝ and i. We prove that L = R in all eight cases.

For each case Ci, i = 1, . . . , 8, we formulate and prove a pair of lemmas Mi

and Mi that facilitate the proof of the goal L = R. Specifically, for each case Ci

there are two possibilities:

1. L = R follows because both L and R reduce to a common term t, with L = t

following by virtue of lemma Mi and R = t following by virtue of lemma
Mi:

L
Q

QQsMi Mi

t

R
�

��+

2. The desired identity follows because L and R respectively reduce to
read(fid ′, i, ŝ) and read(fid ′, i, α(ŝ)), which are equal owing to (2). In this
case, Mi is used to show L = read(fid ′, i, ŝ) and Mi is used to show
R = read(fid ′, i, α(ŝ)):
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true







J
JJ

fid ′ = fid fid ′ 6= fid

C8





J
JJ

i = j

C1

i 6= j

�
�

�
Q

Q
Q

lookUp (fid , root(bs)) = NONE







J
JJ

i < j

C2

i > j

C3

lookUp (fid , root (bs)) = SOME (n) ∧

lookUp (n, inodes(bs)) = SOME(inode(fs, bc, bl))







J
JJ

j < fs

C4

j ≥ fs







J
JJ

i < fs

C5

i ≥ fs







J
JJ

i < j

C6

i > j

C7

Fig. 3. Case analysis for proving the correctness of write .

L
Q

QQsMi Mi

read(fid ′, i, ŝ)= read(fid ′, i, α(ŝ))

by (2)

R
�

��+

The eight pairs of lemmas are shown in Figure 4. The “abstract-state” ver-
sions of the lemmas ([Mi], i = 1, . . . , 8) are readily proved with the aid of Vam-
pire from the axiomatizations of maps, resizable arrays, options, natural num-
bers, etc., and the specification axioms. The concrete lemmas Mi are much more
challenging.

6 Reachability invariants

Reachable states have a number of properties that make them “well behaved.”
For instance, if a file identifier is bound in the root of a state s to some inode
number n, then we expect n to be bound in the mapping inodes(s). While this
is not true for arbitrary states s, it is true for reachable states. In what follows,
by a state invariant we will mean a unary predicate on states I(s) that is true
for all reachable states, i.e., such that ∀ ŝ . I(ŝ).
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[M1] read (fid , i, write(fid, i, v, bs)) = Ok(v)

[M1] read(fid , i, write(fid, i, v, s) = Ok(v)

[M2] [lookUp (fid , root (bs)) = NONE ∧ i < j] ⇒ read (fid , i,write(fid, j, v, bs)) = Ok(v)

[M2] [lookUp (fid , s) = NONE ∧ i < j] ⇒ read(fid , i,write(fid, j, v, s)) = Ok(v)

[M3] [lookUp (fid , root (bs)) = NONE ∧ j < i] ⇒ read (fid , i,write(fid, j, v, bs)) = EOF

[M3] [lookUp (fid , s) = NONE ∧ j < i] ⇒ read(fid , i,write(fid, j, v, s)) = EOF

[M4]
[lookUp (fid , root(bs)) = SOME (n) ∧

lookUp (n, inodes(bs)) = SOME (inode(fs, bc, bl)) ∧ i 6= j ∧ j < fs] ⇒
read (fid , i,write(fid, j, v, bs)) = read(fid , i, bs)

[M4]
[lookUp (fid , s) = SOME (A) ∧ i 6= j ∧ j < arrayLen(A)] ⇒

read(fid , i,write(fid, j, v, s)) = read(fid , i, s)

[M5]
[lookUp (fid , root(bs)) = SOME(n) ∧

lookUp (n, inodes(bs)) = SOME (inode(fs, bc, bl)) ∧ fs ≤ j ∧ i < fs] ⇒
read (fid , i,write(fid, j, v, bs)) = read (fid , i, bs)

[M5]
[lookUp (fid , s) = SOME (A) ∧ arrayLen(A) ≤ j ∧ i < arrayLen(A)] ⇒

read(fid , i, write(fid, j, v, s)) = read(fid , i, s)

[M6]
[lookUp (fid , root (bs)) = SOME(n) ∧

lookUp (n, inodes(bs)) = SOME (inode(fs, bc, bl)) ∧ fs ≤ i ∧ i < j] ⇒
read (fid , i, write(fid, j, v, bs)) = Ok(fillByte)

[M6]
[lookUp (fid , s) = SOME (A) ∧ arrayLen(A) ≤ j ∧ arrayLen(A) ≤ i ∧ i < j] ⇒

read(fid , i,write(fid, j, v, s)) = Ok(fillByte)

[M7]
[lookUp (fid , root(bs)) = SOME (n) ∧

lookUp (n, inodes(bs)) = SOME (inode(fs, bc, bl)) ∧ fs ≤ j ∧ j < i] ⇒
read(fid , i, write(fid, j, v, bs)) = EOF

[M7]
[lookUp (fid , s) = SOME (A) ∧ arrayLen(A) ≤ j ∧ arrayLen(A) ≤ i ∧ j < i] ⇒

read(fid , i, write(fid, j, v, s)) = EOF

[M8] fid
1
6= fid

2
⇒ read (fid

2
, i, write(fid1, j, v, bs)) = read (fid

2
, i, bs)

[M8] fid1 6= fid
2
⇒ read(fid

2
, i,write(fid

1
, j, v, s)) = read(fid

2
, i, s)

Fig. 4. Main lemmas

There are 12 invariants inv0, . . . , inv11, that are of particular interest. The
proof relies on them explicitly, i.e., at various points in the course of the argument
we assume that all reachable states have these properties. Therefore, for the
proof to be complete, we need to discharge these assumptions by proving that
the properties in question are indeed invariants.

The process of guessing useful invariants—and then, more importantly, try-
ing to prove them—was very helpful in strengthening our understanding of the
implementation. More than once we conjectured false invariants, properties that
appeared reasonable at first glance but later, when we tried to prove them,
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turned out to be false. For instance, a seemingly sensible “size invariant” is that
for every inode of size fs and block count bc we have

fs = [(bc − 1) · blockSize ] + (fs mod blockSize)

But this equality does not hold when the file size is a multiple of the block count.
The proper invariant is 2

[fs mod blockSize = 0 ⇒ fs = bc · blockSize ] ∧

[fs mod blockSize 6= 0 ⇒ fs = ((bc − 1) · blockSize) + (fs mod blockSize)]

where div denotes integer division. For any inode of file size fs and block count
bc, we will write szInv(fs , bc) to indicate that fs and bc are related as shown by
the above formula.

Figure 5 presents the twelve reachability invariants for our file system imple-
mentation. In the sequel we focus on the first four invariants, inv0,inv1,inv2,inv3.
These four invariants are fundamental and must be established before anything
non-trivial can be proven about the system. They are also co-dependent, mean-
ing that in order to prove that an operation preserves one of them, say invj ,
we often need to assume that the incoming state not only has invj but also one
or more of the other three invariants. For instance, we cannot prove that write

preserves inv3, i.e., that

∀ i v s . inv3(s) ⇒ inv3(write(fid , i, v, s))

unless we also assume that s has inv0. Or suppose we want to prove that
writeExisting preserves any of the four invariants, say inv0, so that our goal
is to show inv0(writeExisting(n, i, v, s)) on the assumptions

lookUp (n, inodes(s)) = SOME (inode(fs , bc, bl)) (4)

and
inv0(s) (5)

Consider the case
bc ≤ i div blockSize ,

whereby writeExisting(n, i, v, s) returns

writeNoExtend(n, i, v, extendFile(n, i, s)).

Since writeNoExtend is conditionally defined, we need to show that its three
preconditions are satisfied in the intermediate state s1 = extendFile(n, i, s). It
is easy enough to show that the first precondition holds, i.e., that

lookUp (n, inodes(s1)) = SOME (inode(fs1, bc1, bl1))

for some fs1, bc1, and bl1; this follows from (4) and an auxiliary lemma stat-
ing that extendFile preserves the invariant I(s) ≡ inDom(n, inodes(s)) (for

2 This invariant is equivalent to bc = (fs + blockSize − 1) div blockSize.
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inv0 (s) : [lookUp (fid , root(s)) = SOME (n)] ⇒ inDom(n, inodes(s))

inv1 (s) : [lookUp (n, inodes(s)) = SOME (inode(fs, bc, bl))] ⇒
[inDom(k, bl) ⇔ k < bc]

inv2 (s) : [ lookUp (n, inodes(s)) = SOME (inode) ∧
lookUp (bn , blockList(inode)) = SOME (bn ′)] ⇒
inDom(bn ′, blocks(s))

inv3 (s) : [lookUp (n, inodes(s)) = SOME(inode(fs, bc, bl))] ⇒ szInv(fs, bc)

inv4 (s) : inDom(bnum , blocks(s)) ⇔ bnum < stateBlockCount (s)

inv5 (s) : inDom(nodeNum , inodes(s)) ⇔ nodeNum < inodeCount (s)

inv6 (s) : [lookUp (nodeNum , inodes(s)) = SOME(inode(fs, bc, bl)) ∧ bc = 0]
⇒ fs = 0

inv7 (s) : [fid
1
6= fid

2
∧

lookUp (fid
1
, root (s)) = SOME (nodeNum1) ∧

lookUp (fid
2
, root (s)) = SOME (nodeNum2)]

⇒ nodeNum1 6= nodeNum2

inv8 (s) : [lookUp (nodeNum , inodes(s)) = SOME(node) ∧
lookUp (k, blockList(node)) = SOME(bnum) ∧
lookUp (bnum, blocks(s)) = SOME(block )] ⇒

(inDom(j, block ) ⇔ j < blockSize)

inv9 (s) : [lookUp (nodeNum1, inodes(s)) = SOME (node1) ∧
lookUp (nodeNum2, inodes(s)) = SOME(node2) ∧
lookUp (k1, blockList (node1)) = SOME(bnum1) ∧
lookUp (k2, blockList (node2)) = SOME(bnum2) ∧
nodeNum1 6= nodeNum2]

⇒ bnum1 6= bnum2

inv10(s) : [lookUp (nodeNum , inodes(s)) = SOME(node) ∧
lookUp (k1, blockList (node)) = SOME (bnum1) ∧
lookUp (k2, blockList (node)) = SOME (bnum2) ∧
k1 6= k2]

⇒ bnum1 6= bnum2

inv11(s) : [lookUp (nodeNum , inodes(s)) = SOME(inode(fs, bc, bl)) ∧
i div blockSize < bc ∧ fs ≤ i ∧
lookUp (i div blockSize , bl) = SOME(bnum) ∧
lookUp (bnum, blocks(s)) = SOME(block )] ⇒
lookUp (i mod blockSize , block ) = SOME (fillByte)

Fig. 5. Reachability Invariants
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fixed inode number n). However, it is more challenging to show that the two
remaining preconditions hold, i.e., that there exist bn1 and block 1 such that
lookUp (i div blockSize , bl 1) = SOME (bn1) and

lookUp (bn1, blocks(s1)) = SOME (block 1).

But these would follow immediately if we could show that s1 has inv1 and inv2

and that i div blockSize < bc1. Showing that s1 has inv1 and inv2 would also
follow immediately if we strengthened our initial hypothesis (5) by additionally
assuming that s has inv1 and inv2, provided we have shown elsewhere that
extendFile preserves both of these invariants. However, showing i div blockSize <

bc1 presupposes that s1 has inv3. Consequently, we are led to assume that the
original state s has all four invariants. Provided we have already shown that
extendFile preserves each of the four invariants, it then follows that s1 has all
four of them, and hence that the preconditions of writeNoExtend hold.

6.1 Proving invariants

Showing that a unary state property I(s) is an invariant proceeds in two steps:

1. proving that I holds for the initial state, I(s0); and
2. proving ∀ fid i v s . I(s) ⇒ I(write(fid , i, v, s)).

Once both of these have been established, a routine induction on n will show
that

∀ n s . reachableN(s, n) ⇒ I(s).

It then follows directly by the definition of reachability that all reachable states
have I .

Proving that the initial state has an invariant invj is straightforward: in
all twelve cases it is done automatically. The second step, proving that write

preserves invj , is more involved. Including write , the implementation comprises
ten state-transforming operations,3 and control may flow from write to any one of
them. Accordingly, we need to show that all ten operations preserve the invariant
under consideration. This means that for a total of ten operations f0, . . . , f9 and
twelve invariants inv0, . . . , inv11, we need to prove 120 lemmas, each stating that
fi preserves invj .

Most of the operations fi are defined conditionally, in the form

∀ xi yi .PCi(xi, yi) ⇒ fi(xi) = · · ·

where xi, yi are lists of distinct variables; PCi(xi, yi), the “precondition” of
fi, is usually a conjunction of equations in the variables xi and yi (if fi is not
defined conditionally then this can be regarded as the empty conjunction, i.e.,

3 By a “state-transforming operation” we mean one that takes a state as an argument
and produces a state as output. There are ten such operations, nine of which are
auxiliary functions (such as extendFile) invoked by write.
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as the constant true). Therefore, each of the 120 invariant-preservation lemmas
is of the form

∀ xi yi s . [PCi(xi, yi) ∧ I(s)] ⇒ invj(fi(xi)) (6)

for i = 0, . . . , 9 and j = 0, . . . , 11, and where I(s) is of the form invj(s)∧ invi1 ∧
· · · ∧ invik

where k ≥ 0 and ir ∈ {0, 1, . . . , 11} for 1 ≤ r ≤ k.
The large majority of the proof text (about 80% of it) is devoted to proving

these lemmas. Some of them are surprisingly tricky to prove, and even those that
are not particularly conceptually demanding can be challenging to manipulate,
if for no other reason simply because of their volume. Given the size of the func-
tion preconditions and the size of the invariants (especially in those cases where
we need to consider the conjunction of several invariants at once), an invariance
lemma can span multiple pages of text. Proof goals of that scale test the limits
even of cutting-edge ATPs. For instance, in the case of a proposition P that
was several pages long (which arose in the proof of one of the invariance lem-
mas), Spass took over 10 minutes to prove the trivial goal P ⇒P ′, where P ′ was
simply an alphabetically renamed copy of P (Vampire was not able to prove it
at all, at least within 20 minutes). Heavily skolemizing the formula and blindly
following the resolution procedure prevented these systems from recognizing the
goal as trivial. By contrast, using Athena’s native inference rules, the goal was
derived instantaneously via the two-line deduction assume P in claim P ′, be-
cause Athena treats alphabetically equivalent propositions as identical and has
an efficient implementation of proposition look-ups. This speaks to the need
to have a variety of reasoning mechanisms available in a uniform, integrated
framework.

There are many additional lemmas that were used in proving the invariants
or in proving other results after all twelve invariants had already been proven.
We mention two typical ones:

Lemma 1. If fid1 6= fid2 and

lookUp (fid2, root(ŝ)) = x

then lookUp (fid2, root(write(fid1, i, v, ŝ))) = x.

Lemma 2. If lookUp (n, inodes(s)) = SOME (inode1) and

lookUp (n, inodes(allocBlocks (n, k, j, s))) = SOME (inode2)

then blockCount(inode2) = blockCount(inode1) + k.

7 Proof automation with tactics

After proving a few invariance lemmas for some of the operations it became
apparent that a large portion of the reasoning was the same in every case and
could thus be factored away for reuse.
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Athena makes it easy to abstract concrete proofs into natural-deduction proof
algorithms called methods. For every state-transforming operation fi we wrote a
“preserver” method Pi that takes an arbitrary invariant I as input (expressed as
a unary function that takes a state and constructs an appropriate proposition)
and attempts to prove the corresponding invariance lemma.

∀ xi yi s . [PCi(xi, yi) ∧ I(s)] ⇒ I(fi(xi)) (7)

Pi encapsulates all the generic reasoning involved in proving invariants for fi. If
any non-generic reasoning (specific to I) is additionally required, it is packaged
into a proof continuation K and passed into Pi as a higher-order method argu-
ment. Pi can then invoke K at appropriate points within its body as needed. Sim-
ilar methods for other functions made the overall proof substantially shorter—
and easier to develop and to debug—than it would have been otherwise.

Consider, for example, proving that allocBlocks preserves a certain property
I . This is always done by induction on k, the number of blocks to be allocated.
Performing the base inductive step automatically, managing the inductive hy-
pothesis, proving that the relevant precondition involving getNextBlock is satis-
fied in the context in which allocBlocks is called, deriving useful consequences
of that fact, etc., these are all standard tasks that are repetitively performed
regardless of I ; we have abstracted all of them away in a higher-order method
that accepts the I-specific reasoning as an input method.

Proof programmability was useful in streamlining several other recurring pat-
terns of reasoning, apart from dealing with invariants. A typical example is this:
given a reachable state ŝ, an inode number n such that lookUp (n, inodes(ŝ)) =
SOME (inode(fs , bc, bl)), and an index i < fs , we often need to prove the exis-
tence of bn and block such that lookUp (i div blockSize , bl) = SOME (bn) and

lookUp (bn, blocks(ŝ)) = SOME (block )

The reasoning runs as follows: first, from the reachability of ŝ, we infer that
it has certain invariants, including inv0, inv1, inv2, and inv3. From these in-
variants, the assumption i < fs , and standard arithmetic laws we may deduce
(i div blockSize) < bc. From this, our initial assumptions, and inv1, we conclude
that i div blockSize is in the domain of the mapping bl . Thus the existence of
an appropriate bn is ensured, and along with it, owing to inv2, the existence
of an appropriate block . We packaged this reasoning in a method find-bn-block

that takes all the relevant quantities as inputs, assumes that the appropriate
hypotheses are in the assumption base, and performs the appropriate inferences.
The method also accepts a proof continuation K that is invoked once the goal
has been successfully derived.

Another example is a slight extension of this method, named
find-bn-block-val, that operates under the same assumptions but, in addi-
tion to a block number and the block itself, yields a value v such that
lookUp (i mod blockSize , block ) = SOME (v), which is possible because
i mod blockSize < blockSize . Yet another example of a streamlined proof
method is an inductive method showing that an invariant holds for all reachable
states.
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8 A sample lemma proof

In this section we will prove lemma [M8], which can be viewed as a frame con-
dition: it asserts that performing a write operation on a given file leaves the
contents of every other file unchanged. More specifically, let fid 1 refer to the
file to be written, let fid2 be any file identifier distinct from fid 1, let s be any
reachable state, and let s′ be the state obtained from s by writing some value
into some byte position of fid 1. Then [M8] says that reading any byte of fid 2 in
s′ yields the same result as reading that byte in s.

The proof relies on four auxiliary lemmas about write, given below. Lem-
mas (8) and (9) handle the case when fid1 (the file to be written) already exists
in s, while (10) and (11) apply to the case when fid1 is unbound in the root of
s. As usual, all the variables are assumed to be universally quantified.

[lookUp (n1, inodes(s)) = SOME(inode1) ∧ n 6= n1 ∧
lookUp (bn, blockList(inode1)) = SOME (bn ′) ∧

lookUp (bn ′, blocks(s)) = SOME(block1) ∧ lookUp (fid , root (s)) = SOME (n)] ⇒
lookUp (n1, inodes(write(fid , i, v, s))) = SOME (inode1) ∧
lookUp (bn ′, blocks(write(fid , i, v, s))) = SOME (block1)

(8)

[lookUp (n1, inodes(s)) = SOME(inode1) ∧ n 6= n1 ∧
lookUp (fid , root(s)) = SOME (n)] ⇒

lookUp (n1, inodes(write(fid , i, v, s))) = SOME (inode1)
(9)

[lookUp (n1, inodes(s)) = SOME (inode1) ∧
lookUp (bn , blockList(inode1)) = SOME (bn ′) ∧

lookUp (bn ′, blocks(s)) = SOME(block1) ∧ lookUp (fid , root(s)) = NONE ] ⇒
lookUp (n1, inodes(write(fid , i, v, s))) = SOME (inode1) ∧
lookUp (bn ′, blocks(write(fid , i, v, s))) = SOME(block1)

(10)

[lookUp (n1, inodes(bs)) = SOME (inode1) ∧ lookUp (fid , root (bs)) = NONE ] ⇒
lookUp (n1, inodes(write(fid , i, v, s))) = SOME(inode1)

(11)

In turn, each of the above four lemmas about write relies on a number of other
lemmas about the various operations in the call graph of write (see the relevant
remarks in Section 4). We will state those lemmas after we present the proof of
[M8].

We next present a natural-deduction style proof of [M8] to give the reader
an idea of the abstraction level at which Athena proofs are written. We believe
that the said level is roughly equivalent to the level at which a formally trained
computer scientist would communicate the proof to another computer scientist of
a similar background. The proof is rigorous and thorough, but does not descend
to the level of primitive inference rules (such as introduction and elimination
rules for the logical connectives or congruence rules for equality); the applications
of such rules are fairly tedious steps that are filled in by Vampire. The overall
proof is guided by constructs such as “pick any · · · ”, “assume that such and
such holds”, “we distinguish two cases”, “from P1, P2 and P3 we infer P”, and
so on.

The proof of [M8] is given below in English, but the level of detail and the
overall structure of the argument are isomorphic to those of the formal Athena



20 Arkoudas, Zee, Kuncak, Rinard

deduction (for instance, the formal Athena proof runs to 120 lines, whereas the
English proof below is about 64 lines).

Lemma 3 ([M8]). If fid1 6= fid2 then read(fid2, i,write(fid1, j, v, ŝ)) =
read(fid2, i, ŝ).

Proof. Pick arbitrary fid 1,fid2, i, j, v, and ŝ, and suppose that

fid1 6= fid2. (12)

We will prove the goal

read(fid2, i,write(fid1, j, v, ŝ)) = read(fid2, i, ŝ) (13)

by distinguishing two (mutually exclusive and jointly exhaustive) cases:

lookUp (fid2, root(ŝ)) = NONE (14)

and
∃ n2 . lookUp (fid2, root(ŝ)) = SOME (n2). (15)

If fid2 is unbound in root(ŝ) (case (14)), then, by the definition of read , we have

read(fid2, i, ŝ) = FileNotFound . (16)

By Lemma 1, (12), (14), and the reachability of ŝ we conclude

lookUp (fid2, root(write(fid1, j, v, ŝ))) = NONE (17)

and therefore again by the definition of read we infer

read(fid2, i,write(fid1, j, v, ŝ)) = FileNotFound (18)

and hence (13) follows from (16) and (18). We now consider case (15), whereby

lookUp (fid2, root(ŝ)) = SOME (n2) (19)

for some inode number n2. Since ŝ is reachable, it has inv0, so that

lookUp (n2, inodes(ŝ)) = SOME (inode(fs2, bc2, bl2)) (20)

for some fs2, bc2, and bl2. Moreover, we note that by Lemma 1, (19), (12), and
the reachability of ŝ, we have

lookUp (fid2, root(write(fid1, j, v, ŝ))) = SOME (n2). (21)

We proceed by distinguishing two cases, i < fs2 and fs2 ≤ i. Suppose first
that i < fs2. In that case it becomes evident by inspection that all the precon-
ditions of method find-bn-block-val are satisfied: ŝ has the required invariants
because it is reachable; n2 is mapped by the inode mapping of ŝ to the inode
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comprising fs2, bc2, and bl2; and i < fs2. Therefore, we are able to prove that
there exist bn2, block 2, and v2 such that

lookUp (i div blockSize , bl 2) = SOME (bn2) (22)

lookUp (bn2, blocks(ŝ)) = SOME (block 2) (23)

and
lookUp (i mod blockSize , block 2) = SOME (v2). (24)

It now follows from (19), (20), the assumption i < fs2, (22), (23), (24), and the
definition of read that

read(fid2, i, ŝ) = Ok(v2) (25)

and therefore our goal (13) becomes reduced to proving

read(fid2, i,write(fid1, j, v, ŝ)) = Ok(v2). (26)

We establish (26) by considering two subcases. First, suppose that fid 1 is
unbound in the root of ŝ, i.e.,

lookUp (fid1, root(ŝ)) = NONE . (27)

Then by (27), (20), (22), (23), the reachability of ŝ and Lemma (10), we conclude

lookUp (n2, inodes(write(fid1, j, v, ŝ))) =

SOME (inode(fs2, bc2, bl2))
(28)

and
lookUp (bn2, blocks(write(fid1, j, v, ŝ))) = SOME (block 2). (29)

Accordingly, by the definition of read , (21), (28), the assumption i < fs2, (22),
(29), and (24), we obtain the desired (26).

Now suppose, by contrast, that

lookUp (fid1, root(ŝ)) = SOME (n1) (30)

for some inode number n1. Since ŝ is reachable, it has the invariant inv 7, so from
(30), (19), and (12) we conclude

n1 6= n2. (31)

From (8), the reachability of ŝ, (20), (31), (22), (23), and (30) we can now again
derive (28) and (29). Hence, by the definition of read , (21), (28), the assumption
i < fs2, (22), (29), and (24) we obtain (26).

We finally consider the possibility fs2 ≤ i. In that case the definition of read

in tandem with (19) and (20) entails

read(fid2, i, ŝ) = EOF . (32)

As before, we again distinguish two subcases, according to whether or not fid 1

is bound in the root of ŝ, and we use lemmas (9) and (11), respectively, to infer
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(28). In combination with (21), it follows from the definition of read that in
either case we have

read(fid2, i,write(fid2, j, v, ŝ)) = EOF (33)

and the desired equality now follows from (32) and (33). This completes our case
analysis and the proof. ut

Finally, we list below the remaining lemmas needed for lemmas (8), (9),
(10), and (11).

writeSmallExtendPreservesINodeAndBlockMaps:
[lookUp (n1, inodes(s)) = SOME (inode1) ∧ n 6= n1 ∧
lookUp (k, blockList(inode1)) = SOME (bn1) ∧
lookUp (bn1, blocks(s)) = SOME (block1) ∧ inv10(s)
lookUp (n, inodes(s)) = SOME (inode(fs, bc, bl)) ∧
lookUp (i div blockSize , bl) = SOME(bn) ∧
lookUp (bn, blocks(s)) = SOME(block) ∧ fs ≤ i] ⇒
lookUp (n1, inodes(writeSmallExtend (n, i, v, s))) = SOME(inode1) ∧
lookUp (bn1, blocks(writeSmallExtend (n, i, v, s))) = SOME (block1)

writeSmallExtendPreservesINodeMap:
[lookUp (n1, inodes(s)) = SOME (inode1) ∧ n 6= n1 ∧
lookUp (n, inodes(s)) = SOME (inode(fs, bc, bl)) ∧
lookUp (i div blockSize , bl) = SOME(bn) ∧
lookUp (bn, blocks(s)) = SOME(block) ∧ fs ≤ i] ⇒
lookUp (n1, inodes(writeSmallExtend (n, i, v, s))) = SOME(inode1)

writeNoExtendPreservesINodeAndBlockMaps :
[lookUp (n1, inodes(s)) = SOME (inode1) ∧ n 6= n1 ∧
lookUp (k, blockList(inode1)) = SOME (bn1) ∧
lookUp (bn1, blocks(s)) = SOME (block1) ∧ inv10(s)
lookUp (n, inodes(s)) = SOME (inode) ∧
lookUp (i div blockSize , blockList(inode)) = SOME (bn) ∧
lookUp (bn, blocks(s)) = SOME(block)] ⇒
lookUp (n1, inodes(writeNoExtend (n, i, v, s))) = SOME(inode1) ∧
lookUp (bn1, blocks(writeNoExtend (n, i, v, s))) = SOME (block1)

writeNoExtendPreservesINodeMap:
[lookUp (n1, inodes(s)) = SOME (inode1) ∧ n 6= n1 ∧
lookUp (n, inodes(s)) = SOME (inode) ∧
lookUp (i div blockSize , blockList(inode)) = SOME (bn) ∧
lookUp (bn, blocks(s)) = SOME(block)] ⇒
lookUp (n1, inodes(writeNoExtend (n, i, v, s))) = SOME(inode1)
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allocBlocksPreservesINodeAndBlockMaps:
[lookUp (n1, inodes(s)) = SOME (inode1) ∧ n 6= n1 ∧
inDom(n, inodes(s)) ∧ inv4(s) ∧
lookUp (bn, blockList(inode1)) = SOME(bn ′) ∧
lookUp (bn ′, blocks(s)) = SOME(block)] ⇒
lookUp (n1, inodes(allocBlocks(n, k, fs, s))) = SOME (inode1) ∧
lookUp (bn ′, blocks(allocBlocks(n, k, fs, s))) = SOME (block)

allocBlocksPreservesINodeMap:
[lookUp (n1, inodes(s)) = SOME (inode1) ∧ n 6= n1 ∧
inDom(n, inodes(s))] ⇒
lookUp (n1, inodes(allocBlocks(n, k, fs, s))) = SOME (inode1)

extendFilePreservesINodeAndBlockMaps:
[lookUp (n1, inodes(s)) = SOME(inode1) ∧ n 6= n1 ∧
inDom(n, inodes(s)) ∧ inv4(s) ∧
lookUp (bn, blockList(inode1)) = SOME (bn ′) ∧
lookUp (bn ′, blocks(s)) = SOME (block)] ⇒
lookUp (n1, inodes(extendFile(n, i, s))) = SOME(inode1) ∧
lookUp (bn ′, blocks(extendFile(n, i, s))) = SOME(block)

extendFilePreservesINodeMap:
[lookUp (n1, inodes(s)) = SOME(inode1) ∧ n 6= n1 ∧
inDom(n, inodes(s))] ⇒
lookUp (n1, inodes(extendFile(n, i, s))) = SOME(inode1)

writeExistingPreservesINodeAndBlockMaps:
[inv1(s) ∧ inv2(s) ∧ inv3(s) ∧ inv4(s) ∧ inv10(s)
lookUp (n1, inodes(s)) = SOME (inode1) ∧
n 6= n1 ∧ lookUp (bn , blockList(inode1)) = SOME (bn ′) ∧
lookUp (bn ′, blocks(s)) = SOME (block1) ∧
lookUp (n, inodes(s)) = SOME (inode(fs, bc, bl))] ⇒
lookUp (n1, inodes(writeExisting(n, i, v, s))) = SOME(inode1) ∧
lookUp (bn ′, blocks(writeExisting(n, i, v, s))) = SOME(block1)

writeExistingPreservesINodeMap:
[inv1(s) ∧ inv2(s) ∧ inv3(s) ∧ n 6= n1

lookUp (n1, inodes(s)) = SOME (inode1)
lookUp (n, inodes(s)) = SOME (inode(fs, bc, bl))] ⇒
lookUp (n1, inodes(writeExisting(n, i, v, s))) = SOME(inode1)

9 Related work

Techniques for verifying the correct use of file system interfaces expressed as finite
state machines are presented in [9, 10, 8, 2]. In this paper we have addressed the
more difficult problem of showing that the file system implementation conforms
to its specification. Consequently, our proof obligations are stronger and we have
resorted to more general deductive verification. Static analysis techniques that
handle more complex data structures include predicate abstraction and shape
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analysis [19, 18, 14, 6]. These approaches are promising for automating proofs
of program properties, but have not been used so far to show full functional
correctness, as we do here. Security properties of a Unix file system are studied
in [23, Chapter 10]; these properties are orthogonal to the correct functioning
of a file system for storing and reading data. A sample specification of a widely
used file system is [1]. Simple abstract models of file systems have also been
developed in Z [24, Chapter 15].

Alloy [12] is a specification language based on a first-order relational calculus
that has been used to describe the directory structure of a file system (but
without modelling read and write operations). The Alloy Analyzer is a model
finder for Alloy specifications that can be used to check structural properties of
file systems in finite scope. The use of Alloy is complementary to proofs [4]. Alloy
is useful for debugging, whereas our proofs ensure that the refinement relation
holds for any number of files, any file sizes, and all sequences of operations. In
addition, readable, high-level proofs can be viewed as explanations of why the file
system implementation is correct, and therefore provide guidance to developers
on how to modify the system in the future while preserving its correctness.

It is interesting to consider whether the verification burden would be lighter
with a system such as PVS [17] or ACL2 [13] that makes heavy use of automatic
decision procedures for combinations of first-order theories such as arrays, lists,
linear arithmetic, etc. We note that our use of high-performance off-the-shelf
ATPs already provides a considerable degree of automation. In our experience,
both Vampire and Spass have proven quite effective in non-inductive reasoning
about lists, arrays, etc., simply on the basis of first-order axiomatizations of the
these domains. Our experience supports a recent benchmark study by Armando
et al. [5], which showed that a state-of-the-art paramodulation-based prover with
a fair search strategy compares favorably with CVC [7] in reasoning about arrays
with extensionality.

10 Conclusions

We have presented a correctness proof for the key operations (reading and writ-
ing) of a file system based on Unix implementations. We are not aware of any
other file system verification attempts dealing with such strong properties as the
simulation relation condition, for all possible sequences of file system operations
and without a priori bounds on the number of files or their sizes. Despite the ap-
parent simplicity of this particular specification and implementation, our proofs
shed light on the general kinds of reasoning that would be required in estab-
lishing full functional correctness for any file system. Our results suggest that a
combination of state-of-the art formal methods techniques greatly facilitates the
deductive verification of crucial software infrastructure components such as file
systems.

We have found Athena to be a powerful framework for carrying out a com-
plex verification effort. Polymorphic sorts and structures allow for natural data
modelling; strong support for structural induction facilitates inductive reasoning
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over such datatypes; a block-structured natural deduction format helps to make
proofs more readable and writable; a higher-order functional metalanguage and
assumption base semantics allow for powerful trusted proof tactics; and the use
of first-order logic allows for smooth integration with state-of-the-art first-order
ATPs, keeping the proof steps at a high level of detail. Our use of these features
was essential in dealing with the strong properties arising from the simulation
relation condition, where most of the complexity stems from the details of un-
bounded data structures.

Acknowledgements. We thank Darko Marinov and Alexandru Salcianu for
useful comments on an earlier version of this manuscript.
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A Some standard Athena libraries

A.1 Options

Options in Athena are represented as follows:

datatype Option(S) = NONE | SOME (S)

Here S is a sort parameter . Thus Option can be viewed as a sort constructor
that takes an arbitrary sort S and builds a new sort, Option(S).

Datatypes in Athena are free algebras with corresponding induction princi-
ples. For instance, the following axioms are automatically generated from the
above definition:

∀ x : Option(S) . x = NONE ∨ [∃ v : S . x = SOME(v)] (34)

∀ v : S .NONE 6= SOME (v) (35)

∀ v1 : S, v2 : S . SOME (v1) = SOME (v2) ⇒ v1 = v2 (36)

Note that in the above axioms we annotated quantified variables with their sorts
for readability purposes. In practice Athena uses a Hindley-Milner algorithm to
infer the most general possible sorts of quantified variables, so such annotations
are not necessary; we omit them in the remainder of this Appendix.

Structural induction may be performed on datatypes using a built-in syntax
form that Athena offers for that purpose, and which automates much of the
tedium associated with inductive proofs (e.g., managing inductive hypotheses in
multiply nested inductive arguments).
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A.2 Finite maps

Polymorphic finite maps are introduced in Athena as follows:

structure FMap(D, R) = empty-map | update(FMap(D, R), D, R)

Here D and R are sort parameters, representing the sorts of the domain and the
range of the map, respectively. The declaration states that every finite map from
D to R is either the empty-map or else it is of the form update(m, x, v), i.e., it
is an update of some other map m, obtained by binding the argument x to the
value v (potentially overwriting whatever assignment x might have had in m).

Like data types, structures are inductively generated: axioms of the form (34)
are valid for structures, and induction may be performed on them. However,
structures are not necessarily freely generated (elements are not “uniquely read-
able”), hence Athena does not generate axioms such as (36) for structures.
We introduce two additional useful function symbols for finite maps:

lookUp : D × FMap(D, R)→ Option(D)

inDom : D × FMap(D, R)→ Boolean

whose semantics are captured by the following four axioms:

[M1] ∀ x . lookUp (x, empty-map) = NONE

[M2] ∀ x v m . lookUp (x, update(m, x, v)) = SOME (v)

[M3] ∀ x y v m . x 6= y ⇒ lookUp (x, update(m, y, v)) = lookUp (x,m)

[M4] ∀ x m . inDom(x, m) ⇔ [∃ v . lookUp (x, m) = SOME(v)]

We also have an extensionality axiom for finite maps:

[FMExt] ∀ m1 m2 . [∀ x . lookUp (x, m1) = lookUp (x, m2)] ⇒m1 = m2

A.3 Resizable arrays

Resizable arrays are inductively generated by the following structure:

structure RSArray(S) = makeArray(S,Nat)
| arrayWrite(RSArray(S),Nat , S, S)

That is, a resizable array is either of the form makeArray(x, n), which is a freshly
constructed array of length n with the element x in every location from 0 to n−1;
or else it is of the form arrayWrite(A, i, x, f), i.e., obtained from an already
existing array A by writing the value x into slot i. If i happens to be outside the
bounds of A (i.e., arrayLen(A) ≤ i), then the length will increase to i + 1, the

value x will be written into the ith position of this extended array, and all the
other newly allocated slots will be padded with the “fill” value f . This is made
more clear in the axioms of Figure 6. Two additional useful functions are:

arrayLen : RSArray(S)→ Nat

arrayRead : RSArray(S) × Nat → Option(S)

Their semantics are captured by the nine axioms [A1]—[A9] shown in Figure 6.
Finally, we have an extensionality axiom for arrays:

[RSAExt] ∀ A1 A2 . [∀ i . arrayRead (A1, i) = arrayRead (A2, i)] ⇒A1 = A2.



28 Arkoudas, Zee, Kuncak, Rinard

[A1] ∀ A n . arrayLen(makeArray(A, n)) = n

[A2] ∀ A i v f . [i < arrayLen(A)] ⇒ arrayLen(arrayWrite(A, i, v, f)) = arrayLen(A)

[A3] ∀ A i v f .¬ [i < arrayLen(A)] ⇒ arrayLen(arrayWrite(A, i, v, f)) = i + 1

[A4] ∀ A i .¬ [i < arrayLen(A)] ⇒ arrayRead (A, i) = NONE

[A5] ∀ x n i . i < n ⇒ arrayRead (makeArray (x, n), i) = SOME (x)

[A6] ∀ A i v f . arrayRead (arrayWrite(A, i, v, f), i) = SOME (v)

[A7] ∀ A i v f . i < arrayLen(A) ⇒
[∀ j . i 6= j ⇒ arrayRead (arrayWrite(A, i, v, f), j) = arrayRead (A, j)]

[A8] ∀ A i v f .¬ [i < arrayLen(A)] ⇒
[∀ j . j < arrayLen(A) ⇒ arrayRead (arrayWrite(A, i, v, f), j) = arrayRead (A, j)]

[A9] ∀ A i v f .¬ [i < arrayLen(A)] ⇒
[∀ j . arrayLen(A) ≤ j ∧ j < i ⇒ arrayRead (arrayWrite(A, i, v, f), j) = SOME(f)]

Fig. 6. The semantics of resizable arrays

A.4 Natural numbers

Numeric reasoning played an important role in this project. Although no deep
number-theoretic results were needed, it was still necessary to introduce all the
usual arithmetic operations, including the remainder operation, and derive many
simple results for them. We start by introducing the natural numbers as an
algebraic datatype:

datatype Nat = zero | succ(Nat)

This definition automatically generates the following axioms:

∀ x . zero 6= succ(x)

∀ x, y . succ(x) = succ(y) ⇒x = y

∀ x . x = zero ∨ (∃ y . x = succ(y))

which are then added to the assumption base.
Next, we introduce function symbols for the predecessor operation:

declare pred: Nat → Nat

as well as for (binary) addition, subtraction, multiplication, division, and re-
mainder:

declare +,−, ∗, div ,mod : Nat → Nat

We also introduce operators for numeric comparisons:

declare <,≤: Nat × Nat → Boolean
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The semantics of these symbols are given via equational axioms (possibly
conditionally equational axioms) that capture the usual primitive recursive defi-
nitions of these operations. For example, predecessor is defined as a total function
as follows:

pred(zero) = zero ∧ ∀ x .pred(succ(x)) = x

The definition of binary addition is given via the two axioms:

∀ y . zero + y = y

∀ x, y . succ(x) + y = succ(x + y)

The definitions of subtraction, multiplication, and numeric comparisons are given
by the following axioms:

∀ x . zero − x = zero

∀ x . x − zero = x

∀ x, y . succ(x) − succ(y) = x − y

∀ y . zero ∗ y = zero

∀ x, y . succ(x) ∗ y = y + (x ∗ y)

∀ x . (x < zero) = false

∀ x . (zero < succ(x)) = true

∀ x, y . (succ(x) < succ(y)) = x < y

The less-than-or-equal symbol is defined in terms of less-than:

x ≤ y ⇔x = y ∨ x < y

The definitions of quotient and remainder are as follows:

∀ x . x div zero = zero

∀ x, y . x < y ⇒x div y = zero

∀ x, y . (y 6= zero) ∧ ¬(x < y) ⇒x div y = succ((x − y) div x)

∀ x . x mod zero = x

∀ x, y . x < y ⇒x mod y = x

∀ x, y . x < y ⇒x mod y = x

∀ x, y . (y 6= zero) ∧ ¬(x < y) ⇒x mod y = (x − y) mod y

From the above definitions, a number of useful properties can be derived,
e.g., that addition is commutative. Most of these properties are derivable only
with the aid of a mathematical induction principle—in our case, structural in-
duction on the datatype Nat. Structural induction in this case corresponds to
conventional mathematical induction on the natural numbers. Occasionally it is
very convenient to be able to use strong induction instead, whereby one induc-
tively assumes the truth of the statement P (n) for all m < n. For instance, the
so-called “division algorithm” result, which states

0 < b ⇒ [(a div b) ∗ b] + [a mod b] = a
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can be readily proved by strong induction but is much more tedious with con-
ventional induction. In Athena, a strong induction principle on natural numbers
is currently formulated as a primitive method. Figure 7 depicts some numeric
results that were needed at various points in the project. Most of them were
proved automatically by Athena methods that mechanize induction, but a few
of them required more detailed proofs. The reader can refer to the file nat.ath

in the source code listing for details.
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1. ∀ x, y, z . x < y ∧ y < z ⇒ x < z

2. ∀ x, y . x < y ⇒¬(y < x)

3. ∀x .¬(x < x)

4. ∀x, y . x < y ⇒ x ≤ y

5. ∀x . x < succ(x)

6. ∀x, y . x < succ(y) ⇔ [x = y ∨ x < y]

7. ∀x, y . x < y ⇒ x < succ(y)

8. ∀x, y . x < y ∧ y ≤ z ⇒x < z

9. ∀x, y . x ≤ y ∧ y < z ⇒x < z

10. ∀x, y . x < y ⇒ x 6= y

11. ∀x . x 6= zero ⇒ zero < x

12. ∀x . x 6= zero ⇒ [∃ y . y < x]

13. ∀x, y . x < y ⇒ succ(x) ≤ y

14. ∀ x, y . x + zero = x

15. ∀ x, y . x + succ(y) = succ(x + y)

16. ∀ x, y . x + y = y + x

17. ∀ x, y, z . x + (y + z) = (x + y) + z

18. ∀ x, y .¬(y < x) ⇒ x + (y − x) = y

19. ∀ x, y . zero < y ⇒ [(x div y) ∗ y] + x mod y = x

20. ∀ x, y . zero < y ⇒x mod y < y

21. ∀ x, y . zero < y ∧ [succ(x) mod y = zero] ⇒ succ(x div y) = succ(x) div y

22. ∀ x, y, z, w . x = succ(y) ∧ succ(y div z) = w ∧ zero < z ∧ succ(y) mod z = zero ⇒
x = w ∗ z

23. ∀ x, y . zero < x ∧ zero < [succ(x) mod y] ⇒ (succ(x) mod y) = succ(x mod y)

24. ∀ x, y, z, w . x = succ(y) ∧ succ(y div z) = w ∧ zero < z ∧ zero < succ(y) mod z ⇒
x = pred(w) ∗ z + x mod z

25. ∀ x, y, z . x ≤ y ⇒x div z ≤ y div z

26. ∀ x, y, z . x ≤ y ⇒x ∗ z ≤ y ∗ z

27. ∀ x, y, z . x ≤ y ∧ y ≤ z ⇒ x ≤ z

28. ∀ x . x ≤ pred(x)

29. ∀ x, y . zero < y ⇒ (x ∗ y) div y = x

30. ∀ x, y . x ≤ x + y

31. ∀ x, y .pred(x) ≤ y ∧ y < x ⇒ succ(y) = x

32. ∀ x, y . x < succ(y) ⇒ x = y ∨ x < y

33. ∀ x, y, z . x < y ⇒x < y + z

34. ∀ x, y . (x div y) ∗ y ≤ x

35. ∀ x, y, z . x + y = z + y ⇒ x = z

36. ∀ x, y, z . zero < y ∧ x ∗ y = z ∗ y ⇒ x = z

37. ∀ x, y, z . zero < y ∧ x ≤ pred(y) ⇒x < y

38. ∀ x, y . x < y ⇒x ≤ y

39. ∀ x, y . x = y ⇒¬(x < y)

40. ∀ x, y . x < y ⇒ succ(x) ≤ y

41. ∀ x . zero ≤ x

42. ∀ x, y . x < y ∨ x = y ∨ y < x

43. ∀ x . zero mod x = zero

44. ∀ x . szInv(zero, zero, x)

45. ∀ x, y, z, w . szInv(x, y, z) ∧ x ≤ w ∧ zero < z ⇒pred(y) ≤ (w div z)

46. ∀ x, y, z, w . szInv(x, y, z) ∧ w < x ∧ zero < z ∧ zero < y ⇒ (w div z) < y

47. ∀ x, y, z . zero < z ∧ x 6= y ⇒ (x div z) 6= (y div z) ∨ (x mod z) 6= (y mod z)

Fig. 7. Useful results about the natural numbers.


