
Video Matching

Peter Sand and Seth Teller∗

MIT Computer Science and Artificial Intelligence Laboratory

Abstract

This paper describes a method for bringing two videos (recorded
at different times) into spatiotemporal alignment, then comparing
and combining corresponding pixels for applications such as back-
ground subtraction, compositing, and increasing dynamic range.
We align a pair of videos by searching for frames that best match
according to a robust image registration process. This process
uses locally weighted regression to interpolate and extrapolate high-
likelihood image correspondences, allowing new correspondences
to be discovered and refined. Image regions that cannot be matched
are detected and ignored, providing robustness to changes in scene
content and lighting, which allows a variety of new applications.

CR Categories: I.4.3 [Image Processing and Computer Vision]:
Enhancement—Registration; I.4.8 [Image Processing and Com-
puter Vision]: Scene Analysis—Motion

Keywords: video alignment, robust image matching, robust image
registration, high dynamic range video

1 Introduction

Given multiple still images of a scene from the same camera center,
one can perform a variety of image analysis and synthesis tasks,
such as foreground/background segmentation, copying an object or
person from one image to another, building mosaics of the scene,
and constructing high dynamic range composites.

Our goal is to extend these techniques to video footage acquired
with a moving camera. Given two video sequences (recorded at
separate times), we seek to spatially and temporally align the frames
such that subsequent image processing can be performed on the
aligned images. We assume that the input videos follow nearly
identical trajectories through space, but we allow them to have dif-
ferent timing. The output of our algorithm is a new sequence in
which each “frame” consists of a pair of registered images. The
algorithm provides an alternative to the expensive and cumbersome
robotic motion control systems that would normally be used to en-
sure registration of multiple video sequences.

The primary difficulty in this task is matching images that have
substantially different appearances (Figure 1). Video sequences of
the same scene may differ from one another due to moving people,
changes in lighting, and/or different exposure settings. In order to
obtain good alignment, our algorithm must make use of as much
image information as possible, without being misled by image re-
gions that match poorly.

Traditional methods for aligning images include feature match-
ing and optical flow. Feature matching algorithms find a pairing
of feature points from one image to another, but they do not give

∗e-mail: {sand,teller}@csail.mit.edu

a dense pixel correspondence. Optical flow produces a dense pixel
correspondence, but is not robust to objects present in one image
but not the other.

Our method combines elements of feature matching and optical
flow. In a given image, the algorithm identifies a set of textured
image patches to be matched with patches in the other image. Once
a set of initial matches has been found, we use these matches as
motion evidence for a regression model that estimates dense pixel
correspondences across the entire image. These estimates allow
further matches to be discovered and refined using local optical
flow. Throughout the process, we estimate and utilize probabilistic
weights for each correspondence, allowing the algorithm to detect
and discard (or fix) mismatches.

Our primary contribution is a method for spatially and tempo-
rally aligning videos using image comparisons. Our image com-
parison method is also novel, insofar as it is explicitly designed to
handle large-scale differences between the images. The main limi-
tation of our approach is that we require the input videos to follow
spatially similar camera trajectories. The algorithm cannot align
images from substantially different viewpoints, partially because it
does not model occlusion boundaries. Nonetheless, we demonstrate
a variety of applications for which our method is useful.

Figure 1: Our matching algorithm is robust to differences such as
an object that appears in only one image (left pair) or changes in
lighting and exposure (right pair). The key idea behind our match-
ing algorithm is to identify which parts of the image can be matched
(blue arrows) without being confused by parts of the image that are
difficult or impossible to match (yellow arrows).

2 Related Work

Aligning a pair of images is a standard problem in computer vision.
Optical flow algorithms [Beauchemin and Barron 1995] find a vec-
tor field that maps each pixel from one image to a corresponding
pixel in another image. Stereo methods [Scharstein and Szeliski
2002] use known camera poses to restrict the search to 1D lines
(for images of a static scene). Many of these algorithms are ro-
bust to small-scale effects (such as local violations of smoothness



or reflectance assumptions), but they are not intended for matching
images that have large differences in lighting or have large objects
that appear in one image but not the other. Some flow estimation
methods [Black and Anandan 1996] handle large image regions that
do not match by robustly fitting global parametric models to local
flow estimates. Our method fits a non-parametric model and does
not rely entirely on local flow estimates.

The basis of our algorithm is matching salient image points [Har-
ris and Stephens 1988; Brown and Lowe 2003]. Many existing
methods prune feature matches using robust fitting methods (such
as RANSAC [Fischler and Bolles 1981]) with constraints from the
fundamental matrix [Hartley and Zisserman 2000]. Brown and
Lowe [2003] align images by matching features that are invari-
ant to several spatial and illumination transformations. Kanazawa
and Kanatani [2002] find good correspondences using epipolar con-
straints combined with smoothness and spatial consistency criteria.
Smith et al. [1998] refine feature matches by comparing the length
and angle of each correspondence vector with its neighbors.

None of these image correspondence techniques addresses the
larger problem of video registration. Caspi and Irani [2000] align
video sequences using a single image transformation and single
time offset for an entire sequence. This method is successful for
rigidly connected cameras that simultaneously record a scene, but
does not apply to spatially or temporally different motions. Sawh-
ney et al. [2001] provide a method of aligning two video sequences
using stereo and optical flow, but also aim only at the case of
rigidly connected cameras simultaneously recording a scene. Rao
et al. [2003] temporally match video sequences by tracking a fea-
ture that appears in each video and aligning the resulting trajecto-
ries. This requires a user-specified trackable feature and does not
provide dense pixel correspondences between the video sequences.

Our method provides a warping field and temporal offset for
each frame, allowing the video frames to be registered for vari-
ous segmentation and compositing applications. Several of these
applications have been addressed via different methods. Chuang
et al. [2002] use mosaicing techniques to reconstruct a background
image that is used for foreground segmentation. Kang et al. [2003]
register images at different exposures to obtain high dynamic range
video. These applications and others can be performed with the
help of the method we present in this paper.

3 Overview

Our goal is to construct a mapping between two videos so that both
videos can be manipulated in a shared spatial and temporal domain.
One of the two videos is designated as the primary video, the other
as the secondary. The primary video provides the spatial and tem-
poral reference; the secondary video is mapped to match it.

The core of the algorithm is robust image alignment, described
in Section 4, which provides a warping from one image to another
that is robust to significant differences between those images. This
image alignment technique is used as a sub-function of the video
alignment process, which is described in Section 5. In Section 6,
we present two extensions to the basic algorithm. We describe ex-
perimental evaluations in Section 7 and give various applications in
Section 8. Limitations and planned solutions to these limitations
are discussed in Section 9.

4 Robust Image Alignment

Our image alignment algorithm finds correspondences between pix-
els in a pair of images. Each correspondence is assigned a weight
according to the likelihood that it describes a physical 3D point
undergoing a physical 3D motion. The ability to characterize the
correctness of a correspondence is essential to the robustness of the

algorithm. We want to use as much information from the images as
possible, but we do not want to be misled by unexpected differences
between the images.

The weight wi assigned to the ithcorrespondence is the product
of two terms: a pixel matching probability Pi (Section 4.1) and a
motion consistency probability Mi (Section 4.2). For simplicity, we
assume independence when combining the probabilities.

4.1 Pixel Consistency

To compute the pixel matching probability, Pi, for a particular cor-
respondence, we evaluate how well the images match in a square
region around the correspondence. Rather than simply compar-
ing pixel values, we use a method that allows small spatial varia-
tions in the corresponding pixel locations. This technique, inspired
by Birchfield and Tomasi [1998], permits small changes in scale,
rotation, and skew of an image region due to differences in cam-
era viewpoint. This also alleviates several sampling issues. (Sim-
ilar methods are proposed by Kutulakos [2000] and Szeliski and
Scharstein [2002].)

A single pixel in the primary image is compared with a 3-by-
3 neighborhood of pixels in the secondary image, rather than with
a single secondary pixel. To do this efficiently, the algorithm ap-
plies 3-by-3 minimum and maximum filters to the secondary image,
producing new images Imin and Imax (Figure 2). These minimum
and maximum images define bounds on the value of each pixel in
the secondary image; the corresponding primary pixel receives a
penalty if and only if its value lies outside this interval.

To evaluate a correspondence, our algorithm sums this pixel
matching score across a square region (with size specified in Sec-
tion 7). For an image region R in the primary image I we obtain the
following score:

∑
(x,y)∈R

max(0, I(x,y)− Imax(x+u,y+v), Imin(x+u,y+v)− I(x,y)).

(1)

Here u and v describe an offset from a point (x,y) in the primary
image to the corresponding point (x + u,y + v) in the secondary
image (the same offset is used across the entire region). We average
the above score over each color channel to obtain the pixel intensity
dissimilarity di for the ithcorrespondence.

In the case that the primary and secondary images contain sub-
stantial differences in lighting or exposure, we perform local bright-
ness and contrast normalization [Sand and Teller 2004], then use the
same min/max image comparison on the normalized images.

In either case, we use the pixel intensity dissimilarity di to com-
pute the pixel matching probability Pi:

Pi = N(di,σ2
pixel). (2)

Here N(x,σ 2) is a zero-mean Gaussian with variance σ 2 evaluated
at x. We specify σpixel as described in Section 7.

This method of comparing image regions attains some invariance
to affine transformations, but not as much as other methods [Brown
and Lowe 2003; Ferrari et al. 2001]. Strong invariance is not nec-
essary for our algorithm, because we limit the input images to have
similar viewpoints.

4.2 Motion Regression and Consistency

To evaluate motion consistency, we determine how well the offset
vector (u,v) of a particular correspondence agrees with its neigh-
bors. This requires initial estimates of the weights {wi} for the other
correspondences, which we will obtain as described in Section 4.3.



x coordinate

p
ix

el
 v

al
u
e

Original Image

x coordinate

p
ix

el
 v

al
u
e

Minimum Image

x coordinate

p
ix

el
 v

al
u
e

Maximum Image

Imin

Imax

Figure 2: Each plot represents a cross section of a hypothetical im-
age. The image is (non-linearly) filtered so each pixel becomes the
minimum or maximum of its 3 by 3 neighborhood.

From these weights and the correspondences {(xi,yi,ui,vi)}, the al-
gorithm reconstructs a vector field u(x,y), v(x,y) that provides an
offset for each pixel of the primary image.

Our algorithm computes u(x,y) and v(x,y) using locally
weighted linear regression [Atkeson et al. 1997], which determines
the value of a function at a query point by fitting a regression model
to nearby points, each weighted by its distance to the query point.
The smoothness of locally weighted regression is determined by
a kernel width parameter, K, describing the shape of the distance
weighting function (typically a Gaussian). We modify this method
to incorporate our correspondence probabilities by multiplying the
kernel weight for each correspondence by its matching weight wi.

We make one additional modification to standard locally
weighted regression: we adapt the kernel width according to the
density of points around the query point (Figure 3). We increase
the kernel width K in regions of low data density (to bridge large
gaps) and decrease K in regions of high data density (to model fine
details). To do this, the algorithm sets K to the average distance
from the query point to the N nearest neighbors. (N is one of the
parameter values given in Section 7.) This adaptive kernel width
is particularly useful for image correspondences, which may occur
densely in highly texture regions, but very sparsely elsewhere (such
as untextured walls and floors).

A linear model for u and v in terms of x and y can describe image-
space rotation, scaling, and other affine transformations. By using
locally weighted regression, we extend the linear model to describe
smooth image warps, including lens distortion and gradual varia-
tions due to depth and perspective. One advantage of fitting a local
model is that we expect to extrapolate better than simply averaging
nearby points (Figure 3).

In order to compute the motion consistency probability Mi for
a correspondence, the algorithm compares the previously assigned
vector (ui,vi) with the vector (ûi, v̂i) predicted by adaptive locally
weighted regression. The motion consistency probability is based
on the difference between these two vectors:

Mi = N(
√

(ui − ûi)2 +(vi − v̂i)2,σ2
motion). (3)

We experimented with a fundamental matrix model but found
that it was redundant with the motion regression; in our test sets,
the correspondences that satisfy the fundamental matrix also have
high motion consistency probability.

4.3 Finding Good Correspondences

Now that we have a way of evaluating the quality of a correspon-
dence, we can attempt to find a number of good correspondences

Locally Weighted Regression (Small Kernel)

Locally Weighted Regression (Large Kernel)

Adaptive Locally Weighted Regression

Kernel Reconstruction (Weighted Averaging)

y

x

y

x

y

x

y

x

Figure 3: Each plot represents a generic regression problem in
which we seek to fit a function y(x). Weighted averaging does not
extrapolate the function beyond the given data. Locally weighted
linear regression does extrapolate, but leaves an issue of selecting
the best kernel size. When the data density is highly variable, we
prefer to adjust the kernel size according to the local density. We
use adaptive locally weighted regression to interpolate and extrap-
olate correspondences, resulting in a dense correspondence field.

between a pair of images. To compute the motion consistency prob-
abilities, we must bootstrap the algorithm with some good initial
guesses.

The algorithm begins by selecting feature points using a Harris
corner detector [Harris and Stephens 1988] (with a modification
from page 45 of Noble’s thesis [1989]). Each feature point in the
primary image is compared with the feature points in the secondary
image to find good matches according to nearby pixel values. These
initial matches are used to find preliminary regression predictions.

For each feature point in the primary image, we then search for
the most likely match in the secondary image according to the cor-
respondence weighting function (including both pixel matching and
motion consistency). The algorithm checks for matches in the sec-
ondary image at the location predicted by the regression function
and at various nearby feature points found by the corner detector.
For each candidate location, the algorithm performs a local motion
optimization using the KLT method [Lucas and Kanade 1981; Shi
and Tomasi 1994]. Because the KLT optimizer is initialized with
regression predictions, it can find good correspondences even when
the feature detector fails to find the same points in each image. The
local motion optimization allows sub-pixel correspondences, which
we would not obtain simply by matching feature-detector maxima.

After trying to improve each correspondence, the algorithm re-
computes the regression predictions and repeats the pointwise cor-
respondence optimization (in a manner similar to EM [Dempster
et al. 1977]). Termination occurs when an iteration completes with-
out making further improvement.

An advantage of this EM-like method over an alternative such
as RANSAC [Fischler and Bolles 1981] is that our algorithm can
alter the correspondences (through the use of regression and local
motion optimization) to obtain better correspondences after an ini-
tial pairing. In an image matching context (as opposed to 3D re-
construction), Kanazawa and Kanatani [2002] demonstrate that an
iterative feedback algorithm performs better than RANSAC.

After finding a set of high likelihood correspondences, we use
the locally weighted regression method described in Section 4.2 to
interpolate and extrapolate the offset vectors, obtaining a dense cor-
respondence field.



Primary Frame Secondary Frame

Feature Points Initial Matches

Refined Matches (Step 1) Refined Matches (Step 2)

Correspondence Field Difference Image

Figure 4: The image matching algorithm typically converges in a
few iterations. The blue and yellow arrows denote high and low
probability correspondences, respectively. The algorithm success-
fully recognizes that the teapot pixels cannot be matched with the
background. The reconstructed dense correspondences are quite ac-
curate, as illustrated by the difference between the primary frame
and the warped secondary frame. The black regions in the dif-
ference image indicate that the background pixels are successfully
matched (with a pixel difference near zero).

5 Video Matching

The robust image alignment method described in the previous sec-
tion is the primary component of our video matching algorithm.
Given the image alignment method, the video matching process is
relatively simple. We search for possible pairings between frames
in the primary and secondary videos using the image alignment al-
gorithm to evaluate candidate frame matches.

For each primary frame, once a matching secondary frame has
been found, the secondary frame is warped into alignment with the
primary frame. The output of the algorithm is a new version of the
secondary video that is spatially and temporally registered with the
primary video.

5.1 Frame Matching Measure

To evaluate the quality of a match between a pair of frames, we
use the robust image alignment method (Section 4) to find a cor-

respondence field u(x,y), v(x,y) between the frames, then use it to
estimate how well the primary and secondary frames match.

Our frame matching objective function has two parts: a paral-
lax measure and the correspondence vector magnitude. We mini-
mize parallax because depth discontinuities will cause errors in the
reconstructed correspondence field. Correspondence magnitude is
less important, but we nonetheless minimize it to obtain maximal
overlap between the frames. To evaluate the match between frames
i and j, we take a weighted combination of the parallax quantity
pi, j and the mean correspondence vector magnitude mi, j:

Di, j = λ · p2
i, j +m2

i, j. (4)

Our parallax measure pi, j quantifies the amount of depth-
induced relative motion between the correspondences. Given a pair
of correspondences, we compute the distance between the points
in the primary image and the distance between the points in the
secondary image. We define pi, j to be the change in this pairwise
distance between the primary and secondary images, averaged over
all pairs of correspondences. This measure is invariant to image-
plane rotation and translation, but not invariant to looming motions
and depth effects (the quantities we wish to detect).

We square each term so that the objective function is essentially
quadratic for linear motions (to ease optimization). We set λ to 5
to capture the relative importance of parallax over magnitude.

5.2 Adaptive Search for Matching Frames

Using the objective function described in Section 5.1, we wish to
search the secondary video for a good match to a particular frame
in the primary video. For computational efficiency, we do not want
to evaluate the objective function for every frame of the secondary
video, but instead select a small subset of frames to consider.

Given some initial guess of where to look in the secondary video,
our algorithm evaluates several nearby frames and fits a quadratic
regression model to the objective function values of these pairings
(Figure 5). These preliminary evaluations occur at the initial guess,
1 frame forward, 1 frame backward, 5 frames forward, and 5 frames
backward. The algorithm then checks frames near the minimum
of the quadratic model and re-estimates the model after each new
observation of the objective function. Once all secondary frames
near the quadratic minimum have been checked, the algorithm picks
the one with the lowest objective function value.

In order to compute an initial guess for the next frame search,
the algorithm computes a weighted average of the changes between
the frame indices of the prior matches. The weights decay by 1/2
for each frame and are truncated after 5 frames. This weighted
average is added to the previous frame index to obtain a starting
point for the search for the next frame. The decaying weights allow
the algorithm to respond to changes in the relative camera velocity
between the videos, but with some damping to avoid over-reacting
to these changes.

For the first frame of the primary video, we have no previous ev-
idence for where to look in the secondary video. We do not need to
know the particular frame that will match best, but we need a good
enough guess to initiate the quadratic search. This initial guess can
be provided by the user or found automatically by a linear search of
the secondary video.

This search method allows substantial flexibility in the tempo-
ral mapping from one video to the other. One video can be much
faster than the other or proceed in the opposite direction. The videos
can change speed and relative direction, so long as the changes are
smooth. A video graph (Section 6) can be used to handle discontin-
uous temporal mappings.



Frames in secondary video

F
ra

m
es

 m
at

ch
in

g
 s

co
re

Frames in secondary video

F
ra

m
es

 m
at

ch
in

g
 s

co
re

Figure 5: Given an initial guess (white circle) of which frame to use
in the secondary video, we check several nearby frames (left). We
fit a quadratic regression model to the frame matching scores (red
dashed curve), then check frames near the minimum of the curve
(green arrows). Next we refit the quadratic model and repeat the
process until all near-minimal frames have been checked. Finally,
we pick the frame with the lowest score (green circle).

6 Optional Variations

Fast frame matching. In order to speed up the video matching
process, we quickly estimate the quality of the match between a
pair of frames. To do this, we run the image matching algorithm
(Section 4.3), but skip the KLT motion optimization (the part of the
process that takes the most time). This results in less accurate cor-
respondences, but does not substantially affect the correspondence
properties that are used to select matching frames as described in
Section 5.1. Once we have found a good frame match, we re-run
the full algorithm to obtain accurate pixel correspondences.

Video graph matching. For some applications, the secondary
video may include many passes over a single background environ-
ment. In this case, rather than searching for frame matches within
a temporal window of the second video, we would like to consider
possible matches scattered throughout the video. To do this, we
build a video graph, in which each frame is a node and edges are
created between frames that have a similar pose, as determined by
the image alignment algorithm. (A video graph is like a video tex-
ture [Schödl et al. 2000], but designed to handle variations in cam-
era pose.) To perform video matching, the algorithm searches the
graph for good matches, starting at the best match found for the
previous frame. Thus the search considers a range of nearby view-
points, regardless of their original temporal ordering. Additional
details are available in the technical report [Sand and Teller 2004].

7 Experimental Evaluation

To characterize the quality of a video match, we warp each sec-
ondary frame into the corresponding primary frame and compare
pixel values. To avoid sampling artifacts, we use the min/max pixel
comparison method described in Section 4.1. We take the mean
over the pixels in each frame (not including the pixels for which the
primary and secondary frames do not overlap), averaged over all
the frames in the primary video sequence.

This produces a single number that represents the quality of the
video match. Using this measure, we can explore various design
changes (such as verifying that fundamental matrix constraints do
not improve the results). We can also set the algorithm’s parameters
by determining which values give the best scores on a training set.

For our experiments, we set the algorithm’s parameters using
a training set consisting of a variety of different sequences (with
different kinds of motion and different kinds of scenes). Because
there is little danger of overfitting, we expect these same parameters
to perform well on other sequences. For the feature detector (Sec-
tion 4.3), we use a Gaussian window with a standard deviation of 5
pixels and a detector threshold of 1.0. The feature detector enforces
a minimum spacing of 12 pixels between feature points. The algo-
rithm computes the pixel dissimilarity for a correspondence using
a 24 by 24 pixel region. The search for initial matches is restricted
to be within 100 pixels of each primary frame feature point. We

use the average distance to the nearest 80 points to set the adaptive
kernel width for locally weighted regression. We set σpixel = 2 and
σmotion = 10.

On a set of 200 image pairs from four different kinds of scenes,
the algorithm had an average running time of 1.31 seconds for each
image pair (on a single-processor desktop PC). The majority of this
time is spent on the KLT optimization described in Section 4.3.
Performing the complete video matching algorithm (with multiple
image comparisons per frame) takes several minutes per second of
primary video. The fast matching method described in Section 6
improves the overall running time by about a factor of seven.

8 Applications

The ability to register video sequences has a variety of applications.
As illustrated by Agarwala et al. [2004], a set of registered im-
ages provides numerous opportunities for image manipulation. The
video matching algorithm described in this paper allows these oper-
ations to be performed on frame sequences from moving cameras.
We demonstrate several of these applications in the video available
on the 2004 SIGGRAPH DVD. These demos are described in more
detail in the technical report [Sand and Teller 2004].

The output of the video matching algorithm is a new version
of the secondary video in which each frame is registered with the
corresponding frame of the primary video. Given this aligned
secondary video, pixels can be copied over, compared with, and
blended with pixels from the primary video using standard com-
mercial compositing software.

Background subtraction. Given an image containing objects
and an empty background image without the objects, the objects
can be localized by comparing corresponding pixels (Figure 4).
Tracking a moving object enables tasks such as gesture recogni-
tion, surveillance, and markerless motion capture [Davison et al.
2001]. If the object is visually different from the background, ac-
curate object boundaries can be found, providing mattes for various
of filmmaking applications. These mattes can be improved using
more sophisticated methods [Chuang et al. 2002].

Compositing. Aligning two video sequences allows pixels to be
copied from one to the other (Figure 9). An empty street with an
action sequence can be composited onto a street full of traffic. A
blue sky can be composited onto a shot that had a gray sky. People
and objects can be added to or repeated in a scene. In many cases,
a rough matte is sufficient for this kind of compositing, because the
background is assumed to be the same in both sequences. In some
of our demos, we use the difference images to guide the motion of a
rough matte. In other cases (such as causing a glass of orange juice
to become empty), we key-frame the motion of the rough matte. If
a precise matte is needed, it can be obtained by background sub-
traction, color segmentation, or semi-automatic rotoscoping.

Automatic wire removal. One particular kind of compositing
that occurs frequently in special effects work is wire removal. Af-
ter filming an empty background sequence, we can automatically
remove wires using a mask attained via background subtraction.
Through image filtering, our algorithm detects which parts of the
mask occur in thin lines and copies background pixels at these lo-
cations (Figure 6). Cranes, platforms, and other rigging can be re-
moved in a similar fashion, though approximate mattes may need
to be manually specified for more complex objects.

Replacement of stand-ins. A couple recent films have used ac-
tors to stand in for CG characters in order to provide a reference
for other actors and/or computer animators. These stand-in actors
must be replaced with the scene background when the CG charac-
ter is composited into the shot (unless the CG character happens to
overlap the stand-in in every pixel of every frame). Video matching
can replace some of the extensive manual labor that has been used
to paint a background over stand-ins for CG characters.



Figure 6: The top images have been registered using the robust
matching algorithm. From these images we can use simple image
processing methods (background subtraction and color thresholds)
to create a mask for the wire (in red). Inside the mask, we copy
pixels from the background. This allows a wire to be automatically
removed in each frame of a long sequence from a moving camera.

Wide field-of-view video. By matching an overlapping part of
two video sequences, our method can merge them into one video
sequence with a larger field of view. This differs from prior mo-
saicing methods [Brown and Lowe 2003] insofar as we produce a
separate mosaic for each frame. Multiple secondary videos can ex-
pand the per-frame mosaics, so long as each sequence overlaps with
another. One limitation of this approach is that moving objects can-
not move from one sequence to another, unless the sequences are
recorded at the same time (by placing multiple cameras on a rig).

High dynamic range video. Attaining proper exposure is one
of the most common and difficult problems in filmmaking. A par-
ticularly useful kind of compositing is the creation of high dynamic
range video from several low dynamic range videos recorded at dif-
ferent exposures (Figure 7) [Debevec and Malik 1997]. To perform
video matching across different exposures, we first normalize the
local contrast and brightness (Section 4.1). In this case, we set
σpixel = 5 and σmotion = 5. Once the sequences have been aligned,
standard techniques can be used to combine the images and remap
the result for display [Debevec and Malik 1997; Kang et al. 2003].
This approach can be performed on scenes that involve a moving
subject, which must be properly exposed in one sequence while
other sequences (without the moving subject) properly expose var-
ious parts of the background.

9 Limitations and Future Work

The main limitation of our approach is that the primary and sec-
ondary video sequences must have spatially similar motions. Our
method allows general camera motion (hand-held, tripod-mounted,
vehicle-mounted, etc.), but requires that each video sequence fol-
low nearly the same trajectory through space (though perhaps with
substantially different timing). This limitation arises partially be-
cause our algorithm does not model discontinuities in the corre-
spondence field. We do represent variation in pixel motion due to
depth, but we assume that this variation occurs smoothly across the
image. Another limitation is the algorithm’s dependence on 2D im-
age texture for matching.

Both discontinuities and a lack of 2D texture are issues that are
handled by many existing optical flow algorithms. However, these

Primary Frame

Normalized Secondary Frame

Initial Matches Refined Matches (Step 1)

Refined Matches (Step 2) High Dynamic Range Composite

Secondary Frame

Normalized Primary Frame

Figure 7: These frames were selected by the video matching algo-
rithm from a pair of videos recorded at different exposures. The al-
gorithm first performs local brightness/contrast normalization, then
finds high-likelihood correspondences. Once the secondary frame
has been mapped to the first, the exposures are combined to create
a high dynamic range composite.

algorithms cannot cope with large-scale differences between the
images (such as an object that appears in one image but not the
other). When large image regions are unmatchable, we have barely
enough information to find a smooth warping between the images;
finding correct discontinuities can be difficult if not impossible.

Nonetheless, in the future we plan to extend our algorithm to
make better use of the information in the images. We intend to
decompose the optical motion into depth parameters and camera
motion parameters. To do this, the algorithm described in this paper
will be used to find correspondences for the estimation of epipolar
geometry. The epipolar constraints can then be used to incorporate
information from 1D edge features (not just 2D features), resulting
in a better correspondence field.

We also plan to combine both inter-sequence and intra-sequence
matching to improve temporal coherence and frame search effi-
ciency. Based on the inter-sequence correspondences for one frame
pair, we will select parts of each frame in which to compute intra-
sequence correspondences. These intra-sequence correspondences
will then be used to select a secondary frame that will match the
subsequent primary frame.



10 Conclusion

This paper presents a new method for registering multiple video se-
quences by selecting video frames and applying image warps. We
provide a method for robust image alignment that combines ele-
ments of feature-point correspondence matching and local motion
estimation (i.e. optical flow). Unlike existing methods, the algo-
rithm is explicitly designed to handle large-scale differences be-
tween images. Our method makes effective use of the information
available in the image without being distracted by parts of the image
that are not matchable.

We use this image registration method as a sub-routine in a video
alignment algorithm that searches for a good match for each video
frame. This algorithm provides a partial solution to the problem
of aligning video sequences that were recorded with general cam-
era motions. This is a valuable problem to solve and one that has
attracted relatively little attention in the past.

As discussed in Section 9, the main limitations of this method
are that the videos must follow spatially similar camera trajectories
and that the videos must contain sufficient texture. Both of these
limitations can be partially overcome by incorporating 1D image
constraints.

Despite these limitations, the algorithm is useful for a variety of
applications, such as foreground segmentation, compositing, wire
removal, replacing stand-ins, per-frame mosaicing, and high dy-
namic range imaging. In the past, many of these applications re-
quired registered images from a static or robotically controlled cam-
era. These techniques can now be applied in a wider range of situ-
ations using the methods presented in this paper.

References

AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER,
S., COLBURN, A., CURLESS, B., SALESIN, D., AND COHEN,
M. 2004. Interactive digital photomontage. ACM Trans. Graph.,
In press.

ATKESON, C. G., MOORE, A. W., AND SCHAAL, S. 1997. Lo-
cally weighted learning. Artificial Intelligence Review 11, 1-5,
11–73.

BEAUCHEMIN, S. S., AND BARRON, J. L. 1995. The computation
of optical flow. ACM Computing Surveys 27, 3, 433–467.

BIRCHFIELD, S., AND TOMASI, C. 1998. A pixel dissimilarity
measure that is insensitive to image sampling. IEEE Trans. on
Pattern Analysis and Machine Intelligence 20, 4, 401–406.

BLACK, M. J., AND ANANDAN, P. 1996. The robust estimation of
multiple motions: parametric and piecewise-smooth flow fields.
Computer Vision and Image Understanding 63, 1, 75–104.

BROWN, M., AND LOWE, D. G. 2003. Recognising panoramas.
In ICCV, 1218–1225.

CASPI, Y., AND IRANI, M. 2000. A step towards sequence to
sequence alignment. In CVPR, 682–689.

CHUANG, Y.-Y., AGARWALA, A., CURLESS, B., SALESIN,
D. H., AND SZELISKI, R. 2002. Video matting of complex
scenes. ACM Trans. Graph. 21, 3, 243–248.

DAVISON, A. J., DEUTSCHER, J., AND REID, I. D. 2001. Mark-
erless motion capture of complex full-body movement for char-
acter animation. In Eurographics Workshop on Animation and
Simulation, 3–14.

DEBEVEC, P. E., AND MALIK, J. 1997. Recovering high dynamic
range radiance maps from photographs. In SIGGRAPH, 369–
378.

DEMPSTER, A. P., LAIRD, N. M., AND RUBIN, D. B. 1977. Max-
imum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society Series B 39, 1, 1–38.

FERRARI, V., TUYTELAARS, T., AND VAN GOOL, L. 2001. Real-
time affine region tracking and coplanar grouping. In CVPR,
226–233.

FISCHLER, M. A., AND BOLLES, R. C. 1981. Random sample
consensus: a paradigm for model fitting with applications to im-
age analysis and automated cartography. Communications of the
ACM 24, 6, 381–395.

HARRIS, C., AND STEPHENS, M. 1988. A combined corner and
edge detector. In 4th Alvey Vision Conference, 147–151.

HARTLEY, R., AND ZISSERMAN, A. 2000. Multiple View Ge-
ometry in Computer Vision. Cambridge University Press, Cam-
bridge, UK.

KANAZAWA, Y., AND KANATANI, K. 2002. Robust image match-
ing under a large disparity. In Workshop on Science of Computer
Vision, 46–52.

KANG, S. B., UYTTENDAELE, M., WINDER, S., AND SZELISKI,
R. 2003. High dynamic range video. ACM Trans. Graph. 22, 3,
319–325.

KUTULAKOS, K. N. 2000. Approximate N-view stereo. In ECCV,
67–83.

LUCAS, B., AND KANADE, T. 1981. An iterative image registra-
tion technique with an application to stereo vision. In Int. Joint
Conf. Artificial Intelligence, 674–679.

NOBLE, A. 1989. Descriptions of Image Surfaces. PhD thesis,
Oxford University, Oxford, UK.

RAO, C., GRITAI, A., AND SHAH, M. 2003. View-invariant align-
ment and matching of video sequences. In ICCV, 939–945.

SAND, P., AND TELLER, S. 2004. Video matching. Tech. Rep.
LCS TR 947, MIT.

SAWHNEY, H. S., GUO, Y., HANNA, K., KUMAR, R., ADKINS,
S., AND ZHOU, S. 2001. Hybrid stereo camera: an IBR ap-
proach for synthesis of very high resolution stereoscopic image
sequences. In SIGGRAPH, 451–460.

SCHARSTEIN, D., AND SZELISKI, R. 2002. A taxonomy and eval-
uation of dense two-frame stereo correspondence algorithms.
Int. J. Comput. Vision 47, 1-3, 7–42.

SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I.
2000. Video textures. In SIGGRAPH, 489–498.

SHI, J., AND TOMASI, C. 1994. Good features to track. In CVPR,
593–600.

SMITH, P., SINCLAIR, D., CIPOLLA, R., AND WOOD, K. 1998.
Effective corner matching. In British Machine Vision Confer-
ence, 545–556.

SZELISKI, R., AND SCHARSTEIN, D. 2002. Symmetric sub-pixel
stereo matching. In ECCV, 525–540.



(a)

(b)

(c)

(d)

(e)

Figure 8: (a) Primary video frames from a hand-held sequence (frames 0, 60, 120, 180, 240). (b) Matching secondary video frames found by
our algorithm (frames 14, 89, 138, 147, 147). (c) Refined correspondences found by the algorithm. (d) Reconstructed correspondence fields.
(e) Difference between primary frame and projected secondary frame.

(a)

(b)

(c)

Figure 9: This figure shows primary frames (a), secondary frames (b), and various composites (c). From left to right: (1) a transparent fan
created by blending the two frames, (2) color manipulated according to a difference matte, (3) cloning a person by compositing the left half
of one image with right half of another, (4) changing the amount of orange juice using a horizontal compositing line, and (5) a dismembered
hand with a key-framed compositing line. None of the composites require per-frame manual rotoscoping.


