
Systematic Removal of Nondeterminism for
Code Generation in I�O Automata

Mandana Vaziri� Joshua A� Tauber� Michael Tsai� and Nancy Lynch

MIT Laboratory for Computer Science� Cambridge� MA ������ USA
vaziri�josh�mjt�lynch�lcs�mit�edu�
http���theory�lcs�mit�edu�tds �

Abstract� The Input�Output �I�O	 automaton model� developed by
Lynch and Tuttle
���� models components in asynchronous concurrent
systems as labeled transition systems� IOA is a precise language for de

scribing I�O automata and for stating their properties� A toolset is being
developed for IOA� to support distributed software design and implemen

tation� One of the tools consists of a user
assisted code generator from
IOA into an imperative programming language such as C or Java�
One aspect that distinguishes IOA programs from programs written in
imperative languages� is the presence of nondeterminism� which comes
in the form of explicit nondeterministic statements and implicit schedul

ing choices made during execution� Code generation therefore consists
partially of systematically removing all forms of nondeterminism�
In this paper� we describe our approach and design for code generation�
We focus on the issue of removing implicit nondeterminism� and spec

ify a transformation on IOA programs that makes all nondeterminism
explicit� The programmer can then replace all explicit nondeterminism
with deterministic statements� prior to code generation� We also describe
this transformation at a semantic level� i�e�� at the level of the I�O au

tomaton mathematical model� We show that the transformation de�ned
at the IOA level conforms to the one at the semantic level�

� Introduction

The Input�Output �I�O� automaton model� developed by Lynch and Tuttle ���	�
models components in asynchronous concurrent systems as labeled transition
systems� It has been used to model and verify many distributed algorithms and
distributed system designs� and also to express impossibility results� Lynch
s
book Distributed Algorithms ��	 describes many algorithms in terms of I�O au�
tomata and contains proofs of various properties of these algorithms� In ��
	�
the authors describe atomic transactions in terms of I�O automata� Examples of
work done using this model include among others� implementation of sequentially

� This work supported in part by the Defense Advanced Research Projects Agency un

der contract F�����
��
C
����� by the Air Force O�ce of Scienti�c Research under
contract F�����
��
�
����� and the National Science Foundation under contracts
CCR
������� and ACI
�������



consistent shared objects ��	� group communication systems ��� �	� veri�cation of
communication protocols ���	�

IOA is a precise language for describing I�O automata and for stating their
properties� It uses Larch ��	 speci�cations to de�ne the semantics of abstract
data types and I�O automata� A toolset is being developed for IOA� to support
distributed software design and implementation� These tools range from light
weight tools� which check the syntax of automaton descriptions� to medium
weight tools� which simulate the action of an automaton� and to heavier weight
tools �e�g�� theorem provers�� which provide support for proving properties of
automata�

The toolset design includes a user�assisted code generator from IOA into
an imperative programming language such as C or Java� The goal of the pro�
cess is to produce a collection of programs that runs in a physically�distributed
setting and whose correctness has been proved� subject to stated assumptions
about the behavior of externally provided system services �e�g�� communication
services�� and subject to assumptions about the correctness of hand�coded data
type implementations�

One aspect that distinguishes IOA programs from programs written in an
imperative language is the presence of nondeterminism� which comes in the form
of explicit nondeterministic statements and implicit scheduling choices made
during execution� Code generation therefore consists partially of systematically
removing all forms of nondeterminism� This consists of removing all instances of
implicit nondeterminism� and making them explicit statements� and having the
user replace all explicit nondeterminism with deterministic statements�

In this paper� we review our approach and design for code generation� and
the various transformations involved in it� We then carefully focus on one such
transformation which makes the implicit nondeterminism explicit� We describe
this at the level of IOA programs� and call it the syntactic NAD�transformation�
as well as at the level of the I�O automaton model which we call the semantic
NAD transformation� The motivation for the latter is to provide a more general
framework for describing the transformation and present it in its full generality�
unconstrained by program syntax� We also use the semantic NAD transformation
to prove that our syntactic transformation is �correct�� and conforms to it� in a
sense we de�ne in a later section�

The outline of the paper is as follows� Section � brie�y reviews the I�O au�
tomaton model and the IOA language� Section � describes the code generation
process within the IOA toolset� Section � presents the syntactic NAD transfor�
mation on IOA programs� and Section � the semantic NAD transformation on
I�O automata� Finally� Section � gives a summary and explores directions for
future work�

� NAD stands for next
action deterministic� and will be introduced shortly�



� Background

��� I�O Automata

An I�O Automaton A is a tuple consisting of the following components��

� Sig�A�� a signature� consisting of three disjoint sets of input actions InA�
internal actions IntA� and output actions OutA� We use AllA to denote
the set of all actions of A� and LocA denotes IntA � OutA�

� States�A�� a set of states�
� States��A�� a nonempty subset of States�A� known as the initial states�
� Trans�A�� a state�transition relation� where Trans�A� � States�A� �
AllA � States�A�� and for every state S and every input action �� �S� ��
S �� � Trans�A��

Note that every input action is enabled in every state� we say that I�O
automata are non blocking on inputs� An execution fragment of A is a sequence
of states and actions� S�� ��� S�� ��� � � � � starting at a state and such that �Si�
�i� Si��� � Trans�A�� An execution of A is an execution fragment starting at
a start state� A trace of A is the subsequence of an execution of A consisting of
all input and output actions� We use Traces�A� to denote the set of traces of
A�

We now introduce what it means for an automaton to be next�state deter�
ministic� and next�action deterministic�

De�nition �� An I�O automaton A is next�state deterministic if there is a
unique initial state and� for all S � States�A� and for all � � All� there is at
most one S � s�t� �S� �� S �� � Trans�A��

De�nition �� An I�O automaton A is next�action deterministic if for all S �
States�A�� there is at most one � � LocA enabled in S�

Most I�O automata that are written are not next�action deterministic� They
have a form of implicit nondeterminism� which consists of nondeterministically
choosing the next enabled action to execute� Transforming an I�O automaton
into a next�action deterministic one� is a step in generating code from it�

��� IOA Language

IOA is a precise language for describing I�O automata and for stating their
properties� It uses Larch ��	 speci�cations to de�ne the semantics of abstract
data types� An IOA program A contains the following syntactic components�

� ParamA� contains the parameters to the IOA program A�
� LarchA� contains the Larch traits used or assumed by A�

� We omit tasks for the purposes of this paper�



� ActA� contains the actions of A� where each action a is of the form�
Kinda a�p� � P�� � � � � pn � Pn� where preda�
where Kinda is either input� output� or internal�

� VarA� contains the state variables of A together with their types�
� initA� denotes the initial condition of A�
� TdA� contains the transition de�nitions of A� where each transition de�nition
d corresponding to an action named a is of the form�

Kinda a�t�� � � � � tn� where predd
choose psd
pre pred
eff progd

so that soThatd

The transition de�nition above speci�es a transition for action a having parame�
ters �t�� � � � � tn� subject to the predicate predd� The keyword choose introduces
parameters used in the body of the transition de�nition that are chosen non�
deterministically� The keyword pre introduced the precondition� and eff a se�
quence of statements representing the e�ect of the action on the state� Finally�
the so that predicate puts additional constraints on the e�ect�

An example of an IOA program is given in Figure �� which represents a
process in the LeLann�Chang�Roberts �LCR� leader election algorithm� In this
algorithm� a �nite set of processes arranged in a ring elect a leader by commu�
nicating asynchronously� The algorithm works as follows� Each process sends a
unique string representing its name� which need not have any special relation
to its index� to its neighbor� When a process receives a name� it compares it to
its own� If the received name is greater than its own in lexicographic order� the
process transmits the received name to the right� otherwise the process discards
it� If a process receives its own name� that name must have travelled all the way
around the ring� and the process can declare itself the leader� Here we do not
show the channel automata that must be composed with the processes�

Note that in this example� all the parameters of transition de�nitions are
globally unique� This is not a requirement of IOA programs� However� it is
an assumption that we make� without loss of generality� on the form of IOA
programs that are subjected to the NAD transformation�

� Code generation using the IOA Toolset

The code generation tool currently under development is designed to translate
IOA programs into executable programs written in a standard imperative lan�
guage� The programmer starts with a distributed algorithm expressed in IOA
and uses the tool to produce executable code that runs in a physically distributed
computational environment� In our current target environment� the resulting col�
lection of programs runs on a collection of networked workstations� Each host
runs a Java interpreter and communicates via �a subset of� the Message Passing
Interface �MPI� ��� �	 or TCP�IP ��	� This collection can be proved equivalent



automaton Process�I� type� i� I�

assumes RingIndex�I� String�

type Status � enumeration of waiting� elected� announced

signature

input receive�m� String� const left�i�� const i�

output send�m� String� const i� const right�i���

leader�m� String� const i�

states

pending� Mset	String
 �� �name�i���

status� Status �� waiting

transitions

input receive�m
� j
� i
�

e� if m � name�i� then pending �� insert�m� pending�

elseif m � name�i� then status �� elected

�

output send�m�� i�� j��

pre m � pending

e� pending �� delete�m� pending�

output leader�m�� i��

pre status � elected � m � name�i�

e� status �� announced

Fig� �� IOA speci�cation of election process

to the original algorithm� subject to stated assumptions about the behavior of
externally provided system services �e�g�� communication services�� and subject
to assumptions about the correctness of hand�coded data type implementations�

��� Approach

To transform the original expression of the algorithm in IOA into an executable�
the programmer is guided through a series of successive re�nements to create
an equivalent form of the program that is suitable for automated translation�
Generally� the programmer begins with a simple� global description of the be�
havior of the system and its interface to the environment� This high�level model
tends to be easy to understand and to have important global properties that
can be proved� The re�ned� low�level version of the program is a collection of
interacting automata whose form corresponds to the distributed nature of the
target environment while preserving the important properties and interface of
the system� The programmer can use the validation tools included in the toolset
to con�rm the correctness of these re�nements�

The code generation process starts with an automaton designed to run on
a single computational node of the distributed system� To generate code for an
entire system� this process is repeated for each algorithmically distinct node� For
example� the programs implementing clients and servers are likely to be compiled



separately but the code for parameterized clients or peers can be compiled just
once�

The process consists of a series of re�nements of that �algorithm� automa�
ton� The automaton is connected to �models of� external system services and
transformed to eliminate implicit nondeterminism� The resulting IOA program
can then be automatically translated into the target imperative language and
linked to libraries that implement the external system services�

The code generator is structured as a set of small modules� each of which
performs a transformation� Transformations are source�to�source within the IOA
language �or in an internal intermediate form� up to the last step� Only in
that last step is the IOA program translated into the target language� In our
prototype� we have implemented a uni�ed graphical user interface �GUI� to guide
the programmer through this process�

The code generator does not generate code for the entire distributed system�
Rather� it generates the specialized code necessary to implement the algorithm at
each node� As with any programming system� newly written programs leverage
preexisting� external system services� Programs connect to those services when
running�

For each external system service� we design at least two models� First� we
write an abstract model that describes the interface and the behavior of the
service that the IOA programmer wants to use �e�g�� point�to�point� reliable�
FIFO channels as in ��	� Chapter ��� Second� we write a lower�level concrete model
that corresponds to the interface and behavior of the actual preexisting service
�e�g�� MPI ���	�� We then introduce one or more auxiliary automata� written
in IOA� that compose with the lower�level model to implement the abstract
service� �See Fig� ��� Interfaces to system services may be �xed or algorithmically
described� In the former case� the auxiliary automata are �xed and kept as a
library� In the latter case� the auxiliary automata must be generated for each
program� To create a complete executable for each node� the code generator
actually emits code for the composition of the algorithm automaton and all the
auxiliary IOA automata for all the system services the algorithm accesses�

Aut.
Abstract
Service

(a)

Aut.
Aux.
Aut.

Concrete
Service

Abstract Service

(b)

Fig� �� Auxiliary automata mediate between external system services and algorithm
automata



There is a once�per�service proof obligation that the composition of the con�
crete model and the auxiliary automata implements the abstract service� Once
the proof is done� the programmer can use the properties of the abstract model
subject to the assumption that concrete model corresponds to the behavior of
the service� For example� a proof of correctness for our design that uses MPI to
implement reliable FIFO channels appears in ���	�

Each external system service introduces constraints on the form of the low�
level IOA program that accesses it� For example� since the code generator uses
standard workstation networking services� programs submitted for code gener�
ation are required to be in node�channel form� That is� the algorithm must be
described as a collection of algorithm automata �one per node� that communicate
via standard� one�way� reliable� FIFO channel automata�

In addition� the model introduces another �technical� constraint� Atomicity
requires that the e�ect part of each transition be done without interruption�
even if inputs arrive from the external user or from the communication service
during its execution� In our design� such inputs are bu�ered� In between running
non�input actions� the generated program examines bu�ers for newly arrived
inputs� and handles �some of� them by running code for input actions� Since
the processing of inputs is delayed �with respect to the performance of these
actions by their originators�� such delays have the potential to upset precise
implementation claims for the algorithm automata� We call this the input delay
insensitivity assumption�

By insisting that IOA programs from which we generate real code match
the available hardware and services� and by requiring algorithm automata to
tolerate input delays� we avoid the need for expensive non�local synchronization
in achieving a faithful implementation�

��� Design

The code generator consists of a series small program transformers� Each accepts
an IOA program or programs as input and produces another IOA program as
output �except the last� of course� which translates IOA into the target language��
Several of the modules are used by some� if not all� other tools in the IOA
toolkit� The granularity of the transformation is driven largely by the usefulness
of mixing and matching these tools� Table � lists the steps in the process� Below�
we describe each step in process� We brie�y sketch the function of each module
and show how it is used in the code generation process�

The �rst module to which any IOA program is submitted is the parser and
static semantic checker �or simply checker�� In addition� to the obvious func�
tions� the checker produces an intermediate representation suitable for use by
other tools� This S�expression�based intermediate language �IL� has a simpler
parse tree than the more readable IOA source language� ���	� As the checker acts
as a front�end to just about all other elements of the toolset� the IL provides
a convenient interchange language within the IOA toolset� A checker prototype
has been implemented� The IL representation is semantically equivalent to the
source representation�



Table �� Transformers in the IOA code generation process� Numbers in the input
column indicate that the transformer takes in the output of the numbered step�

Step Transformer Output Input

� Checker internal form algorithm aut�
� Interface generator auxiliary interface aut� �
� Composer primitive aut� �� �� auxiliary aut� library
� NAD next
action deterministic aut� �
� Schedule editor next
state deterministic aut� �
� Code emitter Java source �� data type impl� library

The interface generator connects an algorithm automaton with the external
console system service� The console service embodies all user interaction with an
IOA program at a particular node� The interface generator creates a customized
auxiliary automaton to mediate between the console service and the algorithm
automaton� The auxiliary console automaton parses input from the console into
input actions for the algorithm automaton� Similarly� output from the algorithm
automaton is forwarded to the console� In our initial prototype the abstract
model of user input allows the user to nondeterministically invoke any �non�
network� input of the algorithm while the concrete model of the console is a
simple source and sink for streams of integers ���� ��	�

The composition tool �composer� converts the description of a composite au�
tomaton into primitive form by explicitly representing its actions� states� tran�
sitions� and tasks� The IOA language includes a composed of statement which
de�nes an automaton to be the parallel composition of referenced automata� The
composer expands the composition statement by �instantiating� and combining
the referenced automata as described by the logical operation on the model� In
the resulting description� the name of a state variable is distinguished by the
names of the components from which it arises� The input to the composer must
be a compatible collection of automata� for example� the component automata
should have no common output actions� Note that composition is a semantically
�neutral� operation� That is� the I�O automata described by the input program
using the composed of statement is equivalent to that described by primitive
output program�

In the code generation process� the programmer
s original algorithm automa�
ton is composed with the the auxiliary interface automaton �generated in the
previous step� with �xed auxiliary network automata� The resulting automaton
describes all the behavior of the executable code we actually wish to generate
for that node� Unfortunately� it is not obvious how to directly translate this
nondeterministic form of the program into a standard imperative language�

The next�action determinator �NAD� converts the input IOA program into
an equivalent �in the sense of trace inclusion� next�action deterministic program�
The NAD form of an IOA program has no implicit nondeterminism� Explicit



nondeterminism is grouped in a new schedule transition that contains one set of
choose statements� In this stylized form� each nondeterministic choice is assigned
directly to a state variable of the automaton� Section � details the actual program
transformation� Section � shows equivalence of the input and output programs�

The �nal step before actually emitting imperative code is to remove explicit
nondeterminism from the automaton� The resulting program is both next�action
and next�state deterministic� In our prototype� the graphical user interface con�
verts the NAD form from the intermediate language into IOA source to display
to the programmer� The programmer edits the schedule transition by replacing
each choose expression in turn with a deterministic IOA expression that selects
a value from the same set as the choose expression� Showing this is a proof
obligation for correctness� The resulting IOA node automaton is completely de�
terministic and easily translated into an imperative language�

The code emitter module translates one primitive� deterministic� node au�
tomaton into actual code in the target language that implements the node au�
tomaton� in the sense of trace inclusion� For each operation� we emit code from
class libraries written in a standard programming language �currently� Java��
At present� we do not address the problem of establishing the correctness of
this sequential code �other than by conventional testing and code inspection��
Standard techniques of sequential program veri�cation based� for example� on
Hoare logic� should be capable of handling such correctness proofs� �Note that
the IOA framework focuses on correctness of the concurrent� interactive aspects
of programs rather than of the sequential aspects��

Since all implicit nondeterminism has been removed� the code emitter can
start from the unique initial state and perform a loop in which� at each iteration�
it executes the unique action enabled in the current state� More speci�cally� it
uses the programmer�provided expressions to determine the next transition and
parameter values and then executes that transition with those parameters� Since
there is no explicit nondeterminism� this uniquely determines the next state�

� Syntactic NAD Transformation

In this section� we describe the syntactic NAD transformation on IOA programs�
which makes implicit nondeterminism explicit� Then in the next section� we
present the transformation in the I�O automaton model and show that the
syntactic transformation conforms to the semantic one in a precise sense�

We �rst introduce some notation� Let t be a term and �t a sequence of terms�
Let �v and �x be sequences of variable names� having the same size as �t� We write
t��v j �t	 to denote a term identical to t where every free occurrence of �vi� i � �� if
any� has been replaced by �ti� We write �v � �x to denote

V
i �vi � �xi�

In the program we intend to transform� we assume that the free variables of
actual parameters for transition de�nitions and choose parameters are unique
throughout the program��

� This assumption does not cause loss of generality� It is possible to relax it by �rst
performing some renaming on the program to be transformed�



Given an IOA programA� let B be the following program� with actionsActB �
state variables VarB � initial condition InitB� and transition de�nitions TdB �

� ParamB is identical to ParamA�
� LarchB is identical to LarchA�
� ActB is identical to ActA� with an additional internal action�

internal Sched

� In addition to the state variables of A�VarB has the following state variables�
� w� � W�� � � � � wk � Wk� where w� through wk are the free variables ap�
pearing in actual or choose parameters of locally controlled actions of
A�

� pc � fd�� � � � � dm� schedg� where d� through dm are the locally controlled
transition de�nitions of A in the order that they appear syntactically�

� InitB is InitA 	 pc � sched�
� TdB consists of the following�

� For each input transition de�nition d of A� TdB contains an identical
transition de�nition d� having e�ect
progd� pc � sched�

� For each locally controlled transition de�nition d of A� corresponding to
an action named a� TdB contains the following transition de�nition d��
where �wd denotes the sequence of free variables appearing in actual or
choose parameters of d� and �x is a sequence of fresh variables having the
same size as �wd�

Kinda a�t�� �wd j �x	� � � � � tn� �wd j �x	�
pre pc � d 	 �wd � �x
eff progd�

pc �� sched

so that soThatd

� The following transition de�nition for the internal action Sched� where
a�� � � � � am are the corresponding action names of d�� � � � � dm� and �pai
and �tdi � � 
 i 
 m� are the sequence of formal parameters of action ai�
and actual parameters of transition de�nition di� respectively�

internal Sched

pre pc � sched

eff w� �� choose�
� � �
wn �� choose�
pc �� choose q where q �� sched�
if ��pc � d� 	 pred� 	 wherea� ��pa� j �td� 	 	 whered�

 � � �

 pc � dm 	 predm 	 wheream ��pam j �tdm 	 	 wheredm�
then pc �� sched fi

We now consider again the example introduced in Section ���� representing
a process in the LCR leader election algorithm� Figure � presents the result
of subjecting that example automaton to the NAD transformation we de�ned



above� The transformation adds an internal action� sched� as well as a state
variable pc� It also adds all parameters of locally controlled actions to the state�
The parameters of these actions are renamed� and the names do not have to be
unique� The Sched action �rst chooses values for the parameters and for pc� and
then checks whether an action is enabled given these values� If there is� then
that action is chosen to be executed next� The precondition of locally controlled
actions have been modi�ed to make this possible�

In this example� all nondeterminism is explicit in the form of choose state�
ments which choose a value nondeterministically� subject to a condition speci�ed
after the keyword where�� Moreover� in any state there is at most one action
enabled� We show that this automaton satis�es next�action determinism� more
precisely in the next section�

� Semantic NAD Transformationn

In this section� we present the NAD transformation at the I�O automaton level�
and refer to it as a semantic transformation� Our motivation is to provide a
transformation at the level of the mathematical model as a complement to the
syntactic one� This gives a more general characterization of the transformation�
and provides a framework in which we can verify that the syntactic transforma�
tion is correct�

��� Semantic Transformation

We de�ne the semantic transformation by giving a relation NAD�A�� which
denotes the set of all next�action deterministic I�O automata corresponding to
A�

The relation NAD�A� is de�ned by giving restrictions on the components of
the automata that belong to it� An automaton B in NAD�A� has all the actions
of A� and a set of additional internal actions� which we call scheduling actions�
and denote � �

Next we de�ne the restrictions on the set of states of B� We �rst de�ne a
partition P on the states of B� having an equivalence class for each action that is
locally controlled in B� We write P� to denote the equivalence class corresponding
to �� Informally� a state S is in P�� if action � has been chosen for execution in
state S� The action � may or may not be enabled in S�

We then de�ne a second partition Q on the states of B� having an equiva�
lence class for each state of A� We write QSA to denote the equivalence class
corresponding to the state SA of A� Informally� a state S of B is in QS� � if it
�corresponds� to S��

Having de�ned these two partitions we state that they must be restricted
such that �S � States�A�� � � LocB� QS � P� �� � holds� This condition
allows us to introduce the following notation� We write ���S	 to denote QS �P��
and call it a sector�

� When the condition is omitted� it is simply true�



automaton Process�I� type� i� I�

assumes RingIndex�I� String�

type Status � enumeration of waiting� elected� announced

signature

input receive�m� String� const left�i�� const i�

output send�m� String� const i� const right�i���

leader�m� String� const i�

internal Sched

states

pending� Mset	String
 �� �name�i���

status� Status �� waiting�

m�� m�� String�

i�� i�� I�

j�� I�

pc� enumeration of send� leader� sched

so that pc �� sched

transitions

input receive�m
� j
� i
�

e� if m
 � name�i
� then pending �� insert�m
� pending�

elseif m
 � name�i
� then status �� elected

��

pc �� sched

output send�m� i� j�

pre pc � send � m � m� � i � i� � j � j�

e� pending �� delete�m�� pending��

pc �� sched

output leader�m� i�

pre pc � leader � m � m� � i � i�

e� status �� announced

internal Sched

pre pc � sched

e� m� �� choose� m� �� choose�

i� �� choose� i� �� choose� j� �� choose�

pc � choose q where q �� sched�

if not �pc � send � m� � pending

� pc � leader � status � elected � m� � name�i���

then pc �� sched �

Fig� �� IOA speci�cation of election process



Informally� B is an automaton which behaves like A� but in addition it ex�
plicitely chooses which action to execute next� For each state SA of A� B has a
set of states corresponding to SA� and these states encode di�erent choices for
the next action to execute� A state in sector ���S	 corresponds to state S of A
with the choice of executing action � next�

It remains to specify the initial states of B� as well as its transitions� The
initial states of B are all those that belong to ���S�	� for � � � and S� is an
initial state of A�

The transitions of B must be such that if B goes from state S to state S � while
executing action � of A� then S corresponds to state SA of A� S � corresponds to
S �A� and �SA� ��S �A� is a transition of A�

Figure � illustrates the execution of some automaton b � B� In this �gure�
rows represent partition P and columns partition Q� The states in equivalence
classes of P corresponding to scheduling actions are labeled scheduling states� An
execution of B starts at an initial state� which is a scheduling state corresponding
to an initial state of A� Then B executes a scheduling action� and chooses an
action to execute that is enabled in the current state� This causes the automaton
to move vertically into a state in which a choice has been made� Next� B executes
the chosen action� and moves to a scheduling state� and this process is repeated�

����������
����������
����������
����������

����������
����������
����������
����������

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�

����

�
�
�
�

�
�
�
�

�
�
�
�
�����
�����
�����
�����

�����
�����
�����
�����Initial state of b

Actions of b

States of b

Scheduling states of bπ1

π2

π3

An initial state of A

Fig� �� The exectution of some automaton b � B�

Formally� the Nad relation is given as follows�



De�nition �� B � NAD�A� if and only if there exists a set � of actions disjoint
from AllA� and partitions P and Q on States�B�� having an equivalence class
for each action in LocB and each state of A� respectively� such that�

	� �S � States�A�� � � LocB� QS � P� �� ��

� Sig�B� � �InA� IntA ���OutA��
�� States��B� � fS j �� � ��S� � States��A��S � ���S�	g�
�� A transition �S� ��S �� is in Trans�B� if and only if�

��� � ��SA�S
�
A � States�A� such that�

� � InA 	 �SA� ��S
�
A� � Trans�A� 	 S � QSA 	 S

� � ����S
�
A	




� � LocA 	 �SA� ��S
�
A� � Trans�A� 	 S � ���SA	 	 S

� � ����S
�
A	




� � � 	 S � ���SA	 	 S
� � ����SA	 � ����SA	�

for �� � LocA such that �� is enabled in SA�

��� Soundness of Semantic Transformation

In this section� we argue that any I�O automaton in NAD�A� has the same
traces as A and satis�es next�action determinism�

Lemma �� Let B � NAD�A�� Then Traces�B� 
 Traces�A��

Proof� We do not show the proof here� This can be done by induction on the
length of an execution ���	�

Lemma �� Let B � NAD�A�� B is next�action deterministic�

Proof� Let S be a state of B� In order for any locally controlled action � of B
to be enabled in S� S must be such that S � P�� by construction� Since P is
a partition on States�B�� then there is at most one locally controlled action
enabled in S� Thus B is next�action deterministic�

��� Correspondence Between the Syntactic and the Semantic
Transformations

In this section� we argue that the syntactic transformation described previously�
conforms to the semantic transformation above� For this we introduce the notion
of the semantic of an IOA program sem� For an IOA program A� sem�A� denotes
the I�O automaton corresponding to A� The semantics of IOA programs have
been de�ned precisely in ��	� and we will not reproduce them here�

Let B be the result of transforming IOA program A with the NAD syntactic
transformation� Then the following holds�

Theorem �� sem�B� � NAD�sem�A��



We do not show the formal proof here� since that would require showing as
well the precise de�nition of the semantics of a program� but we give the informal
argument behind the proof� The proof is presented in ���	�

In order for sem�B� to be related to sem�A� via the semantic NAD transfor�
mation� there must exist a set � of actions and partitions P and Q satisfying
the conditions of De�nition �� In this case� � consists of a single action Sched�

The state of B consists of all the states of A and some additional state
variables� pc and parameter lists� that indicate which action to execute next� We
specify the partition Q as follows� A state S of B is in QSA � for a state SA of A�
if the portion of state S corresponding to the state of A� is identical to SA�

We specify the partition P as follows� A state S of B is in P�� for a locally
controlled action of B� if the extra state of S indicates that � is the next action
to run�

Given these values for � � Q� and P � we can verify that the conditions of
De�nition � are satis�ed�

� Conclusion

In this paper� we presented our approach and design for code generation in I�O
automata� We have also presented in detail� one of the transformation involved
in this process� the syntactic NAD transformation �synNAD�� Further� we de�
scribed the transformation at the level of the mathematical model� the semantic
NAD transformation �semNAD�� and showed that the syntactic transformation
conforms to it in a precise sense�

The introduction of a semantic transformation illustrates a method for de�
signing program transformations in this context� We use semNAD as a �speci��
cation� transformation� that is �implemented� by synNAD� Our method consists
of giving a semantic transformation and a syntactic one� and proving that the
latter conforms to the former in a precise sense� This method has the following
advantages�

� A precise description of the transformation is given� which makes mathe�
matical manipulation possible�

� The de�nition of the transformation is as general as possible�
� It is not tied down to a particular language syntax�
� Syntactic variations of the same transformation can be easily shown to be
equivalent�

As future work� we plan to investigate ways of assisting the user in replacing
explicit nondeterministic statements with deterministic ones� and to complete a
working prototype of the code generator�

Acknowledgments

We thank Steve Garland� Antonio Ramirez� and Holly Reimers for their contri�
butions to the development of the IOA project�



References


�� Mark Baker� Bryan Carpenter� Sung Hoon Ko� and Xinying Li� mpiJava� A Java
interface to MPI� Submitted to First UK Workshop on Java for High Performance
Network Computing� Europar �����


�� Roberto DePrisco� Alan Fekete� Nancy Lynch� and Alex Shvartsman� A dy

namic view
oriented group communication service� In Proceedings of the ��th

Annual ACM SIGACT�SIGOPS Symposium on Principles of Distributed Com�

puting� pages �������� Puerto Vallarta� Mexico� June
July ����� Also� technical
memo in progress�


�� Alan Fekete� M� Frans Kaashoek� and Nancy Lynch� Implementing sequentially
consistent shared objects using broadcast and point
to
point communication�
Journal of the ACM� ����	������� January �����


�� Alan Fekete� Nancy Lynch� and Alex Shvartsman� Specifying and using a par

titionable group communication service� In Proceedings of the Sixteenth Annual

ACM Symposium on Principles of Distributed Computing� pages ������ Santa
Barbara� CA� August �����


�� Message Passing Interface Forum� MPI� A message
passing interface standard�
International Journal of Supercomputer Applications� �����	� �����


�� Stephen J� Garland� Nancy A� Lynch� and Mandana Vaziri� IOA� A Language

for Specifying� Programming and Validating Distributed Systems� Laboratory for
Computer Science� Massachusetts Institute of Technology� Cambridge� MA� De

cember ����� URL http���sds�lcs�mit�edu��garland�ioaLanguage�html�


�� John V� Guttag� James J� Horning� Stephen J� Garland� Kevin D� Jones� Andr�es
Modet� and Jeannette M� Wing� editors� Larch� Languages and Tools for Formal

Speci�cation� Springer
Verlag Texts and Monographs in Computer Science� �����

�� Idit Keidar and Roger Khazan� A client
server approach to virtually synchronous

group multicast� Speci�cations and algorithms� Technical report� MIT Laboratory
for Computer Science� ����� In preparation� submitted for conference publication�


�� Nancy Lynch� Distributed Algorithms� Morgan Kaufmann Publishers� Inc�� San
Mateo� CA� March �����


��� Nancy Lynch� Michael Merritt� William Weihl� and Alan Fekete� Atomic Trans�

actions� Morgan Kaufmann Publishers� San Mateo� CA� �����

��� Nancy A� Lynch and Mark R� Tuttle� Hierarchical correctness proofs for dis


tributed algorithms� In Proceedings of the Sixth Annual ACM Symposium on Prin�

ciples of Distributed Computing� pages �������� Vancouver� British Columbia�
Canada� August �����


��� Antonio Ramirez� IOA simulator design and implementation� ����� Manuscript�

��� Holly Reimers� An unparser for the IOA intermediate language� ����� Manuscript�

��� Mark Smith� Formal veri�cation of communication protocols� In Reinhard

Gotzhein and Jan Bredereke� editors� Formal Description Techniques IX� The�

ory� Applications� and Tools FORTE�PSTV���� Joint International Conference
on Formal Description Techniques for Distributed Systems and Communication
Protocols� and Protocol Speci�cation� Testing� and Veri�cation� Kaiserslautern�
Germany� October ����� pages �������� Chapman � Hall� �����


��� Joshua A� Tauber� IOA code generation 
 theory and practice� Manuscript�

��� Michael Tsai� Design and implementation of the IOA GUI� interface generator�

and NAD modules� ����� Manuscript�

��� Mandana Vaziri� A transformation of I�O automata removing implicit non


determinism� ����� Manuscript available from the author�


