
On Our Experience with Modular Pluggable Analyses

Patrick Lam, Viktor Kuncak, and Martin Rinard

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

{plam,vkuncak,rinard}@csail.mit.edu

Abstract

We present a technique that enables the focused appli-
cation of multiple analyses to different modules in the
same program. In our approach, each module encapsu-
lates one or more data structures and uses membership
in abstract sets to characterize how objects participate
in data structures. Each analysis verifies that the imple-
mentation of the module 1) preserves important internal
data structure consistency properties and 2) correctly
implements an interface that uses formulas in a set al-
gebra to characterize the effects of operations on the
encapsulated data structures. Collectively, the analyses
use the set algebra to 1) characterize how objects par-
ticipate in multiple data structures and to 2) enable the
inter-analysis communication required to verify proper-
ties that depend on multiple modules analyzed by dif-
ferent analyses.

We have implemented our system and deployed three
pluggable analyses into it: a flag analysis for modules
in which abstract set membership is determined by a
flag field in each object, a plugin for modules that en-
capsulate linked data structures such as lists and trees,
and an array plugin in which abstract set membership
is determined by membership in an array. Our experi-
mental results indicate that our approach makes it pos-
sible to effectively combine multiple analyses to verify
properties that involve objects shared by multiple mod-
ules, with each analysis analyzing only those modules
for which it is appropriate.

1 Introduction

Data structure consistency is important for successful
program execution — if an error corrupts a program’s
data structures, the program can quickly exhibit un-
acceptable behavior or even crash. Motivated in part
by the importance of this problem, researchers have de-
veloped algorithms for verifying that programs preserve
important consistency properties [3, 7, 13, 29–31].

However, two problems complicate the successful ap-
plication of these kinds of analyses to practical pro-
grams: scalability and diversity. Because data structure
consistency often involves quite detailed object referenc-
ing properties, many analyses fail to scale. Because of
the vast diversity of data structures, each with its own
specific consistency properties, it is difficult to imagine
that any one algorithm will be able to successfully an-
alyze all of the data structure manipulation code that
may be present in a sizable program.

This paper presents a new perspective on the data
structure consistency problem. Instead of attempting
to develop a new algorithm that can analyze some spe-
cific set of consistency properties, we instead propose
a technique that developers can use to apply multiple
pluggable analyses to the same program, with each anal-
ysis applied to the modules for which it is appropriate.
The analyses use a common abstraction based on sets
of objects to communicate their analysis results. Our
approach therefore enables the verification of properties
that involve multiple objects shared by multiple mod-
ules analyzed by different analyses.

1.1 Target Application Class

Our technique is designed to support programs that en-
capsulate the implementations of complex data struc-
tures in instantiatable leaf modules, with these mod-
ules analyzed once by very precise, potentially expen-
sive analyses (such as shape analyses or even analy-
ses that generate verification conditions that must be
manually discharged using a theorem prover or proof
checker). The rest of the program uses these modules
but does not directly manipulate the encapsulated data
structures. These modules can then be analyzed by
more efficient analyses that operate primarily at the
level of the common set abstraction.

We have implemented our analysis framework and
populated this framework with three analysis plugins:
1) the flags plugin, which is designed to analyze modules
that use a flag field to indicate the typestate of the ob-

jects that they manipulate; 2) the PALE plugin, which
implements a shape analysis for linked data structures
(we integrated Anders Møller’s implementation [30] of
the Pointer Analysis Logic Engine analysis tool into our
system); and 3) the array verification plugin, which gen-
erates verification conditions for consistency properties
of array-based data structures. Verification conditions
from the array verification plugin are designed to be dis-
charged manually using the Isabelle interactive theorem
prover. We have used our analysis framework to ana-
lyze several programs; our experience shows that it can
effectively 1) verify the consistency of data structures
encapsulated within a single module and 2) combine
analysis results from different analysis plugins to verify
properties involving objects shared by multiple modules
analyzed by different analyses.

1.2 Contributions

The contributions of this paper are the following:

• Pluggable Analysis Framework: We show how
to apply multiple analyses to multiple data struc-
tures encapsulated within multiple modules, with
the analysis results appropriately combined to ver-
ify properties that span multiple modules. The ap-
proach supports sharing patterns in which objects
move between different data structures and pat-
terns in which objects participate in multiple data
structures simultaneously.

We introduce abstract sets as the key abstraction
that each analysis uses to characterize how objects
participate in encapsulated data structures. The
connection between sets and concrete data struc-
ture consistency properties enables modules to ex-
press the data structure participation requirements
that externally accessible objects must satisfy with-
out exposing the data structure representation to
their clients. The set abstraction also enables dif-
ferent analyses to interoperate to verify properties
that span multiple data structures and modules.

We show how to use the common set abstraction to
specify and verify global invariants that correlate
membership of objects in different data structures
analyzed by different analysis plugins (Section 3).

We provide mechanisms — scopes and defaults —
which allow developers to write strictly local spec-
ifications of procedures, without having to explic-
itly include global invariants. Our system then au-
tomatically conjoins these global invariants when
appropriate.

• Analysis Plugins: We present three analysis plu-
gins that show how our approach works in practice:

a flag typestate analysis for modules in which set
membership is determined by the value of a flag
field in each object (Section 5), the PALE analy-
sis plugin for modules that manipulate linked data
structures such as lists and trees (Section 6), and
the array analysis plugin that can verify arbitrarily
complex properties of array-based data structures
by generating verification conditions and discharg-
ing them using an interactive theorem prover (Sec-
tion 7). The typestate plugin can be thought of
as a scalable plugin that propagates and verifies
membership of objects in global sets; the PALE
plugin is an example of a more precise shape anal-
ysis plugin; and the array analysis plugin is an ex-
treme point that in principle has no bound on the
complexity of properties that it can verify. More
precise analysis plugins may require more analysis
time or more interaction with the user; this cost
is amortized because these analyses are typically
applied to instantiatable modules that encapsulate
reusable data structures.

• Experimental Evaluation: We present our ex-
perience using our implemented system to analyze
programs that require the use of multiple analysis
plugins to verify important consistency and types-
tate properties (Section 8).

2 Example

We next discuss an example program that shows how
to use our approach to verify 1) the consistency of in-
dividual data structures encapsulated in instantiatable
modules, 2) that the rest of the program uses each mod-
ule correctly, and 3) important properties that involve
data structures encapsulated in different modules. Our
example program implements the popular minesweeper
game.1 Figures 1, 2, and 3 present a linked list mod-
ule used in our example minesweeper program. This
module has a specification section (Figure 1), an imple-
mentation section (Figure 2), and an abstraction section
(Figure 3). The abstraction section specifies the rela-
tionship between the concrete data structure implemen-
tation and the abstract set specification, and enables
the PALE plugin to check that the implementation sat-
isfies its specification.

The abstract Content set in Figure 1 represents the
contents of the list. (The notation Content′ denotes
the new version of Content after a procedure executes;
the unprimed Content denotes the old version before it
executes). The procedures in the List module use this

1Full source code for the minesweeper example and other case
studies, the interpreter for our language, and analysis engine is
available at http://cag.csail.mit.edu/∼plam/mpa.

2

set to express their preconditions, postconditions, and
effects. The requires clause of the add procedure, for
example, requires that the parameter e (which the add

procedure will insert into the list) not already be in the
Content set. The ensures clause states that the effect
of the add procedure is to add the parameter e to the
Content set. The modifies clause indicates that the
procedure modifies the Content set only.

Procedure specifications can also express cardi-
nality constraints. The requires clause of the
removeFirst procedure, for example, uses the formula
card(Content)>=1 to require that the Content set be
nonempty upon entry.

An analysis based on monadic second-order logic
over trees (as implemented in the PALE analysis
tool [30]) is able to verify that the List implementa-
tion correctly implements its specification. However, it
needs some additional information to do so. The ab-
straction section in Figure 3 provides this information.

This abstraction section starts by identifying the
analysis plugin used to verify this module; in this
case the PALE analysis plugin. This analysis plu-
gin implements a decision procedure for the monadic
second-order logic over trees and uses this deci-
sion procedure to analyze procedures that manip-
ulate recursive linked data structures such as lists
and trees [20]. To enable the application of this
analysis to the List module, the abstraction sec-
tion identifies the correspondence between the abstract
sets in the specification and the concrete data struc-
ture encapsulated inside the module. The statement
Content = {x : Entry | "root<next*>x"}; defines
the Content set to be all objects x reachable by fol-
lowing next fields starting from the root variable2.

The analysis uses this correspondence to translate
the requires, ensures, and modifies clauses (ex-
pressed in terms of abstract sets) into properties of the
concrete data structure (which in this case are expressed
in monadic second-order logic over the objects and fields
in the concrete heap). For example, the translated pre-
condition of add is !root<next*>e, which states that e
is not reachable by following next fields starting at the
root. The analysis then uses the translated requires

clause as a precondition and the translated ensures

clause as a postcondition of each procedure. Note that
other modules need not be aware of how membership
in Content is determined; they simply use the Content

set in their own specifications, as needed.
So far, we have presented a generic List mod-

2This implementation places the next field directly in the
Entry objects. Our approach also supports the more common
implementation that uses auxiliary encapsulated list objects to
refer to the Entry objects; in that implementation the auxiliary
list objects (and not the Entry objects) contain the next fields.

spec module List {

format Entry;

sets Content : Entry;

proc add(e : Entry)

requires not (e in Content)

modifies Content

ensures Content’ = Content + e;

proc removeFirst() returns f : Entry

requires card(Content)>=1 // Content nonempty

modifies Content

ensures (Content’ = Content - f) &

card(f)=1 & (f in Content);

proc isEmpty() returns b : bool

ensures not b <=> (card(Content’) >= 1);

}

Figure 1: Linked List Specification Section

impl module List {

format Entry { next : Entry; } // see footnote 2

reference root : Entry;

proc add(e : Entry) {

/* add to the beginning of the list */

if (root==null) {

root = e;

e.next = null;

} else {

e.next = root; root = e;

}

}

proc removeFirst() returns f : Entry {

Entry e = root;

root = root.next;

e.next = null;

return e;

}

proc isEmpty() returns b : bool {

return root == null;

}

}

Figure 2: Linked List Implementation Section

abst module List {

use plugin "PALE";

Content = {x : Entry | "root<next*>x"};

invariant "type Entry = {

data next : Entry;

}";

invariant "data root:Entry;";

}

Figure 3: Linked List Abstraction Section

3

ule. In the minesweeper example, we instantiate
this List module as an UnexposedList, which stores
minesweeper board cells which have not yet been
cleared. The instantiation mechanism of our language
substitutes the generic Entry format with the Cell for-
mat used in the rest of the minesweeper example. Con-
ceptually, instantiation creates a fresh copy of the in-
stantiated module, carrying out substitutions as appro-
priate to make the generic implementation applicable
to the particular use at hand.

2.1 Verifying Cross-Module Properties

We next illustrate how our approach enables the veri-
fication of properties that span multiple modules. Our
minesweeper implementation has several modules (see
Figure 4): a game board module (which represents the
game state), a controller module (which responds to
user input), a view module (which produces the game’s
output), an exposed cell module (which stores the ex-
posed cells in an array), and an unexposed cell mod-
ule (which stores the unexposed cells in an instanti-
ated linked list). There are 750 non-blank lines of im-
plementation code in the 6 implementation sections of
minesweeper, and 236 non-blank lines in its specifica-
tion and abstraction sections.

Our minesweeper implementation uses the standard
model-view-controller (MVC) design pattern [15]. The
board module (which stores an array of Cell ob-
jects) implements the model part of the MVC pat-
tern. Each Cell object may be mined, exposed or
marked. The board module represents this state in-
formation by contributing isMined, isExposed and
isMarked flags to Cell objects. At an abstract level,
the sets MarkedCells, MinedCells, ExposedCells,
UnexposedCells, and U (for Universe) represent sets
of cells with various properties; the U set contains all
cells known to the board. The board also uses a flag
gameOver, which it sets to true when the game ends.

Figure 4: Modules in Minesweeper implementation

Our system verifies that our implementation has the
following properties (among others):

• Unless the game is over, the set of mined cells is
disjoint from the set of exposed cells.

• The sets of exposed and unexposed cells are dis-
joint.

• The set of unexposed cells maintained in the board
module is identical to the set of unexposed cells
maintained in the UnexposedList list.

• The set of exposed cells maintained in the board

module is identical to the set of exposed cells main-
tained in the ExposedSet array.

• At the end of the game, all cells are revealed; i.e.
the set of unexposed cells is empty.

We next explain how our system verifies the fourth and
fifth properties listed above. Note that the board mod-
ule, which is analyzed by the flag plugin, defines its sets
using flag values, so that board’s set of exposed cells
consists of all objects with the field isExposed set to
true, whereas the ExposedSet module defines its con-
tents set by array membership.

Although our system focuses on using sets to model
program state, not every module needs to define its own
abstract sets. Indeed, certain modules may not define
any abstract sets of their own, but instead coordinate
the activity of other modules to accomplish tasks. The
view and controller modules are examples of such mod-
ules. The view module has no state at all; it queries the
board for the current game state and calls the system
graphics libraries to display the state.

Because these modules coordinate the actions of
other modules — and do not encapsulate any data
structures of their own — the analysis of these mod-
ules must operate solely at the level of abstract sets.
We therefore analyze these modules using a subset of
the flag plugin. This subset tracks abstract set mem-
bership, solves formulas in the boolean algebra of sets,
and incorporates the effects of invoked procedures as it
analyzes each module. It does not, however, need to
reason about the correspondence between the concrete
data structure representations and the abstract sets.

The analysis of the view and controller modules illus-
trates a core idea behind our approach: we use faster,
less-detailed analyses on high-level modules that pri-
marily coordinate the actions of other modules, and ap-
ply more-precise analyses to verify leaf modules that en-
capsulate implementations of sophisticated data struc-
tures.

Note that the set abstraction supports typestate-
style reasoning at a per-object level (for example, all
objects in the ExposedCells set can be viewed as hav-
ing a conceptual typestate Exposed). Our system also
supports the notion of global typestate: for instance,

4

the board module has a global gameOver variable which
indicates whether or not the game is over. Using this
variable and the definitions of sets, we maintain the
global invariant

gameOver | disjoint(MinedCells, ExposedCells).

This global invariant connects a global typestate prop-
erty — is the game over? — with a object-based types-
tate state property evaluated on objects in the program
— there are no mined cells that are also exposed. Our
analysis plugins verify these global invariants by con-
joining them to the preconditions and postconditions of
methods. Note that global invariants must be true in
the initial state of the program; if some initializer must
execute to establish an invariant, then the invariant can
be guarded by a global typestate property.

Another invariant concerns the correspondence
between the ExposedCells and UnexposedCells

sets with the ExposedSet.Content and
UnexposedList.Content sets.

(ExposedCells = ExposedSet.Content) &

(UnexposedCells = UnexposedList.Content)

Recall that, in our example, the ExposedSet, the
UnexposedList, and the board are all implemented in
different modules, and are analyzed by different analy-
sis plugins. This invariant verifies that a set defined by
field values is equal to a set defined by reachability in
the heap, and that a set defined by field values is equal
to a set defined by membership in an array.

Our analysis ensures this property by conjoining it
to ensures and requires clauses of appropriate proce-
dures. The board module is responsible for maintaining
this invariant. However, the flag analysis used for the
board module does not, in isolation, have the ability to
verify the invariant, because it cannot reason about the
heap structure of the program. Because we have a com-
mon set specification language, though, the flag analysis
can successfully use the ensures clause of its callees,
along with its own analysis tracking ExposedCells

membership, to guarantee the invariant.

3 Modular Analysis Framework

We next discuss the basic strategy that we expect analy-
sis plugins to implement, and discuss the tasks that they
must perform to verify that each implementation sec-
tion correctly implements its specification. In general,
an analysis plugin must ensure that the implementation
of a module conforms to its specification, and that any
calls originating in the module it is analyzing satisfy
their preconditions.

3.1 Implementation Language

Implementation sections for modules in our system are
written in a standard memory-safe imperative language
supporting arrays and the dynamic allocation of ob-
jects.3 Analysis plugins use our system’s core libraries
to easily manipulate abstract syntax trees for this im-
perative language. Using these libraries, we have imple-
mented an interpreter for our language; it would also be
straightforward to write a compiler for our language.

We point out one special feature of our imperative
language, which we call formats. Formats aid modular
reasoning about shared objects by encapsulating fields
while allowing modules to share objects. When the
program creates an object with format T , the newly-
created object contains the fields contributed to format
T by all modules in the program [8]. A simple type
checker for the implementation language statically en-
sures that each module accesses only fields that it has
contributed to an object. Note that no analysis plugin
needs the full layout of an object; it will only need the
fields which the module under analysis has contributed
to that object.

The implementation language supports (but does
not require) assertions and loop invariants, which en-
able fine-grained communication with the analysis plu-
gin. The syntax of assertions is specific to the analysis
plugin used to analyze the module. Assertions are ig-
nored by the implementation language interpreter; once
statically verified, they do not affect the run-time be-
havior of the program.

3.2 Specification Language

Figure 5 presents the syntax for the module specifica-
tion language. A specification section contains a list
of set definitions and procedure specifications, and lists
the names of formats used in set definitions and proce-
dure specifications. Set declarations identify the mod-
ule’s abstract sets, while boolean variable declarations
identify the module’s abstract boolean variables. Each
procedure specification contains a requires, modifies,
and ensures clause. The modifies clause identifies sets
whose elements may change as a result of executing the
procedure. The requires clause identifies the precon-
dition that the procedure requires to execute correctly;
the ensures clauses identifies the postcondition that
the procedure ensures when called in program states
that satisfy the requires condition. Both requires

and ensures clauses use arbitrary first-order formulas
B in the language of boolean algebras extended with

3A formal context-free grammar for our language can be
downloaded from our publicly-readable Subversion source code
repository at http://plam.csail.mit.edu/svn/repos/trunk/

module-language/formatlanguage.sablecc.

5

M ::= spec module m {F ∗D∗I∗PV ∗P ∗}
F ::= format t∗;

PV ::= predvar b∗;
I ::= invariant B;

D ::= sets S∗ : t;
P ::= proc pn(p1 : t1, . . . , pn : tn)[returns r : t]

[requires B] [modifies S∗] ensures B

B ::= SE1 = SE2 | SE1 ⊆ SE2 | p in SE

| B ∧ B | B ∨ B | ¬B | ∃S.B | card(SE)=k

SE ::= ∅ | [m.] S | [m.] S′

| SE1 ∪ SE2 | SE1 ∩ SE2 | SE1 \ SE2

| disjoint (S1, S2)

Figure 5: Syntax of Module Specification Language

cardinality constraints. Specification sections may also
contain invariants in the same language; these invari-
ants are automatically conjoined with requires and
ensures clauses of procedures in that module. Free
variables of these formulas denote abstract sets declared
in specification sections. The expressive power of such
formulas is the first-order theory of boolean algebras,
which is decidable [21,28]. The decidability of the spec-
ification language ensures that analysis plugins can pre-
cisely propagate the specified relations between the ab-
stract sets.

3.3 Analysis Overview

The analysis of a module M is performed by the analy-
sis plugin specified in the abstraction section of module
M . The abstraction section of module M establishes
the connection between the specification and implemen-
tation sections of module M . Each analysis plugin aug-
ments the generic syntax of abstraction sections with a
plugin-specific plugin annotation language. The plugin
annotation language is used to define the mapping be-
tween the concrete and abstract representations of sets.
The abstraction section of module M may additionally
state representation invariants for the data structure
implementing the abstract sets. The responsibility of
each plugin is to guarantee that each procedure satisfies
its specification; it may do so by any means practical.
The specification of a procedure is derived from the ab-
stract requires, modifies, and ensures clauses using
the definitions of abstract sets as well as the represen-
tation invariants [25]. We also require that a procedure
never violates the preconditions of its callees.

Figure 6 illustrates our analysis of the board mod-
ule from minesweeper: to ensure that board meets its
specification, the flag plugin only needs to read the im-
plementation, abstraction and specification sections of
the board module, as well as the specifications from the
ExposedSet and UnexposedList module.

We have implemented three plugins in our analysis
framework: a flags plugin, which assigns set member-
ship based on field values (Section 5), a PALE plugin,
which assigns set membership based on heap reachabil-
ity (Section 6) and an array plugin, which assigns set
membership based on array membership (Section 7).

Figure 6: Checking implementation of minesweeper
board

4 Scopes and Defaults

In this section, we present the notions of scopes and de-
faults. These notions enable developers to write more-
concise specifications when using our modular analysis
framework.

Scopes serve two purposes: they enable the specifica-
tion and verification of cross-module invariants by iden-
tifying the subset of a program in which an invariant is
expected to hold, and they combat specification aggre-
gation by hiding irrelevant sets from callers. Scopes are
key to our system’s verification of invariants contain-
ing sets from different modules: by designating certain
modules as public access points, we ensure that scope
invariants always hold outside their declaring scope.
Scopes also shield callers from irrelevant detail: only
sets from exported modules are visible to modules in
different scopes. This serves to bound the detail re-
quired in procedure specifications: the specification of
procedure p belonging to scope C need only contain the
effects of procedures on sets in C and exported sets out-
side C.

Defaults allow procedure specifications to simplify
specifications in a different way. Using defaults, the
developer can factor out common conjuncts that re-
peatedly appear in a module’s procedure specifications.
These conjuncts need only be written once per mod-
ule, and are automatically conjoined to procedure spec-
ifications for that module, unless they are specifically
suspended at a procedure.

6

S ::= scope s

{modules M∗; exports M∗; [invariant B;] }

Figure 7: Grammar for Scope Declarations

4.1 Scopes for Specifying Invariants that Cross

Module Boundaries

Consider module Main which calls module Worker. The
Worker module uses two helper modules, Inbox and
Outbox, which define sets Input and Output respec-
tively. The Worker module itself defines the Jobs set,
which satisfies the cross-cutting invariant

I : Jobs = Inbox.Input∪ Outbox.Output,

which must hold on entry to Worker and is always en-
sured upon exit from Worker. Ordinarily, specifications
for procedures of Main must therefore include the invari-
ant I in their own preconditions and postconditions to
be able to call Worker; worse yet, any transitive caller
of Main also needs to include I . We call this problem
specification aggregation, and we describe scopes, our
solution to the specification aggregation problem.

Syntax of Scopes. Figure 7 presents the syntax of
scope declarations. A scope declaration contains a set
of modules; a subset of these modules are declared as
exported modules. Scope declarations may also contain
a scope invariant.

We describe the components of a scope declaration
using a typical scope C. Exported modules are accessi-
ble from outside C: that is, only procedures in exported
modules may be called from outside C, and only sets
declared in exported modules may appear in specifica-
tions outside C. Private modules belong to C but are
not exported. Sets belonging to private modules are
private sets. An invariant B is a boolean algebra for-
mula which is guaranteed to be true in the initial state
of the program, assumed to hold at all incoming bound-
ary points, and verified at all outgoing boundary points.

Multiple Orthogonal Scopes. Note that a module
can participate in multiple scopes at the same time; this
multiple participation enables modules to be grouped
into scopes along orthogonal axes. For most purposes,
we can reason about scopes individually, since they are
independent of each other. We discuss multiple scopes
in the context of calling restrictions. Each module com-
bines the calling restrictions from all of its scopes: if M

is a private module in some scope C, only modules that
are also in C can invoke M , and if M is exported in C4,
only modules that are not in C can call M .

4We need only disallow calls to exported modules of C if C

has an invariant.

Scope Calling Condition. Our analysis verifies that
the program satisfies the following scope calling condi-
tion. This condition ensures that the program’s scope
invariants hold at scope boundary points, defined be-
low.

Let scopes(M) denote the set of scopes C such
that C declares M in its modules clause, and let
exportingScopes(M) denote the set of scopes C such
that C declares M in its exports clause. Let the “pri-
vate yard” of module M be yard(M) = scopes(M) \
exportingScopes(M). A procedure call from M ′ to M

is allowed if and only if M is exported in precisely the
scopes C ∈ scopes(M) \ scopes(M ′) of the scope dif-
ference. More precisely, we say that module M ′ calls
module M if the body of some procedure in the imple-
mentation of module M ′ contains a call to a procedure
declared in module M . We then require the following
inter-scope call condition to be satisfied for every pair of
modules (M ′, M): if module M ′ calls module M , then

scopes(M) \ scopes(M ′) ⊆ exportingScopes(M)

∧ scopes(M) ∩ scopes(M ′) ⊆ yard(M).

The first conjunct of the calling condition ensures that
the incoming boundary points are the only points at
which execution can enter a scope, and the second con-
junct ensures that between any two instances of incom-
ing boundary points in an execution trace, at least one
outgoing boundary point occurs.

Semantics of Scopes and Invariants When our
analysis successfully verifies a program, it is certifying
that each scope invariant holds in the defining scope’s
exterior; boundary points separate the interior of a
scope from its exterior. Inside a scope, the invariant
may be temporarily violated; our analysis then checks
that the invariant is restored before the program exits
the scope. The semantics for invariants is therefore that
the scope invariant may be assumed to hold upon entry
to its scope, and the invariant must be verified that the
scope invariant holds upon exit.

The set of incoming boundary points is defined as the
set of the entry points of procedures for exported mod-
ules of C and return points for potentially-reentrant
call sites inside C. (A return point for a call site
is the immediate control-flow successor of the return
statement in the call site’s target; potentially-reentrant
call sites are those that directly invoke a method out-
side C which, on some execution trace, transitively call
back into C.) The outgoing boundary points are de-
fined as the exit points of exported procedures, plus all
potentially-reentrant sites calling outside C belonging
to procedures inside C. Our analysis also checks that
from inside C, incoming boundary points will not be

7

called; in the interior, only procedures belonging to pri-
vate modules of C, or outside C entirely, may be called.

Our system enables the verification of invariants by
placing two constraints on how invariants are defined.
First, all invariants must be true in the initial state of
the program5. Second, an invariant in scope C may
only refer to sets and booleans in scope C.

Soundness of Assuming Invariants. We justify
our handling of invariants by arguing that whenever we
assume an invariant, it must already be true in the un-
derlying dynamic program state. Since the only possible
unsoundness in our handling of invariants comes from
assuming the invariant, we can show soundness sim-
ply by proving that an invariant is always true when
our treatment assumes that invariant. In general, in-
variants will not be directly provable at calling sites by
our analysis, because the sets mentioned in the invari-
ant may be private sets invisible to the caller, implying
that no information is available about these sets outside
the scope, and in particular at the calling site.

Our condition on calling incoming boundary points
from within a scope gives us the following property:

Proposition 1 (Boundary Point Nesting) For all
scopes C, all execution traces s0, . . . , sn and all pairs
spi

, spi+1
of incoming boundary points, there exists an

outgoing boundary point sqi
such that pi < qi < pi+1.

Similarly, between any two outgoing boundary points is
an incoming boundary point.

Two incoming boundary points will never be adjacent,
because our analysis verifies that only procedures be-
longing to private modules of C or the exterior will be
invoked inside C; in the first case, there is no incoming
boundary point, and in the second case, we have con-
structed the outgoing boundary points such that there
will always be an outgoing boundary point when the call
is potentially-reentrant. Two outgoing boundary points
will never be adjacent: after an exit from an exported
procedure, control must flow to a procedure outside C

(since only the exterior can call an exported procedure),
and after a potentially-reentrant call, control also flows
to a procedure outside C.

The soundness of our treatment of invariants de-
pends on the following soundness condition on analysis
plugins.

Condition 1 (Set stationarity condition) A set may
only be modified by its defining module.

5Initialization procedures can be modelled with a init boolean
variable: init ⇒ I indicates that I holds after initialization.
The developer would then use defaults to ensure that init is
almost always true.

The flag, PALE and array analysis plugins presented in
this paper satisfy the set stationarity condition. The
following proposition is an immediate consequence of
the set stationary condition:

Proposition 2 A set may only be modified when it is
in scope.

We will prove that the invariant true at incoming
boundary points by induction on instances of these
points in program execution traces. This proof is in
two parts: 1) for entry points of exported modules; and
2) for reentrant-call return sites. We first consider case
1), the incoming boundary points that occur as entry
points of exported modules. Consider an arbitrary pro-
gram execution trace s0, s1, . . . , sn. At the first incom-
ing boundary point si0 , the invariant is true because it
is true at s0 and has not been changed since then (by
the set stationarity condition). At subsequent incom-
ing boundary points sik

, the invariant will also be true,
since an outgoing boundary point will have executed
between sik−1

and sik
(recall we disallow calls to in-

coming boundary points from inside the scope, so that
the program has to pass through an outgoing point),
because the invariant was proven at sik−1

, and because
the truth of the invariant has not changed in the exte-
rior code between the most recent outgoing boundary
point and sik

. Case 2), concerning reentrant-call incom-
ing boundary points, is similar. Consider the sequence
t0, . . . , tn of points between the call t0 and its return
tn. The analysis explicitly proves the invariant at the
outgoing boundary point t0. If a trace has no incom-
ing boundary point ti between t0 and tn, then the in-
variant still holds at tn, because of the set stationarity
condition. For every incoming boundary point ti, then
there must also exist an outgoing boundary point tj (by
Proposition 1) at which point the invariant is explicitly
shown. Between the last outgoing boundary point and
tn (a subsequence which occurs outside the scope), the
invariant is preserved, implying that it holds at tn.

Consequences of Scopes By using scopes, develop-
ers may omit details about transitive callees which are
not relevant to understanding the effects of the caller.
Furthermore, scope invariants allow the developer to as-
sume that certain invariants always hold upon entry to
the scope, which enhances the expressive power of our
system.

4.2 Defaults for Simplifying Specifications by

Omission

Many modules require that some initialization code be
executed before normal operation of the module can
proceed. Our system can represent this with an Init

8

boolean predicate attached to the appropriate module,
and requiring that Init hold before (almost every) pro-
cedure in the module. Such a practice clutters proce-
dure specifications with extra conjuncts.

We have created the notion of a default to address
this problem. Defaults are named boolean clauses which
are uniformly conjoined to requires and ensures clauses
of procedure specifications unless they are explicitly sus-
pended. Procedure p may declare a suspends clause; if
default I is suspended in p, then the default is not ap-
plied to the requires and ensures clauses of p.

Defaults differ from scopes in that scopes talk about
global cross-cutting concerns, whereas defaults talk
about local properties that need to be uniformly wo-
ven into specifications inside a module. Defaults and
scopes work together allow developers to focus on spec-
ifying local properties specifically of interest to a partic-
ular specification, by freeing them from the obligation
of specifying details of global interest in each procedure
specification.

5 The Flag Plugin

Our flag analysis verifies that modules implement set
specifications in which integer or boolean flags indicate
abstract set membership. The developer specifies (us-
ing the flag abstraction language) the correspondence
between concrete flag values and abstract sets from the
specification, as well as the correspondence between the
concrete and the abstract boolean variables. Figure 8
presents the syntax for our flag abstraction modules.
This abstraction language defines abstract sets in two
ways: (1) directly, by stating a base set; or (2) indi-
rectly, as a set-algebraic combination of sets. Base sets
have the form B = {x : T | x.f=c} and include precisely
the objects of type T whose field f has value c, where c
is an integer or boolean constant; the analysis converts
mutations of the field f into set-algebraic modifications
of the set B. Derived sets are defined as set algebra
combinations of other sets; the flag analysis handles de-
rived sets by conjoining the definitions of derived sets
(in terms of base sets) to each verification condition and
tracking the contents of the base sets. Derived sets may
use named base sets in their definitions, but they may
also use anonymous sets given by set comprehensions;
the flag analysis assigns internal names to anonymous
sets and tracks their values to compute the values of
derived sets.

In our experience, applying several formula trans-
formations drastically reduced the size of the formulas
emitted by the flag analysis, as well as the time that
the MONA decision procedure spent verifying these for-
mulas. Section 5.4 describes these formula optimiza-
tions. These transformations greatly improved the per-

M ::= abst module m {U I∗ P ∗}
D ::= id=Dr;

Dr ::= Dr ∪ Dr | Dr ∩ Dr | id | {x : T | x.f=c}
A ::= ¬A | A ∧ A | A ∨ A | B

P ::= predvar p;

Figure 8: Syntax of Flag Abstraction Language

formance of our analysis and allowed our analysis to
verify larger programs.

5.1 Operation of the Analysis Algorithm

The flag analysis verifies a module M by sequentially
checking each procedure of module M . To verify a
procedure, the analysis performs abstract interpreta-
tion [10] with analysis domain elements represented by
formulas. Our analysis associates quantified boolean
formulas B to each program point. A formula F has
two collections of set variables: unprimed set variables
S denoting initial values of sets at the entry point of the
procedure, and primed set variables S ′ denoting the val-
ues of these sets at the current program point; F also
contains unprimed and primed boolean variables b and
b′ representing the pre- and post-values of local and
global boolean variables. The interpretations of these
variables are given by the definitions in the abstraction
section of the module. The use of primed and unprimed
variables allows our analysis to represent, for each pro-
gram point p, a binary relation on states that overap-
proximates the reachability relation between procedure
entry and program point p [11, 17, 32].

In addition to the abstract sets from the specifica-
tion, the analysis also generates a set for each (object-
typed) local variable. This set contains the object to
which the local variable refers and has a cardinality
constraint that restricts the set to have cardinality at
most one (the empty set represents a null reference).
The formulas that the analysis manipulates therefore
support the disambiguation of local variable and ob-
ject field accesses at the granularity of the sets in the
analysis; other analyses often rely on a separate pointer
analysis to provide this information.

The initial dataflow fact at the start of a procedure
is the precondition for that procedure, transformed into
a relation by conjoining S ′ = S for all relevant sets.
At merge points, the analysis uses disjunction to com-
bine boolean formulas. Our current analysis iterates
while loops at most some constant number of times,
then coarsens the formula to true to ensure termina-
tion, thus applying a simple form of widening [10]. The
analysis also allows the developer to provide loop in-

9

variants directly. 6 After running the dataflow anal-
ysis, our analysis checks that the procedure conforms
to its specification by checking that the derived post-
condition (which includes the ensures clause and any
required representation or global invariants) holds at
all exit points of the procedure. In particular, the flag
analysis checks that for each exit point e, the computed
formula Be implies the procedure’s postcondition.

Incorporation. The transfer functions in the dataflow
analysis update boolean formulas to reflect the effect of
each statement. Recall that the dataflow facts for the
flag analysis are boolean formulas B denoting a rela-
tion between the state at procedure entry and the state
at the current program point. Let Bs be the boolean
formula describing the effect of statement s. The incor-
poration operation B ◦ Bs is the result of symbolically
computing the relation composition of relations given
by formulas B and Bs. Conceptually, incorporation up-
dates B with the effect of Bs. We compute B ◦ Bs by
applying equivalence-preserving simplifications to the
formula

∃Ŝ1, . . . , Ŝn. B[S′
i 7→ Ŝi] ∧ Bs[Si 7→ Ŝi]

5.2 Transfer Functions

Our flag analysis handles each statement in the imple-
mentation language by providing appropriate transfer
functions for these statements. The generic transfer
function is a relation of the following form:

JstK(B) = B ◦ F(st)

where F(st) is the formula symbolically representing the
transition relation for statement st expressed in terms
of abstract sets. The transition relations for the state-
ments in our implementation language are as follows.

Assignment statements. We first define a generic
frame condition generator, used in our transfer func-
tions,

framx =
^

S 6=x, S not derived

S
′ = S ∧

^

p6=x

(p′ ⇔ p),

where S ranges over sets and p over boolean predicates.
Note that derived sets are not preserved by frame con-
ditions; instead, the analysis preserves the anonymous
sets contained in the derived set definitions and con-
joins these definitions to formulas before applying the
decision procedure.
Our flag analysis also tracks values of boolean variables:

6Our typestate analysis could also be adapted to use predicate
abstraction [3, 4, 16] to synthesize loop invariants, by performing
data flow analysis over the space of propositional combinations of
relationships between the sets of interests, and making use of the
fact that boolean algebra of sets is decidable. Another alternative
is the use of a normal form for boolean algebra formulas as in [25,
Section 6.3].

F(b = true) = b′ ∧ framb

F(b = false) = (¬b′) ∧ framb

F(b = y) = (b′ ⇔ y) ∧ framb

F(b = 〈if cond〉) = (b′ ⇔ f+(〈if cond〉)) ∧ framb

F(b =!e) = F(b = e) ◦ ((b′ ⇔ ¬b) ∧ framb)

where f+(e) is the result of evaluating the condition e,
as defined below in our analysis of if statements.
We also track the local variable object references:

F(x = y) = (x′ = y) ∧ framx

F(x = null) = (x′ = ∅) ∧ framx

F(x = new t) = ¬(x′ = ∅) ∧
V

S(x′ ∩ S = ∅) ∧ framx

We next present the transfer function for changing set
membership. If R = {x : T | x.f = c} is a set definition
in the abstraction section, we have:

F(x.f = c) := R′ = R ∪ x ∧
∧

S∈alts(R) S′ = S \ x

∧ fram{R}∪ alts(R)

where alts(R) := R′ such that the abstraction module
contains R′ = {x : T | x.f = c1}, c1 6= c.

We also have a rule handling field reads and writes
of boolean values b; it is similar to the rule above for
reads and writes of integers. However, since our analysis
tracks the flow of boolean values, the rules are more
detailed. When B+ = {x : T | x.f = true} and B− =
{x : T | x.f = false}, the rule is:

F(x.f = b) =

„

b ∧ B+′
= B+ ∪ x

∧
V

S∈alts(B+) S′ = S \ x

«

∧

„

¬b ∧ B−′
= B− ∪ x

∧
V

S∈alts(B−) S′ = S \ x

«

∧fram{B}∪alts(B)

F(b = y.f) = (b′ ⇔ y ∈ B+) ∧ framb.

Finally, we have some default rules to conservatively
account for expressions not otherwise handled,

F(x.f = ∗) = framx F(x = ∗) = framx.

Procedure calls. For a procedure call x=proc(y), our
transfer function checks that the callee’s requires con-
dition holds, and incorporates proc’s ensures condition
as follows:

F(x = proc(y)) = ensures1(proc) ∧
^

S

S
′ = S

where both ensures1 and requires1 substitute caller
actuals for formals of proc (including the return value),
and where S ranges over all local variables.

Conditionals. The analysis produces a different for-
mula for each branch of an if statement if (e). We
define functions f+(e), f−(e) to summarize the addi-
tional information available on each branch of the con-
ditional; the transfer functions for the true and false
branches of the conditional are thus, respectively,

Jif (e)K+(B) = f
+(e) ∧ B

Jif (e)K−(B) = f
−(e) ∧ B.

10

For constants and logical operations, we define the ob-
vious f+, f−:

f+(true) = true f−(true) = false

f+(false) = false f−(false) = true

f+(!e) = f−(e) f−(!e) = f+(e)
f+(x!=e) = f−(x==e) f−(x!=e) = f+(x==e)

f
+(e1 && e2) = f

+(e1) ∧ f
+(e2)

f
−(e1 && e2) = f

−(e1) ∨ f
−(e2)

We define f+, f− for boolean fields as follows:

f+(x.f) = x ⊆ B f−(x.f) = x 6⊆ B

f+(x.f==false) = x 6⊆ B f−(x.f==false) = x ⊆ B

where B = {x : T | x.f = true}; analogously, let R =
{x : T | x.f = c}. Then,

f+(x.f==c) = x ⊆ R f−(x.f==c) = x 6⊆ R.

We also predicate the analysis on whether a reference
is null or not:

f+(x==null) = x = ∅ f−(x==null) = x 6= ∅.

Finally, we have a catch-all condition,

f+(∗) = true f−(∗) = true

which conservatively captures the effect of unknown
conditions.

Loops. Our analysis analyzes while statements by
synthesizing loop invariants or by verifying developer-
provided loop invariants. To synthesize a loop invariant,
it iterates the analysis of the loop body until it reaches
a fixed point, or until N iterations have occurred (in
which case it synthesizes true). The conditional at the
top of the loop is analyzed the same way if statements
are analyzed. We can also verify explicit loop invari-
ants; these simplify the analysis of while loops and
allow the analysis to avoid the fixed point computa-
tion involved in deriving a loop invariant. Developer-
supplied explicit loop invariants are automatically con-
joined with the frame conditions generated by the con-
taining procedure’s modifies clause to ease the burden
on the developer.

Assertions and Assume Statements. We analyze
statement s of the form assert A by showing that the
formula for the program point s implies A. Assertions al-
low developers to check that a given set-based property
holds at an intermediate point of a procedure. Using
assume statements, we allow the developer to specify
properties that are known to be true, but which have
not been shown to hold by this analysis. Our analysis
prints out a warning message when it processes assume
statements, and conjoins the assumption to the current
dataflow fact. Assume statements have proven to be

valuable in understanding the analysis outcomes dur-
ing the debugging of procedure specifications and im-
plementations. Assume statements may also be used to
communicate properties of the implementation that go
beyond the abstract representation used by the analy-
sis.

Return Statements. Our analysis processes the
statement return x as an assignment rv = x, where rv
is the name given to the return value in the procedure
declaration. For all return statements (whether or not a
value is returned), our analysis checks that the current
formula implies the procedure’s postcondition and stops
propagating that formula through the procedure.

5.3 Verifying Implication of Dataflow Facts

A compositional program analysis needs to verify impli-
cation of constraints as part of its operation. Our flag
analysis verifies implication when it encounters an as-
sertion, procedure call, or procedure postcondition. In
these situations, the analysis generates a formula of the
form B ⇒ A where B is the current dataflow fact and
A is the claim to be verified7. The implication to be
verified, B ⇒ A, is a formula in the boolean algebra of
sets, and we check its validity using the MONA decision
procedure for the monadic second-order logic of strings,
which subsumes boolean algebras [18].

5.4 Boolean Algebra Formula Transformations

In our experience, applying several formula transforma-
tions drastically reduced the size of the formulas emit-
ted by the flag analysis, as well as the time needed to
determine their validity using an external decision pro-
cedure; in fact, some benchmarks could only be verified
with the formula transformations enabled. This sub-
section describes the transformations we found to be
useful and includes a performance evaluation of these
transformations, comparing formula sizes and analysis
running times.

Smart Constructors. The constructors for cre-
ating boolean algebra formulas apply peephole trans-
formations as formulas are being created. The sim-
plest peephole transformation is constant folding: for
instance, attempting to create B ∧ true gives the for-
mula B. Our constructors fold constants in implica-
tions, conjunctions, disjunctions, and negations. Sim-
ilarly, attempting to quantify over unused variables
causes the quantifier to be dropped: ∃x.F is cre-
ated as just F for x not free in F . Most interest-

7Note that B may be unsatisfiable; this often indicates a prob-
lem with the program’s specification. The flag analysis can, op-
tionally, check whether B is unsatisfiable and emit a warning if
it is. This check enabled us to improve the quality of our specifi-
cations by identifying specifications that were simply incorrect.

11

ingly, we factor common conjuncts out of disjunctions:
(A∧B)∨(A∧C) is represented as A∧(B∨C). Conjunct
factoring greatly reduces the size of formulas tracked af-
ter control-flow merges, since most conjuncts are shared
on both control-flow branches. The effects of this trans-
formations appear similar to the effects of the SSA form
conversion in weakest precondition computation [14,27].

Basic Quantifier Elimination. We symbolically
compute the composition of statement relations dur-
ing the incorporation step by existentially quantifying
over all state variables. However, most relations cor-
responding to statements modify only a small part of
the state and contain the frame condition that indicates
that the rest of the state is preserved. The result of in-
corporation can therefore often be written in the form
∃x1.x = x1∧F (x), which is equivalent to F (x1). In this
way we reduce both the number of conjuncts and the
number of quantifiers. Moreover, this transformation
can reduce some conjuncts to the form t = t for some
Boolean algebra term t, which is a true conjunct that
is eliminated by further simplifications.

It is instructive to compare our technique to weakest
precondition computation [14] and forward symbolic ex-
ecution [9]. These techniques are optimized for the com-
mon case of assignment statements and perform relation
composition and quantifier elimination in one step. Our
technique achieves the same result, but is methodolog-
ically simpler and applies more generally. In particu-
lar, our technique can take advantage of equalities in
transfer functions that are not a result of analyzing as-
signment statements, but are given by explicit formulas
in ensures clauses of procedure specifications. Such
transfer functions may specify more general equalities
such as A = A′ ∪ x ∧ B′ = B ∪ x which do not reduce
to simple backward or forward substitution.

Quantifier Nesting. We have experimentally ob-
served that the MONA decision procedure works sub-
stantially faster when each quantifier is applied to the
smallest scope possible. We have therefore implemented
a quantifier nesting step that reduces the scope of each
quantifier to the smallest possible subformula that con-
tains all free variables in the scope of the quantifier.
For example, our transformation replaces the formula
∀x. ∀y. (f(x) ⇒ g(y)) with (∃x. f(x)) ⇒ (∀y. g(y)).

To take maximal advantage of our transformations,
we simplify the formula after applying incorporation
and before invoking the decision procedure. Our global
simplification step rebuilds the formula bottom-up and
applies the simplifications to each subformula.

5.5 Evaluating the Impact of Formula Trans-

formation

Table 1 shows the result of our formula transformations.
The compiler benchmark models a constant-folding
compiler pass. The scheduler benchmark models an
operating system scheduler. The ctas benchmark is
the core of an air-traffic control system. The board,
controller and view modules are the core modules of
the minesweeper example.

We ran our benchmarks on a Pentium 4 at 2.80GHz,
running Linux, with 2 gigabytes of RAM. We have
reported the sizes (in terms of AST node counts) of
the boolean algebra formulas created with all transfor-
mations enabled; with all transformations except for
smart constructors; and with no transformations en-
abled. (The results with smart constructors and no
other transformations were usually identical to the re-
sults with no transformations.) For each run, we have
also presented the time spent in the decision procedure
(under 4 seconds, optimized) and in the analysis, ex-
cluding the decision procedure (under 25 seconds, op-
timized). Our formula transformations reduce formula
size by 2 to 70 times (with greater reductions for larger
formulas); indeed, without transformation, the formu-
las generated by compiler, board and view could not
successfully be checked by MONA because of an out of
memory error.

Opt Smart # nodes MONA Flag Opt.
Constrs time time ratio

compiler X X 15860 0.45 7.84 38.36
X × 28009 0.60 9.68 21.72
× X,× 608375 N/A 82.04 1.00

scheduler X X,× 468 0.05 0.04 2.32
× X,× 1086 0.08 0.04 1.00

ctas X X,× 3410 0.23 0.11 2.85
× X,× 9726 13.33 0.29 1.00

board X X 15261 1.39 9.29 39.77
X × 68177 29.89 16.19 8.90
× X 375919 N/A 91.46 1.61
× × 606967 N/A 111.04 1.00

controller X X 6840 0.47 0.28 3.24
X × 7206 0.52 0.32 3.07
× X,× 22145 2.93 0.74 1.00

view X X 25646 3.06 24.35 69.92
X × 101872 4.45 44.56 17.60
× X,× 1793295 N/A 369.90 1.00

Table 1: Formula sizes before and after transformation

6 The PALE Analysis Plugin

Unlike the flag analysis, which we designed to operate
within our analysis framework, the PALE analysis is
a previously implemented analysis package that we in-
tegrated into our framework. During the course of this
adaptation, we did not modify the PALE analysis pack-

12

age itself — we instead implemented translators that
enabled it to work within our analysis framework.

6.1 The PALE Analysis System

The PALE analysis system takes as input a program
written in its own imperative language [30]. This pro-
gram includes preconditions, postconditions, loop in-
variants, and graph type declarations [20]. A graph type
is a tree-like pointer-based (potentially recursive) data
structure with a distinguished set of data fields (such as
the next field in Figure 9),8 whose values form the span-
ning tree backbone of the data structure. In addition to
data fields, a graph type may contain routing fields [20]
(such as the prev field in Figure 9). These routing fields
are functionally determined by the backbone; the prev

field in Figure 9, for example, is uniquely determined
as the inverse of the next field. By identifying data
fields that form the spanning tree and by providing the
definitions for the derived fields, graph type declara-
tions allow the developer to specify the representation
invariants that the data structures must satisfy.

abst module DLLSet {
use plugin "PALE";

Content = {x : Entry | "root<next*>x"};

invariant "type Entry = {
data next : Entry;
pointer prev:Entry[this^Entry.next = {prev}];

}";
invariant "data root:Entry;";

}

Figure 9: Doubly-Linked List Abstraction Section

The precondition, postcondition, and loop invariants
are arbitrary formulas in monadic second-order logic.
Such formulas enable the use of transitive closure over
object reference fields to identify the set of all objects
that participate in that data structure. Building on this
base, it is also possible to specify arbitrary boolean for-
mulas containing set inclusion and equality constraints
involving these sets. For example, it is possible to spec-
ify that the sets of objects in two lists (identified using
transitive closure over the next field) are disjoint, equal,
or that one is a subset of the other. It is also possible to
state set membership constraints involving the objects
that variables point to.

The PALE analysis system translates an input pro-
gram into a collection of verification conditions whose
validity guarantees that the procedures in the program
satisfy their precondition/loop invariant/postcondition
relationships. These verification conditions are formu-
las in monadic second-order logic. The PALE system

8Note that, in the PALE system terminology, “data” fields
hold reference values.

M ::= abst module m {U D∗ I∗ }
U ::= use plugin“PALE”;
D ::= S={x : T | F (x)};
I ::= invariant F ;
F ::= PALE specification

Figure 10: Syntax of PALE Plugin Abstraction Sections

uses the MONA decision procedure [18, 19] to deter-
mine the validity of these verification conditions. If all
of these conditions are valid, the program satisfies its
PALE specification.

6.2 Using the PALE Plugin

We next describe the information that the developer
provides to enable the PALE plugin to verify that a
module implementation conforms to its specification.
Most of the information specific to the PALE plugin is
contained in the abstraction section, whose syntax is in
Figure 10.

6.2.1 Specifying Set Definitions

The developer specifies the abstraction function for a
graph type data structure by defining the content of an
abstract set using a formula in monadic second-order
logic. Figure 9 shows a definition of the set Content

as the set of all Entry objects reachable from the root

along the next field. A binary relation given by a reg-
ular expression such as <next*> is a shorthand for the
corresponding formula with two variables definable in
monadic second-order logic.

6.2.2 Specifying Representation Invariants

The developer specifies the representation invariants for
the PALE plugin using invariant declarations in the
abstraction section, as illustrated in Figure 9. The syn-
tax of these invariants is specific to the PALE plugin.
An invariant for the PALE plugin is either a graph type
definition, such as the definition of the Entry graph type
in Figure 9, or a declaration of a data structure root,
such as the data root:Entry declaration in Figure 9.

These representation invariants impose the following
constraint on the heap: each object is either 1) a mem-
ber of the data structure or 2) an object external to the
data structure. Each member object is reachable from
the data structure root along the data fields. In addi-
tion to data fields, a member object has routing fields
(denoted by the pointer keyword) whose value is given
by the formula specified in the graph type definition.
On the other hand, each external object is unreachable

13

from the data structure root, and all of its fields de-
clared in the analyzed module are null.

The member/external constraint applies to the pro-
jection of the heap onto the fields declared in the cur-
rently analyzed module. The constraint does not apply
to fields declared in other modules, which enables ob-
jects to participate in multiple data structures.

The PALE plugin enforces the constraint through-
out the procedure, with the exception of points in the
interior of a basic block. These interior points may vi-
olate the constraint, provided that they reestablish the
constraint by the end of the basic block.

6.3 Translation to PALE Input Language

We incorporated the PALE analysis system into our
pluggable analysis framework by 1) using abstraction
sections to translate our common set-based specifica-
tions into PALE specifications, 2) translating state-
ments into the imperative language accepted by PALE,
and 3) translating loop invariants into PALE loop in-
variants. The loop invariants in implementation mod-
ules verified by the PALE plugin contain two parts. The
first part contains concrete data structure properties,
and is literally transferred into the PALE implementa-
tion language. The second part contains abstract set
properties, and is translated in the same way that the
requires and ensures clauses are translated. Our trans-
lation also elides integer variables from the input pro-
gram; integer variables are not supported by the PALE
input language.

For each set definition of the form

S = {x : T | F (x)}

that appears in the abstraction section, the translator
produces a second-order predicate that takes a set as
an argument:

pale isS(set S:T) = allpos x of T: x in S <=> F(x)

A statement B(S1, . . . , Sn) in boolean algebra of sets
then corresponds to the formula

∃S1, . . . , Sn.
Vn

i=1 isSi(Si) ∧ B(S1, . . . , Sn)

The translator uses isSi predicates to translate the
specification of a procedure p as follows. Consider a
specification of the form

requires B0(S1, . . . , Sn)
modifes Sj1 , . . . , Sjm

ensures B1(S1, . . . , Sn, S′
1, . . . , S

′
1)

The first translation step eliminates the modifies clause,
yielding

requires B0(S1, . . . , Sn)
ensures B2(S1, . . . , Sn, S′

1, . . . , S
′
1)

where

B2 = B1 ∧
^

i/∈{j1,...,jm}

S
′
i = Si

The next translation step introduces logical variables
S1, . . . , Sn that correlate preconditions and postcondi-
tions. The resulting precondition/postcondition pair is:

set S1 : T1;
. . .

set Sn : Tn;
/* precondition */

[
Vn

i=1 isSi(Si) ∧ B0(S1, . . . , Sn)]

{stmts}

/* postcondition */

[existset S′
1 of T1 : isS1(S

′
1) ∧

. . .

existset S′
n of Tn : isSn(S′

n) ∧
B2(S1, . . . , Sn, S′

1, . . . , S
′
1)]

where {stmts} is the translation of the statements that
implement the body of the procedure p. At this point
we have a translated procedure that we can pass to the
PALE analysis system for verification. Given a module
to verify, our analysis driver translates all of the proce-
dures into this form and checks if the PALE system can
verify them. If so, the implementation section correctly
implements its specification.

6.4 Implications

The PALE analysis package implements a sophisticated
analysis that can verify detailed properties of complex
linked data structures. It is clearly infeasible (for scal-
ability reasons) to use PALE to analyze anything other
than encapsulated data structure implementations. But
within this domain it can provide exceptional precision
and verify important properties that are clearly beyond
the reach of more scalable analyses.

Our successful integration of the PALE analysis sys-
tem demonstrates that it is possible to apply very pre-
cise analyses to focused parts of the program. Our re-
sults therefore show how to unlock the potential of these
analyses to verify important data structure consistency
properties in programs that would otherwise remain be-
yond reach.

7 The Array Analysis Plugin

The array analysis plugin generates verification condi-
tions using weakest preconditions and discharges them
using the Isabelle theorem prover. We have chosen this
technique as a last resort for verifying arbitrarily com-
plicated data structure implementations. The logic for
specifying abstraction functions is based on typed set

14

theory and proof obligations can be discharged using
automated theorem proving or a proof checker for man-
ually generated proofs, which means that there is no
a priori bound on the complexity of the data struc-
tures (and data structure consistency properties) that
can be verified. In our current implementation we have
explored this technique for data structures that imple-
ment sets by storing objects in global arrays. For ex-
ample, we have verified the operations on abstract set
Content given by an abstraction function

Content = {x|∃j. 0 ≤ j ∧ j < s ∧ x ∈ d[j]}

where d is a global array of objects and s is an integer
variable indicating the currently used part of the array.

The plugin analyzes each procedure independently,
showing that it conforms to its specification using the
following phases:

1. Concretization: Implicitly conjoin each postcondi-
tion with the frame condition derived from modi-
fies clauses. Apply the definitions of sets from the
abstraction section to preconditions and postcon-
ditions in specification sections, as well as loop in-
variants and assertions. The result are conditions
expressed in terms of the concrete data structure
state. For example, the postcondition Content′ =
Content − e translates into the formula

{x | ∃j. 0 ≤ j ∧ j < s′ ∧ x ∈ d′[j]} =
{x | ∃j. 0 ≤ j ∧ j < s ∧ x ∈ d[j]} − e

2. Representation invariants: Conjoin both precondi-
tion and postcondition with representation invari-
ants specified in the abstraction section. In our
example we need a representation invariant 0 ≤ s.

3. Statement desugaring: translate statements into
loop-free guarded command language (e.g. [14]).

4. Verification condition generation: using weakest
precondition semantics, create the formula whose
validity implies the conformance of the procedure
with respect to its specification.

5. Separation: Separate the verification condition into
as many conjuncts as possible by performing a
simple non-backtracking natural-deduction search
through connectives ∀, ⇒, ∧.

6. Verification: Attempt to verify each conjunct in
turn. Verify if the conjunct is in the library of
proved lemmas; if not, attempt to discharge it using
the proof hint supplied in procedure code; if no hint
is supplied, invoke the Isabelle’s built-in simplifier
and classical reasoner with array axioms.

In our example, most of the generated verification-
condition conjuncts are discharged automatically using
array axioms. For the remaining ones, the fully auto-
mated verification fails and they are printed as “not
known to be true”. After interactively proving these
difficult cases in Isabelle, they are stored in the library
of verified lemmas and the subsequent verification at-
tempts pass successfully without assistance.

8 Experience

We implemented our system and, to obtain experi-
ence using it, coded up several benchmark programs,
using our system during the development of the pro-
grams. In addition to the minesweeper example pre-
sented in Section 2, we ran our analysis on programs
with computational patterns from scientific computa-
tions, operating-system schedulers, air-traffic control,
and program transformation passes. These benchmarks
use a variety of data structures, and we have there-
fore implemented and verified sets, set iterators, queues,
stacks, and priority queues. Table 2 illustrates the
benchmarks we ran through our system. Our imple-
mentations range from singly-linked and doubly-linked
lists and tree insertion (all verified using the PALE plu-
gin) through array data structures (verified using the ar-
ray membership plugin with the Isabelle theorem prover
used to discharge verification conditions).

Implementation Structure. Our implementation
provides an infrastructure with several general com-
ponents that perform tasks required by all analyses.
The implementation language component can parse and
type-check implementation sections. It produces an ab-
stract syntax tree and methods that allow analyses to
conveniently access this representation. Similarly, the
specification component can parse and type check speci-
fication sections and provides access to the resulting ab-
stract syntax tree. Large parts of abstraction sections
are expressed in a language that is specific to each anal-
ysis. The abstraction section component parses those
parts of the abstraction section syntax that are common
to all analyses and uses uninterpreted strings to pass
along the analysis-specific parts. Finally, the implemen-
tation provides a driver that processes the program and
invokes the appropriate analysis for each module that
it encounters. Our implementation consists of approx-
imately 10,000 lines of O’Caml code, to which the flag
plugin contributes 2000 lines, the PALE plugin another
700 lines, and the array analysis plugin 1000 lines.9

9Full source code for our infrastructure is available
at http://cag.csail.mit.edu/∼plam/mpa. Our Subver-
sion source code repository is also publicly accessible at
http://plam.csail.mit.edu/svn/repos/trunk/module-language.

15

plugin # lines # lines
spec impl

dll-stack flag 22 15
scheduler flag 34 22
prodcons flag 41 50
ctas flag 49 53
compiler flag 75 143
atom flag 64 29
ensemble flag 888 152
h2o flag 420 159
board flag 78 168
controller flag 43 133
view flag 43 372
Set (SLL) PALE 25 77
Queue (SLL) PALE 22 34
PQueue (SLL) PALE 22 38
Stack (SLL) PALE 25 28
Iterator (SLL) PALE 38 81
Set (DLL) PALE 30 60
Queue (DLL) PALE 26 49
Iterator (DLL) PALE 39 68
Set Insertion (Tree) PALE 22 71
Set (Array) array 26 65

System # # lines # lines
totals modules spec impl
compiler 3 113 211
ctas 6 134 102
water 10 1921 542
prodcons 3 54 78
scheduler 3 77 128
minesweeper 7 236 750

Table 2: Benchmark characteristics

Because we implemented the flag analysis specifically
for this project, it is fairly closely integrated with the
rest of our infrastructure. It processes implementation
and specification section directly in the abstract syn-
tax tree representation that our infrastructure provides.
The PALE analysis plugin, on the other hand, uses an
off-the-shelf analysis package that was developed be-
fore the start of this project. We therefore wrote an
adapter that integrates this analysis into our system,
as described in Section 6.3. The array analysis plugin
reads the specification, abstraction and implementation
sections and produces proof obligations, using weakest
preconditions, and discharges them using the Isabelle
theorem prover. The developer may specify proof hints,
on a per-procedure basis, that invoke arbitrarily com-
plicated previously-proved lemmas.

8.1 Minesweeper

We earlier described some of the invariants that we suc-
cessfully verify for the minesweeper example. While
we were trying to verify our invariants about the
minesweeper implementation, we found a number of
bugs in that implementation. We now present one of

the bugs that we found. The situation is that at the
end of the game, minesweeper exposes the entire game
board; we use removeFirst to remove all elements from
the unexposed list, one at a time. After we have ex-
posed the entire board, we can guarantee that the list
of unexposed cells is empty:

proc drawFieldEnd()

requires ExposedList.setInit & Board.gameOver &
(UnexposedList.Content <= Board.U)

modifies UnexposedList.Content, Board.ExposedCells,
Board.UnexposedCells, ExposedList.Content,
UnexposedList.Content

ensures card(UnexposedList.Content’) = 0;

because the implementation of the drawFieldEnd pro-
cedure loops until isEmpty returns true, which also
guarantees that the UnexposedList.Content set is
empty.

The natural way to write the iteration in this proce-
dure would be:

while (UnexposedList.isEmpty()) {
Cell c = UnexposedList.removeFirst();

drawCellEnd(c);
}

and indeed, this was the initial implementation of that
code. However, when we attempted to analyze this
code, we got the following error message:

Analyzing proc drawFieldEnd...

Error found analyzing procedure drawFieldEnd:
requires clause in a call to procedure View.drawCellEnd.

Upon further examination, we found that
we were breaking the invariant ensuring that
Board.ExposedCells equals UnexposedList.Content.
The correct way to preserve the invariant is by call-
ing Board.setExposed, which simultaneously sets
the isExposed flag and removes the cell from the
UnexposedList:

Cell c = UnexposedList.getFirst();
Board.setExposed(c, true);

drawCellEnd(c);

which successfully analyzes:

Analyzing proc drawFieldEnd... Procedure drawFieldEnd passes.

8.2 Stack Data Structure

Using our system, we have implemented stacks, queues,
priority queues, sets, and iterators using singly-linked
lists, doubly-linked lists and trees. We checked these
implementations with the PALE plugin. It turns out
that our initial implementations were not completely
correct; our analysis pinpointed (and helped us correct)
some errors in the implementations. We report, below,
two bugs that were found by our PALE plugin.

For the stack, we maintain an abstract set S rep-
resenting the content of the stack, and verify that

16

stack insertions actually insert the given object into the
stack (S’ = S + e), and that removal actually removes
an object from the stack, if possible: card(S) = 0 |

(exists e:Entry. (S’ = S - e) & card(e) =1)).
Our PALE plugin checks that objects that belong

to a set have consistent values for navigational fields
(e.g. next, prev), and that objects that do not belong
to the set have those fields set to null. Initially, our
implementation for removeFirst was:

proc removeFirst() returns e:Entry {
Entry res = root;

if (root != null) root = root.next;
pragma "removed res";

return res;
}

where the pragma statement indicates to the analysis
that it is verifying a set removal. However, the analysis
reports an error while verifying this implementation.
Careful inspection of this code, however, reveals that
the removed object, res, will still have a reference to
an object in the stack after removal; this is potentially
problematic, as it may lead to non-list structures being
present in the heap. Our plugin therefore requires us
to add res.next = null to this procedure, so that all
objects subsequently passed to this module will have
next set to null.

8.3 List Iterators

We have implemented (using a singly-linked list) a set
which supports iterators; it has a procedure which re-
turns the next element in the set, until there are no more
elements. We have modelled this set using a module
which declares two sets, Content and Iter; the Iter set
contains all elements which have not yet been returned
by the iterator. Note that we can guarantee, by reason-
ing solely at the abstract set level, that the nextIter

procedure returns every member of the Content set.
Our iterable set implementation, however, also sup-

ports removal. In the presence of iteration, removal has
the following semantics: if we remove an object in Iter,
then it will not be returned by subsequent calls to the
iterator; if the object is not in Iter, then future iter-
ations are unchanged. Our analysis caught the corner
case where we remove the element which would next
be returned by the iterator. Adding the following line
allowed the analysis of this module to succeed:

if (current == e) current = current.next;

8.4 Program Transformations

This benchmark implements a constant-folding opera-
tion on the intermediate representation of a simple pro-
gramming language. The input to this operation is an
abstract syntax tree along with a list of all nodes in the

tree. The output is a new tree after constant folding
(this transformation replaces arithmetic expressions on
constant values with the computed value of the arith-
metic expression). To facilitate memory management,
each tree comes with a list of nodes in the tree.

For efficiency, the transformation should, whenever
possible, reuse (instead of copy) nodes from the input
tree when it constructs the output tree. An implemen-
tation may therefore fail to remove reused nodes from
the input tree’s list, leading to premature deallocation
and data structure corruption. In our system, the pro-
gram eliminates this possibility by using global invari-
ants to require the sets of nodes in the input tree list
and output tree list to be disjoint. An additional global
invariant requires the output tree list to contain all of
the nodes in the transformed output tree.

8.5 Process Scheduler

Our process scheduler benchmark maintains a list of
running processes and a priority queue of suspended
processes. There are three modules in our process
scheduler implementation: the RunningList module
(which maintains the list of running processes), the
SuspendedQueue module (which maintains the queue
of suspended processes), and the Scheduler module
(which implements the specification for the scheduler).
The running list and suspended queue are verified using
the PALE plugin, whereas the scheduler itself is veri-
fied with the flag plugin. Both the data structures and
the core scheduler know whether a process is running
or suspended: the core scheduler uses flags to indicate
set membership, whereas the data structures use heap
reachability to track membership. One of the global in-
variants ensures that the sets in the scheduler and in
the data structures coincide. Our analysis also verifies
that the set of running processes is always disjoint from
the set of suspended processes:

invariant (Running = RunningList.InList) &
(Suspended = SuspendedQueue.InQueue) &

disjoint (Running, Suspended);

8.6 CTAS

The Center-TRACON Automation System (CTAS) is
a set of air-traffic control tools developed at the NASA
Ames research center [1]. The system is designed to help
air traffic controllers visualize and manage the complex
air traffic flows at centers surrounding large metropoli-
tan airports. CTAS is structured with a central commu-
nications manager process that maintains socket con-
nections to a graphics process, a weather process (to
acquire information about the weather), a track acqui-
sition process (to acquire radar data), and a trajectory

17

synthesizer (to compute predicted trajectories for the
controlled aircraft).

The weather and track acquisition sockets are read-
only: the communications manager simply acquires the
data that they send. The graphics socket, on the other
hand, is write-only: the job of the graphics process is
to display the information to the control. The commu-
nications manager both reads and writes the trajectory
socket: it writes the socket to send requests to project
the trajectory for the controlled aircraft and reads the
socket to obtain the synthesized trajectories.

We implemented a program with this communica-
tion pattern and used our system to check these access
constraints. The final system ensures that all sockets
are correctly initialized (and have not been closed) when
the program attempts to read or write to or from the
socket. Our sets include a set of writable sockets, a set
of readable sockets, and a set of closed sockets. The
weather and track acquisition sockets are elements of
the set of readable sockets only, the graphics socket is
an element of the set of writable sockets only, while
the trajectory socket is an element of both sets. Note
that enabling a socket to participate in multiple sets at
the same time (in effect, composing the typestate out
of multiple orthogonal sets) substantially simplifies the
resulting typestate system. A typical example of an
requires clause is that for the readTrack procedure:

proc readTrack() requires card(Track.Data)=1 &

(Track.Data in Sockets.Open) &
(Track.Data in Sockets.Readable)

ensures true;

The preconditions of the socket read and write pro-
cedures require the socket to be in the read or write
set, respectively, ensuring that the program does not
attempt to perform an inappropriate socket operation.

8.7 Water

Our Water benchmark is a port of the Perfect Club
benchmark MDG [5] to our implementation language.
It uses a predictor/corrector method to evaluate forces
and potentials in a system of water molecules in the liq-
uid state. The central loop of the computation performs
a time step simulation. Each step predicts the state of
the simulation, uses the predicted state to compute the
forces acting on each molecule, uses the computed forces
to correct the prediction and obtain a new simulation
state, and uses the new simulation state to compute the
potential and kinetic energy of the system.

The Water benchmark consists of several modules,
including the simparm, atom, H2O, ensemble, and main

modules. These modules contain 2000 lines of imple-
mentation and 500 lines of specification. Each module
defines sets and boolean variables; we use these sets and

variables to express safety properties about the compu-
tation.

The simparm module, for instance, is responsible for
recording the simulation parameters, which are stored
in a text file and loaded upon demand. This mod-
ule therefore defines two boolean variables, Init and
ParmsLoaded; Init implies that the module has been
initialized, i.e. the appropriate arrays have been allo-
cated on the heap, while the ParmsLoaded variable im-
plies that the simulation parameters have been loaded
from disk. Our analysis verifies that no simulation pa-
rameter may be requested until the parameters have
been loaded.

The fundamental unit of the simulation is the atom,
which is encapsulated by the atom module; atoms may
be predicted or corrected, and the predic and correc

procedures change atoms into predicted or corrected
atoms if the appropriate preconditions are met. In
particular, the simulation may only correct a predicted
atom; to enforce this property in the specification, we
define sets Predic and Correc and populate them with
the set of predicted and corrected atoms, respectively.
The precondition for correc requires that an atom is
already in the Predic set, and ensures that, after suc-
cessful completion, the atom is no longer in the Predic

set, but is instead in the Correc set.
Atoms belong to molecules, which are handled by the

H2Omodule. A molecule tracks the position and velocity
of the three atoms belonging to that molecule; they can
be in a variety of conceptual states, indicating not only
whether their position has been predicted and corrected
but also whether the intra-molecule force corrections
have been applied, whether the molecule’s forces have
been scaled, etc. We verify the invariant that when the
molecule has been corrected, the atoms in the molecule
are also corrected. The interface of the H2O ensures that
the operations on the molecule may only be invoked in a
certain order; for instance, only molecules in the Kineti
set (which have had their kinetic energy calculated) may
be passed to the bndry procedure.

The ensemble module manages the collection of
molecule objects. This module stages the entire sim-
ulation by iterating over all molecules and computing
their positions and velocity over time. The ensemble
module uses boolean predicates to track the state of the
computation; when boolean predicate INTERF is true,
for example, then the inter-molecule force computation
has been carried out on all molecules in the simulation.
Our analysis verifies that the boolean predicates, rep-
resenting program state, satisfy the following ordering
relationship:

Init ; INITIA ; PREDIC ; INTRAF ; VIR ; · · ·

Our specification relies on an implication from boolean

18

predicates to properties ranging over the collection of
molecule objects, which can be ensured by the array
analysis plugin.

Finally, the main module is responsible for initializ-
ing the state of the ensemble module and printing out
the final state of the system. In the water benchmark,
the main loop can only be executed after an initial it-
eration of the computation has proceeded; our analysis
verifies that the appropriate boolean predicate always
holds before the main loop is initiated.

The water properties verified by our analysis help
ensure that the computation’s phases execute in the
correct order; they are especially valuable in the main-
tenance phase of a program’s life, when the original
designer, if available, has long since forgotten the pro-
gram’s phase ordering constraints. Our analysis’ set
cardinality constraints also prevent empty sets (and null
pointers) from being passed to procedures that expect
non-empty sets or non-null pointers.

8.8 Discussion

Most analyses that check safety properties are perceived
to be valuable because of the potential they hold for
finding (and enabling the elimination of) errors in pro-
grams. Our system did identify a number of errors in
programs. Furthermore, our use of the system had a
profound impact on the development of our benchmark
programs. In particular, the need to develop the spec-
ifications forced us to think more deeply about the in-
tended structure and behavior of the program. We be-
lieve that this process eliminated much ambiguity about
the program’s behavior before we started developing the
implementation sections, reducing the number of coding
errors that found their way into these modules.

In general, we found abstract sets to be an appro-
priate formalism for our specifications. They allowed
us to effectively capture, in a natural and easy to use
way, many relevant properties of the data structures in
our example programs. Of course, this abstraction does
not capture all potentially relevant aspects (for exam-
ple, ordering or mapping relationships between objects
inserted into and retrieved from an encapsulated data
structure), but it is decidable, natural, and worked well
for us in our examples.

One surprise was that our system found substantially
more errors in specification sections than in implemen-
tation sections. In particular, we sometimes found that
our initial specification was not strong enough and we
had to add more clauses before the properties were ac-
tually true. This process substantially improved our
understanding of what the program was actually doing.

In some cases the system surprised us with the so-
phistication of the properties that it was able to check.

Because the modularity of our analysis approach elimi-
nates any need for the analyses to scale to sizable pro-
grams, we were able to deploy very powerful analyses
that could check quite strong program properties. Very
few program analyses, for example, are able to verify
that an implementation correctly processes every ob-
ject in a given data structure. Nevertheless, the ex-
treme precision of our analyses enabled them to check
this kind of property in some of our test programs.

9 Related Work

We are aware of no previous research that allows mul-
tiple different analyses to analyze different parts of the
program and share their results to detect or verify im-
portant properties that span parts of the program ana-
lyzed by different analyses. We survey related work in
shape analysis, typestate systems, boolean algebra deci-
sion procedures, and program checking tools in general.

Shape Analysis. The goal of shape analysis is
to verify that programs preserve consistency properties
of (potentially-recursive) linked data structures. Re-
searchers have developed many shape analyses and the
field remains one of the most active areas in program
analysis today [23, 30, 31]. These analyses focus on ex-
tracting or verifying detailed consistency properties of
individual data structures. While these analyses are
very precise, the detail of the properties that they must
track have limited their scalability. One of our primary
research goals is to enable the application of these so-
phisticated analyses in a modular fashion, with each
analysis operating on only that part of the program rel-
evant for the properties that it is designed to verify.

Typestate Systems. Typestate systems track the
conceptual states that each object goes through during
its lifetime in the computation [12,34]. They generalize
standard type systems in that the typestate of an ob-
ject may change during the computation. Our approach
enables the checking of properties that generalize type-
state properties [26]. The developer can simply use sets
to model typestates: if an object should be in a given
typestate in the typestate system, it is a member of the
corresponding set in our system.

Decision Procedures for Boolean Algebras. We
use first-order logic formulas in the language of boolean
algebras as the basis of our module specification lan-
guage. The decidability of the satisfiability problem for
the first-order theory of boolean algebras dates back
to [28, 33] and is presented in [2, Chapter 4]. The
complexity of this problem is alternating exponential
time [22]. To our knowledge, the only tool that can
decide the first-order theory of boolean algebras is the
MONA [19]; it implements the more general decision

19

procedure for monadic second-order logic over trees,
and has non-elementary complexity in general but ad-
equate performance in practice for the problems that
arise in our program analysis framework. A decision
procedure for an extension of boolean algebras with
Presburger arithmetic operations is presented in [24].

Program Checking Tools. ESC/Java [13] is a pro-
gram checking tool whose purpose is to identify com-
mon errors in programs using program specifications in
a subset of the Java Modelling Language [6]. ESC/Java
sacrifices soundness in that it does not model all de-
tails of the program heap, but can detect some com-
mon programming errors. Other tools focus on verify-
ing properties of concurrent programs [7, 29] or device
drivers [3,16]. One important difference between this re-
search and our research is that our research is designed
not to develop a single new analysis algorithm or tech-
nique, but rather to enable the application of multiple
analysis that check arbitrarily complicated properties
within a single program.

10 Conclusion

The program analysis community has produced many
precise analyses that are capable of extracting or verify-
ing quite sophisticated data structure properties. Issues
associated with using these analyses include scalability
limitations and the diversity of important data struc-
ture properties, some of which will inevitably elude any
single analysis.

This paper shows how to apply the full range of anal-
yses to programs composed of multiple modules. The
key elements of our approach include modules that en-
capsulate object fields and data structure implementa-
tions, specifications based on membership in abstract
sets, and invariants that use these sets to express (and
enable the verification of) properties that involve multi-
ple data structures in multiple modules analyzed by dif-
ferent analyses. We anticipate that our techniques will
enable the productive application of a variety of precise
analyses to verify important data structure consistency
properties and check important typestate properties in
programs built out of multiple modules.

Acknowledgements. We thank Anders Møller for
help with the PALE and MONA packages. The second
author thanks Rustan Leino for discussions on weakest
preconditions, Darko Marinov for discussion on sym-
bolic execution, and Andreas Podelski for discussion on
quantifier elimination in program analysis.

References

[1] Center-tracon automation system.
http://www.ctas.arc.nasa.gov/ .

[2] W. Ackermann. Solvable Cases of the Decision Problem.
North Holland, 1954.

[3] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani.
Automatic predicate abstraction of C programs. In Proc.
ACM PLDI, 2001.

[4] T. Ball, A. Podelski, and S. K. Rajamani. Relative
completeness of abstraction refinement for software model
checking. In TACAS’02, volume 2280 of LNCS, page 158,
2002.

[5] W. Blume and R. Eigenmann. Performance analysis of
parallelizing compilers on the Perfect Benchmarks
programs. IEEE Transactions on Parallel and Distributed
Systems, 3(6):643–656, Nov. 1992.

[6] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML
tools and applications. Technical Report NII-R0309,
Computing Science Institute, Univ. of Nijmegen, March
2003.

[7] S. Chaki, S. K. Rajamani, and J. Rehof. Types as models:
model checking message-passing programs. In 29th ACM
SIGPLAN-SIGACT POPL, pages 45–57. ACM Press, 2002.

[8] D. R. Cheriton and M. E. Wolf. Extensions for
multi-module records in conventional programming
languages. In Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 296–306. ACM Press, 1987.

[9] L. Clarke and D. Richardson. Symbolic evaluation methods
for program analysis. In Program Flow Analysis: Theory
and Applications, chapter 9. Prentice-Hall, Inc., 1981.

[10] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In Proc. 6th POPL, pages 269–282,
San Antonio, Texas, 1979. ACM Press, New York, NY.

[11] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Conference
Record of the Fifth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 84–97, Tucson, Arizona, 1978. ACM Press, New
York, NY.

[12] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and
P. Giannini. Fickle: Dynamic object re-classification. In
Proc. 15th ECOOP, LNCS 2072, pages 130–149. Springer,
2001.

[13] C. Flanagan, K. R. M. Leino, M. Lilibridge, G. Nelson,
J. B. Saxe, and R. Stata. Extended Static Checking for
Java. In Proc. ACM PLDI, 2002.

[14] C. Flanagan and J. B. Saxe. Avoiding exponential
explosion: Generating compact verification conditions. In
Proc. 28th ACM POPL, 2001.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlisside. Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass., 1994.

[16] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L.
McMillan. Abstractions from proofs. In 31st POPL, 2004.

[17] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A
relational approach to interprocedural shape analysis. In
11th SAS, 2004.

[18] N. Klarlund and A. Møller. MONA Version 1.4 User
Manual. BRICS Notes Series NS-01-1, Department of
Computer Science, University of Aarhus, January 2001.

20

[19] N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA
implementation secrets. In Proc. 5th International
Conference on Implementation and Application of
Automata. LNCS, 2000.

[20] N. Klarlund and M. I. Schwartzbach. Graph types. In
Proc. 20th ACM POPL, Charleston, SC, 1993.

[21] D. Kozen. Complexity of boolean algebras. Theoretical
Computer Science, 10:221–247, 1980.

[22] D. Kozen. Logical aspects of set constraints. In Proc. 1993
Conf. Computer Science Logic (CSL’93), volume 832 of
Lecture Notes in Computer Science, pages 175–188, 1993.

[23] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In
Proc. 29th POPL, 2002.

[24] V. Kuncak and M. Rinard. The first-order theory of sets
with cardinality constraints is decidable. Submitted to
POPL’05, July 2004.

[25] P. Lam, V. Kuncak, and M. Rinard. On modular pluggable
analyses using set interfaces. Technical Report 933, MIT
CSAIL, December 2003.

[26] P. Lam, V. Kuncak, and M. Rinard. Generalized typestate
checking using set interfaces and pluggable analyses.
SIGPLAN Notices, 39:46–55, March 2004.

[27] K. R. M. Leino. Efficient weakest preconditions.
KRML114a, 2003.

[28] L. Loewenheim. Über mögligkeiten im relativkalkül. Math.
Annalen, 76:228–251, 1915.

[29] Z. Manna and T. S. Group. Step: Deductive-algorithmic
verification of reactive and real-time systems. In 8th CAV,
volume 1102, pages 415–418, 1996.

[30] A. Møller and M. I. Schwartzbach. The Pointer Assertion
Logic Engine. In Proc. ACM PLDI, 2001.

[31] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. ACM TOPLAS, 24(3):217–298,
2002.

[32] M. Sharir and A. Pnueli. Two approaches to
interprocedural data flow analysis problems. In Program
Flow Analysis: Theory and Applications. Prentice-Hall,
Inc., 1981.

[33] T. Skolem. Untersuchungen über die Axiome des
Klassenkalküls and über “Produktations- und
Summationsprobleme”, welche gewisse Klassen von
Aussagen betreffen. Skrifter utgit av Vidnskapsselskapet i
Kristiania, I. klasse, no. 3, Oslo, 1919.

[34] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability. IEEE
TSE, January 1986.

21

