
NIRA: A New Internet Routing Architecture
by

Xiaowei Yang

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

September 2004

c© 2004 Massachusetts Institute of Technology. All rights reserved.

Signature of author
Department of Electrical Engineering and Computer Science

September 1, 2004

Certified by
David Clark

Senior Research Scientist of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Committee on Graduate Students
Department of Electrical Engineering and Computer Science

This is a modified version of the submitted thesis. A few typos were corrected and
Appendix 5.C is added.

NIRA: A New Internet Routing Architecture

by

Xiaowei Yang

Submitted to the Department of Electrical Engineering and
Computer Science on September 1, 2004 in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

Abstract

The present Internet routing system faces two challenging problems. First, unlike in the telephone
system, Internet users cannot choose their wide-area Internet service providers (ISPs) separately
from their local access providers. With the introduction of new technologies such as broadband
residential service and fiber-to-the-home, the local ISP market is often a monopoly or a duopoly.
The lack of user choice is likely to reduce competition among wide-area ISPs, limiting the in-
centives for wide-area ISPs to improve quality of service, reduce price, and offer new services.
Second, the present routing system fails to scale effectively in the presence of real-world re-
quirements such as multi-homing for robust and redundant Internet access. A multi-homed site
increases the amount of routing state maintained globally by the Internet routing system. As the
demand for multi-homing continues to rise, the amount of routing state continues to grow.

This dissertation presents the design of a new Internet routing architecture (NIRA) that si-
multaneously addresses these two problems. NIRA gives a user the ability to choose the sequence
of Internet service providers his packets traverse. It also has better scaling characteristics than to-
day’s routing system. The design of NIRA is decomposed into four modular components: route
discovery, route availability discovery, route representation and packet forwarding, and provider
compensation. This dissertation describes mechanisms to realize each of these components. It
also makes clear those places in the design where a globally agreed mechanism is needed, and
those places where alternative mechanisms can be designed and deployed locally. In particular,
this dissertation describes a scalable route discovery mechanism. With this mechanism, a user
only needs to know a small region of the Internet in order to select a route to reach a destina-
tion. In addition, a novel route representation and packet forwarding scheme is designed such
that a source and a destination address can uniquely represent a sequence of providers a packet
traverses.

Network measurement, simulation, and analytic modeling are used in combination to evaluate
the design of NIRA. The evaluation suggests that NIRA is scalable.

Thesis Supervisor: David Clark
Title: Senior Research Scientist of Electrical Engineering and Computer Science

Acknowledgments

I am most grateful to my advisor David Clark, who guided me and supported me through this

work and my entire graduate study. His vision and wisdom helped me see the importance of

this work, and his optimism and enthusiasm encouraged me to tackle numerous difficult issues

I would have avoided in this work. Graduate school took me a long time, but Dave was always

patient with me. He let me develop my potential at my own pace, and shepherded me in his

special way when I wandered off the road. Dave has taught me so much. He taught me to focus

on big pictures, to hold high standards to my work, to systematically come up with solutions,

to face challenges with confidence, and much more. His teaching made me grow from a student

into a young peer of his, and I have no doubt that I will continuously benefit from his teaching

throughout my career.

Members of my thesis committee: Hari Balakrishnan and Robert Morris, offered insightful

feedbacks on this work. Their perspectives enlarged my view, and helped improve this work.

Arthur Berger helped me develop the analytic model used in this work to evaluate the route

setup latency. He also spent much time to meet with me regularly to discuss my research.

Douglas De Couto pointed me to the related work by Spinelli and Gallager, which greatly

simplified the network protocol designed for route discovery in this work.

I owe many thanks to the past and present members of the Advanced Network Architecture

(ANA) group, and my friends on the fifth floor of the old LCS building. Many of them read

early drafts of this work or listened to multiple versions of talks on this work. They provided

useful comments and helped mature this work. They include: Mike Afergan, Steve Bauer, Rob

Beverly, Peyman Faratin, Nick Feamster, Dina Katabi, Joanna Kulik, George Lee, Ben Leong, Ji

Li, Jinyang Li, Karen Sollins, and John Wroclawski. Steve Bauer was my officemate while I was

writing this dissertation. He became my sounding board. So many times when I could not come

up with the right argument in my writing, a chat with Steve clarified my thinking. Mike Afergan

and Rob Beverly, both are very knowledgeable about operational networks. I learned much about

networking in practice from them. Becky Shepardson, the administrative assistant of ANA, took

care of things ranging from scheduling my thesis defense to FedExing me thesis chapters with

readers’ comments while I was away. She helped me to get work done.

Many people helped along my journey of graduate school in many ways. John Wroclawski’s

skepticism greatly helped me catch flaws in my work. I and other graduate students at ANA

always know that if we could convince John at group meetings, we could face the most ferocious

audience without fear. John’s help spread from research, to writing, and to job search.

In my early days at graduate school, Tim Shepard taught me how to use and hack Unix.

He also spent much time to help reduce my accent and made me speak English. Even after he

left ANA, he always remembered to visit me at my office or to email me. He provided not only

technical insights, but inspiration and support.

Tim introduced me to Garrett Wollman. Garrett possesses a tremendous amount of practical

knowledge about networking and FreeBSD. He taught me many things I would not learn from

books or papers. He showed me how the network of the old LCS building was wired, and how

packet filters were deployed at a real router. I also learned many things about FreeBSD from him.

Lixia Zhang, who graduated from ANA even before I joined, has always kept an eye on

me remotely. She generously shared her experience at graduate school with me, and provided

valuable advice both for research and for life. Despite her busy professional life, Lixia always

reserved time to answer various questions I asked.

Finally, I would not have made this without the support from my family. My parents brought

up me and my brother with love and discipline. They overcame many hardships to give us a

good education, and always put our needs above their own. I am forever indebted to them. My

brother, Junfeng Yang, who himself is pursuing a Phd in computer science, had many interesting

discussions with me on my work.

I am fortunate to have Daniel Jiang to spend my life with. Dan supported me in every way

possible. He let me enjoy the convenience of living within walking distance to work and he

himself took nearly two-hour commute every day. He always showed a strong interest in my

work, and was eager to contribute his ideas. He took care of all other things in life when I was

busy with work. He encouraged me when I felt frustrated, and took pride and pleasure in what I

achieved. He deserves my sincerest gratitude.

Contents

1 Introduction 17

1.1 User Choice . 18

1.2 Scaling . 19

1.3 Existing Proposals or Solutions . 20

1.3.1 User Choice . 20

1.3.2 Scaling . 21

1.4 Our Approach . 22

1.4.1 Design Overview . 22

1.4.2 Mechanisms . 24

1.4.3 Evaluation . 24

1.5 Organization of the Dissertation . 24

2 Related Work 25

2.1 Background: the Present Internet Routing System 25

2.2 Scalable Routing . 26

2.2.1 The Cluster (or Area) Hierarchical Routing 27

2.2.2 The Landmark Hierarchical Routing . 28

2.2.3 Provider Hierarchical Routing . 29

2.2.4 Compact Routing . 30

2.2.5 Geographical Routing . 30

2.2.6 Distributed Hash Table (DHT) Routing 31

2.2.7 Tradeoffs of Scalable Routing Schemes 32

2.2.8 Applicability to Inter-domain Routing 32

2.3 Routing Architecture Proposals . 33

2.3.1 Nimrod . 34

2.3.2 Inter-domain Policy Routing . 34

2.3.3 Scalable Inter-domain Routing Architecture 34

2.3.4 IPNL . 35

2.3.5 TRIAD . 35

7

2.3.6 Feedback Based Routing System . 35

2.3.7 Overlay Policy Control Architecture (OPCA) 36

2.3.8 Platypus . 36

2.3.9 Routing Control Platform (RCP) . 36

2.4 Current Route Control Technologies . 36

2.4.1 Commercial Route Control Technologies 36

2.4.2 Overlay Networks . 37

3 Design Rationale 39

3.1 Modularization . 39

3.2 Design Requirements . 40

3.3 Route Discovery . 41

3.4 Route Availability Discovery . 44

3.5 Route Representation and Forwarding . 45

3.6 Provider Compensation . 45

3.7 Putting the Pieces Together . 46

3.8 Summary of Design Decisions . 46

4 Route Discovery and Failure Detection 49

4.1 Background . 49

4.2 Provider-Rooted Hierarchical Addressing . 50

4.2.1 Network Model . 50

4.2.2 The Addressing Scheme . 51

4.2.3 Example . 52

4.2.4 Address Allocation Rules . 53

4.2.5 Address Format . 53

4.2.6 Non-Provider-Rooted Addresses . 56

4.2.7 Extended Addressing . 57

4.2.8 Discussion . 57

4.3 Topology Information Propagation Protocol (TIPP) 57

4.3.1 Overview . 58

4.3.2 Protocol Organization . 59

4.3.3 Address Allocation . 59

4.3.4 Topology Distribution . 61

4.4 Name-to-Route Lookup Service . 64

4.4.1 Record Updates . 65

4.4.2 Locations of Root NRLS Servers . 65

4.5 Route Availability Discovery . 66

8

4.6 Discussion . 67

4.A Proof of Address to Path Mapping Property . 67

4.B TIPP Specification . 68

4.B.1 TIPP State and Logical Data Structures 68

4.B.2 Message Types . 69

4.B.3 TIPP Finite State Machine . 69

4.B.4 Address Allocation . 71

4.B.5 Topology Distribution . 75

4.B.6 Topology Update Algorithm . 80

4.B.7 Link Records for Removed Links . 80

4.B.8 Topology Database Refreshment . 82

4.B.9 Example . 82

5 Route Representation and Packet Forwarding 85

5.1 Route Representation . 85

5.1.1 Previous Work . 86

5.1.2 Comparison . 86

5.1.3 Design Requirements . 88

5.1.4 Design Rationale . 89

5.1.5 Notation . 89

5.1.6 Details . 90

5.2 Packet Forwarding . 92

5.2.1 Design Requirements . 92

5.2.2 Design Overview . 93

5.2.3 Details . 94

5.2.4 Forwarding Tables . 101

5.2.5 The Forwarding Algorithm . 104

5.2.6 Correctness . 105

5.3 How a User Creates a Route Representation . 108

5.4 Route Representation for a Reply Packet . 110

5.5 Route Representation for an ICMP Error Notification Packet 111

5.6 Optimization . 113

5.6.1 Multiple Routing Regions . 117

5.6.2 Source Address Compatibility . 118

5.7 Forwarding Cost Analysis . 119

5.A Correctness of the Forwarding Algorithm . 120

5.A.1 An Uphill Route Segment . 121

5.A.2 A Downhill Route Segment . 122

9

5.A.3 A Bridge Segment . 123

5.A.4 A Hill Segment . 124

5.A.5 Any Route Segment . 126

5.A.6 Any Route . 128

5.B Multiple Nodes . 129

5.C Sibling Relationships . 129

6 Provider Compensation 133

6.1 Provider Compensation in Today’s Internet . 133

6.2 Design Rationale . 134

6.3 Direct Compensation Model . 135

6.3.1 Policy Checking . 137

6.3.2 Indirect Compensation Model . 138

6.4 Financial Risks of Exposing Routes . 140

6.5 The Core . 141

6.6 Where Choice can be Made . 141

7 Evaluation 143

7.1 Route Discovery Mechanisms . 143

7.1.1 Provider-rooted Hierarchical Addressing 143

7.1.2 TIPP . 146

7.1.3 NRLS . 156

7.2 Route Availability Discovery . 156

7.A Modeling the Latency for Successfully Sending a Packet 167

7.A.1 Distribution of I . 168

7.A.2 Expected Value of I . 170

8 Conclusion and Future Work 171

8.1 Contributions . 171

8.2 Limitations . 172

8.3 Future Work . 172

10

List of Figures

1-1 The continuing growth of active BGP entries collected from AS1221 (Telstra, an

Australian ISP)). Courtesy of http://bgp.potaroo.net/ 19

2-1 How BGP works. 26

2-2 An example of a cluster-hierarchy network. 27

2-3 A node’s routing table contains entries only for nodes in the same lowest level

clusters, clusters in the same second level cluster, and top-level clusters. 28

2-4 An example of a landmark-hierarchy network. A node marked by a square is

a level 1 landmark. A node marked by a bigger circle is a level 2 landmark.

r0 = 0, r1 = 2, r2 = 4. 29

2-5 The hierarchical structure of the Internet. An arrowed line between two domains

represents a provider-customer connection, with the arrow ending at the provider.

A dashed line represents a peering connection. 30

2-6 An example of the ring geometry and the hypercube geometry for an identifier

space of size 8. A circle represents the position of an identifier in a geometry, and

a filled circle represents an identifier taken by a node. 31

2-7 Packets are generally forbidden to traverse the path Provider1 → Net1 →
Provider2. An arrowed line in the figure represents a customer-provider con-

nection, with the arrow ending at the provider. 33

3-1 A simplified view of the Internet domain-level topology. A domain is repre-

sented by an ellipse. An arrowed line between two domains represents a provider-

customer connection, with the arrow ending at the provider. A dashed line repre-

sents a peering connection. 43

3-2 User Bob’s up-graph is drawn with dark lines. 44

4-1 Dependency between the function modules (route discovery and failure detec-

tion) and the mechanisms. 49

4-2 The dark region depicts the provider tree rooted at the top-level provider B1. Note

the peering connection between R2 and R3 is not part of the tree. 51

11

4-3 An example of strict provider-rooted hierarchical addressing. For clarity, we only

shown address allocation for the dark region of the figure. 52

4-4 The format of a hierarchically allocated address. 54

4-5 This example shows that the routing table entries for nodes inside a domain is

inflated by 2 when a domain has two address prefixes, pd1 and pd2 . If an address

has a fixed-length intra-domain section, the routing table could be split into two

parts: the inter-domain part (b) and the intra-domain part(c), to avoid this infla-

tion. 56

4-6 The format of a non-provider-rooted address. 57

4-7 What Bob learns from TIPP is shown in black. TIPP propagates to users address

allocation information and relevant topology information. 58

4-8 When Bob wants to communicate with Alice, Bob will query the Name-to-Route

Lookup Service to retrieve Alice’s addresses, 2:1:1::2000 and 1:3:1::2000. 64

4-9 The logical data structures the router in P1 keeps to maintain address prefixes,

topology information, and forwarding state. 68

4-10 TIPP Finite State Machine. Transitions for error events are omitted. 70

4-11 Contents of an address request message and an address message. 71

4-12 How a router processes an address message. 73

4-13 M has an address prefix p f that is within N’s address space, but is not allocated

from N. The allocation-relation bit in a prefix record is used to clarify this. 77

4-14 The contents of the link record (R1, B1) and (R2,R3). The network topology is

shown in Figure 4-3. 77

4-15 How a router processes a topology message. 78

4-16 Contents of a topology message. 78

4-17 Each line shows a TIPP event happened at a simulated time point. The notation

i − j means node i’s connection to a neighbor j. 83

5-1 Bridge forwarding is source address dependent. 96

5-2 The initial state of R2’s forwarding tables. 101

5-3 The initial state of B1’s forwarding tables. 102

5-4 Contents of B1’s routing table. 102

5-5 R2’s forwarding tables. 103

5-6 B1’s forwarding tables. 104

5-7 This figure shows how a packet header is changed after a router executes Step 4

of the forwarding algorithm. 105

5-8 This figure shows the packet header when Bob sends the packet. The network

topology is shown in Figure 4-3. 107

12

5-9 This figure shows the packet header after R2 finishes executing Step 4 of the

forwarding algorithm. The network topology is shown in Figure 4-3. 107

5-10 This figure shows the packet header after R3 finishes executing Step 4 of the

forwarding algorithm. The network topology is shown in Figure 4-3. 108

5-11 The packet header when Alice receives the packet. The network topology is

shown in Figure 4-3. 111

5-12 The reply packet header sent by Alice to Bob. The network topology is shown in

in Figure 4-3. 111

5-13 Route representation optimization. 115

5-14 This figure shows the contents of R2’s forwarding tables after we optimize our

route representation scheme. 116

5-15 Multiple routing regions. 117

5-16 This figure shows an uphill route segment and its representation. 121

5-17 This figure shows a downhill route segment and its representation. 122

5-18 This figure shows a bridge route segment and its representation. 123

5-19 This figure shows two typical hill route segments and their representations. . . . 125

5-20 A hill route segment without an uphill portion and its representation. 125

5-21 A hill route segment without a downhill portion and its representation. 125

5-22 This figure shows an arbitrary route segment and its representation. 127

5-23 This figure shows the route representation for a compound route. 127

5-24 This figure shows the route representation of a packet for a compound route after

the forwarding algorithm modifies the packet header when the packet arrives at

the end domain of an intermediate route segment. 128

5-25 This figure shows the route representation of a packet for a compound route after

the forwarding algorithm modifies the packet header when the packet arrives at

the end domain of an intermediate route segment. 128

5-26 An example of sibling relationship. 130

5-27 Domains A, B, C, and D form a clique, and each has a sibling relationship with

the other domains. 130

5-28 Domains A, B, C, and D can be consolidated into one domain. 131

6-1 In today’s Internet, a provider is paid by its directly connected customers based

on pre-negotiated contractual agreements. In this example, N1 is paid by users

like Bob and Mary; R2 is paid by local providers such as N1 and N2; B1 is paid

by regional providers such as R1, R2, and R3. 134

6-2 Indirect compensation model. 139

7-1 Domain-level topologies. 144

13

7-2 The number of hierarchically allocated prefixes of each domain as a cumulative

distribution, and the mean, median, and the 90th percentile. 145

7-3 The number of link records in a domain’s main topology database as a cumulative

distribution, and the mean, median, and the 90th percentile. 147

7-4 The size (in byte) of a domain’s main topology database as a cumulative distri-

bution, and the mean, median, and the 90th percentile. 148

7-5 The number of link records in an edge domain’s main topology database as a

cumulative distribution, and the mean, median, and the 90th percentile. 149

7-6 The size (in byte) of an edge domain’s main topology database as a cumulative

distribution, and the mean, median, and the 90th percentile. 150

7-7 The number of forwarding entries in a TIPP router’s three logical forwarding

tables as a cumulative distribution, and the mean, median, and the 90th percentile. 151

7-8 Simulation topologies. 152

7-9 The average and maximum number of messages and bytes sent per failure per link.153

7-10 The average and maximum time elapsed between the time a failure is detected

and the time the last topology message triggered by the failure is received. 154

7-11 The average and maximum number of messages and bytes sent per failure per

link when each link randomly fails and recovers. 155

7-12 The cumulative distribution of the connection setup latency with 1% route failure

probability. Other parameter values: 80% NRLS cache hit probability, 3-level of

name hierarchy, 100ms round trip time, 3-second timeout value for route failure

detection. 159

7-13 The complementary distribution of the connection setup latency with 1% route

failure probability. Other parameter values are the same as above. 159

7-14 The cumulative distribution of the connection setup latency with 5% route failure

probability. Other parameter values: 80% NRLS cache hit probability, 3-level of

name hierarchy, 100ms round trip time, 3-second timeout value for route failure

detection. 160

7-15 The complementary distribution of the connection setup latency with 5% route

failure probability. Other parameter values are the same as above. 160

7-16 How the expected connection setup latency varies with different route failure

probabilities. Other parameter values: 80% NRLS cache hit probability, 3-level of

name hierarchy, 100ms round trip time, 3-second timeout value for route failure

detection. 161

7-17 The required cache hit probability and the fraction of router notification out of all

route failure events when the connection setup latency is less than 0.5 second with

certain probability. Other parameter values: 1% route unavailable probability; 3-

level of name hierarchy; 3 second timeout. 162

14

7-18 The required cache hit rate and the fraction of router notification out of all route

failure events when the connection setup latency is less than 0.5 second with

certain probability. Other parameter values: 5% route unavailable probability; 3-

level of name hierarchy; 3 second timeout. 162

7-19 The required cache hit rate and the router notification probability when the ex-

pected connection setup latency is less than certain value. Other parameter val-

ues: 1% route unavailable probability; 3-level of name hierarchy; 3 second timeout.163

7-20 The required cache hit rate and the router notification probability when the ex-

pected connection setup latency is less than 1 second. Other parameter values:

5% route unavailable probability; 3-level of name hierarchy; 3 second timeout. . 163

7-21 The cumulative distribution of the latency for successfully sending a packet in

the middle of a connection with 1% route failure probability. Parameter values:

100% NRLS cache hit probability, 3-level of name hierarchy, 100ms round trip

time, 800ms timeout value for route failure detection. 164

7-22 The complementary distribution of the latency for successfully sending a packet

in the middle of a connection. Parameter values are the same as those in the figure

above. 164

7-23 The cumulative distribution of the latency for successfully sending a packet in

the middle of a connection with 5% route failure probability. Parameter values:

100% NRLS cache hit probability, 3-level of name hierarchy, 100ms round trip

time, 800ms timeout value for route failure detection. 165

7-24 The complementary distribution of the latency for successfully sending a packet

in the middle of a connection. Parameter values are the same as those in the figure

above. 165

7-25 How the expected latency for successfully sending a packet in the middle of

a connection varies with different route failure probabilities. Parameter values:

100% NRLS cache hit probability, 3-level of name hierarchy, 100ms round trip

time, 800ms timeout value for route failure detection. 166

15

16

Chapter 1

Introduction

The Internet today consists of more than 17,000 [2] worldwide routing domains, each operated

under an autonomous organization.1 Domains make business decisions to interconnect, and tech-

nically, the Border Gateway Protocol (BGP) [88], is the uniform inter-domain routing protocol

that connects thousands of domains into a coherent internetwork.

This dissertation is concerned with the design of the inter-domain routing system. The present

design has largely neglected two important problems: one structural2 and one architectural. The

structural problem is that the present system fails to create and sustain user-driven competition

among upper-level Internet service providers (ISPs). The architectural problem is that the present

inter-domain routing, accomplished by one global routing protocol, fails to scale effectively in

the presence of real-world requirements such as multi-homing.

We present the design of a new Internet routing architecture that scales adequately and gives a

user the ability to choose domain-level routes so as to drive ISP competition. Our design focuses

on recognizing the proper functional boundaries to modularize the routing system. Modularity

is the key principle we apply again and again in our design. We use it not only as a tool to

manage complexity, but as a technique to reduce the need to architecturally constrain every part

of the routing system. Within a functional module, our design provides basic mechanisms to

achieve the desired functionality, yet allows different mechanisms to be introduced to enhance

the functionality. We believe that a system designed under such a principle has a great potential

to evolve and to survive unpredicted future demands.

In the rest of this Chapter, we elaborate the problems in today’s routing system, discuss briefly

why existing or proposed solutions do not work well, and outline our solution to these problems.

1A routing domain is also referred to as an autonomous system (AS), or simply a domain. A domain that provides
forwarding service for packets sent or destined to other domains is sometimes called a provider, or a service provider,
or an Internet service provider (ISP).

2By “structural,” we refer to industry structure: the study of how industries and businesses might be organized to
achieve specific ends and objectives.

17

1.1 User Choice

From a structural perspective, user choice is crucial for the creation of a healthy and competitive

ISP market [29, 109]. Today, users can pick their own ISPs, but once their packets have entered

the network, the users have no control over the overall routes their packets take. With BGP, each

domain makes local decisions to determine what the next hop (at the domain level) will be, but

the user cannot exercise any control at this level.

This work argues that it would be a better alternative to give the user more control over rout-

ing at this level. User choice fosters competition, which imposes an economic discipline on the

market, and fosters innovation and the introduction of new services. An analogy can be seen in

the telephone system, which allows the user to pick his long distance provider separately from

his (usually monopolist) local provider. Allowing a user to select his long-distance provider has

created the market for competitive long distance, and driven prices to a small fraction of their

pre-competition starting point. The original reasoning about Internet routing was that this level

of control was not necessary, since there would be a large number of ISPs, and if a consumer did

not like the wide-area choice of a given local access ISP, the consumer could switch. Whether this

actually imposed enough pressure on the market in the past might be debated. But for the con-

sumer, especially the residential broadband consumer, there is likely to be a very small number of

competitive local ISPs offering service. With cable competing only with DSL (Digital Subscriber

Line), the market is a duopoly at best (at the facility level) and often a monopoly in practice. The

deployment of the new technology Fiber-To-The-Home (FTTH) [78] is likely to further reduce

the number of competing local ISPs. So in the future, the competitive pressures on the wide-area

providers will go down.

While it is only speculation, one can ask whether the lack of end to end quality of service in

the Internet is a signal of insufficient competitive pressure to drive the deployment of new ser-

vices. Certainly, there are many consumers who would be interested in having access to enhanced

QoS, if it was available end to end at a reasonable price. Such a service might have driven the

deployment of VoIP, of various sorts of teleconferencing and remote collaboration tools, and so

on. If the consumer could pick the routes his packets took, this might entice some provider to

enter the market with a QoS offering, and a set of ISPs might in time team up to make this widely

available. But there is no motivation to offer such a service today, since the consumer has no way

to get to it. So one can speculate that the lack of competition in the form of user-selected routes

is one cause of stagnation in Internet services today.

We cannot prove this hypothesis as a business proposition. Only an experiment in the real

world, a real market deployment, can reveal what users actually want, what creative providers

will introduce, and what might happen to pricing. But this work takes as a starting point that this

experiment is a worthy one, and explores the technical problems that would have to be solved to

give users this sort of choice.

18

1.2 Scaling

Figure 1-1: The continuing growth of active BGP entries collected from AS1221 (Telstra, an
Australian ISP)). Courtesy of http://bgp.potaroo.net/

At an architectural level, the current routing system faces a scaling problem. Figure 1-1 shows

the continuing growth of the active BGP table entries. Multi-homing [24] is one of the most

significant contributors to the fast growth of BGP tables, as users increasingly demand robust

and redundant Internet access paths. A multi-homed site is usually allocated an address prefix

from one of its providers. When this address prefix is announced to the site’s other providers,

it cannot be aggregated into these providers’ address space. So these providers would have to

announce the address prefix of the multi-homed site in their BGP sessions to their neighbors,

thus propagating one extra entry into BGP routing tables.3

Today, multi-homing has introduced 20−30% extra prefixes in BGP tables [24]. One might ar-

gue that the advance of hardware technology will surpass the growth of the routing table size, thus

scaling won’t become a problem. However, this optimistic prediction has perhaps overlooked two

points. First, the Internet community has already exercised self-discipline to control the growth

of BGP tables, making demands for multi-homing difficult to satisfy [76]. It is common practice

among ISPs today to have a restriction on the longest address prefix their BGP routers would

accept. For example, Sprint [94], Verio [108], and Jippii [12] all have a filter policy that only

accepts address prefixes not allocated by themselves with a maximum length /24.4 If a small or-

3The provider that allocates the address prefix to the multi-homed site would also need to announce that address
prefix in its BGP sessions, because IP forwarding is based on longest prefix match. If the provider does not announce
that prefix separately and only announces an aggregated address prefix, all traffic destined to the multi-homed site
would go through the other providers of the site.

4An IP address prefix is often written in the format address/prefix length. So the notation /number is used to denote
the length of an address prefix, or the size of an address block. A /number address prefix has 232−number addresses.

19

ganization, e.g., a five-person stock trading company, gets an address prefix longer than /24 from

an upstream provider, it would be difficult for the organization to have another upstream provider

to announce its address prefix to the Internet in order to obtain a redundant Internet access path.

At the mean time, it is difficult for that small company to obtain a provider-independent address

prefix from an Internet Registry, as most regional Internet registries [11] have a policy limiting

the minimum size of an address block they would allocate to an organization and require that the

organization justify an efficient utilization rate for an address block of that size. For example, the

smallest address block ARIN (American Registry for Internet Numbers) [48] would allocate to

a multi-homed site is /22, and ARIN requires that a site show a 25% immediate address utiliza-

tion rate of an address block of that size and a 50% utilization rate within one year. It would be

difficult for a small company to justify such a utilization rate.

So if we count the pent up needs for multi-homing, and consider the possibility that millions

of business organizations worldwide might all desire redundant and robust Internet access paths,

the routing table sizes could have increased much faster than what we have observed.

Second, we are primarily concerned with the control overhead incurred by maintaining the

routing tables, although the fast growth of the routing tables also makes it a nuisance for providers

to continuously upgrade their routers [58, 37]. The inter-domain routing protocol, BGP, is essen-

tially a flat routing protocol. The status change of one entry in a BGP table could lead to global

routing update, causing BGP announcements to ripple through the entire Internet. The larger the

tables get, the more the CPU time and the bandwidth a router would have to spend on processing

and propagating the announcements in order to maintain an up-to-date routing table. Even for an

address prefix to which a router seldom has traffic to forward, the router has to spend its CPU

time and bandwidth to keep the entry updated.

If we consider the speculation that if multi-homing were satisfactorily supported, then the

routing tables would grow much faster, and the control overhead for updating the routing tables

would become much more significant, our conclusion is that a flat inter-domain routing system

is likely to have a high maintenance cost and suffers from performance problems.

1.3 Existing Proposals or Solutions

In the past, these two problems, user choice and scaling, have been dealt with in isolation. There

exist partial solutions that address each of these problems.

1.3.1 User Choice

IP [84, 35] has a loose source routing option for users to specify routes. However, to fully sup-

port domain-level user selected routes, a number of problems must be addressed, including how

users discover routes scalably and make intelligent route choices, how user-selected routes are

20

efficiently represented, how packets are forwarded, how route failures are handled, and how

providers are compensated if users choose their services. Loose source routing option alone is

insufficient to support user-selected routes.

Intelligent route control products, such as products offered by Internap [8], RouteScience [5]

and OPNIX [4], are able to assist a multi-homed site to select its first hop provider based on

user-configured parameters, e.g., cost, dynamic traffic load. However, those products only of-

fer choices for outbound traffic, and cannot choose beyond the first hop, and are not generally

affordable by small sites or individual users.

Overlay networks [16, 97, 102, 90] enable route selection to some extent. An overlay network

exploits a small group of end hosts to provide packet forwarding and/or duplication service for

each other. However, an overlay network does not have a global scope, and thus does not enable

route choice for every user. Only nodes in an overlay network can choose routes formed by other

nodes in the same overlay network. Moreover, packet forwarding using an overlay network is

usually less efficient than packet forwarding using the underlying IP network. Different overlay

links may share the same physical links. A packet forwarded along an overlay path may traverse

one physical link multiple times, thus wasting network resource.

1.3.2 Scaling

In the IPv4 routing architecture, limiting the size of BGP tables largely depends on address

allocation policies and ISP filter policies. Internet number registries [11] have restrictions on the

smallest address block they would allocate. ISPs accept prefix announcements with maximum

prefix length requirements [9]. Both these policies are meant to limit the number of address

prefixes that would be propagated into BGP routing tables. Evidently, these policies obstruct the

deployment of multi-homing.

The IPv6 architecture, still in its deployment phase, proposes that a multi-homed site should

obtain an address prefix from each of its providers, and only announce the address prefix allocated

from a provider to that provider. This scheme prevents a multi-homed site from “poking holes”

into the global routing tables, but introduces the address selection problem. An end host with

multiple addresses needs to pick a “good” source address to communicate with a destination.

This problem is referred to as the “Source Address Selection” problem, and has received much

attention [6]. If an end host chooses a “bad” source address, e.g., a source address allocated

from a provider to which the end host cannot connect due to a temporary failure, return packets

cannot come back to the host and connections cannot be established. Moreover, if ingress filtering

[46, 18] were deployed, the source address of a packet sent to a provider must match the address

prefix allocated by the provider.

So far no satisfactory solution exists to the source address selection problem. Existing pro-

posals [57, 34, 38, 22] basically suggest two approaches. One approach is to require that ISPs

21

relax source address filtering for a multi-homed site, either turning off source address filtering for

a multi-homed site, or having the site communicate with the ISPs its authorized address prefixes.

The other approach is to rely on the exit routers of a multi-homed site to provide information

to help a user to pick a “good” source address. For the first approach, relaxing source address

filtering does not help a user to pick a usable source address when there are temporary failures on

its address allocation paths. For the second approach, when address allocation has several levels,

a failure on a source address allocation path could occur at a place to which the exit routers of

a site are not directly connected. The existing proposals leave it unanswered how exit routers

would obtain this information and help a user to pick an address at the first place.

1.4 Our Approach

This dissertation presents a New Internet Routing Architecture (NIRA) that is scalable and sup-

ports user route selection. We set out to seek an architectural re-design, rather than the specific

mechanisms that fix the problems within today’s system. We believe that the difference between

a fresh re-design and the current system will offer directions for improvement.

1.4.1 Design Overview

We aim to identify as many modularizable components of the inter-domain routing system as

possible. Modularity allows us to decompose the complex design task into a set of smaller sub-

problems. More importantly, it gives us the flexibility not to restrict the design of every com-

ponent in the system. Our design presents the primitive mechanisms to realize each functional

module. But within each module, future designers could invent new mechanisms to enhance,

complement, or replace our baseline design.

Our work shows that the design of NIRA can be decomposed into three sub-problems: route

discovery and selection, route representation and packet forwarding, and provider compensation.

The reasoning behind this decomposition is as follows.

Our goal is to build support for user choice into the inter-domain routing system. Before a

user5 could make an intelligent route choice, he should know what options are available to him.

The routing system, owned by multiple ISPs, has the knowledge of what routes are available for

users to choose. So the first problem we need to address is how to provide mechanisms to expose

the route options to a user.

Once a user has learned his route choices and picked a route to send his packets, a user

shall specify his choice in his packets so that routers could forward the packets along his chosen

route. We recognize that how a user specifies a route is independent of how he discovers and

5The word “user” refers to an abstract entity. It is not necessarily a human user. It could be a piece of software
running in a human user’s computer, making decisions upon a human user’s configured preferences.

22

chooses routes. Multiple mechanisms are possible for a user to discover and select routes without

changing the mechanisms for route specification. The reverse is also true. So in our design, we

deal with the problem of route discovery and selection separately from that of route representation

and packet forwarding.

In a commercial Internet, if ISPs are chosen to forward packets for users, they should be re-

warded correspondingly. We refer to this problem as the provider compensation problem. Clearly,

users and ISPs could come up with different compensation schemes without altering the mech-

anisms for users to discover routes or specify routes. So we regard provider compensation as a

distinct design component.

Furthermore, we identify that the task of route discovery can be further modularized. Both the

physical structure of the Internet and the transit policies of each domain together determine the set

of possible domain-level routes between two end users. Routes, in this sense, change slowly. In

contrast, the dynamic conditions of a route may change frequently. We use “route availability” to

refer to whether the dynamic conditions of a route satisfy a user’s requirements, such as whether

a route is free from failures, or whether a route has sufficient available bandwidth. Intuitively,

if mechanisms for route discovery are also required to supply route availability information,

there will be less variety in design choices. Therefore, we separate the design problem of route

availability discovery from that of route discovery.

Moreover, the task of route discovery can be divided into a sender half and a receiver half.

If an individual user is required to have the knowledge of all possible routes to reach every

destination on the Internet, regardless whether he is going to communicate with a destination or

not, it is likely that the amount of information a user needs to keep grows as the Internet grows.

As a general principle, a user should be limited to choose within the part of the network he

agrees to pay for. So in our design, an individual user only needs to know the part of network that

provides transit service for him. Usually, this part of the network consists of a user’s upstream

providers, his providers’ providers, and so on. A user could infer the set of route segments he

is allowed to use to reach the rest of the Internet from this part of the network. When a user

wants to communicate with a destination, he could use any general mechanisms to discover the

route segments the destination is allowed to use. A user can then combine these two pieces of

information to pick a route to reach the destination.6

It is worth noting that the dissertation is primarily written in explaining how individual users

choose routes. We acknowledge that an edge domain such as a company might not want to give its

employees the ability to choose routes. Our design is completely consistent with this requirement.

Choices do not have to be made literally by the end users. For the sake of clarity, we discuss

more about where choice could be made in Chapter 6.6, and focus the rest of the dissertation on

individual user choice.

6Our design focuses on end-to-end communication and does not consider inter-domain multicast or broadcast.

23

1.4.2 Mechanisms

In our design, we provide basic mechanisms to achieve the functionality of each design module

in NIRA. For the part of route discovery, we design a network protocol, Topology Information

Propagation Protocol (TIPP), to assist a user to discover his route segments. We also describe a

DNS-like (Domain Name System) [74] infrastructure service, Name-to-Route Lookup Service

(NRLS) that facilitates a sender to retrieve a destination’s route information on-demand. Inter-

mixing his route information and that of the destination, a sender is able to pick an initial route

to communicate with the destination.

NIRA uses a combination of reactive and proactive notifications for users to discover route

availability. A user is proactively notified of the dynamic status of the route segments on his

part of the network, and relies on reactive mechanisms such as router feedback and timeouts to

discover the dynamic conditions of a destination’s route segments.

We design a route representation mechanism and a corresponding router forwarding algo-

rithm such that a source and a destination address are able to represent a typical type of domain-

level route.

Provider compensation in NIRA is still based on contractual agreements. Providers will be

properly compensated by billing their customers based on the contractual agreements. Per packet

based accounting or micro-payment [73] schemes are unnecessary.

1.4.3 Evaluation

We evaluate the design of NIRA using simulations, analytic models, and network measurements.

Simulations help us debug subtle design flaws; analytic models provide high-level descriptions of

the system under a variety of operating conditions; network measurements check our intuitions

against reality. Our evaluation suggests that NIRA is practical.

1.5 Organization of the Dissertation

The rest of the thesis is organized as follows. We start with related work in Chapter 2. We then

present the design rationale of NIRA in Chapter 3. Chapter 4 describes NIRA’s route discovery

and route availability discovery mechanism. We discuss route representation and packet forward-

ing algorithm in Chapter 5. Chapter 6 explains how providers might be compensated if users

choose to user their services. We evaluate the design of NIRA in Chapter 7. Chapter 8 concludes

the dissertation and discusses future work.

24

Chapter 2

Related Work

At a high level, related work falls into three categories: scalable routing schemes, routing ar-

chitecture proposals, and current route selection technologies. In this chapter, we first briefly

describe the current Internet routing system, and then discuss related work.

2.1 Background: the Present Internet Routing System

Routing in the Internet happens at two levels: intra-domain routing and inter-domain routing.

A routing domain (or an AS) is a network that is under a single administration. Each domain

uses an intra-domain routing protocol such as Open Shortest Path First (OSPF) [75] or Routing

Information Protocol (RIP) [70] to handle the task of finding a route to reach a destination inside

the domain. Border routers of each domain run the de facto inter-domain routing protocol, Border

Gateway Protocol (BGP) [88], to collectively handle the task of finding a route to reach any

network connected to the Internet.

BGP is a path-vector protocol. In BGP, a domain announces to its neighboring domains the

range of addresses reachable via itself together with the attributes of the paths to reach those

addresses. A range of addresses is encoded as an address prefix. One of the most important

path attributes is the ASPath attribute. The ASPath attribute associated with an address prefix

announced by a domain includes the sequence of domain identifiers (i.e. Autonomous System

Numbers (ASNs)) a packet would traverse to reach the address prefix via that domain. If a domain

receives BGP announcements for reaching the same address prefix from multiple neighbors,

the domain selects a neighbor as the next hop to reach that address prefix based on its local

policies. Again, based on its policies, the domain may announce the address prefix to some of its

neighbors, with its own domain identifier (ASN) prepended to the ASPath attribute.

Figure 2.1 illustrates how BGP works. A domain AS 1 announces an address prefix 10.0.0.0/16

with the ASPath attribute set to AS 1 to its neighbors AS 2 and AS 3. AS 2 and AS 3 further an-

nounce the address prefix 10.0.0.0/16 with ASPath set to AS 2 AS 1 and AS 3 AS 1 respectively

25

to their neighbor AS 4. AS 4, based on its own policies, selects AS 3 as the next hop neighbor to

reach the address prefix 10.0.0.0/16, and announces the address prefix with ASPath set to AS 4

AS 3 AS 1 to AS 5. So packets sent from AS 5 to the address range 10.0.0.0/16 will follow the path

AS 5 → AS 4 → AS 3 → AS 1.

PSfrag replacements

AS 1

AS 2

AS 3

AS 4 AS 5

(10.0.0.0/16, AS1)

(10.0.0.0/1
6, AS 1)

(10.0.0.0/16, AS
2 AS

1)

(10.0.0.0/
16, AS 3

AS 1)

(10.0.0.0/16, AS 4 AS 3 AS 1)

Figure 2-1: This figure illustrates how BGP works. A domain AS 1 announces (10.0.0.0/16, AS 1)
to its neighbors AS 2 and AS 3, telling them that it can reach the address prefix 10.0.0.0/16.
AS 2 and AS 3 propagate this reachability information by announcing (10.0.0.0/16, AS 2 AS 1)
and (10.0.0.0/16, AS 3 AS 1) respectively to their neighbor AS 4. From these announcements, AS 4

learns that it has two paths AS 4 → AS 3 → AS 1 and AS 4 → AS 2 → AS 1 to reach the address
prefix 10.0.0.0/16. Based on its policies, AS 4 selects the path AS 4 → AS 3 → AS 1 and announces
(10.0.0.0/16, AS 4 AS 3 AS 1) to AS 5. Packets sent from AS 5 to the address range 10.0.0.0/16 will
then follow the path AS 5 → AS 4 → AS 3 → AS 1.

BGP supports policy routing. With BGP, each domain can select the next-hop neighbor to

reach an address prefix and control which address prefixes to announce to a neighbor based on

its local policies. By exercising the control over the next-hop selection and address prefix an-

nouncements, a domain can select a routing path that complies with its business agreements

with its neighbors. For example, if a domain does not provide transit service between two neigh-

bors, then the domain will never announce address prefixes learned from one neighbor to another

neighbor. If a domain learns an address prefix announcement from both a provider and a peer,

the domain would prefer using the peer as the next hop, because the domain does not need to pay

the peer for traffic sent over the peering connection.

Next, we discuss related work.

2.2 Scalable Routing

In a basic routing system, a node needs to find paths and maintain forwarding information to

all other nodes in a network. The amount of state stored in a node and the number of control

26

messages for maintaining the state grow as fast as the number of nodes in the network.

Scalable routing schemes aim to reduce the amount of routing state and the control overhead.

We first describe several well-known scalable routing schemes and then summarize their tradeoffs

and applicability to the Internet inter-domain routing.

2.2.1 The Cluster (or Area) Hierarchical Routing

Back in the seventies, Kleinrock and Kamoun’s seminal paper on hierarchical routing [64] showed

that through hierarchical clustering of network nodes, the number of routing table entries of a

node in a network can be reduced to HN
1
H , where N is the number of nodes and H is the level of

hierarchy.

1 2

3

1.1

1.2

2.1
2.2

2.3

3.1

3.3 3.2

3.2.1

Figure 2-2: An example of a cluster-hierarchy network.

The idea of hierarchical clustering is to divide a big cluster (the entire network) into several

small nested clusters, which are in turn divided into smaller nested clusters. A node’s hierarchical

address used for routing is based on the node’s position in the cluster hierarchy, and is equal to the

sequence of labels used to identify each of the node’s enclosing clusters, with the first label being

that of the outmost enclosing cluster, and the last label being the node’s identifier. Figure 2-2

shows a 3-level hierarchical network and the addresses of some nodes.

To achieve scalability, detailed topology information inside a cluster is not propagated outside

a cluster. A cluster appears as a single node to nodes in its sibling clusters. A node’s routing table

contains entries only for nodes in the same lowest level clusters, clusters in the same second-

level, clusters in the same third-level, and so on untill the top-level clusters. Figure 2-3 shows the

visible part of the network for the node 3.2.1. The node’s routing table only has entries for those

nodes and clusters visible to it.

To forward a packet in a cluster-hierarchical network, a node examines the destination ad-

27

1 2

3

3.1

3.3 3.2

3.2.1

Figure 2-3: A node’s routing table contains entries only for nodes in the same lowest level clus-
ters, clusters in the same second level cluster, and top-level clusters.

dress, determines the lowest level of the cluster the destination node is in and visible to the node

itself. The node forwards the packet towards that cluster. Nodes inside that cluster will send

packets to the sub-cluster the destination is in. This process repeats until the packet reaches its

destination.

Intermediate System-Intermediate System (IS-IS) [81] and Private Network to Network In-

terface (PNNI) [49] are cluster-hierarchical routing systems.

2.2.2 The Landmark Hierarchical Routing

Paul Tsuchiya proposed the landmark hierarchical routing system [103, 104] in late eighties as

an alternative to the cluster hierarchical routing. His conclusion is that the dynamic management

of a landmark hierarchy is easier than that of a cluster hierarchy. Hence, a landmark hierarchy is

more suitable for rapidly changing networks, e.g., mobile ad hoc networks.

Central to the landmark hierarchy is the concept of a landmark. A landmark LM i(id) is a node

with an identifier id whose neighbors within a radius of distance ri
1 have routing entries for, or

who are visible to neighbors within ri. All nodes are landmarks at level 0. A level i + 1 landmark

is elected from level i landmarks, and ri+1 is greater than ri to ensure that a level i landmark will

have a level i + 1 landmark within a distance ri. The landmarks at the highest level (H) of the

hierarchy are visible to all nodes in the network.

A node’s address in a landmark hierarchy is a sequence of landmark identifiers LMH[idH]

... LM1[id1]LM0[id0], with the constraints that each landmark in the address must be within the

radius of the next lower-level landmark. For the same physical network, Figure 2-4 shows the

1Network distance between two nodes is defined as the shortest path length between the two nodes.

28

three-level landmark hierarchy and the addresses of each node. In this example, r0 = 0, r1 = 2,

and r2 = 4.

p.b.a

p.b.c

p.b.b

p.b.d

p.b.e

p.h.f p.p.p

p.h.g

p.h.h

p.h.i

p.h.j

p.h.k

p.b.l
p.p.m

p.p.n
p.p.o

p.p.q

p.p.r

Figure 2-4: An example of a landmark-hierarchy network. A node marked by a square is a level
1 landmark. A node marked by a bigger circle is a level 2 landmark. r0 = 0, r1 = 2, r2 = 4.

In a landmark-hierarchy network, a node only has routing entries for landmarks visible to it.

Routing table sizes [103] are typically 3
√

N, N is the number of the nodes in the network.

To forward a packet, a node examines the landmark address of the destination, and sends the

packet towards the lowest level landmark in the destination address it has an entry for. Nodes

in the vicinity of that landmark LMi[idi] will have entries for the next lower level landmark

LMi−1[idi−1] in the destination address. When a packet comes closer to the landmark LM i[idi], it

will be forwarded towards the lower level landmark LMi−1[idi−1]. This process repeats until the

packet reaches the destination.

2.2.3 Provider Hierarchical Routing

The interconnections between Internet domains exhibit a natural hierarchical structure. Stub do-

mains connect to a provider domain for transit service. Local or regional providers connect to

backbone providers for transit service. Figure 2-5 illustrates the hierarchical structure of the In-

ternet. This hierarchical structure is referred to as “provider hierarchy.”

The provider hierarchy is not a strict tree-like structure. A domain may connect to multi-

ple providers, e.g., Stub3 shown in Figure 2-5. Two domains may have a lateral connection

without forming a provider-customer relationship, e.g., the connection between Regional2 and

Regional3 shown in Figure 2-5. A domain may have direct connections to providers at different

levels of the hierarchy, e.g., Local1 in Figure 2-5 connected to both Regional1 and Backbone1.

Provider-rooted hierarchical addressing utilizes the natural structure of the Internet and was

proposed to scale the Internet routing system [51, 36, 105, 50]. Providers allocate address pre-

fixes to customers, and customers with multiple providers will get multiple addresses. If a cus-

29

Backbone1 Backbone2

Regional1 Regional2 Regional3

Local1 Stub1 Stub2 Stub3 Local2

Figure 2-5: The hierarchical structure of the Internet. An arrowed line between two domains
represents a provider-customer connection, with the arrow ending at the provider. A dashed line
represents a peering connection.

tomer changes its providers, it will obtain addresses from its new provider and return old ad-

dresses allocated from its previous provider.

In a provider-hierarchy network, a node only needs to have an entry for a provider’s address

space in order to route a packet to the provider’s customers. The reduction of routing table sizes

depends on the structure of the network.

2.2.4 Compact Routing

A tradeoff of various scalable routing schemes is sub-optimal routing paths. A node knows less

about the network compared to the basic routing scheme, thus a node may not find the optimal

routing path to reach a destination. Compact routing [31, 101] is the area of theoretical study

on how to make a good tradeoff between the stretch (the ratio of path length compared to the

shortest path length) of routing paths and the routing table size. The best known result [101] in

this area is a minimum stretch-3 routing scheme with a per-node routing table size upper bounded

by O(N1/2log1/2N) bits, where N is the number of nodes in the network.

2.2.5 Geographical Routing

In a geographical routing system, each node knows its own geographical location, and locations

of neighbors within a radius of network distance r. A node only has routing entries for those

neighbors. A source labels a packet with a destination node’s location.

To forward a packet, an intermediate node will examine the destination’s location, and send

the packet towards a neighbor that is geographically closer to the destination, until the packet

reaches the destination. This forwarding process may run into a “dead end”: from a node’s routing

table, the node itself is the closest node to the destination, yet it does not know how to reach the

destination.

30

Geographical routing was first proposed by Gregory Finn [47], and recent work on ad hoc net-

work routing such as Distance Routing Effect Algorithm for Mobility (DREAM) [20], Location-

Aided Routing (LAR) [65], and Grid [69], all uses geographical routing. The Greedy Perimeter

Stateless Routing (GPSR) [63] proposal improves geographical routing algorithm and solves the

“dead end” problem.

2.2.6 Distributed Hash Table (DHT) Routing

A DHT routing system is often used to provide a (key, value) lookup service. Each node has a

unique identifier. The nodes’ identifier space overlaps with the key space, i.e., a string id can

be viewed as a node’s identifier as well as a key. A logical routing geometry, e.g., a ring [98],

a hypercube [87], or a tree [82] is created on top of the identifier space by defining which two

identifiers are adjacent (at distance 1) in the logical geometry. In a ring geometry with an identifier

space of size 2L, an identifier id is adjacent to (id + 1) mod 2L. In a hypercube geometry, an

identifier with length L are adjacent to any identifier that differs by only one bit. Figure 2-6

shows an example of the ring geometry and the hypercube geometry for an identifier space of

size 8. A small circle represents the position of an identifier in a geometry, and a filled small

circle represents the position of an identifier taken by a node.

0

1

2

3

4

5

6

7

0 (000)

2 (010) 3 (011)

7 (111)

5 (101)
4 (100)

6 (110)

1 (001)

Figure 2-6: An example of the ring geometry and the hypercube geometry for an identifier space
of size 8. A circle represents the position of an identifier in a geometry, and a filled circle repre-
sents an identifier taken by a node.

In DHT routing, a node m only needs to keep routing entries for a small subset of nodes (e.g.,

O(logN) in a ring geometry, where N is the number of nodes). This subset of nodes is chosen

based on the distances of these nodes to node m in the logical geometry structure. Different DHT

systems have different algorithms for choosing this subset, but these algorithms all guarantee that

for any identifier or key id, if a node m’s identifier is not closest to id, it will have a routing entry

for a node whose identifier is closer to id.

31

A node stores the value for a key if its identifier is closest to the key.2 Forwarding a query for

a key k in a DHT routing system is similar to the greedy forwarding process in a geographical

routing system. Each intermediate node examines k, and forwards the query towards a node

whose identifier is closer to k, until the query reaches a node that has the value for k.

A good summary of various DHT routing systems can be found in [19].

2.2.7 Tradeoffs of Scalable Routing Schemes

The primary tradeoff of scalable routing schemes is sub-optimal routing path. When a node has

routing entries for all nodes in the network, it is possible for a node to keep an entry for the op-

timal routing path (usually the shortest path) for every node in the network. For scalable routing,

a node only has routing entries for a subnet of nodes, or for groups of nodes. Therefore, a node

may not route a packet along the optimal path to reach a destination.

For hierarchical scalable routing schemes, such as cluster-hierarchical routing, landmark-

hierarchical routing, and provider-hierarchical routing, another tradeoff is that a node’s address

is topology dependent. When the network topology changes, for example, a cluster becomes

disconnected, a landmark moves out of range, or a site changes a provider, the address(es) of a

node will change. A source needs to find out the updated address(es) of a destination in order to

send a packet.

2.2.8 Applicability to Inter-domain Routing

Except for provider-hierarchical routing, it is difficult to apply other scalable routing schemes to

make the inter-domain routing scalable, primarily because the Internet routing is constrained by

both business agreements and physical connectivity.

In the cluster-hierarchical routing, a cluster should be connected so that a node outside a

cluster only needs to keep one routing entry for the entire cluster. Once a packet reaches any

node in a cluster, it can reach all other nodes inside the cluster as long as there are no intra-

cluster partitions.

For Internet routing, business agreements make certain physically connected paths invalid

routing paths. For example, a customer domain will not provide transit service3 between its

providers. In Figure 2-7, packets are generally forbidden to traverse the path Provider1 →
Net1→ Provider2.

The restrictions imposed by business agreements make the clustering algorithm difficult. In

Figure 2-7, the three domains Provider1, Net1, and Provider2 cannot be simply clustered

together, and appear as one cluster node to other domains in the Internet, because packets reach

2DHT routing systems could be optimized such that the value for a key can be replicated at multiple nodes.
3A domain is said to provide transit service between a pair of neighbors if the domain allows packets coming from

one neighbor to go to the other neighbor, and vice versa.

32

Provider1 Provider2

Net1

X

Figure 2-7: Packets are generally forbidden to traverse the path Provider1 → Net1 →
Provider2. An arrowed line in the figure represents a customer-provider connection, with the
arrow ending at the provider.

Provider1 cannot reach Provide2 without leaving the cluster. It is unclear how a clustering

algorithm would take these restrictions into consideration, and how scalable the algorithm would

be.

Other scalable routing schemes, landmark routing, compact routing, geographical routing,

and DHT routing have similar problems. To apply these routing schemes to the inter-domain

routing, when a domain picks its routing entries, the domain needs to consider business agree-

ments between other domains. The scalability of these routing schemes is questionable after such

considerations.

In addition, a DHT routing system relies on a lower level routing system to resolve the routing

path to the next hop in a DHT routing entry, because two nodes that are adjacent in a logical

geometry may not be directly connected in the physical network. IP routing is the lowest globally-

available routing, and therefore cannot leverage the scalability of DHT routing.

Our work, NIRA, is a provider-hierarchical routing system, and we design mechanisms to

solve problems such as address management and address selection that are inherent to a provider-

hierarchical routing system.

2.3 Routing Architecture Proposals

There exist a number of routing architecture proposals that aim to overcome the limitations of the

present routing system. We briefly describe them and discuss how our work differs from them.

33

2.3.1 Nimrod

Nimrod [25, 96, 86] is a cluster-hierarchical routing system. It proposes to use a map-distribution

mechanism for nodes to discover network topology and to construct routes. However, Nimrod

did not address how to fit its design into a policy-rich inter-domain routing environment. As a

result, only an intra-domain routing protocol Private Network to Network Interface (PNNI) [49]

was developed based on the design of Nimrod.

NIRA is designed for inter-domain routing. Its design directly incorporates the contractual

relationships between different parties in the Internet.

2.3.2 Inter-domain Policy Routing

The Inter-domain Policy Routing (IDPR) [95] protocol was designed according to the original

policy routing ideas described by Clark [28]. IDPR uses a link-state routing protocol [21] to

distribute routing information. Each AS has a route server that keeps a link state database for the

domain-level Internet topology and computes policy routes on the requests of hosts.

NIRA does not require the presence of per domain route servers and domain-level topology

information does not flow globally in NIRA.

2.3.3 Scalable Inter-domain Routing Architecture

The Scalable Inter-Domain Routing Architecture [41] contains two routing components: a hop-

by-hop node routing (NR) component and a source demand routing (SDR) component. The NR

component installs routing entries for default forwarding paths, and is similar to BGP. The SDR

component allows a node to specify its own routing path for a packet.

Two approaches [106] were suggested for nodes to discover routes: Routing Information Base

(RIB) query and Path Explorer. A node’s RIB often contains multiple routes to reach a destina-

tion, but the node only selects one route and announces the selected route to its neighbors. So if

a node queries a remote node’s RIB, the node may get additional routes to reach a destination.

Path Explorer is the technique that a source on-demand requests a destination to compute a

path from it to the source. Intermediate nodes do not exert their route selection preferences but

rather propagate routes that obey their transit policies to the source.

Recent research has shown quite a few problems of BGP, such as delayed convergence,

[67, 66, 55, 107, 71]. Since the NR component proposed in the Scalable Inter-Domain Rout-

ing Architecture is similar to BGP, inserting another component, such as the SDR component,

into the routing system is likely to cause more problems.

NIRA has a different route discovery mechanism and does not require a separate routing

component to establish default routes.

34

2.3.4 IPNL

IP Next Layer (IPNL) [53] is a Network Address Translation (NAT) extended architecture that

aims to solve the IPv4 address depletion problem and the routing scalability problem. It has the

advantage of only modifying hosts and NAT boxes.

In the IPNL architecture, a source labels a packet with its Fully Qualified Domain Name

(FQDN), the global IPv4 address of a border router in its domain, the destination’s FQDN, and

the global IPv4 address of a border router in the destination domain. In the global routing region,

the packet will be routed to the border router of the destination domain using the existing IPv4

routing architecture. Once the packet reaches the destination domain, IPNL routers are able to

route the packet using the destination’s FQDN.

As an optimization, a fixed-length numeric domain-specific address is assigned to each host,

similar to a private IPv4 address in today’s architecture. A source will attach its private address

in its first packet to a destination. A destination replies with its private address. These private

addresses could replace the FQDNs in subsequent packets for efficient forwarding.

IPNL does not address the problem of user-selected routes, while NIRA does. NIRA pre-

serves the end-to-end routability of IP addresses, and does not require special routing mecha-

nisms in stub domains. The design of NIRA modifies both routers’ and hosts’ software.

2.3.5 TRIAD

TRIAD [27] is an Internet architecture that provides explicit support for content routing. In

TRIAD, routing and naming are tightly integrated. Routers exchange name reachability informa-

tion and map name to next-hop. Packets could be routed by names, rather than by IP addresses.

NIRA is designed to handle IP layer routing and addressing issues. The design goal is funda-

mentally different from that of TRIAD.

2.3.6 Feedback Based Routing System

The Feedback Based Routing proposal [110] separates routing information into topology in-

formation and dynamic information. A domain’s access router keeps the domain-level topology

information and transit policies of the entire Internet, monitors the dynamic status of a route, and

performs route selection on behalf of users. The design of Feedback Based Routing system does

not specify how routers obtain the topology information and domain transit policies.

NIRA is designed to let individual users to select routes. Each user only needs to know

a small portion of the inter-domain topology. NIRA also includes protocols to propagate such

information to users.

35

2.3.7 Overlay Policy Control Architecture (OPCA)

OPCA [15] is an architecture that builds on top of today’s routing architecture to facilitate BGP

policy exchange. Intelligent Policy Agents (PA) are introduced in each AS to form a policy distri-

bution overlay network. PAs in an AS are responsible for sending explicit policy change requests

to PAs in other ASes, processing policy announcements, and enforcing policies at border routers

of the AS. OPCA can be used to achieve fast fail-over and inbound load-balancing. Unlike OPCA,

NIRA is not designed to improve BGP. NIRA has a built-in policy distribution mechanism, and

does not need a separate overlay network to distribute routing policies.

2.3.8 Platypus

Platypus [92, 85] is a routing system that aims to provide policy checking at packet forwarding

time. If a user has specified a domain-level route in a packet’s header, a router would like to check

whether its configured policy allows it to forward the packet according to the user-specified route.

Platypus describes how to implement efficient checking.

NIRA addresses various issues related to giving a user the ability to specify domain-level

routes, such as route discovery, route representation and forwarding. Efficient policy checking is

one of NIRA’s components.

2.3.9 Routing Control Platform (RCP)

RCP [44] is an architecture that separates the task of route selection and the task of packet for-

warding. In this architecture, routes are selected by RCPs of each routing domain, and routers

simply forward packets according to the routing decisions made by RCPs. Unlike NIRA, RCP

architecture is intended to reduce the complexity of today’s Inter-domain routing architecture.

2.4 Current Route Control Technologies

As there is no global support for users to select routes, local and small scale solutions are created

to satisfy users’ needs for selecting routes. There are both commercial products and academic

efforts. We describe these techniques and their limitations.

2.4.1 Commercial Route Control Technologies

Several companies, including Internap [8], OPNIX [4], RouteScience [5] emerged to offer route

control services or products. Route control technologies can help a multi-homed site to choose

the access link to its providers. The technologies involve real-time path performance monitoring

and evaluation. Based on the measurement data, a program is able to automatically change an

edge router’s forwarding table, so that the traffic will go through the desired access link.

36

Route control products are limited to selecting the next hop provider for outbound traffic,

because to influence inbound traffic, an edge router needs to frequently send out BGP announce-

ments, which harms the stability of the routing system. Besides, these products cannot choose

beyond the first hop provider. Moreover, they are generally not affordable by individual users or

small sites.

2.4.2 Overlay Networks

Another technique for route selection is overlay network. An overlay network is formed by a

small group of end hosts that voluntarily provide packet forwarding and/or duplication service

for each other [16, 97, 102, 90].

The limitation of an overlay network is that it is not ubiquitous. Only nodes on an overlay

network can control their paths by tunneling traffic through other nodes on the same overlay net-

work. It is unlikely that overlay networks can scale up to include every computer on the Internet.

Besides its limited scope, an overlay architecture is less efficient than an architecture that

supports loose source routing. Different overlay links may share the same physical links. For

example, a packet relayed by an end host at least traverses the last hop twice. This “detour” wastes

link bandwidth and router processing cycles, and increases packet delivery latency compared to

a source routing path that does not traverse the last hop twice.

37

38

Chapter 3

Design Rationale

NIRA is designed to give a user the ability to select domain-level routes. A domain-level route

is a sequence of domains a packet traverses; a router-level route refers to the sequence of routers

a packet follows. We emphasize domain-level choices rather than router-level choices because

choices at this level are intended to stimulate competition among providers. A domain may offer

router-level choices to users if its own policies allow such choices. NIRA neither mandates a

domain to do it, nor prevents a domain from doing it. Our design does not include mechanisms for

router-level route discovery, but allows a user to specify a router-level route in a packet header.1

We focus our discussion on domain-level choices. In the rest of this dissertation, unless otherwise

specified, a “route” refers to a domain-level route.

3.1 Modularization

As a general principle, the more architectural constraints we put into a system, the more rigid the

system is and the less likely it will evolve and survive. So in our design, we aim to reduce the

amount of architectural constraints to minimal. Our approach is to identify the set of components

in the inter-domain routing system that have little dependency between each other, and make them

into separate design modules. For each design module, we analyze whether a global consistent

mechanism is needed to implement that module, or multiple mechanisms can be developed and

deployed locally. In this dissertation, we design mechanisms that realize each of the modules,

and make it clear whether our mechanisms should be used globally or different local mechanisms

could be developed.

As we have discussed in Chapter 1, we identify that the design of NIRA can be decomposed

into three key design problems:

1. Route discovery and selection: How does a user discover the various routes connecting him

1We’ll make it clear how to specify a router-level route when we discuss route representation in Chapter 5

39

to a destination and select one to use?

2. Route representation and packet forwarding: Once a user has chosen a route to reach a

destination, what should he put into a packet header so that the packet will be forwarded

along the chosen route unambiguously?

3. Provider compensation: In a commercialized Internet, if a provider cannot be properly

compensated, it will have little motivation to forward packets according to a user’s route

specification. Thus, the design of an architecture should take into consideration how a

provider is compensated if a user chooses to use its service.

Furthermore, we can separate the problem of route availability discovery from that of route

discovery.

4. Route availability discovery: How does a user discover whether the dynamic attributes of

a route allow him to send a packet to a destination, e.g, whether a route is failure-free?

With this separation, the primary task of route discovery then becomes discovering routes

between a user and a destination that are determined by the physical structure of the Internet and

the contractual agreements between ISPs, and does not necessarily include discovering whether

the dynamic attributes of those routes would allow a packet to be sent from a user to a destination.

Multiple general mechanisms could be developed to accomplish the task of route discovery and

that of route availability discovery. Moreover, as the dynamic attributes of a route could change

at a high frequency, but the physical structure of the Internet and the contractual agreements

between ISPs may remain stable, this separation also allows discovered routes to be cached for

reuse.

These four sub-problems are relatively independent. Mechanisms that solve one problem

could be changed without changing mechanisms to address the other problems. For example,

regardless of what a user takes to discover and select a route to reach a destination, the user

could apply various mechanisms to discover the availability of the route. Even if the route repre-

sentation and the packet forwarding algorithm are changed, how a user discovers a route or the

availability of a route could remain the same.

3.2 Design Requirements

There exist many solutions to these problems. We narrow down the solution space by identifying

several key design requirements:

• Scalability. With the fast growth of the Internet and the possibility that millions of small

devices will be connected to the Internet, we require that no single routing component

40

needs to have the bandwidth, memory, or processing power that scale linearly or super

linearly with the size of the Internet.

• Robustness. This requirement has two components. First, if a route is unavailable, a user

should be able to find an alternative route within a few round trip times if one exists.

We think this fail-over time is reasonable for Internet applications. Second, the failures,

mistakes, or malicious behavior of one router should not have a global impact.

• Efficiency. The overhead added for supporting user-specified routes such as extra packet

header space should be minimized for common cases.

• Heterogeneous user choices. Individual users in the same domain should be allowed to

choose different providers. For example, if a local provider connects to multiple wide-area

service providers, users of the local provider should be allowed to have business agree-

ments with the wide-area providers of their own choices. If a user signs agreements with

more than one wide-area provider, the user should be able to dynamically choose a provider

to carry his packets.

• Practical provider compensation. Provider compensation should not require per-packet de-

tailed accounting or micro-payment [73]. History suggests that these schemes have little

market appeal [59, 60, 91].

Next, we describe how we design NIRA towards satisfying these requirements.

3.3 Route Discovery

The goal of NIRA is to support user-specified routes. The first problem we need to address is how

a user discovers various routes that connect him to a destination and selects one to send packets.

A straightforward approach for route discovery is to use a link-state routing protocol to distribute

the entire domain-level topology and the transit policies of each domain. Both IDPR [95] and

feedback-based routing [110] suggest this approach. In these proposals, the border router of a

domain or a specialized server in a domain stores the domain-level topology and domain transit

policies, and does route selections for users.

This approach does not fit our design requirements. To support heterogeneous user choices,

we must allow transit policies to be specified in the context of individual users. For example, a

local provider may connect to UUnet, but a user in the local provider’s network does not sign

a business agreement for UUnet’s service. Packets destined to that user cannot be sent through

UUnet. Hence, it is necessary to specify transit policies at the granularity of individual users. It

is not scalable to keep this amount of information at a single router or a server. For this reason,

we cannot adopt the previous proposals.

41

We observe that the natural structure of the Internet allows us to modularize the task of route

discovery, so that a user does not need to know the entire inter-domain topology. In the Inter-

net environment, a domain decides whether it will provide transit services between a pair of its

neighboring domains or for certain address prefixes, based on its business relationships with its

neighbors. A domain’s decisions are reflected in the domain’s transit policies. There are three

most common business relationships [54] between two interconnecting domains: the provider-

customer relationship, the peering relationship, and the sibling relationship. In a provider-customer

relationship, the customer domain pays the provider domain for service, and the provider domain

provides transit service between a customer domain to all its neighbors; in a peering relationship,

two peers do not pay each other, but each peer only provides transit service between its customer

domains and the other peer; in a sibling relationship, each domain allows the other domain to use

its providers for mutual transit service. Compared to the provider-customer relationship and the

peering relationship, the sibling relationship is less common, and is usually negotiated between

two edge domains to save each other’s cost of purchasing additional providers [54] for robust and

redundant Internet access service. For reason of clarity, in the main body of the dissertation, we

discuss our design without considering sibling relationships. We concentrate discussions on the

sibling relationship in Appendix 5.C.

A typical domain-level route is said to be “valley-free.” That is, after traversing a provider-

to-customer connection, a route cannot traverse a customer-to-provider connection or a peering

connection. So when an end user sends a packet, the packet is usually first “pushed” up along a

sequence of customer-to-provider links, and then flows down along a sequence of provider-to-

customer links. There exists a densely connected region of the network [99] where packets can

not be further “pushed” up. We call this region the Core of the Internet. Outside the Core, the in-

terconnection of the network is relatively sparse, where the dominant interconnection relationship

is the provider-customer relationship [54]. We discuss more about the role of the Core in our ar-

chitecture in Chapter 6.5. A packet does not have to be pushed all the way up to the Core to reach

its destination. Alternatively, a peering link outside the Core may connect the sender’s provider

chain and the receiver’s provider chain. A packet can take the short-cut to reach its destination.

Research results on topology inference further confirmed the existence of this structure [54] [99].

Figure 3-1 shows a simplified picture of the Internet.

We utilize this structure of the Internet, and divide the task of route discovery into a sender

half and a receiver half. On the sender half, a user discovers topology information on domains

that provide transit service for him according to contractual agreements, i.e., his providers, his

providers’ providers, and so on. We call this part of the network a user’s “up-graph.” Figure 3-2

shows a user Bob’s up-graph. From the up-graph, a user would know his most commonly used

routes to reach the Core, and the peering connections of the providers on his up-graph. We design

a network protocol, Topology Information Propagation Protocol (TIPP), for a user to learn such

information.

42

Cindy

R9

R8 R7 R6

R5

R4

R3R2

B4B3

N1 N2 N3

N4

N5

N6

N7N8N9N10

N11

N12

N13

R1

B1 B2

Bob Alice
PSfrag replacements

Core

Figure 3-1: A simplified view of the Internet domain-level topology. A domain is represented
by an ellipse. An arrowed line between two domains represents a provider-customer connection,
with the arrow ending at the provider. A dashed line represents a peering connection.

On the receiver half, a user that wants to become a server stores his commonly used routes to

reach the Core at a distributed Name-To-Route Lookup service (NRLS). When a user wants to

communicate with a destination, the user could query the NRLS to retrieve the route information

of the destination. Combining his route information with the destination’s route information, a

user is able to specify an initial route to reach the destination. Two users may exchange subse-

quent packets to negotiate a better route based on their preferences.

A routing region refers to a contiguous region of the Internet that runs an inter-domain rout-

ing protocol. In our design, we make the Core a routing region. If a user-selected route goes

across the Core, the portion of the route inside the Core is therefore chosen by the providers

in the Core, instead of by users. We make this design choice because in practice, the business

relationships between domains in the Core are complicated. Domains may belong to different

countries and have sophisticated commercial contracts. Therefore, in most cases, we expect that

users are not allowed to choose due to the complicated provider compensation problem, or cannot

choose because there is only one policy-allowed route. Moreover, our primary goal for enabling

user choice is to encourage competition among wide-area providers. We think once a user can

choose to which wide-area provider to send his packets, although he cannot choose the route that

connects two wide-area providers (the portion of the route in the Core), it is sufficient to exert

competitive pressure on wide-area providers.

Our route discovery mechanism does not require a single router or a server to keep the route

information and transit policies for every user. The tradeoff is that using a distributed lookup

service, users may spend several round trip times to retrieve the destination’s route information.

We do not think this overhead is a significant problem because the common practice of using

43

Cindy

N13

N3

B3 B4 R5

R4

N6

N5

N7

R6

N4

N8

R7

N9N10

R8

R9
N11

N12

Alice

R3R2

N1 N2

R1

B1

Bob

B2

PSfrag replacements

CoreCore

Figure 3-2: User Bob’s up-graph is drawn with dark lines.

DNS [74] names to retrieve IP addresses has a similar overhead. Since we deliberately separate

the dynamic route availability discovery from static route discovery, routes retrieved on demand

can be cached for later use. We expect that caching will amortize the overall cost on round trip

times.

TIPP and NRLS are the basic mechanisms we provide for route discovery. The network

protocol, TIPP, propagates to a user his up-graph. We design TIPP such that its messages do

not propagate globally. So it is unlikely that the fault of a single routing component will have a

global impact. The distributed service for looking up a destination’s route information, NRLS, is

basically an enhanced DNS.

Our modularized design for route discovery allows for generality. We provide basic mecha-

nisms that assist users to discover the typical “valley-free” routes, and do not guarantee to dis-

cover all possible routes. Users can use any general mechanisms to discover other types of routes.

3.4 Route Availability Discovery

After a user has learned multiple routes to reach a destination, he also needs to discover whether

the dynamic attributes of a route permits him to send packets to the destination. For example,

he needs to know whether the route is failure free, or satisfies his delay, bandwidth, or loss

requirement. We have considered three general mechanisms for route availability discovery. The

first one is reactive notification. If a route is unavailable when a user tries to use it, a router

will send a control message to the user, or a user detects it via time-out. This mechanism does not

require the dynamic attributes of a route to be flooded globally, but may increase connection setup

time. The second one is proactive notification. The network floods the dynamic route conditions

to users. The third one is proactive probing. Users send probe packets along routes they are

44

interested in. Given the size of the Internet, the last two mechanisms are unlikely to be efficient

and scalable in general, but can form part of a larger solution.

In NIRA, proactive notification and reactive notification are used in combination to compen-

sate for the performance problems of each other. The network protocol, TIPP, proactively notifies

a user of dynamic network conditions on a user’s up-graph. A user detects failures on other parts

of the network via router feedback or timeouts. So again, we exploit the regional modularity of

our design.

Our design provides the primitive mechanisms for users to detect route availability. Multiple

other mechanisms could be built upon these primitives for a user to handle route unavailability.

For example, if a user has learned multiple routes to reach a destination during the route discovery

process, and he discovers a failure on his selected route, he could quickly switch to a different

route. A user could also probe two routes in parallel, and select the one with better performance

for communication. In our design, we do not specify how a user handles route unavailability. In

this dissertation, we also refer to route unavailability as route failure.

3.5 Route Representation and Forwarding

After a user has chosen a route to send his packets, he needs to express his route choice in a

packet header so that routers know how to forward the packet along his chosen route. In the

current Internet, if a user does not specify a route in a packet, he only needs to put a source

address and a destination address in a packet header. An architecture that allows a user to specify

routes is likely to increase the packet header overhead for route representation.

To minimize the overhead, we introduce a route representation scheme such that a common

type of domain-level route can be represented by a source and a destination address, and general

routes can be represented by multiple addresses, i.e., a source route. The network protocol we

designed, TIPP, automatically propagates to a user his addresses, and the dynamic route condi-

tions represented by the addresses. When sending a packet, in most cases, a user only needs to

pick a source address and a destination address, and puts the two addresses in a packet header.

This representation is as convenient and efficient as in today’s Internet.

3.6 Provider Compensation

In a commercial Internet, providers are not going to give service away. We design the provider

compensation schemes in NIRA to be conditioned on pre-negotiated contractual agreements as

it is today. Providers decide whether they would provide transit service for a user based on the

contractual agreements between the user and the providers. They may install policy filters to pre-

vent illegitimate route usage. Providers will be properly compensated by billing their customers

based on contractual agreements.

45

Our hypothesis is that it is practical to perform policy checking at packet forwarding time,

as suggested by recent work [92, 85, 17]. Micro-payment [73] schemes may not require pre-

negotiated contractual agreements, but we rule out such schemes as we consider they are ineffi-

cient to implement.

3.7 Putting the Pieces Together

We describe how a user picks a route and sends packets when he wants to communicate with a

destination. We use the example in Figure 3-1. Suppose Bob wants to communicate with Alice.

The following illustrates what happens.

1. With the network protocol TIPP, Bob learns his addresses, his up-graph, and the dynamic

network conditions on his up-graph.

2. Bob queries NRLS servers to obtain Alice’s addresses that represent Alice’s most com-

monly used routes to the Core , in other words, her view of her up-graph.

3. With his addresses, and his up-graph (shown in Figure 3-2), Bob will know that there are

multiple addresses representing different routes that go up to the Core to reach Alice, and

one route that goes across the peering connection R2 → R3 to reach Alice.

4. Bob picks an initial route to send the first packet based on his preference, dynamic network

conditions on his up-graph, and Alice’s preference specified in her NRLS records. Bob

expresses this route by the choice of the source and the destination address he uses.

5. If the initial route suffers from failures, Bob detects the failure from router feedbacks or

timeouts, and switches to a different route. If the second route works well, the first packet

reaches Alice. Otherwise, Bob repeats the failure detection and route switching process

until his first packet reaches Alice.

6. Subsequently, Bob and Alice may exchange packets to negotiate a better route.

3.8 Summary of Design Decisions

We summarize the modularizable components of NIRA we have identified.

• We modularize the design of NIRA into four key design problems, route discovery, route

availability discovery, route representation, and provider compensation. Moreover, we dis-

entangle the problem of route availability discovery from that of route discovery. Our de-

sign provides primitive mechanisms to address each of the problems, and allows additional

general mechanisms to be developed.

46

• We utilize the natural structure of the Internet to modularize the task of route discovery.

Each user is responsible to know about his route information. A sender on demand retrieves

a receiver’s route information. With his route information and that of the receiver, a sender

is able to discover and select routes to reach the receiver. Again, we design mechanisms

for a user to learn his route information and to retrieve a receiver’s route information, but

allows a user to use any general mechanism to achieve either task.

47

48

Chapter 4

Route Discovery and Failure Detection

In this chapter, we describe the mechanisms we provide in NIRA for users to discover routes

and to detect route failures. NIRA uses three components for scalable route discovery: a strict

provider-rooted hierarchical addressing scheme that gives a user multiple addresses, a network

protocol TIPP (Topology Information Propagation Protocol) that propagates topology and ad-

dress allocation information, and a distributed Name-to-Route Lookup Service (NRLS). NIRA

uses TIPP, and other mechanisms such as router feedback and timeouts for route failure detection.

Figure 4-1 shows the dependency between the function modules and the mechanisms.

Addressing TIPP NRLS

Route Discovery Failure Detection

Router feeback, timeouts

Figure 4-1: Dependency between the function modules (route discovery and failure detection)
and the mechanisms.

4.1 Background

We first define a few terms and concepts. In our explanation, we use examples from today’s IPv4

routing system as IPv4 addresses are simpler than addresses used in NIRA, but the terms and

concepts are equally applicable to NIRA.

• Address prefix: an address prefix p is a shorthand for designating a range of addresses that

share the same prefix bits as those in p. We also call the range of addresses represented by p

an address space. An address prefix is often written in the format address/prefix length. For

example, 18.26.0.0/16 represents an IPv4 address prefix that includes addresses ranging

from 18.26.0.0 to 18.26.255.255. An address prefix is sometimes shortened as a prefix in

49

this document.

An address prefix p is said to enclose another address prefix p′ if all addresses in the range

of p′ are a strict subset of the addresses in the range of p. For example, the IPv4 address

prefix 18.26.0.0/16 encloses the IPv4 address prefix 18.26.0.0/24. The address prefix p is

also said to be larger than the address prefix p′; likewise, the address prefix p′ is said to be

smaller than the address prefix p.

• Longest prefix match: A routing table usually consists of multiple prefix entries, with each

entry being a (prefix, next hop) pair. Longest prefix match is a rule for deciding the entry to

which an address is matched. The rule says that if an address falls into the range of multiple

address prefixes in a routing table, the entry with the longest prefix length is considered as

a match. For example, if a routing table has two entries with address prefixes 18.26.0.0/16

and 18.26.0.0/24, then the address 18.26.0.55 falls into the range of both prefixes, but is

considered to match the second entry, 18.26.0.0/24, because the prefix length 24 is longer

than 16.

• Forwarding table versus routing table: both are names for tables that consist of (prefix,

next hop) entries and are used to determine the next hop to forward a packet. Usually,

in a routing table, a prefix entry is learned from a routing protocol, such as BGP. In this

document, we use the name forwarding tables to refer to such tables whose entries are not

necessarily learned from a routing protocol.

4.2 Provider-Rooted Hierarchical Addressing

A provider-rooted hierarchical addressing scheme takes advantage of the natural structure of the

Internet, and has long been proposed to make the Internet routing scalable [51, 36, 105, 50]. As

we will see, a provider-rooted hierarchical addressing scheme brings us two advantages. First,

it makes the Core a scalable routing region; second, it enables an efficient route representation

scheme (we discuss this in Chapter 5). In this section, we discuss how provider-rooted hierarchi-

cal addressing works.

4.2.1 Network Model

The Internet has a loosely hierarchical structure that is defined by the provider-customer rela-

tionship. In a provider-customer relationship, a provider domain will transit packets between a

customer domain and all its neighbor domains. In practice, there is no provider-customer loop.

That is, a provider domain will not acquire transit service from a domain that is its own customer,

or its indirect customer (its customer’s customer and so on). Therefore, the region of the network

50

that starts at a provider, and includes the customers of the provider, recursively its indirect cus-

tomers, and the provider-customer connections between these domains, mimics a tree structure.

We call such a region a provider tree. Figure 4-2 shows an example of a provider tree rooted at

the provider B1. Note that the Internet is only loosely hierarchical. So the provider tree is not

a strict tree structure. One domain may simultaneously attach to multiple providers, such as N1

and R3. There are lateral links such as the peering connection between R2 and R3. A provider tree

does not include those peering connections.

Cindy

B3 B4 R5

R4

N6

N5

N7

R6

N4

Core

N8

R7

N9N10

R8

R9
N11

N12

Alice

Core

R3R2

N1 N2

R1

B1

Bob

B2

N3

N13

Figure 4-2: The dark region depicts the provider tree rooted at the top-level provider B1. Note the
peering connection between R2 and R3 is not part of the tree.

The Core of the Internet is where the roots of provider trees meet. A provider in the Core is

called a top-level provider. In our design, the Core is a routing region, and top-level providers in

the Core are connected by a routing protocol.

4.2.2 The Addressing Scheme

A strict provider-rooted hierarchical addressing scheme refers to the following address allo-

cation scheme. Each top-level provider in the Core obtains a globally unique address prefix

from a global address space. A top-level provider then allocates non-overlapping subdivisions

of the address prefix to each of its customers, and each customer will recursively allocate non-

overlapping subdivisions of the address prefix to any customer it might have. If a domain changes

its providers, its address prefixes allocated from its previous providers will be returned to those

providers, and the domain will obtain address prefixes from its present providers.

It can be seen that in provider-rooted hierarchical address allocation, addresses are recursively

allocated “down” a provider tree. Domains that are simultaneously on multiple provider trees

will get multiple address prefixes. From a provider to any domain that is on the tree or subtree

51

rooted at the provider, there is always a policy-valid route that consists of only provider-customer

connections. Therefore, if a user wants to send packets to a destination address d, the user only

needs to find a policy-valid route to reach any domain who has an address prefix that encloses d,

and the user does not need to know the detailed structure of the provider tree that allocates the

destination address d.

A strict provider-rooted hierarchical addressing scheme makes the Core a scalable routing

region. Inside the Core, a top-level provider only needs to keep routing entries for address prefixes

of other top-level providers. As the ISP market is a high barrier market, financial constraints will

limit the number of ISP market entries. So the number of domains in the Core is small compared

to that of the Internet. We think running an inter-domain routing protocol within that region

should not have significant performance problem or scaling problem.

4.2.3 Example

Cindy

R3R2

N1 N2 N3

R1

B1
1::/16

B2
2::/16

1:1::/32

1:1:1::/48
1:2:1::/48

1:2::/32

1:2:2::/48
2:1:1::/48
1:3:1::/48

Bob Alice
2:1:1::2000
1:3:1::2000

N13

4::/163::/16
B3 B4

R4

N12

R9
N11

N5

R5

N6

N4

N10

R8 R7

N9 N8 N7

R6

1:3::/32
2:1::/32

1:2:1::1000
1:1:1::1000

PSfrag replacements

Core

Figure 4-3: An example of strict provider-rooted hierarchical addressing. For clarity, we only
shown address allocation for the dark region of the figure.

Figure 4-3 shows an example of the strict provider-rooted hierarchical addressing scheme

using the same network topology shown in Figure 3-1. We represent an address and an address

prefix using the IPv6 notation as described in [36], where “::” represents a variable number of

contiguous zeros, and “:” is a separator that separates every 16-bit piece. Each 16-bit piece is

represented by hexadecimals. An address prefix is represented in the format address/prefix length.

For example, 1:2::/32 designates an address prefix that has a length 32 bits. The first 16 bits of

the prefix has the value 1, and the second 16 bits of the prefix has the value 2.

This example shows that the top-level providers B1 and B2 each obtain a globally unique

address prefix 1::/16 and 2::/16. In this example, we assume that the global address space from

52

which the prefixes in the Core are allocated is 0::/1. B1 allocates non-overlapping subdivisions of

1::/16: 1:1::/32, 1:2::/32, 1:3::/32, to its customers R1, R2, and R3. Recursively, R1 allocates a sub-

division of 1:1::/32: 1:1:1::/48, to its customer N1. So do R2 and R3. Domain N1 is allocated two

address prefixes 1:1:1::/48 and 1:2:1::/48. So a node in N1, Bob, has two addresses 1:1:1::1000

and 1:2:1::1000. We will explain more about the sub-structure of an address in Section 4.2.5.

4.2.4 Address Allocation Rules

We describe the rules a provider-rooted hierarchical addressing scheme should follow, and the

properties these rules induce. Two address prefixes are said to be non-overlapping if no ad-

dress belongs to both address prefixes. The two important rules for address allocation are non-

overlapping and non-looping.

• Non-Overlapping Rule:

1. The global unique prefixes allocated to each top level provider must be non-overlapping.

2. For a domain M, if M has a prefix p, and allocates subdivisions of p to its customers,

then these subdivisions must be non-overlapping.

• Non-Looping Rule: If a domain has a prefix p, it is prohibited to take an address prefix

allocated from a neighbor if that prefix is within the address space p. This rule prevents

address allocation loop. In practice, there should exist no provider-customer loop. Thus, a

domain will never be allocated a prefix that is within its address space.

From these two rules, we can infer the following property regarding the allocated address

prefixes.

• Address to Path Mapping Property: If a domain M has a prefix p, and a domain N

has a prefix p′, and the prefix p′ is within the address space p, then there exists a unique

path M → P1 → P2 → ... → Pi → ... → N that solely consists of provider-customer

connections. Each domain Pi along the path from M to N has an address prefix pi such that

pi is within the address space p, and p′ is within the address space pi.

This property is useful for efficient route representation. A provider-rooted hierarchical ad-

dress can then be mapped into a domain-level route. In Chapter 5, we show how we take advan-

tage of this property to design a route representation scheme that uses a source and a destination

address to represent a route. We formally prove this property in Appendix 4.A.

4.2.5 Address Format

The addressing scheme describes how addresses are assigned, but does not specify the syntactic

form of an address, i.e., address format. In principle, address format is independent of an ad-

53

dressing scheme, and is not a key architectural issue. The difference an address format makes is

primarily syntactic. If we change the address format of our addressing scheme, the other mech-

anisms in NIRA are still applicable. For instance, a user can still use the same route discovery

mechanisms to find and select routes.

For a provider-rooted hierarchical addressing scheme, an address could be either fixed length

or variable length. Since the depth of provider hierarchy varies at different parts of the network,

it seems that a variable-length address format would be a good fit. However, we choose to use

a fixed-length address for two reasons, and largely out of convenience. First, the Internet com-

munity has spent much effort in deploying IPv6 [35], which uses a 128-bit address format. We

think it will be advantageous to reuse some design aspects of IPv6, such as the header format.

Second, variable-length addresses are believed to be less efficient compared to fixed-length ad-

dresses. Therefore, in our design, we adopt the IPv6 address format. An address is represented

by a 128-bit string.

Furthermore, we need to determine the sub-structure of an address. With a provider-rooted

hierarchical addressing, an address will have a section that contains a hierarchically allocated

address prefix. This section could be of fixed length or variable length. If we make it of variable

length, then if a node1 has multiple addresses, the remaining bits of each address after the hier-

archically allocated prefix would be different. If we make it of fixed length, then the remaining

bits in the multiple addresses of one node could be the same. This structure allows intra-domain

routing to be separated from inter-domain routing. So in our design, the section of an address

containing a hierarchically allocated prefix is made to have a fixed length: 96-bit. We call this

section the inter-domain address. The remaining 32 bits of an address is called the intra-domain

section of an address or the intra-domain address. Figure 4-4 shows the format of a hierarchically

allocated address.

0 95 127

inter-domain intra-domain

Figure 4-4: The format of a hierarchically allocated address.

When a domain D is allocated an address prefix p, it can choose the inter-domain section

of an address, the first 96-bit of an address, for all nodes inside itself from the address space p.

Since each node inside a domain has an intra-domain address that is unique within the domain, a

node inside a domain forms its address by concatenating the inter-domain section of an address

derived from p and its intra-domain address. A simple way of picking the inter-domain section of

an address is to pad the prefix p with zeroes until the length reaches 96-bit. For the purpose of easy

illustration, we assume domains choose their inter-domain addresses using this simple method.

For example, in Figure 4-3, when the domain N1 is allocated the address prefix 1:1:1::/48, it will

1A node is either a host or a router.

54

pick 1:1:1::/96 as the inter-domain address for all nodes in itself. A node inside N1, Bob, has

a 32-bit intra-domain address 0:1000. Bob forms his address 1:1:1::1000 by concatenating the

inter-domain address 1:1:1::/96 and his intra-domain address 0:1000.

Separating an address into an inter-domain section and an intra-domain section is another ap-

plication of modularization. This modularized structure of an address allows intra-domain com-

munication to be isolated from inter-domain address allocation. We can assign a special 96-bit

prefix to represent a “site-local” inter-domain section of an address for all domains. A node could

use this inter-domain section concatenated with its intra-domain address to form a site-local ad-

dress for all intra-domain communication, regardless of what address prefixes are allocated to a

domain. For example, during bootstrapping, when a node does not know its hierarchically allo-

cated inter-domain address prefixes, it could communicate with a server inside its domain using

its site-local address to obtain its hierarchically allocated prefixes. In the process of switching

providers, a domain’s inter-domain prefixes will change, but having a fixed-length intra-domain

address section allows intra-domain communication to stay uninterrupted.

Moreover, this separation facilitates address management. Once a domain is allocated an

address prefix p, and has picked an inter-domain section of an address for itself from the address

prefix p, any node in the domain could automatically derive its address by concatenating the

inter-domain section of an address and its own intra-domain address. A domain does not have to

allocate an address from p for every node inside it.

Furthermore, having a separate inter-domain section and an intra-domain section of an ad-

dress allows a router in a domain to split its routing table into two parts: the inter-domain part and

the intra-domain part. This split may be used to reduce the size of the routing tables of a domain

with multiple address prefixes. If a domain has K address prefixes (in other words, it has K routes

to the Core), each node inside the domain will have up to K addresses. So the number of routing

table entries for nodes inside the domain might be inflated by K times if a router in the domain

keeps a single routing table. To avoid this inflation, a router could split its routing table, and keep

entries for the inter-domain addresses of the domain in the inter-domain part, and keep entries

for the intra-domain addresses in the intra-domain part of the table. The forwarding module of

a router would first consult the inter-domain part of the routing table. If the forwarding module

decides a packet is destined to the domain, then the intra-domain part of the table is consulted to

determine which node is the destination.

Figure 4-5 shows an example. Suppose a domain has two inter-domain addresses, pd1 and

pd2 , and four nodes n1, n2, n3, n4. If a router keeps one routing table, the number of routing

table entries for nodes inside the domain would be inflated by two, with a result of 2 × 4 = 8

entries, as shown in Figure 4-5-(a)2 . Because an address has a fixed-length intra-domain section,

2For simplicity, we assume that a routing table has an entry for every node. In practice, the finest entry of a routing
table is usually an address prefix for a local network. This simplification does not affect our explanation on how to
split a routing table, as one can imagine each entry in the table is for a local network, rather than for a node.

55

the routing table could be split into two parts, as shown in Figure 4-5-(b) and Figure 4-5-(c). One

part contains entries for the inter-domain prefixes, pd1/96 and pd2/96; the other part contains

entries for the intra-domain addresses. The number of routing entries is reduced to 2 + 4 = 6.

Address Next Hop
pd1 an1 n1

pd1 an2 n2

pd1 an3 n3

pd1 an4 n4

pd2 an1 n1

pd2 an2 n2

pd2 an3 n3

pd2 an4 n4

(a)
Address Next Hop
pd1/96 self
pd2/96 self

(b)
Address Next Hop
an1 n1

an2 n2

an3 n3

an4 n4

(c)

Figure 4-5: This example shows that the routing table entries for nodes inside a domain is inflated
by 2 when a domain has two address prefixes, pd1 and pd2 . If an address has a fixed-length intra-
domain section, the routing table could be split into two parts: the inter-domain part (b) and the
intra-domain part(c), to avoid this inflation.

4.2.6 Non-Provider-Rooted Addresses

In addition to provider-rooted hierarchical address, we also introduce a type of non-provider-

rooted address. This type of address is useful for bootstrapping communication. When a domain

has not acquired address prefixes from its providers, it could use this type of address to commu-

nicate with its adjacent domains. It is also useful in specifying a route that cannot be represented

by only a source and a destination address.

The format of this address type is shown in Figure 4-6. It consists of a prefix indicating the

non-provider-rooted type, a 32-bit domain identifier, and a 32-bit intra-domain address. The 32-

bit domain identifier uniquely identifies a domain, and is similar to the AS number in today’s

Internet.

56

0 64 95 127

prefix domain ID intra-domain

Figure 4-6: The format of a non-provider-rooted address.

4.2.7 Extended Addressing

We have described the basic version of a strict provider-rooted hierarchical addressing scheme,

where addresses are allocated from providers to customers. In an extended version of the ad-

dressing scheme, addresses could be allocated in other situations, such as between domains that

have a sibling relationship. If two domains M1 and M2 have a sibling relationship, then M1 could

allocate a subdivision of an address prefix it obtains from a provider to M2, and so does M2.

4.2.8 Discussion

One possible concern with a strict provider-rooted hierarchical addressing scheme is that a do-

main may get too many address prefixes. However, in practice, due to economic constraints, the

depth of provider hierarchy is shallow [59, 60], and a domain is usually located only on a limited

number of provider trees. Therefore, we expect that a domain will have a manageable number of

address prefixes. In Chapter 7, we use Internet measurement results to show that the number of

address prefixes a domain has is likely to be small, ranging from a few to a few dozens.

With a fixed-length address format and variable levels of provider hierarchy, theoretically,

hierarchical address allocation may run out of available bits. However, since the inter-domain

section of an address has 96 bits, if these bits are allocated prudently, they could address up to

296 domains. In any foreseeable future, the number of domains in the Internet is unlikely to be

anywhere close to that number. So we do not think the fixed-length address format will be a

problem in the future.

Our fixed-length address format also limits the intra-domain section of an address to be 32-

bit long. So the number of intra-domain addresses is at most 232. Our assumption is that this

number is sufficiently large to address all nodes in a domain. If it is not, two or more 96-bit

prefixes can be allocated to that domain such that nodes in the domain with the same 32-bit

intra-domain addresses will have different 96-bit prefixes. The domain only needs to modify its

intra-domain routing table to take into account the 96-bit prefix of an address when it forwards a

packet destined to a node inside the domain itself.

4.3 Topology Information Propagation Protocol (TIPP)

A strict provider-rooted hierarchical addressing scheme describes how addresses should be al-

located, but does not tell how the results of address allocation are distributed from providers to

57

customers. We design TIPP, a network protocol that distributes address allocation information as

well as topology information. TIPP is an inter-domain protocol that runs between border routers

of domains. It operates outside the Core of the Internet. TIPP also helps routers to establish

forwarding entries.

When border routers of a domain receive address allocation information and topology infor-

mation from TIPP, they can use domain-local mechanisms such as router advertisement [32, 77]

to distribute information learned from TIPP to end users. This dissertation does not address the

design of these local mechanisms.

For clarity, we abstract each domain as having one router and the possible multiple links

connecting two domains as one domain-level link to describe our protocol TIPP. In Appendix 5.B

of Chapter 5, we describe the situation when a domain has multiple routers, and two domains are

connected by multiple links. When we describe the operations of the router in a domain, we

sometimes use the domain to refer to the router as the meaning will be clear from context. For

example, when we say “domain A establishes a TIPP connection with domain B”, we actually

refer to “a router in domain A establishes a TIPP connection with a router in domain B. We

sometimes also use the same upper case letter to refer to both a domain and the router in the

domain.

We first give a high-level overview of TIPP. Then we discuss the design choices we made.

We present the detailed design description of TIPP in Appendix 4.B.

4.3.1 Overview

Cindy

N13

N3

B3 B4 R5

R4

N6

N5

N7

R6

N4

N8

R7

N9N10

R8

R9
N11

N12

Alice

R3R2

N1 N2

R1

B1

Bob

B2

R3R2

N1 N2

R1

B1
1::/16

1:1::/32

1:1:1::/48
1:2:1::/48

1:2::/32

1:2:2::/48

2:1::/32
1:3::/32

Bob
1:1:1::1000
1:2:1::1000

PSfrag replacements

CoreCoreCore

Figure 4-7: What Bob learns from TIPP is shown in black. TIPP propagates to users address
allocation information and relevant topology information.

We start the description of TIPP with an example. Figure 4-7 shows what a user, Bob, learns

from TIPP. Bob learns the address prefixes allocated to his domain N1, his up-graph, and the ad-

dress prefixes allocated to providers on his up-graph. If Bob wants to reach a destination address

58

d, he could use any algorithm to find a route to a provider that has an address prefix enclosing

d, or to the Core, because by default, all global address prefixes are connected at the Core. For

example, if Bob wants to reach one of Alice’s addresses (Figure 4-3), 2:1:1::2000, Bob could

either use the route, N1 → R2 → R3, to reach R3, which has a prefix 2:1::/32, or the route,

N1 → R1 → B1, to reach the Core.

When the domains B1 and R1 establish a TIPP connection, R1 will send a message that re-

quests an address prefix from B1. Since B1 is R1’s provider, its policy will allow it to allocate an

address prefix 1:1::/32 from its address space 1::/16 to R1. When R1 receives this message, it in-

vokes an address allocation process, allocating subdivisions of 1:1::/32 to its customer, and sends

the allocation results to its customers. R1 will also send a message to its customers, telling them

its connection to B1 is up. Such a message will include the address prefixes B1 owns and R1 owns.

A user could assemble his up-graph from these messages. If R1 stops using B1 as a provider, R1

will send prefix withdrawal messages to its customers. If the connection status between B1 and

R1 changes, R1 will also send messages to inform its customers of the status changes. So the

customers will know whether they can use R1 to reach B1.

4.3.2 Protocol Organization

We apply modularization again in the design of TIPP. We make TIPP deal with the distribution of

address allocation information and topology information separately, as the two types of informa-

tion are relatively independent. Even if the addressing scheme is changed in the future, topology

information can still be useful. So TIPP uses separate protocol messages for address allocation

and topology distribution so as to minimize the coupling between the two functions.

We adopt BGP’s signaling approach to establish TIPP connections. A TIPP connection be-

tween two border routers is established on top of a reliable transport protocol, so that TIPP itself

does not need to include mechanisms for in-order and reliable message delivery within a TIPP

connection.

4.3.3 Address Allocation

The part of TIPP that propagates address allocation information is straightforward: if a domain

receives an address prefix from its provider, it allocates a subdivision of the prefix to a customer

and sends a message to distribute the allocation result to the customer. What subdivision to al-

locate to a customer is a domain-local decision. It is also up to a domain to decide whether the

decision making process should be automated, or require operator intervention.

One design issue we face is the degree of persistence of a hierarchically allocated address

prefix. On one hand, when the router in a domain cannot connect to the router in a provider

domain due to temporary failures, or the router crashes and reboots, the domain should not lose

its prefixes obtained from its provider, especially when the domain has allocated the subdivisions

59

of the prefixes to its customers. So a prefix should not be “soft” state.

On the other hand, when a customer terminates its service contract with a provider, the

provider would like to withdraw address prefixes allocated to the customer. In turn, the cus-

tomer would have to withdraw all subdivisions of the prefix allocated to its customers, and so

on.

Reliably withdrawing an address prefix and all its subdivisions can be difficult. In case of

failures or some unexpected operating conditions, an explicit withdrawal message may fail to

reach every node that is allocated a subdivision of the address prefix. Therefore, a prefix should

not be “hard” state.

To address this dilemma, we make an allocated prefix “leased” state and store it in non-

volatile storage, as done in the Dynamic Host Configuration Protocol (DHCP) [40, 39]. “Leased”

state is similar to “soft” state in that it can be removed by timeouts [61]. However, “leased”

state survives router crashes and connection breakdowns. When a provider allocates an address

prefix to a customer, it specifies a leasing period. When the customer allocates subdivisions of

the prefix, it specifies the sublet time of each subdivision. When the lease of an address prefix

expires, the address prefix is considered being withdrawn by the provider. If a provider decides to

withdraw an address prefix, it will send out an explicit withdrawal message and at the same time,

it will stop renewing the lease for the prefix. After the lease expires, the provider could reallocate

the prefix to other customers.

In our design, a lease specifies the length of a time period. Each router computes the lease

expiration time using its local time plus the lease length. We do not require synchronized clocks,

i.e., the local time of a provider and that of a customer could be different, but we do assume

that the clocks of different routers tick at roughly the same speed, so that a provider’s lease and

a customer’s lease expire roughly at the same time point. We believe this is a valid assumption,

because lease-based protocols such as DHCP are widely deployed in practice. To be conservative,

a provider could wait for a period before it reallocates an expired prefix to other customers in case

a customer’s clock ticks slightly slower. If a prefix lease allocated from a provider to a domain is

on the order of days, or months, we expect that a waiting time on the order of an hour is sufficient

to compensate the clock speed difference.

We expect that when a provider and a customer negotiate a service contract, they will specify

the maximum prefix leasing period in the contract. If the connection between the provider and

the customer is down for longer than the maximum leasing period, the provider has the right to

withdraw a prefix allocated to the customer. A down-time is sometimes caused by failures instead

of intentional service termination. Therefore, the leasing period associated with a prefix should

be longer than most failure repair time. Measurement results [43, 72] show that most failures last

on the order of minutes. So we expect that a lease period of a few days would be longer than what

most failures last.

60

4.3.4 Topology Distribution

We have described how TIPP propagates address allocation information. Another task of TIPP is

to distribute topology information. There are at least two general ways to distribute topology for

route discovery. One way is to employ a path-vector like protocol. A domain prepends its own

identifier to the paths heard from its neighbors to reach a destination, and distributes the new

paths to its neighbors. Another way is to distribute link state. A domain sends the information

about its connections to its neighbors over the network. Network topology could be assembled

from all link-state messages a domain receives.

We design TIPP to use a policy-based link-state method for topology distribution. This

method has the disadvantage that a user needs to use a graph search algorithm to find a path

to reach a destination after he collects the link-state messages and assembles the network topol-

ogy. The method to distribute all paths does not require this computation. Moreover, a link-state

protocol is usually more difficult to implement because a link-state message needs to be sent

reliably over the network, while a path message only needs to be sent to a neighbor reliably.

We choose the link-state method because it is more scalable than the path-vector method.

For general graphs, the total number of paths could be much larger than the number of links.

For example, a clique3 of n nodes has n(n − 1)/2 links, but there are 2n−2 paths connecting any

two nodes. A link-state approach only needs to keep state for n(n − 1)/2 links, but the path-

vector approach needs to keep state for 2n−2 paths. Although this situation may not be the case

for today’s Internet (i.e., the number of policy-allowed paths might not be much larger than the

number of domain-level links), we do not want the scalability of TIPP’s topology distribution

mechanism to depend on the structure of the Internet, as the structure may evolve over time.

After choosing a link-state method for topology distribution, we face two additional design

issues: policy routing support and topology update algorithm. We discuss them in turn.

Policy Routing Support

The transit policy of a domain N for its neighbor M specifies the following: for packets coming

from M to N, to what other neighbors of N these packets can be sent, and under what conditions.

A user is supposed to use topology information learned from TIPP to select routes. Without

knowing a domain’s transit policy, an end user may choose a physically connected but policy

invalid route. We think it is necessary to provide policy routing support in TIPP.

To support policy routing, we design TIPP such that a domain can control what topology

information to propagate to its neighbors based on its transit policies. TIPP uses a link record

as the unit for topology representation, rather than using an adjacency-list as in OSPF [75] and

IS-IS [79]. A link record describes the attributes of a domain-level link, and a domain originates

a link record per neighbor. Using link records, a domain has the flexibility to control what to dis-

3A clique is a graph in which every pair of nodes are connected by a link.

61

tribute to a neighbor at the granularity of a link record. We recommend the following control: for

the purpose of information hiding, a domain may only send a link record about a private peering

connection to its customers, not to its providers and other peers; for the purpose of scope enforce-

ment, a domain can choose not to propagate anything heard from a customer to its neighbors so

that a link record will only be sent downwards a provider tree, i.e., from a provider to a customer.

In our design, if a domain transits packets between a neighbor M1 and a neighbor M2, it

explicitly specifies so in its link records using the set of reachable address prefixes from M1 to

M2 and vice versa. Note that transit policies can be implicitly inferred in BGP. From a route

advertisement for a prefix p f with the AS path (...M1,N,M2...), one can infer that N provides

transit service from M1 to M2 for packets destined to the address space p f . So from this aspect,

TIPP does not require a domain to reveal more policy related information than BGP. Details about

policy specification are described in Appendix 4.B.5.

If a domain does not provide transit service between a neighbor M1 and a neighbor M2, then

a domain does not have to specify the policy. It can simply hide its connection with M1 from M2

and vice versa. Again, this mechanism provides a similar information hiding ability as in BGP:

if a domain does not provide transit service between M1 and M2, it will not export any route

learned from M1 to M2, and vice versa.

A domain can specify its policy in TIPP, but it cannot ensure that a user will conform to its

policy. The same problem exists in today’s Internet. A BGP router can hide route advertisements

from a rogue peer, but cannot prevent the peer from dumping traffic to it. So a router should use

policy checking at forwarding time to enforce its transit policy. We discuss policy checking in

Chapter 5.

Choice of Topology Update Algorithm

When TIPP converges, the link records each domain has should be consistent with the status of

the network. It is difficult to keep the consistency of topology information in a dynamic network,

because link records may be reordered or lost as they travel along different paths to reach different

routers.

Two common approaches to deal with the problem are timestamps and sequence numbers.

Timestamps require that clocks are globally synchronized so that routers can perform sanity

checking. If a router sends a message with a corrupted timestamps, for instance, with a time far

in the future, a router could discard such messages instead of keeping them until the future time.

Due to this synchronization requirement, timestamps are considered less preferable to sequence

numbers [81]. Existing protocols such as OSPF and IS-IS use sequence numbers and periodic

refreshments to keep the consistency of link-state advertisements. A link-state advertisement with

the highest sequence number is the most recent advertisement, and can replace advertisements

with smaller sequence numbers. However, there are a few difficulties in adopting these techniques

62

to the inter-domain environment.

First, a domain contains multiple routers and hosts. If a domain is partitioned due to failures,

the sequence numbers kept by each part may be inconsistent, and do not reflect the order of

events.

Second, if a router reboots and forgets its previous highest sequence number, in an intra-

domain protocol such as OSPF, the router can choose a random sequence number to start with.

Any router who has seen a higher sequence number will flood the record back to the router.

The router can then pick up its previous highest sequence number. However, in the inter-domain

environment, due to policy controlled topology propagation, topology information is not flooded

across the network. A policy may specify that a domain will only receive topology information

from its providers, but never leaks any information to its providers. Thus, if a router in a provider

loses its previous sequence number, it may be the case that no other routers will send the sequence

number back to it. The provider router may choose an initial sequence number that is less than

its previous highest sequence number, thus losing the semantic of sequence numbers.

Our implementation experience shows that the sequence number approach is hard to imple-

ment, needs to deal with numerous anomalies, and its correctness is hard to prove. Our final

decision is to use a modified version of the Shortest Path Topology Algorithm (SPTA) developed

by Spinelli and Gallager [93], as TIPP’s topology update algorithm. This algorithm solves the

link record consistency problem without using sequence numbers or periodic refreshments. It is

simple and proven correct. The key idea of SPTA is that a node only uses the messages about a

link l received from its neighbor on the shortest path to reach the link l to update link l’s record

in its topology database. If messages sent over a single link are reliable and in order, then this

update rule ensures that the link record about l in a node’s topology database are consistent with

the status of link l. The primary change we made to SPTA is to add support for transit policies.

The algorithm has two drawbacks. First, its computational cost for per link record update is

linear to the number of links in a graph. TIPP is used to propagates up-graphs. The number of

links in an up-graph is likely to be small compared to that of the Internet. Therefore, we think

that the computational cost will not become a scaling problem. Second, there are unusual situa-

tions where the number of messages sent in the convergence process of the algorithm may grow

exponentially with the number of link status change. However, such situations involve multiple

independent link failures occurring consecutively in a short time. We think that link failure is

small probability event. The event for multiple consecutive failures will rarely happen. If it does

happen, in practice, rate limiting techniques could be used to reduce the number of messages

sent. For detailed analysis and the correctness proof of the algorithm, please see [93].

63

4.4 Name-to-Route Lookup Service

With TIPP, a user learns his addresses and his up-graph. To reach a destination, a user shall at

minimum know about the destination’s addresses. Inspired by the success of the Domain Name

System (DNS) [74], we design the Name-to-Route Lookup Service (NRLS) to be a distributed

hierarchical directory service, which is essentially an enhanced DNS. A server will store its

addresses and optionally topology information such as the address allocation paths learned from

TIPP at its NRLS servers.

The bootstrapping mechanism and the lookup process of NRLS are similar to those of DNS.

A resolver is hard-coded with the addresses of the root servers. A user is hard-coded with the

addresses of his resolvers. At each level of the resolution, the addresses of the NRLS servers

that are in charge of a lower-level namespace is returned. The lookup process stops when the

addresses regarding the queried name is returned.

Foo.com
2:1::3000
1:3::3000

R3R2

N1 N2

R1

B1
1::/16

1:1::/32

1:1:1::/48
1:2:1::/48

1:2::/32

1:2:2::/48
Bob

1:1:1::1000
1:2:1::1000

Cindy

N13

N3

B3 B4 R5

R4

N6

N5

N7

R6

N4

N8

R7

N9N10

R8

R9
N11

N12

Alice

R3R2

N1 N2

R1

B1

Bob

B2

2:1::/32
1:3::/32

Alice.foo.com
2:1:1::2000
1:3:1::2000PSfrag replacements

CoreCoreCore

Figure 4-8: When Bob wants to communicate with Alice, Bob will query the Name-to-Route
Lookup Service to retrieve Alice’s addresses, 2:1:1::2000 and 1:3:1::2000.

Figure 4-8 shows an example. When Bob wants to communicate with Alice, Bob will query

the NRLS servers to get Alice’s addresses. If Bob does not have the addresses of Alice’s NRLS

server, e.g., foo.com, Bob will send queries to the root NRLS servers to first get addresses of the

server responsible for names in the zone foo.com. Then Bob will send queries to that server to

get Alice’s addresses. With his up-graph learned from TIPP and Alice’s addresses, Bob is able to

send an initial packet to Alice. Optionally, Bob and Alice may exchange subsequent packets to

negotiate a different route for communication.

64

4.4.1 Record Updates

What makes NRLS different from DNS is that it stores the mapping between a name to provider-

rooted addresses, which are topology-dependent addresses. When a domain changes its providers,

its addresses will change. It is possible that a single topology change may affect the addresses of

a large group of users. For instance, when a second-level provider changes its top-level providers,

the customers of the second-level provider would all change their addresses. In Figure 4-8, if R2

stops using B1 as a provider, and purchases service from B2, then both N1 and N2’s addresses

will change. The user Bob’s address 1:2:1::1000 becomes invalid, and he’ll have a new address

allocated from B2’s address space.

We recognize that route record update is another modularizable component in NIRA. TIPP

propagates address changes to users. We leave it to users to decide how to update their records,

and do not architecturally constrain how updates should be done. A user and his NRLS provider

could develop any general and ingenious mechanisms to update the user’s route records. Stale

information of a user may make him unreachable, but does not affect the reachability of other

users.

The coupling between topology and address is the logical consequence of any topology-

dependent addressing scheme [103, 64], including the strict provider-rooted hierarchical address-

ing scheme. However, we do not think this coupling effect would cause significant problems for

two reasons.

First, the static Internet topology changes at quite a low frequency. According to the study

conducted by Chen et al [26], the AS birth and death rate of the Internet is less than 15 per day,

the AS-level link birth and death rate is less than 50 per day. Only those changes would affect

a user’s addresses or route segments. Their study also shows that most of the new or dead ASes

are of degree 1 or 2, thus probably being edge ASes. Hence, the changes are likely to affect just

users in those domains. Second, static topology changes are caused by the changes in business

relationships and will happen in a controlled manner. Network administrators and users could

deploy creative scheduling algorithms to reduce the service disruption and route server update

overhead. A grace period may be granted before a provider cuts off its service completely so that

a user has sufficient time to update its route server records. Randomized algorithms may be used

to prevent users from simultaneously update their route server records, and avoid overloading the

network and route servers.

4.4.2 Locations of Root NRLS Servers

When the topology of the Internet changes, the addresses of the root NRLS servers may change.

However, those addresses are usually hard-coded into every resolver. It can be burdensome to

update these hard-coded addresses. For this reason, we require that the root NRLS servers reside

in the Core, as the addresses of servers in the Core are resistant to topology changes. With its

65

up-graph learned from TIPP, a resolver can always find a route to reach the Core, thus reaching a

root server.

4.5 Route Availability Discovery

We have discussed how a user might discover route information with TIPP and NRLS. This in-

formation might not tell a user whether the dynamic attributes of a route satisfies his requirement.

In NIRA, we provide additional architectural support for users to discover such information. The

basic mechanism we provide is a combination of proactive and reactive notification.

For the part of proactive notification, TIPP messages may include the dynamic status of

domain-level interconnections. A user is proactively notified of the dynamic state concerning

providers in his up-graph via these TIPP messages. We let an individual domain decide how to

distribute TIPP messages to users inside itself. To prevent a user from receiving a large number of

TIPP messages, a domain may use standard rate limiting techniques to suppress excessive TIPP

messages, or only propagate TIPP messages regarding the changes of a particular dynamic at-

tribute, such as link status. Alternatively, a domain may propagate TIPP messages only to routers

inside itself, and a user could retrieve address and topology information from a close-by router

at the time of communication.

As TIPP messages do not propagate globally, a user in general does not know the dynamic

status of the addresses of other users. When a user wants to communicate with a destination, it

is possible that he chooses an address of the destination user that is unreachable. So a user might

also discover the route availability via reactive notification. In our design, if a router detects that

a route specified in a packet header is unavailable, the router should try its best to send a control

message to inform the original sender. Such a control message may include reasons why the

route is unusable. When a user receives such a reactive notification, as he knows his addresses,

his up-graph, and the addresses of the destination user, he could switch to an alternative route on

the order of a round trip time. In this case, NIRA enables fast route fail-over. In cases where a

router is unable to send a failure notification, e.g., a router is overloaded, users shall use timeout

to detect route failures. The fail-over time then depends on the timeout parameters.

The combination of proactive and reactive notification reduces the amount of dynamic routing

information that a user needs to maintain. However, reactive notification may increase the con-

nection setup time when user selected routes suffer from failures. Note that failures that trigger

reactive notification are those that result in inter-domain disconnections. For intra-domain fail-

ures, routers should always use local repair mechanisms to send packets over alternative paths

for rapid fail-over. For inter-domain failures, since a user has expressed his domain-level route

choices in a packet header, and an intermediate router does not know the user’s route preference,

(because it is probably related to a user’s financial considerations), it is best for the user to de-

cide on an alternative route. So in NIRA, we prefer to use reactive notification to local repair for

66

inter-domain failures. Users cache recently used routes and avoid using unavailable routes for a

new connection. We expect that the amortized set up time will be reduced with such caching.

Since we have modularized route availability discovery as an individual architectural compo-

nent in NIRA, users or service providers can use additional mechanisms to discover route avail-

ability besides using the basic mechanisms provided by NIRA. For instance, a local provider may

offer a route monitoring service to its users. The provider can run a server that actively probes the

dynamic attributes of popular routes and provides timely information on route conditions to its

customers. In addition, popular servers may choose to include dynamic topology information in

their NRLS records and update the information at a rate they could afford. When a user retrieves

their NRLS records, they may already have the information on which addresses of the servers are

unreachable, thus saving the connection setup time.

4.6 Discussion

This chapter describes the basic mechanisms in NIRA for route discovery and route availability

discovery. Before we proceed to describe how to represent a route in a packet header in the next

chapter, we discuss their limitations.

The basic mechanisms for route discovery, including provider-rooted hierarchical addressing,

TIPP, and NRLS, do not guarantee that a user will discover all possible routes. For example, to

avoid flooding link records globally, a domain does not propagate link records heard from a

customer to other neighbors. If a domain D, for some reason, provides transit service between

its providers P1 and P2, then there is an additional route connecting any source and destination

pair: source → ... → P1 → D → P2 ... → destination. However, a user may not receive the

link records (D, Pi) or (Pi,D) for i = 1, 2, and does not know the transit policy. Since we have

made route discovery a separate module, domain D could use any other mechanism, such as an

advertisement on its web page, to make such routes known to users.

A provider-rooted hierarchical addressing scheme reveals business relationships between do-

mains to some extent. If domain A allocates a subdivision of its address space to domain B, one

can conclude that A provides transit service for B, and therefore, A is B’s provider. However, the

detailed business agreements such as service price are not revealed. We do not expect this reve-

lation will constitute a deployment problem, because even today, business relationships between

domains can be inferred to some extent by analyzing BGP announcements [54, 99].

Appendix 4.A Proof of Address to Path Mapping Property

We formally prove the Address to Path Mapping Property of a strict provider-rooted hierar-

chical addressing scheme.

67

• Address to Path Mapping Property: If a domain M has a prefix p, and a domain N has a

prefix p′, and the prefix p′ is within the address space p, then there exists a unique loop-free

path M...→ ...→ Pi−1 → Pi → Pi+1 → ...→ N that consists solely of provider-customer

connections. Each domain Pi along the path from M to N has an address prefix pi such that

pi is within the address space p, and p′ is within the address space pi.

Proof: Since p′ is a subdivision of p, p′ cannot be a top-level provider’s prefix. Thus, N must

have obtained p′ from a provider Pk’s address space pk. (We use an upper case letter to represent

a domain, and subscripts to differentiate domains.) Similarly, if Pk is not a top-level provider, Pk

must have obtained pk from a provider Pk−1’s address space pk−1. Therefore, there must exist

a path P0 → P1 → ... → Pi → Pi+1... → N, where P0 is a top-level provider, and Pi is the

provider of Pi+1 and has allocated a subdivision of its prefix pi: pi+1, to Pi+1. We call such path

the allocation path of N’s prefix p′. This path must contain no loops as indicated by the non-

looping allocation rule. M must be equal to Pi for some i, because otherwise the non-overlapping

address allocation rule is violated. This concludes the proof.

Appendix 4.B TIPP Specification

This section describes TIPP in detail. TIPP runs between border routers of domains outside the

Core. A border router that runs TIPP is called a “TIPP router.”

4.B.1 TIPP State and Logical Data Structures

output
topology
database

output
topology
database

Input
topology
database

output
prefix
database

output
prefix
database

Input
topology
database

Input
topology
database

Input
prefix
database

main
prefix
database

main
topology
database

P0

P2

P1

P3

forwarding
table

forwarding
table

downhill

forwarding
table

uphill

bridge

Figure 4-9: The logical data structures the router in P1 keeps to maintain address prefixes, topol-
ogy information, and forwarding state.

A TIPP router maintains three types of TIPP state: address prefixes, topology information,

and forwarding entries. Figure 4-9 illustrates the logical data structures a TIPP router P1 keeps

to maintain TIPP state. P0 is its provider; P2 and P3 are its customers. For each of its neighbors

that allocate address prefixes to it, for example, its provider P0, P1 keeps an input prefix database

68

that stores the address prefixes allocated from the neighbor. Similarly, for each of its neighbors

to whom it allocates address prefixes, say its customers P2 and P3, P1 keeps an output prefix

database that stores prefixes allocated to the neighbor. P1 also keeps a main prefix database that

stores all address prefixes it has.

For each of its neighbors, P1 keeps an input topology database. P1 also keeps a main topology

database that stores the topology information collected from its input topology databases. A do-

main categorizes its neighbors into several classes based on its policy configurations. The router

in a domain keeps an output topology database for each neighbor class, rather than each neigh-

bor. The classification saves memory and reduces the computation required for topology database

update. The two common classes are the provider class, which is for a domain’s providers and

peers, and the customer class, which is for a domain’s customers. As shown in Figure 4-9, P1 has

an output topology database for P0, and one for P2 and P3.

Input databases, main databases, and output databases are logical distinctions. TIPP does not

require a router to keep separate copies of the same data items. In its implementation, a router

may use pointers instead of copying the same data items to save storage space.

TIPP also helps a router to establish forwarding state. A router keeps three logical forwarding

tables: the uphill forwarding table, the downhill forwarding table, and the bridge forwarding

table. Since a user will specify a domain-level route in his packets, a router only needs to keep

forwarding entries for address prefixes of its neighbors and its own address prefixes. In Chapter 5,

we describe how a router forwards packets using these forwarding tables.

4.B.2 Message Types

There are six types of TIPP messages: open message, keepalive message, notification message,

address request message, address message, and topology message. As in BGP, each message

has a common header, including the length of the message, the type of the message, and the au-

thentication information. The messages for connection control, the open, keepalive, notification

messages, are basically the same as those in BGP [88, 56]. The open message opens a TIPP

connection and contains connection parameters such as the hold time interval. If a router does

not receive any message from its neighbor for a hold time interval, it will declare the connec-

tion dead. The keepalive message is an empty message that is sent out periodically to ensure

the liveness of a connection. The notification message sends an error notification to a router’s

neighbor.

The other three messages are unique to TIPP. The address request and address message

handle address allocation, and the topology message handles topology updates.

69

connect success / send open
connect successs / send open

recv address request / send address

recv open / send address request

recv address / send topology

recv topology
recv keepalive

AddreqConfirm

AddrSynced

start
Idle

Connect Active

OpenSent

OpenConfirm

Established

Figure 4-10: TIPP Finite State Machine. Transitions for error events are omitted.

4.B.3 TIPP Finite State Machine

A TIPP router establishes a connection with a neighbor in the same way as a BGP router. It runs

a state machine on top of a reliable transport connection, and sends and receives TIPP messages

over the transport connection. Figure 4-10 shows the basic TIPP finite state machine. Transitions

for error events are omitted for clarity. The shaded states are the same ones as those in BGP. Two

additional states ”AddreqConfirm” and ”AddrSynced” are added into TIPP for synchronizing the

address prefix databases and topology databases between a router and its neighbor.

Initially, a TIPP finite state machine is in Idle state. A start event changes the state from Idle

to Connect. In the Connect state, a TIPP router waits for its transport connection to succeed. If

the connection fails, it transfers into the Active state, where it retries its transport connection.

When a transport connection succeeds, a TIPP router sends an open message to its neighbors.

At the OpenSent state, when receiving an open message from its neighbor, instead of sending

a keepalive message as in BGP, a TIPP router will send an address request message to its

neighbor. The router then transfers to the OpenConfirm state and awaits an address request

message from its neighbor.

When the address request message from its neighbor arrives at the router, it replies with an

address message to the neighbor, and transfers to AddreqConfirm state. The address message

contains the address prefixes a router allocated to its neighbor.

At the AddreqConfirm state, when a router receives an address message from its neighbor,

the router synchronizes its input prefix database with the neighbor’s output address database using

the contents of the message. It then sends a topology message to the neighbor, and transfers to the

AddrSynced state. The topology message contains the contents of its output topology database

for the neighbor.

At the AddrSynced state, when a router receives a topology message from its neighbor, it

synchronizes its input topology database. At this point, a router’s input databases are synchro-

70

nized with its neighbor’s output databases. The connection is fully established, and the router will

transfer to the Established state. A router may send out topology messages to its other neighbors,

telling them that the connection between itself and the neighbor is up.

As with BGP, a router periodically sends keepalive messages, and closes a connection if it

does not receive any message from its neighbor for a hold time interval. During the connection

tear-down, a router clears its input topology database with the neighbor, but will not clear its

input prefix database.

4.B.4 Address Allocation

A hierarchically allocated prefix is a “leased” state, and is stored in a router’s prefix databases in

non-volatile storage. A record in a router’s prefix database is a (prefix, attributes) pair. As the set

of attributes may change over time, we use a TLV (type, length, value) [81] triplet to represent

an attribute. If a router does not understand the type of an attribute, it can ignore the number of

bytes specified by the length field. In our design, the attributes of a prefix include three fields:

timestamp, lease period, and allocation path.

The timestamp is a router’s local time. Global clock synchronization is not required. For an

input database and the main prefix database, the timestamp is the time when the router receives

the address message that allocates or renews the prefix. For an output database, the timestamp

is the time when the router allocates or renews the prefix to its neighbor. The allocation path

specifies the sequence of identifiers of domains that allocates the prefix, followed by the identifier

of the domain that leases the prefix.

Address Request and Address Message

The address request and the address message update a router’s prefix databases. An address

request message contains the size of the address block a router asks for from its neighbor. The

address message contains a list of prefix records. A prefix record is a tuple with three fields:

(opcode, prefix, attributes). Figure 4-11 shows the contents of an address request message and

an address message.

common header

request size

(a) address request message

common header

1st prefix record

2nd prefix record

3rd prefix record

...

(b) address message

Figure 4-11: Contents of an address request message and an address message.

71

Address Request Message Processing

An address request message is sent when a TIPP connection is being established, or an operator

decides to request a different size of address prefix from a provider. If a router does not request

any address from its neighbor, it sets the request size to zero.

When a router receives an address request message from a neighbor, it first checks whether

its policy grants such request. If not, it replies with an empty address message. Otherwise, it

replies with an address message that contains prefix records. If the request size is the same as

that in a previous request, the address message contains the prefixes allocated to the neighbor.

For each prefix, the lease period in the message is set to the remaining lease time. If the size has

changed, the router may withdraw previously allocated prefixes and allocates new prefixes to the

neighbor.

Pseudocode 1 shows the pseudocode for processing an address request message. Note that

each domain makes up its own address allocation procedure, i.e., the allocate(M, req.size) pro-

cedure at line 10 of the pseudocode. TIPP does not standardize it. The process could either be

automated or require operator attention.

Pseudocode 1 : Address request message processing
N: the TIPP router
M: N’s neighbor
OPDBM: the output prefix database for M
prevS ize: the size of a previous request from M
addrMsg: an address message template

1: On receiving an address request message req from M
2: if N’s does not allocate req.size to M then
3: send empty addrMsg to M;
4: else
5: if req.size , prevS ize then
6: foreach pre f ix in OPDBM do
7: add (withdraw, pre f ix) into addrMsg
8: end for
9: OPDBM.clear()

10: allocate(M, req.size)
11: end if
12: foreach pre f ix in OPDBM do
13: lease = pre f ix.timestamp + pre f ix.lease − now
14: path = pre f ix.allocPath;
15: push (add, pre f ix, leaseT , path) into addrMsg
16: end for
17: send addrMsg to M
18: end if

72

Address Message Processing

Figure 4-12 shows the steps in processing a non-empty address message. When a router receives

an address message from a neighbor, it first updates its input prefix database if its policy allows.

For each prefix record in an address message, if the opcode is “add”, and the prefix is not in the

input database, it will be added into the database. If the opcode is “add”, and a prefix is already

in the input database, the prefix is renewed. Its timestamp is set to the message receiving time,

and the lease time is set to that in the address message. Similarly, if the opcode is “withdraw”,

the prefix will be deleted from the input database.

Input

Input
Address
update
decision
making

Address
allocation
decision
making

Output

Output

provider

provider

customer

customer

Prefixes

Prefixes

Prefixes
Prefixes

Prefixes

procedure

Topolgy
update

Figure 4-12: When a router receives a non-empty address message from a neighbor, it first up-
dates its input prefix database. If its policy allows, it will update its main prefix database, al-
locate, withdraw, or renew subdivisions of its prefixes, update its output prefix databases to its
customers, and send out messages to notify the customers of the update. The router will also
invoke the topology update procedure to update its topology databases and its forwarding tables.

If there is any change in the input database, the main prefix database of the router is updated

correspondingly. If a prefix is added, renewed, or withdrawn from its main prefix database, a

router may update its output prefix databases to allocate, renew, or withdraw the subdivisions of

the prefix allocated to its customers and itself. The router will send address messages containing

the changes to its neighbors.

When a router’s main prefix database has a new addition or a withdrawal, the hierarchical

addresses of the router will change. As we will explain later, the router will also need to update its

topology database and its forwarding tables. Pseudocode 2 shows the pseudocode for processing

an address message.

Prefix Lease Management

Each router will have a cron job that periodically checks lease expiration for prefixes allocated to

them, and prefixes allocated by them. If the cron job finds that a prefix in a router’s input prefix

database is expired, it will withdraw the prefix as if the router has received an address message

that withdraws the prefix. We assume when two domains negotiate a service contract, they also

specify a maximum prefix leasing time maxLease. The maxLease for a subdivision of a prefix

73

Pseudocode 2 : Address message processing
IPDBM: input prefix database for a neighbor M
OPDBM: output prefix database for a neighbor M
MPDB: main prefix database of the router

1: on receiving an address message addr from M
2: foreach record in addr do
3: if record.opcode == add then
4: if record.pre f ix < IPDBM then
5: add record.pre f ix into IPDBM

6: else
7: pre f ix = IPDBM. f ind(record.pre f ix)
8: pre f ix.timestamp = now;
9: pre f ix.leasetime = record.leasetime

10: end if
11: else if record.opcode == withdraw then
12: withdraw record.pre f ix from IPDBM

13: end if
14: end for
15: if any change in IPDBM then
16: update MPDB
17: end if
18: if any change in MPDB then
19: foreach customer C do
20: update OPDBC

21: send address message to C if needed
22: end for
23: end if
24: if MPDB has new additions or withdrawals then
25: update self addresses
26: update topology databases
27: update forwarding tables
28: end if

74

should be no more than that of the prefix. If the cron job finds that a prefix subdivision allocated

to a customer has a remaining lease time less than C ∗ maxLease, where C is a domain specific

fraction, and the prefix in its input database has a longer lease, it will renew the lease for the

subdivision. For top-level providers, their global unique prefixes have an infinite leasing period.

So they can always renew the leases for prefixes allocated to their customers.

When a router receives an address message that renews a prefix, it will also check leases for

the subdivisions of the prefix. If the remaining time of any subdivision is less than C ∗maxLease,

the router will also renew the prefix subdivision. Pseudocode 3 shows the pseudocode for prefix

lease maintenance.

Pseudocode 3 : Periodic prefix lease management
N: the TIPP router
IPDBM: input prefix database for a neighbor M
OPDBM: output prefix database for a neighbor M
MPDB: main prefix database of N
maxLease(N,M): max lease time from N to M

1: foreach neighbor M do
2: foreach rec in IPDMM do
3: if rec.timestamp + rec.lease < now then
4: withdraw rec.pre f ix as if receiving an address message
5: end if
6: end for
7: end for
8: foreach neighbor M do
9: foreach rec in OPDBM do

10: r = rec.timestamp + rec.lease − now
11: if r < C ∗ maxLease(N,M) then
12: pRec = MPDB. f indParent(rec.pre f ix)
13: pr = pRec.timestamp + pRec.lease − now
14: if pr > r then
15: rec.timestamp = now
16: rec.lease = min(maxLease(N,M), pr);
17: end if
18: end if
19: end for
20: end for
21: send address messages to notify lease changes.

4.B.5 Topology Distribution

Topology information is represented by a set of link records, and are stored in topology databases.

A link record is identified by an originator domain identifier and a neighbor domain identifier

75

and specifies the attributes of the domain-level link between the two domains. Due to policy

configurations, for a domain-level link, a router may not receive the link records originated by

both ends of the link. Therefore, we make a link record contain attributes for both directions of

the link so that a router will know the link attributes for its returning packets. A link record itself

is unidirectional. A record (N,M) is originated by the router in domain N, but contains attributes

for two unidirectional links: link N → M and link M → N.

The link record attributes should include physical connectivity status, transit policy, and op-

tionally other attributes such as delay, bandwidth, jitter, and monetary cost. A link record attribute

is encoded as a (type, length, value) triplet [81]. So the set of attributes is easily extensible.

Transit Policy Specification

Since we assume a provider-rooted hierarchical addressing scheme, we can use an address prefix

to succinctly specify a domain and all its customers. For example, in Figure 4-3, R2 has a peering

relationship with R3, i.e., R2 provides transit service between its customers and R3. R2 can use its

address prefix, 1:2::/32, to represent itself and its customers reachable from the peering link: N1

and N2.

In the transit policy specification of a link record, the reachable neighbors for each direction

are represented in two sets. One set is the reachable addresses within a domain’s own address

space, the internal addresses, and the other set is the reachable addresses outside a domain’s own

address space, the external addresses. Each set contains a list of prefix records. The internal ad-

dresses of a neighbor will also be used to establish a domain’s forwarding tables. A set containing

a wildcard “*” represents all external addresses of a domain’s neighbors.

A prefix record within a link record (N,M) has the format (allocation-relation, prefix, condi-

tion). The allocation-relation indicates whether the prefix is allocated along the link from N to M

(value 1), or vice versa (value 0), or the prefix is not allocated from any of N’s providers (value

2), i.e., either N is a top-level provider and the prefix is the global unique prefix N owns, or the

prefix is the non-provider-rooted prefix of N. This field tells whether the link represented by the

link record is on an address allocation path, and is useful in route selection, route representation,

and forwarding table establishment.

For example, as shown in Figure 4-13, if N and M have a peering relationship, M may have

an address prefix p f that is within N’s address space, but N does not allocate the prefix to M.

Instead, N allocates a prefix that includes p f ’s address space to a customer C; C is the provider

of M, and allocates p f to M. So an address in the address space of p f maps to the route fragment

N → C → M, not N → M.

The prefix field in a prefix record specifies the reachable address space, and the condition

field specifies under what conditions packets can be forwarded to the reachable prefix, and could

be empty if a domain has no specific restrictions. The conditions should be things a domain can

76

N

C

M

Figure 4-13: M has an address prefix p f that is within N’s address space, but is not allocated
from N. The allocation-relation bit in a prefix record is used to clarify this.

check, such as a packet header matching rule, or a time slot.

Originator ID: R1

Neighbor ID: B1

Status: up
Internal reachable (R1 → B1): (2, 1::/16)

(2, nprP f (B1))
External reachable (R1 → B1): *
Internal reachable (B1 → R1): (1, 1:1::/32)

(2, nprP f (R1))
External reachable (B1 → R1): ε

Originator ID: R2

Neighbor ID: R3

Status: up
Internal reachable (R2 → R3): (0, 1:3::/32)

(0, 2:1::/32)
(2, nprP f (R3))

External reachable (R2 → R3): ε

Internal reachable (R3 → R2): (0, 1:2::/32)
(2, nprP f (R2))

External reachable (R3 → R2): ε

Figure 4-14: The contents of the link record (R1, B1) and (R2,R3). The network topology is shown
in Figure 4-3.

Figure 4-14 shows the contents of the link record (R1, B1) and (R2,R3). The network topology

is shown in Figure 4-3. The “Internal reachable” field for each unidirectional link specifies the

internal address space of the end domain. The “External reachable” field specifies the reachable

non-customer neighbors of the end domain. We use the symbol nprP f (N) to represent the non-

provider-rooted address prefix of a domain N. In this example, R1 is a customer of B1. So a packet

from R1 to B1 can be sent to any of B1’s neighbors. This policy is specified by the wildcard “*”

in the field “external reachable (R1 → B1)”. On the reverse direction, a packet from B1 to R1 is

only allowed to reach the address space allocated from B1 to R1: 1:1::/32, and nodes inside R1:

nprP f (R1), so the external reachable set is empty (denoted by the empty set symbol ε). Similarly,

77

R2 and R3 have a peering relationship. So the external reachable addresses for both directions are

empty.

Policy-based Topology Information Propagation

Topology
Update
Procedure Output

Topology
to Customers

Output
Topology
to Providers
and Peers

Update
ForwardingInput

Topology

Input
Topology

Input
Topology

Tables

customer

customer

customer

provider

provider

peer

Topology
Main

Figure 4-15: When a router receives a topology message from a neighbor, it first updates the
input topology database for the neighbor. If the input topology database is connected to the output
topology database of a neighbor class, the router will invoke the topology update procedure and
send changes to the corresponding neighbors. The router may also update its forwarding tables.

Figure 4-15 shows the steps in processing a topology message. A router updates its input

topology database for a neighbor M when it receives a topology message from M, or when the

attributes of its connection to M is changed. A topology message consists of a list of link records,

as shown in Figure 4-16.

common header

1st link record

2nd link record

3rd link record
...

Figure 4-16: Contents of a topology message.

If according to a domain’s policy, the router in the domain wants to propagate the topology

information learned from M to the class of neighbors an output database OT is intended for,

it “connects” the input topology database from M, T M , to the output database OT . Changes in

TM will then invoke the topology update algorithm (described in Section 4.B.6) on OT , and any

78

changes in OT will be sent to the corresponding neighbor class. All input topology databases are

connected to a router’s main topology database.

Based on a domain’s policy, the router in a domain connects different input databases to dif-

ferent output databases. This policy-based propagation serves two purposes. First, it allows infor-

mation hiding. Second, it controls the propagation scope of topology information, thus improving

scalability. If a router connects any input topology database to an output topology database, TIPP

becomes a link-state flooding protocol. A router will see the entire inter-domain topology.

We recommend the following propagation policies. For information hiding, if a domain does

not provide transit service between two neighbors, it does not connect the input database from one

neighbor to the output database for the other neighbor, and vice versa. To control the propagation

scope of a link record, a domain does not connect the input database from a customer to any

neighbor.

Combining these two policies, the output database for a router’s provider class is empty; the

output database for a router’s customer class only has information about a router’s up-graph. In

the topology shown in Figure 4-3, the router in domain N1 only sees link records of its up-tree:

(N1,R1), (N1,R2), (R1, B1), (R2, B1), (R2,R3), and will not see (R2,N2) or (B1,R3).

Topology Message Origination

An adjacent link record is a link record representing an adjacent link. During a connection es-

tablishment process between a domain N and a neighbor M, at the AddreqConfirm state, after

N updates its prefix databases based on the address message it receives, it will create a partial

link record (N,M), consisting of its transit policy for M, and possibly other one-way attributes

it knows of. It sends to M this partial link record along with other records in its output database

for M and transfers to the AddrSynced state. When N receives a topology message from M, the

message must contain a partial link record (M,N). It extracts from this record M’s transit policy

for itself and possibly other one way attributes from M to N. Combining the partial record (N,M)

it has, N creates a link record (N,M) with two-way attributes in M’s input topology database T M ,

and sets the connection status to be up. It creates other link records in T M using the other records

in the topology message. Then, N invokes the topology update algorithm (Section 4.B.6) on a

topology database TM is connected to, originates a topology message containing the changes,

and sends the message to the corresponding neighbors.

When a domain N’s transit policy for a neighbor M changes, for example, N obtains a new

address prefix p f , and wants to add p f to the internal reachable set, N sends to M a link record

(N,M) to inform M the change, updates the (N,M) record in T M , invokes the topology update

algorithm on an output database connected to TM , and sends a topology message to propagate

the changes.

Similarly, when the router in domain N detects a connection failure between a neighbor M, it

79

clears the input database TM , invokes the topology update algorithm, and originates a topology

message to send out the changes.

4.B.6 Topology Update Algorithm

Our topology update algorithm is a modified version of the Shortest Path Topology Algorithm

(SPTA) [93]. We made changes to SPTA to add support for domain transit policies. The main

idea of the update algorithm is described as follows.

A link record is correct if it describes the most updated state of the domain-level link it

represents. For the router in a domain N, invoking the topology update algorithm on a topology

database OT is to ensure that any link record in OT representing a reachable link from N is

correct. An adjacent link record for any neighbor M is always correct because N and M have a

direct connection. For a remote link record e representing a link l, e(l), if N can find a failure-free

and policy-allowed path to reach l using links represented by the correct link records it has so

far, then N believes that the link record e′(l) heard from the neighbor on the shortest path to l is

correct. N will use the contents of e′ to set e. Then e is assumed to be correct, and can be used to

reach other remote link records.

Pseudocode 4 shows the pseudocode for the topology update algorithm. At Line 17, the test

on whether f Link = (A, B) can reach an adjacent link e = (B,C) takes into consideration the

transit policy specification in the link record (A, B).

The algorithm requires that messages sent between adjacent neighbors are reliable and in

order. TIPP connection is established on top of a reliable transport connection, so this requirement

will be satisfied.

The correctness of the algorithm can be shown using an inductive proof similar to the original

proof for SPTA in [93]. The basic idea of the proof is to use induction to show that in a steady

network, within a finite time, the router in a domain N will have a correct link record for a link

l that is at distance d. The induction hypothesis is clearly true for an adjacent link (d = 0). With

the condition that messages between two adjacent routers are sent reliably and in order, it can be

shown that the hypothesis is true for d > 0.

As an optimization, the topology update algorithm only needs to be invoked when a link

record is received from a neighbor that is on the shortest path to the link, because link records

received from other neighbors will not change the records in a router’s main or output topology

databases.

4.B.7 Link Records for Removed Links

In a link-state routing protocol, such as OSPF, when a node detects a connection to a neighbor has

failed, the node will originate a link-state advertisement that only includes connections that are

alive, and does not include the failed connection. Therefore, a failed connection is automatically

80

Pseudocode 4 : Topology update algorithm
TM : Input topology database from a neighbor M
eM : the adjacent link record for M

1: foreach neighbor M do
2: if the connection to M is up then
3: eM .parent = TM .
4: set eM’s attributes using the record in TM

5: push eM into queue.
6: else
7: clear eM’s attributes
8: set the link status in eM to be down
9: end if

10: end for
11: while queue is not empty do
12: f Link = queue.pop()
13: if f Link is processed before then
14: continue
15: end if
16: foreach adjacent e of f Link’s end domain do
17: if f Link can reach e && f Link is up then
18: e.parent = f Link.parent
19: set e’s attributes using the record in e.parent
20: if e is up then
21: push e into queue
22: end if
23: end if
24: end for
25: end while
26: send changes to neighbors

81

purged out of the link-state database of a node, regardless of whether the failure is due to a

temporary link failure, or due to the permanent removal of a link.

In our protocol TIPP, a TIPP node sends messages concerning each adjacent link’s status.

So if a link goes down, a record for the link is still present in a node’s topology database, with

its status marked as down. However, if the link is permanently removed from the network, it

is desirable that the record for the removed link is eventually purged out of a node’s topology

databases. Since removed-link records only take up a node’s memory, we leave it as a local

implementation issue on how to purge out removed-link records. A node may periodically clean

up records with down links in its topology databases, or it could simply delete the link record after

it has received a message with the link down information and propagated this information to its

neighbors. The node will create a new record for the link when it receives a message with the

link up information. Alternatively, a node could do nothing about a link record with status down.

If an adjacent link is removed, a node would stop originating a record for the link. Therefore,

after the node reboots, it should have no record for the removed link. When the node’s neighbors

reboot, they would synchronize their databases with the node, and their databases will have no

record for the removed link either. Eventually, the removed link record will be purged out of the

network after all nodes have rebooted.

4.B.8 Topology Database Refreshment

As in BGP, to increase the robustness of the protocol, adjacent TIPP routers may choose to

periodically refresh their databases to avoid memory corruption.

4.B.9 Example

Figure 4-17 shows various TIPP events happened in a simulation run with a three-node topology.

Node 0 is the provider of node 1, which is the provider of node 2. The notation i − j means node

i’s connection to a neighbor j. The first column is the line number, and the second column is the

simulated time when a TIPP event happens.

In the simulation, node 1 and node 2 first establish a TIPP connection, and then node 1

acquires node 0 as a provider. At line 4, node 1 receives a prefix allocation message from node 0.

It then allocates a subdivision to its customer node 2, and sends an address message to node 2 at

line 5. It also sends a topology message to node 2 to announce its newly acquired prefix at line 6.

At line 13, node 1’s connection to node 0 is fully established. It sends a topology message at

line 15 to inform node 2 that the connection between itself and node 0 is ready to use.

In the simulation, we introduce a failure between node 1 and 0 at simulation time 300 second.

At line 18, node 1 detects the failure via timeout and closes the connection. At line 21, it sends

a topology message to inform node 2 that the connection between node 1 and node 0 is broken.

The failure is recovered later, but the events are not shown.

82

0

1

2

top−level provider
customer

provider

customer

1: ..

2: ..

3: 4.833861 1 - 0 FSM change status [OpenConfirm -> AddreqConfirm].

4: 4.833861 1 - 0 receive ADDRESS size 147

5: 4.833861 1 - 2 send ADDRESS.

6: 4.833861 1 - 2 send TOPOLOGY.

7: 4.833861 1 - 0 FSM event Receive_ADDRESS_message.

8: 4.833861 1 - 0 send TOPOLOGY.

9: ...

10:...

11: 24.853879 1 - 0 receive TOPOLOGY size 109

12: 24.853879 1 - 0 FSM event Receive_TOPOLOGY_message.

13: 24.853879 1 - 0 FSM change status [AddrSynced -> Established].

14: 24.853879 1 - 0 send KEEPALIVE.

15: 24.853879 1 - 2 send TOPOLOGY.

16: ...

17: ...

18: 444.813837 1 - 0 FSM event Hold_Timer_expired.

19: 444.813837 1 - 0 send NOTIFY.

20: 444.813837 1 - 0 FSM change status [Established -> Idle].

21: 444.813837 1 - 2 send TOPOLOGY.

22: 444.823843 0 - 1 FSM event Hold_Timer_expired.

23: 444.823843 0 - 1 send NOTIFY.

24: 444.823843 0 - 1 FSM change status [Established -> Idle].

25: 444.823846 2 - 1 receive TOPOLOGY size 69

26: 444.823846 2 - 1 FSM event Receive_TOPOLOGY_message.

27: ...

28: ...

29: 18000.000000 0 - 1 send ADDRESS.

30: 18000.010015 1 - 0 receive ADDRESS size 147

31: 18000.010015 1 - 2 send ADDRESS.

32: 18000.010015 1 - 0 FSM event Receive_ADDRESS_message.

33: 18000.020030 2 - 1 receive ADDRESS size 147

34: 18000.020030 2 - 1 FSM event Receive_ADDRESS_message.

35: ...

36: ...

Figure 4-17: Each line shows a TIPP event happened at a simulated time point. The notation i− j
means node i’s connection to a neighbor j.

At line 29, node 0 renews the subdivision of its address prefix allocated to node 1, and sub-

sequently, node 1 renews the corresponding prefix allocated to node 2 at line 31.

83

84

Chapter 5

Route Representation and Packet

Forwarding

In the previous chapter, we discussed the basic mechanisms we provide for route discovery and

route availability discovery. In this chapter, we discuss how a route is represented in a packet

header and how routers forward a packet unambiguously along the route specified in the packet’s

header.

Packet forwarding requires the coordination of routers of different domains. Routers must

agree on where a packet should go in order to avoid forwarding loops and to ensure that a packet

arrives at its destination. Therefore, in our design, route representation and packet forwarding is a

module on which we impose architectural constraints. Users should use the route representation

scheme we design to specify a route, and routers should adhere to our forwarding algorithm to

forward a packet.

In this chapter, we first present our route representation scheme, followed by the correspond-

ing packet forwarding algorithm. Second, we briefly describe how a user generates a route repre-

sentation. Third, we describe how a route representation for a reply packet or an ICMP packet is

generated. Finally, we describe how to optimize our route representation scheme.

5.1 Route Representation

We first describe and compare previous work. Second, we identify key design requirements and

present our design rationale. Finally, we describe the design details of our route representation

scheme. Our design has the feature that a user can specify a common type of domain-level route

using a source and a destination address.

85

5.1.1 Previous Work

Route representation schemes can be categorized into two types: stateful and stateless. In a state-

ful approach, a user sets up a path before he sends packets along the path. Path setup maps a

path identifier to a next forwarding hop at each router along the path the user has chosen. So

packets carrying a path identifier can be forwarded along a user-chosen path. The mapping from

path identifiers to paths is usually temporary. The same path identifier could be assigned to a

different path in a different path setup. A stateful approach can be optimized such that one path

is reused by multiple connections to avoid per-connection path setup overhead. The ATM [1]

network, NIMROD [25, 96, 86], IDPR [95], SIDR [41], and Multiple Protocol Label Switching

(MPLS) [89] all use a stateful approach for route representation.

In a stateless approach, a user does not need to set up a path before he sends packets. A

user can represent a path using a sequence of labels in a packet header. A label could either be a

globally unique identifier, such as an address, or an identifier local to a router, such as an outgoing

interface address [100]. We categorize the first approach as the stateless global approach, and the

second one as the stateless local approach. PIP [50], SIPP [52], SIDR [41], IDPR [95], and IP

loose source routing [84, 35] all use the globally unique addresses of intermediate routers, or

the globally unique identifiers of intermediate domains to represent a route. The work described

in [100] uses a sequence of outgoing interface identifiers of routers to represent a route.

As we are most interested in representing a domain-level route, we describe how to apply

these approaches to represent a domain-level route. With a stateful approach, a user could set up

a path and obtain a path identifier to represent a domain-level route. The user can then insert the

path identifier in his packet headers. With a stateless global approach, a user can use a sequence

of domain addresses1 or a sequence of domain identifiers to represent a route. With a stateless

local approach, a domain could assign a domain-local address to each of its neighboring domains.

A user can then use a sequence of such addresses to represent a domain-level route.

5.1.2 Comparison

In order to make our design decision, we first compare the three different approaches from various

aspects, including header overhead, maintenance overhead, support for reverse path generation,

forwarding efficiency, and transit policy checking overhead.

• Header Overhead: We compare the number of bytes required in a packet header to repre-

sent a domain-level route. For the stateful approach, a path identifier could be very short.

For example, MPLS [89] uses a 20-bit identifier. Thus, the header overhead is on the order

of a few bytes.

For the stateless global approach, the header overhead depends on the length of a domain-

1We define a domain address as an anycast address [80, 36] whose destination is any router in a domain.

86

level route. Measurement studies [33] show that the average number of domains an end-

to-end packet traverses in the Internet is about 4. In NIRA, an address is 128-bit long, and

a domain identifier is 32-bit long. If we adopt a straightforward stateless global approach

in our architecture NIRA, the header overhead is about 64 bytes if domain addresses are

used, and 16 bytes if domain identifiers are used.

For the stateless local approach, since a domain almost never has more than 224 domain-

level neighbors, it can use a 24-bit address to identify its neighbors. Then the average

header overhead is about 4 ∗ 3 = 12 bytes.

• Maintenance Overhead: We compare the overhead to maintain the mapping from the

route representation in a packet header to a route. With a stateful approach, at the time of

communication, a user will need to set up a path, and routers need to maintain the dynamic

mapping from path identifiers to paths.

With a stateless approach, a routing protocol could map an address or a domain identifier

to a next forwarding hop at a router, and this mapping could be reused by all users. No

extra overhead is required at the time of communication.

• Support for Reverse Route Generation: We compare how easy it is to generate a reverse

route representation from a forward route representation. If a reverse route representation

can be easily generated from a packet with a forward route representation, then a router en

route or a receiver is able to quickly send a response back to the sender of the packet by

inspecting the packet header only.

For the stateful approach, a reverse path identifier may not be correlated with a forward

path identifier. In general, a router or a receiver cannot generate a reverse path identifier

from a packet with a forward path identifier.

For the stateless global approach, a reverse route representation can be generated simply

by reversing the forward route representation, since a domain address or a domain iden-

tifier can uniquely represent a domain in either the forward or the reverse direction. For

the stateless local approach, a domain-local address only specifies a neighbor of a domain.

A reverse route representation cannot be simply generated from a forward route repre-

sentation because a local address that specifies the neighbor M of a domain N does not

necessarily specify the reverse relation, i.e., neighbor N of domain M.

• Forwarding Lookup Efficiency: We compare the computation cost for a router to deter-

mine the next forwarding hop. With all three approaches, a router could simply look up a

path identifier, an address, or a domain identifier in a routing table to determine the next

forwarding hop.

87

• Transit Policy Checking Overhead: A domain may want to check whether a route spec-

ified in a packet header violates its transit policy before it forwards a packet. We want to

compare the overhead for transit policy checking in different route representation schemes.

For the stateful approach, policy checking can be done at path setup time. If a packet carries

a valid path identifier, the route specified by the path identifier will conform to the transit

policies of providers en route. Additional transit policy checking is not necessary after a

router has determined the next hop to forward a packet.

For the stateless approaches, as there is no special forwarding state associated with a

policy-valid route, an intermediate router needs to check for transit policy violation in

addition to deciding the next hop to forward a packet.

5.1.3 Design Requirements

The comparison of different approaches shows that each approach has its advantages and disad-

vantages. In our design, we identify the following key design requirements:

• Low maintenance overhead. End users need not set up a path before sending a packet,

and routers need not maintain state for every active path. We consider per-path state an

unscalable solution, and path setup also increases connection setup latency.

• Easy reverse route generation. A receiver should be able to generate a reverse route rep-

resentation to send a reply from a packet it receives without invoking a route discovery

process. A router should be able to generate a route representation to send an Internet Con-

trol Message Protocol (ICMP) [83, 30] packet from a packet it receives without invoking a

route discovery process.

We consider this requirement important because in many cases, a router or a receiver needs

to quickly send a response to the sender of a packet. For example, in the case of a route

failure, a router needs to send an ICMP message back to the sender of a packet.

• Low header overhead. The number of bytes in a packet header to represent a domain-level

route should be minimized.

• Efficient forwarding. The amount of operations needed for a router to find the next for-

warding hop of a packet should be minimized.

• Low policy checking overhead. The amount of operations needed for a router in a do-

main to determine whether a route representation complies with the domain’s transit policy

should be minimized.

88

5.1.4 Design Rationale

To satisfy these requirements, we opt for a stateless global approach for its low per-connection

maintenance overhead compared to a stateful approach, and its easiness for reverse path gen-

eration compared to a stateless local approach. Within the stateless global category, we prefer

using a sequence of addresses for route representation to using a sequence of domain identifiers.

There are two reasons. First, if we use a sequence of addresses, a packet header in NIRA could be

exactly the same as that in IPv6. We believe this feature will facilitate the deployment of NIRA.

Second, unlike a domain identifier, an address is able to specify both a single node and a group of

nodes. So using a sequence of addresses has the flexibility to represent finer granularity routes.

For example, a user could use a sequence of router addresses to represent a router-level route.

Therefore, although our design does not address how a user discovers a router-level route, NIRA

allows a user to specify a router-level route.

The stateless global approach has a larger header overhead compared to the other two ap-

proaches, and a higher policy checking overhead at packet forwarding time compared to the

stateful approach. In our design, we would like to reduce the header overhead and the transit

policy checking overhead of the stateless global approach.

Since we have adopted a provider-rooted hierarchical addressing scheme, an address can be

mapped to a sequence of domains that allocate the address (Chapter 4.2). We can utilize this

feature to minimize the header overhead and policy checking overhead for the common case.

Intuitively, for a packet with a source and a destination address, the source address could represent

the sequence of domains that the packet traverses to reach the Core, and the destination address

could represent the sequence of domains the packet traverses from the Core to the destination.

Therefore, a source and a destination address can represent a type of commonly used and policy-

allowed domain-level route. General routes can be represented by more than two addresses.

Before we proceed to describe our route representation scheme in detail, for clarity, we first

define a few terms and conventions.

5.1.5 Notation

We use nprAddr(x) to denote the non-provider-rooted address (defined in Chapter 4.2) of a do-

main x or a node x (a host or a router). We use nprP f (x) to denote the non-provider-rooted

inter-domain address prefix of a domain x or a node x.

We have used the word route to refer to a sequence of domains between a sender and a

receiver. In this section, we will frequently talk about a sequence of domains that might not have

a sender in the first domain or a receiver in the last domain, e.g., a sub-sequence of domains

within a route. We refer to such a sequence of domains as a route segment.

Without loss of generality, we assume that an address with an all-zero intra-domain address

represents a domain address. When we use a sequence of addresses to represent a route segment,

89

the addresses we use will be domain addresses. When we represent a route between a specific

source and a destination, say between Bob and Alice in Figure 4-3, the first address will be a

unicast address of the source, and the last address will be a unicast address of the destination.

Other addresses in the route representation are domain addresses.

If two adjacent domains on a route are inter-connected by a routing protocol in the Core, we

use the symbol{ to indicate that connection type; otherwise, if they are connected by TIPP, we

use→ to indicate the type.

5.1.6 Details

We take a divide-and-conquer design approach. Note that any end-to-end domain-level route can

be divided into a sequence of route segments. We first design the route representation scheme for

basic route segments, and then come up with the design for any route.

We identify three important types of route segments: uphill, downhill, and bridge, based on

whether an address can be mapped to a route segment. For an uphill route segment, there is at

least one address prefix allocated from the last domain to the first domain, and vice versa for

a downhill segment. So in Figure 4-3, the route segment N1 → R1 → B1 is an uphill route

segment; the route segment B1 → R3 → N3 is a downhill route segment. A bridge route segment

contains only two domains, with no address prefix allocated from one to the other. The two

domains are either TIPP neighbors, or connected by a routing protocol. In the latter case, the two

domains may not be directly connected, and the path between the two domains are chosen by the

routing protocol in the Core. In Figure 4-3, R2 → R3 is a bridge segment connected by TIPP, and

B1 { B2 is a bridge segment connected by the routing protocol in the Core.

We also define a compound route segment type: a hill type. A hill segment consists of at

most three segments in the following order: an uphill segment, a bridge segment, and a downhill

segment. One of the three segments could be missing. Moreover, if a hill segment contains a

bridge component, then the first domain of the bridge component must be the root2 of an address

prefix that is allocated along the uphill segment, and the second domain must be the root of an

address prefix that is allocated along the downhill segment. For example, in Figure 4-3, N1 →
R1 → B1 { B2 → R3 → N3 is a hill route segment.

Not every route segment has a type. For example, in Figure 4-3, the route segment N1 →
R2 → R3 does not satisfy our definition for any type, and thus does not have a type. However, a

route segment may be divided into a sequence of smaller segments such that each smaller segment

has a type. For example, N1 → R2 → R3 can be divided into two smaller segments N1 → R2 and

R2 → R3, with the first being an uphill segment, and the second being a bridge segment. A route

segment is maximal if it will lose its type when extended to include more domains in a route. For

2We use the term ”the root of an address prefix p f ” to refer to the top-level domain that allocates the address prefix
p f .

90

example, the route segment N1 → R2 in the route N1 → R2 → R3 → N3 is maximal, because we

cannot extend the route segment to include the next adjacent domain R3 since there is no address

allocated along the path R3 → R2 → N1. If a route only has one maximal segment, it has the

same type as the segment.

By utilizing the Address to Path Mapping Property (Chapter 4.2.4) of a provider-rooted hi-

erarchical address, we can use a source and a destination address to represent a route segment

of any type, regardless of how many domains the route segment consists. For an uphill segment,

the first domain must have an address whose allocation path overlaps with the route segment. In

Figure 4-3, for the uphill route segment N1 → R2, N1 has an address 1:2:1:: whose allocation

path N1 → R2 → B1 overlaps with the route segment N1 → R2. We can use that address as the

source address, and the non-provider-rooted address of the last domain as the destination address

to indicate where the segment stops. For example, we could use the source address 1:2:1:: and

the destination address nprAddr(R2) to represent the uphill segment N1 → R2.

The reverse of a downhill route segment is an uphill route segment. So is its representation.

Therefore, the downhill route segment R2 → N1 can be represented by nprAddr(R2) and 1:2:1::.

If a bridge segment is connected by TIPP, it can be represented by the non-provider-rooted

addresses of the two domains. As an example, in Figure 4-3, the bridge segment R2 → R3 can

be represented by nprAddr(R2) and nprAddr(R3). If a bridge segment is connected by a routing

protocol, such as two top-level providers in the Core, then the segment can be represented by

two addresses that are routable by the routing protocol. For example, since a top-level provider

in the Core announces its globally unique address prefix to other top-level providers, the bridge

segment B1 { B2 can be represented by 1:: and 2::.

A hill route segment is represented by a source address allocated along its uphill segment,

and a destination address allocated along its downhill segment. For example, in Figure 4-3, the

hill route segment N1 → R1 → B1 → R3 → N3 can be represented by 1:1:1:: and 1:3:1::. The

hill segment N1 → R1 → B1 { B2 → R3 → N3 can be represented by 1:1:1:: and 2:1:1::.

A route consisting of multiple maximal route segments is represented by concatenating the

representation of each route segment and deleting duplicate addresses. In Figure 4-3, suppose

Bob wants to send a packet to Alice via the route N1 → R2 → R3 → N3, which consists of

three maximal segments: an uphill segment, a bridge segment, and a downhill segment. The

uphill segment can be represented by 1:2:1::1000 and nprAddr(R2); the bridge segment can

be represented by nprAddr(R2) and nprAddr(R3); the downhill segment can be represented by

nprAddr(R3) and 1:3:1::2000. Concatenating the representation of each segment yields a se-

quence of addresses: 1:2:1::1000, nprAddr(R2), nprAddr(R2) nprAddr(R3), nprAddr(R3) and

1:3:1::2000. Deleting the duplicate addresses leads to the final route representation: 1:2:1::1000,

nprAddr(R2), nprAddr(R3), and 1:3:1::2000.

91

5.2 Packet Forwarding

To ensure that a packet is forwarded unambiguously along the route specified in its header, we

need to design a forwarding algorithm that understands our route representation scheme. A for-

warding algorithm describes how a router examines a packet header and determines the next hop

to forward the packet. NIRA’s packet header format could be the same as that in IPv6. A header

contains a source address field, a destination address field, and an optional routing header. The

source and the destination address field contain the first two addresses of a route representation.

If a route representation has more than two addresses, the additional addresses are stored in the

routing header. The routing header also contains other auxiliary fields that can be used to compute

the next-to-visit address.

Again, for clarity, we will repeat what we do when we describe TIPP. We abstract a domain

as having one router and the possible multiple links connecting two domains as one domain-level

link. As we primarily focus on how the domain-level next hop is determined, we describe our

forwarding algorithm assuming a router will keep a separate table for intra-domain forwarding,

as described in Chapter 4.2.5. We discuss the case where a domain has multiple routers and there

are multiple links connecting two domains in Appendix 5.B.

5.2.1 Design Requirements

We identify the key design requirements for our forwarding algorithm before we describe our

design rationale. If a user correctly specifies a route in a packet header using the route represen-

tation scheme described in Section 5.1, the first thing we want is that the packet is forwarded

along the user-specified route to reach its destination, if the route is failure free. Secondly, if at a

router, the next hop to forward a packet is unreachable due to failures, we would want the packet

to be dropped at that router instead of looping around in the network. Thirdly, we want a route

representation to be reversible. That is, a packet with the reverse of a route representation will

be forwarded along the reverse of the route, if the route is failure free. This requirement makes it

easy for a receiver of a packet to send a reply back to the sender of the packet. It also makes the

forwarding service of routers more predictable to users. If a user sends a packet to a destination

with a route he chooses, most likely he would expect that the return packets with a reverse route

representation could come back from the same route.

A forwarding step is reversible if at domain N, a packet with a route representation is for-

warded to a neighbor domain M, and at domain M, a packet with the reverse of the route repre-

sentation will be forwarded to N. It can be seen that if each forwarding step is reversible, then

the third requirement will be satisfied. So in our design of the forwarding algorithm, we focus on

satisfying this step-wise reversibility requirement.

A user could specify a route using our route representation scheme, and routers en route are

able to find next forwarding hop for the packet, but the specified route might violate a domain’s

92

transit policies. For example, in Figure 4-3, the user Bob may specify a route with the following

addresses: 1:1:1::1000, 1:2::, nprAddr(R2), nprAddr(R3), 1:3:1::2000. This route representation

is the concatenation of those of three route segments: a hill segment N1 → R1 → B1 → R2, a

bridge segment R2 → R3, and a downhill segment R3 → N3. This route representation strictly

follows the scheme we described in Section 5.1. A router en route will be able to find the next

hop to forward a packet with such a route representation. However, this route makes R2 provide

transit service between a provider B1 and a peer R3, which violates the transit policy of R2. So,

the route representation is incorrect.

A packet with a route representation that violates a domain’s transit policy should be dropped

instead of being forwarded to the next hop. However, we do not think we should require our

forwarding algorithm to be able to detect policy violation. As we have discussed, the forwarding

algorithm of a router must be consistent with those of other routers, but transit policies of domains

may vary. So we make policy checking a separate module from forwarding. A domain might

use any general mechanism to check for its transit policy. We do not restrict how it should be

done. But our design of the route representation scheme and the packet forwarding algorithm

limits where policy checking needs to be done. In cases where a packet only has a source and

a destination address, a router does not need to do extra work for policy checking. We discuss

policy checking in Chapter 6.

5.2.2 Design Overview

We have designed a route representation scheme using a divide-and-conquer approach. For any

route, we could represent it using the concatenation of a sequence of single-type route segment

representations, with duplicate addresses deleted. Similarly, when we design our forwarding al-

gorithm, we first focus on how to design the forwarding algorithm for a route segment of a single

type, i.e., uphill forwarding, downhill forwarding, bridge forwarding, and hill forwarding.

Recall that a route segment of any type can be represented by two addresses, with the first

address being an address of the first domain of the route segment, and the second address being

an address of the last domain. In our discussion about the forwarding algorithm for a single-type

route segment, the source address of a packet (the address in the source address field of a packet)

is always the first address of the route segment representation, and the destination address (the

address in the destination address field of a packet) is the second address of the route segment

representation. The source domain (or the destination domain) is the first (or the last) domain of

the route segment.

With our route representation scheme, the source address and the destination address of a

packet together represent a route. Therefore, both the source address and the destination address

could be used to find the next hop. Our design uses different forwarding tables for routers to

look up different addresses. When a packet is in its uphill route segment to the Core, a router

93

looks up the source address of the packet in its uphill forwarding table to determine the next hop;

correspondingly, when the packet is in its downhill route segment to reach its destination, a router

looks up the destination address of the packet in its downhill table to determine the next hop.

Next, we describe the detailed design logistics for uphill forwarding, downhill forwarding,

bridge forwarding, and hill forwarding.

5.2.3 Details

Uphill and Downhill Forwarding

First, we look at how to design the forwarding algorithm to forward a packet along the uphill

or downhill route specified in the packet’s header. For a packet with an uphill representation,

e.g., 1:1:1:: and nprAddr(B1) for the uphill route segment N1 → R1 → B1 in Figure 4-3, the

forwarding algorithm at a router should forward the packet along the source address allocation

path until the packet reaches its destination. For a packet with a downhill representation, the

forwarding algorithm at a router should forward the packet according to the destination address

until the packet reaches its destination.

Since a packet header does not have a field that describes the type of a route segment, our

forwarding algorithm must be able to decide which address, the source or the destination address,

is the one to use to determine the next hop. In our design, we keep two separate forwarding

tables at a router: the downhill forwarding table and the uphill forwarding table. The downhill

forwarding table at a router in a domain keeps entries for the hierarchical address prefixes the

domain allocates to its neighbors and the domain’s own address prefixes. When a router at a

domain receives a packet, the router will first look up the destination address of the packet in its

downhill table. If there is a match, then the destination address must be allocated by the domain

to a neighbor. So the packet should be forwarded to the next hop indicated by the match.

The uphill forwarding table of a router at a domain keeps entries for the domain’s hierarchical

address prefixes allocated from the domain’s neighbors. When a router cannot find a match for

the destination address of a packet in its downhill table, i.e., the router has no knowledge about

how to forward towards the destination, the router looks up the source address in its uphill table

to decide which provider of the domain the packet should go to.

Second, we design our forwarding algorithm to deal with route failures. For downhill for-

warding, if a domain is disconnected from a customer, then the router at the domain might not

have an entry for an address prefix allocated to the customer in its downhill table. We definitely

do not want the router to look up the source address of the packet in its uphill table. Instead, we

want the packet to be dropped at the router. So we add an entry for each address prefix a domain

has into the downhill forwarding table of the router at the domain, with the next hop pointing to a

blackhole. A blackhole indicates that a packet should be dropped and an ICMP packet should be

sent to notify the sender of the delivery failure. As forwarding lookup is based on longest prefix

94

match, if a customer’s address prefix is missing from the downhill table of the router at a domain

due to failures and the router receives a packet destined to the customer, the router will find that

the destination address of the packet matches an address prefix of the domain with the next hop

pointing to a blackhole. So the router will drop the packet instead of looking up the packet’s

source address in its uphill table.

For uphill forwarding, if a domain is disconnected from its provider, then the router at the

domain might not have an entry for an address prefix of the domain allocated from the provider.

In this case, the router is unable to find a next hop to forward the packet. So the router can drop

the packet and send an ICMP packet back to the sender.

Third, we examine the reversibility of our forwarding algorithm. It can be seen that an uphill

forwarding step is reversible. If the router in domain N finds a match for a source address a in its

uphill table, then the next-hop domain M must have allocated an address prefix p f that encloses

the source address a to the domain N. So the router in the next-hop domain M must have an entry

in its downhill table for the address prefix p f with the next-hop pointing to the domain N. For

a packet with a reverse route representation, its destination address will be a. So the router in

domain M is able to find a match for the address a in its downhill table and forward the packet to

domain N. Similarly, we can verify that if a packet has a correct downhill route representation, a

downhill forwarding step is also reversible.3

Bridge Forwarding

We look at how to design the forwarding algorithm to forward a packet with a bridge repre-

sentation. A bridge route segment contains two domains, connected either by TIPP or a routing

protocol. For a packet with a bridge representation, the forwarding algorithm at the router of the

first domain (i.e., the source domain) of the bridge segment should forward the packet to the

second domain (i.e., the destination domain) of the segment, and the router at the second domain

should know that the packet has arrived at its destination.

Since a bridge segment has only two domains, the router at the source domain of the bridge

segment will know how to reach the destination domain either via TIPP, or via a routing protocol.

At first thought, it seems that for bridge forwarding, a router could simply inspect the destination

address, because the router at the source domain knows how to forward to the destination address,

and the router at the destination domain knows that the destination address is one of its addresses.

However, a route segment representation with the same second address could indicate either

3Note that if a packet has an incorrect downhill route representation, a downhill forwarding step may not be
reversible. For example, suppose the router in a provider domain, say B1 in Figure 4-3, sends a packet to Bob in
N1 with a spoofed source address 1:2:2::, which is an address of N2, and a destination address 1:2:1::1000. Such a
packet will be forwarded to R2 from B1. However, a packet with a reverse representation: a source address 1:2:1::1000
and a destination address 1:2:2:: will be forwarded to N2 at R2, instead of B1. Our design focus is to ensure correct
forwarding with correct route representations, and with incorrect route representations, our design requirements might
not be satisfied.

95

an uphill segment, or a downhill segment, or a bridge segment, depending on the first address. If

the first address of a packet is a hierarchically allocated address, then the two addresses represent

either an uphill or a downhill route segment. For example, in Figure 5-1, domain D has an address

prefix 5::16, and allocates a subdivision of that address prefix, 5:0:1::/48, to domain E, and E al-

locates a subdivision of 5:0:1::/48, 5:0:1:1::/96, to F. Domain D and domain F also has a shortcut

peering link. If a packet at domain F has a source address 5:0:1:1::/96 and a destination address

nprAddr(D), it should be forwarded along the segment F → E → D; if a packet at domain F has

the same destination address nprAddr(D), but a different source address nprAddr(F), accord-

ing to our route representation scheme, the packet should be forwarded along the route segment

F → D.

D

E

F

5::/16

5:0:1::/48

5:0:1:1::/96

Figure 5-1: If a packet at domain F has a source address 5:0:1:1::/96 and a destination address
nprAddr(D), it should be forwarded along the segment F → E → D; if a packet at domain F has
the same destination address nprAddr(D), but a different source address nprAddr(F), according
to our route representation scheme, the packet should be forwarded along the route segment
F → D. So to forward a packet, a router cannot only examine the destination address.

So to correctly forward a packet along a bridge route segment, a router needs to inspect both

the source address and the destination address of a packet. We introduce a bridge forwarding table

and a special entry in a router’s uphill table to help the router to determine the type of a route

representation. A bridge forwarding table at the router of a domain contains the non-provider-

rooted address prefix of a neighbor that does not allocate address or take address allocation from

the domain, with the next hop pointing to the neighbor. We add an entry for the non-provider-

rooted address prefix of the domain at the router’s uphill table, with the next hop pointing to the

router’s bridge table. This entry tells a router at a domain that if the router cannot find a match

for the destination address of a domain in its downhill table, and the source address of a packet

matches the non-provider-rooted address prefix of the domain, then the router should interpret

the route representation in the packet as a bridge representation, and forward the packet along a

bridge segment.

So for a packet with a route representation of a bridge segment connected by TIPP, e.g., a

packet with a source address nprAddr(R2) and a destination address nprAddr(R3) that represent

the bridge segment R2 → R3 in Figure 4-3, the router at the source domain will not find a match

for the destination address in its downhill table. Then it will look up the source address of the

96

packet in its uphill table. There it will find a match for the source address with the next hop

pointing to its bridge table. Therefore, the router will look up the destination address in its bridge

table and forward the packet to the corresponding next hop.

If the source domain and the destination domain of a bridge segment is connected by the

routing protocol in the Core, for example, the bridge segment B1 { B2, then the router at the

source domain learns how to reach the destination domain through the routing protocol, instead of

TIPP. To forward a packet with a route representation of a bridge segment connected by a routing

protocol, the router at the source domain should look up the destination address in its routing

table built by the routing protocol, and forward the packet to the next hop returned by the lookup.

But when a router receives a packet, the router does not know the type of the representation in

the packet. For the forwarding algorithm we described so far, the router will first look up the

destination address in its downhill table, where it will find no match; then it will look up the

source address in its uphill table, where it will find no match either. We have two choices to

modify our forwarding algorithm to make a router find the next forwarding hop. First, we can

incorporate the routing table built by the routing protocol into the router’s downhill table. So

the router will find the next hop to forward the packet in its downhill table. Second, we can

design our forwarding algorithm to look up the destination address in the routing table after the

algorithm cannot find a next hop in the router’s forwarding tables. In our design, we take the

second approach, as it isolates TIPP from other routing protocols. A change in a router’s routing

table would not result in a change in the router’s downhill table.

We can instruct a TIPP router that also participates in the routing protocol in the Core to look

up the destination address of a packet in its routing table either right after the router cannot find

a match for the destination address in its downhill table, or after the router looks up the source

address in its uphill table. The first approach has the advantage of avoiding one unnecessary

lookup, as the router will not be able to find the next hop to forward a packet in its uphill table.

The second approach has the advantage of ensuring forwarding reversibility in the Core rout-

ing region. If a router does not look up the source address in its uphill table before it looks up

the destination address in its routing table, a packet with a non-routable source address could be

injected into the Core . In the example shown in Figure 4-3, the router at B1 would have a rout-

ing entry for the address prefix 2::/16, since this address prefix will be announced by B2 in the

routing protocol. If a packet has a source address nprAddr(B1) and a destination address 2::/96,

the router at B1 would find a match for the destination address in its routing table, and forward

the packet into the Core if it does not examine the source address of the packet. But a router in

the Core might not have a routing entry for the address nprAddr(B1), since this address is not

announced in the routing protocol by B1. Therefore, the reverse route representation 2::/96 and

nprAddr(B1) might not be routable in the Core.

In our design, we take the second approach in order to check the routability of the source

address of a packet before injecting the packet into a routing region. In Section 5.6, when we

97

describe the optimization of our route representation scheme, we further discuss the importance

of such checking.

We add a special entry in a router’s uphill table if the router is at a top-level provider and

participates in the routing protocol in the Core. This entry contains the globally unique address

prefix of the top-level provider, with the next hop pointing to the routing table of the router. When

the router fails to find a match for the destination address of a packet in its downhill table, it will

follow our algorithm to look up the source address in its uphill table. If it finds a match with

the next hop pointing to its routing table, the router can then look up the destination address in

its routing table and forward the packet to the next hop computed by the routing protocol in the

Core.

When a packet with a bridge representation leaves the source domain of the bridge segment

and enters the Core, we want the packet to follow the path chosen by the routing protocol to

reach the destination domain of the bridge segment. It is possible that the path actually consists

of multiple providers. So after a packet leaves the source domain of the bridge segment, it might

not enter the destination domain of the bridge segment immediately. For example, in Figure 4-3,

B1, B2 and B3 might have a business agreement such that if the direct connection between any

two of them is broken, the third one is willing to provide temporary transit service between the

other two. So if the connection between B1 and B2 is broken, the routing protocol in the Core

might choose a route to reach B2 via B3. Thus, when a packet with a source address 1:: and a

destination address 2:: which represent the bridge segment B1 { B2 leaves B1, it will arrive at

B3 first.

When a packet with a bridge representation arrives at a domain in the Core that is not the

destination domain of the bridge segment, two possible cases might occur. In the first case, the

domain is entirely embedded in the Core and understands only the routing protocol, then a router

in such a domain will behave like a router in today’s Internet. It has only one routing table, and

will follow the same forwarding algorithm as the one used in today’s Internet, looking up the

destination address of the packet in its routing table to determine the next hop, and forwards

the packet to the next hop. So in this case, the packet will be forwarded towards the destination

domain of the bridge segment along the path chosen by the routing protocol.

In the second case, the domain understands both TIPP and the routing protocol in the Core,

and the router in such a domain has both a routing table and forwarding tables established by

TIPP. Therefore, when a packet arrives at the router, the router will follow our forwarding al-

gorithm instead, first looking up the destination address of the packet in its downhill table, then

looking up the source address in its uphill table. For the forwarding algorithm we described so

far, the router at the domain will have only an entry for the globally unique address prefix of the

domain with the next hop pointing to its routing table. Thus, after the router fails to find a match

for the destination address of a packet in its downhill table, it might fail to find a match for the

source address in its uphill table too. Therefore, we need to extend the entry in the router’s up-

98

hill table to match all routable addresses in the Core. With this entry, the router will forward the

packet according to the route chosen by the routing protocol in the Core, regardless of where the

packet comes from. Since we assume that all global Core addresses are allocated from 0::/1, the

added entry is thus for the address prefix 0::1 with the next hop pointing to the router’s routing

table.4

Therefore, in both cases, the packet will be forwarded to the next hop that is computed by the

routing protocol to reach the top-level provider that allocates the destination address. This is the

desired forwarding behavior.

It can be seen that when the source domain of a bridge segment is disconnected from the

destination domain of the bridge segment, a router will not find a match for the destination ad-

dress either in its bridge table, or in its routing table. So the router will drop the packet without

forwarding it to a wrong place. Thus, our forwarding algorithm handles route failure properly in

bridge forwarding.

It can be verified that bridge forwarding is reversible. If the source domain and the destination

domain of a bridge segment are connected by TIPP, then the router at each domain will have the

other domain’s non-provider-rooted address prefix in its bridge forwarding table. So if a packet

with a source address nprAddr(N) and a destination address nprAddr(M) is forwarded from

N to M, then a packet with the reverse representation: nprAddr(M) and nprAddr(N) will be

forwarded from M to N. Similarly, it can be seen that the bridge forwarded is reversible when the

source and the destination domain are connected by the routing protocol in the Core.

Hill Forwarding

At last, we consider how to forward a packet with a hill route representation. A hill route is

represented by two hierarchically allocated addresses. A packet with a hill route representation

should be forwarded first uphill along its source address allocation path, and then downhill along

its destination address allocation path. If the two allocation paths share a common domain, then

before the packet reaches the common domain, our forwarding algorithm will find no match for

the destination address in a router’s downhill table, but will find a match for the source address

in a router’s uphill table. So the packet will be forwarded uphill until it reaches the common

domain that allocates both the source and the destination address. After the packet reaches the

common domain, our forwarding algorithm will find a match for the destination address in a

router’s downhill table. So the packet will be forwarded downhill until it reaches its destination.

Therefore, it can be seen that since our design already supports uphill forwarding and downhill

forwarding, the forwarding algorithm also works for a hill route consisting of an uphill segment

and a downhill segment that share a common domain.

For a packet with a hill route representation, if the source address allocation path and the

4If not all routable addresses are allocated from the same contiguous address space, we will need multiple address
prefixes to represent all routable addresses.

99

destination address allocation path do not share a common domain, then our forwarding algorithm

described so far will forward the packet all the way up to the top-level provider that allocates the

source address, because no router on the source address allocation path will have a match in its

downhill table for the destination address. At that top-level provider, the router there will follow

the bridge forwarding steps to forward the packet into the Core. Inside the Core, the packet will

be forwarded to the top-level provider that allocates the destination address along the path chosen

by the routing protocol in the Core, according to what we have discussed in bridge forwarding.

When the packet arrives at the top-level provider that allocates the destination address, the router

at that provider will find a match for the destination address of the packet in its downhill table. So

the packet will be forwarded along the allocation path of its destination address until it reaches

its destination.

Therefore, it can be seen that our forwarding algorithm handles hill forwarding correctly. In

fact, at any step of a hill forwarding, a TIPP router does either an uphill forwarding, a down-

hill forwarding, or a bridge forwarding. Since our forwarding algorithm satisfies the design re-

quirements for each forwarding type: forwarding along a specified route, dropping on failure,

reversible, it thus satisfies the requirements for hill forwarding.

Degenerate Hill Forwarding

For a packet with any two hierarchically allocated addresses, our forwarding algorithm will in-

terpret the two addresses as a hill route representation, and forward the packet according to the

hill forwarding rule. If the allocation paths of the source address and the destination address

share a common domain, and one of the two addresses is the address of the common domain,

then the route the packet follows is actually either an uphill route or a downhill route. For ex-

ample, in Figure 4-3, a packet with a source address 1:1:1::1000 and a destination address 1::

will be forwarded along the uphill route N1 → R1 → B1. We consider such a route represen-

tation as a degenerate hill route representation, and do not recommend using two hierarchically

allocated addresses to represent an uphill or a downhill route segment, because such a route

segment representation cannot be concatenated efficiently with a bridge route segment represen-

tation. For example, in Figure 4-3, suppose Bob wants to send a packet to Alice along the route:

N1 → R2 → R3 → N3. If the uphill segment in this route N1 → R2 is represented by two hier-

archical addresses: 1:2:1::1000 and 1:2::, and the downhill segment R3 → N3 is also represented

by two hierarchical addresses: 1:3:: and 1:3:1::2000, then the entire route will be represented by

six addresses: 1:2:1::1000, 1:2::, nprAddr(R2), nprAddr(R3), 1:3::, and 1:3:1::2000, instead of

four addresses: 1:2:1::1000, nprAddr(R2), nprAddr(R3), and 1:3:1::2000.

100

Forwarding for an Arbitrary Route Representation

We have discussed how we design our forwarding algorithm to work with a route representation

of a single type. An arbitrary route can be represented by concatenating a sequence of single-

type route segment representations. When a user sends a packet, the source address field and the

destination address field of a packet specify the first route segment the packet should follow, and

the other addresses in the routing header specify the rest of the route segments the packet should

follow. So we design our forwarding algorithm to shift the next route segment representation

into the source address field and the destination address field of the packet when the packet has

arrived at the end of one route segment. Therefore the packet will be forwarded along each route

segment specified in its header, thus following the route specified in its header.

So far, we have described how we design the forwarding algorithm. Next, we describe how

the forwarding tables at a router: the uphill table, the downhill table, and the bridge table, are

established via TIPP.

5.2.4 Forwarding Tables

Forwarding Table Initialization

A router in a domain initializes its uphill table with the domain’s non-provider-rooted address

prefix, with the next hop pointing to its bridge forwarding table. The router initializes its down-

hill forwarding tables with the domain’s own inter-domain address prefixes, with the next hop

for each prefix pointing to itself. These inter-domain address prefixes include both the domain’s

non-provider-rooted inter-domain address prefix and the domain’s provider-rooted inter-domain

address prefixes. The router also initializes its downhill forwarding tables with the domain’s

provider-rooted hierarchical address prefixes, with the next hop for each prefix pointing to a

blackhole. A router leaves its bridge table empty. Figure 5-2 shows the initial state of the for-

warding tables of a domain R2 that appears in the network shown in Figure 4-3.

R2’s downhill table
nprP f (R2) sel f
1:2::/96 sel f
1:2::/32 blackhole

R2’s uphill table
nprP f (R2) bridge

R2’s bridge table

Figure 5-2: The initial state of R2’s forwarding tables.

If a domain is a top-level provider, then the downhill table of its router will have entries for

the domain’s globally unique address prefix and its inter-domain address prefix derived from that

address prefix. In addition, the router’s uphill table also includes an entry that includes all routable

101

B1’s downhill table
nprP f (B1) sel f
1::/96 sel f
1::/16 blackhole

B1’s uphill table
nprP f (B1) bridge
0::/1 routing

B1’s bridge table

Figure 5-3: The initial state of B1’s forwarding tables.

B1’s routing table
2::/16 B2

3::/16 B3

4::/16 B4

Figure 5-4: Contents of B1’s routing table.

addresses in the Core routing region with the next hop pointing to its routing table. Figure 5-3

shows the initial state of the forwarding tables of a top-level domain B1 in the network shown in

Figure 4-3. Figure 5-4 shows the possible contents of the top-level provider B1’s routing table,

built by the routing protocol running in the Core.

Forwarding Table Update

A router updates its forwarding tables using information learned from TIPP, as shown in Figure 4-

15. If a domain P allocates an address prefix p f to a neighbor C, then C will send to P an adjacent

link record that announces the prefix p f . When the router in P receives the adjacent link record

from the router in C, it will add an entry for p f in its downhill table, and sets the next hop to C.

For example, in Figure 4-3, when B1 receives the adjacent link record from R1, the link record

will include a field that tells B1 1:1::/32 is an address space reachable via R1. B1 will insert the

prefix 1:1::/32 into its downhill table, with the next hop set to R1.

There is another way to set the downhill table of P. Since P allocates an address prefix p f to a

neighbor C, P can set its downhill table when it sends the address message to C, or sets the table

using the address records stored in its output address database. We choose to use a link record to

update a downhill table for two reasons. First, the adjacent link record from the neighbor C that

contains the prefix record for p f confirms that C has accepted the address allocation and is ready

to receive packets destined to addresses within the address space p f . Second, using adjacent link

records to set the downhill tables offers the flexibility of load balancing. A domain normally has

multiple routers. A domain may split up a prefix allocated from a provider into several smaller

subdivisions, and announce different subdivisions via different border routers. So traffic destined

to different subdivisions of the prefix may traverse different border routers.

102

If a domain C accepts an address prefix p f allocated from a neighbor P, the router in C will

update its forwarding tables after it has sent to P an adjacent link record that announces p f . C

inserts p f into its uphill table with the next hop pointing to P. The entry for p f in the uphill

table indicates that the address prefix p f is allocated from P. If the prefix p f is a new address

prefix allocated to C, C will also insert p f into its downhill table, with the next hop pointing to

blackhole. Moreover, C will pick an inter-domain address prefix for hosts and routers inside itself

from the address space p f and insert the prefix into its downhill table with the next hop pointing

to itself. In Figure 4-3, after R1 sends an adjacent link record to B1, it will insert 1:1::/32 into its

uphill table with the next hop set to B1, insert 1:1::/32 into its downhill table with the next hop

set to blackhole, and insert 1:1::/96, its inter-domain address prefix, to its downhill table with the

next hop set to itself.

If a domain N does not have an address allocation relationship with a neighbor M, i.e., neither

N allocates an address prefix to M, nor M allocates an address prefix to N, then the router at

domain N will update its bridge table when it receives the adjacent link record sent by M. The

router at domain N will insert the non-provider rooted address prefix of M into its bridge table

with the next hop pointing to M.

When a TIPP connection to a neighbor breaks down, a router could either clear the entries in

its forwarding tables for which the neighbor is the next hop, or mark the entry as down.

Examples

Figure 5-5 shows the forwarding tables of R2 after its TIPP connections to all its neighbors are

fully established. Figure 5-6 shows those of B1 after its TIPP connections to all its neighbors are

fully established.

R2’s downhill table
nprP f (R2) sel f
1:2::/96 sel f
1:2::/32 blackhole
1:2:1::/48 N1

1:2:2::/48 N2

R2’s uphill table
nprP f (R2) bridge
1:2::/32 B1

R2’s bridge table
nprP f (R3) R3

Figure 5-5: R2’s forwarding tables.

103

B1’s downhill table
nprP f (B1) sel f
1::/96 sel f
1::/16 blackhole
1:1::/32 R1

1:2::/32 R2

1:3::/32 R3

B1’s uphill table
nprP f (B1) bridge
0::/1 routing

B1’s bridge table

Figure 5-6: B1’s forwarding tables.

Summary of Forwarding Table Contents

In summary, the downhill forwarding table of a router at a domain N has the following types of

entries:

1. nprP f (N) with the next hop pointing to itself;

2. every inter-domain address prefix of N with the next hop pointing to itself.

3. every address prefix allocated to N with the next hop pointing to blackhole.

4. every address prefix allocated to a neighbor C with the next hop pointing to C.

The uphill forwarding table of the router at a domain N has the following types of entries:

1. nprP f (N) with the next point pointing to bridge;

2. every address prefix of N allocated from a neighbor P with the next hop pointing to P.

If N is a top-level provider, its router’s uphill table also an entry that includes all routable

addresses in the Core routing region with the next hop pointing to its routing table.

The router in a domain N’s bridge table includes an entry for the non-provider-rooted address

prefix of each neighbor M with which N does not have an address allocation relationship, with

the next hop pointing to M.

5.2.5 The Forwarding Algorithm

Next, we describe the forwarding algorithm that works with our route representation scheme.

The basic forwarding algorithm involves the following steps:

104

1. A router at a domain decides whether the destination address of a packet is within the

domain’s address space by looking up the destination address in its downhill forwarding

table using the longest prefix match rule. If a match is found, the packet is forwarded

towards the next hop in the entry. If the next hop is the router itself, go to Step 4. If no

match is found, go to the next step.

2. Look up the source address in a router’s uphill table using the longest prefix match rule.

If no match is found, drop the packet and send an ICMP packet to notify the sender of

the delivery failure. If a match is found, and the next hop is a neighbor router, forward the

packet to the next hop. If the next hop is bridge or routing, go to the next step.

3. Look up the destination address in a corresponding table based on the look up result from

the previous step using the longest prefix match rule. If a match is found, forward the

packet to the next hop; else drop the packet and send an ICMP packet to notify the sender

of the delivery failure.

4. If in the packet header there is no address left, then the packet has arrived at its destination

domain. Consult the intra-domain routing table to determine the final destination. If in

the packet header there are addresses left to be visited, then the destination address will be

shifted to the source address field; the next-to-visit address will be moved to the destination

address field; the original source address will be preserved at the previous next-to-visit

address field; and the next-to-visit pointer will move to the next address in the routing

header. The changes of the packet header are shown in Figure 5-7. Go back to step 1.

before Step 4→

source src
destination dst

...
next-to-visit V1

V2

...

after Step 4→

source dst
destination V1

...
src

next-to-visit V2

...

Figure 5-7: This figure shows how a packet header is changed after a router executes Step 4 of
the forwarding algorithm.

Pseudocode 5 shows the pseudocode for finding the next-hop.

5.2.6 Correctness

We present in detail that the forwarding algorithm satisfies our design requirements in Ap-

pendix 5.A. Here we use two examples to show how the route representation scheme and the

forwarding algorithm work together. In the first example, we show if Bob in Figure 4-3 sends

a packet to Alice with a source address 1:1:1::1000 and a destination address 1:3:1::2000, the

105

Pseudocode 5 : Next-hop lookup
Down: downhill forwarding table;
U p: uphill forwarding table;
Bridge: bridge forwarding table;
sel f : the current router;
src: source address;
dst: destination address;
AddrLe f t: number of addresses left to visit;
Addrs: addresses in the optional routing header;
Lookup(a, T): longest prefix match for address a in table T .

1: Begin:
2: nextHop = Lookup(dst, Down).
3: if nextHop == sel f then
4: if AddrLe f t == 0 then
5: return sel f
6: else
7: compute next-to-visit address index i
8: shift dst to src, Addrs[i] to dst;
9: preserve the original src in Addrs[i].

10: goto Begin
11: end if
12: end if
13: if nextHop == blackhole then
14: goto Drop
15: else if nextHop , noMatch then
16: return nextHop
17: else
18: nextHop = Lookup(src, U p)
19: if nextHop == noMatch then
20: got Drop
21: else if nextHop == bridge then
22: nextHop = Lookup(dst, Bridge)
23: else if nextHop == routing then
24: nextHop = Lookup(dst, Routing)
25: else
26: return nextHop
27: end if
28: if nextHop , noMatch then
29: return nextHop
30: else
31: goto Drop
32: end if
33: end if
34: Drop:
35: drop p; send an ICMP error notification
36: return noMatch

106

packet will be forwarded along the domain-level route N1 → R1 → B1 → R3 → N3. Since N1

is allocated an address prefix from each of its providers R1 and R2, and does not allocate address

prefixes to other domains, N1’s downhill table will only have the following entries: nprP f (N1),

1:1:1::/96, 1:2:1::/96, each with the next hop pointing to N1, and 1:1:1::/48 and 1:2:1::/48 each

with the next hop pointing to blackhole. When N1 receives a packet with a source address

1:1:1::1000 and a destination address 1:3:1::2000, it will first follow Step 1 of the forwarding

algorithm, looking up the destination address in its downhill forwarding table. The destination

address 1:3:1::2000 will not match any entry in N1’s downhill table, so N1 will follow Step 2 of

the forwarding algorithm. N1’s uphill table will have an entry for nprAddr(N1) with the next hop

pointing to N1’s bridge table, an entry for 1:1:1::/48 with the next hop pointing to R1, and an entry

for 1:2:1::/48 with the next hop pointing to R2. So the source address 1:1:1::1000 will match the

entry for 1:1:1::/48. Henceforth, the packet will be forwarded to R1. Similarly, at R1, the packet

will be forwarded to B1. At B1, as shown in Figure 5-6, B1’s downhill table will have an entry for

1:3::/32 with the next hop pointing to R3. So the destination address 1:3:1::2000 will match this

entry, and the packet will be forwarded to R3. Similarly, at R3, the packet will be forwarded to

N3. As N3 is allocated the address prefix 2:1:1::/48 and the address prefix 1:3:1::/48, its downhill

table will have an entry 1:3:1::/96 with the next hop pointing to itself. The destination address

1:3:1::2000 will match this entry. N3 will know that the packet has arrived at its destination do-

main. By consulting its intra-domain forwarding table, N3 is able to forward the packet to the

destination Alice.

source 1:2:1::1000
destination nprAddr(R2)

...
next-to-visit nprAddr(R3) start of the routing header

1:3:1::2000

Figure 5-8: This figure shows the packet header when Bob sends the packet. The network topol-
ogy is shown in Figure 4-3.

source nprAddr(R2)
destination nprAddr(R3)

...
1:2:1::1000 start of the routing header

next-to-visit 1:3:1::2000

Figure 5-9: This figure shows the packet header after R2 finishes executing Step 4 of the forward-
ing algorithm. The network topology is shown in Figure 4-3.

In the second example, we show if Bob in Figure 4-3 sends a packet to Alice with four

addresses 1:2:1::1000, nprAddr(R2), nprAddr(R3), and 1:3:1::2000, the packet will be forwarded

along the route N1 → R2 → R3 → N3. The first two addresses will be put into the source and

107

source nprAddr(R3)
destination 1:3:1::2000

...
1:2:1::1000 start of the routing header

nprAddr(R2)
next-to-visit end

Figure 5-10: This figure shows the packet header after R3 finishes executing Step 4 of the for-
warding algorithm. The network topology is shown in Figure 4-3.

the destination address field of the packet header, and the other two addresses will be put into

the routing header. The header of the packet sent by Bob is shown in Figure 5-8. Similar to

the first example, at N1, the packet will be forwarded to R2 since N1 has an entry in its uphill

table for the address prefix 1:2:1::/48 with the next hop pointing to R2. When the packet arrives

at R2, R2 will first follow Step 1 of the forwarding algorithm, looking up nprAddr(R2) in its

downhill table. A match for the entry nprP f (R2) in R2’s downhill table will be found. Step 4 will

be followed, with nprAddr(R2) shifted to the source address field, nprAddr(R3) shifted to the

destination address field, 1:2:1::1000 preserved in the routing header, and 1:3:1::2000 being the

next-to-visit address. The shifted packet header is shown in Figure 5-9. Then R2 will follow Step

1 of the forwarding algorithm and look up nprAddr(R3) in its downhill table, where it will find

no match. Next R2 will follow Step 2 of the forwarding algorithm, looking up nprAddr(R2) in its

uphill table, where it will find a match with the next hop pointing to its bridge forwarding table.

Step 3 of the forwarding algorithm will be followed, where R2 looks up nprAddr(R3) in its bridge

table. A match will be found with the next hop pointing to R3. So the packet will be forwarded

to R3. When the packet arrives at R3, R3 will follow Step 1 of the forwarding algorithm, looking

up nprAddr(R3) in its downhill table, where it will find a match for the entry nprP f (R3) with the

next hop pointing to itself. Similarly, Step 4 of the forwarding algorithm will be followed, with

nprAddr(R3) shifted to the source address field, 1:3:1::2000 shifted to the destination address

field, nprAddr(R2) preserved in the routing header, and the next-to-visit address pointing to the

end of the routing header. Figure 5-10 shows the packet header after R3 executes Step 4 of the

forwarding algorithm. Then R3 will go back to Step 1 of the forwarding algorithm, where it

will look up the address 1:3:1::2000 in its downhill table. A match will be found for the entry

1:3:1::/48 with the next hop pointing to N3. The packet will be forwarded to N3 and then be

forwarded to Alice.

5.3 How a User Creates a Route Representation

We have described how a sequence of domains can be represented by two or more addresses.

In NIRA, we do not restrict how a user selects a route and represents the route with multiple

108

addresses according to our route representation scheme. Any mechanism could be developed to

select a route on a user’s behalf and convert the route into two or more addresses. In this section,

we discuss how a user might create a route representation from the information he has obtained

using our basic route discovery mechanisms, i.e., TIPP and NRLS.

From the information learned from TIPP and NRLS, a user might not know the exact se-

quence of domains that connect him to a destination user, because the user does not have the

up-graph of the destination user. However, a user is able to create a route representation without

knowing the exact route. With TIPP, a user learns his up-graph in the form of a set of link records.

A link record contains the address allocation information between two adjacent domains. It also

imparts the set of address prefixes a domain has. With NRLS, a user discovers the addresses of a

destination user. Combining these two pieces of information, a user can tell if one of the domains

in his up-graph has allocated one of the destination addresses, and which destination addresses

are allocated from a top-level provider in the Core routing region.

Suppose there is a domain in a user’s up-graph that allocates a destination address. We refer

to that domain as the rendezvous domain. Then the user would know that there is a downhill

route segment connecting the rendezvous domain and the destination, although he might not

know the exact sequence of domains in the downhill route segment. If the user selects a route

to reach the destination via the rendezvous domain in his up-graph, the user could tell whether

the route segment from himself to the rendezvous domain has a type, or the route segment can

be decomposed into a sequence of maximal segments. The end-to-end route the user has chosen

is the route segment concatenated with a downhill segment from the rendezvous domain to the

destination, so the user is able to tell the type of the entire route. Thus, he is able to represent the

route using the route representation scheme described in Section 5.1.

For example, in Figure 4-8, after Bob learns his up-graph from TIPP and Alice’s addresses

from NRLS, Bob could tell that the domain R3 with address prefixes 2:1::/32 and 1:3::/32 allo-

cates Alice’s addresses: 2:1:1::2000 and 1:3:1::2000. So Bob would know that there is a downhill

route segment from R3 to Alice. Suppose Bob decides to use the provider R2, the peering link be-

tween R2 and R3, and the downhill segment from R3 to Alice to reach the destination Alice. Bob

is able to tell that the partial route from him to R3: N1 → R2 → R3 consists of an uphill segment:

N1 → R2, and a bridge segment: R2 → R3. So the entire route from him to Alice consists of an

uphill segment, a bridge segment that is outside the Core, and a downhill segment. The uphill

segment (N1 → R2) can be represented by 1:2:1::2000 and nprAddr(R2), and the bridge segment

(R2 → R3) can be represented by nprAddr(R2) and nprAddr(R3). Although Bob does not know

the exact sequence of domains in the downhill segment from R3 to Alice, he knows that a down-

hill segment can be represented by the start domain’s non-provider-rooted address nprAddr(R3)

and a destination address 1:3:1::2000. So Bob is able to compose a route representation with the

addresses: 1:2:1::2000, nprAddr(R2), nprAddr(R3), and 1:3:1::2000 and send packets to Alice.

Similarly, if a destination address is allocated from the address space of a top-level provider in

109

the Core, although the user might not see the top-level provider in his up-graph, the user could tell

that there is a downhill route segment from the top-level provider in the Core to the destination. If

the user chooses a route that goes up to a top-level provider in the Core to reach the destination,

he could combine his address allocated from that top-level provider and the destination address

to compose a hill route. For example, in Figure 4-8, from NRLS, Bob knows that Alice has two

addresses 1:3:1::2000 and 2:1:1::2000 that are both allocated from the Core routing region. So if

Bob selects to use the provider R1 and B1 to reach Alice, he could specify a route either using a

source address 1:1:1::1000 and a destination 1:3:1::2000, or using a source address 1:1:1::1000

and a different destination address 2:1:1::2000.

5.4 Route Representation for a Reply Packet

When a receiver receives a packet, it may want to send a reply back to the sender. Multiple

mechanisms are possible for a receiver to generate a return route representation. For example,

if the receiver knows the sender’s name, it can follow the procedure described in Chapter 4 to

perform its own route discovery and pick a return route to send the reply; or a sender could attach

its addresses or topology information in its initial packet to the receiver so that the receiver can

select a return route without invoking a route discovery process.

We provide a basic mechanism for a receiver to generate a return route from the packet it

receives. A return route can be generated by simply swapping the source and the destination

address in the received packet, and reversing the sequence of addresses in the routing header

if the received packet has one. For example, in Figure 4-3, if Bob sends Alice a packet with

a source address 1:1:1::1000 and a destination address 1:3:1::2000, the packet will follow the

domain-level route N1 → R1 → B1 → R3 → N3 to reach Alice. When Alice receives the packet,

she can send a reply by swapping the source and the destination address, i.e., using 1:3:1::2000

as the source address, 1:1:1::1000 as the destination address. The reply packet will follow the

route N3 → R3 → B1 → R1 → N1 to reach Bob. If Bob sends Alice a packet with 1:2:1::1000

in the source address field, nprAddr(R2) in the destination address field, and nprAddr(R3) and

1:3:1::2000 in the routing header, the packet will follow the route N1 → R2 → R3 → N3 to reach

Alice. The packet header is shown in Figure 5-8. When Alice receives the packet, according to our

forwarding algorithm, nprAddr(R3) will be in the source address field, 1:3:1::2000 in the desti-

nation address field, and 1:1:1::1000 and nprAddr(R2) in the routing header. The received packet

header is shown in Figure 5-11. Alice could generate a return route representation by swapping

nprAddr(R3) and 1:3:1::2000, and reversing the sequence of 1:2:1::1000 and nprAddr(R2). The

reply packet header sent by Alice is shown in Figure 5-12. It can be seen that the reply packet

will follow the route N3 → R3 → R2 → N1.

110

source nprAddr(R3)
destination 1:3:1::2000

...
1:2:1::1000 start of the routing header

nprAddr(R2)
next-to-visit end

Figure 5-11: The packet header when Alice receives the packet. The network topology is shown
in Figure 4-3.

source 1:3:1::2000
destination nprAddr(R3)

...
next-to-visit nprAddr(R2) start of the routing header

1:2:1::1000

Figure 5-12: The reply packet header sent by Alice to Bob. The network topology is shown in in
Figure 4-3.

5.5 Route Representation for an ICMP Error Notification Packet

NIRA provides a reactive mechanism for a user to detect route failures. When a router forwards

a packet along the route specified in a packet header, if the router notices a failure on the route,

the router should make its best effort to send an ICMP error notification packet to the sender of

the packet.

We describe how a route representation for an ICMP packet might be composed from a

received packet. The key problem to address is how a router picks the source address of an ICMP

packet. The source address will be combined with the other addresses in a received packet to

generate a reverse route representation from the router to the sender of the received packet. In

general, the router at a domain needs to figure out the domain’s position in the route the packet is

supposed to follow, e.g., whether the domain is on the uphill portion or on the downhill portion.

A router could figure out its position based on at which step of the forwarding algorithm the

ICMP packet is triggered. Then the router could pick a source address that is compatible with its

domain’s position in the route. We briefly describe how a router might pick a compatible source

address.

A router might want to send an ICMP packet due to route failures in the following cases:

1. At Step 1, the router finds that the destination address in a packet header matches an entry

with the next hop pointing to blackhole.

2. At Step 2, the router finds that the source address in a received packet matches no entry in

its uphill forwarding table.

3. At Step 3, the router finds that the destination address in the received packet has no match

111

in its bridge forwarding table or in its routing table.

In the first case, a blackhole indicates that the destination address matches an address prefix

of the domain of the router, but the router is unable to find a subdivision of the address prefix

to match the destination address. So the domain of the router is on the allocation path of the

destination address, i.e., the downhill portion of the route a received packet is supposed to follow.

The reverse route from the router to the sender is either an uphill route, or a hill route. In general,

the router could send an ICMP packet with its address that shares the longest prefix with the

destination address in the received packet as the source address, the address in the source address

field of the received packet as the destination address. If the received packet has a routing header,

the router should reverse the sequence of the visited addresses in the routing header and insert

them into the routing header of the ICMP packet.

For example, in the network shown in Figure 4-3, if the connection between R3 and N3 is

broken, the downhill table of R3 might not have an entry for the prefix 2:1:1::/48 and the prefix

1:3:1::/48 allocated to N3. When a packet sent by Bob with a source address 1:2:1::1000 and a

destination address 2:1:1::2000 arrives at R3, R3 will find that the destination address 2:1:1::2000

matches the prefix 2:1::/32 with the next hop pointing to blackhole. R3 could then send an ICMP

packet back to the sender Bob with the source address 2:1:: and 1:1:1::1000. The ICMP packet

will follow the route R3 → B2 → B1 → R1 → N1 to reach Bob.

In the second case, a router at a domain finds no match for the source address of a received

packet in its uphill forwarding table. This situation usually indicates that the domain of the router

is on the uphill portion of the route the received packet is supposed to follow, but the connection

between the domain and the provider that allocates the address prefix containing the source ad-

dress is broken. The router could send an ICMP packet with its non-provider-rooted address as

the source address, and the address in the source address field of the received packet as the des-

tination address. If the received packet has a routing header, the router should insert the reverse

sequence of the visited addresses in the routing header into the ICMP packet.

In the sample network shown in Figure 4-3, if the connection between R1 and B1 is broken,

the uphill forwarding table of R1 might not have an entry 1:1::/32 with a next hop pointing to

B1. When a packet sent by Bob with a source address 1:1:1::1000 and a destination address

2:1:1::2000 arrives at R1, R1 will find no match for the packet in its uphill table. R1 could then

send an ICMP packet back to the sender Bob with the source address nprAddr(R1), and the

destination address 1:1:1::1000. The ICMP packet will follow the route R1 → N1 to reach Bob.

In the third case, a router at a domain finds no match for the destination address of a received

packet in its bridge forwarding table, or in its routing table. A no-match in a router’s bridge

forwarding table indicates that the domain of the router is the first domain of a bridge segment

connected by TIPP. So the router must have executed Step 2 of the forwarding algorithm and

112

found that the address in the source address field of the packet5 matches its non-provider-rooted

address prefix. The router could send an ICMP packet with its non-provider-rooted address as the

source address, the address before the next-to-visit address in the routing header of the received

packet as the destination address. The router should reverse the rest of the visited addresses in the

routing header of the received packet and insert them into the routing header of the ICMP packet.

For example, in the network shown in Figure 4-3, if the connection between R2 and R3 is

broken, R2’s bridge table might not have an entry for the non-provider-rooted address of R3. When

a packet sent by Bob with a header shown in Figure 5-8 (i.e., with the source address 1:2:1::1000,

the destination address nprAddr(R2), and nprAddr(R3) and 1:3:1::2000 in the routing header)

arrives at R2, R2 will first execute Step 1 and 4 of the forwarding algorithm, and then go back to

Step 1 with nprAddr(R2) in the source address field of the received packet, nprAddr(R3) in the

destination address field of the received packet, and 1:2:1::1000 and 1:3:1::2000 in the routing

header with the next-to-visit pointer pointing to 1:3:1::2000. With this shifted packet header as

shown in Figure 5-9, R2 will execute Step 3 of the forwarding algorithm and find no match for

nprAddr(R3) in the destination address field. R2 could then send an ICMP with nprAddr(R2) as

the source address, and the address before the next-to-visit address, 1:2:1::1000, as its destination

address. The ICMP packet will follow the route R2 → N1 to reach Bob.

In the case that a router finds a no-match in its routing table, the router must be at a top-level

provider in the Core routing region, and the source address in the received packet is a routable

address in the Core routing region. To send an ICMP packet, the router could use its routable

address in the Core routing region as the source address, the address in the source address field

of the received packet as the destination address. If the received packet has a routing header, the

router should reverse the visited addresses in the routing header and insert them into the routing

header of the ICMP packet. For example, in the network shown in Figure 4-3, if due to failures,

the top-level provider B1 cannot reach the top-level provider B2, then the routing table of B1 may

not have an entry 2::/16 with a valid next hop to reach B2. When B1 receives a packet sent by Bob

with an address 1:1:1::1000 and 2:1:1::2000, B1 will reach Step 3 of the forwarding algorithm,

and finds no match for the destination address in its routing table. B1 could generate an ICMP

packet with the source address 1:: and the destination address 1:1:1::1000. The ICMP packet will

follow the route B1 → R1 → N1 to reach Bob.

5.6 Optimization

In our basic route representation scheme, a valley-free route whose uphill segment and downhill

segment intersects at a common domain or are connected by a routing protocol in the Core

can be represented by a source and a destination address. A valley-free route that includes a

5Due to the shift in Step 4 of our forwarding algorithm, this address might not be the original source address in the
received packet.

113

peering connection outside the Core is represented by at least four addresses. This type of route

is not represented by two addresses because there are insufficient addresses to represent routes.

A hierarchically allocated address can be uniquely mapped into an allocation path that starts

at a top-level provider. But the allocation paths of two addresses may interconnect at various

places, e.g., in the Core, at a common domain, or via a peering connection. In our basic route

representation scheme, we choose to use two hierarchically allocated addresses to represent the

route in which the allocation paths of the two addresses are either connected in the Core or

intersect at a common domain.

It is possible to optimize our route representation scheme so that the valley-free route that

consists of a peering connection outside the Core can also be represented by a source and a

destination address. If two domains outside the Core have a peering connection, each domain

could obtain a private but globally unique address space6 and allocate address prefixes from

this address space to its customers. Similarly, the customers will allocate subdivisions of these

address prefixes to their customers, and so on. The allocation results will be propagated by TIPP

from providers to customers.

We can extend our route representation scheme to allow a source and a destination address to

represent a valley-free route that consists of a peering connection outside the Core, if the source

address is allocated from the private address space of one domain of the peering connection, and

the destination address is allocated from the private address space of the other domain of the

peering connection. As an example, Figure 5-13 shows the same network as shown in Figure 4-3,

with R2 and R3 each obtaining a private address space: FFFF:1::/32 and FFFF:2::/32. R2 allocates

an address prefix from this address space to each of its customers N1 and N2. So does R3. The

user Bob obtains an address FFFF:1:1::1000 allocated from R2’s private address space, and the

user Alice obtains an address FFFF:2:1::2000 from R3’s private address space. If Bob wants to

send a packet to Alice via the route N1 → R2 → R3 → N3, Bob could use a source address

FFFF:1:1::1000 and a destination address FFFF:2:1::2000 to represent the route.

To make our forwarding algorithm work with this optimization, we need to add entries for

address prefixes allocated from a domain’s private address space into routers’ forwarding tables.

A hierarchical address allocated from a private address space could be treated the same as a

hierarchical address allocated from a globally unique address space that belongs to a top-level

provider in the Core routing region. A router will announce such prefixes using the adjacent link

records in TIPP to its neighbors in the same way as it announces other hierarchically allocated

prefixes, except that for a domain that is the root of a private address space, the router in the

domain will not announce its private address space to its providers. Accordingly, a router could

set up entries in its downhill table or its uphill table for an address prefix allocated from a private

6We use the world “private” to imply that the address space will not be leaked into the Core routing region. So it
is not globally routable. But it should be globally unique so that an address allocated from this address space could
uniquely identify an allocation path.

114

Cindy

R3R2

N1 N2 N3

R1

B1
1::/16

B2
2::/16

1:1::/32

1:1:1::/48
1:2:1::/48

1:2::/32

1:2:2::/48
2:1:1::/48
1:3:1::/48

Bob Alice
2:1:1::2000
1:3:1::2000

N13

Core

4::/163::/16
B3 B4

R4

N12

R9
N11

N5

R5

N6

N4

N10

R8 R7

N9 N8 N7

R6

1:3::/32
2:1::/32

FFFF:1::/32 FFFF:2::/32

FFFF:2:1::/48

1:2:1::1000
1:1:1::1000

FFFF:1:1::/48
FFFF:1:2::/48

FFFF:1:1::1000 FFFF:2:1::2000

Figure 5-13: R2 and R3 each obtain a private address space: FFFF:1::/32 for R2 and FFFF:2::/32
for R3, and allocates an address prefix from the private address space to their customers. So Bob
gets an address FFFF:1:1::1000 and Alice gets an address FFFF:2:1::2000. This optimization
allows a valley-free route that contains a peering connection outside the Core to be represented
by two addresses. The route N1 → R2 → R3 → N3 can be represented as FFFF:1:1::1000 and
FFFF:2:1::2000.

115

address space in the same way as it sets up entries for other hierarchically allocated addresses.

For instance, if a domain is allocated an address prefix p f from the private address space of its

provider, the router in the domain will insert p f into its downhill table with the next hop pointing

to blackhole and insert p f into its uphill table with the next hop pointing to its provider. The

router will also pick an inter-domain address from p f and insert it into its downhill table with the

next hop pointing to itself.

How the router in a domain sets up its bridge table is slightly different when there are private

addresses. If a domain does not have an address allocation relationship with a TIPP neighbor,

and the neighbor announces to the domain a private address prefix to which the neighbor is the

root7, then the router in the domain will insert the private address prefix of the neighbor into its

bridge table, with the next hop pointing to the neighbor.

For a domain that is the root of a private address space, the router in the domain will insert

an entry for the private address space in its uphill table with the next hop pointing to the router’s

bridge table. This entry indicates that a packet with a source address allocated from the private

address space should not be pushed up further. Instead, the packet should be forwarded across a

bridge segment.

R2’s downhill table
nprP f (R2) sel f
1:2::/96 sel f
1:2::/32 blackhole
1:2:1::/48 N1

1:2:2::/48 N2

FFFF:1::/96 sel f
FFFF:1::/32 blackhole
FFFF:1:1::/48 N1

FFFF:1:2::/48 N2

R2’s uphill table
nprP f (R2) bridge
1:2::/32 B1

FFFF:1::/32 bridge

R2’s bridge table
nprAddr(R3) R3

FFFF:2::/32 R3

Figure 5-14: This figure shows the contents of R2’s forwarding tables after we optimize our route
representation scheme.

Figure 5-14 shows the contents of R2’s forwarding tables after we optimize our route repre-

sentation scheme. When Bob sends a packet with a source address FFFF:1:1::1000 and a desti-

nation address FFFF:2:1::2000, the packet will be forwarded to R2, since N1’s uphill table will

have an entry for FFFF:1:1::/48 with the next hop pointing to R2. R2 will execute Step 1 of the

7A domain could learn whether a neighbor is the root of an address prefix from the allocation-relation field of
the prefix announcement in a link record (Appendix 4.B.5). A specific value of the allocation-relation field indicates
whether the neighbor is the root of the address prefix.

116

forwarding algorithm, looking up the destination address in its downhill table, where it will find

no match. Then R2 will execute Step 2 of the forwarding algorithm, looking up the source ad-

dress FFFF:1:1::1000 in its uphill table, where it will find a match with the next hop pointing to

its bridge table. Afterwards, R2 will look up the destination address FFFF:2:1::2000 in its bridge

table, where it will find a match with the next hop pointing to R3. So R2 will forward the packet to

R3. Similarly, at R3, the packet will be forwarded to N3, and then be forwarded to its destination

Alice.

This optimization simplifies the representation for a valley-free route that consists of a peer-

ing connection outside the Core. The tradeoff is that it increases the number of addresses a user

has.

5.6.1 Multiple Routing Regions

Cindy

Core

R9

R8 R7 R6

R5

R4

R3R2

B4B3

N1 N2 N3

N4

N5

N6

N7N8N9N10

N11

N12

N13

R1

B1 B2

Bob Alice
1:1:1::1000
1:2:1::1000

FFFF:FF03::/32

FFFF:FF03:1::4000

FFFF:FF01::/32 FFFF:FF02::/32

FFFF:FF01:1::1000
FFFF:FF02:1::2000

Figure 5-15: R2, R3, and R4 may decide to form a routing region. The routing region is
assigned an address space. Each domain obtains a unique address prefix from that address
space, and recursively allocate the address prefix to its customers. R2 obtains an address prefix
FFFF:FF01::/32, and R3 obtains an address prefix FFFF:FF02::/32. The user Bob gets an address
FFFF:FF01:1::1000, and the user Alice gets an address FFFF:FF02:1::2000. With this address
allocation scheme, a valley-free route that includes a bridge segment connected by a routing pro-
tocol can be represented by two addresses. The route N1 → R2 { R3 → N3 between Bob and
Alice can be represented by FFFF:FF01:1::1000 and FFFF:FF02:1::2000.

Our route representation scheme and forwarding algorithm can be extended to support mul-

tiple routing regions. It is possible that a group of domains outside the Core also desire to form

a routing region. For example, in Figure 5-15, R2 and R3 may notice that their customers send a

lot of traffic to R4. So it would be profitable for them to have a direct peering connection with

117

R4 instead of sending traffic to their providers. The three domains, R2, R3, and R4 each have a

peering connection with the others. They may decide to negotiate a business agreement such that

if the peering connection between any two domains is broken, the third domain would provide

transit service between the other two domains. The three domains may decide to run a routing

protocol and not to let a user pick the route segment that connects them.

If a private address space is allocated to a routing region, and each domain in the routing

region obtains a unique address prefix from the address space, and allocates subdivisions of

the address prefix to its customers, and the customers recursively allocate the subdivisions to

their customers, then a valley-free route that includes a bridge segment connected by the routing

protocol in the routing region can also be represented by two addresses. In Figure 5-15, if the

address prefix FFFF:FF00::/24 is assigned to the routing region that includes R2, R3, and R4, and

each of the domains obtains a unique address prefix respectively: R2 gets FFFF:FF01::/32, R3 gets

FFFF:FF02::/32, and R4 gets FFFF:FF03::/32. The customer of R2: N1, obtains an address prefix

FFFF:FF01:1::/48. The user Bob obtains an address FFFF:FF01:1::1000. Similarly, the user Alice

obtains an address FFFF:FF02:1::2000. Then the route N1 → R2 { R3 → N3 between Bob and

Alice can be represented by FFFF:FF01:1::1000 and FFFF:FF02:1::2000.

Similar to a router at a top-level provider inside the Core, a router at a domain inside a routing

region would add a special entry for the address prefix of the routing region in its uphill table,

with the next hop pointing to the routing table of the routing region. For example, the router

at R2 will have an entry for FFFF:FF00::/24 in its uphill table, with the next hop pointing to

its routing table. When the router receives a packet with a source address FFFF:FF01:1::1000

and a destination address FFFF:FF02:1::20000, it will first look up the destination address in its

downhill table, where it finds no match; then it will look up the source address in its uphill table,

and follow the next hop to look up the destination address in its routing table. There it will find

a match and forward the packet to the next hop computed by the routing protocol in the routing

region.

5.6.2 Source Address Compatibility

In Section 5.2.2, when we discuss our design rationale for the forwarding algorithm, we mention

that there are two choices to make a TIPP router that also participates in a routing protocol

to look up the destination address of a packet in its routing table. The first option is to make the

router look up the destination address right after the router cannot find a match for the destination

address in its downhill table. The second option is to make the router do so after it looks up the

source address in its uphill table.

We choose the second option because it checks for the forwarding reversibility in a routing

region. When there is only a Core routing region, the importance of this checking is not that

obvious, because if a packet is forwarded all the way up to a top-level provider, then its source

118

address must be an address allocated from the top-level provider’s address space. So it is not

necessary to check for the source address again. The checking is only useful when a node inside

a top-level provider sends a packet. It is possible for the node to use its non-provider-rooted

address as the source address of the packet and inject the packet into the Core.

With multiple routing regions, as shown in Figure 5-15, this checking becomes more im-

portant. A user Bob, due to either mistake or malice, may use a source address 1:2:1::1000

and a destination address FFFF:FF02:1::2000 to send a packet to Alice. When this packet ar-

rives at R2, if R2 looks up its routing table right after it cannot find a match for the destination

address FFFF:FF02:1::2000, the packet will be forwarded to R3, and then reach Alice. How-

ever, Alice cannot send a reply back to Bob with the source address FFFF:FF02:1::2000 and

the destination address 1:2:1::1000. As R3 is the root domain that allocates the source address

FFFF:FF02:1::2000, the reply will not be further pushed up from R3, but R3 will not have for-

warding information for the destination address 1:2:1::1000.

We consider this mismatch between a source and a destination address harmful. It consumes

network resource to forward a packet. If a reply packet cannot be sent back to the sender of the

packet, a connection might not be established, thus wasting network resource in vain. Therefore,

in our design, we make a router check for the routability of the source address of a packet before

the router looks up the destination address in its routing table.

5.7 Forwarding Cost Analysis

Our route representation scheme is able to represent a common type of domain-level route with

only two addresses, regardless how many domains the route consists of. As a tradeoff, our for-

warding algorithm needs to inspect not only the destination address of a packet, but sometimes

the source address of a packet. In this section, we analyze the computational cost for our for-

warding algorithm to find the next hop to forward a packet.

Suppose the computational cost for a longest prefix match is L, the cost for one header field

rewritten is M. For a packet that has only a source and a destination address, in the best case,

our forwarding algorithm will find the next hop to forward the packet with one lookup (L) in a

router’s downhill table; in the worst case, our forward algorithm will find the next hop with three

lookups (3L): one lookup in a router’s downhill table, one lookup in a router’s uphill table, and

one lookup in a router’s bridge or routing table. So the cost for finding the next hop to forward a

packet with a source and a destination address ranges from L to 3L.

For a packet that contains an optional routing header, the cost for looking up the next hop may

include header rewritten and additional longest prefix lookups. As the domain of a router might

be both the end domain of a route segment and the start domain of the next route segment, in the

worse case, a route representation may contain two addresses of the same domain. When a packet

reaches that router, Step 4 of the forwarding algorithm will be executed twice. Each execution

119

includes a longest prefix lookup (L) for the destination address in the router’s downhill table,

and four header fields rewritten (4M): the source address field, the destination address field, the

next-to-visit address field, and the next-to-visit address pointer. After executing Step 4 twice, the

forwarding algorithm may spend additional three lookups (3L) to find the next hop in the router’s

bridge or routing table. So the worst case cost for looking up the next hop for a packet with an

optional routing header is 3L + 2(L + 4M) = 5L + 8M.

Therefore, the cost for finding the next hop to forward a packet ranges from L to 5L + 8M.

We expect that in most common cases, packets will have no routing header, because a typical

Internet route is valley-free, and a valley-free route can be represented by two addresses. So the

forwarding cost in most cases will range from L to 3L. We do not expect this computational cost

will become a problem. Advanced hardware technology such as parallel lookup on the desti-

nation address field and the source address field may speed up the lookup latency. In addition,

forwarding tables of a TIPP router only contain entries for its own address prefixes and those of

its neighbors, and therefore are expected to be much smaller than BGP tables. A small table size

may also help to reduce the longest prefix lookup latency (L).

Appendix 5.A Correctness of the Forwarding Algorithm

By correctness, we mean that our forwarding algorithm satisfies the following design require-

ments: if a user specifies a route following the route representation scheme described in Sec-

tion 5.1, then

1. Correct forwarding: the packet should be forwarded along the route to reach its destination

if the route is failure free.

2. Drop on failure: if at a router, the next hop to forward a packet is unreachable due to

failures, the packet will be dropped at that router instead of looping around in the network.

3. Step-wise reversibility: if at domain N, the packet is forwarded to a neighbor domain M,

then at domain M, a packet with the reverse route representation will be forwarded to N.

In this section, we verify that our forwarding algorithm is correct. We focus on showing

that the first two conditions are satisfied, as reversibility is obvious due to the symmetry of the

forwarding algorithm and the route representation scheme, and we have discussed reversibility

in the main text Section 5.2.2.

We first verify that the correctness of the forwarding algorithm for a route segment that has

a type, i.e., an uphill route segment, a downhill route segment, a bridge route segment, or a hill

route segment.

120

5.A.1 An Uphill Route Segment

According to our route representation scheme, an uphill route segment is represented by two

addresses: a source address S a whose allocation path overlaps with the uphill route segment,

and a destination address Da that is the non-provider-rooted address of the destination domain.

Suppose the source address allocation path is N0 → N1 → N2 → ... → Ni... → Ns, where Ns is

the source domain, and N0 is the top-level provider that allocates the source address. Without loss

of generality, suppose Nd is the destination domain, where 0 ≤ d ≤ s, and Da = nprAddr(Nd).

Let Addr(N0 ,N1,N2, ...,Ns) denote the address of Ns that is allocated along the path N0 → N1 →
N2...→ Ns. An uphill segment and its route representation are shown in Figure 5-16.

PSfrag replacements

N0

N1

Nd

Ns−1

Ns

source Addr(N0 ,N1,N2, ...,Nd, ...,Ns−1,Ns)
destination nprAddr(Nd)

Figure 5-16: This figure shows an uphill route segment and its representation.

We will show that at each Ni, d < i ≤ s, if the connection between Ni and Ni−1 is up, the

packet will be forwarded to Ni−1. If the connection between Ni and Ni−1 is down, the packet will

be dropped and an ICMP message will be sent.

When a packet with a source address Addr(N0,N1,N2, ...,Ns) and a destination address nprAddr(Nd)

arrives at Ni, since nprP f (Nd) will only appear in Nd’s downhill table, Ni will not find a match

for the destination address in its downhill table. Ni−1 has allocated to Ni an address prefix p f that

encloses the source address Addr(N0 ,N1,N2, ...,Nd, ...,Ns). So if the connection between Ni and

Ni−1 is up, Ni’s uphill table will have an entry for the address prefix p f with the next hop pointing

to Ni−1. The source address Addr(N0 ,N1,N2, ...,Nd, ...,Ns) of the packet will match the entry. If

there is another longer prefix bad that matches the source address with the next hop pointing to a

different next hop M, M , Ni+1, then we have p f encloses bad, but they are both address prefixes

allocated to Ni, which violates the non-looping address allocation rule as stated in Section 4.2.4.

Therefore, p f must be the longest prefix that matches the source address. So the packet will be

forwarded to Ni−1.

If the connection between Ni−1 and Ni is down, then the address p f that encloses the source

address Addr(N0 ,N1,N2, ...,Nd, ...,Ns) may not be present in Ni’s uphill table. Then the lookup

on the source address in Ni−1’s uphill table will find no match. If there is a match for the prefix

121

bad, then either bad is longer than p f or p f is longer than bad. In either case, the non-looping

address allocation rule is violated. Therefore, the packet will be dropped and an ICMP message

will be sent.

We also need to show that when the packet has arrived at Nd, it will stay in Nd. Since

nprP f (Nd) will appear in Nd’s downhill table with the next hop pointing to Nd itself, when

Nd receives the packet and executes Step 1 of the forwarding algorithm, Nd will find that the

destination address nprAddr(Nd) matches the prefix nprP f (Nd), hence recognizing the packet

has arrived at its destination domain.

5.A.2 A Downhill Route Segment

A downhill segment is the reverse of an uphill segment, and so is its representation. A downhill

segment is represented by a source address which is the non-provider-rooted address of the source

domain, and a destination address whose allocation path overlaps with the downhill segment. Let

N0 → N1 → ... → ...Ni → Nd be the destination address allocation path, Ns be the source

domain, where 0 ≤ s ≤ d. A downhill segment and its representation are shown in Figure 5-17.

PSfrag replacements

N0

N1

Ns

Nd−1

Nd

source nprAddr(Ns)
destination Addr(N0 ,N1,N2, ...,Ns, ...,Nd−1,Nd)

Figure 5-17: This figure shows a downhill route segment and its representation.

Similarly, first, we want to show that at Ni, s ≤ i < d, if the connection between Ni and Ni+1

is up, a packet with a route representation shown in Figure 5-17 will be forwarded to N i+1; if the

connection between Ni and Ni+1 is down, the packet will be dropped and an ICMP packet will be

sent. Ni has allocated to Ni+1 an address prefix p f that encloses Addr(N0 ,N1,N2, ...,Ns, ...,Nd).

So if the connection between Ni and Ni+1 is up, then in Ni’s downhill table, there must be an entry

for p f with the next hop pointing to Ni+1, and the destination address Addr(N0 ,N1,N2, ...,Ns, ...,Nd)

will match the entry.

When Ni executes Step 1 of the forwarding algorithm, if there is another longer prefix bad that

matches the destination address with the next hop pointing to a different next hop M, M , N i−1,

then we have both p f , a prefix allocated to Ni+1 by Ni, and bad, a prefix allocated to M by Ni,

both enclose the destination address, which violates the non-overlapping address allocation rule

122

as stated in Section 4.2.4. Therefore, p f must be the longest prefix that matches the destination

address. So the packet will be forwarded to Ni+1.

If the connection between Ni and Ni+1 is down, then the entry for p f may not be present in

Ni’s downhill table. The destination address cannot match any other address prefixes allocated to

Ni’s other neighbors, because it will violate the non-overlapping allocation rule. However, it will

match Ni’s own address prefix with the next hop pointing to blackhole. Therefore, the packet will

be dropped and an ICMP packet will be sent.

At the destination domain Nd, Nd’s downhill table will have an entry for the inter-domain

address prefix that encloses the destination address Addr(N0 ,N1,N2, ...,Ns, ...,Nd) with the next

hop pointing to Nd itself. The destination address will match that entry. Hence, the packet will

stay at Nd.

5.A.3 A Bridge Segment

A bridge segment consists of two domains that have no address allocation relationship, and

can be represented by a source address that is the source domain’s non-provider-rooted address

nprAddr(S) and a destination address that is the destination domain’s non-provider-rooted ad-

dress nprAddr(D). If S and D are top-level providers that are connected by the routing protocol

running inside the Core, then the source address would be Addr(S), the address of S derived from

the globally unique address prefix owned by S , and the destination address would be Addr(D),

the address of D derived from the globally unique prefix owned by D. Figure 5-18 shows a bridge

segment and its representation.
PSfrag replacements

S D
source nprAddr(S)

destination nprAddr(D)

Figure 5-18: This figure shows a bridge route segment and its representation.

Let’s first consider the case where S and D are connected by a TIPP connection. At the

source domain S , when S executes the first step of the forwarding algorithm, looking up the

destination address nprAddr(D) in its downhill table, it will find no match for nprAddr(D),

because the downhill table will only contain S ’s address prefixes, S ’s own non-provider-rooted

address prefix, and prefixes allocated to S ’s neighbors. S will move to Step 2 of the forwarding

algorithm, looking up the source address nprAddr(S) in its uphill table. There, it will find a

match for nprAddr(S) with the next hop pointing to bridge. So S will follow the third step of the

forwarding algorithm, looking up the destination address nprAddr(D) in its bridge table.

At this stage, if the connection between S and D is up, then S will have an entry for nprP f (D)

in its bridge table with the next hop pointing to D. So the destination address will match this entry

and the packet will be forwarded to D. If the connection between S and D is down, then S will

not find a match for the destination address in its bridge table. The packet will be dropped and an

123

ICMP packet will be sent.

If S and D are connected by the routing protocol running in the Core, and there is no route

failure, S ’s routing table will have an entry for the globally unique prefix p f of domain D with

the next hop pointing to D. When S receives a packet with a source address Addr(S) and a

destination Addr(D), S will first execute Step 1 of the forwarding algorithm, looking up the

destination address in its downhill table. There it will find no match. Then S will execute Step 2

of the forwarding algorithm, looking up the source address in its uphill table. There it will find a

match with the next hop pointing to routing. Therefore, S will look up the destination address in

its routing table, and find a match for the destination address Addr(D). Again, if there is another

longer prefix match with a different next hop, then the non-overlapping address allocation rule is

violated. So the packet will be forwarded to D.

If S and D are normally connected by the routing protocol, but are temporarily disconnected

due to failures, then at Step 3 of the forwarding algorithm, S will find no match for the destination

address in its routing table because of the non-overlapping address allocation rule. The packet

will be dropped and an ICMP message will be sent.

The destination domain D will have an entry for its own address in its downhill table. So

when the packet has arrived at D, D will recognize that the packet has arrived at its destination

domain.

5.A.4 A Hill Segment

A hill route segment consists of at most an uphill segment, a bridge segment connected by the

routing protocol in the Core, and a downhill segment. One of these three segments could be

missing. A hill segment could be represented by a source address whose allocation path overlaps

with the uphill section of the segment, and a destination address whose allocation path overlaps

with the downhill section of the segment. Suppose the source address allocation path is N0 →
N1 → ... → Ns, and the destination address allocation path is M0 → M1 → ... → Md. If the hill

segment does not contain a bridge segment, then the two allocation paths intersect at a common

domain Np, with Np = Mq, 0 ≤ p ≤ s and 0 ≤ q ≤ d. Examples of typical hill segments are shown

in Figure 5-19. If a hill segment does not have an uphill section, then s = 0, as shown in Figure 5-

20; if it does not have a downhill section, then d = 0, as shown in Figure 5-21. A hill segment can

be represented by two addresses: Addr(N0,N1, ...,Ns) and Addr(M0,M1,M2, ...,Md), as shown

in Figure 5-19, Figure 5-20, and Figure 5-21.

We first show that if the hill route segment is failure free, a packet with a source address and

a destination address that represent the hill segment will be forwarded along the route segment

and reach the destination domain. If there is a failure on the route, the packet will be dropped and

an ICMP message will be sent.

It can be seen that at Ni, where Ni is neither the top-level domain that allocates the source

124

PSfrag replacements

Core
N0

N1

Np

Ns−1 Ns−1

Ns Ns

M0

M1

Mq

Md−1 Md−1

MdMd

Np(Mq) Ni M j
source Addr(N0,N1,N2, ...,Ns)

destination Addr(M0,M1,M2, ...,Md)

Figure 5-19: This figure shows two typical hill route segments and their representations.

PSfrag replacements

Core
N0 M0

M1

M j

Md−1

Md
Ni

M j
source Addr(N0)

destination Addr(M0,M1,M2, ...,Md)

Figure 5-20: A hill route segment without an uphill portion and its representation.

PSfrag replacements

Core
N0

N1

Ni

Ns−1

Ns

M0

source Addr(N0 ,N1,N2, ...,Ns)
destination Addr(M0)

Figure 5-21: A hill route segment without a downhill portion and its representation.

125

address, nor the common domain Np (or Mq) that is on the allocation paths of both the source

and the destination address, then Ni’s downhill table will not have a matched entry for the des-

tination address Addr(M0,M1,M2, ...Md). Otherwise, either Np allocates overlapping address

prefix to Np+1 and Mq+1, or N0 and M0 have overlapping address space, which violates the non-

overlapping address allocation rule. From our proof on the uphill route segment representation,

it can be seen that the packet will be forwarded along the uphill segment N s → Ns−1 → .. until

it reaches N0, or Np if there is a common domain on the allocation paths of the source and the

destination address, or the packet will be dropped if there is failure.

If the packet has reached the common domain Np, then since Np has allocated an address

prefix to Mq+1 that encloses the destination address Addr(M0,M1,M2, ...,Md), according to our

proof on the downhill route segment representation, the packet will be forwarded along the down-

hill segment Mq → Mq+1 → ...Md and reaches the destination domain.

If the packet has reached N0, and N0 , M0, then N0’s routing table will contain a prefix entry

for the globally unique prefix of M0, if N0 and M0 are connected by the routing protocol. That

entry will be the longest matched prefix entry for the destination address according to the non-

overlapping address allocation rule. Therefore, the packet will be forwarded to M0. If N0 and M0

are temporarily disconnected due to failures, then the N0 will not find a match for the destination

address in its routing table. Therefore, the packet will be dropped and an ICMP message will be

sent.

When the packet has reached M0, according to our proof on the downhill route segment

representation, the packet will be forwarded along the downhill segment and reach the destination

domain, or be dropped if there is a failure.

5.A.5 Any Route Segment

Any route segment can be decomposed into a sequence of route segments of basic types, with

the end domain of a previous route segment being the start domain of a next segment. The route

segment can be represented by concatenating the representation of each route segment of a basic

type, and deleting duplicate adjacent addresses. Figure 5-22 shows an example of a compound

route segment and its representation. That route segment consists of an uphill segment N s →
Ns−1 → ...Np which can be represented by Addr(N0 ,N1,N2, ...,Ns) and nprAddr(Np), a bridge

segment Np → Mq, which can be represented by nprAddr(Np) and nprAddr(Mq), and a downhill

segment which can be represented by nprAddr(Mq) and Addr(M0,M1,M2, ...Md).

In a packet header with a route representation of a compound route segment, the starting

source and the destination address together represent the first route segment the packet should

follow. Since we have shown that the route representation of a route segment of any type works

correctly with the forwarding algorithm, to show that for any route segment, we only need to

demonstrate the following:

126

PSfrag replacements

Core

Np

Ns−1

Ns

Mq

Md−1

Md

M j

N0

M0

N1

Ni

source Addr(N0 ,N1,N2, ...,Ns)
destination nprAddr(Np)

...
next-to-visit nprAddr(Mq)

Addr(M0,M1,M2, ...,Md)

Figure 5-22: This figure shows an arbitrary route segment and its representation.

• When a packet arrives at the end domain of one route segment, E, which is also the start

domain of the next route segment, the two addresses representing the next route segment

will be shifted into the source and the destination address field of the packet header, and

the router at E will execute Step 1 of the forwarding algorithm with such a packet header.

We show this using induction. It can be seen that at the source domain of the packet, the

above condition is true. Suppose the condition is true at the start domain of the ith route segment.

The address in the source address field is S addr, and the address in the destination address field

is Daddr. Figure 5-23 shows the packet header.

source S addr
destination Daddr

...
next-to-visit Vaddr start of the routing header

Vaddr′

...

Figure 5-23: This figure shows the route representation for a compound route.

By previous proofs on route segments of any basic type, the packet will be forwarded to

the end domain, Ei, of the ith route segment. When Ei executes the first step of the forwarding

algorithm, it will find a match for Daddr with the next hop pointing to itself, and transfer to

Step 4. At Step 4, if there are still addresses left in the routing header, Daddr will be shifted to

the source address field, and the next-to-visit address Vaddr will be shifted to the destination

address, the pointer next-to-visit will be moved to the next address in the routing header. E i will

go back to Step 1 of the forwarding algorithm. Figure 5-24 shows the packet header after the

above operations.

If Vaddr is the second address in the representation of the next route segment, then the

packet header has Daddr, the first address of the next route segment representation, in the source

address field, Vaddr in the destination address field, and E i will execute Step 1 of the forwarding

algorithm. This shows that our forwarding algorithm will correctly forward the packet along the

127

source Daddr
destination Vaddr

...
S addr start of the routing header

next-to-visit Vaddr′

...

Figure 5-24: This figure shows the route representation of a packet for a compound route after
the forwarding algorithm modifies the packet header when the packet arrives at the end domain
of an intermediate route segment.

next route segment. By induction, our forwarding algorithm will forward the packet along the

route specified in the packet’s header.

source Vaddr
destination Vaddr′

...
S addr start of the routing header
Daddr

next-to-visit end

Figure 5-25: This figure shows the route representation of a packet for a compound route after
the forwarding algorithm modifies the packet header when the packet arrives at the end domain
of an intermediate route segment.

Suppose Vaddr is the first address in the route representation of the next route segment, and

the next-to-visit address Vaddr′ is the second address in the representation. Since a route seg-

ment of any type is represented by two addresses, and the start domain of a next segment is the

end domain of a previous segment, both Vaddr and Daddr must be the addresses of E i. When

Ei executes Step 1 of the forwarding algorithm, it will find a match for Vaddr with the next hop

pointing to itself, and transfer to Step 4 again. At Step 4, Vaddr will be shifted to the source ad-

dress field, and the second address in the representation of the next segment will be shifted to the

destination address field. Figure 5-25 shows the packet header after these operations. The domain

Ei, which is the start domain of the next route segment, will go back to Step 1 of the forwarding

algorithm with Vaddr in the source address field and Vaddr′ in the destination address. These

two addresses together represent the next route segment. This again concludes our proof.

5.A.6 Any Route

If a sender wants to communicate with a receiver over a domain-level route P0 → P1 → P2 →
... → Pn, the route is represented in the same way as the route segment P0 → P1 → P2 →
... → Pn is represented, except that the first address is a unicast address of the sender, instead

of the domain address of the sender’s domain, and the last address is a unicast address of the

128

receiver, instead of the domain address of the receiver’s domain. It can be proved that this route

representation works correctly with the forwarding algorithm in the same way as the correctness

of the route segment representation is proved.

Appendix 5.B Multiple Nodes

We have described TIPP and a router’s forwarding algorithm assuming each domain has one

border router. In practice, a domain usually has multiple routers and hosts. We can use a similar

approach as in BGP to synchronize TIPP information learned from different border routers and

select router-level next forwarding hop.

As in BGP, TIPP runs between border routers. Border routers of a domain will need to relay

information learned from external TIPP connections to each other. This relaying can either be

done using a fully meshed connection among all border routers, or using a central server. When

one domain has multiple border routers connecting to another domain, address allocation and

topology information should be maintained consistent among the routers. If a provider domain

withdraws a prefix allocated to a customer domain, then all border routers in the provider domain

connected to the customer domain should send an address withdraw message to the routers in

the customer domain. A domain-level link is considered down and a topology message is sent

only when all router-level connections between two domains are down.

For the forwarding part, if a domain has multiple exit routers connecting to a neighbor do-

main, then one reachable address prefix of that neighbor will be heard from all those exit routers.

Through relay, a border router in the domain will know that it has multiple next hops to reach

that address prefix. Similar to BGP, the border router can pick the best next hop based on domain

policies.

A domain could perform its intra-domain routing in the same way as in today’s Internet.

Inter-domain address prefixes learned from border routers can be distributed to internal routers

in the same way as how prefixes learned from BGP are distributed to internal routers today.

Appendix 5.C Sibling Relationships

In this section, we discuss how sibling relationships should be treated in NIRA. If two domains

have a sibling relationship, they provide mutual transit service for each other, i.e., one domain

allows the other domain to send packets to or to receive packets from all its neighbors. A sibling

relationship usually exists between two edge domains, and saves each domain the cost of pur-

chasing an additional provider for redundant Internet access [54]. A sibling relationship may also

exist due to ISP mergers [54].

If two domains have a sibling relationship, as we describe in Chapter 4.2.7, one domain

could allocate a subdivision of an address prefix it has to its sibling domain. With this allocation

129

scheme, a valley-free route that consists of sibling links can also be represented by a source and

a destination address.

Cindy

R3R2

N1 N2 N3

R1

B1
1::/16

B2
2::/16

1:1::/32

1:1:1::/48
1:2:1::/48

1:2::/32

1:2:2::/48
Bob

N13

Core

4::/163::/16
B3 B4

N12

R9
N11

N5

R5

N6

N10

R8 R7

N9 N8 N7

R6

1:2:1::1000
1:1:1::1000

R4

N41:3::/32
2:1::/32

Alice

2:2::/32

2:1:1::2000
1:3:1::2000

2:2:1::/48

2:1:1::/48
1:3:1::/48

2:2:1:1::2000

2:2:1:1::/96

2:1:1:1::/96
1:3:1:1::/96

Figure 5-26: In this example, the two domains N3 and N4 have a sibling relationship. So N3

will allow N4 to use its provider R3, and N4 will allow N3 to use its provider R4. N4 allocates a
subdivision (2:2:1:1::/96) of an address prefix (2:2:1::/48) obtained from R4 to its sibling domain
N3. So does N3.

Figure 5-26 shows an example. The two domains N3 and N4 have a sibling relationship. So N3

will allow N4 to use its provider R3, and N4 will allow N3 to use its provider R4. If the connection

between N3 and R3 is broken, a user Alice in N3 can use the uphill route segment N3 → N4 →
R4 → B2 to reach the rest of the Internet. For instance, if Alice wants to communicate with Bob,

she can pick the route N3 → N4 → R4 → B2 → B1 → R1 → N1. This route can be represented by

a source address of Alice, 2:2:1:1::2000, which is inside the address space 2:2:1:1::/96 allocated

from N4 to N3, and a destination address of Bob 1:1:1::1000.

A

C

B

D

to a provider to a provider

to a provider to a provider

Figure 5-27: Domains A, B, C, and D form a clique, and each has a sibling relationship with the
other domains.

130

If a group of domains all have sibling relationships with each other, which may happen due

to ISP mergers, and if each domain allocates a subdivision of an address prefix it has to every

sibling domain, and each sibling domain does the same thing in turn, then a domain in the group

may suffer from address implosion. For instance, in Figure 5-27, domains A, B, C, and D form

a clique, each having a sibling relationship with the other domains. Suppose each domain has

one address prefix allocated from a provider. If each domain recursively allocates subdivisions

of address prefixes it has to its sibling domains, then each domain will end up with having 15

address prefixes. For example, domain A will have address prefixes allocated from the following

paths: B → A, C → A, D → A, B → C → A, B → D → A, C → B → A, C → D → A,

D → B → A, D → C → A, B → C → D → A, B → D → C → A, C → B → D → A,

C → D→ B→ A, D→ B→ C → A, D→ C → B→ A.

A

C

B

D

to a provider to a provider

to a provider to a provider

O

Figure 5-28: Domains A, B, C, and D can be consolidated into one domain.

There are two possible approaches to avoid the address implosion problem. First, the group

of sibling domains can be consolidated into one compound domain. The internal domains inside

the compound domain run a routing protocol to connect themselves. Address prefixes assigned to

each internal domain are therefore assigned to the compound domain. Each internal domain does

not need to allocate address prefixes to each other. For example, in Figure 5-28, domains A, B,

C, and D can run a routing protocol among themselves, and appear to the outside as a compound

domain O. O will have the address prefixes allocated by each of the internal domains’ providers.

Each node in O will have four addresses, instead of 16.

When multiple sibling domains are merged into a compound domain, a user cannot use

NIRA’s route discovery mechanism to pick route inside the compound domain. We do not think

this is a problem, because our purpose for user route choice is to stimulate wide area ISP com-

petition. Even if sibling domains are merged into one compound domain, a user can still pick

different providers of the compound domain. Besides, in practice, competitive service providers

usually do not negotiate sibling relationships with each other. If a situation like the one shown

in Figure 5-27 occurs, it is most likely due to ISP mergers. The domains with sibling connec-

tions actually belong to the same ISP. Therefore, domain merging will not prohibit a user from

choosing different ISPs.

131

The second approach to alleviate the address implosion problem is to allocate address prefixes

only along the most commonly used routes. In Figure 5-27, it is unlikely that all possible routes

in the sibling cluster will be equally used. So address prefixes do not have to be allocated along

every policy-allowed route. For instance, each domain in Figure 5-27 can be configured not to

recursively allocate address prefixes that are allocated from a sibling domain. So domain A will

only have an address prefix allocated from its provider, and address prefixes allocated from its

sibling domains: B → A, C → A, and D → A. Because addresses are not allocated along other

policy-allowed routes in the sibling cluster, a sender that wants to communicate with a user of

domain A may not discover those routes via NRLS servers. But a user of domain A will learn

those routes via TIPP, and can tell the sender about those routes once he receives a packet from

the sender. Therefore, the two users can still communicate using those routes.

132

Chapter 6

Provider Compensation

NIRA is a scalable routing architecture that gives a user the ability to select domain-level routes.

In previous chapters, we have focused on mechanisms that support user route choice, which

include route and route availability discovery, and route representation and packet forwarding. In

this chapter, we explore an orthogonal but equally important problem: how a provider gets paid if

a user chooses to use its service. We refer to this problem as the provider compensation problem.

We consider the provider compensation problem important because providers have control

over various network resources. If they can not benefit from giving a user the ability to choose

from multiple routes, it is unlikely that a provider will honor a user’s choice. In this chapter,

we first discuss how the providers are compensated in today’s Internet. Then we describe how

providers might be compensated in NIRA. We also discuss miscellaneous economic issues that

could arise in NIRA.

6.1 Provider Compensation in Today’s Internet

In the current Internet, providers are paid by their directly connected customers based on pre-

negotiated contractual agreements. Local providers are paid by individual users that sign up for

their services and use their local access facility. In the sample network shown in Figure 6-1, N1 is

paid by users like Bob and Mary. Regional or wide-area providers are paid by other providers or

organizations that purchase their wholesale Internet service and are directly connected to them.

For example, R2 is paid by local providers such as N1 and N2; B1 is paid by regional providers

such as R1, R2, and R3.

In today’s Internet, local providers, such as Verizon online DSL [13] or Comcast [7], usu-

ally charge a flat-fee to end users. Providers that sell wholesale Internet access service to other

providers or organizations may either charge a flat-fee or a usage-based fee to their customers.

When a wholesale provider charges a usage-based fee to a customer domain, the charge is based

on the aggregated traffic on the customer’s access link(s). The wholesale provider does not need

133

Cindy

Core

R9

R8 R7 R6

R5

R4

R3R2

B4B3

N1 N2 N3

N4

N5

N6

N7N8N9N10

N11

N12

N13

R1

B1 B2

Bob AliceMary John

Figure 6-1: In today’s Internet, a provider is paid by its directly connected customers based on
pre-negotiated contractual agreements. In this example, N1 is paid by users like Bob and Mary;
R2 is paid by local providers such as N1 and N2; B1 is paid by regional providers such as R1, R2,
and R3.

to track the usage of end users. For example, in Figure 6-1, if R1 charges a usage-based fee to N1,

then the charge will be based on the aggregated traffic on N1’s access link to R1, and R1 does not

need to track the link usage of users such as Bob or Mary.

BGP provides a good technical support for this type of provider compensation. One hop

contractual agreements map to one hop routing decisions. With BGP, each domain makes local

decisions to select the next hop a packet follows. A domain could pick the cheapest next hop to

reach a destination. The common BGP policies state that if there are multiple routes to reach a

destination, a domain prefers a customer route to a peer route or a provider route, as a customer

route potentially brings revenue to the domain; a domain prefers a peer route to a provider route,

as a peer route usually involves no payment; the least preferable route is a provider’s route, as it

costs the domain money.

6.2 Design Rationale

With NIRA, an end user, instead of BGP routers of each domain, selects the route his packets

follow. A provider no longer has the control to pick the cheapest next hop to reach a destina-

tion. It is possible that this technical difference between NIRA and today’s Internet brings about

different solutions for provider compensation. To come up with the design for NIRA’s provider

compensation schemes, we first examine the general approaches to compensate a provider.

At a high level, there are two possible approaches. The first approach requires no pre-negotiated

contractual agreements between users and providers. At the time when a user sends a packet, the

134

user could freely choose any providers to carry the packet and pays while he sends the packet. In

our design, we consider this approach has little market appeal, as it may require that a provider

takes micro-payment from packets it receives. History suggests that such approaches are unlikely

to be widely deployed in the Internet.

For the second approach, providers are compensated based on pre-negotiated contractual

agreements. At the time when a user sends a packet to a destination, the user is restricted to choose

a route using those providers he or the destination has agreed to pay. This approach can be further

divided into two compensation methods based on how contractual agreements are negotiated. In

the first method, contractual agreements are negotiated between directly connected parties as in

today’s Internet. We refer to this method as direct compensation model. In the second method,

contractual agreements may be negotiated between non-directly connected users and providers.

For example, a user may negotiate a contract with a second-hop provider. We refer to this method

as indirect compensation model. We discuss these two models in turn.

6.3 Direct Compensation Model

The direct compensation model is the widely adopted compensation approach in today’s Internet.

This compensation model does not require a wide-area provider to deal with the accounting

details of individual users. Thus, it is scalable. We think that this model can also be adopted for

provider compensation in NIRA.

It is true that with NIRA, a domain cannot control to which next hop provider a packet will be

sent. It is thus more difficult for a domain to provision its bandwidth purchase from a provider to

avoid congestion. However, this problem can be solved if a domain provisions its access link to

a provider according to its aggregated peak traffic, but negotiates a usage-based contract with its

providers. In Figure 6-1, if N1 provisions its access link to R1 and R2 according to the aggregated

peak traffic from its users, then even in the worse case, when all its users pick R1 (or R2) to send

their traffic, the link to R1 (or R2) will not be congested. If the contracts are usage-based, then

N1 pays R1 or R2 according to how much its users use R1 or R2, and does not pay R1 and R2

according to its access link capacity. So the overall operational cost of N1 will not be increased

much by its over-provision of the access link to R1 or to R2.

When routes are picked by users, a domain is unable to pick the cheapest next hop to reach

a destination. The operational cost of a domain might be increased. For example, in Figure 6-1,

with BGP routing, if B1 is a cheaper provider than B2, then R3 could always route traffic to B1.

But with NIRA, a user may prefer to send traffic using the more expensive provider B2, thus

increasing the operational cost of R3. This problem can be solved if a provider charges different

routes differently. R3 can recover its cost by charging N3 according to N3’s usage of the route

N3 → R3 → B1 and the route N3 → R3 → B2 and the cost of each route; N3 can then transfer

this charge to users who pick the route.

135

In NIRA, a route can be represented by an address. So it is not difficult for a provider to track

route usage. A domain could monitor traffic at the access point of a customer, and track the usage

of a source address for inbound traffic from the customer, and the usage of a destination address

for outbound traffic to the customer.1 The cost of an address prefix could be advertised in TIPP

messages when a provider allocates the address prefix to a customer. In Figure 6-1, R3 could

charge N3 according to how much of N3’s traffic uses an address allocated from B1, and how

much of N3’s traffic uses an address allocated from B2. The amount of traffic using an address

from B2 will be charged more as B2 is more costly.

Strictly speaking, the usage cost of a route is determined by both the source address and the

destination address of a packet. For example, for an inbound packet from N3 to R3 with a source

address allocated from the more expensive route B2 → R3 → N3, if the destination address is the

address of R3, the packet would take the route N3 → R3, which does not cost R3 anything. But if

the destination address is the address of user Bob and is allocated from B1 → R1 → N1, then the

packet would follow the route N3 → R3 → B2 { B1 → R1 → N1, which would cost N3 to pay

B2. Therefore, routes with the same source address but different destination addresses may incur

different cost to a provider.

So on the one hand, tracking the usage of only a source address or a destination address

cannot precisely determine the usage cost of a customer’s traffic. On the other hand, it will in-

crease the complexity of accounting if usage-based charge needs to consider the combination

of different source and destination addresses. However, there is a similar problem in today’s

Internet. Although a provider can pick the cheapest next hop to reach a destination, different

destinations cost a provider differently. For example, in Figure 6-1, with BGP routing, R3 could

always prefer to use the free peering link between itself and R2 to send traffic coming from N3

and destined to customers of N1, But for traffic coming from N3 and destined to customers of N4,

R3 has to send the traffic to its provider B2 or B1. Therefore, traffic destined to N4 will cost R3

more than traffic destined to N1. However, in today’s Internet, providers still manage to charge

customers usage-based fees without doing fine-grained destination-based accounting. We expect

that a provider could employ similar heuristics to determine the usage charge of customer’s traffic

based on source address for inbound traffic and destination address for outbound traffic without

doing fine-grained accounting on the combinations of source and destination addresses.

There are multiple ways for N3 to transfer route usage based charge from R3 to its customers.

For example, N3 could charge a user according to his address usage. N3 monitors a user’s traffic

sent or received with the address allocated from B1 → R3 → N3 or the address allocated from

B2 → R3 → N3, and charge the user accordingly. Differently, N3 could sell addresses at a flat-fee

to users. If a user wants to pick between the route N3 → R3 → B1 and the route N3 → R3 → B2,

N3 could sell two addresses to the user; if instead, a user wants a cheap service, N3 could sell a

user only one address allocated from N3 → R3 → B1, and the user is only allowed to use that

1The usage of a destination address might not be the intention of a receiver. We discuss this problem in Section 6.4.

136

route. What’s more, N3 could also offer a service that restricts how a user might choose routes.

That service might give a user two addresses, but require that a user use the address allocated

from the cheaper route B1 → R3 → N3 most of the time, unless that route fails. As N3 will learn

about route conditions via TIPP, it can monitor whether a user follows this service agreement or

not.

6.3.1 Policy Checking

When provider compensation is based on pre-negotiated contractual agreements, it would be

desirable for a provider to verify that the route specified in a packet header conforms to its transit

policies before the provider actually transits the packet. We refer to this verification as policy

checking.

When contractual agreements are negotiated between directly connected parties, a domain

usually has transit policies that state whether it will provide transit service between two neigh-

bors, based on whether the neighbors have agreed to pay the domain or not.

Similar to what it is done today, a domain could employ physical connectivity to distinguish

incoming traffic from different neighbors for policy checking. If a packet comes from an interface

connected to a neighbor domain, a domain could assume that the packet comes from that neigh-

bor domain. So if the domain provides service between the incoming domain and the outgoing

domain of the packet, the domain should forward the packet; otherwise, the domain should drop

the packet.

If a router checks transit policies based on the incoming and outgoing interface of a packet,

policies would be specified in terms of interface identifiers, which involves hardware depen-

dency. It is desirable for a domain to specify transit policies in terms of constraints on packet

header fields, such as the source address field, or the destination address field, so as to get rid of

hardware dependency. As we have discussed in Chapter 5.2, the outgoing interface of a packet

is actually determined by the source address or the destination address in a packet header. If a

border router performs source address verification, i.e., verifying whether the source address of a

packet matches the incoming interface of the packet, then the incoming interface of a packet can

be associated with the source address of a packet. Thus, both incoming and outgoing interface of

a packet can be bound to packet header fields. As a result, transit policies could be specified as

constraints on those fields.

A border router could then enforce its transit policy by matching the header of a packet

against its policy filters. A simple policy filter could be of the format (source address, destination

address, action). If a packet header matches a policy filter, a router will take the corresponding

action. If the action is forward, the packet will be forwarded according to the next-hop returned

by the forwarding algorithm. If a packet has an optional routing header, the source address field

and the destination address field of the packet might be changed by the forwarding algorithm

137

during the next-hop lookup process (described in Chapter 5.2). So a border router should match

the original source address (the source address when the packet first arrives at the router) and the

final destination address (the destination address when the packet leaves the router) against its

policy filters. Policy filter matching is a simplified type of packet classification. Recent research

[17] suggests that it can be done at a high speed.

NIRA adopts a provider-rooted hierarchical addressing scheme, which makes it easy for a

border router to verify the source address of a packet. A domain knows what addresses it allocates

to a customer domain. So if a packet comes from a customer domain, then the source address of

the packet should be within the address space allocated to the customer; otherwise, if a packet

comes from a provider or a peer domain, the packet should not have a source address that is within

the address space allocated to a customer of the domain. This verification prevents a provider or

a peer from stealing transit service from a domain by spoofing a source address allocated to a

customer of the domain.

NIRA’s route representation scheme simplifies policy checking in the case where the source

address and the destination address of a packet are not modified after a router finds the next-hop

to forward a packet. In this case, a router does not need to do extra work for policy checking,

because a packet with only a source and a destination address will be forwarded along a policy-

allowed valley-free route. If the next-hop is found in a domain’s downhill forwarding table, then

the packet is destined to a customer of the domain. Policy checking is not needed as a domain

will forward packets destined to its customers, regardless of where the packets come from. If the

next-hop is found in a domain’s uphill forwarding table, and the source address of the packet

matches the interface from which it comes, then the packet is from a customer of the domain.

Again, policy checking is not needed, as a domain will transit packets from a customer domain

to any neighbor. If the next-hop is found in a domain’s bridge table, then the source address of

the packet either matches the non-provider-rooted address prefix of the domain, or matches the

private address prefix rooted at the domain (see Chapter 5.6). So the packet either comes from

nodes inside the domain or comes from a customer of the domain. In either case, the packet can

be forwarded to any neighbor of the domain without further policy checking. If the next-hop is

found in a domain’s routing table, then the routing protocol that builds the table should have

already handled transit policies in selecting the next hop to reach the destination address in the

packet header, as it is done in today’s Internet. Thus, no more policy checking is required.

6.3.2 Indirect Compensation Model

Contractual agreements can also be negotiated between non-directly connected parties. For ex-

ample, a user may negotiate business relationships with a non-directly connected provider. If

he wants to send packets through that provider, NIRA allows a user to specify so in his packet

headers.

138

Cindy

R9

R8 R7 R6

R5

R4

R3R2

B4B3

N1 N2 N3

N4

N5

N6

N7N8N9N10

N11

N12

N13

R1

B1 B2

Bob AliceMary John

X

PSfrag replacements

Core

Figure 6-2: X may purchase service from both B1 and B2, and sell transit service to end users. If
Bob purchases service from X, Bob could send packets to Alice using a route that goes through
the route segment B1 → X → B2, rather than the default congested peering link between B1 and
B2. However, if Mary does not purchase the service, she cannot send packets to Alice using the
route that goes through B1 → X → B2.

For this type of indirect business relationship, policy checking becomes a challenging prob-

lem. Packets coming from the same adjacent domain may be subject to different transit policies.

Thus, a provider can not tell what policies to apply to a packet based on from which interface the

packet comes, and to which interface the packet goes. Instead, a provider needs to tell whether the

packet is sent to or from one of its customers. Figure 6-2 shows an example. Suppose the peer-

ing connection between B1 and B2 is often congested. A provider X may consider it as a good

business opportunity. So X could purchase service from both B1 and B2, and sell transit service

to end users. If Bob purchases service from X, Bob may send packets to Alice using a route that

goes through the route segment B1 → X → B2, rather than the default congested peering link

between B1 and B2. However, if Mary does not purchases the service, she cannot send packets to

Alice using the same route. When X receives a packet from B1, X needs to verify that the sender

of the packet is Bob in order to transit the packet to B2.

The need to authenticate the sender or the receiver of a packet at the packet forwarding time

is not unique to NIRA. Even in today’s Internet, an overlay provider, or a second-hop provider

that wants to sell QoS to a customer, also has this requirement. As this problem is general enough

to become a separate problem, we do not discuss it in detail in this dissertation. Any solution to

this problem could be plugged into NIRA to prevent unauthorized route usage. For instance, a

provider could authenticate the sender of a packet before it forwards the packet using the ap-

proach proposed by Platypus [92, 85].

139

6.4 Financial Risks of Exposing Routes

In NIRA, we assume a sender-and-receiver joint payment model between a sender and a receiver

at the network layer. This payment model is the widely deployed payment model in today’s

Internet. For an end-to-end route, the sender of a packet compensates some providers en route,

and the receiver compensates other providers en route. In our design, it is usually the case that a

sender compensates the providers on his up-graph (the uphill portion of a route), and a receiver

compensates the providers on the receiver’s up-graph (the downhill portion of a route).

In a sender-and-receiver joint payment model, it is difficult for a receiver to avoid being sent

unwanted traffic. This problem prevails in today’s Internet. The manifestations include spam and

Denial of Service (DoS) attacks. However, in today’s Internet, an edge domain can control to

which provider to announce its address prefixes using BGP. Therefore, the domain could control

from which provider its incoming traffic comes. With NIRA, a receiver exposes its route seg-

ments and its route preference via its NRLS servers. A non-cooperative sender may override a

receiver’s route preference and intentionally send large volume of traffic over an expensive route

to a receiver. This non-cooperative behavior of the sender could cause a financial loss to the

receiver.

This financial risk is the unfortunate side effect of user empowerment. However, there are two

possible counter measures. First, with NIRA’s route representation scheme, the source address

field of a packet reveals the network location of the sender, and the forwarding algorithm depends

on the correctness of the source address. This prevents a user from spoofing an arbitrary source

address. For example, in Figure 6-2, if a customer of N3 does not send a packet with a source

address allocated from B1 → R3 → N3 or a source address allocated from B2 → R3 → N3,

according to our forwarding algorithm, N3 will not forward the packet to R3. This situation is

true at each level of the provider hierarchy. If a packet coming from N3 to R3 does not have

a source address that is within the address space of R3 allocated from B1 → R3 or B2 → R3,

the packet will not be forwarded to B1 or B3. If a non-cooperative sender has to reveal his real

network location in order to send packets to the victim receiver, this requirement may discourage

him from being non-cooperative in the first place. Moreover, if the non-cooperative sender cannot

fake his network location in a packet header, the victim receiver could ask his upstream providers

to filter out the sender’s traffic. Second, a user can store at his NRLS servers a subset of his

addresses, and keep more expensive addresses private. He can reveal the private information to

those users he trusts after they have exchanged packets via the public addresses he stores at his

NRLS servers.

Briscoe [23] also suggested a solution to this problem. The solution says that it is customary

for both the sender and the receiver to pay, but the ultimate liability should remain with the sender.

Any receiver could dispute his payment unless the sender had proof of a receiver request.

We do not claim that the above measures could eliminate the non-cooperative behaviors of

140

users. We think these measures will reduce the financial risk of a receiver to minimal.

6.5 The Core

In our design of NIRA, we utilize the provider-customer relationship between domains to divide

the network into smaller regions, such as the up-graph of a user, or a provider tree. We also

assume there is a Core structure of the Internet, where roots of provider trees are connected by a

routing protocol. Routes within the Core are chosen by the routing protocol, instead of users.

We make this assumption because in practice, there are providers that do not pay any providers

for transit service. Such providers are often called tier-1 providers. A tier-1 provider has a peering

connection with all other providers, and there is no money exchange between tier-1 providers.

Since a user’s payment stops at a tier-1 provider, we think it is reasonable not to let users pick

routes in the Core.

However, we have never strictly defined what the Core is. We deliberately omit the definition

because we expect that the Core will be self-defined with the deployment of NIRA. A domain in

NIRA has two choices. First, it could obtain a globally unique address prefix, connect to those

providers with globally unique address prefixes, and convince those providers to announce its

own prefix in the Core routing region. Second, the domain could accept address allocations from

the providers it connects to. If the domain takes the first choice, then the domain becomes a top-

level provider in the Core; otherwise, the domain is not part of the Core. At a minimum, the Core

will include those tier-1 providers, which does not purchase transit service from any provider and

has a peering connection with all other tier-1 providers. Other domains could make their own

decisions on whether to become a Core provider, based on the cost to obtain a globally unique

address prefix, the cost to get that prefix announced to other providers in the Core, and the benefit

of doing so.

Therefore, the Core will be shaped by market force. If users welcome route choice, then a

provider has the motivation to stay outside the Core to let users pick routes; otherwise, a provider

might stay inside the Core. It is worth noting that even in the worse case, where every provider

has decided to join the Core, with NIRA, a multi-homed edge domain will not poke a hole in the

global routing tables. Thus, the growth of the global routing state is still limited by the growth of

the Core, instead of the growth of the Internet. We think this rate of growth will scale well.

6.6 Where Choice can be Made

In this dissertation, we focus our discussion on how to let users choose routes. The default usage

model of NIRA is that a software agent running on a user’s computer selects routes based on the

user’s preference. The software agent could select routes using simple static policies, e.g., always

choosing the cheapest route, or using a learning based approach to infer a user’s preference from

141

his behavior, as described in [68, 42].

However, in NIRA, choice is not restricted to be made only by end users. In situations where

an end user is not financially responsible for his Internet access, the one that is responsible might

not want the user to select routes. For example, a company might not want its employees to select

routes according to their own preferences. NIRA fully supports such situations.

If an edge domain does not want to give route choice to users inside itself, the domain does

not need to propagate TIPP messages to those users. Instead, the domain could have a route

server to select routes for its users. TIPP messages propagated to the domain will be passed to

the route server. So the route server knows of the set of address prefixes allocated to the domain

and the domain’s up-graph. When a user inside the domain wants to contact a destination, the

user could contact the route server with the destination’s name. The route server can then retrieve

the destination’s addresses and select a route on behalf of the user, and send the user the selected

route representation. In this case, when the selected route fails, the user might need to contact

the route server again for another route. Or the route server could send the user a set of selected

routes with an order of preference if the route server trusts that the user will try out each route

according to the specified preference.

Alternatively, a domain could have its border routers act as name-to-route translation boxes,

as described in the IPNL [53] architecture. The user could send all his packets with the destina-

tion’s name. Since a border router receives TIPP messages, it has the knowledge to select routes

on behalf of users. When a border router receives the first packet to a destination from a user, the

router does an NRLS query, caches the results, selects a route for the user, attaches the route rep-

resentation to the packet, and sends the packet. For subsequent packets, the router can translate

the destination name into a previously selected route representation using cached results.

It is also possible that an edge domain by default does not want its users to select routes, but

allows specific users to choose routes. For example, in a campus network, route choice in general

might not be allowed. But if there are students that have special needs and are willing to pay for

their network usage, for instance, a student from China wants to use a provider that has a hight

speed voice over IP service to China, the network administrator might give special permissions

to those users to have access to TIPP messages and select routes based on their own preferences.

The domain could directly forward TIPP messages to those users or let those users have access

to route servers to obtain TIPP messages.

Even for individual consumers that directly purchase Internet service from local service

providers, if they are unsatisfied with the default route selection agents running on their desk-

top computers, they could purchase route selection service and let the service select routes for

them.

Therefore, it can be seen that NIRA supports multiple usage models. Choice can either be

made by an individual user, or by a user’s domain, or by a service purchased by the user.

142

Chapter 7

Evaluation

In this chapter, we present our evaluation on the design of NIRA. We have decomposed the

design of NIRA into four sub-problems: route discovery, route availability discovery, route rep-

resentation and packet forwarding, and provider compensation. In Chapter 5, we have shown the

correctness of our route representation scheme and the forwarding algorithm, and analyzed the

forwarding cost. So in this chapter, we do not further discuss route representation and packet for-

warding. We have also described how providers might be compensated in Chapter 6. Users and

providers pre-negotiated contractual agreements, and providers use policy checking to enforce

service agreements. Policy checking can be done in various ways, and is relatively independent

of the routing architecture. So we leave it as future work to evaluate various policy checking

schemes.

Our evaluation in this chapter focuses on the basic route discovery and route availability dis-

covery mechanisms. We use network measurement, simulation, and analysis for our evaluation.

7.1 Route Discovery Mechanisms

The basic mechanisms we provide for scalable route discovery include three components: provider-

rooted hierarchical addressing, TIPP, and NRLS. Correspondingly, we provide an evaluation of

each part.

7.1.1 Provider-rooted Hierarchical Addressing

The principal concern we have about the provider-rooted hierarchical addressing scheme is the

number of addresses a user has. Theoretically, the number of addresses a user has might grow

exponentially with the level of provider hierarchy. If there are h level of hierarchy, and at each

level, a domain will on average have p providers, then the number of addresses a user has scales

as ph.

However, financial factors in practice will limit the provider hierarchy to be shallow, and

143

the number of providers to which a domain is connected to be small. Therefore, the number of

addresses a domain has should be small.

Verifying this intuition requires knowledge of domain topology and domain relationships.

Unfortunately, such information is not publicly available. The best current practice is to infer

domain topology and relationships by analyzing BGP tables. There are two well-known inference

algorithms: degree based [54] and ranking based [99]. We compared the inference results of the

two algorithms when they are applied to the same BGP data, and found that the results differ by

about 10%. This difference suggests that these algorithms are inaccurate, but the majority of the

results are probably correct.

Our evaluation is primarily based on the inference results from the ranking based approach,

because the results also include the classification of core domains, and we can obtain the updated

results online [14]. We downloaded one data set for each year since 2001, a total of four data

sets. Each data set summarizes domain-level topology and domain relationships using BGP table

dumps from multiple vantage points. The results categorize three types of core domains: the

dense core, the transit core, and the outer core. The classification is based on the degree of domain

interconnectivity. The dense core is almost a clique, where every domain is connected to all other

domains.

In our evaluation, we approximate the Core structure in NIRA by including all domains in the

dense core and the transit core into the Core. Domains with degree greater than 200 in the outer

core are also included into the Core. Figure 7-1 summarizes the data sets. Each domain-level link

is unidirectional. The largest topology (the topology on January 13, 2004) has 16809 domains,

74368 links, and 167 core domains.

Date # domain # link # core
2001/04/18 10915 47514 150
2002/04/06 13155 56634 141
2003/01/09 14695 61630 140
2004/01/13 16809 74368 167

Figure 7-1: Domain-level topologies.

We first evaluate the number of prefixes a domain will have using the inferred domain-level

topologies. In our evaluation, each domain in the Core is initialized with a global unique prefix.

We allocate address prefixes to other domains using the provider-rooted hierarchical address-

ing scheme. Figure 7-2 shows the number of hierarchically allocated prefixes of each domain

as a cumulative distribution, and the mean, median and the 90th percentile of the distribution.

It can seen that the 90% of the domains will have less than 20 prefixes. However, the largest

number is more than a thousand. Hand-debugging a few examples suggest that the tail part of

the distribution may be caused by inference errors, e.g. a peering relationship is mistaken into a

provider-customer relationship.

144

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 10 100 1000 10000

C
um

ul
at

iv
e

fr
ac

tio
n

of
 d

om
ai

ns

Number of address prefixes

2001/04/18
2002/04/06
2003/01/09
2004/01/13

 1

 10

 100

2001/04 2002/04 2003/01 2004/01

N
um

be
r

of
 a

dd
re

ss
 p

re
fix

es

Date

90%
mean

median

Figure 7-2: The number of hierarchically allocated prefixes of each domain as a cumulative dis-
tribution, and the mean, median, and the 90th percentile.

145

This result confirms our intuition that provider-rooted hierarchical addressing is practical in

today’s Internet. With NIRA, the Internet topology may change. But we expect that the same

financial constraints would apply to the Internet with NIRA. When two domains interconnect,

there is cost involved for laying fibers, renting circuits, buying switches etc. A provider will

always need to balance the cost to interconnect with another domain and the profit that intercon-

nection would bring. So, we think that even in the future Internet with NIRA, a user will have a

moderate number of addresses.

7.1.2 TIPP

Next, we evaluate the scalability and the dynamic behaviors of TIPP.

Scalability of TIPP

To evaluate the scalability of TIPP, we use the inferred domain-level topologies and assume

TIPP is turned on between domains outside the Core. We then compute the size of the topology

database, and the size of the forwarding tables of each domain. The size of the topology database

is measured both in the number of link records and in the number of bytes. The size of the

forwarding tables is measured in the total number of entries in a domain’s uphill, downhill, and

bridge forwarding tables. Since the address prefixes allocated to a domain from its providers and

the address prefixes allocated by a domain to its customers will show up in a domain’s forwarding

tables, the number of entries in a domain’s forwarding table is a good estimator for the number

of entries in a domain’s address databases. So we omit the evaluation results for the address

databases of each domain.

Figure 7-3 shows the cumulative distribution of the number of link records in the main topol-

ogy database1 of a domain, assuming each domain follows the propagation policy described in

Appendix 4.B.5. The mean, median, and 90th percentile of the distribution are also shown in the

figure. Again, 90% of the domains will have less than 30 link records in their main topology

databases.

Figure 7-4 shows the cumulative distribution of the size of a domain’s topology database

measured in byte, and the mean, median, and 90th percentile. More than 90% of the domains

will have a topology database with size less than 10K bytes.

An edge domain is a domain that has no customers. Figure 7-5 and Figure 7-6 show the

results of the size of the topology database for an edge domain, which is essentially the size of

the up-graph an end user sees. As can be seen, the size of the up-graph an end user sees is small.

Finally, Figure 7-7 shows the cumulative distribution of the number of forwarding entries in a

domain’s uphill, downhill, and bridge forwarding tables. The mean, median, and 90th percentile

1Recall that the main topology database is the topology database that summarizes all input topology databases of
a domain.

146

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 10 100 1000 10000

C
um

ul
at

iv
e

fr
ac

tio
n

of
 d

om
ai

ns

Number of link records

2001/04/18
2002/04/06
2003/01/09
2004/01/13

 1

 10

 100

2001/04 2002/04 2003/01 2004/01

N
um

be
r

of
 li

nk
 r

ec
or

ds

Date

90%
mean

median

Figure 7-3: The number of link records in a domain’s main topology database as a cumulative
distribution, and the mean, median, and the 90th percentile.

147

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10 100 1000 100001000001e+06 1e+07

C
um

ul
at

iv
e

fr
ac

tio
n

of
 d

om
ai

ns

Size of topology database (byte)

2001/04/18
2002/04/06
2003/01/09
2004/01/13

 100

 1000

 10000

 100000

2001/04 2002/04 2003/01 2004/01

S
iz

e
of

 to
po

lo
gy

 d
at

ab
as

e
(b

yt
e)

Date

90%
mean

median

Figure 7-4: The size (in byte) of a domain’s main topology database as a cumulative distribution,
and the mean, median, and the 90th percentile.

148

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 10 100 1000

C
um

ul
at

iv
e

fr
ac

tio
n

of
 d

om
ai

ns

Number of link records

2001/04/18
2002/04/06
2003/01/09
2004/01/13

 1

 10

 100

2001/04 2002/04 2003/01 2004/01

N
um

be
r

of
 li

nk
 r

ec
or

ds

Date

90%
mean

median

Figure 7-5: The number of link records in an edge domain’s main topology database as a cumu-
lative distribution, and the mean, median, and the 90th percentile.

149

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10 100 1000 100001000001e+06 1e+07

C
um

ul
at

iv
e

fr
ac

tio
n

of
 d

om
ai

ns

Size of topology database (byte)

2001/04/18
2002/04/06
2003/01/09
2004/01/13

 100

 1000

 10000

 100000

2001/04 2002/04 2003/01 2004/01

S
iz

e
of

 to
po

lo
gy

 d
at

ab
as

e
(b

yt
e)

Date

90%
mean

median

Figure 7-6: The size (in byte) of an edge domain’s main topology database as a cumulative
distribution, and the mean, median, and the 90th percentile.

150

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 10 100 1000 10000 100000

C
um

ul
at

iv
e

fr
ac

tio
n

of
 d

om
ai

ns

Number of forwarding entries

2001/04/18
2002/04/06
2003/01/09
2004/01/13

 10

 100

 1000

2001/04 2002/04 2003/01 2004/01

N
um

be
r

of
 fo

rw
ar

di
ng

 e
nt

rie
s

Date

90%
mean

median

Figure 7-7: The number of forwarding entries in a TIPP router’s three logical forwarding tables
as a cumulative distribution, and the mean, median, and the 90th percentile.

151

of the distribution are also shown. 90% of the domains have less than 100 forwarding entries, but

the largest number is more than 10,000.

As in the case for NIRA’s addressing scheme, there is no theoretic guarantee on the scalability

of TIPP, as the number of link records a domain sees may grow exponentially with the depth of

provider hierarchy. Suppose there are h level of hierarchy, and at each level, a domain will on

average have p providers and q peers, then the number of link records an edge domain has in its

topology database scales as
∑h

i=1 pi−1(p + q).

However, our evaluation results derived from real Internet measurement suggest that TIPP

is scalable in practice, because the number of provider hierarchy is shallow, and the number of

providers and peers each domain has is quite small.

Dynamic Behaviors of TIPP

We evaluate the dynamic behaviors of TIPP using simulations. We implemented TIPP in the ns-

2 [3] simulator. For each inferred domain-level topology, we sampled ten smaller topologies for

simulations. To sample a simulation topology, we first pick twenty random edge domains from

an inferred topology, and then include domains and domain-level links on the up-graphs of the

edge domains. Figure 7-8 summarizes the sampled topologies. On average, each topology has

120-160 domains, and 430-700 unidirectional links.

Avg Max
Date # Domain # link # Domain # link
2001/04/18 119.2 432.0 199 982
2002/04/06 156.9 676.8 257 1360
2003/01/09 153.3 697.4 220 1262
2004/01/13 147.6 656.8 278 1840

Figure 7-8: Simulation topologies.

We first study the message overhead and the convergence time for single failure events. In a

simulation for a sampled topology, we randomly select up to 200 bidirectional links and let them

sequentially fail and recover. So at anytime of the simulation, only one bidirectional link fails and

recovers. We count the total number of messages and bytes triggered by the failures (excluding

the initialization messages sent during a connection re-establishment, since these messages are

not further propagated), and average them over the number of failures and the number of links.

We also record the maximum sent over a link. Figure 7-9 shows the results for ten simulation runs

for each data set. As can be seen, the average message overhead per link is very low, demonstrat-

ing that TIPP messages are propagated in controlled scopes. If a message is propagated globally,

a failure and a recovery event will generate four messages (two for each direction of a connec-

tion). Each unidirectional link will receive two messages on average, and four maximum. The

maximum number of messages sent over a link is less than 2, indicating that there is no message

152

 0.001

 0.01

 0.1

 1

 10

2001/04 2002/04 2003/01 2004/01

N
um

be
r

of
 m

es
sa

ge
s

Date

Maximum
Avgerage

 0.1

 1

 10

 100

 1000

 10000

2001/04 2002/04 2003/01 2004/01

N
um

be
r

of
 b

yt
es

Date

Maximum
Avgerage

Figure 7-9: The average and maximum number of messages and bytes sent per failure per link.

153

churning.

 0.01

 0.1

 1

2001/04 2002/04 2003/01 2004/01

C
on

ve
rg

en
ce

 ti
m

e
(s

)

Date

Maximum
Avgerage

Figure 7-10: The average and maximum time elapsed between the time a failure is detected and
the time the last topology message triggered by the failure is received.

To evaluate the convergence property of TIPP, we record the time period between the time

when a failure is detected and the time when the last topology message triggered by the failure

is received for each sequential failure event. In the simulation, the propagation delay of a link is

randomly distributed between 10ms and 110ms. Figure 7-10 shows the average and the maximum

convergence time over ten simulation runs. It can be seen that without considering processing

time, TIPP could converge within a second for single failure events.

We then look at the message overhead when there are multiple failures. In our simulation,

we let a bidirectional link randomly fail and recover. Each failure lasts for 200 seconds, because

shorter failures may not be detected by a TIPP router’s hold timer. The up time of a link is

uniformly distributed between 200 seconds and an upper bound. The value of the upper bound

determines the percentage of down time. Each run simulates 3600 seconds. Figure 7-11 shows

the message overhead when there are multiple link failures. These results suggest that both the

average message overhead and the maximum message overhead are low.

Our results from simulation studies suggest that TIPP has good dynamic behaviors. It has

low message overhead and converges fast.

154

 0.001

 0.01

 0.1

 1

 10

2001/04 2002/04 2003/01 2004/01

N
um

be
r

of
 m

es
sa

ge
s

Date

Maximum (10% down time)
Avgerage (10% down time)

Maximum (5% down time)
Avgerage (5% down time)

 0.1

 1

 10

 100

 1000

 10000

2001/04 2002/04 2003/01 2004/01

N
um

be
r

of
 b

yt
es

Date

Maximum (10% down time)
Avgerage (10% down time)

Maximum (5% down time)
Avgerage (5% down time)

Figure 7-11: The average and maximum number of messages and bytes sent per failure per link
when each link randomly fails and recovers.

155

7.1.3 NRLS

NRLS is an enhanced version of DNS. A user could use NRLS to obtain the addresses of a des-

tination. Since a provider-rooted hierarchical address is a topology dependent address, domain-

level topology change may change the addresses a user has. In the design of NIRA, we do not

restrict how a user updates his records at NRLS servers. As we have discussed in Chapter 4.4.1,

we think the workload for NRLS updates is likely to be manageable, because domain-level In-

ternet topology alters at a frequence of a few dozen changes per day, and the changes can be

scheduled so that a grace period could be granted for users to update their records before the

actual changes happen. Here, we use back of envelop calculation to confirm our intuition that the

workload for NRLS updates is manageable.

Suppose an NRLS server could handle 1000 updates per second. If a topology change affects

the records of 100,000 users at an NRLS server, then it takes on the order of 100 seconds of

NRLS server processing time to update the records. If an update is on average of the size 1000

bytes, and we restrict the bandwidth consumed on updating NRLS records to be 5% of 100Mb/s,

then it takes about 160 seconds to transfer 100,000 record updates. These numbers suggest that

the workload for NRLS updates is likely to be manageable. Moreover, note that if a single NRLS

server is overloaded with route records, the server can always use standard load-balancing tech-

niques to shed load to multiple machines. So we do not think NRLS updates would become the

performance bottleneck of NIRA.

7.2 Route Availability Discovery

The basic mechanism we provide for route availability discovery is a combination of proactive

and reactive notification. If a user does not know ahead of time the availability of a route, the user

will rely on router feedback or timeouts to detect route failures.

The reactive notification mechanism reduces the need to propagate route availability infor-

mation throughout the network, but could potentially increase the latency for sending a packet

when a route is unavailable. If a user sends a packet along a route that is unavailable, the packet

would not reach its destination. If the user waits until he receives a router notification or a timeout

event to try a different route to resend the packet, then the overall latency to send the packet will

increase.

Although in our design of NIRA, we do not limit how users handle route availability discov-

ery and failure handling, we would like to analyze the latency tradeoff of the basic route avail-

ability discovery mechanism provided in NIRA. A user might send probes along multiple routes

to monitor the availability of those routes, and always send packets along a route that is avail-

able to reduce the latency for sending a packet. Our analysis assumes a conservative approach

for failure detection and handling: a user depends on the basic proactive and reactive notification

156

mechanisms to detect route unavailability, and will resend a packet along a different route when

he discovers the original route he chooses to send the packet is unavailable. This conservative

assumption gives us an upper bound on the increase of packet-sending latency.

Intuitively, if routes are highly available, then most likely a packet will reach its destination

the first time when a user sends it. So the increase on packet-sending latency incurred by reactive

notifications will not be significant. We use a simple analytic model to test this hypothesis.

In our model, we assume that when a user sends a packet to a destination, the user knows the

name of the destination. Each user keeps a NRLS cache that stores the query results from NRLS.

When a user sends a packet, if there is a cache hit for the destination name, the user will pick a

route and send the packet without querying NRLS; if there is a cache miss, the user will query

NRLS to obtain the addresses of the destination. When a user sends a packet, if the user detects

a route is unavailable, the user will resend the packet via a different route. A user will use this

trial-and-error mechanism to send all his packets, including the packets to query NRLS.

For simplicity, we assume that the round trip time from a user to any destination is the same,

and the name hierarchy of any destination is the same, and the timeout value for detecting any

route unavailability (or simply route failure) is the same, and the cache hit probability for any

destination name is the same. We also assume that the probability a route is unavailable is inde-

pendent of that of any other route and is the same for all routes, and a router sends a notification

back to a user with certain probability. In our model, the round trip time, the name hierarchy,

the timeout value, the cache hit rate, the route unavailable probability, and the router notification

probability are all tunable parameters. These assumptions do not accurately capture every detail

of network operations, but allow us to get a first order estimation of the latency to successfully

send a packet.

We model the process of successfully sending a packet as a negative multinomial distribu-

tion [45]. In Appendix 7.A, we describe the details of the analytic model. This model could be

used to estimate both the connection setup latency and the latency for successfully sending a

packet in the course of a connection. If we set the cache hit probability to be 100%, then the

latency computed by the model estimates the latency for successfully sending a packet in the

course of a connection; if we cache hit rate is less than 100%, then the latency computed by the

model approximates the latency for sending the first packet to a destination, i.e., the connection

set up latency.

We use the analytic model to compute the latency for successfully sending a packet. Figure 7-

12 shows the cumulative distribution of the latency with 80%2 NRLS cache hit probability, a

3-level name hierarchy (i.e. two queries to NRLS servers are needed to resolve a destination

name), a 100ms round trip time, a 3-second timeout value for route unavailability detection, 1%

route failure probability, and variable fractions of router notification out of all failure events.

2We pick 80% cache hit probability as Jung et al [62] have shown that DNS cache hit rate exceeds 80% with a
time-to-live of 15 minutes.

157

Figure 7-14 shows the result when we change the route failure probability to be 5%. Figure 7-13

and Figure 7-15 show the complementary distribution3 for 1% and 5% route failure probability

respectively. From the complementary distribution, we can see the tail part of the distribution

clearly.

From those figures, we can see that when routers could always send failure notification to

senders, the connection setup latency is within a couple of round trip times with a high probability

(> 99.99%). When senders have to depend on timeouts to detect route failures, the connection

setup latency increases. Still, with a probability of > 99.9% for 1% route failure probability and

99.5% for 5% route failure probability, the connection setup latency is less than one timeout

period plus a few round trip times.

Figure 7-16 shows how the expected connection setup latency changes with different route

failure probabilities. The other parameter values are the same: 80% NRLS cache hit probability,

3-level of name hierarchy, 100ms round trip time, 3-second timeout value for route failure de-

tection. With 1% failure probability, the expected latency changes from 141ms to 182ms as the

router notification fraction decreases from 100% to 0; With 5% failure probability, the expected

latency changes from 147ms to 361ms as the router notification fraction decreases from 100% to

0.

Figure 7-17 and Figure 7-18 show the requirements on the cache hit probability and the frac-

tion of router notification in order to meet the performance requirement that the connection setup

latency is less than 0.5 second with certain probability for 1% and 5% route failure probability

respectively. The other parameter values are the same as in previous figures. The area above each

curve is the area that satisfies the specific performance requirement noted in the legend. From

these figures, we can see that when the cache hit probability is 80%, the fraction of router notifi-

cation needs to exceed 28% out of 1% route failure probability and 87% out of 5% route failure

probability for the connection set up latency to be less than 0.5 second 99% of time.

Figure 7-19 and Figure 7-20 show the requirements on the cache hit probability and the

fraction of router notification in order to meet the performance requirement that the expected

connection setup latency is less than a certain value for 1% and 5% route failure probability

respectively. The other parameter values are the same as in previous figures. From these figures,

we can see that when the cache hit probability is 80%, the fraction of router notification needs to

exceed 80% out of 1% route failure probability and 99% out of 5% route failure probability for

the expected connection set up latency to be less than 0.15 second. If we relax the requirement

on the expected connection set up latency to be less than 0.20 second, then we do not need router

notification in the case of 1% failure probability, and the fraction of router notification out of 5%

failure probability needs to exceed 75%.

We estimate the latency for successfully sending a packet in the middle of a connection by

setting the cache hit probability to be 100%. We also assume that the timeout value for detecting a

3The complementary distribution function for a random variable X is defined as Prob{X > x} = 1 − Prob{X ≤ x}.

158

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6 7 8 9 10

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Second

1% route failure probability

100% notification
50% notification, 50% timeout

100% timeout

Figure 7-12: The cumulative distribution of the connection setup latency with 1% route failure
probability. Other parameter values: 80% NRLS cache hit probability, 3-level of name hierarchy,
100ms round trip time, 3-second timeout value for route failure detection.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8 9 10

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Second

1% route failure probability

100% notification
50% notification, 50% timeout

100% timeout

Figure 7-13: The complementary distribution of the connection setup latency with 1% route
failure probability. Other parameter values are the same as above.

159

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14 16

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Second

5% route failure probability

100% notification
50% notification, 50% timeout

100% timeout

Figure 7-14: The cumulative distribution of the connection setup latency with 5% route failure
probability. Other parameter values: 80% NRLS cache hit probability, 3-level of name hierarchy,
100ms round trip time, 3-second timeout value for route failure detection.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Second

5% route failure probability

100% notification
50% notification, 50% timeout

100% timeout

Figure 7-15: The complementary distribution of the connection setup latency with 5% route
failure probability. Other parameter values are the same as above.

160

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 0.02 0.04 0.06 0.08 0.1E
xp

ec
te

d
C

on
ne

ct
io

n
S

et
up

 L
at

en
cy

 (
S

ec
on

d)

Route Failure Probability

100% timeout
50% notification, 50% timeout

100% notification

Figure 7-16: How the expected connection setup latency varies with different route failure prob-
abilities. Other parameter values: 80% NRLS cache hit probability, 3-level of name hierarchy,
100ms round trip time, 3-second timeout value for route failure detection.

route failure could be shortened in the middle of a connection because the application that opens

the connection would know better about the round trip time of the connection. Since we assume

a 100ms round trip time, we assume a 800ms timeout value in the middle of a connection. It is

about the value of three exponential backoffs of the round trip time: 200ms, 400ms, 800ms. We

still assume 3-level of name hierarchy. Figure 7-21 and 7-23 show the cumulative distribution of

the latency for successfully sending a packet in the middle of a connection with 1% and 5% route

failure probability. Figure 7-22 and Figure 7-24 show the complementary distribution for 1% and

5% route failure probability respectively.

The results shown in these figures are intuitive. Without considering NRLS cache miss, it

will take one round trip time to send a packet when there is no route failure. When routers can

always send notifications out of all route failures, the probability that it takes n round trip times

to successfully send a packet decreases exponentially with n. So for 1% route failure probability,

with probability 99%, a packet will go through in one round trip time, with probability 99.99%, a

packet will go through in two round trip time. If routers cannot always send notifications when a

route failure occurs, then the probability it takes n timeouts plus a round trip time to successfully

send a packet decreases exponentially with n. So for 1% route failure probability, without any

router notification, with probability 99.99%, the packet will go through within a timeout interval

plus a round trip time. Similar results are shown for the case with 5% route failure probability.

161

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 r
ou

te
r

no
tif

ic
at

io
n

Name-to-Route cache hit probability

1% route failure probability

P{latency <= 0.5s} >= 99.9%
P{latency <= 0.5s} >= 99.5%
P{latency <= 0.5s} >= 99%

Figure 7-17: The required cache hit probability and the fraction of router notification out of
all route failure events when the connection setup latency is less than 0.5 second with certain
probability. Other parameter values: 1% route unavailable probability; 3-level of name hierarchy;
3 second timeout.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 r
ou

te
r

no
tif

ic
at

io
n

Name-to-Route cache hit probability

5% failure probability

P{latency <= 0.5s} >= 99%
P{latency <= 0.5s} >= 97%
P{latency <= 0.5s} >= 95%

Figure 7-18: The required cache hit rate and the fraction of router notification out of all route
failure events when the connection setup latency is less than 0.5 second with certain probability.
Other parameter values: 5% route unavailable probability; 3-level of name hierarchy; 3 second
timeout.

162

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 r
ou

te
r

no
tif

ic
at

io
n

Name-to-Route cache hit probability

1% route failure probability

expected latency <= 0.15s
expected latency <= 0.2s
expected latency <= 0.25s

Figure 7-19: The required cache hit rate and the router notification probability when the expected
connection setup latency is less than certain value. Other parameter values: 1% route unavailable
probability; 3-level of name hierarchy; 3 second timeout.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 r
ou

te
r

no
tif

ic
at

io
n

Name-to-Route cache hit probability

5% route failure probability

expected latency <= 0.15s
expected latency <= 0.2s
expected latency <= 0.25s

Figure 7-20: The required cache hit rate and the router notification probability when the expected
connection setup latency is less than 1 second. Other parameter values: 5% route unavailable
probability; 3-level of name hierarchy; 3 second timeout.

163

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 0.5 1 1.5 2 2.5

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Second

1% route failure probability

100% notification
50% notification, 50% timeout

100% timeout

Figure 7-21: The cumulative distribution of the latency for successfully sending a packet in the
middle of a connection with 1% route failure probability. Parameter values: 100% NRLS cache
hit probability, 3-level of name hierarchy, 100ms round trip time, 800ms timeout value for route
failure detection.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 0.5 1 1.5 2 2.5

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Second

1% route failure probability

100% notification
50% notification, 50% timeout

100% timeout

Figure 7-22: The complementary distribution of the latency for successfully sending a packet in
the middle of a connection. Parameter values are the same as those in the figure above.

164

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Second

5% route failure probability

100% notification
50% notification, 50% timeout

100% timeout

Figure 7-23: The cumulative distribution of the latency for successfully sending a packet in the
middle of a connection with 5% route failure probability. Parameter values: 100% NRLS cache
hit probability, 3-level of name hierarchy, 100ms round trip time, 800ms timeout value for route
failure detection.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Second

5% route failure probability

100% notification
50% notification, 50% timeout

100% timeout

Figure 7-24: The complementary distribution of the latency for successfully sending a packet in
the middle of a connection. Parameter values are the same as those in the figure above.

165

Figure 7-25 shows how the expected latency for sending a packet in the middle of a con-

nection varies with different route failure probabilities. With 1% route failure probability, the

expected latency increases from 101ms to 108ms when the fraction of route notification changes

from 100% to 0; with 5% route failure probability, the expected latency increases from 105ms to

142ms when the fraction of route notification changes from 100% to 0.

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0 0.02 0.04 0.06 0.08 0.1E
xp

ec
te

d
C

on
ne

ct
io

n
S

et
up

 L
at

en
cy

 (
S

ec
on

d)

Route Failure Probability

100% timeout
50% notification, 50% timeout

100% notification

Figure 7-25: How the expected latency for successfully sending a packet in the middle of a
connection varies with different route failure probabilities. Parameter values: 100% NRLS cache
hit probability, 3-level of name hierarchy, 100ms round trip time, 800ms timeout value for route
failure detection.

166

Appendix 7.A Modeling the Latency for Successfully Sending a Packet

In this section, we describe the analytic model we use to estimate the latency for successfully

sending a packet under various operating conditions. As we discussed in the main text Sec-

tion 7.2, we assume when a user sends a packet to a destination, he uses either router notifica-

tions or timeouts to detection route failures. When a failure is detected, the user will try to resend

the packet over a different route. We assume failures on different routes are independent and

identically distributed.

We present the notations for describing various events and variables related to sending a

packet as follows.

• A: NRLS cache hit.

• Ā: NRLS cache miss.

• B: the number of successful NRLS queries needed in order to learn the addresses of a

destination. For a 3-level of name hierarchy, B = 2.

• C: the time interval to send a NRLS query and get a response that is a success.

• D: the time interval to send a NRLS query and get a timeout at the sender.

• E: the time interval to send a NRLS query and get a route failure notification from a router.

• F: the time interval to send a packet to its destination without encountering a route failure.

• G: the time interval to send a packet and get a route failure notification from a router.

• H: the time interval to send a packet and gets a timeout at the sender.

• I: the total latency to successfully send a packet.

• L: the latency to successful learn the addresses of a destination from recursive NRLS

queries.

• M: the latency to successfully send a packet when there is NRLS a cache hit.

Various sample paths could occur in the process of sending a packet. For example,

• When the event A occurs, a few possible sample paths are shown as follows:

I = F

I = G + F

I = G +G + ... + F

I = G + H +G + H + ... + F

167

Let’s call a sample path when A occurs α.

• When the event Ā occurs and B = n, the following sample paths are possible:

I = C + ... +C
︸ ︷︷ ︸

n success
+D + ... + D
︸ ︷︷ ︸

k timeouts

+ E + ... + E
︸ ︷︷ ︸

l failure notifications

+ α

=

n∑

i=1

Ci +

K∑

k=1

Dk +

L∑

l=1

El + α

7.A.1 Distribution of I

We derive the latency distribution using conditional probabilities. We first divide the sample paths

into two groups: 1. the group when an NRLS cache hit occurs, and 2. the group when an NRLS

cache miss occurs.

Prob{I ≤ x} = Prob{I ≤ x|A} · Prob{A} + Prob{I ≤ x|Ā} · Prob{Ā}

= Prob{M ≤ x} · Prob{A} + Prob{L + M ≤ x} · Prob{Ā}

A typical sample path in the first group (NRLS cache hit) includes a random number (NG)

of event Gs (router notifications), a random number (NH) of event Hs (timeouts), and an event F

(a packet gets through without encountering a route failure). The probability that the latency is

less a value x (Prob{M ≤ x}) can be computed by adding up the probabilities conditioned on the

values of NG and NH .

Prob{M ≤ x} = Prob{
NG∑

i=1

Gi +

NH∑

i=1

Hi + F ≤ x}

=
∑

nG ,nH

Prob{
nG∑

i=1

Gi +

nH∑

i=1

Hi + F ≤ x|NG = nG ,NH = nH} · Prob{NG = nG ,NH = nH}

=
∑

nG ,nH

Prob{
nG∑

i=1

Gi +

nH∑

i=1

Hi + F ≤ x|NG = nG ,NH = nH}

· (nG + nH)!
nG!nH!

(1 − PG − PH) · PnG
G · P

nH
H

A typical sample path in the second group (NRLS cache miss) includes events that occur in

resolving a destination name, and events that occur for sending a packet after the addresses of

the destination is learned, which are essentially events that occur with an NRLS cache hit. So

a typical sample path in this group includes a random number (NC) of event Cs (a successful

168

response of an NRLS query), a random number (ND) of event Ds (a timeout during an NRLS

query), a random number of (NE) of event Es (a router failure notification during an NRLS

query), and events that could occur when there is an NRLS cache hit. The probability that the

latency is less than a value x (Prob{L+M ≤ x}) can be computed by summing up the probabilities

conditioned on the number of occurrences of different events.

Prob{L + M ≤ x} = Prob{
NC∑

i=1

Ci +

ND∑

i=1

Di +

NE∑

i=1

Ei +

NG∑

i=1

Gi +

NH∑

i=1

Hi + F ≤ x}

=
∑

nC ,nD,nE ,nG,nH

Prob{
nC∑

i=1

Ci +

nD∑

i=1

Di +

nE∑

i=1

Ei +

nG∑

i=1

Gi +

nH∑

i=1

Hi + F ≤ x}

· Prob{NC = nC ,ND = nD,NE = nE ,NG = nG ,NH = nH}

=
∑

nC ,nD,nE ,nG,nH

Prob{
nC∑

i=1

Ci +

nD∑

i=1

Di +

nE∑

i=1

Ei +

nG∑

i=1

Gi +

nH∑

i=1

Hi + F ≤ x}

· Prob{NC = nC ,ND = nD,NE = nE} · Prob{NG = nG ,NH = nH}

=
∑

nC ,nD,nE ,nG,nH

Prob{
nC∑

i=1

Ci +

nD∑

i=1

Di +

nE∑

i=1

Ei +

nG∑

i=1

Gi +

nH∑

i=1

Hi + F ≤ x}

·
(nC + nD + nE − 1)!

nD!nE!(nC − 1)!
(1 − PD − PE)nC PnD

D PnE
E · Prob{NC = nC}

·
(nG + nH)!

nG!nH!
(1 − PG − PH)PnG

G PnH
H

For simplicity, we assume that the round trip time to reach any destination in the network

is the same, and the timeout values are the same, and the probabilities for receiving a router

notification or a timeout event are the same over all routes. That is,

• Gi = Ei = Trtt

• Ci = F = Trtt

• Di = Hi = Tout

• PG = PE = Pn, probability of router notification

• PD = PH = Po, probability of timeout

With these assumptions, we can obtain the latency distribution as follows:

Prob{I ≤ x} = Prob{A} ·
∑

nG,nH

Prob{nGTrtt + nHTout + Trtt ≤ x} (nG + nH)!
nG!nH!

(1 − Pn − Po)PnG
n PnH

o +

Prob{Ā} ·
∑

nC ,nD,nE ,nG,nH

Prob{nC Trtt + nDTout + nETrtt + nGTrtt + nHTout + Trtt ≤ x}

169

·
(nC + nD + nE − 1)!

nD!nE!(nC − 1)!
(1 − Pn − Po)nC PnD

o PnE
n Prob{NC = nC }

·
(nG + nH)!

nG!nH!
(1 − Pn − Po)PnG

n PnH
o

In our numerical computation, we assume that the name hierarchy has a fixed level 3. So two

successful NRLS queries are needed to resolve a destination name. We have Prob{NC = 2} = 1,

and Prob{Nc = n} = 0,∀n , 2.

7.A.2 Expected Value of I

Similarly, we can compute the expected latency for successful sending a packet.

E[I] = E[I|A] · Prob{A} + E[I|Ā] · Prob{Ā}

= E[M] · Prob{A} + E[L + M] · Prob{Ā}

= E[
NG∑

i=1

Gi +

NH∑

i=1

Hi + F] · Prob{A} +

E[
NG∑

i=1

Gi +

NH∑

i=1

Hi + F +
NC∑

i=1

Ci +

ND∑

i=1

Di +

NE∑

i=1

Ei] · Prob{Ā}

= (
∑

nG,nH

(nGE[Gi] + nHE[Hi] + E[F]) ·
(nG + nH)!

nG!nH!
(1 − PG − PH) · PnG

G PnH
H) · Prob{A} +

(
∑

nG,nH ,nC ,nD,nE

(nGE[Gi] + nH E[Hi] + E[F] + nC E[Ci] + nDE[Di] + nE E[Ei])

·
(nC + nD + nE − 1)!

nD!nE!(nC − 1)!
(1 − PD − PE)nC PnD

o PnE
n Prob{NC = nC }

·
(nG + nH)!

nG!nH!
(1 − PG − PH)PnG

n PnH
o) · Prob{Ā}

170

Chapter 8

Conclusion and Future Work

In this chapter, we summarize the contributions and limitations of this work, and discuss direc-

tions for future research.

8.1 Contributions

This dissertation presents the design of NIRA, a new Internet routing architecture. NIRA aims to

solve two problems in the present Inter-domain routing architecture. First, the current architecture

has little support for user choice in the form of user-selected routes. User choice is believed to

play an important role in creating a healthy and competitive ISP market. Second, it does not scale

effectively due to the failure to aggregate address prefixes from multi-homed sites.

To the best of our knowledge, this is the first work that addresses a full range of the design

challenges for a scalable architecture that supports domain-level route selection, which include

route discovery and selection, route availability discovery, route representation and packet for-

warding, and provider compensation. We evaluated most parts of our design using simulation,

analysis, and network measurement.

At an architectural level, our work demonstrates a new modularized approach to design the

inter-domain routing architecture. We leverage modularity not only for reducing complexity, but

for reducing architectural constraints and allowing generality. We decompose the design into

modules, design basic mechanisms to achieve the functionality of each module, and allow new

mechanisms to be invented to achieve the same functionality of one module without significantly

affecting mechanisms designed for other modules. Below are examples that illustrate this design

approach:

• We decomposed the design of the inter-domain routing architecture into three modules:

route discovery and selection, route representation and packet forwarding, and provider

compensation.

171

• We unbundled the route availability discovery from route discovery.

• We divided the task of route discovery into two halves, a sender half and a receiver half.

Each user could independently learn his half of the network. A sender retrieves the receiver

part of the network on demand, and combines his knowledge on his part of the network to

select routes.

At a technical level, our work has two primary contributions.

1. We designed a new network protocol, TIPP, that propagates inter-domain address alloca-

tion information and topology information to users. TIPP facilitates inter-domain address

management and the task of route discovery. Simulation studies based on topologies de-

rived from real Internet measurement show that TIPP scales well and has good dynamic

behaviors.

2. We designed a route representation scheme and a packet forwarding algorithm, such that

a source and a destination address could represent a common type of domain-level route.

We used induction proof to show that our route representation scheme and forwarding

algorithm work correctly.

8.2 Limitations

One of our motivations for this work is to come up with an engineering design that has the

potential to shape ISP market structure. We hope to encourage and reward competition in the

wide-area ISP market by supporting user choice in the form of domain-level routes.

It is true that whether the ISP market will adopt our design is out of our control. Yet we argue

this work is a worthy experiment. It is a proof-of-concept that technically it is doable to give

a user the ability to select domain-level routes. In the future, if the ISP market welcomes user

choice, our work can serve as a viable solution.

8.3 Future Work

This dissertation attempts to address the full range of design problems that arise from supporting

domain-level route selection. Unavoidably, some areas of this work are preliminary, and require

future study.

First, when users are able to select domain-level routes, providers need to perform policy

checking to prevent illegitimate route usage. We discussed how policy checking might be done,

but have not designed detailed algorithms, or compared existing algorithms for policy checking.

So how to implement policy checking in an efficient way is an area that needs much future work.

172

Second, we discussed how a user might pick a route and send a packet, but we have not

studied in detail how users select routes that best satisfy their performance requirements and

minimize their costs. This problem itself has two future directions. One direction is to look at

what information is needed for optimizing user choice, and how to provide this information via

TIPP and NRLS. The other direction is to investigate how to design the user agent software that

automatically manages route selection on a human user’s behalf.

Third, in this work, the primary motivation to support user route selection is to stimulate

ISP competition. We have not looked at the technical impacts of such choice. First, will user

choice lead to traffic oscillation between congested and uncongested route? If yes, then what

is the performance penalty of such oscillation, and how can we design control mechanisms to

prevent such oscillation? Second, how domain-level user choice will interact with intra-domain

traffic engineering, and do we need new mechanisms for intra-domain traffic engineering? Third,

can we quantify the performance gain if a user could pick domain-level routes?

Fourth, user’s ability to choose routes might impact the ISP market. Presently, business agree-

ments between ISPs or business agreements between users and ISPs are often long lasting (i.e.,

on the scale of a month or a year). With NIRA, users can adjust their route choices to optimize

cost and performance on a much finer time scale, such as a round trip time. Dynamic choices may

encourage ISPs to offer more dynamic contracts or to deploy more dynamic pricing strategies. It

is interesting to investigate how the ISP market might change and what new services the routing

system needs to provide to support the change.

Fifth, in NIRA, a sender picks an initial route to send the first packet to a receiver. If the

receiver has a different route preference from that of the sender, the receiver and the sender might

negotiate to pick a different route. It is possible that the sender and the receiver have conflicting

interests and each behaves selfishly. For example, the sender prefers a route that is cheap to him

but expensive to the receiver, but the receiver prefers a different route that is cheap to him but

expensive to the sender. It is worth future effort to look at how to design protocols to help a sender

and a receiver resolve conflicts and select a route for communication.

Finally, we conducted our evaluation in a simulation environment. In the future, we would

like to test our design in a more realistic environment, such as the PlanetLab [10].

173

174

Bibliography

[1] The ATM Forum. http://www.atmforum.com/.

[2] CIDR Report. http://www.cidr-report.org/.

[3] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[4] Opnix. http://www.opnix.com, June 2003.

[5] RouteScience. http://www.routescience.com/, June 2003.

[6] Source Address Selection in IPv6 Multihomed Multi-addressed Sites. IETF multi6 mail-

ing list, July 2003. http://dict.regex.info/ipv6/multi6/2003-07.mail/0038.

html.

[7] Comcast. http://www.comcast.com/, July 2004.

[8] Internap. http://www.internap.com/products/route-optimization.htm, May

2004.

[9] ISP Filter Policies. http://www.nanog.org/filter.html, June 2004.

[10] The PlanetLab. http://www.planet-lab.org/, July 2004.

[11] RIR Comparative Policy Overview. http://www.ripe.net/rs/

rir-comp-matrix-rev.html, July 2004.

[12] Route Filtering Used by AS6667. http://www.jippii.net/routefiltering.shtml,

June 2004.

[13] Verizon online DSL. http://www22.verizon.com/, July 2004.

[14] Sharad Agarwal. Domain Relationship Inferrence Data. http://www.cs.berkeley.

edu/˜sagarwal/research/BGP-hierarchy/data/.

175

[15] Sharad Agarwal, Chen-Nee Chuah, and Randy H. Katz. OPCA: Robust Interdomain Pol-

icy Routing and Traffic Control. In Proceedings of IEEE International Conference on

Open Architectures and Network Programming (OPENARCH ’03), San Francisco, Cali-

fornia, USA, April 2003.

[16] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resilient Over-

lay Networks. In Proceedings of the 18th ACM Symposium on Operating System Princi-

ples, Banff, Canada, October 2001.

[17] Florin Baboescu and George Varghese. Scalable Packet Classification. In Proceedings of

ACM SIGCOMM, San Diego, California, USA, August 2001.

[18] F. Baker and P. Savola. Ingress Filtering for Multihomed Networks. Internet Engineering

Task Force, March 2004. Best Current Practice, RFC 3704.

[19] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.

Looking Up Data in P2P Systems. Communications of the ACM, 46(2), 2003.

[20] Stefano Basagni, Imrich Chlamtac, Violet R. Syrotiuk, and Barry A. Woodward. A Dis-

tance Routing Effect Algorithm for Mobility (DREAM). In Proceedings of the 4th Annual

ACM/IEEE International Conference on Mobile Computing and Networking, pages 76–84,

Dallas, Texas, United States, 1998.

[21] Dimitri Bertsekas and Robert Gallager. Data Networks, chapter 5. Prentice Hall, Upper

Saddle River, NJ 07458, second edition, 1992.

[22] Nigel Bragg. Routing support for IPv6 Multi-homing. Internet Engineering Task Force,

November 2000. Internet Draft, Expired, http://www.watersprings.org/pub/id/

draft-bragg-ipv6-multihoming-00.txt.

[23] Bob Briscoe. The Direction of Value Flow in Multi-service Connectionless Networks.

In Proceedings of International Conference on Telecommunicatons and E-Commerce

(ICTEC’99), Nashville, USA, October 1999.

[24] Tian Bu, Lixin Gao, and Don Towsley. On Routing Table Growth. In Proceedings of

Global Internet, Taipei, Taiwan, November 2002.

[25] I. Castineyra, N. Chiappa, and M. Steenstrup. The Nimrod Routing Architecture. Internet

Engineering Task Force, August 1996. Informational, RFC 1992.

[26] Qian Chen, Hyunseok Chang, Ramesh Govindan, Sugih Jamin, Scott J. Shenker, and Wal-

ter Willinger. The Origin of Power Laws in Internet Topologies Revisited. In Proceedings

of IEEE INFOCOM, New York, New York, USA, June 2002.

176

[27] David R. Cheriton and Mark Gritter. TRIAD: A New Next-Generation Internet Architec-

ture. http://www-dsg.stanford.edu/triad/triad.ps.gz, 2000.

[28] David Clark. Policy Routing in Internet Protocols. Internet Engineering Task Force, May

1989. RFC 1102.

[29] David Clark, John Wroclawski, Karen Sollins, and Robert Braden. Tussle in Cyberspace:

Defining Tomorrow’s Internet. In Proceedings of ACM SIGCOMM, Pittsburgh, Pennsyl-

vania, USA, August 2002.

[30] A. Conta and S. Deering. Internet Control Message Protocol (ICMPv6) for the Internet

Protocol Version 6 (IPv6) Specification. Internet Engineering Task Force, December 1998.

Draft Standard, RFC 2463.

[31] Lenore J. Cowen. Compact Routing with Minimum Stretch. In Proceedings of the tenth

annual ACM-SIAM symposium on Discrete algorithms, pages 255–260, Baltimore, Mary-

land, United States, 1999.

[32] M. Crawford. Router Renumbering for IPv6. Internet Engineering Task Force, August

2000. Proposed Standard, RFC 2894.

[33] The Team Cymru. As path length graph. http://www.cymru.com/BGP/asnpalen01.

html, May 2004.

[34] C. de Launois, O. Bonaventure, and M. Lobelle. The NAROS Approach for IPv6 Multi-

homing with Traffic Engineering, April 2003. Submitted, http://www.info.ucl.ac.

be/people/delaunoi/naros/naros.html.

[35] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. Internet

Engineering Task Force, December 1998. Draft Standard, RFC 2460.

[36] S. Deering and R. Hinden. Internet Protocol Version 6 (IPv6) Addressing Architecture.

Internet Engineering Task Force, April 2003. Proposed Standard, RFC 3513.

[37] A. Doria, E. Davies, and F. Kastenholz. Requirements for Inter Domain Routing. Internet

Research Task Force, December 2003. Internet Draft, Expired May 31, 2004, http:

//www.ietf.org/internet-drafts/draft-irtf-routing-reqs-02.txt.

[38] Richard Draves. Default Address Selection for Internet Protocol version 6 (IPv6). Internet

Engineering Task Force, February 2003. Proposed Standard, RFC 3484.

[39] R. Droms. Dynamic Host Configuration Protocol. Internet Engineering Task Force, March

1997. ftp://ftp.isi.edu/in-notes/rfc2131.txt.

177

[40] R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney. Dynamic Host Con-

figuration Protocol for IPv6 (DHCPv6). Internet Engineering Task Force, July 2003. Pro-

posed Standard, RFC 3315.

[41] Deborah Estrin, Yakov Rekhter, and Steven Hotz. Scalable Inter-Domain Routing Archi-

tecture. In Proceedings of ACM SIGCOMM, pages 40–52, Baltimore, Maryland, USA,

August 1992.

[42] Peyman Faratin, John Wroclawski, George Lee, and Simon Parsons. Social Agents for

Dynamic Access to Wireless Networks. In Proceedings of the AAAI Spring Symposium on

Human Interaction with Autonomous Systems in Complex Environments, Stanford, Penn-

sylvania, USA, March 2003.

[43] Nick Feamster, David G. Andersen, Hari Balakrishnan, and M. Frans Kaashoek. Mea-

suring the Effects of Internet Path Faults on Reactive Routing. In Proceedings of ACM

SIGMETRICS 2003, San Diego, California, USA, June 2003.

[44] Nick Feamster, Hari Balakrishnan, Jennifer Rexford, Aman Shaikh, and Jacobus van der

Merwe. The Case for Separating Routing from Routers. In Proceedings of ACM SIG-

COMM Workshop on Future Directions in Network Architecture, Portland, Oregon, USA,

August 2004.

[45] William Feller. An Introduction to Probability Theory and Its Applications, chapter VI.

John Wiley & Sons, 1968.

[46] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of Service Attacks

which employ IP Source Address Spoofing. Internet Engineering Task Force, May 2000.

Best Current Practice, RFC 2827.

[47] Gregory Finn. Routing and Addressing Problems in Large Metropolitan-scale Internet-

works. Technical Report ISI/RR-87-180, ISI, University of Southern California, March

1987.

[48] American Registry for Internet Numbers. Policy 2002-3: Address Policy for Multi-homed

Networks. http://www.arin.net/policy/2002_3.html, June 2004.

[49] The ATM Forum. Private Network-Network Interface Specification Version 1.0, March

1996.

[50] Paul Francis. A Near-Term Architecture for Deploying Pip. IEEE Network, 7(3):30–37,

May 1993.

[51] Paul Francis. Comparison of Geographical and Provider-rooted Internet Addressing. Com-

puter Networks and ISDN Systems, 27(3):437–448, 1994.

178

[52] Paul Francis and Ramesh Govindan. Flexible Routing and Addressing for a Next Genera-

tion IP. In Proceedings of ACM SIGCOMM, pages 116–125, London, UK, 1994.

[53] Paul Francis and Ramakrishna Gummadi. IPNL: A NAT-Extended Internet Architecture.

In Proceedings of SIGCOMM, pages 69–80, San Diego, California, USA, August 2001.

[54] Lixin Gao. On Inferring Autonomous System Relationships in the Internet. IEEE/ACM

Transactions on Networking (TON), 9(6):733–745, December 2001.

[55] Timothy G. Griffin and Gordon Wilfong. An Analysis of BGP Convergence Properties.

In Proceedings of ACM SIGCOMM, pages 277–288, Cambridge, Massachusetts, USA,

August 1999.

[56] Sam Halabi. Internet Routing Architectures. Cisco Press, 2001.

[57] C. Huitema, R. Draves, and M. Bagnulo. Host-Centric IPv6 Multihoming. Internet Engi-

neering Task Force, January 2003. Internet Draft, http://www.it.uc3m.es/marcelo/

draft-huitema-multi6-hosts-02.txt.

[58] G. Huston. Commentary on Inter-Domain Routing in the Internet. Internet Engineering

Task Force, December 2001. Informational, RFC 3221.

[59] Geoff Huston. Interconnection, Peering and Settlements – part i. The Internet Protocol

Journal, 2(1):2–17, March 1999. http://www.cisco.com/ipj.

[60] Geoff Huston. Interconnection, Peering and Settlements – part ii. The Internet Protocol

Journal, 2(2):2–24, June 1999. http://www.cisco.com/ipj.

[61] Ping Ji, Zihui Ge, Jim Kurose, and Don Towsley. A Comparison of Hard-state and Soft-

state Signaling Protocols. In Proceedings of ACM SIGCOMM 2003, Karlsruhe, Germany,

August 2003.

[62] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. DNS Performance and

the Effectiveness of Caching. In Proceedings of ACM SIGCOMM Internet Measurement

Workshop, San Francisco, USA, November 2001.

[63] Brad Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless Net-

works. In Proceedings of ACM/IEEE MobiCom, August 2000.

[64] Leonard Kleinrock and Farouk Kamoun. Hierarchical Routing for Large Networks: Per-

formance Evaluation and Optimization. Computer Networks, 1(3):155–174, January 1977.

[65] Young-Bae Ko and Vaidya Nitin H. Location-Aided Routing (LAR) in Mobile Ad Hoc

Networks. In Proceedings of ACM/IEEE MobiCom, pages 66–75, October 1998.

179

[66] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed Internet Rout-

ing Convergence. In Proceedings of ACM SIGCOMM, pages 175–187, Stockholm, Swe-

den, August 2000.

[67] Craig Labovitz, G. Robert Malan, and Farnam Jahanian. Internet Routing Instability. In

Proceedings of ACM SIGCOMM, pages 115–126, Cannes, France, September 1997.

[68] George Lee, Peyman Faratin, Steven Bauer, and John Wroclawski. A User-Guided Cog-

nitive Agent for Network Service Selection in Pervasive Computing Environments. In

Proceedings of the Second IEEE International Conference on Pervasive Computing and

Communications (PerCom 2004), Orlando, FL, USA, March 2004.

[69] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert Morris. A

Scalable Location Service for Geographic Ad Hoc Routing. In Proceedings of ACM/IEEE

MobiCom, August 2000.

[70] G. Malkin. RIP Version 2. Internet Engineering Task Force, November 1998. RFC 2453.

[71] Zhuoqing Morley Mao, Ramesh Govindan, George Varghese, and Randy H. Katz. Route

Flap Damping Exacerbates Internet Routing Convergence. In Proceedings of ACM SIG-

COMM, pages 221–233, Pittsburgh, Pennsylvania, USA, August 2002.

[72] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya, Chen-Nee Chuah,

and Christophe Diot. Characterization of Failures in an IP Backbone. In Proceedings of

INFOCOM 2004, HongKong, China, March 2004.

[73] Silvio Micali and Ronald L. Rivest. Micropayments Revisited. In Bart Preneel, editor,

Proceedings of the Cryptographer’s Track at the RSA Conference, LNCS 2271, pages

149–163. Springer Verlag CT-RSA, 2002.

[74] P. Mockapetris and K. J. Dunlap. Development of the Domain Name System. In Proceed-

ings of ACM SIGCOMM, pages 123–133, Stanford, California, USA, August 1988.

[75] John Moy. OSPF Version 2. Internet Engineering Task Force, april edition, 1998. STD,

RFC 2328, http://www.ietf.org/rfc/rfc1583.txt.

[76] BGP Filtering Policies. http://www.merit.edu/mail.archives/nanog/2002-04/

msg00229.html, April 2002.

[77] T. Narten and E. Nordmark. Neighbor Discovery for IP Version 6 (IPv6). Internet Engi-

neering Task Force, December 1998. Draft Standard, RFC 2461.

180

[78] America’s Network. FTTH Moves into Mainstream in Japan. http:

//www.americasnetwork.com/americasnetwork/article/articleDetail.

js%p?id=93689, May 2004.

[79] D. Oran. OSI IS-IS Intra-domain Routing Protocol. Internet Engineering Task Force,

February 1990. Informational, RFC 1142.

[80] C. Partridge, T. Mendez, and W. Milliken. Host Anycasting Service. Internet Engineering

Task Force, November 1993. RFC 1546.

[81] Radia Perlman. Interconnections: Bridges, Routers, Switches, and Internetworking Proto-

cols, chapter 14. Addison-Wesley, 2000.

[82] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Accessing Nearby Copies

of Replicated Objects in a Distributed Environment. In Proceedings of the ninth an-

nual ACM symposium on Parallel algorithms and architectures, pages 311–320, Newport,

Rhode Island, United States, 1997.

[83] J. Postel. Internet Control Message Protocol. Internet Engineering Task Force, September

1981. RFC 792.

[84] J. B. Postel. Internet Protocol. Internet Engineering Task Force, September 1981. Stan-

dard, RFC 791.

[85] Barath Raghavan and Alex C. Snoeren. A System for Authenticated Policy-Compliant

Routing. In Proceedings of ACM SIGCOMM 2004. Portland, Oregon, USA, September

2004.

[86] Ram Ramanathan and Martha Steenstrup. Nimrod Functionality and Protocol Specifica-

tions, Version 1. Nimrod Working Group, March 1996. Internet Draft, Expires 30 August

1996, http://ana-3.lcs.mit.edu/˜jnc/nimrod/prospec.txt.

[87] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. A

Scalable Content-addressable Network. In Proceedings of ACM SIGCOMM Conference

(SIGCOMM ’01), pages 161–172, San Diego, California, United States, September 2001.

[88] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). Internet Engineering Task

Force, 1995. Draft Standard, RFC 1771.

[89] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Architecture.

Internet Engineering Task Force. Proposed Standard, RFC 3031.

181

[90] Stefan Savage, Tomas Anderson, Amit Aggarwal, David Becker, Neal Cardwell, Andy

Collins, Eric Hoffman, John Snell, Amin Vahdat, Geoff Voelker, and John Zahorjan. De-

tour: Informed Internet Routing and Transport. IEEE Micro, 19(1):50–59, January 1999.

[91] S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pricing in computer networks: Reshaping

the research agenda. ACM Computer Communication Review, 26:19–43, April 1996.

[92] Alex Snoeren and Barath Raghavan. Decoupling Policy from Mechanism in Internet Rout-

ing. In the Proceedings of HotNets-II, Cambridge, Massachusetts, USA, November 2003.

[93] John Spinelli and Robert Gallager. Event Driven Topology Broadcast without Sequence

Numbers. IEEE Transactions on Communications, 37(5):468–474, 1989.

[94] Sprint. BGP Route Aggregation and Filtering Policy. http://www.sprintlink.net/

policy/bgp_filters.html, June 2004.

[95] M. Steenstrup. An Architecture for Inter-Domain Policy Routing. Internet Engineering

Task Force, June 1993. Proposed Standard, RFC 1478.

[96] Martha Steenstrup. A Perspective on Nimrod Functionality. Internet Engineering Task

Force, May 1995. Internet Draft, Expires November 1995, ftp://ftp.bbn.com/pub/

nimrod-wg/perspective.ps.

[97] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana. Internet

Indirection Infrastructure. In Proceedings of ACM SIGCOMM, Pittsburgh, Pennsylvania,

USA, August 2002.

[98] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan. Chord:

A Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proceedings of ACM

SIGCOMM, pages 149–160, San Diego, California, USA, August 2001.

[99] Lakshminarayanan Subramanian, Sharad Agarwal, Jennifer Rexford, and Randy H. Katz.

Characterizing the Internet Hierarchy from Multiple Vantage Points. In Proceedings of

IEEE INFOCOM, New York, New York, USA, June 2002.

[100] Carl A. Sunshine. Source Routing in Computer Networks. ACM Computer Communica-

tion Review, 7(1):29–33, January 1977.

[101] Mikkel Thorup and Uri Zwick. Compact Routing Schemes. In Proceedings of the thir-

teenth annual ACM symposium on Parallel algorithms and architectures, pages 1–10,

Crete Island, Greece, 2001.

[102] Joe Touch and Steve Hotz. The X-Bone. In Proceedings of IEEE Global Internet Confer-

ence, Sydney, Australia, November 1998.

182

[103] Paul F. Tsuchiya. The Landmark Hierarchy: Description and Analysis. Technical Report

MTR-87W00152, The MITRE Corporation, June 1987.

[104] Paul F. Tsuchiya. Landmark Routing: Architecture, Algorithms, and Issues. Technical

Report MTR-87W00174, The MITRE Corporation, May 1988.

[105] Paul F. Tsuchiya. Efficient and Robust Policy Routing Using Multiple Hierarchical Ad-

dresses. In Proceedings of ACM SIGCOMM 1991, pages 53–65, Zurich, Switzerland,

September 1991.

[106] Kannan Varadhan, Deborah Estrin, Steve Hotz, and Yakov Rekhter. SDRP Route Con-

struction. Internet Engineering Task Force, February 1995. Internet Draft, Expires August

27, 1995.

[107] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent Route Oscillations

in Inter-Domain Routing. Computer Networks, 32(1):1–16, January 2000.

[108] Verio. Bgp Peer Filter Policy. http://info.us.bb.verio.net/routing.html, June

2004.

[109] Xiaowei Yang. Nira: A new Internet routing architecture. In the Proceedings of ACM

SIGCOMM FDNA 2003 Workshop, Karlsruhe, Germany, August 2003.

[110] Dapeng Zhu, Mark Gritter, and David R. Cheriton. Feedback Based Routing. In First

Workshop on Hot Topics in Networks (HotNets-I), Princeton, NJ USA, September 2002.

183

