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Abstract

Recent denial of service attacks are mounted by profes-
sionals using Botnets of tens of thousands of compro-
mised machines. To circumvent detection, attackers are
increasingly moving away from pure bandwidth floods to
attacks that mimic the Web browsing behavior of a large
number of clients, and target expensive higher-layer re-
sources such as CPU, database and disk bandwidth. The
resulting attacks are hard to defend against using stan-
dard techniques as the malicious requests differ from the
legitimate ones in intent but not in content.

We present the design and implementation of Kill-
Bots, a kernel extension to protect Web servers against
DDoS attacks that masquerade as flash crowds. Kill-Bots
provides authentication using graphical tests but is dif-
ferent from other systems that use graphical tests. First,
instead of authenticating clients based on whether they
solve the graphical test, Kill-Bots uses the test to quickly
identify the IP addresses of the attack machines. This
allows it to block the malicious requests while allowing
access to legitimate users who are unable or unwilling
to solve graphical tests. Second, Kill-Bots sends a test
and checks the client’s answer without allowing unau-
thenticated clients access to sockets, TCBs, worker pro-
cesses, etc. This protects the authentication mechanism
from being DDoSed. Third, Kill-Bots combines authen-
tication with admission control. As a result, it improves
performance, regardless of whether the server overload
is caused by DDoS or a true Flash Crowd. We have im-
plemented Kill-Bots in the Linux kernel and evaluated it
in the wide-area Internet using PlanetLab.

1 Introduction

Denial of service attacks are increasingly mounted by
professionals in exchange for money or material bene-
fits [39]. Botnets of thousands of compromised machines
are rented by the hour on IRC and used to DDoS on-
line businesses to extort money or obtain commercial
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advantages [48, 30, 20]. The DDoS business is thriv-
ing; increasingly aggressive worms infect about 30,000
new machines per day, which are used for DDoS and
other attacks [46, 20]. Recently, a Massachusetts busi-
nessman paid members of the computer underground to
launch organized, crippling DDoS attacks against three
of his competitors [39]. The attackers used Botnets of
more than ten thousand machines. When the simple SYN
flood failed, they launched an HTTP flood; pulling large
image files from the victim server in overwhelming num-
bers. At its peak the onslaught allegedly kept the victim
company offline for two weeks. In another instance, at-
tackers ran a massive numbers of queries through the vic-
tim’s search engine, bringing the server down [39].

To circumvent detection, attackers are increasingly
moving away from pure bandwidth floods to stealthy
DDoS attacks that masquerade as flash crowds. They
profile the victim server and mimic legitimate Web
browsing behavior of a large number of clients. These
attacks target higher layer server resources like sock-
ets, disk bandwidth, database bandwidth and worker pro-
cesses [39, 16, 29]. We call such DDoS attacks Cy-
berSlam, after the first FBI case involving DDoS-for-
hire [39]. The MyDoom worm [16], many DDoS extor-
tion attacks [29], and recent DDoS-for-hire attacks are
all instances of CyberSlam [39, 29, 15].

Countering CyberSlam is a challenge because the re-
quests originating from the zombies are indistinguishable
from the requests generated by legitimate users. The ma-
licious requests differ from the legitimate ones in intent
but not in content. The malicious requests arrive from
a large number of geographically distributed machines;
thus they cannot be filtered on the IP prefix. Also, many
sites do not use passwords or login information, and even
when they do, passwords could be easily stolen off the
hard disk of a compromised machine. Further, checking
the site specific password requires establishing a con-
nection and allowing unauthenticated clients to access
socket buffers, TCBs, and worker processes, making it



easy to mount an attack on the authentication mechanism
itself. Defending against CyberSlam using computa-
tional puzzles, which require the client to perform heavy
computation before accessing the site, is not effective be-
cause computing power is usually abundant in a Botnet.
Finally, in contrast to bandwidth attacks [43, 31], it is dif-
ficult to detect big resource consumers when the attack
targets higher-layer bottlenecks such as CPU, database,
and disk because commodity operating systems do not
support fine-grained resource monitoring [11, 10, 52].
This paper proposes Kill-Bots, a kernel extension that
protects Web servers against CyberSlam attacks. It is tar-
geted towards small or medium online businesses as well
as non-commercial Web sites. Kill-Bots combines two
functionalities: authentication and admission control.
(a) Authentication: The authentication mechanism is
activated when the server is overloaded. It has 2 stages.

e In Stage;, Kill-Bots requires each new session to
solve a reverse Turing test to obtain access to the
server. Humans can easily solve a reverse Turing
test, but zombies cannot. We focus on graphical tests,
though Kill-Bots works with other types of reverse
Turing tests. Legitimate clients either solve the graph-
ical test, or try to reload a few times and, if they still
cannot access the server, decide to come back later. In
contrast, the zombies which want to congest the server
continue sending new requests without solving the test.
Kill-Bots uses this difference in behavior between le-
gitimate users and zombies to identify the IP addresses
that belong to zombies and drop their requests. Kill-
Bots uses SYN cookies to prevent spoofing of IP ad-
dresses and a Bloom filter to count how often an IP ad-
dress failed to solve a puzzle. It discards requests from
a client if the number of its unsolved tests exceeds a
given threshold (e.g., 32 unsolved puzzles).

e Kill-Bots switches to Stages after the set of detected
zombie IP addresses stabilizes (i.e., filter does not
learn any new bad IP addresses). In this stage, puzzles
are no longer served. Instead, Kill-Bots relies solely
on the Bloom filter to drop requests from malicious
clients. This allows legitimate users who cannot, or do
not want to solve graphical puzzles access to the server
despite the ongoing attack.

(b) Admission Control: Kill-Bots combines authentica-
tion with admission control. A Web site that performs
authentication to protect itself from DDoS encounters
a general problem: It has a certain pool of resources,
which it needs to divide between authenticating new ar-
rivals and servicing clients that are already authenticated.
There is an optimal balance between these two tasks.
Spending a large amount of resources on authentication
might leave the server unable to fully serve the authen-
ticated clients, and hence, wastes server’s resources on
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Figure 1: Kill-Bots Overview. Note that graphical puzzles
are only served during Stage;.
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authenticating new clients that it cannot serve. On the
other hand, spending too many resources on serving the
clients reduces the rate at which new clients are authenti-
cated and admitted into the server, which might result in
idle periods with no clients in service.

Kill-Bots computes the admission probability « that
maximizes the server’s goodput (i.e., the optimal proba-
bility with which new clients should be authenticated). It
also provides a controller that allows the server to con-
verge to the desired admission probability using simple
measurements of server’s utilization. Admission con-
trol is a standard mechanism for combating server over-
load [17, 21, 51, 52, 49], but Kill-Bots examines admis-
sion control in the context of malicious clients and con-
nects it with client authentication.

Fig. 1 summarizes Kill-Bots. When a new connec-
tion arrives, it is first checked against the list of detected
zombie addresses. If the IP address is not recognized as a
zombie, Kill-Bots admits the connection with probabil-
ity a = f(load). In Stage;, admitted connections are
served a graphical puzzle. If the client solves the puzzle,
it is given a Kill-Bots HTTP cookie which allows its fu-
ture connections, for a short period, to access the server
without being subject to admission control and without
having to solve new puzzles. In Stages, Kill-Bots no
longer issues puzzles; admitted connections are immedi-
ately given a Kill-Bots HTTP cookie.

Kill-Bots has a few important characteristics.

e Kill-Bots addresses graphical tests’ bias against
users who are unable or unwilling to solve them.
Prior work that employs graphical tests ignores the re-
sulting user inconvenience as well as their bias against
blind and inexperienced humans [36, 5]. Kill-Bots is
the first system to employ graphical tests to identify
humans from automated zombies, while limiting their
negative impact on legitimate users who cannot or do
not want to solve them.

¢ Kill-Bots sends a puzzle without giving access to
TCBs or socket buffers. Typically sending the client
a puzzle requires establishing a connection and allow-
ing unauthenticated clients to access socket buffers,
TCB’s, and worker processes, making it easy to DoS
the authentication mechanism itself. Ideally, a DDoS
protection mechanism minimizes the resources con-
sumed by unauthenticated clients. Kill-Bots intro-
duces a modification to the server’s TCP stack that can



send a 1-2 packet puzzle at the end of the TCP hand-
shake without maintaining any connection state, and
while preserving TCP congestion control semantics.

e Kill-Bots improves performance, regardless of
whether server overload is caused by DDoS attacks
or true Flash Crowds, making it the first system to
address both DDoS and Flash Crowds within a
single framework. This is an important side effect of
using admission control, which allows the server to
admit new connections only if it can serve them.

e In addition, Kill-Bots requires no modifications to
client software, is transparent to Web caches, and is
robust to attacks in which the human attacker solves a
few graphical tests and distributes the answer to a large
number of zombies.

We implement Kill-Bots in the Linux kernel and eval-
uvate it in the wide-area network using PlanetLab. Ad-
ditionally, we conduct an experiment on human users to
quantify user willingness to solve graphical puzzles to
access a Web server. On a standard 2GHz Pentium IV
Linux machine with 1GB of memory and 512kB L2
cache running a mathopd [12] server on top of a modified
Linux 2.4.10, Kill-Bots serves graphical tests in 31us,
blocks malicious clients using the Bloom filter in less
than 1us, and can survive DDoS attacks of up to 6000
HTTP requests per second without affecting response
times.! Compared to a server that does not use Kill-
Bots, our system survives attack rates 2 orders of mag-
nitude higher, while maintaining response times around
their values with no attack. Furthermore, in our Flash
Crowds experiments, Kill-Bots delivers almost twice as
much goodput as the baseline server and improves re-
sponse times by 2 orders of magnitude.

2 Threat Model

Kill-Bots aims to improve server performance under Cy-
berSlam attacks, which mimic legitimate Web browsing
behavior and consume higher layer server resources such
as CPU, memory, database and disk bandwidth. Prior
work proposes various filters for bandwidth floods [31,
9, 19, 26]; Kill-Bots does not address these attacks. At-
tacks on the server’s DNS entry or on the routing entries
to prevent clients from accessing the server are also out-
side the scope of this paper.

We assume the attacker may have full control over
an arbitrary number of machines that can be widely dis-
tributed across the Internet. The attacker may also have
arbitrarily large CPU power and memory resources. An

I These results are for the traditional event driven system that relies
on interrupts. The per-packet cost of taking an interrupt is fairly large
= 10us [28]. We expect better performance with polling drivers [34].
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Figure 2: A Kill-Bots server transitions between NORMAL
and SUSPECTED_ATTACK modes based on server load.
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attacker cannot sniff packets on the server’s local net-
work or on any major link which might carry traffic for
a large number of legitimate users. Further, the attacker
does not have physical access to the server itself. Finally,
we assume the zombies cannot solve the graphical test
and the attacker is not able to concentrate a large number
of humans to continuously solve puzzles.

3 The Design of Kill-Bots

Kill-Bots is a kernel extension to Web servers. It com-
bines authentication with admission control.

3.1 Authentication

During periods of severe overload, Kill-Bots authenti-
cates clients before granting them service. The authen-
tication has two stages. First, Kill-Bots authenticates
clients using graphical tests, as shown in Fig. 4. The ob-
jective of this stage is to improve the service experienced
by humans who solve the graphical tests, and to learn the
IP addresses of the automated attack machines. The first
stage lasts until Kill-Bots concludes it has learned the IP
addresses of all zombies participating in the attack. In the
second stage, Kill-Bots no longer issues graphical tests;
instead clients are authenticated by checking that their IP
addresses do not match any of the zombie IPs that Kill-
Bots has learned in the first stage. Below, we explain the
authentication mechanism in detail.

3.1.1 Activating the Authentication Mechanism

A Kill-Bots Web-server is in either of two modes,
NORMAL or SUSPECTED_ATTACK, as shown in Fig. 2.
When the Web server perceives resource depletion
beyond an acceptable limit, x;, it shifts to the
SUSPECTED_ATTACK mode. In this mode, every new
connection has to solve a graphical test before allo-
cation of any state on the server takes place. When
the user correctly solves the test, the server grants
the client access to the server for the duration of an
HTTP session. Connections that begin before the server
switched to the SUSPECTED_ATTACK mode continue
to be served normally until they terminate or timeout.
However, the server will time out these connections if
they last beyond a certain interval (our implementation
uses 5 minutes). The server continues to operate in the
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Figure 3: A Kill-Bots server sends a test to a new client
without allocating a socket or other connection resources.
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Figure 4: Screenshot of a graphical puzzle.

<html>
<form method = “GET” action="/validate”>
<img src = “PUZZLE.gif">
<input type = “password” name = “ANSWER”>
<input type = “hidden” name = “PUZZLE_ID” value = “[]">
</form>

</html>

Figure 5: HTML source for the puzzle

SUSPECTED_ATTACK mode until the load goes down
to its normal range and crosses a particular threshold
k2 < k1. The load is estimated using an exponential
weighted average. The values of x; and ko will vary de-
pending on the normal server load. For example, if the
server is provisioned to work with 40% utilization, then
one may choose k1 = 70% and k2 = 50%.

Several points are worth noting. First, the server be-
havior is unchanged in the NORMAL mode, and thus the
system has no overhead in the common case of no at-
tack. Second, the cost for switching between the two
modes is minimal. The only potential switching cost is
the need to timeout very long connections that started
in the NORMAL mode. Long connections that started in
a prior SUSPECTED_ATTACK mode need not be timed
out because their users have already been authenticated.

3.1.2 Stage 1: CAPTCHA-Based Authentication

After switching to the SUSPECTED_ATTACK mode, the
server enters Stage;, in which it authenticates clients us-
ing graphical tests, i.e., CAPTCHAs.

(a) Modifications to Server’s TCP Stack: Upon the ar-
rival of a new HTTP request, Kill-Bots sends a graphi-
cal test and validates the corresponding answer sent by
the client without allocating any TCBs, socket buffers,

Puzzle ID (P) | Random (R) | Creation Time (C) | Hash (P, R, C, secret) |
32 96 32 32

Figure 6: Kill-Bots Token

or worker processes at the server. We achieve this by a
minor modification to the server TCP stack. As shown
in Fig. 3, a Kill-Bots server responds to a SYN packet
with a SYN cookie. The client receives the SYN cookie,
increases its congestion window to two packets, trans-
mits a SYNACKACK? and the first data packet that usu-
ally contains the HTTP request. The server’s kernel does
not create a new socket upon completion of the TCP
handshake. Instead, the SYNACKACK packet is dis-
carded because the first data packet from the client re-
peats the same acknowledgment sequence number as the
SYNACKACK.

When the server receives the client’s data packet, it
first checks whether it is a puzzle answer.? If the packet
does not contain an answer, the server replies with a new
graphical test, embedded in an HTML form (Fig. 5). Our
implementation uses CAPTCHA images that fit in 1-2
packets. Then, the server immediately closes the con-
nection by sending a FIN packet and does not wait for
the FIN ack. On the other hand, the client packet could
be a puzzle answer. When a human answers the graphi-
cal test, the HTML form (Fig. 5) generates an HTTP re-
quest GET /validate?answer=ANSWER, that re-
ports the answer to the server. If the packet is an answer,
the kernel checks the cryptographic validity of the AN-
SWER (see (c) below). If the check succeeds, a socket
is established and the request is delivered to the applica-
tion.

Note the above scheme preserves TCP congestion con-
trol semantics, does not require modifying the client soft-
ware, and prevents attacks that hog TCBs and sockets by
establishing connections that exchange no data.

(b) One Test Per Session: It would be inconvenient if
legitimate users had to solve a puzzle for every HTTP
request or every TCP connection. The Kill-Bots server
gives an HTTP cookie to a user who solves the test cor-
rectly. This cookie allows the user to re-enter the system
for a specific period of time, 7' (in our implementation,
T = 30min). If a new HTTP request is accompanied
by a cryptographically valid HTTP cookie, the Kill-Bots
server creates a socket and hands the request to the ap-
plication without serving a new graphical test.

(c) Cryptographic Support: When the Kill-Bots server
issues a puzzle, it generates a Kill-Bots Token as shown
in Fig. 6. The token consists of a 32-bit puzzle ID P, a
96-bit random number R, the 32-bit creation time C' of
the token, and a 32-bit collision-resistant hash of P, R,

2Just a plain ACK that finishes the handshake.
3A puzzle answer has an HTTP request of the form GET
/validate?answer=ANSWER;, where ¢ is the puzzle ID.



and C along with the server secret. The token is embed-
ded in the same HTML form as the puzzle (Fig. 6) and
sent to the client.

When a user solves the puzzle, the browser reports the

answer to the server along with the Kill-Bots token. The
server first verifies the token by recomputing the hash.
Second, the server checks the Kill-Bots token to ensure
the token was created no longer than 4min ago. Next, the
server checks if the answer to the puzzle is correct. If
all checks are successful, the server creates a Kill-Bots
HTTP cookie and gives it to the user. The cookie is cre-
ated from the token by updating the token creation time
and recording the token in the table of valid Kill-Bots
cookies. Subsequently, when a user issues a new TCP
connection with an existing Kill-Bots cookie, the server
validates the cookie by recomputing the hash and ensur-
ing that the cookie has not expired, i.e., no more than
30min have passed since cookie creation. The Kill-Bots
server also keeps track of the number of simultaneous
HTTP requests that belong to each cookie.
(d) Protecting Against Copy Attacks: What if the at-
tacker solves a single graphical test and distributes the
HTTP cookie to a large number of bots? Kill-Bots in-
troduces a notion of per-cookie fairness to address this
issue. Each correctly answered graphical test allows the
client to execute a maximum of 8 simultaneous HTTP
requests. Distributing the cookie to multiple zombies
makes them compete among themselves for these 8 con-
nections. Most legitimate Web browsers open no more
than 8 simultaneous connections to a single server [22].

3.1.3 Stage 2: Authenticating Users Who Do Not
Answer CAPTCHAs

An authentication mechanism that relies solely on
CAPTCHASs has two disadvantages. First, the attacker
can force the server to continuously send graphical tests,
imposing an unnecessary overhead on the server. Sec-
ond, and more important, humans who are unable or un-
willing to solve CAPTCHAs may be denied service.

To deal with this issue, Kill-Bots distinguishes legiti-
mate users from zombies by their reaction to the graph-
ical test rather than their ability to solve it. Once the
zombies are identified, they are blocked from using the
server. When presented with a graphical test, legitimate
users may react as follows: (1) they solve the test, imme-
diately or after a few reloads; (2) they do not solve the
test and give up on accessing the server for some period,
which might happen immediately after receiving the test
or after a few attempts to reload. The zombies have two
options; (1) either imitate human users who cannot solve
the test and leave the system after a few trials, in which
case the attack has been subverted, or (2) keep sending
requests though they cannot solve the test. However, by

Var | Description

o Admission Prob. Drop probability=1 — «.

Aa | Arrival rate of attacking HTTP requests

AL Arrival rate of legitimate HTTP requests

As Arrival rate of legitimate sessions

—— | Mean time to serve a puzzle

—— | Mean time to serve an HTTP request

pp | Fraction of server time spent in authenticating clients

pn | Fraction of server time spent in serving authenticated clients

Pi Fraction of time the server is idle

% Mean # of requests per legitimate session

Table 1: Variables used in the analysis

continuing to send requests without solving the test, the
zombies become distinguishable from legitimate users,
both human and machine.

In Stages, Kill-Bots tracks how often a particular IP
address has failed to solve a puzzle. It maintains a Bloom
filter [13] whose entries are 8-bit counters. Whenever a
client is given a graphical puzzle, its IP address is hashed
and the corresponding entries in the Bloom filter are in-
cremented. In contrast, whenever a client comes back
with a correct answer, the corresponding entries in the
Bloom filter are decremented. Once all the counters cor-
responding to an IP address reach a particular threshold £
(in our implementation £=32), the server drops all pack-
ets from that IP and gives no further tests to that client.

When the attack starts, the Bloom filter has no impact
and users are authenticated using graphical puzzles. Yet,
as the zombies receive more puzzles and do not answer
them, their counters pile up. Once a client has £ unan-
swered puzzles, it will be blocked. As more zombies
get blocked, the server’s load will decrease and approach
its normal level. Once this happens the server no longer
issues puzzles; instead it relies solely on the Bloom fil-
ter to block requests from the zombie clients. We call
this mode of operation Stages. Sometimes the attack
rate is so high that even though the Bloom filter catches
all attack packets, the overhead of receiving the pack-
ets by the device driver dominates. If the server notices
that both the load is stable and the Bloom filter is not
catching any new zombie IPs, then the server concludes
that the Bloom filter has caught all attack IP addresses
and switches off issuing puzzles, i.e., the server switches
to Stages. If subsequently the load increases, then the
server resumes issuing puzzles.

In our experiments, the Bloom filter detects and blocks
all offending clients within a few minutes. In general,
the higher the attack rate, the faster the Bloom filter will
detect the zombies and block their requests. A full de-
scription of the Bloom filter is in §5.
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Figure 7: Comparison of the goodput of a base/unmodified
server with a Kill-Bots server. Server has a legitimate load of
50%. (TOP) Kill-Bots without admission control. (BOTTOM)
Kill-Bots with admission control. The graphs show that Kill-
Bots improves server goodput, is even better with admission
control, particularly at high attack rates.

3.2 Admission Control

A Web site that performs authentication to protect itself
from DDoS attacks faces a general problem. It has a
certain pool of resources, which it needs to divide be-
tween authenticating the clients and servicing the ones
already authenticated. There is an optimal balance be-
tween these two functionalities. Spending a large amount
of resources on the authentication might leave the server
unable to fully service the authenticated clients. Hence,
the server wastes resources on authenticating new clients
that it cannot serve. On the other hand, spending too
many resources on serving authenticated clients reduces
the rate at which new clients are authenticated and ad-
mitted into the server, which might result in idle periods
with no clients in service.

We have modeled a server that implements an au-
thentication procedure in the interrupt handler. This
is a standard location for packet filters and kernel fire-
walls [42, 33, 4]. It allows dropping unwanted packets as
early as possible. We use the model to devise an admis-
sion control scheme that maximizes the server’s goodput
by finding the optimal probability with which new clients
should be authenticated. Our model is fairly general and
independent of how the authentication is performed. The
server may be authenticating the clients by checking their
certificates, verifying their passwords, or asking them to
solve a puzzle. Furthermore, we make no assumptions on
the distribution or independence of the interarrival times
of legitimate sessions, or of attacker requests or of ser-
vice times. Table 1 describes our variables.

Below, we summarize the results of our analysis and
discusses their implications. Detailed derivations are
in [25].

When a request from an unauthenticated client arrives,
the server should attempt to authenticate it with proba-
bility « and drop it with probability 1 — «. The optimal
value of « —i.e., the value that maximizes the server’s
goodput (the time spent on serving HTTP requests)— is:

% . qtp Hp
o =min | ——27 1) and B= "2 (1)
((B +q)As + g ) Ih

where )\, is the attack request rate, A\ is the legitimate
users’ session rate, Ni is the average time taken to serve a
P

puzzle, u_lh is the average time to serve an HTTP request,

and % is the average number of requests in a session. This
yields an optimal server goodput, which is given by:

* [ As As
Py =min | —, By . (2
apn (14 £)As + g3

In comparison, a server that does not use authentication
has goodput:

A A
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To combat DDoS, authentication should consume less re-
sources than service, i.e., i, >> . Hence, B >> 1,
and the server with authentication can survive attack
rates that are B times larger without loss in goodput.

Also, compare py with the goodput of a server which
implements authentication without admission control
(i.e., « = 1) given by:

Py = min (i,max <0,1—7Aa+)\5)>. “)
qith Hop

For attack rates, A\, > 1, the goodput of the server with
no admission goes to zero, whereas the goodput of the
server that uses admission control decreases gracefully.
Fig. 7 illustrates the above results; A Pentium-IV,
2.0GHz 1GB RAM, machine can serve 1-2 pkt puz-
zles at a peak rate of 6000/sec (1, = 6000). Assume,
conservatively, that each HTTP request fetches 15KB
files(up, = 1000), that a user makes 20 requests in a
session(¢ = 1/20) and the normal server load is 50%.
Fig. 7 qualitatively compares the goodput of a server
which does not use admission control (a base server) with
the goodput of a Kill-Bots server for both the case of
a = 1 and o*. These are computed using equations 2, 4,
and 3 respectively, for the above parameter values. The
top graph in Fig 7 shows that authentication improves
server goodput. The bottom graph shows the additional
improvement from adapting the admission probability c.



= \\é\ v ph:( b K, jp,,

< A+ A au,

u _ _

B AN

(=)

£

> Zero Idle

4 Cycles
Under-utilized (Pi=0)

(P2 0)

A Serving Puzzles p, C

Figure 8: Phase plot showing how Kill-Bots adapts the ad-
mission probability to operate at a high goodput

3.3 Adaptive Admission Control

How to run the server at the optimal admission proba-
bility? To compute o* from Eq. 1 requires values for
parameters that are typically unknown at the server and
change over time, such as the attack rate, )\, and the le-
gitimate session rate, A;. We devise an adaptive scheme
that gradually changes the admission probability « based
on measurements of the server’s idle cycles. Let p;,pp,0n
denote the fraction of time the server is idle, serving puz-
zles and serving HTTP requests respectively. We have:

pr+pp+pi=1. %)

If the current admission probability @ > o, the
server spends more resources than necessary authenticat-
ing new clients. Legitimate users already in the system
starve, and the server runs out of idle cycles. On the
other hand, if @ < «, the server issues fewer puzzles
than necessary, admits fewer legitimate users and goes
idle. Thus, if the server is experiencing idle times above
some threshold, it should increase its value of «, oth-
erwise it should decrease it. We borrow the following
results from [25]:

Ao+ As
pp = min(a;,l), 6)
Hop
P min (o As 1—pp) ™
ho = — 1 =pp).
q [h P

To determine how much the server should in-
crease/decrease a, we note that given a < o™, there will
be some idle cycles. Substituting Eq. 6 and 7 in Eq. 5:

<)\a+)\l /\l >
a| ——+— ) =1—p;.
Hp qih

Va < o :

Hence,

1 1

« 1—p;
Vol ,a? < a*: — = p;.
o 1—p;

®)

Thus, we can increase « proportionally to the non-idle
cycles (i.e. the occupancy).

We use Fig. 8 to argue the rationale underlying the
design of our adaptive admission controller. The figure
shows the relation between the fraction of time spent on
authenticating clients p,, and that spent serving HTTP re-
quests pp. The line labeled “Zero Idle Cycles” refers
to the states in which the system is highly congested
pi = 0 — p,+pp = 1. The line labeled “Underutilized”
refers to the case in which the system has some idle cy-
cles, in which case, taking the ratio of Eq. 6 and 7 leads

to pp, = ( /\3’}:/\@ q’L—"h) Pp- As the fraction of time the sys-

tem is idle p; changes, the system state moves along the
solid line segments A—B—C. Ideally, one would like to
operate the system at point B which maximizes the sys-
tem’s goodput, p; = pj, and corresponds to o = .
However, it is difficult to operate at point B because the
system cannot tell whether it is at B or not; all points
on the segment B-C exhibit p; = 0. It is easier to sta-
bilize the system at point E where the system is slightly
underutilized because small deviations from E exhibit a
change in the value of p;, which we can measure. We
pick E such that the fraction of idle time at E is 8 = %.
Thus, every T=10s, we adapt the admission probability
according to the following rules:

vy 2i=8 pi >3

1—p:i”’
Aa =19 —paf=l, 0<p <f ©)
—Y3Q. pi =0

where 71, 72, and ~y3 are constants, which Kill-Bots set
to %, i, and % respectively. The above rules move «
proportionally to how far the system is from the chosen
equilibrium point E, unless there are no idle cycles. In
this case, « is decreased aggressively to go back to the
stable regime around point E.

4 Security Analysis

In this section, we discuss Kill-Bots’s ability to handle a
variety of attacks from a determined adversary.

(a) Socially-engineered attack: In a socially-
engineered attack, the adversary tricks a large number of
humans to solve puzzles on her behalf. Recently, spam-
mers employed this tactic to bypass graphical tests that
Yahoo and Hotmail use to prevent automated creation of
email accounts [6]. The spammers ran a porn site which
downloaded CAPTCHAS from the Yahoo/Hotmail email
creation Web page, forced its own visitors to solve these
CAPTCHAs before granting access, and used these
answers to create new email accounts.

We argue that Kill-Bots is much more resilient against
socially engineered attacks. In contrast to email account
creation where the client is given an ample amount of
time to solve the puzzle, puzzles in Kill-Bots expire



4 min after they have been served. Thus, the attacker
cannot accumulate a store of answers from human users
to mount an attack. Indeed, the attacker needs a continu-
ous stream of visitors to his porn site to be able to sustain
a DDoS attack. Further, recall that Kill-Bots employs a
loose form of fairness among authenticated clients; it al-
lows each of them a maximum of 8 simultaneous connec-
tions. To grab most of the server’s resources, an attacker
needs to maintain the number of authenticated malicious
clients larger than that of legitimate users. For this, the
attacker needs to control a porn server at least as popu-
lar as the victim Web server. Such a popular porn site is
an asset. It is unlikely that the attacker will jeopardize
her popular site to DDoS an equally or less popular Web
site. Furthermore, one should keep in mind that security
is a moving target; by forcing the attacker to resort to so-
cially engineered attacks, we made the attack harder and
the probability of being arrested higher.

(b) Polluting the Bloom filter: The attacker may try to
spoof IP address and pollute the Bloom filter, causing
Kill-Bots to mistake legitimate users as malicious. This
attack however is not possible because SYNcookies pre-
vents IP spoofing and Bloom filter entries are modified
AFTER the SYN cookie check succeeds (Fig. 10).

(c) Copy attacks: In a copy attack, the adversary solves
one graphical puzzle, obtains the corresponding HTTP
cookie, and distributes it to many zombies to give them
access to the Web site. It might seem that the best solu-
tion to this problem is to include a secure one-way hash
of the IP address of the client in the cookie. Unfortu-
nately, this approach does not deal well with proxies or
mobile users. Kill-Bots protects against copy attacks by
limiting the number of in-progress requests per puzzle
answer (Our implementation sets this limit to 8).

(d) Replay attacks: A session cookie includes a secure
hash of the time it was issued and is only valid during
a certain time interval. If an adversary tries to replay a
session cookie outside its time interval it gets rejected.
An attacker may solve one puzzle and attempt to replay
the “answer” packet to obtain many Kill-Bots cookies.
Recall that when Kill-Bots issues a cookie for a valid an-
swer, the cookie is an updated form of the token (Fig 6).
Hence, replaying the “answer” yields the same cookie.
(e) Database attack: The adversary might try to col-
lect all possible puzzles and the corresponding answers.
When a zombie receives a puzzle, it searches its database
for the corresponding answer, and sends it back to the
server. To protect from this attack, Kill-Bots uses a large
number of puzzles and periodically replaces puzzles with
a new set. Generation of the graphical puzzles is rela-
tively easy [50]. Further, the space of all possible graph-
ical puzzles is huge. Building a database of these puzzles
and their answers, distributing this database to all zom-
bies, and ensuring they can search it and obtain answers
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Figure 9: A Modular representation of the Kill-Bots code.

within 4 minutes (lifetime of a puzzle) is very difficult.
(f) DoS attack on the authentication mechanism: Kill-
Bots is highly robust against DDoS attacks on the au-
thentication code. Kill-Bots does not allow unauthenti-
cated clients to access any connection state such as TCBs
or sockets. The computational cost of authenticating a
client is dominated by the cost of interrupts. Serving a
puzzle incurs a total computational overhead of~ 40us.
(g) Concerns regarding in-kernel HTTP header pro-
cessing: Kill-Bots does not parse HTTP headers; it pat-
tern matches the arguments to the GET and the Cookie:
fields against the fixed string validate and against a 192-
bit Kill-Bots cookie respectively. The pattern-matching
is done in-place, i.e. without copying the packet and is
cheap; < 8us per request (§6.1.2).

(h) Breaking the CAPTCHA: Prior work on automat-
ically solving simple CAPTCHAs exists [37], but such
programs are not widely available to the public for se-
curity reasons [37]. However, when CAPTCHAS can be
broken, Kill-Bots can easily switch to a different kind.

5 Kill-Bots System Architecture

The key components of Kill-Bots are illustrated in Fig. 9.
We only provide a high level description of these compo-
nents for lack of space.

(a) The Puzzle Manager consists of two components.
First, a user-space stub that asynchronously generates
new puzzles and notifies the kernel-space portion of the
Puzzle Manager of their locations. Generation of the
graphical puzzles is relatively easy [2], and can either be
done on the web server itself in periods of inactivity (at
night) or on a different dedicated machine. Also puzzles
may be purchased from a trusted third party. The second
component is a kernel-thread that periodically loads new
puzzles from disk into the Puzzle Table in memory.

(b) The Request Filter (RF) processes every incoming
TCP packet addressed to port 80. It is implemented in



the bottom half of the interrupt handler to ensure that
unwanted packets are dropped as early as possible.

Fig. 10 provides a flowchart representation of the RF
code. When a TCP packet arrives for port 80, the RF first
checks whether it belongs to an established connection
in which case the packet is immediately queued in the
socket’s receive buffer and left to standard kernel pro-
cessing. Otherwise the filter checks whether the packet
starts a new connection (i.e., is it a SYN?), in which case,
the RF replies with a SYNACK that contains a standard
SYN cookie. If the packet is not a SYN, we examine
whether it contains any data; if not, the packet is dropped
without further processing. Next, the RF performs two
inexpensive tests in an attempt to drop unwanted pack-
ets quickly; it hashes the packet’s source IP address and
checks whether the corresponding entries in the Bloom
filter have all exceeded £ unsolved puzzles, in which
case the packet is dropped. Otherwise, the packet goes
through admission control and is dropped with probabil-
ity 1 — a.. If the packet passes all of the above checks, we
need to look for 4 different possibilities: (1) this might
be the first data packet from an unauthenticated client,
and thus we should send it a puzzle and terminate the
connection immediately; (2) this might be a packet from
a client which has already received a puzzle and is com-
ing back with an answer. In this case, we need to verify
the answer and assign the client an HTTP cookie, which
allows it access to the server for a prolonged period of
time; (3) Or it is an authenticated client which has a Kill-
Bots HTTP cookie and is coming back to retrieve more
objects; (4) If none of the above is true then the packet
should be dropped. These checks are ordered according
to their increasing cost to allow the system to shed away
attack clients with as little cost as possible.

(¢) The Puzzle Table maintains the puzzles available to
be served to users. We implement a simple mechanism to
avoid races between writes and reads to the puzzle table
by dividing the Puzzle Table into two memory regions,
a write window and a read window. The Request Filter
fetches puzzles from the read window, while the Puzzle
Manager loads new puzzles into the write window. Once
the Puzzle Manager completes loading all puzzles, the
read and write windows are swapped atomically.

(d) The Bloom Filter counts unanswered puzzles for
each IP address, allowing the Request Filter to block re-
quests from IPs with more than £ unsolved puzzles. Our
implementation sets £ = 32. Bloom filters are character-
ized by two parameters; the number of counters N and
the number of hash functions & that map keys onto coun-
ters. Our implementation uses N = 22° and k = 2.
Since a potentially large set of keys (32-bit IPs), are
mapped onto much smaller storage (N counters), Bloom
filters are essentially lossy. This means that there is a
non-zero probability that all k£ counters corresponding
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Figure 10: The path traversed by new sessions in Kill-Bots.
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Figure 11: Our experimental setup.

to a legitimate user pile up to £ due to collisions with
attackers (false positives). Assuming a distinct attacker
zombies and uniformly random hash functions, the prob-
ability a legitimate client is classified as an attacker is ap-
proximately (1 — e~*/N)* ~ (k2)k Given our choice
of N and k, this probability for 75,000 attackers is 0.023.

6 Evaluation

We evaluate a Linux-based kernel implementation of
Kill-Bots in the wide-area network using PlanetLab.

6.1 Experimental Environment

(a) Web Server: The web server is a 2GHz P4 with 1GB
RAM and 512kB L2 cache running an unmodified math-
opd [12] server on top of a modified Linux 2.4.10 ker-
nel. We picked mathopd because of its simplicity. Our
implementation of Kill-Bots consists of (1) 300 lines of
modifications to kernel code, mostly in the TCP/IP pro-
tocol stack and (2) 500 lines for implementing the puzzle
manager, the bloom filter and the adaptive controller. To
obtain realistic server workloads, we replicate both static
and dynamic content served by two web-sites, our lab’s
Web server and a Debian mirror.

(b) Modeling Request Arrivals: Legitimate clients gen-
erate requests by replaying HTTP traces collected at our
Lab’s Web server and a Debian mirror server. Multiple
segments of the same long trace are played simultane-
ously to control the load generated by legitimate clients.
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Figure 12: Kill-Bots under CyberSlam: Goodput and average response time of legitimate users at different attack rates for both
a base server and its Kill-Bots version. Kill-Bots substantially improves server performance at high attack rates.

Function CPU Latency
Bloom Filter Access T us
Processing HTTP Header 8 s
SYN Cookie Check 11 ps
Serving puzzle 31 ps

Table 2: Kill-Bots Microbenchmarks

An attacker issues requests at a desired rate by randomly
picking a URI (static/dynamic) from a list of content
available on the server.

(c) Experiment Setup: We evaluate Kill-Bots in the
wide-area network using the setup in Fig. 11. The Web
server is connected to a 100Mbps Ethernet. We launch
CyberSlam attacks from 100 different nodes on Planet-
Lab using different port ranges to simulate multiple at-
tackers per node. Each PlanetLab node simulates up to
256 zombies— a total of 25,600 attack clients. We em-
ulate legitimate clients on machines connected over the
Ethernet, to ensure that any difference in their perfor-
mance is due to the service they receive from the Web
server, rather than wide-area path variability.

(d) Emulating Clients: We use WebStone2.5 [3] to em-
ulate both legitimate Web clients and attackers. Web-
Stone is a benchmarking tool that issues HTTP requests
to a web-server given a specific distribution over the re-
quests. We extended WebStone in two ways. First, we
added support for HTTP sessions, cookies, and for re-
playing requests from traces. Second, we need the clients
to issue requests at specific rate independent of how the
web-server responds to the load. For this, we rewrote
WebStone’s networking code using libasync [32], an
asynchronous socket library.

6.1.1 Maetrics

We evaluate Kill-Bots by comparing the performance of
a base server (i.e., a server with no authentication) with
its Kill-Bots mirror operating under the same conditions.
Server performance is measured using these metrics:

(a) Goodput of legitimate clients: This is the amount
of bytes per second delivered to all legitimate client ap-
plications. Goodput ignores TCP retransmissions and is
averaged over 30s windows.
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(b) Response times of legitimate clients: Response
time is the elapsed time before a request is completed
or timed out. We timeout incomplete requests after 60s.
(¢) Cumulative number of legit. requests dropped:
This metric measures the total number of legitimate re-
quests dropped since the beginning of the experiment.

6.1.2 Microbenchmarks

We run microbenchmarks on the Kill-Bots kernel to mea-
sure the time taken by the various modules. We use the
x86 rdtsc instruction to obtain fine-grained timing in-
formation; rdtsc reads a hardware timestamp counter
that is incremented once every CPU cycle. On our 2GHz
web-server, this yields a resolution of 0.5 nanoseconds.
The measurements are for CAPTCHAs of 1100 bytes.

Table 2 shows our microbenchmarks. The overhead
for issuing a graphical puzzle is ~ 40us (process http
header +serve puzzle), which means that the CPU can
issue puzzles faster than the time to transmit a 1100B
puzzle on our 100Mb/s Ethernet. However, the au-
thentication cost is dominated by standard kernel code
for processing incoming TCP packets, mainly the inter-
rupts (= 10us per packet [28], about 10 packets per TCP
connection). Thus, the CPU is the bottleneck for authen-
tication and as shown in §6.4, performing admission con-
trol based on CPU utilization is beneficial.

Note also that checking the Bloom filter is much
cheaper than other operations including the SYN
cookie check. Hence, for incoming requests, we per-
form the Bloom filter check before the SYN cookie
check (Fig. 14). In Stages, the Bloom filter drops all
zombie packets; hence performance is limited by the cost
for interrupt processing and device driver access. We
conjecture that using polling drivers [28, 34] will im-
prove performance at high attack rates.

6.2 Kill-Bots under CyberSlam

We evaluate the performance of Kill-Bots under Cyber-
Slam attacks, using the setting described in §6.1. We
also assume only 60% of the legitimate clients solve the
CAPTCHA:s; the others are either unable or unwilling to
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Figure 13: Comparison of Kill-Bots’ performance to server
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puzzles. Attack lasts from 600s to 2400s. (a) Goodput quickly
improves once bloom catches all attackers. (b) Response times
improve as soon as the admission control reacts to the begin-
ning of attack. (c) Admission control is useful both in Stage:
and in Stage2, after bloom catches all zombies. Puzzles are
turned off when Kill-Bots enters Stages improving goodput.

solve them. This is supported by the results in §6.6.

Fig. 12 compares the performance of Kill-Bots with
a base (i.e., unmodified) server, as attack request rate
increases. Fig. 12a shows the goodput of both servers.
Each point on the graph is the average goodput of the
server in the first twelve minutes after the beginning of
the attack. A server protected by Kill-Bots endures attack
rates multiple orders of magnitude higher than the base
server. At very high attack rates, the goodput of the Kill-
Bots server decreases as the cost of processing interrupts
becomes excessive. Fig. 12b shows the response time
of both web servers. The average response time expe-
rienced by legitimate users increases dramatically when
the base server is under attack. In contrast, the average
response time of users accessing a Kill-Bots server is un-
affected by the ongoing attack.
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slightly lower throughput, its Goodput is much higher and its
avg. reponse time is lower.

Fig. 13 shows the dynamics of Kill-Bots during a Cy-
berSlam attack, with A\, = 4000 req/s. The figure also
shows the goodput and mean response time with no at-
tack, as a reference. The attack begins at ¢ = 600s and
ends at ¢ = 2400s. At the beginning of the attack, the
goodput decreases (Fig. 13a) and the mean response time
increases (Fig. 13b). Yet, quickly the admission proba-
bility decreases (Fig. 13c), causing the mean response
time to go back to its value when there is no attack.
The goodput however stays low because of the relatively
high attack rate, and because many legitimate users do
not answer puzzles. After a few minutes, the Bloom fil-
ter catches all zombie IPs, causing puzzles to no longer
be issued (Fig. 13c). Kill-Bots now moves to Stages
and performs authentication based on just the Bloom fil-
ter. This causes a large increase in goodput (Fig. 13a)
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Figure 15: Cumulative numbers of dropped requests and
dropped sessions under a Flash Crowd event lasting from ¢ =
1200s to t = 3000s. Kill-Bots adaptively drops sessions upon
arrival, ensuring that accepted sessions obtain full service, i.e.

have fewer requests dropped.

due to both the admission of users who were earlier un-
willing or unable to solve CAPTCHASs and the reduction
in authentication cost. In this experiment, despite the
ongoing CyberSlam attack, Kill-Bots’ performance in
Stages (t = 1200s onwards), is close to that of a server
not under attack. Note that the normal load significantly
varies with time and the adaptive controller (Fig. 13c)
reacts to this load ¢ € [1200, 2400]s, keeping response
times low, yet providing reasonable goodput.

6.3 Kill-Bots under Flash Crowds

We evaluate the behavior of Kill-Bots under a Flash
Crowd. We emulate a Flash Crowd by playing our Web
logs at a high speed to generate an average request rate
of 2000 req/s. The request rate when there is no flash
crowd is 300 reqg/s. This matches Flash Crowd request
rates reported in prior work [22]. In our experiment, a
Flash Crowd starts at ¢ = 1200s and ends at ¢ = 3000s.
Fig. 14 compares the performance of the base server
against its Kill-Bots mirror during the Flash Crowd
event. The figure shows the dynamics as functions of
time. Each point in each graph is an average measure-
ment over a 30s interval. We first show the total through-
put of both servers in Fig. 14a. Kill-Bots has slightly
lower throughput for two reasons. First, Kill-Bots at-
tempts to operate at 5=12% idle cycles rather than at
zero idle cycles. Second, Kill-Bots uses some of the
bandwidth to serve puzzles. Fig. 14b reveals that the
throughput figures are misleading; though Kill-Bots has
a slightly lower throughput than the base server, its good-
put is substantially higher (almost 100% more). This in-
dicates that the base server wasted its throughput on re-
transmissions and incomplete transfers. This is further
supported by the results in Fig. 14c, which shows that
Kill-Bots drastically reduces the average response time.
That Kill-Bots improves server performance during
Flash Crowds might look surprising. Although all clients
in a Flash Crowd can answer the graphical puzzles, Kill-
Bots computes an admission probability « such that the
system only admits users it can serve. In contrast, a base
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Figure 16: Server goodput substantially improves with
adaptive admission control. Figure is similar to Fig. 7 but
is based on wide-area experiments rather than analysis. (For
clarity, the Bloom filter is turned off in this experiment.)

server with no admission control accepts additional re-
quests even when overloaded. Fig. 14d supports this
argument by showing how the admission probability o
changes during the Flash Crowd event to allow the server
to shed away the extra load.

Finally, Fig. 15 shows the cumulative number of
dropped requests and dropped sessions during the Flash
Crowd event for both the base server and the Kill-Bots
server. Interestingly, the figure shows that Kill-Bots
drops more sessions but fewer requests than the base
server. The base server accepts new sessions more often
than Kill-Bots but keeps dropping their requests. Kill-
Bots drops sessions upon arrival, but once a session is
admitted it is given a Kill-Bots cookie which allows it
access to the server for 30min.

6.4 Importance of Admission Control

In §3.2, using a simple model, we showed that authen-
tication is not enough, and good performance requires
admission control. Fig. 16 provides experimental evi-
dence that confirms the analysis. The figure compares
the goodput of a version of Kill-Bots that uses only
puzzle-based authentication, with a version that uses
both puzzle-based authenticaiton and admission control.
We turn off the Bloom filter in these experiments because
we are interested in measuring the goodput gain obtained
only from admission control. The results in this figure
are fairly similar to those in Fig. 7; admission control
dramatically increases server resilience.

6.5 Impact of Different Attack Strategies

The attacker might try to increase the severity of the at-
tack by prolonging the time until the Bloom filter has dis-
covered all attack IPs and blocked them, i.e., by delaying
transition from Stage; to Stages. To do so, the attacker
uses the set of IP addresses slowly, keeping fresh IPs for
as long as possible. We show that the attacker does not
gain much by doing so. Indeed, there is a tradeoff be-
tween using all zombie IPs quickly to create a severe at-
tack for a short period, vs. using them slowly to prolong
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Case % Users
Answered puzzle 55%
Interested surfers who answered puzzle 74%

Table 3: The percentage of users who answered a graphical
puzzle to access the Web server. We define interested surfers
as those who access two or more pages on the Web site.

a milder attack.

Fig. 17 shows the performance of Kill-Bots under two
attack strategies; A fast strategy in which the attacker
introduces a fresh zombie IP every 2.5 seconds, and a
slow strategy in which the attacker introduces a fresh
zombie IP every 5 seconds. In this experiment, the to-
tal number of zombies in the Botnet is 25000 machines,
and the aggregate attack rate is constant and fixed at
Ao = 4000 reqg/s. The figure shows that the fast attack
strategy causes a short but high spike in mean response
time, and a substantial reduction in goodput that lasts for
a short interval (about 13 minutes), until the Bloom filter
catches the zombies. On the other hand, the slow strat-
egy affects performance for a longer interval ( 25 min)
but has a milder impact on goodput and response time.

6.6 User Willingness to Solve Puzzles

We conducted a user study to evaluate the willingness
of users to solve CAPTCHAs. We instrumented our re-
search group’s Web server to present puzzles to 50% of
all external accesses to the index.html page. Clients that
answer the puzzle correctly are given an HTTP cookie
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that allows them access to the server for an hour. The
brief experiment lasted from Oct. 3 until Oct. 7. During
that period, we registered a total of 973 accesses to the
page, from 477 distinct IP addresses.

We compute two types of results. First, we filter out
requests from known robots, using the User—-Agent
field, and compute the fraction of clients who answered
our puzzles. We find that 55% of all clients answered
the puzzles. It is likely that some of the remain-
ing requests are also from robots but dont use well-
know User—-Agent identifiers, so this number underes-
timates the fraction of humans that answered the puzzles.
Second, we distinguish between clients who check only
the group’s main page and leave the server, and those
who follow one or more links. We call the latter in-
terested surfers. We would like to check how many of
the interested surfers answered the graphical puzzle be-
cause these users probably bring more value to the Web
site. We find that 74% of interested users answer puzzles.
Tab. 3 summarizes our results. These results may not be
representative of users in the Internet, as the behavior of
user populations may differ from one server to another.

7 Related Work

Related work falls into the following areas.

(a) Denial of Service: Much prior work on DDoS exists;
It describes specific attacks (e.g., SYN flood [40], the
Smurf attack [14], reflector attacks [38]), and presents
detection techniques, or proposes specific countermea-
sures. In particular, Moore et al. [35] propose the
backscatter technique, which detect DDoS sources by
monitoring traffic sent to unused segments of the IP ad-
dress space. Savage et al. [43] propose a traceback mech-
anism that allows the victim of a DoS attack to trace
the offending packets to their source. Many variations
to the traceback idea to detect sneak attacks cheaply ex-
ist [7, 44, 53]. Gil et al [19] detect bandwidth flood at-
tacks by comparing the number of packets from client
to server with those from server to client. Anderson
et al. [9] propose an architecture in which routers for-
ward packets that have a “capability” to reach the des-
tination. Pushback [31] modifies routers to detect big
bandwidth consumers and propagates this information
toward upstream routers to throttle traffic closer its the
source. Juels and Brainard [23] first proposed computa-
tional client puzzles as a SYN flood defense.

Recently, researchers have proposed to use overlays
as distributed firewalls [8, 26]. The server IP address is
known only to the overlay. Clients can only access the
server through the overlay nodes, which check incoming
packets and apply any necessary filtering. The authors of
[36] propose that overlay nodes use graphical tests. Our
work differs from theirs as we use CAPTCHAs only as



an intermediate step to detect the offending IP addresses
and discard their packets. Furthermore, we combine au-
thentication with admission control and focus on efficient
kernel implementation.

(b) CAPTCHASs: Our authentication mechanism uses
graphical tests or CAPTCHAs. Von Ahn et. al [50]
and others [27, 41, 18] describe several reverse Turing
tests. CAPTCHAs are currently used by many online
businesses and free Web mail providers (e.g. [5, 1]).

(¢) Flash Crowds and Server Overload: The au-
thors of [17, 21, 51, 52] show that admission control
is important for good server perfomance overload and
propose various admission control schemes. Some of
these schemes cause the OS to better manage its re-
sources [10, 49, 11]. In addition, Jamjoom et. al [22] pro-
pose persistent dropping of TCP SYN packets in routers
to tackle Flash Crowds. Finally, A number of paper pro-
pose to use overlays and peer-to-peer networks to shed
load off servers during Flash Crowds [24, 45, 47]. Kill-
Bots is a light-weight admission control in the context of
malicious clients and connects it with authentication.

8 Limitations & Open Issues

A few limitations and open issues are worth discussing.
First, Kill-Bots interacts in a complex way with Web
proxies and NATs. If all clients behind the proxy are
legitimate users, then there is no change to the surfing
experience. In contrast, if a zombie shares the proxy
with legitimate clients and uses the proxy to mount an
attack on the Web server, Kill-Bots will learn the proxy’s
IP address and block all requests from that proxy, includ-
ing those from legitimate users. Thus, Kill-Bots imposes
fate sharing on clients that use the same proxy.

Second, the system has a few parameters which we
have assigned values based on our experience. For ex-
ample, we example, we set the Bloom filter threshold
& = 32 because even legitimate users may drop puzzles
due to congestion or indecisiveness and should not be
punished. There is nothing special about 32, we only
need a value that is neither too big nor too small. Sim-
ilarly, we allow a client that answers a CAPTCHA a
maximum of 8 parallel connections because this number
seems to provide a good tradeoff between the improved
performance gained from parallel connections and the
desire to limit the loss due to a compromised cookie.

Third, Kill-Bots assumes that the first data packet of
the TCP connection will contain the GET and Cookie
lines of the HTTP request. In general the request may
span multiple packets, but this happens rarely [54].

Fourth, the Bloom filter needs to be flushed eventu-
ally since compromised zombies may turn into legitimate
clients. The Bloom filter can be cleaned either by re-
setting all entries simultaneously or by decrementing the
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various entries at a particular rate. In the future, we will
examine which of these two strategies is more suitable.

9 Conclusion

The Internet literature contains a large body of important
research on denial of service solutions. The vast major-
ity assume that the destination can distinguish between
malicious and legitimate traffic by performing simple
checks on the content of the packets, their headers, or
their arrival rates. Yet, attackers are increasingly disguis-
ing their traffic by mimicking legitimate users access pat-
terns, which allows them to defy traditional filters. This
paper focuses on protecting Web servers from DDoS at-
tacks that masquerade as Flash Crowds. Underlying our
solution is the assumption that most online services value
human surfers much more than automated accesses. We
present a novel design which uses CAPTCHAs to dis-
tinguish the IP addresses of the attack machines from
those of legitimate clients. In contrast to prior work on
CAPTCHAs, our system allows legitimate users to ac-
cess the attacked server even if they are unable or unwill-
ing to solve graphical tests. We implemented our design
in the Linux kernel and evaluated it in the Internet.
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