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Abstract. Quorum systems are commonly used to maintain the consistency of replicated data in a
distributed system. Much research has been devoted to developing quorum systems with good the-
oretical properties, such as fault tolerance and high availability. However, even given a theoretically
good quorum system, it is not obvious how to efficiently deploy such a system in a real network. This
paper introduces a new combinatorial optimization problem, the Quorum Deployment Problem, and
studies its complexity. We demonstrate that it is NP-hard to approximate the Quorum Deployment
Problem within any factor of nδ , where n is the number of nodes in the distributed network and δ > 0.
The problem is NP-hard in even the simplest possible distributed network: a one-dimensional line with
metric cost. We begin to study algorithms for variants of the problem. Some variants can be solved opti-
mally in polynomial time and some NP-hard variants can be approximated to within a constant factor.
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1 Introduction

The most common technique for ensuring fault-tolerance in a distributed system is replication:
the data or code is replicated at a large number of nodes in the network, thus ensuring that no
small number of failures can derail the computation. The primary difficulty with this approach is
ensuring the consistency of replicas, without increasing the cost of accessing the data too much.
There is a fundamental trade-off between the fault-tolerance of the data and the cost of maintaining
consistency.

Quorum systems have long been used (e.g., [10, 25, 8, 13]) to solve the problem of replica consis-
tency. A quorum, q, is a set of nodes in the network, and a quorum system is a set of quorums, Q,
such that every two quorums in Q share at least one node. That is, given two quorums, q, q′ ∈ Q,
there exists some node i ∈ q ∩ q′; the intersection of these two quorums is non-empty.

In order to ensure the consistency of the data, when a node chooses to modify the data, it
notifies some quorum, say, q ∈ Q, of the modification; when a node wants to access the data, it
contacts some quorum, say, q′ ∈ Q. Since the two quorums, q and q′, intersect at some node, we
can be sure that the read operation that accesses the data learns about the earlier modification.
Variations on this technique are frequently used to implement data replication (e.g., [2, 4, 1, 6]).
For example, Attiya et al. use this technique to construct a read/write shared memory ([3]), and
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this is later extended to construct a reconfigurable read/write shared memory ([15, 11]). A similar
technique has been used for mutual exclusion protocols (e.g., [8, 16]) and secure access protocols
(e.g., [18]).

Much of the original work on quorum systems assumes that each quorum consists of a majority
of the nodes in the network. In this way, the intersection property is immediately guaranteed,
and optimal fault-tolerance is achieved. (See, for example, [28, 10, 29].) More recently, however,
there has been much research developing more complicated quorum systems with a variety of
interesting properties, such as improved availability, faster responses, and more flexibility to respond
to dynamic systems. (See, for example, [5, 22, 17, 20, 19].)

Typically, an algorithm designer first constructs quorums with these types of good properties,
and only then decides which network node will use which quorum so as to achieve low cost of
network communication. Tsuchiya et al. [27] and Fu [7], on the other hand, have taken a different
approach; their algorithms begin with a network, and determine a quorum system that is optimized
under certain performance metrics. Unfortunately, the resulting quorum systems do not necessarily
guarantee good fault tolerance, availability, etc. By first designing the quorum system, and then
determining a good deployment, it seems possible to obtain both good network performance as well
as good quorum system properties.

Let us illustrate this process in an example. Consider the quorum system in Figure 1(a) (orig-
inally described in [5]). The nodes in the network are arranged in a grid with

√
n nodes in each

row and column. Each quorum consists of one row and one column. Any two quorums, then, in-
tersect at two nodes; for example, in Figure 1(a) quorums q and q′ intersect at node i. Figure 1(b)
represents an arbitrary network embedded in a two-dimensional plane in which the cost of commu-
nication between any two nodes is proportional to the distance between the nodes. In order to use
the quorum system, each node in the real network must be mapped to a node in the grid, as in
Figure 1(c). Then, each node chooses one of the quorums to use. For example, node i might choose
to use quorum q, while node j might choose to use quorum q′. In an optimal world, each node is
close to all the nodes in the quorum that is chooses.

If the quorum system is badly deployed, the cost of maintaining consistent replicas may be
prohibitively expensive. It turns out that for completely natural quorum systems – and real world
networks – the difference between an optimal deployment and a sub-optimal deployment can be
quite large. In fact, we can show that for every non-trivial quorum system, there is some network
in which an optimal deployment is much better than a bad deployment. If there are two nodes con-
nected by an expensive communication link (for example, the network is occasionally partitioned),
a sub-optimal deployment may require the nodes to communicate while an optimal deployment
may not.

In this paper, we introduce the Quorum Deployment Problem, the problem of using a quorum
system optimally. We assume that the set of quorums is fixed, and that the cost of sending a
message between any two nodes is known in advance. The cost for some node, i, of using a quorum
system is defined to be the cost of sending a message to every node in some quorum. Our goal is
to determine the mapping from the real nodes in the network to the abstract nodes in the quorum
specification, and the choice of which quorum each node should use during an operation. We present
the problem more formally in Section 2.
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Fig. 1. Figure 1(a) represents an abstract quorum system of 16 nodes, where q and q′ are two possible quorums, and
i is a node in the intersection. Figure 1(b) is an example of a network of nodes, embedded in a two-dimensional plane;
communication time between two nodes is proportional to their distance. Figure 1(c) is a mapping of the real nodes
in the network onto the abstract nodes in the quorum system.

Summary of Results

Our goal in this paper is to determine when the Quorum Deployment Problem can and cannot
be efficiently solved. We first notice that a more constrained version of the problem, the Partial
Deployment Problem, is solvable in polynomial time (see Section 3). The general version of the
Quorum Deployment Problem, though, is quite hard. Even in the simplest possible distributed
network – where the nodes are arranged in a line – the problem is NP-hard.

The natural question, then, is whether it is possible to determine an approximately optimal
deployment. We show in Section 4 that it is NP-hard to approximate an optimal deployment
within any constant factor. In fact, it is hard to approximate an optimal deployment within any
factor of nδ for any δ > 0, where n is the number of nodes in the network.

Finally, in Section 5, we explore special cases (that are still NP-hard) in which the problem can
be approximately solved, and in Section 6, we conclude and discuss future work.

2 The Quorum Deployment Problem

In this section, we formally define the Quorum Deployment Problem. The goal of the Quorum
Deployment Problem is to determine, given a quorum system and a distributed network, how best
to make use of that quorum system.

More formally, assume we are given a distributed network consisting of n nodes, connected by
a message-passing network. We are given an n by n matrix, C, that specifies the cost of sending a
message from node i to node j: Ci,j is assumed to be the latency of the network connecting i and j.
In this paper, we assume that the communication network is fixed. Anytime the network changes,
the deployment must be recalculated, resulting in a quorum reconfiguration.

We are also given a quorum system, Q. For concreteness, we assume that Q consists of exactly
n quorums, one for each node in the network. While quorum systems with more – and fewer –
quorums may be interesting, we discover that the problem is quite hard even with this restriction.
We assume that the quorum system is specified as an n by n matrix, where the columns represent



the nodes in the quorums and the rows represent the quorums. Each entry in the matrix is either
a 0 or a 1. Quorum p contains node j if (and only if) Qp,j = 1. (See Figure 2(b) for an example of
a quorum system in matrix form.)

Recall that the original notion of a quorum system assumes that every pair of quorums intersect.
Occasionally in this paper, we relax this restriction, and allow the matrix Q to contain quorums
that do not share a node. It turns out that the relaxed version of the problem is polynomially
equivalent to the strict version of the problem.

A quorum deployment, then consists of two components. First, recall that each column in the
quorum matrix represents a node; therefore each column in the quorum matrix must be assigned to
a node in the network. This determines which real nodes are in each quorum. If node i is assigned
to column j, then Qp,j determines whether node i is in quorum p. (Recall that each row of Q
represents a quorum.)

Second, each node is assigned a quorum to use. Typically when using a quorum system, a node
performing an operation must send a message to every node in some quorum, or receive a message
from every node in some quorum. If, for example, node i is assigned quorum p, then whenever an
operation occurs at node i, it first attempts to contact quorum p. If this fails (due to the failure
of nodes in quorum p, for example), then node i may contact other quorums. (It is a separate –
and harder – problem to determine a sequence of quorums to contact.) In this paper, we attempt
to optimize for the common case, where quorum p has not failed. For each node i, the cost of the
deployment is determined by the cost of accessing each node in its assigned quorum. For example,
if node i is assigned quorum p, then the cost of the quorum deployment for i is:∑

j∈p

Ci,j

We express each of the two components of quorum deployment as a permutation on [1, n]. We
refer to the first component, the assignment of a node to a column in the quorum matrix, as the
permutation β. That is, node i is assigned to column j if β(i) = j. Therefore, if node i is assigned
quorum p, then the cost of the quorum deployment for i is:

n∑
j=1

Ci,j · Qp,β(j)

The first term determines the cost of accessing node j, and the second term determines whether
node j is in quorum p: the term Qp,β(j) is 1 if the column assigned to j is part of quorum p.

We refer to the second component of the quorum deployment, the assignment of a quorum to
each node, as the permutation α. Node i is assigned quorum p if α(i) = p. Therefore, the cost of
quorum deployment for node i is:

n∑
j=1

Ci,j · Qα(i),β(j)

The total cost of a quorum deployment is the total cost of deployment for all the nodes in the
network. Therefore, the total cost of deployment, D(C,Q,α, β) is:

D(C,Q,α, β) =
n∑

i=1

n∑
j=1

Ci,j · Qα(i),β(j)



Our goal is to minimize this cost: given matrices C and Q, find two permutations α and β
on {1, . . . , n} that minimize D(C,Q,α, β) across all possible choices for α and β. We call this
optimization problem the Quorum Deployment Problem.

Throughout the paper, we occasionally consider variants and restricted versions of the Quorum
Deployment Problem. We describe these in more detail as they arise. The following is a brief preview
of the variants:

– Relaxed Quorum Deployment : In this variant, the “quorums” are not required to intersect3. We
may at times refer to the original problem as the strict deployment problem.

– Partial Quorum Deployment : In this variant, one of the two permutations, α or β, is given in
advance as part of the problem instance.

– Linear Quorum Deployment : In this variant, the communication network is restricted to be a
linear network. That is, all the nodes in the distributed network are embedded on a line.

– Metric Cost Quorum Deployment : In this variant, the cost matrix defines a metric. In particular,
the distances between the nodes satisfies the triangle inequality.

3 Partial Quorum Deployment

We first consider the restricted problem of Partial Quorum Deployment. In the general Quorum
Deployment Problem, we are given a quorum, Q, and a distributed network, C, and our goal is to
determine a deployment, 〈α, β〉, that has optimal cost. In the Partial Quorum Deployment problem,
we assume that one of the two permutations in the deployment is fixed. That is, we assume that
either α or β is given.

In one case, the permutation α may be fixed in advance. For example, α may be fixed as the
identity: node 1 uses quorum 1, node 2 uses quorum 2, etc. The goal is to determine the permutation
β, the assignment of nodes to the columns of the quorum matrix.

In the second case, the permutation β is fixed in advance. The goal, then, is to determine the
permutation α, the assignment of which quorum each node should use.

Both cases of the Partial Deployment Problem can be reduced to the Assignment Problem,
which has been well studied and can be solved in polynomial time (see, for example, [24]).

In the Assignment Problem, we are given a weighted bipartite graph, consisting of 2n nodes –
n left nodes, L, and n right nodes, R – and a weight function wi,j ≥ 0 for all i ∈ L and j ∈ R. The
goal is to choose a matching consisting of n edges with minimum weight.

Theorem 1. Given an instance of the Partial Deployment Problem, consisting of C, Q, and α,
we can determine an instance of the Assignment Problem (in O(n2) time) where the solution to
the Assignment Problem is the permutation β that minimizes the cost of the deployment. The same
holds if the Partial Deployment Problem is specified to include β; the solution to the resulting
Assignment Problem is the permutation α that minimizes the cost of the deployment.

Proof. Assume that the permutation α is given. We construct a bipartite graph for the Assignment
Problem where the left nodes, L, represent the nodes and the right nodes, R, repesent the columns
in the quorum matrix, Q. The weight of an edge connecting i ∈ L and j ∈ R is the cost of assigning

3 In this case, referring to the sets as “quorums” is a misuse of terminology, since the defining features of a set of
quorums is that they intersect. For simplicity, however, we continue to use this term.
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Fig. 2. An example of a reduction from the Balanced Complete Bipartite Subgraph problem in Figure 3 to the
Quorum Deployment Problem.

i to column j in Q. That is:

wi,j =
n∑

�=1

C�,i · Qα(�),j .

The Assignment Problem results in a permutation that minimizes the cost of the weights. The
resulting permutation minimizes the cost of the quorum deployment.

Equivalently, if the permutation β is given, the left nodes in the bipartite graph represent the
nodes and the right nodes represent the quorums; the weight of an edge represents the cost of a
node using a given quorum. In this case:

wi,j =
n∑

�=1

Ci,� · Qj,β(�) .

Again, the Assignment Problem minimizes the weights, resulting in a permutation that minimizes
the cost of the quorum deployment. �	

4 Hardness of the Quorum Deployment Problem

While the Partial Deployment Problem is readily solvable, the general Quorum Deployment Prob-
lem is quite hard. In this section, we first show in Section 4 that it is NP-hard to approximate the
general Quorum Deployment Problem within any constant factor. In fact, for any δ > 0, it is hard
to approximate within a factor of nδ, where n is the number of nodes in the network. We then
show that another variant, the Metric Cost Deployment problem, is NP-hard, and that the relaxed
version (where the quorums are not required to intersect) is also NP-hard to approximate.

Hardness of Approximation

Our main hardness result is derived from a gap-creating reduction from the Balanced Complete
Bipartite Subgraph (BCBS) Problem (see [9] for a statement of the problem, and [21] for recent
results). In this problem, we are given a bipartite graph, G = (V,E), consisting of left nodes, L, and
right nodes, R. We are also given a constant, k. The goal is to find a balanced complete bipartite
subgraph of size 2k, with k left nodes and k right nodes.
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Throughout this section, we use the bipartite graph in Figure 3 as an
example. Notice that this graph has a balanced, complete subgraph of size
two, consisting of nodes 2 and 3 on the left (in L) and nodes 5 and 8 on
the right (in R). However, there is no such subgraph of size three.

In our reduction, we produce an instance of the Quorum Deployment
Problem that has an efficient deployment if and only if the graph G con-
tains a balanced complete bipartite subgraph of size k.

First, we define the reduction, Cost(G, k) = C and Quorums(G, k) =
Q, that transforms an instance of the BCBS problem into an instance of
the Quorum Deployment Problem. We choose n = |V |+ 1. The first n− 1
columns encode the original BCBS problem; the last column ensures that
all the quorums intersect.

The cost matrix, C, is related to the “complement” of the incidence
matrix for the graph, G: each edge in the matrix G results in a cheap link
in the matrix C, while two disconnected nodes in G are connected by an
expensive link in the matrix C. For the purposes of the reduction, we fix x
so that nx is sufficiently large. The size of x depends on the desired value
of δ. (That is, x = O(δ).) Formally:

Cost(G, k)i,j =

⎧⎨
⎩

1 if (i, j) ∈ E and i, j < n
nx if (i, j) /∈ E and i, j < n
1 if i = n or j = n

Consider the example in Figure 2(a). The submatrix delimited by the first four rows and first four
columns represents the edges between nodes in L. Notice that because there are no edges between
nodes in L, all the entries are nx. The submatrix delimited by rows five through eight and columns
five through eight represents edges between nodes in R, and therefore consists only of entries nx.
The last row and the last column contain the value 1. The remaining entries represent the edges
between nodes in L and nodes in R. For example, the entry at (3, 5) represents the edge between
node 3 and node 5. Observe that the cost matrix is symmetric.

The quorum matrix, Q, consists of k quorums containing the first k nodes, and the extra node,
n. It also contains a single quorum that contains all the nodes. The rest of the quorums contain
only node n. Formally:

Quorums(G, k)i,j =

⎧⎪⎪⎨
⎪⎪⎩

1 if i, j ≤ k
1 if i = n
1 if j = n
0 otherwise

Consider again the example in Figure 2(b). The first two rows and two columns contains the value
1, representing the complete bipartite graph of size two. The last row and the last column contain
the value 1, as well.

We show that if the original bipartite graph contains a balanced, complete bipartite subgraph
of size k, then the derived Quorum Deployment Problem has a small cost. Alternatively, if the
original bipartite graph does not contain such a subgraph, then the derived Quorum Deployment
Problem results in a high cost deployment. A full proof is contained in Appendix A.



Lemma 1. Fix any x > 1. Let G = (V,E) be a bipartite graph, and let 1 ≤ k ≤ |V |. Let C =
Cost(G, k) and Q = Quorums(Q, k). Then the following holds:

(G, k) ∈ BCBS ⇒ ∃α,∃β, D(C,Q,α, β) ≤ n2

(G, k) /∈ BCBS ⇒ ∀α,∀β, D(C,Q,α, β) > nx

That is, if there is a size k balanced, complete, bipartite subgraph in G, then the minimum cost
of the resulting deployment is less then or equal to n2. If there is not a size k balanced, complete,
bipartite subgraph in G, then the minimum cost of the resulting deployment is greater than nx.

Proof (sketch). The proof consists of two parts. In the first, we assume that (G, k) ∈ BCBS. In
the second, we assume that (G, k) /∈ BCBS.

Case 1 – (G, k) ∈ BCBS: First, suppose that there is a balanced complete bipartite subgraph on
2k nodes in G. We determine a deployment, (α, β) that has a small cost. Let L′ ⊆ L be the left
partition of the subgraph and R′ ⊆ R the right partition of the subgraph. Choose α to map the
nodes in L′ to the first k rows, and choose β to map the nodes in R′ to the first k columns. Node
n is mapped to row n and column n. Then each of the quorum entries in the first k rows and k
columns is mapped to one of the edges in the complete bipartite subgraph, and as a result, has cost
1. Each of the quorum entries in row n and column n is mapped to an entry in the cost matrix of
cost 1. Therefore, the total cost of the deployment is k2 + 2n − 1 ≤ n2, as desired.

Case 2 – (G, k) �∈ BCBS: On the other hand, suppose that there is no complete bipartite subgraph
on 2k nodes in G. We shall see that any deployment has cost larger than nx. In particular, every
deployment must include at least one expensive edge. It is clear that node n can, without loss of
generality, be mapped to row n and column n: given an optimal assignment where this is not the
case, it is possible to permute the assignment so that this is the case, without increasing the cost.
Then notice that if there is a deployment that does not include any entry of nx, then this implies
that there exists a complete bipartite subgraph of size k, which we assumed was not the case. �	
We conclude that the Quorum Deployment Problem is hard to approximate:

Theorem 2. For any δ > 0, it is NP-hard to approximate the Quorum Deployment problem with
factor nδ.

Hardness of Metric Cost Quorum Deployment

In the Metric Cost Quorum Deployment Problem, the cost matrix is restricted to be symmetric
and satisfy the triangle inequality. In this case, the cost of i sending a message to j is the same
as the cost of j sending a message to i, and the cost of sending a message from i to j is no larger
than the cost of sending a message from i to k and from k to j. It is clear from the reduction in
Lemma 1 that this version of the problem is NP-hard:

Theorem 3. The Metric Cost Quorum Deployment Problem is NP-hard.

Proof. We use the same reduction as in Lemma 1, except instead of constructing the matrix
Cost(G, k) by setting non-edge costs to nx, we set non-edge costs to 2. The matrix immedi-
ately satisfies the requirements of a metric. The correctness follows by the same argument as
in Lemma 1, where if (G, k) ∈ BCBS then the optimal cost of deployment is k2 +2n−1; otherwise,
if (G, k) /∈ BCBS, then cost of any deployment is at least k2 + 2n. �	



Fig. 4. Left: example of a hyperbola contained in k = 3 nested squares. Middle: example of a block diagonal hyperbolic
quorum matrix with p = 3 hyperbolas with k1 = 1, k2 = 3 and k3 = 2 nested squares respectively. Right: a quorum
matrix composed of a part, called vertical telescope, of a single hyperbola. Note that any two quorums intersect in
this matrix.

Hardness of Relaxed Metric Quorum Deployment

If we do not require that the “quorums” intersect, then we can show that such relaxed deployment
problem is inapproximable even when the cost matrix is symmetric and satisfies the triangle inequal-
ity. The proof is inspired by the reduction from a strongly NP-complete 3-Partition Problem (see [9],
SP15) to the Quadratic Assignment Problem (QAP) (see [9], ND43) given by Queyranne [23]. Our
reduction extends the result of Queyranne. Since the deployment algorithm allows two degrees of
freedom, α and β, as compared to QAP that has only one degree of freedom (α = β in QAP), we
construct an instance of the deployment problem that reduces this flexibility, ensuring that when
there is no 3-partition the cost of deployment is high. The proof is presented in Appendix B.

Theorem 4. The Relaxed Metric Quorum Deployment Problem (with symmetric cost matrix that
satisfies the triangle inequality and quorums that do not have to intersect) is NP-hard to approximate
to within any constant factor.

We note that the proof of this theorem implies that when the quorum matrix is a block diagonal
matrix (ones inside blocks and zeros everywhere else) and the number of blocks can be as large as
a polynomial fraction of n, then the deployment problem is inapproximable to within any constant
factor. We also note that if the quorum matrix contains just one block, then it is NP-hard to
optimally solve the problem. This follows from the proof of Theorem 3, where the bottom row and
right column are trimmed from the matrices.

5 Approximation Algorithms for Metric Costs and Restricted Quorums

We have seen that if we allow arbitrary relaxed quorum matrix, then there is no constant factor
approximation algorithm for the deployment problem even if we assume that the cost matrix is
symmetric and satisfies the triangle inequality. It seems that the intricacy of the quorum matrix
plays an important role in the ability to approximate the problem. Therefore, in this section, we
establish a family of somewhat contrived quorum matrices that admit constant factor approximation
for metric cost networks. Solving deployment optimally for this family, however, is still NP-hard.

We give a constant factor approximation algorithm for the Quorum Deployment Problem with
a block diagonal hyperbolic quorum matrix and a symmetric cost matrix that satisfies the triangle
inequality. The quorum matrix is composed of a constant number p of hyperbolas placed on the
diagonal. Each hyperbola i is contained inside a constant number ki of nested squares (see Figure 4,



and a formal definition in the full version). The approximation factor is c = 4 · max1≤r≤p kr. The
algorithm runs in O(nk1+...+kp+3p) time.

Theorem 5. There is a c-approximation algorithm for the Quorum Deployment Problem with
a block diagonal hyperbolic quorum matrix and symmetric cost matrix that satisfies the triangle
inequality, where c = 4 · max1≤r≤p kr. The algorithm runs in O(nk1+...+kp+3p) time.

The proof sketch that follows presents an overview of the approximation algorithm and our
key observations. A detailed proof of the theorem is given in Appendix C. For convenience of the
presentation, we specify the permutations α and β to rearrange rows and columns of the cost matrix
rather than the quorum matrix. This of course yields an equivalent optimization problem.

Proof (sketch). Suppose for a moment that the quorum matrix has ones inside a submatrix U ×U ,
and zeros everywhere else. Let m = |U |. An optimal deployment will place some rows Ũ ′ and some
columns Ṽ ′ of the cost matrix inside U ×U . When we pick a row i and m columns V , that minimize
the sum of costs at the intersection of the row and the columns, then by the triangle inequality
and symmetricity of the cost matrix, we can conclude that the sum of costs inside the submatrix
V × V is at most twice the cost of the optimal deployment. We notice that the conclusion is true
even though the optimal deployment may have Ũ ′ �= Ṽ ′, i.e., may indeed take advantage of two
degrees of freedom to lower the cost. This observation extends the technique of Krumke et al. [14]
developed for the Quadratic Assignment Problem where we would have Ũ ′ = Ṽ ′ (in QAP rows and
columns are permuted in the same way).

Now suppose that the quorum matrix has the richer structure of a single hyperbola. Then an
optimal deployment has extra ability to avoid high costs due to “holes” in the quorum matrix, as
compared to the U×U case just discussed. We can show, however, how to effectively deal with these
holes by appropriately rearranging rows and columns to “push” low costs to the areas occupied
by the hyperbola, and leave high costs behind. The hyperbola is contained in k nested squares.
The square h has size mh by mh and the hyperbola has thickness ah at the edge of the square (cf.
Figure 4). For each h, we can find a row ih and mh columns Vh that minimize the sum of costs at the
intersection of this row and the columns. Since we have selected a row and columns that minimize
the sum, clearly, the cost of any optimal deployment is at least 1/k

∑
1≤h≤k ah

∑
j∈Vh

Cih,j . This
simplistic bound leaves too big a freedom in the choice of subsets Vh, and so the submatrices
Vh × Vh would not be useful for approximation because the submatrices would not have to be
nested. Recall that the k squares are nested in the optimal deployment, so we can still bound from
below the cost of the deployment if we introduce a constraint that V1 ⊂ V2 ⊂ . . . ⊂ Vk. With this
constraint though, there are dependencies between Vh’s. Hence we cannot perform the minimization
of the sum

∑
j∈Vh

Cih,j across the choices of ih and Vh independent from the minimization of the
corresponding sums across other rows and other subsets of columns because we could get stuck
in a local minimum. What we need to do instead, is to minimize the value of the entire bound
across all possible choices under the constraint. We can find the nested subsets Vh and rows ih
that minimize the bound

∑
1≤h≤k ah

∑
j∈Vh

Cih,j using an appropriately adjusted polynomial time
algorithm of Tokuyama and Nakano [26], in a fashion resembling the method used by Guttmann-
Beck and Hassin [12]. After Vh’s and ih’s have been found, we rearrange rows and columns. Using
the triangle inequality and symmetricity of the cost matrix, we conclude that the costs inside
submatrix Vh × Vh can be bounded from above by 2mh times the costs at the intersection of row
ih and columns Vh. If we move the ah lowest cost rows to the top part of the submatrix, then the
sum of costs accumulated there is proportionally reduced, and so it is at most a ah/mh fraction



of the sum of costs inside the entire submatrix. We rearrange rows of the submatrix V1 × V1, then
rows of V2 × V2 and so on, and then columns. When rearrangements are done carefully, we can
ensure that one rearrangement does not destroy the upper bounds on costs created by the prior
rearrangements. After the rearrangements, the sum of costs inside the parabola will be at most
4
∑

1≤h≤k ah
∑

j∈Vh
Cih,j. This completes approximation argument for a single parabola.

Finally, assume that the quorum matrix is a block diagonal hyperbolic quorum matrix composed
of p hyperbolas. We modify the algorithm for finding nested subsets of columns, so that now the
algorithm minimizes across p collections of nested subsets of columns. After we have found the
collections, we apply, to each of the p collections of nested submatrices, the algorithm for rearranging
rows and columns. This yields the desired approximation result and completes the proof. �	

We contrast our approximation results with the inapproximability results from the previous
section. When the number of hyperbolas can be as big as a polynomial fraction of n, then the
deployment problem is inapproximable to within any constant factor, even when each hyperbola i
is just a single square completely filled in with ones. However, we can approximate the problem to
within a constant factor when the number of hyperbolas is constant, and even if each hyperbola is
contained in more than one square.

6 Conclusions and Future Work

In this paper, we have introduced the Quorum Deployment problem, a natural problem that arises
when attempting to efficiently replicate data. We have examined the complexity of a number of
variants of the problem, showing that the Partial Deployment Problem can be solved in polynomial
time, while the general Quorum Deployment Problem and the Relaxed Metric Deployment problem
are inapproximable. Finally, we presented some special NP-hard cases in which the problem can be
approximated and other cases that admit optimal polynomial time solution.

While many of the results presented in this paper are negative, we believe it is important
to continue examining cases for which quorums may be efficiently deployed, as the problem has
significant practical import. Most previous research has focused on developing quorum systems that
have good robustness to various failure modes; future research should also take into account the
difficulty of deploying the quorums. While we conjecture that most currently developed quorum
systems (such as the grid quorum system) cannot be deployed efficiently, we would like to develop
families of quorum systems that are both robust and can be deployed efficiently.
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A Hardness of Approximation

Lemma 1. Fix any x > 1. Let G = (V,E) be a bipartite graph, and let 1 ≤ k ≤ |V |. Let
C = Cost(G, k) and Q = Quorums(Q, k). Then the following holds:

(G, k) ∈ BCBS ⇒ ∃α,∃β, D(C,Q,α, β) ≤ n2

(G, k) /∈ BCBS ⇒ ∀α,∀β, D(C,Q,α, β) > nx

That is, if there is a size k balanced, complete, bipartite subgraph in G, then the minimum cost
of the resulting deployment is less then or equal to n2. If there is not a size k balanced, complete,
bipartite subgraph in G, then the minimum cost of the resulting deployment is greater than nx.

Proof. The proof consists of two parts. In the first, we assume that (G, k) ∈ BCBS. In the second,
we assume that (G, k) /∈ BCBS.

Case 1 – (G, k) ∈ BCBS: First, suppose that there is a balanced complete bipartite subgraph on
2k nodes in G. We determine a deployment, (α, β) that has a small cost.

Let L′ ⊆ L be the left partition of the subgraph and R′ ⊆ R the right partition of the subgraph.
Notice that |L′| = |R′| = k, and L′ ∩R′ = ∅. Let L′ = {�1, . . . , �k} and R′ = {r1, . . . , rk}. We define
the deployment as follows:

α(i) =

⎧⎨
⎩

j i = �j

n i = n
arbitrary otherwise

(1)

β(i) =

⎧⎨
⎩

j i = rj

n i = n
arbitrary otherwise

(2)

Notice that α assigns the first k columns of C to nodes in L′, and β assigns the first k rows of C
to nodes in R′.

We now determine the cost of this deployment. Recall that the first k rows and k columns of Q
contain the value 1. Notice that when α(i) = 1, i = �1. Similarly, when α(j) = 1, j = r1. Therefore
i ∈ L′ and j ∈ R′, which implies that there is an edge between nodes i and j. As a result, Ci,j = 1.

This holds for all α(i) ≤ k and β(j) ≤ k. Therefore the first k rows and k columns of Q
contribute cost at most k2.

The only other entries in Q with value 1 are row n and column n. However, node n is assigned
to column n, and node n is assigned to row n. Since Ci,n = 1 for all i, and Cn,j = 1 for all j, row
n and column n contribute cost 2n − 1.

There are no other entries containing a 1 in Q. Therefore the total cost of the deployment is at
most n2.

Case 2 – (G, k) �∈ BCBS: On the other hand, suppose that there is no complete bipartite subgraph
on 2k nodes in G. We shall see that any deployment has cost larger than nx. In particular, every
deployment must include at least one expensive edge.

Let 〈α, β〉 be the optimal deployment. We bound the cost of this deployment from below in two
steps.



First, assume that α(n) �= n. In particular, assume that α(n) = a, and a �= n. Then node n uses
the quorum designated by row a of Q. Some other node, b, is assigned to row n of Q. Consider the
new deployment, 〈α′, β〉, where α(n) = n and α(b) = a. We now argue that this new deployment
has a cost no greater than that of the originaly deployment 〈α, β〉.

Let A be the set of nodes in quorum a, that is, the set {j : Qa,j = 1}. In the originaly deployment,
the cost of node n accessing the nodes in A is |A|, since node n can access each node for cost 1.
Let x be the cost of node b accessing quorum n.

In the revised deployment that includes α′, node n accesses quorum n, which has cost exactly n.
Let y be the cost of node b accessing nodes in the set A. Our goal is to show that n + y ≤ |A|+ X.

Notice that y ≤ x − (n − |A|). Since every node in A is also in quorum n, the cost y has to be
less than the cost x. Since the smallest cost of accessing a node is 1, when node a accesses quorum
n the cost must be at least n− |A| more than the cost of accessing just the nodes in A. Therefore,
we conclude that:

n + y ≤ n + (x − (n − |A|)
≤ x + |A|

Therefore the cost of the deployment containing α′ is less than or equal to the cost of the original
deployment. Therefore, without loss of generality we assume that α(n) = n. By the same argument,
we can assume without loss of generality that β(n) = n. Therefore row n and column n contribute
exactly 2n − 1 to the cost of the deployment.

Let L′ be the set of rows mapped to the the first k rows. That is, L′ = {i : 1 ≤ α(i) ≤ k}. Let
R′ be the set of columns mapped to the first k columns. That is, R′ = {j : 1 ≤ β(j) ≤ k}. These
are the only entries of C that can contribute to the cost, aside from row n and column n.

If all the costs Ci,j = 1 for i ∈ L′ and j ∈ R′, then there is an edge between every node in L′

and every node in R′, thus creating a balanced complete bipartite subgraph of size k. Thus at least
one of the cost Ci,j = nx for some i ∈ L′ and some j ∈ R′.

Thus the cost of the optimal deployment is at least nx + 2n − 1, which is greater than nx, as
desired. �	

B Hardness of Relaxed Metric Quorum Deployment

Theorem 4. The Relaxed Metric Quorum Deployment Problem (with symmetric cost matrix that
satisfies the triangle inequality and quorums that do not have to intersect) is not approximable to
within any constant, unless P=NP.

Proof. Suppose that there is an r-approximation algorithm for the deployment problem. We will
show a polynomial time reduction from 3-Partition to the deployment problem that creates a gap
of at least r + 1. This will yield a contradiction when P�=NP.

Take any instance of the 3-Partition Problem. We construct an instance of the restricted/relaxed
Quorum Deployment Problem. There are Bk nodes in the network. Nodes are placed on a line and
the line and distance between nodes induces the cost matrix. The nodes are grouped into k clusters,
each containing B nodes. Consecutive clusters are separated by a “large” gap of Δ = r + 1, and
consecutive nodes inside a cluster are separated by a “small” gap of δ = 1/(kB3). For each size,
we construct as many quorums as the value of the size. The quorums will form a “clique”, which
will allow us to keep them “together” or else substantially increase the cost. For a given size si, we



produce si equal quorums, each of cardinality si, each equal to {(s1 + . . . + si−1 + 1), . . . . . . , (s1 +
. . .+si)}. Note that the size of the instance of the Quorum Deployment Problem is polynomial with
respect to k (recall that Bk is bounded by the value of a fixed polynomial of k, because 3-Partition
is strongly NP-complete).

If there exists a 3-partition S1, . . . , Sk, then the minimal cost of deployment is “small”. To see
this, we consider the three sizes in Sh and assign the B quorums derived from these sizes to the
cluster h. There are exactly B distinct elements in all quorums assigned to the cluster. At the
same time, the cluster has exactly B nodes. Hence we can define a “local” mapping: the B quorum
elements are arbitrarily mapped to the B nodes of the cluster. Since there are B quorums in a
cluster, each quorum has at most B elements and the diameter of the cluster is at most Bδ, the
total contribution of this cluster to the cost of the deployment is at most δB3. Hence the total cost
of deployment is at most kδB3.

If there is no 3-partition, then the minimal cost of deployment must be “large”. We consider
three cases, always concluding that the minimal cost of deployment is Δ or more. Take a deployment
that minimizes cost. If elements of a quorum are assigned to two different clusters, then cost of
the deployment is at least Δ. So, let us assume that, for each quorum, the elements (or the only
element, as a quorum may be a singleton) of the quorum are assigned to the same cluster. If a
quorum is assigned to a cluster other than the cluster where the quorum elements are assigned to,
then the cost of the deployment is at least Δ. Finally, assume that each quorum is assigned to the
(only) cluster where the elements of the quorum are assigned. This, however, would imply that a
3-partition exists. Therefore, minimal cost of deployment is at least Δ.

To complete the inapproximability argument, it remains to notice that a sufficient gap has been
created because of the choice of the value of δ and Δ. �	

C Approximation Algorithm for Metric Costs and Restricted Quorums

This section presents an approximation algorithm for the Quorum Deployment Problem with a
block diagonal hyperbolic quorum matrix and a symmetric cost matrix that satisfies the triangle
inequality.

Definitions

We define a block diagonal hyperbolic quorum matrix. Let the matrix Q be a block diagonal n by n
matrix with zero entries outside of the blocks, and where each block is a hyperbola (see Figure 4 for
an example). Specifically, the matrix is defined by several numbers. A sequence of p ≥ 1 numbers
n1, . . . , np represents the sizes of the p blocks of the matrix. Each size has to be at least one, and
the sizes must sum up to at most n. Each block i, that has size ni, is a hyperbola defined by ki ≥ 1
numbers 0 < mi

1 < mi
2 < . . . < mi

ki
= ni, and ki other numbers, such that ai

j ≤ mi
j, for 1 ≤ j ≤ ki,

ai
1 > ai

2 > . . . > ai
ki

≥ 1. The first hyperbola is defined as

H1 =

(
k1⋃

h=1

[a1
h] × [m1

h]

)
∪
(

k1⋃
h=1

[m1
h] × [a1

h]

)
.



The other hyperbolas are appropriately shifted to fit inside the corresponding blocks. Specifically,
hyperbola i is defined as

Hi =

(
ki⋃

h=1

[si + 1, si + ai
h] × [si + 1, si + mi

h]

)
∪

(
ki⋃

h=1

[si + 1, si + mi
h] × [si + 1, si + ai

h]

)
,

where si is the shift equal to
∑i−1

w=1 nw. The matrix Q is an n by n matrix that has 1 at any entry
(y, x) that belongs to any of the p hyperbolas, and 0 everywhere else

Qy,x =

{
1, (y, x) ∈ H1 ∪ . . . ∪ Hp ,

0, (y, x) /∈ H1 ∪ . . . ∪ Hp .

The matrix Q is called a block diagonal hyperbolic quorum matrix. Such matrix is a quorum matrix
in the strict sense only when p = 1 and n1 = n. When p > 1 or when n1 < n, then not every quorum
intersects with every quorum.

Algorithm and its analysis

We begin the approximation argument with a lemma that bounds from below the cost of an optimal
deployment. We find a collection of sets of columns, some of which are nested, and a collection of
rows. The costs located at the intersections of rows and columns, weighted appropriately, will yield
a lower bound on the minimal cost of deployment. Our search algorithm uses an algorithm of
Tokuyama and Nakano as a subprocedure.

Lemma 2. Given any instance of the Quorum Deployment Problem with a block diagonal hy-
perbolic quorum matrix, there is an algorithm that selects rows irh, not necessarily distinct, of
the cost matrix C, 1 ≤ r ≤ p, 1 ≤ h ≤ kr, and p collections in nested subsets of columns
V r

1 ⊂ V r
2 ⊂ . . . ⊂ V r

kr
⊆ [n], 1 ≤ r ≤ p, such that |V r

h | = ar
h, and that when r �= r′, then V r

kr

does not intersect with V r′
kr′

, so that

p∑
r=1

1/kr

kr∑
h=1

ar
h

∑
d∈V r

h

Cirh,d

is a lower bound on the minimal cost of deployment for the instance of the problem. The algorithm
runs in O(nk1+...+kp+3p) time.

Proof. Take an optimal deployment that somehow independently permutes rows and columns of
the cost matrix. Let us focus on the hyperbola Hr, and the costs assigned to it. The nr by nr

block gets assigned nr rows and nr columns. Let Ṽ r
h be the set of mr

h leftmost columns of the cost
matrix that are assigned to the block. Obviously, Ṽ r

1 ⊂ . . . ⊂ Ṽ r
kr

, and the sets Ṽ r
kr

, for different
r, are disjoint. The hyperbola Hr includes kr “horizontal” rectangles that overlap. The rectangle
[sr + 1, sr + ar

h] × [sr + 1, sr + mr
h] gets assigned columns Ṽ r

h , where 1 ≤ h ≤ kr. Among the ar
h

rows assigned to the rectangle h, we can find a row ĩrh that minimizes the sum
∑

d∈Ṽ r
h

Cĩrh,d of costs



assigned to the row of the rectangle. The contribution, to the cost of the optimal deployment, of
this rectangle is at least ar

h times the sum. When we sum up the kr lower bounds on costs of the
rectangles, we establish a lower bound on kr times the cost contributed by the hyperbola Hr. Hence
the cost of the optimal deployment is bounded from below by an expression

min ≥
p∑

r=1

1/kr

⎛
⎜⎝ kr∑

h=1

ar
h

∑
d∈Ṽ r

h

Cĩrh,d

⎞
⎟⎠ .

We can bound the expression from below by minimizing across a larger set of choices: the choices
of rows irh, not necessarily distinct, and subsets of columns V r

1 ⊂ . . . ⊂ V r
kr

, such that |V r
h | = mr

h,
and that the sets V r

kr
, for different r, are disjoint, where indices range over 1 ≤ r ≤ p, 1 ≤ h ≤ kr.

The selection of rows and subsets of columns to minimize the sum can be done by repeatedly
applying the O(n) deterministic algorithm of Tokuyama and Nakano [26]. The algorithm assumes
that subsets are disjoint, while in our case some are nested and some are disjoint. We can com-
ply with the assumptions of Tokuyama and Nakano by preprocessing the input. We consider all
nk1+...+kp selections for p tuples (ir1, . . . , i

r
kr

) ∈ [n]kr , where r ranges from 1 to p. We take a table
(ti,j) of size k1 + . . . + kp by n, and partition it into rectangles of width n and height k1, k2 and
so on, moving from the top to the bottom of the table. Then we copy rows i11, . . . , i

1
k1

of the cost
matrix into the top rectangle. For each row h of the rectangle, h = k1, (k1 − 1), . . . , 1, we scale the
row and add scaled costs of rows h + 1, . . . , k1 of the rectangle i.e., th,j becomes

∑
h≤x≤k1

a1
x · tx,j,

for any 1 ≤ j ≤ n. Observe that if we select a subset Ah ⊆ [n] of cardinality a1
h − a1

h−1 of costs
inside each row h, different for different rows (i.e., i �= j implies Ai ∩Aj = ∅), and add the selected
costs for all k1 rows of the top rectangle, then the sum

∑
1≤h≤k1

∑
j∈Ah

th,j is equal to exactly
the cost with nested subsets

∑
1≤h≤k1

a1
h

∑
j∈Vh

Cih,j, where Vh = A1 ∪ . . . ∪ Ah has cardinality a1
h

and V1 ⊂ . . . ⊂ Vk1. The reverse relationship holds as well. Hence the two optimization problems:
selecting Vh’s and selecting Ah’s, are equivalent. Next we copy costs from the rows given by the p−1
remaining tuples to the corresponding remaining p− 1 rectangles, and modify the costs inside each
rectangle in way a similar to the way we modified costs inside the top rectangle. The preprocessing
that we have just described allows us to apply the algorithm of Tokuyama and Nakano [26]. Using
the notation of the authors, we set λd, where d is represented by d = k1 + . . .+kr−1 +h, 1 ≤ h ≤ kr,
to our ar

h−ar
h−1, then the weight of the edge (i, j), in the complete bipartite graph with n nodes on

the left and k1 + . . .+kp on the right, is set to tj,i. Overall, a straightforward implementation of the
procedure yields an O(nk1+...+kp+3p) time algorithm for selecting rows irh and subsets of columns
V r

h . This completes the proof. �	

Next we show how to rearrange rows and columns inside nested squares, so that low costs
are moved to where a hyperbola is and high costs are left outside of the hyperbola. Given nested
submatrices (V1 ×V1) ⊂ (V2 ×V2) ⊂ . . . ⊂ (Vk ×Vk) of the cost matrix, one can produce a new cost
matrix by rearranging rows and columns inside the submatrices, so that the cost of the new matrix
inside the hyperbola is proportionally reduced compared to the costs inside the submatrices. Using
the triangle inequality and the symmetricity of the cost matrix, we can bound the sum of costs
inside each submatrix Vh × Vh by the sum of costs at the intersection of row ih and columns Vh

multiplied by twice the cardinality of Vh. This will let us relate the costs after rearrangement to
the lower bound on cost established in Lemma 2.



Lemma 3. Given a hyperbola

H =

(
k⋃

h=1

[ah] × [mh]

)
∪
(

k⋃
h=1

[mh] × [ah]

)
,

k rows ih, k nested subsets of columns Vh = [mh], 1 ≤ h ≤ k, and a symmetric cost matrix C that
satisfies the triangle inequality, there is a matrix F obtained from C after rearranging rows Vk and
columns Vk, so that the sum of costs ∑

(y,x) ∈ H

Fy,x

of the of rearranged matrix inside the hyperbola is at most

4
k∑

h=1

ah

∑
d∈Vh

Cih,d .

The matrix F can be found in O(n3) time.

Proof. Note that the submatrices are nested (V1 × V1) ⊂ (V2 × V2) ⊂ . . . ⊂ (Vk × Vk), and that
symmetricity and the triangle inequality implies that the sum of costs of C inside the submatrix
Vh × Vh is at most 2mh

∑
j∈Vh

Cih,j. Hence a trivial upper bound on the cost of the hyperbola is
4
∑k

h=1 mh
∑

d∈Vh
Cih,d. Our goal is to show how to rearrange rows and columns so as to turn mh’s

into ah’s. Let us introduce orientation in matrices: rows are numbered from top to bottom, and
columns are numbered from left to right.

We initialize Fy,x := Cy,x and then rearrange F in two phases. We first rearrange rows to bound
the cost inside a horizontal telescope defined as

⋃k
h=1[ah] × [mh], and then rearrange columns to

bound the cost inside a vertical telescope (see Figure 4) defined as
⋃k

h=1[mh]×[ah], while maintaining
the previously established bound on the cost of the horizontal telescope.

In the first phase, we focus on the horizontal telescope. We rearrange rows of F in k rounds;
first rows V1, then rows V2, and so on up to rows Vk. Let σs be the sum of costs of F inside the
part ([a1] × [m1])∪ . . .∪ ([as] × [ms]) of the telescope at the end of round s (so σk is the sum inside
the entire horizontal telescope). Our rearrangements will maintain an invariant that at the end of
round s:

(i) the sum of costs inside the part ([a1] × [m1])∪ . . .∪ ([as] × [ms]) of the telescope is bounded as
desired i.e., σs ≤ 2

∑
1≤h≤s ah

∑
j∈Vh

Cih,j, and
(ii) for all subsequent submatrices, the initial upper bounds on the sum of costs are maintained i.e.,

for all s+1 ≤ h ≤ k, the sum of costs inside the submatrix Vh ×Vh is at most 2mh
∑

j∈Vh
Cih,j.

The invariant holds for s = 0, because of symmetricity, the triangle inequality and the way F was
initialized.

During round s, we pick as smallest sum rows of the submatrix Vs × Vs, and, if any is below
the as top rows, we swap the row with the currently highest cost row among the top as rows
of the submatrix (naturally, we actually swap rows of the entire n by n matrix F inside which
the k submatrices reside, because we are not allowed to exchange parts of rows of the matrix).
As a result of the swapping, the top as rows of the submatrix Vs × Vs contain rows which sum
is the smallest across all possible selections of as rows of the submatrix. Hence the sum of costs



Fig. 5. Three regions inside a horizontal telescope.

inside these rows of the submatrix is at most 2as
∑

j∈Vs
Cis,j . Note that since submatrices are

nested, swapping preserves upper bounds on the sum of costs for each of the subsequent to Vs ×Vs

submatrices i.e., after the swapping, for any h ≥ s + 1, the sum of costs inside the submatrix
Vh × Vh is still at most 2mh

∑
j∈Vh

Cih,j (we merely permuted the rows of the submatrix). Now
let us bound σs from above. By the invariant, the value of σs−1 right before round s was bounded
from above by 2

∑
1≤h≤s−1 ah

∑
j∈Vh

Cih,j . Recall that σs−1 is the sum of costs inside the part
([a1] × [m1]) ∪ . . . ∪ ([as−1] × [ms−1]) of the horizontal telescope. We can partition the part into
s − 1 regions: [ah] × [mh−1 + 1,mh], for 1 ≤ h ≤ s − 1 (see Figure 5). We notice that after the
swapping of rows, the fragments of the s − 1 regions starting from row as + 1 downwards (the
darkest gray area in Figure 5) contain only some costs that were present in the s− 1 regions before
the swapping. So the sum of costs inside these fragments is bounded from above be the value of
σs−1 at the time right before the swapping. We have observed that after the swapping, the cost of
the top as rows and ms columns of submatrix Vs × Vs is at most 2as

∑
j∈Vs

Cis,j. Hence, after the
swapping, σs is bounded from above by 2

∑
1≤h≤s ah

∑
j∈Vh

Cih,j.

After k rounds, the invariant implies that the sum of costs of F inside the horizontal telescope
is bounded from above by 2

∑
1≤h≤k ah

∑
j∈Vh

Cih,j. This conclusion completes the first phase.

In the second phase we rearrange columns. We apply an algorithm that is symmetric to the one
used in the first phase (i.e., now we swap columns instead of rows). As a result, we obtain the same
upper bound on the sum of costs inside the vertical telescope. The only remaining issue is that we
may invalidate the bound on the sum of costs inside the horizontal telescope. This, however, is not
the case as explained next.

We will study how locations of costs change and will use labels to track the costs. Each of
columns Vk of the matrix F will have a label from the set {H,V 1, V 2, . . . , V k} of k + 1 labels. A
label “travels” with a column whenever the column is swapped. We will assign the labels to columns
after the first round, and then may modify labels after each round. At the end of any round, we
can partition columns into k + 1 subsets, based on the labels. We will argue that the sum of costs
inside columns, contributed by each subset, is appropriately bounded.

After the first round of swapping, we assign label V 1 to each of the leftmost a1 columns of F ,
and each of the columns [a1 + 1,mk] gets the label H. Recall that right before the second phase,
the cost inside the horizontal telescope was at most 2

∑
1≤h≤s ah

∑
j∈Vh

Cih,j. The swapping of
columns done during the first round of the second phase permutes only the columns [m1], so the
cost contributed by columns with label H remains at most 2

∑
1≤h≤s ah

∑
j∈Vh

Cih,j. The cost of
columns with label V 1 inside vertical rectangle [m1] × [a1] is at most 2a1

∑
j∈V1

Ci1,j.

We will argue that the following invariant holds at the end of any round s



(i) the sum of costs of columns labeled H inside the horizontal telescope is at most the initial
bound on the costs inside the horizontal telescope i.e.,∑

(y,x)∈H∩([a1]×[mk]) ∧ (x has label H)

Fy,x ≤ 2
∑

1≤h≤k

ah

∑
j∈Vh

Cih,j

(ii) for all 1 ≤ r ≤ s, the sum of costs of columns labeled V r inside the part of the hyperbola on
and above row ms ∑

(y,x)∈H∩([ms ]×[mk]) ∧ (x has label V r)

Fy,x

is at most 2ar
∑

j∈Vr
Cir ,j.

The invariant holds at the end of the first round of the second phase. Now we explain how we
modify labels during each successive round. At the end of round s, some columns reside among the
leftmost as columns. These columns get assigned the label V s. The labels of other columns remain
unchanged.

Let us now bound the costs contributed by columns with different labels. The only columns
with label V s are the leftmost as columns. Hence, by the argument given for swapping rows, the
sum of costs of these columns inside the top ms rows of the hyperbola is bounded by∑

(y,x)∈H∩([ms]×[mk]) ∧ (x has label V s)

Fy,x ≤ 2as

∑
j∈Vs

Cis,j ,

as desired. Inside the remaining mk − as columns some new columns might have been swapped in,
compared to the columns that were there during the previous round. These new columns can only
have label V (s−1), because no other columns move right in round s. So the sum of costs of columns
with label V e, for any e ≤ s− 2, inside the top ms rows of the hyperbola can only get reduced (as
no extra column gets assigned such a label). How about the sum for columns with label V (s − 1)?
We notice that when a column with such label moves right, it is placed at a column where the
thickness of the horizontal telescope is at most as−1. Hence the contribution of this column to the
sum of costs of columns with label V (s − 1) inside the telescope may only get reduced. Hence the
invariant holds after the round s.

After the two phases have been completed, the invariant implies that the sum of costs inside
the entire hyperbola is at most

4
∑

1≤h≤k

ah

∑
j∈Vh

Cih,j ,

which completes the proof. �	
Theorem 6. There is a c-approximation algorithm for the Quorum Deployment problem with a
block diagonal hyperbolic quorum matrix and symmetric cost matrix that satisfies the triangle in-
equality, where c = 4 · max1≤r≤p kr. The algorithm runs in O(nk1+...+kp+3p) time.

Proof. We apply Lemma 2 to find sets V r
h and rows that bound the cost of minimal deployment

from below. Then we rearrange rows V r
kr

and columns V r
kr

inside each hyperbola Hr as shown in
Lemma 3, and as a result obtain a deployment with a desirable cost. �	


