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Abstract

An important feature of object-oriented programming languages is the ability to
dynamically instantiate user-defined container data structures such as lists, trees,
and hash tables. Programs implement such data structures using references to
dynamically allocated objects, which allows data structures to store unbounded
numbers of objects, but makes reasoning about programs more difficult. Reasoning
about object-oriented programs with complex data structures is simplified if data
structure operations are specified in terms of abstract sets of objects associated
with each data structure. For example, an insertion into a data structure in this
approach becomes simply an insertion into a dynamically changing set-valued field
of an object, as opposed to a manipulation of a dynamically linked structure linked
to the object.

In this paper we explore reasoning techniques for programs that manipulate data
structures specified using set-valued abstract fields associated with container ob-
jects. We compare the expressive power and the complexity of specification lan-
guages based on 1) decidable prefix vocabulary classes of first-order logic, 2) two-
variable logic with counting, and 3) Nelson-Oppen combinations of multisorted
theories. Such specification logics can be used for verification of object-oriented
programs with supplied invariants. Moreover, by selecting an appropriate subset
of properties expressible in such logic, the decision procedures for these logics yield
automated computation of lattice operations in abstract interpretation domain, as
well as automated computation of abstract program semantics.

1 Introduction

Analysis and verification of modern object-oriented programming languages
poses unique challenges [50, 34, 44, 20]. In this paper we study a feature that
we consider essential for object-oriented programming: the ability to intro-
duce user-defined abstract data types, and create an unbounded number of
instances of these data types during program execution. Particular difficulties
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arise when each data type instance is itself implemented using multiple dy-
namically allocated objects that form a linked data structure. Our approach
for analyzing such programs is to use abstract set-valued fields as specification
variables that describe operations of an abstract data type, and separate the
analysis of the program into verifying the correctness of the implementation of
the abstract data type with respect to the set specification and verifying the
correctness of the rest of the program where linked data structure is replaced
by abstract set-valued fields. We next give some more context of our work.

Global abstract data types. An important feature of modern programming
languages is the ability to introduce user-defined abstract data types; such
data types allow the developers to build applications on top of concepts that
are most appropriate for the applications, as opposed to relying only on the
concepts built into the language. Modules have been used successfully as
a language mechanism for implementing abstract data types [33, 54, 39, 36],
and are an effective way of specifying abstract data types if there is only one
instance of the abstract data type in the program, or if the instances are
implemented without using linked data structures.

Linked data structures. Containers that store objects form a large class
of user-defined data types. Such containers are often implemented as linked
data structures (such as lists, trees, and hash tables) that use references to
cells dynamically allocated on the heap. Reasoning about programs contain-
ing linked data structures is difficult because there is no compile-time bound
on the size and the complexity of the linking structure that can be created.
Sophisticated shape analyses have been developed to statically analyze sets of
possible linking structures created by programs [37, 23, 15, 47, 16, 11]. Shape
analyses are generally effective with analyzing individual data structures, but
often have difficulties scaling to larger programs.

Hob project. One of the main design principles behind the Hob project
[30,31,58,29] is that reasoning about programs with complex data structures
becomes simpler if data structure operations are specified in terms of abstract
sets of objects associated with each data structure. For example, an inser-
tion into a data structure in this approach becomes simply an insertion into a
dynamically changing sets of objects, as opposed to a manipulation of a dy-
namically linked data structure. Hob splits the verification of programs with
such data structures into two tasks: 1) using shape analysis to verify that
data structure implementation conforms to the specification given in terms
of the abstract set variables, and 2) using only the abstract set variables in
the rest of the program to reason about the behavior of the data structure.
The use of different analysis techniques is possible because Hob architecture
supports the combination of heterogeneous analysis plugins while analyzing a
single program. So far, we have used Hob to verify implementations of global
data structures, which are instantiated at compile time into a finite number
of instances. The focus on global data structures allowed us to use static
module mechanism to encapsulate fields of objects and prevent representation
exposure, as well as to use the decidable theory of Boolean algebras [24, 48]
to reason about the finite number of abstract sets that specify data struc-
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tures. Our goal is to make Hob applicable to dynamically instantiated data
structures as well.

Dynamic instantiation of linked data structures. Dynamic instantiation
of abstract data types is one of the key features of object-oriented program-
ming languages. Dynamic instantiation is typically achieved by associating
abstract data type instance with an object, and using a field to attach the un-
derlying linked data structure to the object. We are currently extending Hob
to verify programs that use linked data structures that can be dynamically
instantiated. In this approach, we specify a linked data structure attached to
an object using a finite number of set-valued fields of an object. The result of
abstracting the content of data structures in a program using this technique
is a program that manipulates objects connected using relations. A relation
in the resulting program can be either a function (whose value for a given
object is the object referenced by an object-valued field), or a general relation
(whose value for a given object is the set of objects stored in the data structure
associated with the object).

The generalization to dynamic instantiation of data structures in Hob re-
quires extensions to both phases of verification: 1) verification that linked
data structure conforms to the set interface given by values of object fields
and 2) verification of the resulting program that uses objects with set-valued
fields. To address the first problem, we are extending the existing technique
in Hob with the techniques for specifying representations of individual ob-
jects [42, 8, 6, 2, 3]; these extensions are necessary to ensure that the analysis
of one instance remains valid in the presence of other instances in the heap.

The topic of this paper is the second problem: verification of programs that
manipulate objects with set-valued fields. Like [45], we are concerned with
verification of clients of abstract data types, but we focus on specifications ex-
pressed in terms of set-valued fields and derive a complete decision procedure
for the constraints in our class. Our approach uses assume/guarantee reason-
ing with user-supplied annotations to completely separate the analysis of the
implementation of the class from the analysis of the context; other approaches
attempt to automatically infer both the approximation the context and the
approximation of class implementation [34], potentially using a global fixpoint
analysis.

Decision procedures for set-valued fields. To study the automation of
reasoning about programs with set-valued fields, we explore decision proce-
dures for constraints on such fields. Our constraints can express relationships
between sets associated with the same object, the aliasing between object ref-
erences, as well as the relationships between sets associated with different ob-
jects. By annotating programs with such constraints and using a verification-
condition generator [58], developers can verify a range of invariants of object-
oriented programs. Moreover, by selecting an appropriate subset of properties
expressible using such constraints, a decision procedure for these constraints
yields automated computation of lattice operations in abstract interpretation
domain, as well as automated computation of abstract program semantics
(transfer functions) for the analysis [9].
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assume x 6= null ∧ x ∈ alloc;
oldxc := x.c;
new y;
while [x 6= null ∧ y 6= null ∧ x 6= y ∧ x.c ∪ y.c = oldxc]

(x.c 6= ∅)
{

e := removeFirst(x);
// process(e);
insert(y, e);

}
assert y.c = oldxc;

Fig. 1. An example program fragment that manipulates set-valued fields. Here z.c

denotes the value of the set associated with object denoted by z.

e := removeFirst(x) :
havoc e;
assume e ∈ x.c;
x.c := x.c \ {e}

insert(y, e) :
y.c := y.c ∪ {e}

Fig. 2. Specifications of procedure calls from Figure 1

Contributions and overview. To motivate the constraints studied in this
paper, we present an example in Section 2. We present our formal setup in
Section 3. As the main result of this paper, we explore reasoning techniques
for programs that use set-valued abstract fields by comparing the expressive
power and the complexity of specification languages based on decidable prefix
classes of first-order logic (Section 5), two-variable logic with counting (Sec-
tion 6), and Nelson-Oppen combinations of multisorted theories (Section 7).
We observe that both the decidable prefix class [∃∗∀∗]= and Nelson-Oppen
combination yield optimal NP algorithms for deciding an interesting class of
constraints. On the other hand, the use of two-variable logic with counting
allows more expressive constraints (such as the constraint that a field is never
null), but requires an NEXPTIME decision procedure in general. We present
our preliminary conclusions in Section 8 and discuss related work throughout
the paper.

2 Example

Figure 1 presents an example program fragment containing a precondition
(expressed using an assume statement), a loop invariant (expressed using [. . .]
brackets just before the condition of the while loop), and a postcondition
(expressed using an assert statement). The program fragment empties the set
x.c and copies its content into the set y.c (one could imagine some processing
of primitive fields of e being performed in each loop iteration, but this is of
no relevance to our example). The property that we wish to verify is that
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loop invariant initially holds:
x 6= null ∧ x ∈ alloc ⇒

y /∈ alloc ∧ y 6= null ∧ y.c = ∅ ⇒
x 6= y ∧ x 6= null ∧ y 6= null ∧ x.c ∪ y.c = x.c

loop invariant is preserved:
x 6= y ∧ x 6= null ∧ y 6= null ∧ x.c ∪ y.c = oldxc ⇒

e ∈ x.c⇒ x 6= y ∧ (x.c \ {e}) ∪ (y.c ∪ {e}) = oldxc

loop invariant implies postcondition:
x 6= y ∧ x 6= null ∧ y 6= null ∧ x.c ∪ y.c = oldxc ∧ x.c = ∅ ⇒

y.c = oldxc

Fig. 3. Verification conditions for Figure 1

O ::= VO | null | O.fO

S ::= VS | S1 ∪ S2 | S1 ∩ S2 | S1 \ S2 | {O1, . . . , On} | O.fS

f ::= Vf | fO[O1 7→ O2] | fS[O 7→ S]
A ::= O1 = O2 | O ∈ S | S1 = S2 | card(S) ≤ k | f1 = f2

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F

Fig. 4. Syntax of expressions and formulas

the content of the set y.c at the end of the program fragment is equal to
the original content of the set x.c, which is stored in the auxiliary set-valued
local variable oldxc. The property is true, because procedure call removeFirst

removes an element from x.c and returns it in e, and then insert inserts the
same element into y.c. Figure 2 shows guarded-command specifications of
procedure calls that we use to reason about the effects of procedures; our
system verifies separately that procedures conform to their specifications.

Given the precondition, loop invariant and the postcondition for the pro-
gram fragment in Figure 1, we can generate verification conditions that imply
that the program postconditions will hold. Figure 3 shows these verifica-
tion conditions for the program fragment. Note that the resulting constraints
require not only reasoning about the content of individual sets (as in the se-
mantics of insert), but also reasoning about aliasing of references to objects
(as in the conjunct x 6= y) and reasoning about the relations between sets
associated with distinct objects (as in the conjunct x.c ∪ y.c = oldxc).

In Section 3 we define a class of constraints on objects with set-valued
fields, and introduce a guarded command language whose verification condi-
tions belong to this class. In the rest of this paper we study the validity and
the satisfiability problem for constraints in this class.

3 Specification Language

We next introduce a specification language for expressing constraints on ob-
jects with set-valued fields. The syntax of this language is in Figure 4. Our
specification language is typed (multisorted); we are only concerned with well-
typed formulas. The nonterminal O denotes objects, which can be potentially
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wp(x := E, P ) = P [x := E] ∧ WD(E)
wp(havoc x, P ) = ∀x.P
wp(assert Q, P ) = Q ∧ P

wp(assume Q, P ) = Q⇒P
wp(s1 [] s2, P ) = wp(s1, P ) ∧ wp(s2, P )
wp(s1 ;; s2, P ) = wp(s1, wp(s2, P ))

Fig. 5. Weakest preconditions of guarded commands

x.f := E ≡ f := f [x 7→ E]
new y ≡ havoc y;

assume y /∈ alloc ∧ y 6= null ∧ y.c = ∅;
alloc := alloc ∪ {y}

Fig. 6. Desugaring of some commands

WD(x.f) = x 6= null ∧ WD(x) ∧ WD(f)
WD(f [x 7→ E]) = x 6= null ∧ WD(f) ∧ WD(x) ∧ WD(E)

WD(S1 ∪ S2) = WD(S1) ∧ WD(S2)
WD(¬F ) = WD(F )

Fig. 7. Key clauses in well-definedness of expressions

null, S denotes sets of non-null objects, and f denotes fields. Fields can map
objects to objects (then they are denoted fO) or they can map objects to sets
(then they are denoted fS). We use formulas (the non-terminal F ) as part of
assume and assert statements, the conditions of while loops, and if statements
(which can be represented using assume and []). We use the object-valued and
set-valued terms of this language (the non-terminals O and S in Figure 4) on
the right-hand side of the assignment statements.

The meaning of constructs in this language is straightforward. Notation
x.f denotes a dereference of a field f of objects x, which can be thought of
as a function application that signals an error if the object x is null. Notation
fO[o1 7→ o2] denotes an update of an object-valued field fO so that o1.fO = o2

and the value of the same field for all other objects is the same; such update
operation corresponds array update if we view the field f as an array of objects
indexed by objects. Set operations in our language have standard meaning. In
the expression card(S) ≤ k, notation card(S) denotes the number of elements
(cardinality) of the set S, and k denotes a non-negative integer constant. For
complexity considerations, note that we represent integer constants in unary
notation, so a constant k has the length k as opposed to log k.

This paper considers decision procedures for the validity of formulas whose
syntax is given by non-terminal F in Figure 4. The validity of such formulas
can be used to show the validity of verification conditions in a programming
language. To illustrate this claim, we sketch a weakest-precondition seman-
tics of a guarded-command language in Figure 5. The language contains no
procedure calls or loops; these constructs can be transformed into loop-free
guarded commands using supplied loop invariants, procedure preconditions
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and procedure postconditions (see, for example, [58,14,32]). Figure 6 presents
the desugaring of field assignment as well as the desugaring of new statement
using a global variable alloc denoting the set of currently allocated objects
(the desugaring of new assumes that c is the only field of y). Figure 7 shows
some key clauses for computing the well-definedness condition of an expres-
sion; this condition ensures there are no null dereferences while computing
the expression. We present the key cases that check for null on field update
and field dereference; the remaining cases simply take the conjunction of the
conditions for constituent subexpressions, as illustrated in Figure 7 for the
case of ∪ operation.

4 Preliminary Observations

We first make several observations on deciding the validity of formulas in the
language of Figure 4.

Boolean closure and satisfiability. First note that the language is closed
under all boolean operations, which is a desirable property for program spec-
ifications [26]. An important consequence of the boolean closure is that the
validity problem for our constraints reduces to the satisfiability problem. In
the sequel, we will therefore only consider the satisfiability problem.

Propositional structure of constraints. Note further that our constraints
are quantifier-free. By a transformation into disjunctive normal form, the sat-
isfiability of constraints reduces to satisfiability of conjunctions of literals A
and ¬A where A is given by Figure 4. Algorithmically it is better to avoid the
transformation into disjunctive normal form, and view the satisfiability algo-
rithm as a non-deterministic procedure that selects a satisfying assignment to
atoms of the quantifier-free formula, and checks that the satisfying assignment
corresponds to a satisfiable conjunction of literals [13]. In any case, we reduce
satisfiability of constraints to satisfiability of conjunctions of literals.

Translation to unnested form. Note finally that we can transform every
conjunction of literals into an equisatisfiable unnested form which contains
no nested terms. We transform a formula into unnested form by introducing
fresh variables; these fresh variables become existentially quantified, because
we are looking at satisfiability. In the resulting unnested form, each atomic
formula is of one of the following syntactic forms: V 1

O = V 2
O.fO, VS = V 1

S ∪V 2
S ,

VS = V 1
S ∩ V 2

S , VS = V 1
S \ V 2

S , VS = {V 1
O, . . . , V n

O}, VS = VO.fS, V 1
f = V 2

f [V 1
O 7→

V 2
O], V 1

f = V 2
f [VO 7→ VS], V 1

O = V 2
O, VO ∈ VS, V 1

S = V 2
S , card(VS) ≤ k, V 1

f = V 2
f .

In the sequel we outline decidability of conjunctions of such unnested for-
mulas and their negations. We consider three different methods. We pay
most attention to the first method (Section 5). This method is based on a
previously well-studied class of formulas; what we found interesting is that
this class is applicable to such an expressive constraint language, and that it
yields the optimal complexity bound for this class, namely NP. It is interesting
to mention the use of Nelson-Oppen combination of theories because it shows
that our problem can be naturally decomposed into individual problems each

7



Kuncak, Rinard: Decision Procedures for Set-Valued Fields

of which can be solved using previously identified theories. Our result also
implies that each of these individual theories can be showed decidable using
the result of Section 5. Finally, the use of two-variable logic with counting is
interesting because it shows how to express some additional constraints that
go beyond the language in Figure 4.

5 A Classical Prefix-Vocabulary Class

In this section we outline our first technique for checking satisfiability of con-
junctions of unnested literals. This technique is based on the class of universal
formulas in first-order logic with a relational signature without function sym-
bols of non-zero arity. We translate conjunctions of literals into equisatisfiable
formulas in this class while introducing a constant number of universal quan-
tifiers.

The class [∃∗∀∗]=. Define the class [∃∗∀q]= as the set of all formulas of the
form ∃x1, . . . , xp. ∀y1, . . . , yq.F where p ≥ 0 and F is quantifier-free formula
of first-order logic with equality without function symbols. Let [∃∗∀∗]= be the
set of formulas

⋃
q≥0

[∃∗∀q]=. We then have the following two results [4, Page

258].

Fact 5.1 For any fixed q, satisfiability for [∃∗∀q]= is in NP. The satisfiability

for [∃∗∀∗]= is in NEXPTIME.

The decision procedure for [∃∗∀∗]= can be based on the small model property
and amounts to generating models with at most one element for each exis-
tentially quantified variable of a formula and evaluating the formula on those
models.

The idea of the translation. The translation of the language in Figure 4
into [∃∗∀∗]= class can be summarized as follows: 1) use unary relations to
represent sets, 2) use binary relations to represent object-valued and set-valued
fields, and 3) use universal quantifiers to represent set operations. To make
this approach work, we need to properly represent null references, eliminate
array updates by case analysis, and carefully translate cardinality constraints
to avoid introducing an unbounded number of quantifiers.

Axioms for fields. We represent both object-valued and set-valued fields
using binary relations. To ensure that object-valued fields are not assigned
multiple values simultaneously, for each object-valued field fO we introduce a
conjunct ∀x, y, z. fO(x, y) ∧ fO(x, z)⇒ y = z.

Representing null values. We identify two approaches for representing
variables denoting references that can be potentially null. The first approach
represents references as sets of cardinality of at most one. In this approach
the null reference is therefore an empty set. This approach is used in [47]
as well as in the typestate flag analysis plugin of the Hob system [28]. The
disadvantage of this approach is that reasoning about sets and relations is
generally more difficult than reasoning about elements.

In this paper we examine an alternative approach that retains the dis-

8



Kuncak, Rinard: Decision Procedures for Set-Valued Fields

F [[F ]]
V 1

O = V 2
O.fO fO(V 1

O, V 2
O)

VS = V 1
S ∪ V 2

S ∀+x. VS(x) ⇐⇒ V 1
S (x) ∨ V 2

S (x)
VS = V 1

S ∩ V 2
S ∀+x. VS(x) ⇐⇒ V 1

S (x) ∧ V 2
S (x)

VS = V 1
S \ V 2

S ∀+x. VS(x) ⇐⇒ V 1
S (x) ∧ ¬V 2

S (x)
VS = {V 1

O, . . . , V n
O} ∀+x. VS(x) ⇐⇒ x = V 1

O ∨ . . . ∨ x = V n
O

VS = VO.fS ∀+x. VS(x) ⇐⇒ fS(VO, x)
V 1

O = V 2
O V 1

O = V 2
O

VO ∈ VS VS(VO)
V 1

S = V 2
S ∀+x. V 1

S (x) ⇐⇒ V 2
S (x)

V 1
f = V 2

f ∀+x, y. V 1
f (x, y) ⇐⇒ V 2

f (x, y)
V 1

f = V 2
f [V 1

O 7→ V 2
O] ∀+x, y. V 1

f (x, y) ⇐⇒ ((x = V 1
O ∧ y = V 2

O) ∨
(x 6= V 1

O ∧ V 2
f (x, y)))

V 1
f = V 2

f [VO 7→ VS] ∀+x, y. V 1
f (x, y) ⇐⇒ ((x = VO ∧ VS(y)) ∨

(x 6= VO ∧ VS(x, y)))

Fig. 8. Rules for transforming positive literals into [∃∗∀∗]= fragment

tinction between sets and elements, and uses the constant null to represent
null references so that each field is a total function that may potentially have
null value. To make the decision procedure for [∃∗∀∗]= applicable to such en-
coding, we need to overcome the difficulty that is fundamental to the small
model property of the [∃∗∀∗]= class: although it is possible to write axioms
that constrain binary predicates to have at most one value for each argument,
it is not possible to constrain them to have exactly one value. As a result,
the satisfiability will consider models where some object-valued fields are not
total. We next make sure that such models do not pose a problem: we trans-
form the formula so that the following holds: if there is a model where some
object-valued fields are partial, then there is a completed model where these
fields have the value null. A completed model replaces the interpretation [[f ]]
with the interpretation [[f ]] ∪ {(x, null) | ¬∃y.(x, y) ∈ [[f ]]}. Here f denotes an
object-valued field, and [[f ]] denotes the interpretation of relation symbol f .
We first make sure to use only quantifiers that range over non-null objects.
We write ∀+x.F as a shorthand for ∀x.x 6= null⇒F . As a result, when x and
y are universally quantified, the truth value of an atomic formula f(x, y) is
not affected by completion. To ensure that a similar claim holds when one
of x, y is an existentially quantified variable, we ensure that for each vari-
able appearing in a binary relation symbol, the conjunction of literals always
contains either x 6= null or x = null. It then suffices to consider the case of
literals f(x, y) and ¬f(x, y) such that y = null occurs as one of the literals.
Note that, if f(x, y) holds in the original model, then we know that com-
pleted model will still satisfy f(x, y). Therefore, the only problem is the case
of literals ¬f(x, y) ∧ y = null. We therefore transform such conjunction into
f(x, z) ∧ z 6= null for a fresh (existentially quantified) variable z. The result
of the transformation is equivalent on models where f is total. We also intro-
duce the universal axiom ∀x.¬f(null, x) to simplify the structure of possible
models.
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Translating positive literals. Modulo the treatment of null references
discussed above, the expected semantics of operations in our language yields
translation rules. Figure 8 shows the translation of positive atomic formulas.

Translating negative literals. To translate a negative literal, negate
the translation of the underlying atomic formula as in Figure 8 by replacing
universal quantifiers with existential quantifiers. Because we are looking at
satisfiability, we drop existential quantifiers while making sure that the newly
introduced variables are fresh.

Translating cardinality constraints. We translate positive cardinality
constraint card(VS) ≤ k by introducing k fresh constants a1, . . . , ak, replacing
the constraint with VS = {a1, . . . , ak}, and then translating the result as
in Figure 8. We translate the negative cardinality constraint ¬(card(VS) ≤
k), which is equivalent to card(VS) ≥ k + 1, by introducing fresh constants
a1, . . . , ak, ak+1, and replacing the constraint with

∧

1≤i≤k+1

VS(ai) ∧
∧

1≤i<j≤k+1

ai 6= aj .

Complexity. We next show that satisfiability of formulas in Figure 4 is NP
complete. We have carefully constructed our translation so that it introduces
a bounded number of quantifiers. Indeed, each conjunct introduces at most
three universal quantifiers. By moving these quantifiers to prenex position
using the transformation

(∀x, y, z.F1(x, y, z)) ∧ (∀x, y, z.F2(x, y, z)) ;

∀x, y, z.(F1(x, y, z) ∧ F2(x, y, z))

we can write the formula in prenex form [∃∗∀3]=. Because the size of the
generated formula is polynomial in the size of the original formula and the
time to generate it is polynomial, by Fact 5.1 we conclude that checking
the satisfiability of one assignment to unnested atomic formulas is in NP.
Unnested form is polynomial in the size of conjunction of literals that speci-
fies an assignment to atomic formulas of a formula F in Figure 4, and picking
an assignment to atomic formulas can be done in NP. By composing these
two non-deterministic choices, we obtain an NP decision procedure for sat-
isfiability of expressions. NP-hardness follows trivially because our language
subsumes propositional logic. We conclude that the satisfiability of formulas
in Figure 4 is NP-complete.

Remarks on related work. Fragments of first-order logics based on quan-
tifier prefixes are systematized in [4, 17] where the [∃∗∀∗]= class is described
as Bernays-Schönfinkel-Ramsey class. Finite model finding tools such as Al-
loy [22], MACE [35] and Paradox [7] can therefore be used to check satisfia-
bility of such formulas. Resolution techniques [46] are also complete for this
class because the term model is finite.

Symbolic formulations of shape analysis such as [56, 55, 26, 53] can be
adapted to work with our specification language, so our decision procedure
can be used a component of a shape analysis. The idea of exploiting the pa-
rameterized complexity of [∃∗∀p]= seems more generally useful. For example,
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we can use it to obtain the fact that Boolean shape analysis constraints [26]
are NP-complete: it suffices to non-deterministically pick a satisfiable quan-
tified formula, and then observe that each of the quantified conjuncts is in
[∃∗∀2]=. [26] was influenced by [56], which points out the importance of [∃∗∀∗]=
fragment itself [56, Section 3.4, Page 20]. [21] studies the extensions of the
[∃∗∀∗]= fragment with transitive closure and shows several decidability and
undecidability results that delineate the boundary between decidable and un-
decidable extensions of [∃∗∀∗]=. Decidable extensions of [∃∗∀∗]= fragment are
useful for shape analysis of recursive structures. Nevertheless, by encapsu-
lating recursive data structures and specifying them using sets, even logics
without transitive closure can be useful in establishing high-level properties
of programs [25, 30, 27], following the idea that different levels of abstraction
require different reasoning techniques [29, 19].

6 Two-Variable Logics

In this section we show that two-variable logic with counting, denoted C2,
can be used to decide constraints in Figure 4, as well as some useful exten-
sions of these constraints. We consider the satisfiability problem and use a
language containing any number of constants, unary relation symbols, and
binary relation symbols.

Two-variable logics. The logic C2 is a first-order logic 1) extended with
counting quantifiers ∃≥kx.F (x), saying that there are at least k elements x
satisfying formula F (x) for some constant k, and 2) restricted to allow only
two variable names x, y in formulas. Note that the variables x and y may be
reused via quantifier nesting, and that formulas of the form ∃=kx. F (x) and
∃≤kx. F (x) are expressible as boolean combination of formulas of the form
∃≥kx. F (x). The logic C2 was shown decidable in [18] and the complexity
for the C2

1 fragment of C2 (with counting up to one) was established in [43].
Two-variable logic without counting L2 was known to be decidable previously
due to a finite model property [38], in fact there is a doubly exponential bound
on the size of the finite model. On the other hand, two-variable logic with
counting does not have a finite model property [18]. The usefulness of two-
variable logic with counting for reasoning about relations between objects was
identified in [25, 27] and its use for encoding description logics can be found
in e.g. [5, 1].

Encoding into two-variable logic with counting. We next explain
how to encode the constraints in Figure 4 into two-variable logic with count-
ing. It turns out that most of the ideas of the encoding in Section 5 ap-
ply to encoding using two-variable logic as well, because we only use at
most two universal quantifiers in Figure 8, and the existentially quantified
variables simply become constants in the language. To avoid using three
variables to express the fact that some relations are functions, we replace
∀x, y, z. fO(x, y)∧fO(x, z)⇒ y = z with ∀x.∃≤1y.f(x, y). Finally, we can even
express the cardinality constraints directly by replacing card(S) ≤ k with
∃≤kx.S(x).

11



Kuncak, Rinard: Decision Procedures for Set-Valued Fields

The additional expressive power of two-variable logic comes from express-
ing the constructs of the form ∀x.∃y.f(x, y). Such constructs allow us to
state non-null properties of objects, which are important for reasoning about
initialization of objects in object-oriented programming languages [12]. More-
over, counting quantifiers can naturally express high-level application con-
straints identified in the database community and object-oriented modelling
community as referential integrity, cardinality constraints, as well as role con-
straints [27].

7 Nelson-Oppen Combination

We next note that satisfiability of formulas in Figure 4 can be decided using a
multi-sorted Nelson-Oppen decision procedure that combines three individual
decision procedures 1) two-level syllogistic expressed as a component Nelson-
Oppen procedure as discussed in [57] 2) uninterpreted function symbols [41]
in multisorted language with function symbols whose result sort can be a set
sort, and 3) extensional theory of arrays [40,49]. Because an equivalence class
on shared variables in Nelson-Oppen procedure can be guessed using a non-
deterministic polynomial algorithm, and each individual decision procedure is
in NP, we conclude that a Nelson-Oppen combination decision procedure for
our language is also in NP.

Note that we can use Nelson-Oppen combination in conjunction with the
techniques presented in Section 5 and Section 6 because Nelson-Oppen method
allows quantifier-free combinations of formulas that themselves need not be
quantifier-free. The approach based on decomposing the language of Figure 4
into smaller Nelson-Oppen theories has the advantage of using previously un-
derstood and efficient decision procedures that may be useful in other contexts.
Moreover, no special encodings are necessary because the use of sorts naturally
decomposes constraints into the constraints of individual decidable theories.

8 Conclusions

We have outlined a range of possible techniques for solving constraints on set-
valued fields: the use of [∃∗∀∗]= class of first-order logic, the use of two-variable
logic with counting, and the use of Nelson-Oppen combination of decision
procedures. In addition to these techniques, it may be possible to use general-
purpose theorem provers on formulas that are of interest to us [10, 51, 52].
We are currently examining the structure of constraints generated by the Hob
system [29] to evaluate the effectiveness of different decision procedures.

Acknowledgements. We thank Darko Marinov for useful comments on an
earlier version of this paper and useful discussions about the use of sets in
symbolic execution.
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