
The Impossibility of Boosting Distributed Service Resilience ∗

Paul Attie1,3 Rachid Guerraoui2 Petr Kouznetsov2 Nancy Lynch3 Sergio Rajsbaum4

(1) College of Computer Science, Northeastern University

(2) Distributed Programming Laboratory, EPFL

(3) MIT Computer Science and Artificial Intelligence Laboratory

(4) Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM)

Abstract

We prove two theorems saying that no distributed sys-
tem in which processes coordinate using reliable reg-
isters and f -resilient services can solve the consensus
problem in the presence of f + 1 undetectable process
stopping failures. (A service is f -resilient if it is guar-
anteed to operate as long as no more than f of the
processes connected to it fail.)

Our first theorem assumes that the given services
are atomic objects, and allows any connection pat-
tern between processes and services. In contrast, we
show that it is possible to boost the resilience of sys-
tems solving problems easier than consensus: the k-
set consensus problem is solvable for 2k − 1 failures
using 1-resilient consensus services. The first theorem
and its proof generalize to the larger class of failure-
oblivious services.

Our second theorem allows the system to contain
failure-aware services, such as failure detectors, in ad-
dition to failure-oblivious services; however, it requires
that each failure-aware service be connected to all pro-
cesses. Thus, f + 1 process failures overall can dis-
able all the failure-aware services. In contrast, it is
possible to boost the resilience of a system solving con-
sensus if arbitrary patterns of connectivity are allowed
between processes and failure-aware services: consen-
sus is solvable for any number of failures using only
1-resilient 2-process perfect failure detectors.

1 Introduction

We consider distributed systems consisting of asyn-
chronously operating processes that coordinate using
reliable multi-writer multi-reader registers and shared
services. A service is a distributed computing mech-
anism that interacts with distributed processes, ac-
cepting invocations, performing internal computation

∗The first author was supported by the National Science
Foundation under Grant No. 0204432

steps, and delivering responses. Examples of services
include:

• Shared atomic (linearizable) objects, defined by se-
quential type specifications [11, 14], for example,
atomic read-modify-write, queue, counter, test&set,
and compare&swap objects. The consensus problem
can also be defined as an atomic object.

• Concurrently-accessible data structures such as bal-
anced trees.

• Broadcast services such as totally ordered broad-
cast [10].

• Failure detectors, which provide processes with
hints about the failure of other processes [5].1

Thus, our notion of a service is quite general. We de-
fine three successively more general classes of service—
atomic objects, failure-oblivious services, and general
(possibly failure-aware) services—in Sections 2, 6, and
7. We define our services to tolerate a certain number
f of failures: a service is f -resilient if it is guaranteed
to operate as long as no more than f of the processes
connected to it fail.

A fundamental, general question in distributed
computing theory is: “What problems can be solved
by distributed systems, with what levels of resilience,
using services of given types and levels of resilience?”
In this paper, we expose a basic limitation on the
achievable resilience, namely, that the resilience of
a system cannot be “boosted” above that of its ser-
vices. More specifically, we prove two theorems saying
that no distributed system in which processes coordi-
nate using reliable registers and f -resilient services can
solve the consensus problem in the presence of f + 1
process stopping failures.

1Our notion of service encompasses all failure detectors de-
fined by Chandra et al. [4] with one exception: we exclude failure
detectors that can guess the future.

1

We focus on the consensus problem because it has
been shown to be fundamental to the study of re-
silience in distributed systems. For example, Herlihy
has shown that consensus is universal [11]: an atomic
object of any sequential type can be implemented in a
wait-free manner (i.e., tolerating any number of fail-
ures), using wait-free consensus objects.

Our first main theorem, Theorem 1, assumes that
the given services are atomic objects and allows any
connection pattern between processes and services.
The result is a strict generalization of the classical im-
possibility result of Fischer et al. [8] for fault-tolerant
consensus. Our simple, self-contained impossibility
proof is based on a bivalence argument similar to the
one in [8]. The proof involves showing that decisions
can be made in a particular way, described by a hook
pattern of executions.

In contrast to the impossibility of boosting for con-
sensus, we show that it is possible to boost the re-
silience of systems solving problems easier than con-
sensus. In particular, we show that the k-set consen-
sus problem [6] is solvable for 2k − 1 failures using
1-resilient consensus services.

Theorem 1 and its proof assume that the given ser-
vices are atomic objects; however, they extend to the
larger class of failure-oblivious services. A failure-
oblivious service generalizes an atomic object by al-
lowing an invocation to trigger multiple processing
steps instead of just one, and to trigger any num-
ber of responses, at any endpoints. The service may
also include background processing tasks, not related
to any specific endpoint. The key constraint is that
no step may depend on explicit knowledge of failure
events. We define the class of failure-oblivious ser-
vices, give examples (e.g., totally-ordered broadcast),
and describe how Theorem 1 can be extended to such
services.

Our second main theorem, Theorem 11, addresses
the case where the system may contain failure-aware
services (e.g., failure detectors), in addition to failure-
oblivious services and reliable registers. This result
also says that boosting is impossible. However, it
requires the additional assumption that each failure-
aware service is connected to all processes; thus, f +1
process failures overall can disable all the failure-aware
services. The proof is an extension of the first proof,
using the same “hook” construction. We also show
that the stronger connectivity assumption is necessary,
by demonstrating that it is possible to boost the re-
silience of a system solving consensus if arbitrary con-
nection patterns are allowed between processes and
failure-aware services: specifically, consensus is solv-
able for any number of failures using only 1-resilient

2-process perfect failure detectors.

Related work. Our Theorem 1, for atomic services,
can be derived by carefully combining several earlier
theorems, including Herlihy’s result on universality of
consensus [11], and the result of Chandra et al. on
f -resiliency vs. wait-freedom [3] (see Appendix A).
However, this argument does not extend to prove im-
possibility of boosting for failure-oblivious and failure-
aware services. Moreover, some of the proofs upon
which this alternative proof rests are themselves more
complex than our direct proof.

Theorem 1 appeared first in a technical report [1].
Subsequent impossibility results for atomic objects ap-
peared in [9, 15]. Our models for failure-oblivious ser-
vices and general services are new. As far as we know,
this is the first time a unified framework has been used
to express atomic and non-atomic objects. Moreover,
this is the first time boosting analysis has been per-
formed for services more general than atomic objects.

Organization. Section 2 presents definitions for the
underlying model of concurrent computation and for
atomic objects. Section 3 presents our model for a
system whose services are atomic objects. Section 4
presents the first impossibility result. Section 5 shows
that boosting is possible for set consensus. Section 6
defines failure-oblivious services, gives an example,
and extends the first impossibility result to systems
with failure-oblivious services. Section 7 defines gen-
eral services, gives examples, and presents our sec-
ond main impossibility result. Appendix A shows how
Theorem 1 can be derived from results in [3, 11] and
why these arguments do not extend to services more
general than atomic services. Appendix B provides
the complete proofs for the extension of the first im-
possibility result to failure-oblivious services.

2 Mathematical Preliminaries

2.1 Model of concurrent computation

We use the I/O automaton model [18, chapter 8]
as our underlying model for concurrent computation.
We assume the terminology of [18, chapter 8]. An I/O
automaton A is deterministic iff, for each task e of A,
and each state s of A, there is at most one transition
(s, a, s′) such that a ∈ e.

An execution α of A is fair iff for each task e of
A: (1) if α is finite, then e is not enabled in the final
state of α, and (2) if α is infinite, then α contains
either infinitely many actions of e, or infinitely many

2

occurrences of states in which e is not enabled. A trace
of A is a sequence of external actions of A obtained
by removing the states and internal actions from an
execution of A. A trace of a fair execution is called
a fair trace. If α and α′ are execution fragments of
A (with α finite) such that α′ starts in the last state
of α, then the concatenation α · α′ is defined, and is
called an extension of α.

2.2 Sequential types

We define the notion of a “sequential type”, in or-
der to describe allowable sequential behavior of atomic
services. The definition used here generalizes the one
in [18, chapter 9]: here, we allow nondeterminism
in the choice of the initial state and the next state.
Namely, sequential type T = 〈V, V0, invs, resps, δ〉 con-
sists of:

• V , a nonempty set of values,

• V0 ⊆ V , a nonempty set of initial values,

• invs, a set of invocations,

• resps, a set of responses, and

• δ, a binary relation from invs×V to resps×V that is
total, in the sense that, for every (a, v) ∈ invs × V ,
there is at least one (b, v′) ∈ resps × V such that
((a, v), (b, v′)) ∈ δ.

We sometimes use dot notation, writing
T .V, T .V0, T .invs, . . . for the components of T .
We say that T is deterministic if V0 is a single-
ton set {v0}, and δ is a mapping, that is, for every
(a, v) ∈ invs×V , there is exactly one (b, v′) ∈ resps×V
such that ((a, v), (b, v′)) ∈ δ.

We allow nondeterminism in our definition of a se-
quential type in order to make our notion of “service”
as general as possible. In particular, the problem of
k-set-consensus can be specified using a nondetermin-
istic sequential type.

Example. Read/write sequential type: Here, V is a
set of “values”, V0 = {v0}, where v0 is a distinguished
element of V , invs = {read} ∪ {write(v) : v ∈ V },
resps = V ∪ {ack}, and δ = {((read, v), (v, v)) : v ∈
V } ∪ {((write(v), v′), (ack, v)) : v, v′ ∈ V }.

Example. Binary consensus sequential type: Here,
V = {{0}, {1}, ∅}, V0 = {∅}, invs = {init(v)) :
v ∈ {0, 1}}, resps = {decide(v) : v ∈ {0, 1}},
and δ = {((init(v), ∅), (decide(v), {v})) : v ∈ V } ∪
{((init(v), {v′}), (decide(v′), {v′})) : v, v′ ∈ V }

Example. k-consensus sequential type: Now V is
the set of subsets of {0, 1, . . . , k} having at most k el-
ements, V0 = {∅}, invs = {init(v) : v ∈ {0, 1, . . . , k}},
resps = {decide(v) : v ∈ {0, 1, . . . , k}}, and δ =

{((init(v), W), (decide(v′), W ∪ {v})) : |W | < k, v′ ∈
W ∪ {v}} ∪ {((init(v), W), (decide(v′), W)) : |W | =
k, v′ ∈ W}.
Thus, the first k values are remembered, and every
operation returns one of these values.

2.3 Canonical f -resilient atomic objects

A “canonical f -resilient atomic object” describes
the allowable concurrent behavior of atomic objects.
Namely, we define the canonical f -resilient atomic ob-
ject of type T for endpoint set J and index k, where

• T is a sequential type,

• J is a finite set of endpoints at which invocations
and responses may occur,

• f ∈ N is the level of resilience, and

• k is a unique index (name) for the service.

The object is described as an I/O automaton, in Fig-
ure 1.

The parameter J allows different objects to be con-
nected to the same or different sets of processes. A
process at endpoint i ∈ J can issue any invocation
specified by the underlying sequential type and can
(potentially) receive any allowable response. We al-
low concurrent (overlapping) operations, at the same
or different endpoints. The object preserves the or-
der of concurrent invocations at the same endpoint i
by keeping the invocations and responses in internal
FIFO buffers, two per endpoint (one for invocations
from the endpoint, the other for responses to the end-
point). The object chooses the result of an operation
nondeterministically, from the set of results allowed by
the transition relation T .δ applied to the invocation
and the current value of val. The object can exhibit
nondeterminism due to nondeterminism of sequential
type T , and due to interleavings of steps for different
invocations.

We model a failure at an endpoint i by an explicit
input action fail i. We use the task structure of I/O
automata and the basic definition of fair executions to
specify the required resilience: For every process i ∈ J ,
we assume the service has two tasks, which we call the
i-perform task and i-output task. The i-perform task
includes the performi,k action, which carries out op-
erations invoked at endpoint i. The i-output task in-
cludes all the bi,k actions giving responses at i. In ad-
dition, every i-* task (∗ is perform or output) contains
a special dummy ∗i,k action, which is enabled when ei-
ther process i has failed or more than f processes in
J have failed. The dummy ∗i,k action is intended to
allow, but not force, the service to stop performing

3

CanonicalAtomicObject(T , J, f, k),
where T = 〈V, V0, invs, resps, δ〉

Signature:
Inputs:
ai,k, a ∈ invs, i ∈ J, the invocations at endpoint i
faili, i ∈ J

Outputs:
bi,k, b ∈ resps, i ∈ J, the responses at endpoint i

Internals:
performi,k, i ∈ J
dummy ∗i,k, ∗ ∈ {perform, output}, i ∈ J

State components:
val ∈ V , initially an element of V0
inv−buffer, a mapping from J to finite sequences of invs,

initially identically empty
resp−buffer, a mapping from J to finite sequences of resps

initially identically empty
failed ⊆ J, initially ∅

Transitions:
Input: ai,k

Effect:
add a to end of inv−buffer(i)

Internal: performi,k

Precondition:
a = head(inv−buffer(i))
δ((a, val), (b, v))

Effect:
remove head of inv−buffer(i)
val ← v
add b to end of resp−buffer(i)

Output: bi,k

Precondition:
b = head(resp−buffer(i))

Effect:
remove head of resp−buffer(i)

Input: faili
Effect:

failed ← failed ∪ {i}

Internal: dummy ∗i,k

Precondition:
i ∈ failed ∨ |failed| > f ∨ failed = J

Effect:
none

Tasks:
For every i ∈ J:

i-perform: {performi,k, dummy performi,k}
i-output: {bi,k : b ∈ resps} ∪ {dummy outputi,k}

Figure 1: A canonical atomic object.

steps on behalf of process i after i fails or after the
resilience level has been exceeded.

The definition of fairness for I/O automata says
that each task must get infinitely many turns to take
steps. In this context, this implies that, for every
i ∈ J , the object eventually responds to an outstand-
ing invocation at i, unless either i fails or more than
f processes in J fail. If i does fail or more than f
processes in J fail, the fairness definition allows the
object to perform the dummy ∗i,k action every time

the i − ∗ task gets a turn, which permits the object
to avoid responding to i. In particular, if more than
f processes fail, the object may avoid responding to
any process in J , since dummy ouput i,k is enabled for
all i ∈ J . Also, if all processes connected to the ser-
vice (i.e., all processes in J) fail, the object may avoid
responding to any process.

Thus, the basic fairness definition expresses the idea
that the object is f -resilient: Once more than f of the
processes connected to the object fail, the object itself
may “fail” by becoming silent. However, although the
object may stop responding, it never violates its safety
guarantees, that is, it never returns values inconsistent
with the underlying sequential type specification.

A canonical atomic object whose sequential type is
read/write is called a canonical register. In this paper,
we will consider canonical reliable (wait-free) registers.

2.4 f -resilient atomic objects

An I/O automaton A is an f -resilient atomic object
of type T for endpoint set J and index k, provided that
it implements the canonical f -resilient atomic object
S of type T for J and k, in the following sense:

1. A and S have the same input actions (including
fail actions) and the same output actions.

2. Any trace of A is also a trace of S. (This implies
that A guarantees atomicity.)

3. Any fair trace of A is also a fair trace of S. (This
says that A is f -resilient.)

We say that A is wait-free (or, reliable), if it is (|J |−1)-
resilient. This is equivalent to saying that (a) A is |J |-
resilient, or (b) A is f -resilient for some f ≥ |J | − 1,
or (c) A is f -resilient for every f ≥ |J | − 1.

3 System Model with Atomic Objects

Our system model consists of a collection of process
automata, reliable registers, and fault-prone atomic
objects (which we sometimes refer to as services). For
this section, we fix I, K, and R, finite (disjoint) index
sets for processes, services, and registers, respectively,
and T , a sequential type, representing the problem the
system is intended to solve. A distributed system for
I, K, R, and T is the composition of the following I/O
automata (see [18, chapter 8]):

1. Processes Pi, i ∈ I,
2. Services (atomic objects) Sk, k ∈ K. We let Tk

denote the sequential type, and Jk ⊆ I the set of
endpoints, of service Sk. We assume k itself is the
index.

4

3. Registers Sr, r ∈ R. We let Vr denote the value
set and v0,r the initial value for register Sr. We
assume r is the index.

Processes interact only via services and registers.
Process Pi can invoke an operation on service Sk pro-
vided that i ∈ Jk. Process Pi can also invoke a read
or write operation on register Sr provided that i ∈ Jr.
Services and registers do not communicate directly
with one another, but may interact indirectly via pro-
cesses. In the remainder of this section, we describe
the components in more detail and define terminology
needed for the results and proofs.

3.1 Processes

We assume that process Pi, i ∈ I has the following
inputs and outputs:

• Inputs ai, a ∈ T .invs, and outputs bi, b ∈ T .resps.
These represent Pi’s interactions with the external
world.

• For every service Sk such that i ∈ Jk, outputs ai,k,
a ∈ Tk.invs, and inputs bi,k, b ∈ Tk.resps.

• For every register Sr, outputs ai,r, where a is a read
or write invocation of Sr, and inputs bi,r, where b is
a response of Sr.

• Input fail i.

Pi may issue several invocations, on the same or
different services or registers, without waiting for re-
sponses to previous invocations. The external world
at Pi may also issue several invocations to Pi without
waiting for responses. As a technicality, we assume
that when Pi performs a decide(v)i output action, it
records the decision value v in a special state compo-
nent.

We assume that Pi has only a single task, which
therefore consists of all the locally-controlled actions of
Pi. We assume that in every state, some action in that
single task is enabled. We assume that the fail i input
action affects Pi in such a way that, from that point
onward, no output actions are enabled. However,
other locally-controlled actions may be enabled—in
fact, by the restriction just above, some such action
must be enabled. This action might be a “dummy”
action, as in the canonical resilient atomic objects de-
fined in Section 2.3.

3.2 Services and registers

We assume that service Sk is the canonical f -
resilient atomic object of type Tk for Jk and k. Like-
wise, we assume that register Sr is the canonical wait-

free atomic read/write object with value set Vr and
initial value v0,r, for Jr and r.

3.3 The complete system

The complete system C is constructed by composing
the Pi, Sk, and Sr automata and then hiding all the
actions used to communicate among them.

For any action a of C, we define the participants of
action a to be the set of automata with a in their sig-
nature. Note that no two distinct registers or services
participate in the same action a, and similarly no two
distinct processes participate in the same action. Fur-
thermore, for any action a, the number of participants
is at most 2. Thus, if an action a has two participants,
they must be a process and either a service or register.

As we defined earlier, each process Pi has a sin-
gle task, consisting of all the locally controlled actions
of Pi. Each service or register Sc, c ∈ K ∪ R, has
two tasks for each i ∈ Jc: i-perform, consisting of
{performi,k, dummy perform i,k}, and i-output, con-
sisting of {bi,k : b ∈ Tk.resps} ∪ {dummy output i,k}.
These tasks define a partition of the set of all actions
in the system, except for the inputs of the process au-
tomata that are not outputs of any other automata,
namely, the invocations by the external world and the
fail i actions. The I/O automata fairness assumptions
imply that each of these tasks get infinitely many turns
to execute.

We say that a task e is applicable to a finite execu-
tion α iff some action of e is enabled in the last state
of α.

3.4 The consensus problem

The “traditional” specification of f -resilient binary
consensus is given in terms of a set {Pi, i ∈ I} of
processes, each of which starts with some value vi

in {0, 1}. Processes are subject to stopping failures,
which prevent them from producing any further out-
put.2 As a result of engaging in a consensus algorithm,
each nonfaulty process eventually “decides” on a value
from {0, 1}. The behavior of processes is required to
satisfy the following conditions (see, e.g., [18, chapter
6]):

Agreement No two processes decide on different val-
ues.

Validity Any value decided on is the initial value of
some process.

2Stopping failures are usually defined as disabling the pro-
cess from executing at all. However, the two definitions are
equivalent with respect to overall system behavior.

5

Termination In every fair execution in which at
most f processes fail, all nonfaulty processes
eventually decide.

In this paper, we specify the consensus problem dif-
ferently: We say that a distributed system S solves
f -resilient consensus for I if and only if S is an f -
resilient atomic object of type consensus (Section 2.2)
for endpoint set I. We argue that any system that
satisfies our definition satisfies a slight variant of the
traditional one. In this variant, inputs arrive explicitly
via init() actions, not all nonfaulty processes need re-
ceive inputs, and only nonfaulty processes that do re-
ceive inputs are guaranteed to eventually decide. Our
agreement and validity conditions are the same as be-
fore; our new termination condition is:

Termination In every fair execution in which at
most f processes fail, any nonfaulty process that
receives an input eventually decides.

4 Impossibility of Boosting for
Atomic Objects

Our first main theorem is:

Theorem 1 Let n = |I| be the number of processes,
and let f be an integer such that 0 ≤ f < n−1. There
does not exist an (f +1)-resilient n-process implemen-
tation of consensus from canonical f -resilient atomic
objects and canonical reliable registers.

To prove Theorem 1, we assume that such an im-
plementation exists and derive a contradiction. Let
C denote the complete system, that is, the composi-
tion of the processes Pi, i ∈ I, services Sk, k ∈ K,
and registers Sr, r ∈ R. By assumption, C satisfies
the agreement, validity and termination properties of
consensus.

For each component c ∈ K ∪ R and i ∈ Jc (recall
that Jc denotes the endpoints of c) let inv−buffer(i)c

denote the invocation buffer of c, which stores invoca-
tions from Pi, and let resp−buffer(i)c denote the re-
sponse buffer of c, which stores responses to Pi. Also
let buffer(i)c = 〈inv−buffer(i)c, resp−buffer(i)c〉.

4.1 Assumption

To prove Theorem 1, we make the following as-
sumption:

(i) We assume that the processes Pi, i ∈ I, are deter-
ministic automata, as defined in Section 2.1. For
services, we assume a slightly weaker condition:

that the sequential type is deterministic, i.e, the
sequential type has a unique initial value and the
transition relation δ is a mapping. Note that the
sequential type for registers is also deterministic,
by definition.

Assumption (i) implies that, after a finite failure-
free execution α, an applicable task e determines a
unique transition, arising from running task e from
the final state s of α. We denote this transition as
transition(e, s) (since it is uniquely defined by the fi-
nal state s). If transition(e, s) = (s, a, s′), then we
write first(e, s), action(e, s), and last(e, s) to denote
s, a, and s′, respectively. We sometimes abbreviate
last(e, s) as e(s). Note that, if s is the final state
of α, then transition(e, s), first(e, s), action(e, s), and
last(e, s) are defined iff e is applicable to α.

Assumption (i) implies that any failure-free execu-
tion can be defined by applying a sequence of tasks,
one after the other, to the initial state of C. Assump-
tion (i) does not reduce the generality of our impos-
sibility result, because any candidate system could be
restricted to satisfy (i); if the impossibility result holds
for the restricted automaton, then it also holds for the
original one.

Lemma 2 Let α be any finite failure-free execution
of C, e be any task of C applicable to α, and α · β be
any failure-free extension of α such that β includes no
actions of e. Then e is applicable to α · β.

Proof: Task e is either a process task, service task,
or register task. If e is a process task, then e is
applicable to any finite execution, by our assumption
that each process always has some enabled locally
controlled action. If e is a service task, say of service
Sk, then applicability of e to α means that service
Sk has either a pending invocation in an inv−buffer
or a pending response in a resp−buffer , after α.
Since β does not include any actions of e, and the
invocation or response remains pending as long as e
is not scheduled, e is also applicable after α · β. If e is
a register task, the argument is similar. �

Let s be any state of C arising after a finite failure-
free execution α of C, and let e be a task that is appli-
cable to α (equivalently, enabled in s). Then we write
participants(e, s) for the set of participants of action
action(e, s). Note that, for any task e and any state s,
|participants(e, s)| ≤ 2. Also, if |participants(e, s)| =
2, then participants(e, s) is of the form {Pi, Sc}, for
some i ∈ I and c ∈ K ∪ R.

6

4.2 Initializations and valence

In our proof, we consider executions in which con-
sensus inputs arrive from the external world at the
beginning of the execution. Thus, we define an ini-
tialization of C to be a finite execution of C containing
exactly one init()i action for each i ∈ I, and no other
actions. An execution α of C is input-first if it has an
initialization as a prefix, and contains no other init()
actions. A finite failure-free input-first execution α is
defined to be 0-valent if (1) some failure-free extension
of α contains a decide(0)i action, for some i ∈ I, and
(2) no failure-free extension of α contains a decide(1)i

action, for any i ∈ I. The definition of a 1-valent ex-
ecution is symmetric. A finite failure-free input-first
execution α is univalent if it is either 0-valent or 1-
valent. A finite failure-free input-first execution α is
bivalent if (1) some failure-free extension of α contains
a decide(0)i action, for some i, and (2) some failure-
free extension of α contains a decide(1)i action, for
some i. These definitions immediately imply the fol-
lowing result:

Lemma 3 Every finite failure-free input-first execu-
tion of C is either bivalent or univalent.

The following lemma provides the first step of the
impossibility proof:

Lemma 4 C has a bivalent initialization.

Proof: Write I = {1, . . . , n}. For each i ∈
{0, . . . , n}, let αi be an initialization of C in which pro-
cesses P1, . . . , Pi receive initial value 1 and processes
Pi+1, . . . , Pn receive 0. By the validity property of C
and Lemma 3, α0 is 0-valent, αn is 1-valent, and every
αj (j ∈ {0, . . . , n}) is either univalent or bivalent.

Then there must be some index i ∈ {0, . . . , n − 1}
such that αi is 0-valent and αi+1 is either 1-valent
or bivalent. The only difference between the initial-
izations in αi and αi+1 is the initial value of Pi. So
consider a failure-free extension of αi that is fair, ex-
cept that Pi takes no steps. Since this execution looks
to the rest of the system like an execution in which
Pi has failed, the termination condition requires that
the other processes must eventually decide. Since the
execution is in fact failure-free and αi is 0-valent, the
decision must be 0.

Now, an analogous failure-free extension may be
constructed for αi+1, also leading to a decision of
0. Since, by assumption, αi+1 is either 1-valent or
bivalent, it must be bivalent. �

For the rest of this section, fix αb to be any partic-
ular bivalent initialization of C.

s

αb(s⊥)

e′e

e

s0 (0-valent)

s1 (1-valent)

s′

Figure 2: A hook starting in α.

4.3 The graph G(C)

Now define an edge-labeled directed graph G(C) as
follows:

(1) The vertices of G(C) are the finite failure-free
input-first extensions of the bivalent initialization
αb.

(2) G(C) contains an edge labeled with task e from α
to α′ provided that α′ = e(α).

By assumption (i) of Section 4.1, any task triggers at
most one transition after a failure-free execution α.
Therefore, for any vertex α of G(C) and any task e,
there is at most one edge labeled with e outgoing from
α.

4.4 The existence of a hook

We show that decisions in C can be made in a par-
ticular way, described by a hook pattern of executions.
Similarly to [4], we define a hook to be a subgraph of
G(C) of the form depicted in Figure 2.

Lemma 5 G(C) contains a hook.

Proof: Starting from the bivalent vertex αb of G(C),
we generate a path π in G(C) that passes through bi-
valent vertices only, as follows. We consider all tasks
in a round-robin fashion. Suppose we have reached a
bivalent execution α so far, and task e is the next task
in the round-robin list that is applicable to α. (We
know such a task exists because the process tasks are
always applicable.)

Lemma 2 implies that, for any finite failure-free ex-
tension α′ of α (such that e is not executed along the

7

suffix of α′ starting in the last state of α) e is applicable
to α′, and hence e(α′) is defined. We look for a vertex
α′ of G(C), reachable from α in G(C) without following
any edge labeled with e, such that e(α′) is bivalent. If
no such vertex α′ exists, the path construction termi-
nates. Otherwise, we proceed to e(α′) and continue
by processing the next task in the round-robin order.
This construction is presented in Figure 3. Each com-
pleted iteration of the loop extends the path by at
least one edge. Let π be the path generated by this
construction.

First suppose that π is infinite. Then π corresponds
to a fair failure-free input-first execution α of C. More-
over, every finite input-first prefix of α is bivalent.
Thus, no process can decide in α (for otherwise, the
agreement property of C would be violated). This is a
contradiction, so π must be finite.

1: α ← αb

2: while true do
3: Let e be the next task (in round-robin order)

applicable to α
4: if α has a descendant α′ in G(C) such that

the path from α to α′ includes
no e labels and e(α′) is bivalent then

5: choose some such α′

6: α ← e(α′)
7: else
8: exit

Figure 3: Hook location in G(C).

Let α be the last vertex of π. By construction, α
is bivalent. Upon termination of the above path con-
struction in vertex α, let e be the next task in round
robin order that is applicable to α. Such an e al-
ways exists since nonfaulty processes can always take
a step, by assumption. Since the path construction
terminated in α, we conclude that e satisfies the fol-
lowing condition: for any descendant α′ of α, such
that the path from α to α′ includes no e labels, e(α′)
is univalent.

Without loss of generality, assume that e(α) is 0-
valent. Since α is bivalent, there is a descendant α′ of
α such that e(α′) is 1-valent. Let σ0, . . . , σm be the
sequence of vertices of G(C) on the path from α to α′,
and for each j, 0 ≤ j ≤ m − 1, let ej be the label of
the edge on this path from σj to σj+1. Thus, σj+1 =
ej(σj). By construction, e(σ0) is 0-valent, e(σm) is

1-valent, and every e(σj), j ∈ {1, . . . , m − 1}, is uni-
valent. Thus, there exists an index j ∈ {0, . . . , m− 1}
such that e(σj) is 0-valent and e(σj+1) is 1-valent.

As a result, we obtain a hook (Figure 2) with e in
the hook equal to e in this proof, α = σj , α′ = σj+1,
α0 = e(σj), α1 = e(σj+1), and e′ = ej . �

4.5 Similarity

In this section, we introduce notions of similarity
between system states. These will be used in showing
non-existence of a hook, which will yield the contra-
diction needed for the impossibility proof. First, we
define j-similar system states.

Let j ∈ I and let s0 and s1 be states of C. Then s0

and s1 are j-similar if:

(1) For every i ∈ I − {j}, the state of Pi is the same
in s0 and s1.

(2) For every c ∈ K ∪ R:

1. The value of valc is the same in s0 and s1.
2. For every i ∈ Jc − {j}, the value of buffer(i)c

is the same in s0 and s1.

Lemma 6 Let j ∈ I. Let α0 and α1 be finite failure-
free input-first executions, s0 and s1 the respective fi-
nal states of α0 and α1. Suppose that s0 and s1 are
j-similar. If α0 and α1 are univalent, then they have
the same valence.

Proof: We proceed by contradiction. Fix j, α0, α1,
s0, and s1 as in the hypotheses of the lemma, and
suppose (without loss of generality) that α0 is 0-valent
and α1 is 1-valent. Let J ⊆ I be any set of indices
such that j ∈ J and |J | = f + 1. Since f < n − 1 by
assumption, we have |J | < n, and so I−J is nonempty.

Consider a fair extension of α0, α0 ·β, in which the
first f + 1 actions of β are fail i, i ∈ J , and no other
fail actions occur in β. Note that, for all i ∈ J , β
contains no output actions of Pi. Assume that in β,
no perform i,c or bi,c (i.e., a response) action of any
i-* task, i ∈ J , occurs at any component c ∈ K ∪ R;
we may assume this because, for each i ∈ J , action
fail i enables a dummy action in every i-* task of every
service and register (∗ is perform or output).

Since α0 is a failure-free input-first execution, the
resulting extension α0 ·β is a fair input-first execution
containing f + 1 failures. Therefore, the termination
property for (f + 1)-resilient consensus implies that
there is a finite prefix of α0 · β, which we denote by
α0 · γ, that includes decide(v)l for some l /∈ J and
v ∈ {0, 1}. Construct α0 ·γ′, where γ′ is obtained from

8

γ by removing the fail i action, all dummy actions, and
any remaining internal actions of Pi, i ∈ J . Thus,
α0 · γ′ is a failure-free extension of α0 that includes
decide(v)l. Since α0 is 0-valent, v must be equal to 0.

We claim that decide(0)l occurs in the suffix γ′,
rather than in the prefix α0. Suppose for contradic-
tion that the decide(0)l action occurs in the prefix α0.
Then by our technical assumption about processes, the
decision value 0 is recorded in the state of l. Since s0

and s1 are j-similar and l �= j, the same decision value
0 appears in the state s1. But this contradicts the as-
sumption that α1, which ends in s1, is 1-valent. So, it
must be that the decide(0)l occurs in the suffix γ′.

Now we show how to append essentially the same
γ′ after α1. We know that, for every i ∈ J , γ′ con-
tains no locally controlled action of Pi, and contains no
perform i,c or bi,c action (b ∈ resps), for any c ∈ K∪R.
By definition of j-similarity, we have:

(a) For every i /∈ J , the state of Pi is the same in s0

and s1.

(b) For every c ∈ K ∪ R,

1. The value of valc is the same in s0 and s1 (that
is, in the final states of α0 and α1).

2. For every i ∈ Jc − J , the value of buffer(i)c is
the same in s0 and s1.

Thus:

(c) If γ′ contains any locally controlled actions of a
process i, then the state of Pi is the same in s0

and s1.

(d) For every c ∈ K ∪ R,

1. The value of valc is the same in s0 and s1.
2. For every i ∈ Jc, if γ′ contains any perform i,c

or bi,c (b ∈ resps) actions of c, then the value
of buffer(i)c is the same in s0 and s1.

It follows that it is possible to append “essentially”
the same γ′ after α1, resulting in a failure-free
extension of α1 that includes decide(0)l.

3 But α1 is
1-valent — a contradiction. �

Similarly, we define the notion of k-similar states:
Let k ∈ K, and let s0 and s1 be states of C. Then s0

and s1 are k-similar if the following conditions hold:

(1) For every i ∈ I, the state of Pi is the same in s0

and s1.
3Really, we are appending another execution fragment γ′′

after α1 — one that looks the same to all the processes and
service tasks that take steps in γ′.

(2) For every c ∈ (K − {k}) ∪ R, the state of Sc is
the same in s0 and s1.

Lemma 7 Let k ∈ K. Let α0 and α1 be finite failure-
free input-first executions, s0 and s1 the respective fi-
nal states of α0 and α1. Suppose that s0 and s1 are
k-similar. If α0 and α1 are univalent, then they have
the same valence.

Proof: Fix k, α0, α1, s0, and s1 as in the hypotheses
of the lemma. By contradiction, suppose (without loss
of generality) that α0 is 0-valent and α1 is 1-valent.
Let J ⊆ I be any set of indices such that |J | = f + 1,
and, if |Jk| ≤ f + 1, then Jk ⊆ J , whereas if |Jk| >
f + 1, then J ⊆ Jk.

Consider a fair extension of α0, α0 ·β, in which the
first f + 1 actions of β are fail i, i ∈ J , and no other
fail actions occur in β. Note that, for all i ∈ J , β
contains no output actions of i. Assume that in β, no
perform i,k or bi,k action (b ∈ resps) of Sk occurs; we
may assume this because the f + 1 fail actions enable
dummy actions in all tasks of Sk.

Since α0 is a failure-free input-first execution, the
resulting extension α0 ·β is a fair input-first execution
containing f + 1 fail actions. Therefore, the termi-
nation property for f + 1-resilient consensus implies
that there is a finite prefix of α0 · β, which we denote
by α0 · γ, that includes decide(v)l for some l ∈ I − J
and v ∈ {0, 1}. We know that decide(0)l occurs in the
suffix γ, rather than in the prefix α0, by an argument
similar to that in the proof of Lemma 6.

Now construct α0 · γ′, where γ′ is obtained from γ
by removing all the fail i actions, i ∈ J , and all dummy
actions. Thus, α0 · γ′ is a failure-free extension of α0

that includes decide(v)l. Since α0 is 0-valent, v must
be equal to 0.

Now we show how to append essentially the same
γ′ after α1. By definition of k-similarity, we have:

(a) For every i ∈ I, the state of Pi is the same in s0

and s1.

(b) For every c ∈ (K − {k})∪R, the state of Sc is the
same in s0 and s1.

Thus:

(c) For every c ∈ K ∪ R, if γ′ contains any perform i,c

or bi,c actions of Sc, then the state of Sc is the same
in s0 and s1, since c �= k in this case.

By properties (a) and (c), it follows that it is possible
to append “essentially” the same γ′ after α1, (differing
only in the state of Sk) resulting in a failure-free
extension of α1 that includes decide(0)l. But α1 is
1-valent — a contradiction. �

9

4.6 The non-existence of a hook

Now we are ready to prove the absence of hooks.

Lemma 8 G(C) contains no hooks.

Proof: By contradiction. Assume that a hook exists,
as depicted in Figure 2. Let s, s′, s0, and s1 be the
respective final states of α, α′, α0, and α1, and let e
and e′ be the two tasks involved in the hook, as shown.
Since α0 and α1 are 0-valent and 1-valent, respectively,
by Lemmas 6 and 7, s0 and s1 cannot be j-similar for
any j ∈ I, or k-similar for any k ∈ K. In particular,
we cannot have s0 = s1. Also, note that e′(α0) is 0-
valent, since it is an extension of a 0-valent execution.
Therefore, again, by Lemmas 6 and 7, e′(s0) and s1

cannot be j-similar for any j ∈ I, or k-similar for any
k ∈ K. In particular, we cannot have e′(s0) = s1. We
establish the contradiction using a series of claims:

Claim 1: e �= e′.
Suppose for contradiction that e = e′. Then by de-
terminism (Assumption (i) in Section 4.1), we have
α0 = α′. However, α0 is 0-valent, whereas α′ has a
1-valent failure-free extension α1 — a contradiction.

Claim 1 and Lemma 2 imply that e′ is enabled from
e(s).

Claim 2: participants(e, s) ∩ participants(e′, s) �= ∅.
Suppose for contradiction that participants(e, s) ∩
participants(e′, s) = ∅. Therefore, the two tasks com-
mute, that is, e′(e(s)) = e(e′(s)). In other words,
e′(s0) = s1 — a contradiction.

Since participants(e, s) ∩ participants(e′, s) �= ∅, ei-
ther a process, service, or register must be in the inter-
section. We prove three claims showing that none of
these possibilities can hold, thus obtaining the needed
contradiction.

Claim 3: There does not exist i ∈ I such that
Pi ∈ participants(e, s) ∩ participants(e′, s).
Suppose for contradiction that Pi ∈ participants(e, s)∩
participants(e′, s). Then the two actions action(e, s)
and action(e′, s) involve only Pi and the buffers
buffer(i)c, c ∈ K ∪ R. Furthermore (since the same
task e is used), the action action(e, s′) also involves
only Pi and the buffers buffer(i)c, c ∈ K ∪ R. But
then the states s0 and s1 can differ only in the state
of Pi and in the values of buffer(i)c, c ∈ K ∪ R. This
implies that s0 and s1 are i-similar — a contradiction.

Claim 4: There does not exist k ∈ K such that
Sk ∈ participants(e, s) ∩ participants(e′, s).
Suppose for contradiction that Sk ∈

participants(e, s) ∩ participants(e′, s). There are
four possibilities:

1. participants(e, s) = participants(e′, s) = {Sk}.
Then e and e′ must be perform tasks of Sk, and
so involve only the state of Sk. But then the
states s0 and s1 can differ only in the state of Sk.
So s0 and s1 are k-similar — a contradiction.

2. For some i ∈ I, participants(e, s) = {Sk, Pi} and
participants(e′, s) = {Sk}.
Then the two tasks commute, that is, e′(s0) = s1

— a contradiction.

3. For some i ∈ I, participants(e′, s) = {Sk, Pi}
and participants(e, s) = {Sk}.
Again, the two tasks commute, that is, e′(s0) =
s1 — a contradiction.

4. For some i, j ∈ I, participants(e, s) = {Sk, Pi}
and participants(e′, s) = {Sk, Pj}.
By Claim 3, we know that i �= j. Then again,
the two tasks commute, so e′(s0) = s1 — a con-
tradiction.

Note that for cases 2 and 3 above (but not case
4), whenever action(e, s) and action(e′, s) access the
same buffer, one action inserts an intem and the other
removes an intem. Hence the actions commute.

Claim 5: There does not exist r ∈ R such that
Sr ∈ participants(e, s) ∩ participants(e′, s).
Suppose for contradiction that Sr ∈
participants(e, s) ∩ participants(e′, s). There are
four possibilities:

1. participants(e, s) = participants(e′, s) = {Sr}.
Then e and e′ must be perform tasks of reg-
ister Sr. Without loss of generality, suppose
that action(e, s) is performi,r and action(e′, s)
is performj,r. Since e �= e′, we have i �= j. We
consider subcases based on whether the two op-
erations performed are reads or writes:

(a) action(e, s) and action(e′, s) both perform
read operations.
Then the two tasks commute, so e′(s0) = s1

— a contradiction.

(b) action(e, s) performs a write operation.
Then states s0 and s1 can differ only
in the value of inv−buffer(j)r and
resp−buffer(j)r : in s1, an invocation
is missing from inv−buffer(j)r and
an extra response appears at the end
of resp−buffer(j)r, with respect to
inv−buffer(j)r and resp−buffer(j)r in

10

s0. So s0 and s1 are j-similar — a
contradiction.

(c) action(e, s) performs a read operation and
action(e′, s) performs write(v).
Then e′(s0) and s1 differ only in the value
of resp−buffer(i)r (different read responses
may be appended at the end). So e′(s0) and
s1 are i-similar — a contradiction.

2. For some i ∈ I, participants(e, s) = {Sr, Pi} and
participants(e′, s) = {Sr}.
Then the two tasks commute, so e′(s0) = s1 —
a contradiction.

3. For some i ∈ I, participants(e′, s) = {Sr, Pi} and
participants(e, s) = {Sr}.
Again, the two tasks commute, so e′(s0) = s1 —
a contradiction.

4. For some i, j ∈ I, participants(e, s) = {Sr, Pi}
and participants(e′, s) = {Sr, Pj}.
By Claim 3, we know that i �= j. Then the two
tasks commute, so e′(s0) = s1 — a contradic-
tion.

Now Claims 3, 4, and 5 together imply that
participants(e, s) ∩ participants(e′, s) = ∅. But this
directly contradicts Claim 2. �

Lemma 5 contradicts Lemma 8. Hence we have
derived a contradiction by assuming the negation of
Theorem 1. Hence Theorem 1 is established.

5 k-Set Consensus

Our boosting impossibility result concerns consen-
sus implementations. Interestingly, while it is not pos-
sible to implement (f + 1)-resilient consensus using
registers and f -resilient atomic objects, this is not the
case for the k-set consensus problem [6]. In k-set con-
sensus, the processes have to agree on at most k differ-
ent values (k-set consensus reduces to consensus when
k = 1).

Consider a set of f -resilient k-set consensus ser-
vices, each one exporting m ports. An algorithm that
implements f ′-resilient k′-set consensus works as fol-
lows. Take a principal subset of the processes, and
divide it into s disjoint groups, each one accessing a
different service. Each principal process participates
in an execution proposing its input value to its des-
ignated service. When it gets a decision back, the
process decides on the value and writes it in a shared
register. The remaining processes simply wait until

at least one principal process writes the value. The
values of k′ and f ′ depend on the size of the princi-
pal set, and on the number s of services we divide it
into. There is a tradeoff between k′ and f ′: if a small
number of failures f ′ is tolerated, then a high degree
of agreement is achieved, namely a small k′. If more
failures f ′ must be tolerated, then a lower degree of
agreement is achieved, namely a large k′.

To achieve correctness, we must ensure first that at
least one principal process receives a decision from its
service and communicates the decision to all, i.e., (1)
every f -resilient service is connected to f+1 processes,
and (2) fewer than s · (f + 1) principal processes can
fail: f ′ < s · (f +1). Thus, there is at least one service
S that is not killed, and moreover, there is at least one
correct principal process that receives a decision value
from S and writes the decision in a shared register.
Thus, every correct process eventually decides. The
number of possible different decision values is at most
s · k: there are at most k different values returned per
service; more precisely, at most k values per service
being accessed by at least k processes, and c values
for a service that is being accessed by c processes for
c < k. Thus, for a desired overall resilience f ′, we want
the smallest possible k′ and so we find the smallest
integer s that guarantees f ′ < s · (f + 1). Thus, we
have s =
(f ′ + 1)/(f + 1)� services, and take the first
f ′ + 1 processes to be the principal processes (f ′ + 1
processes using as few services as possible, each one
with f + 1 input ports). It follows that

Theorem 9 For any 1 ≤ k < m, k ≤ f ≤ m− 1, 1 ≤
f ′ ≤ n − 1, it is possible to implement f ′-resilient k′-
set consensus using read-write memory and f -resilient
k-set consensus services, each one with m ports, for

k′ ≥ k ·
⌊

f ′ + 1
f + 1

⌋
+ min(k, (f ′ + 1)mod(f + 1)).

When each available service is wait-free, that is f =
m − 1, this algorithm reduces to the one of [12], and
gives a tight bound. As an example, assume that we
want to implement a f ′-resilient k′-set consensus in a
system of 2c processes, where f ′ = 2c − 1, using only
1-resilient consensus services, i.e., f = 1, k = 1. The
smallest k′ for which we can do this is k′ = c, using
s = c services, each shared by 2 processes (f ′ +1 = 2c
principal processes).

Note that the algorithm above uses services that
are not connected to all processes. It is known that
f -resilient f -set consensus cannot be solved using only
reliable registers [2, 13, 19]. We conjecture that f -
resilient f -set consensus cannot be solved using only
reliable registers and services that are connected to all
processes.

11

6 Failure-Oblivious Services

A failure-oblivious service is a generalization of an
atomic object. It allows an invocation to trigger mul-
tiple processing steps instead of just one perform step.
These steps can interleave with processing steps trig-
gered by other invocations, and this makes a failure-
oblivious service non-atomic, in general. A failure-
oblivious service also allows an invocation to trigger
any number of responses, at any endpoints, instead
of just a single response at the endpoint of the in-
vocation. The service may also include background
processing tasks, not related to any specific endpoint.
The key constraint is that no step may depend on ex-
plicit knowledge of failure events. In this section, we
define the class of failure-oblivious services, give ex-
amples, and describe how Theorem 1 can be extended
to such services.

6.1 f -resilient failure-oblivious services

As for atomic objects, we begin by defining a canon-
ical f -resilient failure-oblivious service. A canoni-
cal f -resilient failure-oblivious service is parameter-
ized by J , f , and k, which have the same mean-
ings as for canonical atomic objects. Also, in place
of the sequential type parameter T , the service
has a service type parameter U , which is a tuple
〈V, V0, invs, resps, glob, δ1, δ2, δ3〉, where V and V0 are
as before, invs and resps are the respective sets of in-
vocations and responses (which can occur at any end-
point), glob is a set of global tasks, and δ1, δ2, δ3 are
three transition relations.

Here, δ1 is a total binary relation from invs×J ×V
to (the set of mappings from J to finite sequences of
resps) ×V . It is used to map an invocation at the head
of a particular inv−buffer , and the current value for
val , to a set of results, each of which consists of a
new value for val and sequences of responses to be
added to any or all of the resp−buffers. δ2 is a total
binary relation from J × V to (the set of mappings
from J to finite sequences of resps) ×V . It is used to
map a particular endpoint and value of val to a set of
results, defined as above. Finally, δ3 is a total binary
relation from V to (the set of mappings from J to finite
sequences of resps) ×V . It it used to map a value of val
to a set of results. The code for a canonical failure-
oblivious automaton, showing how these parameters
are used, appears in Figure 4.

Thus, a canonical f -resilient failure-oblivious ser-
vice is allowed to perform rather flexible kinds of pro-
cessing, both related and unrelated to individual end-
points, as long as processing decisions do not depend
on knowledge of occurrence of failure events.

An I/O automaton A is an f -resilient failure-
oblivious service of type U , endpoint set J , and in-
dex k, provided that it implements the canonical f -
resilient failure oblivious service S of type U for J and
k, in the same sense as for atomic objects.

6.2 Example: Totally Ordered Broadcast

We describe an f -resilient totally ordered broadcast
service for a particular message alphabet M , endpoint
set J and index k, as a special case of an f -resilient
failure-oblivious service for J and k. To do this, we
need only specify the failure-oblivious service type U =
〈V, V0, invs, resps, glob, δ1, δ2, δ3〉. Here, V consists of a
single msgs queue, containing messages that have been
totally ordered, together with their sources (Figure 5).
V0 indicates that this queue is initially empty.

The invocation set invs is {bcast(m) : m ∈ M}.
The response set resps is {rcv(m, i) : m ∈ M, i ∈
J}. (rcv(m, i) indicates the receipt of message m from
sender i. This receipt can occur at any endpoint.)
glob consists of one task named g, that is, glob = {g}.
δ1, the relation describing the transitions that process
invocations from inv−buffers, is defined in Figure 6:

This code processes the first element of
inv−buffer(i) by adding it to the end of the se-
quence stored in msgs. (Formally, δ1((a, i, v), (B, v′))
holds iff a = bcast(m), v′.msgs is the result of adding
(m, i) to the end of v.msgs , and B(j) is empty for all
j.)

δ2 is the identity relation, indicating that no other
processing is done on behalf of i. Relation δ3 is defined
in Figure 7:

(Formally, δ3(v, (B, v′)) holds iff either (a) v.msgs
is nonempty, (m, i) = head(v.msgs), v′.msgs =
tail(v.msgs), and for every j ∈ J , B(j) is the se-
quence consisting of the single element rcv(m, i), or
(b) v.msgs is empty, v′ = v, and for every j, B(j) is
the empty sequence.)

6.3 Impossibility of Boosting

Let index set K include now the indices of all
failure-oblivious services. Now the notion of k-
similarity restricts the states of all registers and of
all atomic and failure-oblivious services except Sk.

We now argue that Lemmas 2–8 extend to this case.
Lemma 2: We have added the i-compute and g-

compute tasks to the definition of a service, Figure 4.
These are defined using total transition relations δ2

and δ3. Since these are total relations, we see from
Figure 4 that these tasks are always enabled. Hence
Lemma 2 still holds.

12

CanonicalFailureObliviousService(U , J, f, k),
where U = 〈V, V0, invs, resps, glob, δ1, δ2, δ3〉

Signature:
Inputs:
ai,k, a ∈ invs, i ∈ J
faili, i ∈ J

Outputs:
bi,k, b ∈ resps, i ∈ J

Internals:
performi,k, i ∈ J
computei,k, i ∈ J
dummy ∗i,k, ∗ ∈ {perform, compute, output}, i ∈ J
computeg,k, g ∈ glob
dummy computeg,k, g ∈ glob

State components:
As for canonical atomic object.

Transitions:
Input: ai,k

As for canonical atomic object.

Internal: performi,k

Precondition:
a = head(inv−buffer(i))
δ1((a, i, val), (B, v))

Effect:
remove head of inv−buffer(i)
val ← v
for j ∈ J do

add B(j) to end of resp−buffer(j)

Internal: computei,k, i ∈ J
Precondition:

δ2((i, val), (B, v))
Effect:

val ← v
for j ∈ J do

add B(j) to end of resp−buffer(j)

Internal: computeg,k, g ∈ glob
Precondition:

δ3(val, (B, v))
Effect:

val ← v
for j ∈ J do

add B(j) to end of resp−buffer(j)

Output: bi,k

As for canonical atomic object.

Input: faili
As for canonical atomic object.

Internal: dummy ∗i,k, i ∈ J
As for canonical atomic object.

Internal: dummy computeg,k, g ∈ glob
Precondition:

|failed| > f
Effect:

none

Tasks:
For every i ∈ J:

i-perform: {performi,k, dummy performi,k}
i-compute: {computei,k, dummy computei,k}
i-output : {bi,k : b ∈ resps} ∪ {dummy outputi,k}

For every g ∈ glob:
g-compute: {computeg,k, dummy computeg,k}

Figure 4: A canonical failure-oblivious service.

Components of val:
msgs, a finite sequence of items in M × J, initially empty

Figure 5: The composition of val in a totally ordered
broadcast service.

Internal: performi,k

Precondition:
send(m) = head(inv−buffer(i))

Effect:
remove head of inv−buffer(i)
add (m, i) to msgs

Figure 6: Relation δ1 in a totally ordered broadcast ser-
vice.

Lemmas 3–5: The proofs of these lemmas do not
depend on the definition of a service, and so they carry
over.

Lemma 6: The proof carries over by replacing ev-
ery reference to performi,k actions with a reference to
perform i,k or computei,k or computeg,k actions. We
provide a complete proof in Appendix B.

Lemma 7: Since service Sk is “silent” along γ, the
change in its definition does not affect the proof. The
other services have the same behavior along γ and γ′,
and the original proof of Lemma 7 does not refer to
their detailed definition. Hence this proof carries over.

Lemma 8: Claims 1, 2, 3, and 5 carry over with
no difference in the proof, since their proof does not
refer to the definition of actions of services. For
claim 4, the proof of case 1 (participants(e, s) =
participants(e′, s) = {Sk}) must be modified by re-
placing every reference to i − perform tasks with a
reference to i−perform or i−compute or g−compute
tasks. The proofs of the other cases carry over. Hence
the lemma as a whole carries over. We provide a com-
plete proof in Appendix B.

Hence the following result:

Theorem 10 Let f and n be integers, 0 ≤ f < n−1.
There does not exist an (f + 1)-resilient n-process im-
plementation of consensus from canonical f -resilient
atomic services, canonical f -resilient failure-oblivious
services, and canonical reliable registers.

7 General (Failure-Aware) Services

A general, or failure-aware service is a further gen-
eralization of a failure-oblivious service. This time,
the generalization removes the failure-oblivious con-
straint, allowing the service’s decisions to depend on
knowledge of failures of processes connected to the ser-
vice.

13

Internal: computeg,k

Precondition:
true

Effect:
if (m, i) = head(msgs) then

remove head of msgs
for each j ∈ J:

add rcv(m, i) to resp−buffer(j)

Figure 7: Relation δ3 in a totally ordered broadcast ser-
vice.

7.1 f -resilient general services

A canonical f -resilient general service is param-
eterized by J , f , and k, which have the same
meanings as for canonical failure-oblivious services,
and by a service type parameter U , which is a tu-
ple 〈V, V0, invs, resps, glob, δ1, δ2, δ3〉, as for failure-
oblivious services. This time, however, the domains
of δ1, δ2, and δ3 are invs × J × V × 2I , J × V × 2I ,
and V × 2I , respectively. The final argument, in each
case, will be instantiated in the service code with the
current failed set.

The only portions of the code that are different from
those for failure-oblivious services are the three transi-
tion definitions that use the δ1, δ2, and δ3 (Figure 8).

Internal: performi,k

Precondition:
a = head(inv−buffer(i))
δ1((a, i, val, failed), (B, v))

Effect:
remove head of inv−buffer(i)
val ← v
for j ∈ J do

add B(j) to end of resp−buffer(j)

Internal: computei,k, i ∈ J
Precondition:

δ2((i, val, failed), (B, v))
Effect:

val ← v
for j ∈ J do

add B(j) to end of resp−buffer(j)

Internal: computeg,k, g ∈ glob
Precondition:

δ3((val, failed), (B, v))
Effect:

val ← v
for j ∈ J do

add B(j) to end of resp−buffer(j)

Figure 8: Relations δ1, δ2 and δ3 in a general service.

An I/O automaton A is an f -resilient general ser-
vice of type U , endpoint set J , and index k, provided
that it implements the canonical f -resilient general
service S of type U for J and k, in the same sense
as for atomic and failure-oblivious services.

7.2 Examples: Failure detectors

In this section, we describe how a variety of well-
known failure detectors [4,5] can be modeled as general
services. Our failure detectors do not provide all the
functionality of the standard model [4]: because our
failure detectors are automata, they cannot predict
future input actions. Thus, our services encompass
only realistic failure detectors [7].

All of our failure detector services have empty invs
sets, that is, their only inputs are fail i actions.

7.2.1 Perfect Failure Detector P

First, we define an f -resilient perfect failure detec-
tor for J and k. V contains only one (trivial) state,
that is, the service maintains no internal information
other than the failed set. Responses are of the form
suspect(J ′), J ′ ⊆ J . The set glob of global tasks is
empty. Since there are no invocations, δ1 is trivial.
Since there are no global tasks, δ3 is empty. All that
remains is to define δ2, which describes computation
on behalf of each process i: δ2(i, failed) simply puts a
suspect response containing the current failed set into
i’s response buffer (Figure 9).

Internal: computei,k

Precondition:
true

Effect:
add suspect(failed) to resp−buffer(i)

Figure 9: Relation δ2 in P .

7.2.2 Eventually Perfect Failure Detector �P

Again, responses are of the form suspect(J ′), J ′ ⊆ J .
We model eventual perfection using a mode variable,
which can take on values perfect or imperfect . Initially,
and after each new failure, mode is set to imperfect . A
background task is responsible for eventually switch-
ing mode to perfect . Since failures must eventually
stop, the mode eventually remains perfect . While in
perfect mode, the failure detector suspects exactly the
processes that have failed. In imperfect mode, suspi-
cions are arbitrary. The set of internal state compo-
nents in �P is presented in Figure 10.

Components of val:
mode ∈ {perfect, imperfect}, initially imperfect
oldfailed ⊆ J, initially ∅

Figure 10: The composition of val in �P .

14

The global task set glob = {g1, g2}. Task g1 is re-
sponsible for setting mode to imperfect while task g2

sets it to perfect . The interesting transition definitions
are presented in Figure 11.

Internal: computei,k

Precondition:
true

Effect:
if mode = perfect then

add suspect(failed) to resp−buffer(i)
else

choose J′ where J′ ⊆ J
add suspect(J′) to resp−buffer(i)

Internal: computeg1,k

Precondition:
true

Effect:
if failed
= oldfailed then

mode := imperfect
oldfailed := failed

Internal: computeg2,k

Precondition:
true

Effect:
if failed = oldfailed then

mode := perfect

Figure 11: Internal transitions in �P .

7.2.3 Eventual Leader Service Ω

The eventual leader service Ω provides leader (l) re-
sponses at all nodes, where l ∈ J . Eventually (assum-
ing that not all processes fail), the latest leader an-
nouncements should be identical at all endpoints, and
should indicate the name of a non-failed endpoint. We
again model eventual perfection using a mode variable
(Figure 12).

Components of val:
mode ∈ {perfect, imperfect}, initially imperfect
oldfailed ⊆ J, initially ∅
leader ∈ J ∪ {⊥}, initially ⊥

Figure 12: The composition of val in Ω.

We again use two global tasks g1, g2. Now g1 sets
mode to imperfect and removes any choice of leader,
while g2 sets mode to perfect and chooses a leader.
The corresponding transition definitions are presented
in Figure 13.

7.3 Impossibility of Boosting

Our impossibility results for atomic and failure-
oblivious services allow arbitrary connections between
processes and services. However, it turns out that we

Internal: computei,k

Precondition:
true

Effect:
if mode = perfect then

add leader(leader) to resp−buffer(i)
else

choose j ∈ J
add leader(j) to resp−buffer(i)

Internal: computeg1,k

Precondition:
true

Effect:
if failed
= oldfailed then

leader := ⊥
mode := imperfect
oldfailed := failed

Internal: computeg2,k

Precondition:
true

Effect:
if failed = oldfailed ∧ leader
= ⊥ then

leader := choose l where l ∈ J − failed
mode := perfect

Figure 13: Internal transitions in Ω.

can boost the resilience of systems containing failure-
aware services, if we allow arbitrary connection pat-
terns:

For example, consider a system that uses wait-free
registers and 1-resilient perfect failure detectors. Sup-
pose that every pair of processes shares a 1-resilient
2-process failure detector. Such a system can imple-
ment a wait-free perfect failure detector for all pro-
cesses as follows: Process i just listens to all failure
detectors it is connected to and accumulates the set
of suspected processes in a dedicated register. Period-
ically, it outputs its set of suspected processes. Since
every perfect failure detector is 1-resilient, the algo-
rithm is wait-free. Using this construction, f -resilient
consensus, for any f , can be implemented using wait-
free registers and 1-resilient services.

This boosting is, however, impossible if we assume a
system in which f -resilient failure-aware services must
be connected to all processes, thus, f + 1 process
failures overall can disable all the failure-aware ser-
vices. We assume that the system may also contain
f -resilient failure-oblivious services, connected to ar-
bitrary processes. By applying arguments similar to
ones presented in Section 4, we can prove boosting
to be impossible, i.e., that (f + 1)-resilient consensus
cannot be solved in such a model.

The proof is also based on analysis of a “hook”. In
fact, we need to introduce only slight modifications
into the proofs of Lemmas 6 and 7: Let α0 and α1

be any two univalent failure-free input-first executions
whose respective final states, s0 and s1, are j-similar

15

(respectively, k-similar). Assume, by contradiction,
that α0 and α1 have opposite valences. The defini-
tions of j-similarity and k-similarity do not restrict the
states of failure-aware services, that is, failure-aware
services can have arbitrary states in s0 and s1, the
respective final states of α0 and α1.

However, note that the f +1 failures of processes in
J allow every failure-aware service to stop performing
(non-dummy) locally controlled steps. Then following
the arguments of Lemmas 6 and 7, we can construct a
failure-free extension of α0, α0 ·γ′, such that (1) γ′ in-
cludes decide(v)l, for some l ∈ I−J ; (2) γ′ includes no
locally controlled step of process Pj , nor any performj ,
computej , or outputj step for any service or register
(respectively, γ′ includes no locally controlled step of
service Sk); (3) γ′ includes no locally controlled step
of any failure-aware service. Thus, γ′ is essentially ap-
plicable to α1 — a contradiction with the assumption
that α0 and α1 have opposite valences.

We first note that Lemmas 2–5 carry over to the
case of general services. The argument for this is iden-
tical to that for failure-oblivious services, given in Sec-
tion 6.3.

For Lemma 6: The proof for the case of failure
oblivious services already handles both atomic and
failure oblivious services. To handle f -resilient gen-
eral services, we note that we can assume that all
of these servies are “silent” along γ, since the occur-
rence of f + 1 fail i actions enables a dummy action in
every task of every general service. Thus the differ-
ent definition for actions performi,k, computei,k and
computeg,k, in particular, their ability to observe the
set of failed processes, makes no difference. Hence γ′

can be appended after α1 in the same way as in the
proof for the case of failure oblivious services.

For Lemma 7: Since the service Sk can be “si-
lenced” as before, the proof is unchanged from that
for failure oblivious services.

For Lemma 8: We defined the hook so that it does
not contain any fail i actions. Hence at all states in
the hook, the set failed of failed processes is empty.
Thus the different definition for actions perform i,k,
computei,k and computeg,k, in particular, their abil-
ity to observe the set of failed processes, makes no
difference. Hence the proof is unchanged from that
for failure oblivious services.

Hence the following result:

Theorem 11 Let f and n be integers, 0 ≤ f < n−1.
There does not exist an (f + 1)-resilient n-process im-
plementation of consensus from canonical f -resilient
general services connected to all processes, canonical
f -resilient atomic services (connected to arbitrary pro-
cesses), canonical f -resilient failure-oblivious services

(connected to arbitrary processes), and canonical reli-
able registers.

8 Conclusions

We have established the impossibility of boosting
the resilience of services in a distributed asynchronous
system where processes are subject to undetectable
stopping failures. Our results can be viewed as a gen-
eralization to any number f of failures of the impos-
sibility result of Fischer, Lynch and Paterson [8] for
f = 1. While our first result (for atomic objects) can
be derived from existing results in the literature, the
direct proof that we give is simpler, and is also easily
extended to more general services than atomic objects.

References

[1] P. Attie, N. A. Lynch, and S. Rajsbaum. Boosting
fault-tolerance in asynchronous message passing sys-
tems is impossible. Technical report, MIT Laboratory
for Computer Science, MIT-LCS-TR-877, 2002.

[2] E. Borowsky and E. Gafni. Generalized FLP impossi-
bility result for t-resilient asynchronous computations.
In Proceedings of the 25th ACM Symposium on The-
ory of Computing (STOC), pages 91–100, May 1993.

[3] T. Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg.
Wait-freedom vs. t-resiliency and the robustness of
wait-free hierarchies. In Proceedings of the 13th An-
nual ACM Symposium on Principles of Distributed
Computing (PODC’94), pages 334–343, August 1994.

[4] T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus. Journal
of the ACM, 43(4):685–722, July 1996.

[5] T. D. Chandra and S. Toueg. Unreliable failure de-
tectors for reliable distributed systems. Journal of the
ACM, 43(2):225–267, March 1996.

[6] S. Chaudhuri. Agreement is harder than consen-
sus: set consensus in totally asynchronous systems.
In Proceedings of the 19th Annual ACM Symposium
on Principles of Distributed Computing (PODC’00),
pages 311–324, August 1990.

[7] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui.
A realistic look at failure detectors. In IEEE Sym-
posium on Dependable Systems and Networks (DSN
2002), Washington DC, June 2002.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of distributed consensus with one faulty
process. Journal of the ACM, 32(3):374–382, April
1985.

16

[9] R. Guerraoui and P. Kouznetsov. On failure detec-
tors and type boosters. In Proceedings of the 17th
International Symposium on Distributed Computing
(DISC’03), October 2003.

[10] V. Hadzilacos and S. Toueg. A modular approach to
fault-tolerant broadcast and related problems. Tech-
nical report, Cornell University, Computer Science,
May 1994.

[11] M. Herlihy. Wait-free synchronization. ACM Trans-
actions on Programming Languages and Systems,
13(1):124–149, January 1991.

[12] M. Herlihy and S. Rajsbaum. Algebraic spans. Math-
ematical Structures in Computer Science (Special Is-
sue: Geometry and Concurrency), 10(4):549–573, Au-
gust 2000.

[13] M. Herlihy and N. Shavit. The topological structure
of asynchronous computability. Journal of the ACM,
46(6):858–923, November 1999.

[14] M. Herlihy and J. M. Wing. Linearizability: a
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Sys-
tems, 12(3):463–492, June 1990.

[15] P. Jayanti. Private communication. 2003.

[16] P. Jayanti and S. Toueg. Some results on the im-
possibility, universability and decidability of consen-
sus. In Proceedings of the 6th International Workshop
on Distributed Algorithms (WDAG’92), volume 647
of LNCS. Springer Verlag, 1992.

[17] M. C. Loui and H. H. Abu-Amara. Memory require-
ments for agreement among unreliable asynchronous
processes. Advances in Computing Research, pages
163–183, 1987.

[18] N. A. Lynch. Distributed Algorithms. Morgan Kauf-
mann Publishers, 1996.

[19] M. Saks and F. Zaharoglou. Wait-free k-set agree-
ment is impossible: The topology of public knowledge.
SIAM Journal on Computing, 29:1449–1483, 2000.

Appendix A Alternative proof for
atomic services

In this section, we show how our result for the
case of atomic objects can be derived from earlier re-
sults [3, 11, 16, 17]. This alternative proof of our re-
sult was obtained independently and concurrently by
Jayanti [15] and Guerraoui and Kouznetsov [9]. How-
ever, this alternative proof does not extend to more
general services.

A.1 The proof

The following two lemmas are restatements in our
terminology of the “necessity” part and the “suffi-
ciency” part of Theorem 4.1 in [3], respectively.

Lemma 12 Let f and n be integers, 0 ≤ f , 1 ≤ n.
Then there exists an f -resilient n-process implemen-
tation of consensus from wait-free (f +1)-process con-
sensus objects and reliable registers.4

Lemma 13 Let f and n be integers, 2 ≤ f < n. Then
there exists a wait-free (f +1)-process implementation
of consensus from f -resilient n-process consensus ob-
jects and reliable registers.

The following result follows easily from Herlihy’s
universal construction [11]:

Lemma 14 Let f and n be integers, 0 ≤ f , 1 ≤ n.
Let T be a sequential type. Then there exists an f -
resilient n-process implementation of an atomic object
of type T from f -resilient n-process consensus objects
and reliable registers.

The following result is shown in [16].

Lemma 15 Let n be integer, n ≥ 0. There does not
exist a wait-free (n+1)-process implementation of con-
sensus from wait-free n-process consensus objects and
reliable registers.

Theorem 1 Let f and n be integers, 0 ≤ f < n −
1. There does not exist an (f + 1)-resilient n-process
implementation of consensus from f -resilient atomic
objects and reliable registers.

Proof: By contradiction, assume that there ex-
ists an (f + 1)-resilient n-process implementation of
consensus from f -resilient atomic objects and reliable
registers. We consider two cases.

First suppose that f = 0, so n ≥ 2. Thus, we
have a 1-resilient n-process implementation of consen-
sus using 0-resilient atomic objects and reliable regis-
ters. By Lemma 14, each 0-resilient atomic object used
in this implementation can itself be implemented from
0-resilient consensus objects and reliable registers. By
substituting these implementations for the objects, we
obtain a 1-resilient n-process implementation of con-
sensus using 0-resilient consensus objects and reliable
registers. Now, a 0-resilient consensus object can be
implemented from reliable registers,5 so substituting

4Theorem 4.1 in [3] assumes 2 ≤ f . However, the necessity
part of the theorem requires only 0 ≤ f .

5A 0-resilient consensus with an endpoint set J can be easily
implemented from two reliable registers as follows. Every pro-
cess participating in the consensus algorithm writes its input
value in a dedicated “proposal” register R (initialized to ⊥).
Then the process keeps reading a dedicated “decision” register
D (initialized to ⊥) until a non-⊥ value is read, in which case
the process decides on this value. In parallel, a dedicated pro-
cess Pi (i ∈ J) keeps reading R. As soon as Pi reads a non-⊥
value v in R, Pi writes v in D.

17

once more, we obtain a 1-resilient n-process imple-
mentation of consensus using only reliable registers.
But this contradicts the impossibility result of [17].

Now suppose that f ≥ 1. By Lemma 14, each
f -resilient atomic object used in this implementation
can itself be implemented from f -resilient consensus
objects and reliable registers. By substituting, we
obtain an (f + 1)-resilient n-process implementation
of consensus from f -resilient consensus objects and
reliable registers. By Lemma 12, each f -resilient
consensus object used in this implementation can be
implemented from wait-free (f + 1)-process consensus
objects and reliable registers. By substituting again,
we obtain an (f + 1)-resilient n-process implemen-
tation of consensus from wait-free (f + 1)-process
consensus objects and reliable registers. Now by
Lemma 13 (using the fact that 2 ≤ f + 1 < n), a
wait-free (f + 2)-process consensus object can be im-
plemented from (f + 1)-resilient n-process consensus
objects and reliable registers. By substituting, we ob-
tain an implementation of a wait-free (f + 2)-process
consensus object from wait-free (f + 1)-process
consensus objects and reliable registers. But this
contradicts Lemma 15. �

A.2 Extension to more general services

The argument in the previous subsection does not
extend to all services. Here we give two reasons for
this.

First, the universality result fails to hold for many
distributed services. In particular, no meaningful fail-
ure detector can be implemented from consensus ob-
jects. Indeed, by definition, an atomic service does
not provide any information about failures: the value
of the service is not affected by failures of processes.
Here we simply give an example, showing that consen-
sus cannot implement a perfect failure detector.

Indeed, assume, by contradiction, that there is an
algorithm A that implements a perfect failure detector
in a system of n processes using n-process consensus
objects and registers. Consider any finite execution
α of A in which process i is faulty and is declared
to be faulty. Now we consider an execution α′ that is
identical to α except that α′ includes no faili event (i is
just slow to take steps in α′). Clearly, α′ is also a finite
execution of A, since registers and consensus objects
are failure-oblivious. Thus, in α′, a process is declared
faulty without having failed— a contradiction.

The second reason why the arguments of [3] do not
work with non-atomic services is that, generally speak-
ing, an f -resilient implementation of n-process con-
sensus is not equivalent to a wait-free implementation

of (f + 1)-process consensus (Theorem 4.1 of [3]). In-
deed, if f -resilient k-process consensus is implemented
from non-atomic services, the simulation algorithm
presented in the proof of Theorem 4.1 in [3] is not
valid: a step of a process accessing a general service
cannot always be simulated by another process. This
is because a response of a non-atomic service to a given
process i might not necessarily be simulated by an-
other process j without communicating with i, i.e.,
no set of f + 1 processes can independently simulate
an f -resilient k-process consensus algorithm without
communicating with the rest of the system.

Appendix B Complete proofs for
failure-oblivious services

Proof of Lemma 6 when failure-oblivious services
are allowed.

Lemma 6 Let j ∈ I. Let α0 and α1 be finite failure-
free input-first executions, s0 and s1 the respective
final states of α0 and α1. Suppose that s0 and s1 are
j-similar. If α0 and α1 are univalent, then they have
the same valence.

Proof: We proceed by contradiction. Without
loss of generality, assume that all services are failure-
oblivious. Atomic services can be handled by the same
argument as used in the proof of Lemma 6 for atomic
services only.

Fix j, α0, α1, s0, and s1 as in the hypotheses of the
lemma, and suppose (without loss of generality) that
α0 is 0-valent and α1 is 1-valent. Let J ⊆ I be any
set of indices such that j ∈ J and |J | = f + 1. Since
f < n − 1 by assumption, we have |J | < n, and so
I − J is nonempty.

Consider a fair extension of α0, α0 · β, in which
the first f + 1 actions of β are fail i, i ∈ J , and no
other fail actions occur in β. Note that, for all i ∈ J ,
β contains no output actions of Pi. Assume that in
β, no perform i,c, computei,c, or bi,c action of any i-*
task, i ∈ J , occurs at any component c ∈ K ∪ R; we
may assume this because, for each i ∈ J , action fail i
enables a dummy action in every task of every service
and register (∗ is perform or compute or output).

Further assume that in β, no computeg,c action of
any g-compute task occurs at any component c ∈ K ∪
R; we may assume this because the occurrence of f +1
fail i actions enables the dummy−computeg,c action in
every g-compute task of every failure-oblivious service
c.

Since α0 is a failure-free input-first execution, the
resulting extension α0 ·β is a fair input-first execution

18

containing f + 1 failures. Therefore, the termination
property for (f + 1)-resilient consensus implies that
there is a finite prefix of α0 · β, which we denote by
α0 · γ, that includes decide(v)l for some l /∈ J and
v ∈ {0, 1}. Construct α0 ·γ′, where γ′ is obtained from
γ by removing the fail i action, all dummy actions, and
any remaining internal actions of Pi, i ∈ J . Thus,
α0 · γ′ is a failure-free extension of α0 that includes
decide(v)l. Since α0 is 0-valent, v must be equal to 0.

We claim that decide(0)l occurs in the suffix γ′,
rather than in the prefix α0. Suppose for contradic-
tion that the decide(0)l action occurs in the prefix α0.
Then by our technical assumption about processes, the
decision value 0 is recorded in the state of l. Since s0

and s1 are j-similar and l �= j, the same decision value
0 appears in the state s1. But this contradicts the as-
sumption that α1, which ends in s1, is 1-valent. So, it
must be that the decide(0)l occurs in the suffix γ′.

Now we show how to append essentially the same
γ′ after α1. We know that, for every i ∈ J , γ′ con-
tains no locally controlled action of Pi, and contains no
perform i,c, computei,c, or bi,c action, for any c ∈ K∪R.
By definition of j-similarity and j ∈ J , we have:

(a) For every i /∈ J , the state of Pi is the same in s0

and s1.

(b) For every c ∈ K ∪ R,

1. The value of valc is the same in s0 and s1 (that
is, in the final states of α0 and α1).

2. For every i ∈ Jc − J , the value of buffer(i)c is
the same in s0 and s1.

Thus:

(c) If γ′ contains any locally controlled steps of a pro-
cess i, then i /∈ J , and so the state of Pi is the
same in s0 and s1

(d) For every c ∈ K ∪ R,

1. The value of valc is the same in s0 and s1.
2. For every i ∈ Jc, if γ′ contains any perform i,c,

computei,c, or output i,c actions, then i /∈ J , and
so the value of buffer(i)c is the same in s0 and
s1.

Finally, we note that the presence of computeg,c

does not invalidate the argument. A computeg,c can-
not refer to or modify any input buffers. The precon-
dition of computeg,c depends only on valc, and so the
same computeg,c actions can be applied in γ′ after α1,
and they can add the same items to the output buffers.
Thus for i /∈ J the sequence of values that buffer(i)c

takes along γ′ after α0 and γ′ after α1 are the same.

It follows that it is possible to append “essentially”
the same γ′ after α1, resulting in a failure-free exten-
sion of α1 that includes decide(0)l.

6

But α1 is 1-valent — a contradiction. �

Proof of Lemma 7 when failure-oblivious services
are allowed.

Lemma 7 Let k ∈ K. Let α0 and α1 be finite failure-
free input-first executions, s0 and s1 the respective
final states of α0 and α1. Suppose that s0 and s1 are
k-similar. If α0 and α1 are univalent, then they have
the same valence.

Proof: Fix k, α0, α1, s0, and s1 as in the hypotheses
of the lemma. By contradiction, suppose (without loss
of generality) that α0 is 0-valent and α1 is 1-valent.
Let J ⊆ I be any set of indices such that |J | = f + 1,
and, if |Jk| ≤ f + 1, then Jk ⊆ J , whereas if |Jk| >
f + 1, then J ⊆ Jk.

Consider a fair extension of α0, α0 ·β, in which the
first f + 1 actions of β are fail i, i ∈ J , and no other
fail actions occur in β. Note that, for all i ∈ J , β
contains no output actions of i. Assume that in β, no
perform i,k or bi,k or computei,k or computeg,k action
(b ∈ resps, g ∈ glob) of Sk occurs; we may assume this
because the f + 1 fail actions enable dummy actions
in all tasks of Sk.

Since α0 is a failure-free input-first execution, the
resulting extension α0 ·β is a fair input-first execution
containing f + 1 fail actions. Therefore, the termi-
nation property for f + 1-resilient consensus implies
that there is a finite prefix of α0 · β, which we denote
by α0 · γ, that includes decide(v)l for some l ∈ I − J
and v ∈ {0, 1}. We know that decide(0)l occurs in the
suffix γ, rather than in the prefix α0, by an argument
similar to that in the proof of Lemma 6.

Now construct α0 · γ′, where γ′ is obtained from γ
by removing all the fail i actions, i ∈ J , and all dummy
actions. Thus, α0 · γ′ is a failure-free extension of α0

that includes decide(v)l. Since α0 is 0-valent, v must
be equal to 0.

Now we show how to append essentially the same
γ′ after α1. By definition of k-similarity, we have:

(a) For every i ∈ I, the state of Pi is the same in s0

and s1.

(b) For every c ∈ (K − {k})∪R, the state of Sc is the
same in s0 and s1.

Thus:
6Really, we are appending another execution fragment γ′′

after α1 — one that looks the same to all the processes and
service tasks that take steps in γ′.

19

(c) For every c ∈ K ∪ R, if γ′ contains any perform i,c

or bi,c or computei,k or computeg,k actions of Sc,
then the state of Sc is the same in s0 and s1, since
c �= k in this case.

By properties (a) and (c), it follows that it is possible
to append “essentially” the same γ′ after α1, (differing
only in the state of Sk) resulting in a failure-free
extension of α1 that includes decide(0)l. But α1 is
1-valent — a contradiction. �

Proof of Lemma 8 when failure-oblivious services
are allowed.

Lemma 8 We establish the same 5 claims as in the
case of atomic services, which establishes the needed
contradiction.

Claims 1, 2, and 5 do not refer to the definition of
a service, and so their proof remains unchanged from
the atomic services case.

The proof of Claim 3 is unchanged, since the only
actions considered have as participants either a pro-
cess Pi, or Pi and a component Sc, c ∈ K ∪ R. Thus,
whenever Sc is a participant, the action must be an
external action of Sc.

Since the external actions in the definitions of
atomic service and failure oblivious service have the
same effect, namely to add or remiove a single item
from a single buffer, it follows that the proof of Claim
3 for the atomic case still applies.

The proof of Claim 4 is modified as follows.

Claim 4: There does not exist k ∈ K such that
Sk ∈ participants(e, s) ∩ participants(e′, s).
Suppose for contradiction that Sk ∈
participants(e, s) ∩ participants(e′, s). There are
four possibilities:

1. participants(e, s) = participants(e′, s) = {Sk}.
Then e and e′ must be i−perform or i−compute
or g − compute tasks of Sk, and so involve only
the state of Sk. But then the states s0 and s1

can differ only in the state of Sk. So s0 and s1

are k-similar — a contradiction.

2. For some i ∈ I, participants(e, s) = {Sk, Pi} and
participants(e′, s) = {Sk}.
Hence action(e, s) is either ai,k or bi,k, and
action(e′, s) is one of performj,k, computej,k, or
computeg,k, where j ∈ Jk, g ∈ glob.

Inspection of the definition of a failure-oblivious
service shows that the two tasks commute, that
is, e′(s0) = s1 — a contradiction.

3. For some i ∈ I, participants(e′, s) = {Sk, Pi}
and participants(e, s) = {Sk}.
Hence action(e, s) is one of performj,k,
computej,k, or computeg,k, where j ∈ Jk, g ∈
glob, and action(e′, s) is either ai,k or bi,k.

Inspection of the definition of a failure-oblivious
service shows that the two tasks commute, that
is, e′(s0) = s1 — a contradiction.

4. For some i, j ∈ I, participants(e, s) = {Sk, Pi}
and participants(e′, s) = {Sk, Pj}.
By Claim 3, we know that i �= j. Now
action(e, s) is either ai,k or bi,k, and action(e′, s)
is either aj,k or bj,k.

Inspection of the definition of a failure-oblivious
service shows that the two tasks commute, that
is, e′(s0) = s1 — a contradiction.

20

