Efficient, Verifiable Binary Sandboxing for a CISC Architecture

Stephen McCamant
Massachusetts Institute of Technology
Computer Science and Al Lab
Cambridge, MA 02139
smcc@csail.mit.edu

Abstract

Executing untrusted code while preserving security re-
quires enforcement of memory and control-flow safety
policies: untrusted code must be prevented from modi-
fying memory or executing code except as explicitly al-
lowed. Software-based fault isolation (SFI) or “sandbox-
ing” enforces those policies by rewriting the untrusted
code at the level of individual instructions. However, the
original sandboxing technique of Wahbe et al. is applica-
ble only to RISC architectures, and other previous work is
either insecure, or has been not described in enough detail
to give confidence in its security properties. We present
a novel technique that allows sandboxing to be easily ap-
plied to a CISC architecture like the IA-32. The technique
can be verified to have been applied at load time, so that
neither the rewriting tool nor the compiler needs to be
trusted. We describe a prototype implementation which
provides a robust security guarantee, is scalable to pro-
grams of any size, and has low runtime overheads. Fur-
ther, we give a machine-checked proof that any program
approved by the verification algorithm is guaranteed to re-
spect the desired safety property.

Keywords: Software fault isolation, control-flow isola-
tion, binary translation, C, C++, mobile code, inlined ref-
erence monitors, separate verification, 386, x86, instruc-
tion alignment, formal methods, security proof, ACL2,
MiSFIT, PittSFleld

1 Introduction

A key requirement for many kinds of secure systems is
to execute code from an untrusted or less trusted source,
while enforcing some policy to constrain the code’s ac-
tions. The code might come directly from a malicious
author, or it might have bugs that allow its execution to
be subverted by maliciously chosen inputs. Typically, the
system designer chooses some set of legal interfaces for
interaction with the code, and the challenge is to ensure
that the code’s interaction with the rest of the system is
limited to those interfaces.

The most common technique for isolating untrusted

Greg Morrisett

Harvard University

Division of Engineering and Applied Sciences
Cambridge, MA 02138
gregleecs.harvard.edu

code is the use of hardware virtual memory protection in
the form of an operating system process. Code in one
process is restricted to accessing memory only in its ad-
dress space, and its interaction with the rest of a system
is limited to a predefined system call interface. The en-
forcement of these restrictions is robust and has a low
overhead because of the use of dedicated hardware mech-
anisms such as TLBs; very few restrictions are placed on
what the untrusted code can try to do. A disadvantage of
hardware protection, however, is that interaction across a
process boundary (i.e., via system calls) is course-grained
and relatively expensive. Because of this inefficiency and
inconvenience, it is still most common for even large ap-
plications, servers, and operating system kernels to be
constructed to run in a single address space.

A very different technique is to require that the un-
trusted code be written in a type-safe language such as
Java. The language’s type discipline limits the memory
usage and control flow of the code to well-behaved pat-
terns. This fine-grained restriction makes sharing data be-
tween trusted and untrusted components much easier, and
has other software engineering benefits. However, type
systems have some limitations as a security mechanism.
First, they are not directly applicable to code written in
unsafe languages, such as C and C++. Second, conven-
tional type systems describe high-level program actions
like method calls and field accesses. It is much more dif-
ficult to use a type system to constrain code at the same
level of abstraction as individual machine instructions; but
since it is the actual instructions that will be executed,
only a safety property in terms of them would be really
convincing.

This paper investigates a code isolation technique that
lies between the approaches mentioned above, one that
enforces a security policy similar to an operating system,
but with ahead-of-time code verification more like a type
system. This effect is achieved by rewriting the machine
instructions of code after compilation to directly enforce
limits on memory access and control flow. This class of
techniques is known as “software-based fault isolation”
(SFI for short) or “sandboxing” [WLAG93]; it is also sim-
ilar to the mechanism of inlined reference monitors for

machine code [ES99]. Previous SFI techniques were ap-
plicable only to RISC architectures, or gave faulty, incom-
plete, or undisclosed attention to key security issues. For
instance, Section 5 describes how memory protection in
a previous system can be easily violated because of mis-
placed trust in a C compiler. (Concurrently with the re-
search described here, Abadi et al. [ABELO5a] developed
a CISC-compatible binary rewriting with some SFI-like
features and a rigorous security analysis; see Section 9.3
for discussion.)

In this paper, we describe a novel technique directly ap-
plicable to CISC architectures like the Intel IA-32 (x86).
We explain how using separate verification, the security
properties of the rewriting depend on a minimal trusted
base (on the order of a thousand lines of code), rather
than on tools consisting of hundreds of thousands of lines
(Section 5). We give a machine-checked proof of the
soundness of our rewriting technique to provide further
evidence that it is simple and trustworthy (Section 6). Fi-
nally, we discuss a prototype implementation of the tech-
nique, which is as fast as and often faster than previous
unsound tools, and scales easily to large and realistically-
complex applications (Sections 7 and 8). We refer to our
implementation as the Prototype IA-32 Transformation
Tool for Software-based Fault Isolation Enabling Load-
time Determinations (of safety), or PittSFlIeld!.

Our implementation is publicly available, as are the
formal model and lemmas used in the machine-checked
proof, and the programs used in our experiments. They
can be downloaded from http://pag.csail.mit.
edu/ smcc/projects/pittsfield/.

2 Classic SFI

The basic task for any SFI implementation is to prevent
certain potentially unsafe instructions (such as memory
writes) from being executed with improper arguments
(such as an effective address outside an allowed data
area). The key challenges are to perform these checks
efficiently, and in such a way that they cannot be by-
passed by carefully chosen input code. The first approach
to solve these challenges was the original SFI technique
(called “sandboxing”) of Wahbe, Lucco, Anderson, and
Graham [WLAG93].

In order to efficiently isolate pointers to dedicated code
and data regions, Wahbe et al. suggest choosing memory
regions whose size is a power of two, and whose starting
location is aligned to that same power. For instance, we

Ipittsfield, Massachusetts, population 45,793, is the seat of Berkshire
county and a leading center of plastics manufacturing. Our appropriation
of its name, however, was motivated only by spelling.

might choose a data region starting at 0xda000000 and
extending 16 megabytes to Oxdaff£ff££f. With such a
choice, an address can be efficiently checked to point in-
side the region by bitwise operations. In this case, we
could check whether the bitwise AND of an address and
the constant 0x££000000 was equal to 0xda000000.
We’ll use the term fag to refer to the portion of the ad-
dress that’s the same for every address in a region, such as
Oxda above.

The second challenge, assuring that checks cannot be
bypassed, is more subtle. Naively, one might insert
a checking instruction sequence directly before a po-
tentially unsafe operation; then a sequential execution
couldn’t reach the dangerous operation without passing
through the check. However, it isn’t practical to restrict
code to execute sequentially: realistic code requires jump
and branch instructions, and with them comes the danger
that execution will jump directly to an dangerous instruc-
tion, bypassing a check. Direct branches, ones in which
the target of the branch is specified directly in the instruc-
tion, are not problematic: a tool can easily check their
destinations before execution. The crux of the problem is
indirect jump instructions, ones where the target address
comes from a register at runtime. They are required by
procedure returns, switch statements, function pointers,
and object dispatch tables, among other language features.
Indirect jumps must also be checked to see that their tar-
get address is in the allowed code region, but how can we
also exclude the addresses of unsafe instructions, while
allowing safe instruction addresses?

The key contribution of Wahbe et al. was to show that
by directing all unsafe operations through a dedicated reg-
ister, a jump to any instruction in the code region could be
safe. For instance, suppose we dedicate the register $rs
for writes to the data area introduced above. Then we
maintain that throughout the code’s execution, the value
in $rs always contains a value whose high bits are 0xda.
Code can only be allowed to store an arbitrary value into
$rs if it immediately guarantees that the stored value re-
ally is appropriate. If we know that this invariant holds
whenever the code jumps, we can see that even if the code
jumps directly to an instruction that stores to the address
in $rs, all that will occur is a write to the data region,
which is safe (allowed by the security policy). Of course,
there’s no reason why a correct program would jump di-
rectly to an unsafe store instruction; it is incorrect or ma-
liciously designed programs we worry about.

Wahbe et al. implemented their technique for two RISC
architectures, the MIPS and the Alpha. Because separate
dedicated registers are required for the code and data re-
gions, and because constants used in the sandboxing oper-

I . N | . |

] [/I .

I |][

/I I DN D N Il]

I BN D B 00 .

][g § _§ _J [

I .][][

| I][]

LR RN jmj) IENEEE——— N

QI][

g f§ N EEEEa——— §§

Figure 1: Illustration of the instruction alignment enforced by our technique. Black filled rectangles represent instruc-
tions of various lengths present in the original program. Gray outline rectangles represent added no-op instructions.
iInstructions are not packed as tightly as possible into chunks because jump targets must be aligned, and because the
rewriter cannot always predict the length of an instruction. Call instructions (gray filled box) go at the end of chunks,

so that the addresses following them can be aligned.

ation also need to be stored in registers, a total of 5 regis-
ters are required; out of a total of 32, the performance cost
of their loss was negligible. Wahbe et al. evaluated their
implementation by using it to isolate faults in an exten-
sion to a database server. While fault isolation decreases
the performance of the extension itself, the total effect is
small, significantly less than the overhead of having the
extension run in a separate process, because communica-
tion between the extension and the main server is inexpen-
sive. As their choice of the term “fault isolation” implies,
Wahbe et al. were primarily interested in isolating mod-
ules that potentially contained inadvertent errors, rather
than intentionally designed attacks.

3 CISC architectures

The approach of Wahbe et al. is not immediately appli-
cable to CISC architectures like the Intel IA-32 (i386 or
“x86), which feature variable-length instructions. (The
IA-32’s smaller number of registers also makes dedicat-
ing several registers undesirable, though its 32-bit imme-
diates mean that only 2 would be needed.) Implicit in
the previous discussion of Wahbe et al.’s technique was
that jumps were restricted to a single stream of instruc-
tions (each 4-byte aligned, in a typical RISC architecture).
By contrast, the x86 has variable-length instructions that
might start at any byte. Typically code has a single stream
of intended instructions, each following directly after the
last, but by starting at a byte in the middle of an intended
instruction, the processor can read an alternate stream of
instructions, generally nonsensical. If code were allowed
to jump to any byte offset, the SFI implementation would
need to check the safety of all of these alternate instruc-
tion streams; but this would be infeasible. The identity
of the hidden instructions is a seemingly random function
of the precise encodings of the intended ones (including
for instance the eventual absolute addresses of forward
jump targets), and most modifications to hidden instruc-
tions would garble the real ones.

To avoid this problem, our PittSFleld tool artificially
enforces its own alignment constraints on the x86 archi-
tecture. Conceptually, we divide memory into segments
we call chunks whose size and location is a power of
two, say 16, bytes. PittSFleld inserts no-op instructions
as padding so that no instruction crosses a chunk bound-
ary; every 16-byte aligned address holds a valid instruc-
tion. Instructions that are targets of jumps are put at the
beginning of chunks; call instructions go at the ends
of chunks, because the instructions after them are the tar-
gets of returns. This alignment is illustrated schematically
in Figure 1. Furthermore, jump instructions are checked
so that their target addresses always have their low 4 bits
zero. This transformation means that each chunk is an
atomic unit of execution with respect to incoming jumps:
it is impossible to execute the second instruction of a
chunk without executing the first. Thus, PittSFleld needs
no dedicated registers: it simply puts an otherwise unsafe
operation and the check of its operand in the same chunk.
(In general, one scratch register is still required to hold
the effective address while it is being checked, but it isn’t
necessary for the same register to be used consistently, or
for other uses of the register to be prohibited.)

4 Optimizations

The basic technique described in Section 3 ensures the
memory and control-flow safety properties we desire, but
as described it imposes a large performance penalty. This
section describes five optimizations that reduce the over-
head of the rewriting process, at the expense of making
it somewhat more complex. The first three optimizations
were described by Wahbe et al., and are well known; the
last two have, as far as we know, not previously been ap-
plied to SFI implementations.

4.1 Special registers

One obvious way to reduce the overhead of sandboxing
checks is to avoid applying them repeatedly to the same
value. For instance, the register $ebp (the ‘frame pointer’
or ‘base pointer’) is often used to access local variables
stored on the stack, part of the data region. This motivates
treating $ebp differently from other general purpose reg-
isters: rather than allowing $ebp to contain any value,
and checking each time the code uses it, we can instead
arrange that it always be a valid pointer to the data region.

With this approach, it is changes to $ebp, rather than
uses of it, that need to be checked; since it is usually set
once at the beginning of a function and then never mod-
ified, this reduces the total amount of checking. In fact,
it isn’t necessary to check $ebp immediately after it is
modified, but it must be checked before it is used, and
before a jump, because the instructions at the jump tar-
get would expect it to be valid. This policy about $ebp
could be described as treating it as ‘usually-sandboxed’,
rather than ‘usually-unsandboxed’. Note that because of
the relatively unrestricted possibilities for jumps, such a
decision has to be made globally for the entire code re-
gion.

4.2 Guard regions

The technique described in the previous subsection for op-
timizing the use of $ebp would be effective if $ebp were
only dereferenced directly, but in fact $ebp is often used
with a small constant offset to access the variables in a
function’s stack frame. Usually, if $ebp is in the data re-
gion, then so is $ebp + 10, but this would not be the
case if $ebp were already near the end of the data re-
gion. To handle this case efficiently, we follow Wahbe et
al. in using guard regions, areas in the address space di-
rectly before and after the data region that are also safe for
the sandboxed code to attempt to write to. An access at a
small offset from a sandboxed data address will be sure to
fall either in the data region or in one of the guard regions,
and thus be safe.

If we further assume that accesses to the guard region
can be efficiently trapped (such as by leaving them un-
mapped in the page table), we can optimize the use of the
stack pointer $esp in a similar way. The stack pointer is
similar to $ebp in that it generally points to the stack and
is accessed at small offsets, but unlike the frame pointer,
it is frequently modified; in particular, it is frequently in-
cremented and decremented as items are pushed onto and
popped off the stack. Even if each individual change is
small, each must be checked to make sure that it isn’t the
change that pushes $esp past the end of the allowable

region. However, if attempts to access the guard regions
are trapped, every use of $esp can also serve as a check
of the new value. One important point is that we must be
careful of modifications of $esp that do not also use it;
this danger will be illustrated in Section 5.

4.3 Ensure, don’t check

A final optimization that was included in the work of
Wahbe et al. has to do with the basic philosophy of the
safety policy that the rewriting enforces. The most impor-
tant aspect of the policy is that the untrusted code should
not be able to perform any action that is unsafe. We could
also ask, what should happen when the untrusted code
attempts an unsafe action? For instance, one possibility
would be to terminate the untrusted code with an error re-
port. Another possibility, however, would be to simply
require that when an unsafe action is attempted, some ac-
tion consistent with the security policy occurs instead. For
example, instead of a jump to a forbidden area causing an
exception, it might instead cause a jump to some arbitrary
other location in the code region. To follow this policy, it
isn’t necessary to check whether an address is legal, and
branch to an error handler if not; the code can simply set
the bits of the address appropriately and use it. If the ad-
dress was originally illegal, it will ‘wrap around’ to some
legal, though likely not meaningful, location.

At first blush, this approach of substituting seemingly
arbitrary values might seem reckless, and there are cer-
tainly applications (e.g., debugging) where it would be
unhelpful. However, it is reasonable to optimize a security
mechanism for the convenience of legitimate code, rather
than of illegal code. Attempted jumps to an illegal address
should not be expected to occur frequently in practice: it
is the responsibility of the code producer (and her com-
piler), not the code user, to avoid them. The performance
effects of this tradeoff are shown in Section 8.

4.4 One-instruction address operations

For an arbitrarily chosen code or data region, the sandbox-
ing instruction must check (or, according to the optimiza-
tion of Section 4.3, ensure) that certain bits of an address
are set, and others are clear. This requires two instruc-
tions: an AND instruction and a comparison for a check,
or an AND instruction and an OR instruction to modify
the appropriate bits. By further restricting the locations
of the sandbox regions, however, the number of instruc-
tions can be reduced to one. We choose the code and data
regions so that their tags have only a single bit set, and
then reserve from use the region of the same size starting
at address 0, which we call the zero-tag region (because

it corresponds to a tag of 0). With this change, bits in the
address only need to be clear (or cleared) and not also set.

PittSFIeld uses a code region starting at 0x10000000
and a data region starting at 0x20000000. The code
sequences to verify an address in $ebx for the data region
are then as follows:

e If we are checking addresses::

test $0xdf000000, %ebx
jz ok
int3

ok:

The test instruction checks if the tag is 0x20 by
AND-ing $ebx with a mask made of the comple-
ment of the tag; if the result is zero, control continues
at ok, otherwise it falls through to int3, a one-byte
instruction that causes a trap.

e If we are modifying addresses:

and SOx20ffffff, %ebx

This instruction turns off all of the bits in the tag ex-
cept possibly the third from the top, so the address
will be either in the data region or the zero-tag re-

gion.

We chose both sequences to minimize the number of in-
struction bytes required, 9 for the check sequence and 6
for the direct modification. Taking into account the other
instructions that must fit in a single chunk, direct modifi-
cation can be used with 16-byte chunks, while checking
requires 32-byte chunks.

On large examples like those in Section 8.2, disabling
this optimization increases PittSFleld’s overhead by about
10% (e.g., from 50% to 55%). 16-byte chunks use less
space overall, and our original intuition had been that this
would also improve performance by having fewer no-op
instructions and better cache density. It turns out how-
ever that some programs run faster with 32-byte chunks,
perhaps because of reduced fragmentation in inner loops.

4.5 Efficient returns

A final optimization helps PittSFIeld take advantage of
the predictive features of modern processors. Indirect
jumps are potentially expensive for processors if their tar-
gets cannot be accurately predicted. For general indirect
jumps, processors typically keep a cache, called a ‘branch

2 Assembly language examples use the GAS, or ‘AT&T’, syntax stan-
dard on Unix-like x86-based systems, which puts the destination last.

target buffer’, of the most recent target for a jump instruc-
tion. A particularly common kind of indirect jump is a
procedure return, which on the x86 reads a return address
from the stack. A naive implementation would treat a re-
turn as a pop followed by a standard indirect jump; for
instance, an early version of PittSFleld translated a ret
instruction into:

popl $ebx
and SO0x10f£ffff0, %ebx
jmp *3ebx

However, if a procedure is called from multiple locations,
the single buffer slot will not be effective at predicting
the return address, and performance will suffer. In order
to deal more efficiently with returns, modern x86 proces-
sors keep a shadow stack of return addresses in a separate
cache, and use this to predict the destinations of returns.
To allow the processor to use this cache, we would like
PittSFleld to return from procedures using a real ret in-
struction. Thus PittSFIeld modifies the return address and
writes it back to the stack before using a regular ret. In
fact, this can be done without a scratch register:

and
ret

$0x10£££££0, (%esp)

On a worst case example, like the recursive Fibonacci
function mentioned in Section 8.1, this optimization
makes an enormous difference, reducing 95% overhead
to 40%. In realistic examples, the difference is around 5%
of the total overhead.

5 Trust

In order for a rewriting technique like ours to enhance the
security of a system, careful consideration must be given
to the system architecture and the trust relationships be-
tween the production, checking, and execution of code.
Specifically, we advocate an arrangement in which the
compilation and the rewriting of the code are performed
by the untrusted code producer, and the safety policy is
enforced by a separate verification tool. This architec-
ture is familiar to users of Java: the code producer writes
source code and compiles it to Java byte code using the
compiler of her choice, but before the code user executes
an applet he checks it using a separate byte code veri-
fier. (One difference from Java is that once checked, our
code is executed more or less directly; there is no trusted
interpreter as complex as a Java just-in-time compiler.)
The importance of having a small, trusted verifier is also
stressed in work on proof-carrying code [NL96].

Except for the original work of Wahbe et al., previously
described SFI implementations have neglected this verifi-
cation aspect, instead requiring that the rewriting tool, or
both the rewriting tool and the compiler, be trusted. There
are two serious problems with a verifier-less approach.
First, if the code production process is to be trusted, the
code must either be regenerated right before use, or some
other trust mechanism must exist between the producer
and the user. Second, compilers and rewriters may be
large and complex enough that they cannot be relied upon
to maintain the desired security.

At first glance, one might hope to perform an instruc-
tion transformation like SFI by simply rewriting one com-
piled binary into another. However, performing such a
transformation is more difficult than might at first appear,
because of the need to update references to instructions
that move as part of the transformation. A compiled bi-
nary lacks information distinguishing machine words rep-
resenting code addresses or offsets that must be updated
from similarly-valued integers that should not be modi-
fied. Because of this difficulty, binary security tools usu-
ally perform their rewriting either earlier in the code life
cycle, using information otherwise discarded after compi-
lation, or later, transforming code dynamically, one basic
block at a time, as it is loaded. While dynamic transforma-
tion techniques to enforce targeted security policies have
been demonstrated in some recent research (see Section 9
for a discussion), they can be quite complex, especially if
high performance is desired. Previous SFI implementa-
tions either integrate the rewriting tool with the compiler
proper, or perform the rewriting between the compiler and
the assembler.

Rewriting code prior to assembly eliminates the diffi-
culty of relocating code addresses: they still exist as sym-
bolic labels, so retain their correct references. However,
unless code is to be distributed in source form and com-
piled (or assembled) before each use, some connection
must be made between the rewriting and the decision to
execute the code: either a trust relationship, or a verifi-
cation. Previous work [SS97] proposes that the rewrit-
ing tool cryptographically sign the transformed code, and
the code user verify the signature. In our opinion, a
signature-based approach has two main disadvantages:
first, a public-key infrastructure of some sort is required
to check the signer’s identity, a large technical addition;
and second, a trusted third party is needed to compile the
code, a significant additional existence assumption. On
architectural grounds alone, a verification-based arrange-
ment seems preferable.

An even more serious problem with a design that trusts
the compiler and rewriting tool to perform correctly is that

those tools may not really be worthy of our trust. For in-
stance, several previous x86 SFI tools that operate at the
level of assembly language code trust that their input code
correctly uses the stack and that frame pointers to refer
only to valid stack frames. While the compilers used with
these tools (usually the GNU C Compiler GCC or its C++
variant G++) are generally quite reliable in correctly gen-
erating stack references, the specification of correct stack
usage they conform to is not a good match for the security
needs of an SFI tool.

As a concrete example, the following C source code
demonstrates a problem of this sort in the MiSFIT
tool [SS97]:

jmp buf env;
void f(int arg, int arg2,
int arg3, int arg4) {
return;
}
void poke(int *loc, int wval) {
int local;
unsigned diff = &local - loc - 4;
for (diff /= 4; diff; diff--)
alloca(16);
f(val, val, val, val);

The function poke has the effect of storing an arbitrary
word at an arbitrary address (it also overwrites some adja-
cent words), clearly something that should be restricted by
MiSFIT’s security policy. However, the policy is circum-
vented by the above code, which performs the dangerous
write as a push to the stack, in the course of calling the
function £. To get the stack pointer to point at the de-
sired location, the code repeatedly advances it using the
alloca function, by an amount equal to the difference
between its current location (approximated by the address
of the local variable 1ocal) and the desired target. While
each individual increment of the stack pointer is modest
(16 bytes), because they occur in a loop the total effect is
large. (Though we were unable to obtain the implemen-
tation to test, the description in [ES99] suggests that the
tool there would be vulnerable to the same attack.) By
contrast, PittSFIeld would recheck the stack pointer each
time around the loop containing alloca, never allowing
it to escape the data region.

Compilers are inevitably large and complex programs,
so it makes sense to avoid relying on the correctness of
a compiler, or of a rewriting performed as part of a com-
piler, for system security. What about trusting a small,
dedicated rewriting tool? While this approach would be
better, it still leaves the rewriting tool with several roles

that are in tension: preserving the behavior of the original
program, enforcing a security policy, and optimizing the
transformation to reduce overhead. For instance, any op-
timization that changed how the rewriting was performed
would carry the danger of accidentally opening a security
hole. To us, it seems better to assign the task of checking
adherence to a security policy to a separate tool, so that
the security properties of the technique can be understood
in isolation. Once the separate verification tool can be
trusted, the compiler and rewriting tool can be modified
with significantly greater flexibility.

6 Formal Analysis

Having restricted ourselves, as argued in Section 5, to a
separate, minimal verification tool as the guarantor of our
technique’s safety, we can devote more effort to analyz-
ing and assuring ourselves of that component’s soundness.
Specifically, we have constructed a completely formal and
machine-checked proof of the fact that our technique en-
sures the security policy that it claims to. Though the se-
curity of a complete system of course depends on many
factors, such a proof provides a concise and trustworthy
summary of the key underlying principles. Formal theo-
rem proving has a reputation for being arduous; we think
the relative ease with which this proof was completed is
primarily a testament to the simplicity of the technique to
which it pertains.

To better understand how the verification works, it is
helpful to borrow concepts from program analysis, and
think of it as a conservative static analysis. We are in-
terested in a particular property of the program’s execu-
tion, roughly that it never jumps outside its code region or
writes outside its data region. In general, this property is
impossible to decide, but it is tractable if we are willing to
accept one-sided error: we do not mind if we fail to rec-
ognize that a program has the safety property, as long as
whenever we analyze that it does, we are correct. If your
original program was correct, it already had this safety
property; you can think of the rewriting as simply making
the property manifest, so that the verifier can easily check
it.

The verification process essentially computes, for each
position in the rewritten instruction stream, a conservative
property describing the contents of the processor’s regis-
ters at any time when execution might reach that point.
For instance, directly after an appropriate and instruction
not at a chunk boundary, we might know that the contents
of the target register are appropriately sandboxed for use
in accessing the data region. The major part of the safety
proof is to show that these properties are sound for any

(defun seg-reachable-rec (mem eip k)
(if (2zp k) (if (= eip (code-start)) 0 nil)
(let ((kth-insn
(kth-insn-from mem (code-start) k)))
(or (and kth-insn (= eip kth-insn) k)
(seqg-reachable-rec mem eip (- k 1))))))

(defthm if-seg-reach-in-k-then-bound-by-kth-insn
(implies (and (mem-p mem) (natp k) (natp eip)
(kth-insn-from mem (code-start) k)
(seg-reachable-rec mem eip k))
(<= eip (kth-insn-from mem
(code-start) k))))

Figure 2: Example of a typical function definition
(above) and lemma (below) from our formal ACL2 proof.
seg-reachable-rec is a recursive procedure that
checks whether the instruction at location eip is among
the first k instructions reachable from the beginning of
the sandboxed code region in a memory image mem. The
lemma states that if eip is among the first k instructions,
then its address is at most that of the kth instruction.

possible execution; it’s then easy to see that if the prop-
erties always hold, no unsafe executions will be possible.
An important aspect of the soundness is that it is induc-
tive over the steps in the execution of the rewritten code:
for instance, it is important that none of the instructions
in the code region change during execution (new instruc-
tions would not necessarily match the static properties),
but we can be confident of this only because in previous
execution up to a given point, we can assume we were
successful in preventing writes outside the data section.
In program verification terminology, the soundness prop-
erty is an invariant that we check as being preserved by
each instruction step.

We have constructed the proof using ACL2 [KM97].
ACL2 is a theorem-proving tool that combines a restricted
subset of Common Lisp, used for modelling a system,
with a sophisticated engine for semi-automatically prov-
ing theorems about those models. We use the program-
ming language (which is first-order and purely functional)
to construct a simplified model of our verifier, and a simu-
lator for the x86 instruction set. Then, we give a series of
lemmas about the behavior of the model, culminating in
the statement of the desired safety theorem. The lemmas
are chosen to be sufficiently elementary that ACL2 can au-
tomatically prove each from the model and the preceding
lemmas, sometimes with the help of ‘hints’ about which
proof strategies to use. We chose ACL2 for the proof with
the hope that its concrete modelling language and famil-
iar underlying logic (essentially quantifier-less first-order
logic) would reduce the learning curve associated with a

new tool. In this, we feel fairly successful: the proof has
taken less than two months of effort by a user with no
previous experience with proof assistants (presumably an
experienced ACL2 user could have produced a more ele-
gant proof in less time.) An example of a function from
the executable model and a lemma we have proved about
it are shown in Figure 2. Though ACL2’s proofs cannot
be automatically checked by any tool other than ACL2
itself, potentially a disadvantage for confidence in its re-
sults, it is a sufficiently well-established tool that we are
not seriously troubled.

One aspect of the proof to note is that it deals with a
subset of the instructions handled by the real tool: this
applies both to which instructions are allowed by the
simulated verifier, and to which can be executed by the
x86 simulator. The instructions were chosen to exer-
cise all of the aspects of the security policy; for instance,
jmp *%ebx isincluded to demonstrate an indirect jump.
However, the simulator is structured so that an attempt to
execute any un-modelled instruction causes an immediate
failure, so safety for a program written in the subset that is
treated in the proof should extend to the complete system.

A related concern is whether the simulated x86 seman-
tics match those of a real processor. We have proved
that the technique (as formalized) is sound with respect to
our model of the behavior of an x86 processor, but if our
model of that behavior has an error, it might mask a prob-
lem with the technique. While the current simulator was
written by hand, we have explored ways in which the pro-
cessor description could be generated automatically from
an independent declarative specification. Given such a
trustworthy description of the complete processor, we can
show a simulation result proving that our model in the
proof is a correct subset of the real processor’s behaviors.
Our goal is similar to the machine semantics constructed
for foundational proof-carrying code by Michael and Ap-
pel [MAOO], but differs somewhat because of choice of a
proof environment: compared to the higher-order logical
framework they used, ACL2 has fewer abstraction mecha-
nisms, but better primitive support for arithmetic. Similar
machine architecture specifications in ACL2-like systems
have been constructed by hand [BY96].

7 Prototype implementation

To test the practicality of our approach, we have con-
structed a prototype implementation, named PittSFleld.
PittSFIeld instantiates a simple version of the technique,
incorporating only the most important optimizations, and
is not as robust as a polished tool might be. However,
PittSFlIeld was designed to address some important prac-

tical considerations for a real tool, such as the separate
verification model and scalability to large and complex
programs. In particular, PittSFleld makes no fundamental
compromises with respect to the rigorous security guar-
antees that the technique offers. The performance of code
rewritten by PittSFleld (described in the next section)
should also give a reasonable upper bound on the over-
head of this general approach, one which could be some-
what improved by further optimization. (However, other
aspects of the prototype are not representative of a practi-
cal implementation: for instance, the rewriting and verifi-
cation processes themselves are unrealistically slow.)

The rewriting performed by PittSFleld is a version of
the techniques described in Sections 3 and 4, chosen to
be easy to perform. The register $ebx is reserved (using
the —-—fixed-ebx flag to GCC), and used to hold the
sandboxed address for accesses to both the data and code
regions. The effective address of an unsafe operation is
computed in $ebx using a lea instruction. The value
in %ebx is required to be checked or sandboxed directly
before each data write or indirect code jump (reads are un-
restricted). Both direct and indirect jumps are constrained
to chunk-aligned targets. Guard regions are 64k bytes in
size: %ebp and %esp are treated as usually-sandboxed.
Accesses are allowed at an offset of up to 64k from $ebp,
and of up to 255 bytes from %esp; %esp is also allowed
to be modified up to 255 times, by as much as 255 bytes
each time, between checks/modifications. Both $ebp and
$esp must be restored to safe values before a jump. A
safe value in $esp may be copied to $ebp or vice-versa
without a check. Chunks are padded using standard no-op
instructions of lengths 1, 2, 3, 4, 6, and 7 bytes, to a size
of 16 or 32 bytes.

Both the rewriting and the verification in PittSFleld are
performed as single top-to-bottom passes, essentially as
finite-state machines. While this prohibits some optimiza-
tions (for instance, labels that are targets only of direct
jumps need not necessarily be aligned), it allows PittS-
Fleld to rewrite very large programs, and guarantees that
its running time will be linear. (A verification technique
with bad worst-case performance can allow a denial-of-
service attack [GPF03].)

The rewriting phase of PittSFleld is implemented as a
text processing tool operating on input to the GNU assem-
bler gas. In most cases, alignment is achieved using the
.p2align directive to the assembler, which computes
the correct number of no-ops to add; the rewriter uses a
conservative estimate of instruction length to decide when
to emit a .p2align. The rewriter adds no-ops itself for
aligning call instructions, because they need to go at the
end rather than the beginning of a chunk. The rewriter

f: push $ebp
mov $esp, %ebp
mov 8(%ebp), %edx
mov 48 (%edx), %eax
f: push %ebp lea l(%eax), %ecx
mov %esp, %ebp lea O(%esi), %esi
mov 8(%ebp), %edx lea 48 (%edx), %ebx
mov 48 (%edx), %eax lea 0(%esi), %esi
lea 1(%eax), %ecx lea 0(%edi), %edi
mov %ecx, 48(%edx) and SOx20f£fffff, %ebx
pop $ebp mov $ecx, (%ebx)
ret pop %$ebp
lea 0(%esi), %esi
and SOx20ffffff, %ebp
andl $0x10f££f££f0, (%esp)
ret

Figure 3: Before and after example of code transformation. £ is a function that takes an array of integers, increments
the 12th, and returns (in $eax) the value before the increment. The assembly code on the left is produced by GCC;
that on the right shows the results of the PittSFIeld rewriter after assembly. Rules separate the chunks, and no-op
instructions are printed in gray. (Though they look the same here, the first three no-ops use different instruction

encodings so as to take 4, 6, and 7 bytes respectively).

notices instructions that are likely to be used for their ef-
fect on the processor status flags (e.g., comparisons), and
saves and restores the flags register around sandboxing
operations when the flags are deemed live. An example
of the rewriter’s operation on a small function is shown in
Figure 3.

The verification phase is also implemented via text-
processing, as a filter that parses the output of the dis-
assembler from the GNU “binutils” package (the pro-
gram named objdump). A more careful implementation
would probably examine the binary values of opcodes di-
rectly, to avoid trusting the disassembler (which is much
larger than the prototype verifier). Because it uses a sin-
gle disassembly pass, the verifier enforces alignment by
checking that an instruction in the single stream must ap-
pear at each chunk starting address. The verifier currently
verifies only the style of rewriting in which pointers are
modified, and not the style in which they are checked
and execution halted if they are incorrect; but support-
ing the checking style would not be particularly difficult.
As mentioned above, the verifier is essentially finite-state:
at each code location, it keeps track of variations from
the standard safety invariant, checking them and then up-
dating its knowledge for each instruction. Operations
that ‘strengthen’ the invariant (for instance, sandboxing
a pointer value in $ebx) expire after one instruction or at
a chunk boundary, whichever comes first. Operations that
‘weaken’ the invariant (for instance, loading a new value
into $ebp) persist until corrected, and must not reach a

jump.

PittSFlIeld supports a large subset of the x86 32-bit pro-
tected mode instruction set, including most commonly
used integer instructions, and a large number of floating
point instructions. Supervisor mode instructions, string
instructions, and multimedia SIMD (e.g. MMX) instruc-
tions are not supported, as we had no use for them; the
verifier will reject any program containing an instruction
it does not recognize. The rewriter and the verifier are
both implemented as Perl scripts, using a common library
of regular expressions for parsing instructions. The com-
mon library, the rewriter, and the verifier represent ap-
proximately 150, 525, and 450 lines of code respectively,
including blank lines and comments.

8 Performance results

To asses the time and space overheads imposed by our
technique, we used our PittSFleld tool to run a variety
of stand-alone applications in fault-isolated environments.
The programs were not chosen as code one might partic-
ularly want to run from an untrusted source, merely as
computation-intensive benchmarks. The ‘untrusted’ code
in each case consisted of the application itself, and some
simple standard library routines. More complex library
routines and system calls were treated as ‘trusted,” and ac-
cessed via special stubs allowing controlled access out of
the sandbox. In a realistic application, these stubs would
include checks of their arguments to enforce desired secu-

rity policies. In our prototype, the trusted loading applica-
tion and stub trusted calls consisted of approximately 550
lines of C code, including blank lines and comments.

8.1 Microbenchmarks

To understand the performance overhead introduced by
the use of PittSFleld, we modified several simple C and
C++ programs with the tool, and compared their perfor-
mance with and without modification, giving the results
shown in Figure 4. When possible, we also translated
them into a type-safe language, to compare the perfor-
mance of that approach. factor, based on the pro-
gram with the same name from the GNU coreutils dis-
tribution, factors an 18-digit number that is the product
of two large primes by a brute force method. For both
SFI tools, we treated the internal _ udivdi3 routine,
which GCC uses to divide 64-bit integers, as trusted.
fib computes the 42nd Fibonacci number using the stan-
dard exponential-time recursive algorithm, and mainly
tests the overhead incurred by functions calls. md5 com-
putes the MD5 checksum of a one and a half gigabyte
string by reading a 15 megabyte buffer 100 times over,
using essentially the reference implementation from RFC
1321 [Riv92]. switch, £p, and virtual mimic three
styles of inner operation loops for an interpreted program-
ing language, using a switch statement, function pointers,
and C++ virtual method calls respectively; they stress the
performance of indirect jumps. We wrote Java versions
of the benchmarks trying to match the C and C++ ver-
sions as closely as possible; for md5 we used the fastest
freely implementation of the hash function we could find
(by Timothy Macinta); versions that looked more like the
C reference implementation were strangely much slower.
Java does not have function pointers, so there is no Java
implementation of £p. Because of the inherent difficulty
of identifying ‘the same program’ in different languages,
all the cross-language comparisons should be taken with
a grain of salt.

Each program was compiled in an unmodified version,
and with the SFI tools PittSFIeld and MiSFIT. To explore
in more detail the sources of overhead for PittSFleld, we
also applied two of the transformations required by PittS-
Fleld on the programs without other changes: reserving
the $ebx register so that it is not used in the compiled
code, and inserting padding to prevent instructions from
crossing 16-byte boundaries. The C and C++ programs
were all compiled with GCC and G++ version 3.3.5, at
optimization level —-03. We also tested Java versions of
the programs in two ways: GCJ is an ahead-of-time com-
piler for Java that uses the same back-end as GCC; we

again used version 3.3.5 at optimization level -03. In
addition we tested the just-in-time-compiler-based virtual
machine supplied by Sun, version 1.5.0 of the HotSpot
Client VM. The hardware used in the tests was an AMD
Athlon running at 1066MHz, with 256KB of cache and
1GB of main memory. The otherwise unloaded machine
uses Linux 2.4.27 and actually has two processors, but
all of the test programs were single threaded. (Because
our technique depends only on values in registers and a
(thread-private) stack, it would be equally applicable to
multithreaded programs.)

We used version 0.2 of MiSFIT, with the ‘write protec-
tion’, ‘call protection’, ‘stack protection’, and ‘optimiza-
tion’ options enabled, though in our examples the stack
protection appeared to have no effect. Because as dis-
tributed, MiSFIT is designed to be used in a larger system,
we had to recreate some parts of its supporting infrastruc-
ture by hand. We wrote our own assembly-language im-
plementation of the trusted return address stack, interfac-
ing to hash table code supplied in the MiSFIT distribution.
We did not actually bother to rearrange data areas used
by the MiSFIT-sandboxed programs to use any particular
area of memory, so we used a region tag of 0 and a region
mask of all ones so that sandboxing never caused pointers
to be modified. Two differences should be noted between
the protection supplied by MiSFIT and PittSFleld in these
examples: On one hand, MiSFIT protects return addresses
from being subverted, while PittSFIeld does not. On the
other hand, MiSFIT’s trust in GCC makes its protection
of the stack incomplete, as mentioned earlier, and it also
trusts the jump table that GCC generates for the switch
statement in switch, including that the index into it will
always be in bounds. (By contrast, PittSFleld places the
jump table in the data segment, and sandboxes the ad-
dresses read from the table as for any indirect jump.)

The unusual specialization of some of these bench-
marks leads to some out-of-scale effects on performance.
For instance, £ib, £p, and virtual consist of little but
procedure calls, and so demonstrate an inefficiency in how
PittSFIeld handles them; for 32-byte chunks, the fact that
the rewriter does not have complete knowledge of align-
ment means that much more padding than necessary is
added. The high performance of the Java JIT on fib
and switch suggests that its dynamic optimizer can find
unusually productive opportunities for improvement there
(perhaps inlining recursive calls to £ib, say).

Overall, these results show that PittSFleld and Mis-
FIT’s performance are in the same general range, with
MiSFIT showing more variation. PittSFlIeld’s alignment-
based sandboxing technique is more efficient that MiS-
FIT’s table-based one for programs with many procedure

10

factor fib md5 switch fp virtual
unmodified time = 1.0 7.03s 11.17s 16.81s 10.68s 11.35s 12.91s
$ebx reserved 1.04 1.01 1.02 1.00 0.99 0.99
padding 1.05 1.16 1.10 0.99 0.98 0.99
%$ebx reserved and padding 1.13 1.17 1.13 0.99 0.97 0.99
PittSFleld (ensure) 1.29 1.40 1.25 1.07 1.16 1.14
PittSFleld (check) 1.38 2.94 1.39 1.09 2.16 1.47
MiSFIT 1.15 2.20 1.50 1.02 1.59 1.64
Java (gcj) 1.10 1.01 1.45 0.90 N/A 1.06
Java (JIT) 2.25 0.81 1.76 0.52 N/A 1.15

Figure 4: Runtime measurements comparing sandboxed programs to unmodified programs and programs protected
via other techniques. The first row gives times for unmodified programs in seconds; subsequent rows are slowdown
factors (1.0 means ‘same as unmodified”) compared to that time.

calls, especially indirect ones. On the other hand, MiS-
FIT’s technique imposes less overhead on programs that
make relatively few writes or jumps, such as factor.
In general, SFI is competitive in performance with type-
safety based languages such as Java, while allowing exist-
ing C code to be used with little or no modification.

8.2 Larger benchmarks

To test the scalability of the PittSFleld approach, we also
used it to isolate faults in some full-size applications that
are standard in the open source community. These results
are shown in Figure 5. bzip2 is a general-purpose loss-
less compression tool; in the benchmark, it compresses a
21 megabyte file containing C source code. oggenc is
an audio compression tool for a format similar to MP3; in
the benchmark, it compresses a 44 megabyte file contain-
ing CD-quality spoken-word audio. We chose oggenc
as a program that makes heavy use of floating-point arith-
metic. bc is the GNU implementation of an arbitrary-
precision desk calculator; in the benchmark, it computes
150,000 products of 80-digit integers. gcc? is a develop-
ment version of the GNU C compiler; in the benchmark,
it compiles itself as a single compilation unit. gcc and its
subsidiary libraries (including a C preprocessor and a cus-
tom garbage collector) consist of approximately 750,000
lines of code. Because of gcc’s size, we used a differ-
ent memory layout in which the sandbox data region is
1GB. A previous version of our tool required that its in-
put be a single compilation unit, so we modified bzip2,
oggenc, and gcc to compile as single . c files; bc was
not modified in this way. The other changes needed to

3To be precise, the executable tested is actually what would be in-
stalled as cc1, representing the compiler pass that transforms C code
into assembly language.

11

the programs, to remove uses of library calls not included
in our stubs when they were incidental to the program’s
functioning, were minor.

Two rows of Figure 5 show how PittSFleld’s trans-
formation affects the size of the code. The row “PittS-
Fleld size ratio” shows the ratio of the size of an ob-
ject file processed by PittSFleld to that of an unmodified
program, ranging up to 100% overhead; the increase in-
cludes the addition of both sandboxing instructions and
padding no-ops. Besides using additional memory, ex-
panding code tends to decrease instruction cache locality;
this accounts for some of the slow-down measured in the
“padding” row. (The size ratio for oggenc is smaller
than the others because it contains a large amount of static
data, which is unchanged by the code rewriting.) The
row “compressed size ratio” is analogous, except that both
the transformed and original object files were first com-
pressed with bzip2: these overheads are smaller, at most
25%. Compressed size is relevant, for instance, to the cost
of distributing software; the compressed ratios are smaller
because the added instructions tend to be repetitive.

The runtime overheads of 30-45% (somewhat higher
for checking) shown for these computationally intensive
examples are not insignificant, but we believe they would
often be acceptable for one component of a larger sys-
tem, given the security and usability benefits isolation
provides. Reserving a scratch register has relatively lit-
tle effect on performance; adding no-ops for padding is
somewhat more detrimental. Together they account for a
little less than a third of the technique’s overhead, on aver-
age. These examples also show that the technique is com-
patible with all of the complexities of realistic programs
in unsafe languages, including complex explicit memory
management, without requiring programmers to modify
or annotate working code. The security benefits described

bzip2 bc oggenc gcc
lines of code 6753 10212 58372 752986
PittSFleld size ratio 1.96 1.81 1.14 1.84
compressed size ratio 1.24 1.19 1.08 1.10
unmodified time = 1.0 21.68s 1241s 35.22s 167.75s
%$ebx reserved 1.05 0.99 1.01 1.01
padding 1.03 1.18 1.05 1.09
%$ebx reserved and padding 1.09 1.18 1.08 1.11
PittSFIeld (ensure) 1.28 1.45 1.41 1.30
PittSFIeld (check) 1.34 1.60 1.52 1.63

Figure 5: Code size and runtime measurements comparing sandboxed programs to unmodified programs. Lines of

code include blank lines and comments.

in previous sections can be obtained for existing C and
C++ components at an acceptable cost in performance and
developer effort.

9 Related work

This section compares our work with previous implemen-
tations of SFI, and with other techniques that ensure mem-
ory safety or isolation including code rewriting, dynamic
translation, and low-level type systems. It also distin-
guishes the isolation provided by SFI from the subversion
protection that some superficially similar techniques pro-
vide.

9.1 Other SFI implementations

Binary sandboxing was introduced as a fault-isolation
technique by Wahbe, Lucco, Anderson, and Gra-
ham [WLAG93]. The basic features of their approach
were described in Sections 2 and 4. Wahbe et al. mention
in a footnote that their technique would not be applicable
to architectures like the x86 without some other technique
to restrict control flow, but then drop the topic.
Subsequent researchers generally implemented a re-
striction on control flow by collecting an explicit list of
legal jump targets. The best example of such a sys-
tem is Small and Seltzer’s MiSFIT [SS97], an assembly-
language rewriter designed to isolate faults in C++ code
for an extensible operating system. MiSFIT generates a
hash table from the set of legal jump targets in a pro-
gram, and redirects calls and indirect jumps through code
that checks that the target appears in the table. Function
return addresses are also stored on a separate, protected
stack. Because control flow is prevented from jumping
into the middle of them, the instruction sequences to sand-
box memory addresses don’t require a dedicated register,

though MiSFIT does need to spill to the stack to obtain
a scratch register in some cases. A less satisfying aspect
of MiSFIT is its trust model. The rewriting engine and
the code consumer must share a secret, which the rewriter
uses to sign the generated code, and MiSFIT relies on the
compiler to correctly manage the stack and to produce
only safe references to call frames. We described the se-
curity difficulties with this approach in Section 5.

Erlingsson and Schneider’s SASI tool for the
x86 [ES99] inserts code sequences very similar to
MiSFIT’s, except that its additions are pure checks
that abort execution if an illegal operation is attempted,
and otherwise fall through to the original code, like
PittSFlIeld’s ‘check’ mode. In particular, the SASI tool
is similar to MiSFIT in its use of a table of legal jump
targets, and its decision to trust the compiler’s manipula-
tion of the stack. Lu’s C+J system [Lu0Ob, Lu0OOa] also
generates a table of legal jump destinations (separately
for calls and returns, in his case), but the indices into the
table are assigned sequentially at translation time, rather
than being the addresses themselves as in other systems,
so there’s no danger of collision. For procedure calls,
the index is stored right before the first instruction; for
returns, the index is stored on the stack in place of the
return address.

Silver’s SFI implementation [Sil96] follows the ideas
of Wahbe et al. quite closely, except that no verification
was implemented; only RISC architectures are targeted.
The Omniware virtual machine [ATLLW96], on which
Wahbe and Lucco worked after the classic paper, uses
SFI in translating from a generic RISC-like virtual ma-
chine to a variety of architectures, including the x86. The
Omniware VM implemented extensive compiler-like op-
timizations to reduce the overhead of sandboxing checks,
achieving average overheads of about 10% on selected
SPEC92 benchmarks. However, the focus of the work

appears to have been more on performance and portabil-
ity than on security; available information on the details
of the safety checks, especially for the x86, is sparse.
In a patent [WLIS8] (assigned to Microsoft, which pur-
chased Omniware maker Colusa Software in March of
1996) Wahbe and Lucco disclose that later versions of the
system enforced more complex, page-table like memory
permissions, but give no more details of the x86 imple-
mentation.

As far as we know, our work described in Section 6
is the first machine-checked or completely formalized
soundness proof for an SFI technique or implementation.
Necula and Lee [NL96] proved the soundness of SFI as
applied to particular programs, but not in general, and
only in the context of simple packet filters. Abadi et
al. ([ABELOS5b], see Section 9.3 for discussion) give a
human-readable prose proof for the safety of a model of
an SFI-like system. Key to making a reasonably-sized
soundness proof, and to confidence in a technique’s se-
curity more generally, is an architecture based on separate
verification; this is missing from all the implementations
described in the preceding paragraphs except for Wahbe
et al.’s original one.

9.2 Isolation and preventing subversion

In comparing the security provided by an SFI tool like
PittSFIeld to other code-rewriting techniques, there is a
fundamental distinction in what kind of security property
a tool provides. In general, a security failure of a sys-
tem occurs when an attacker chooses input that causes
code to perform differently than its author intended, and
the subverted code then uses privileges it has to perform
an undesirable action. Such an attack can be prevented
either by preventing the code’s execution for being sub-
verted, or by isolating the vulnerable code so that even
if subverted, it can still be prevented from taking an un-
desirable action. Many security techniques are based on
the prevention of subversion: for instance, ensuring that
procedure calls always return to their call sites, even if
the stack has been modified by a buffer overrun. SFI, by
contrast, is fundamentally a technique for isolating one
part of a program from another. To function as a security
technique, this isolation must be used to support a design
that divides a system into more and less trusted compo-
nents, and restricts the interactions between the two. (At
the very least, because it isn’t possible to make system
calls from inside a sandbox, SFI requires the definition
of some interface constraining code’s interaction with the
outside world.) Whether SFI or another isolation mecha-
nism is used, designing a system to separate and restrict

the interface of privileged operations is generally a good
choice to improve system security. However, it requires
some additional developer effort in defining appropriate
interfaces, which may not exist in a monolithic system.
By contrast, a system aimed just at preventing subversion
can be used on an unmodified monolithic program, on the
assumption that, say, executing user-provided code is al-
ways undesirable.

For instance, we can imagine using SFI as an alternative
to system-level mechanisms for separating programs into
differently-privileged subprograms. Provos et al. [PFHO3]
divide the OpenSSH network login server into more and
less-trusted components that operate as separate Unix pro-
cesses, communicating using sockets and shared mem-
ory. They show that this technique is effective in con-
taining attacks, but splitting a once-monolithic program
into separately communicating tasks is nontrivial. That
the two processes have separate operating-system level
state makes some aspects of isolation easier (the trusted
code can run concurrently with the untrusted) and oth-
ers more difficult (the untrusted code can still make many
system calls). While an SFI-based approach would re-
quire the same design decisions about which parts of the
authentication process require privilege, the implementa-
tion of communication would be simpler: for instance,
the privileged code could access data structures in the un-
privileged sandbox completely transparently. Also related
are system-level sandboxing techniques for complete pro-
grams, such as those described by Peterson et al. [PBP02].
These take advantage of the operating system design to
provide isolation and to define the interface to the un-
trusted code (system calls); this makes them very con-
venient to apply to unmodified applications, but prevents
them from giving different privileges to different compo-
nents of a program, as would often be desirable.

Incidentally, we might point out that SFI subsumes
some mechanisms that have previously been suggested as
partial measures to make program subversion more dif-
ficult. For instance, PittSFleld prohibits the execution
of code on the stack and reduces the number of possi-
ble targets of an overwritten function pointer; other tools
like MiSFIT restrict the set of targets further, and protect
procedure return addresses. However, these side-effects
should not be confused with the isolation policy that they
are intended to support, as described above. SFI imple-
mentations do not provide general protection against at-
tacks on the untrusted code; they simply contain those at-
tacks within the component.

9.3 Gleipnir/CFI

In concurrent work [ABELOS5a], the Gleipnir project at
Microsoft Research has investigated a binary-rewriting
security technique called Control-Flow Integrity, or CFIL.
As suggested by the name, CFI differs from SFI in fo-
cusing solely on constraining a program’s jumps: in the
Gleipnir implementation, each potential jump target is la-
belled by a 32-bit value encoded in a no-op instruction,
and an indirect jump checks for the presence of an ap-
propriate tag before transferring control. This approach
gives finer control of jump destinations than the SFI tech-
niques of Wahbe et al., or PittSFleld, though the ideal pre-
cision could only be obtained with a careful static analysis
of, for instance, which function pointers might be used at
which indirect call sites. In terms of the discussion of
Section 9.2, this makes CFI much more effective at pre-
venting program subversion. In the basic presentation,
CFI relies on an external mechanism (such as hardware)
to prevent changes to code or jumps to a data region, but
it can also be combined with inserted memory-operation
checks, as in SFI, to enforce these constraints simultane-
ously.

In the control-flow-only use, CFI has overheads rang-
ing from O to 45% on a Pentium 4; the wide variation pre-
sumably results from a large overhead on indirect jumps
combined with little overhead on any other operation. By
comparison, PittSFIeld imposes a smaller overhead on
jumps, but significant additional overheads on other oper-
ations. Performance measurements for CFI with software
memory protection were not included in [ABELO5a], so
a more detailed performance comparison is not yet pos-
sible. Like PittSFleld, Gleipnir/CFI performs a sepa-
rate verification to enforce proper rewriting at load time,
so the compiler and binary instrumentation infrastructure
need not be trusted. The Gleipnir authors have written
a human-checked proof [ABELO5b] that a CFI-protected
program will never make unsafe jumps, even in the pres-
ence of arbitrary writes to data memory. However, the
proof is formulated in terms of a miniature RISC archi-
tecture whose encoding is not specified. This is some-
what unsatisfying, as the safety of the real Gleipnir/CFI
technique is affected in subtle ways by the x86 instruction
encoding (for instance, the possibility that the immediate
tag value used in the comparison at a jump site might be
itself interpreted as a safe jump target tag.)

9.4 Static C safety mechanisms

Beyond SFI, much other work has used pre-execution bi-
nary or source rewriting to work around the unsafe aspects
of C programs. Besides security, finding bugs during de-

14

velopment is another major application. Such tools gen-
erally provide a more precise guarantee of memory be-
havior than SFI, for instance that writes only occur to al-
located bytes, or even only to the allocated block from
which a pointer was derived, before the block was freed.
However, such precise guarantees require additional run-
time overheads. Perhaps the best-known binary rewriting
tool is Purify [HJ92], which checks for memory-usage
bugs. Because it is targeted only for use during debug-
ging, its relatively high overheads are not problematic.
Tools that rewrite C source code to perform memory us-
age tracing can achieve even more precise error tracking,
again at the expense of performance; examples include the
systems of Austin et al. [ABS94] and more recently Xu
et al. [XDS04]. Techniques such as ours achieve better
performance by enforcing a simpler memory policy; our
technique is also simpler and more scalable than source-
code rewriting approaches.

Another class of program rewriting tools (often im-
plemented as compiler modifications) are focused on en-
suring fairly narrow security policies, for instance that
the procedure return address on the stack is not modi-
fied [CPM™98]. Such tools can be very effective in their
intended role, and tend to have low overheads, but they do
not provide protection against more esoteric subversion
attacks. They also do not provide isolation between com-
ponents, and are not intended for untrusted code. They
could, however, be used in conjunction with SFI if both
isolation and protection from subversion are desired.

9.5 Dynamic translation mechanisms

Several recent projects has borrowed techniques from dy-
namic optimization to rewrite programs on the fly; such
techniques allow for fine control of program execution,
as well as avoiding the difficulties of static binary rewrit-
ing. Valgrind [NSO3] is a powerful framework for dy-
namic rewriting of Linux/x86 programs, which is best
known for Purify-like memory checking, but can also be
adapted to a number of other purposes. Valgrind’s rewrit-
ing uses a RISC-like intermediate language, sacrificing
performance for ease of development of novel applica-
tions. A research tool with a more security-oriented fo-
cus is Scott and Davidson’s Strata [SD02]; it has achieved
lower overheads (averaging about 30%) while enforcing
targeted security policies such as system call intercep-
tion. A similar but even higher performance system is
Kiriansky et al.’s program shepherding [KBAO2], based
on the DynamoRIO dynamic translation system. Their
work concentrates on preventing attacks on a program’s
control flow, as an efficient and transparent means to pre-

vent stack- and function-pointer-smashing vulnerabilities
from being exploited. Further innovations include effi-
cient techniques for protecting the return stack, such as
saving 16-bit tags in XMM registers [KBAO3], an idea
that could also be applied to SFI. In general, such dy-
namic techniques can, if carefully implemented, enforce
control flow policies more efficiently than a technique like
ours. This control flow restriction can then be leveraged
for a variety of other purposes, including various types of
memory protection, which can be implemented very sim-
ilarly in dynamic or static contexts. A disadvantage of
dynamic techniques is that they are inherently somewhat
complex and difficult to reason about, relative to a com-
parable static translation.

9.6 Low-level type safety

Verifying that low-level program representations preserve
safety features has been a theme of much recent research,
though more emphasis has been placed on guarantees
using static invariants such as type systems, rather than
inlined dynamic checks as in SFI. For instance, typed
assembly language [MWCG99, MCG199] can provide
quickly checkable, fine-grained safety properties for a
sublanguage of x86 assembly, but requires that the origi-
nal program be written in a type-safe language. Type in-
ference can also be used to transform C code into a type-
safe program with a minimal set of dynamic checks, as
in the CCured system [CHM*03]. These inferred types
can encode more detailed structural information than SFI,
making them useful for bug-finding or sharing of data
structures across trust boundaries, but the inference pro-
cess is complicated and hard to fully automate. SFI’s
weaker guarantees can be provided with less program-
mer intervention, and because they are coarse-grained, the
overhead of checking them is comparable to the checks in
a CCured-like system, even if more of them are super-
fluous. Because they can constrain writes to a occur on
specific objects, type-based safety properties are gener-
ally quite effective at preventing subversion attacks that
overwrite function pointers.

Proof-carrying code [NLO8] represents a more gen-
eral framework for software to certify its own trustwor-
thiness. Most work on PCC has focussed on type-like
safety properties, but under the banner of foundational
PCC [App01], efforts have been made to place proofs on a
more general footing, using fully general proof languages
that prove safety with respect to concrete machine seman-
tics [MAOO]. This approach seems to carry the promise,
not yet realized, of allowing any safe rewriting to certify
its safety properties to a code consumer (the most flexi-

15

ble framework described in the literature is probably that
of Chang, Chlipala, Necula, and Schneck [CCNSO05]).
For instance, one could imagine using the lemmas from
the proof of Section 6 as part of a foundational safety
proof for a PittSFleld-rewritten binary. It is unclear, how-
ever, if any existing foundational PCC systems are flexible
enough to allow such a proof to be used.

10 Conclusion

We have argued that software-based fault isolation can
be a practical tool in constructing secure systems. Us-
ing a novel technique of artificially enforcing alignment
for jump targets, we show how a simple sandboxing im-
plementation can be constructed for an architecture with
variable-length instructions like the x86. We give two
new optimizations, which along with previously known
ones minimize the runtime overhead of the technique,
and argue for the importance of an architecture that
includes separate verification. We have constructed a
machine-checked soundness proof of our technique, to
further enhance our confidence in its security. Finally,
we have constructed an implementation of our technique
which demonstrates separate verification, gives perfor-
mance comparable to previous unsafe tools, and is easily
scalable to realistically large and complex applications.

Acknowledgements

Michael Ernst and the members of the MIT Program
Analysis Group provided helpful suggestions on the pre-
sentation of this work. The first author is supported by a
National Defense Science and Engineering Graduate Fel-
lowship.

References

[ABELO5a] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and
Jay Ligatti. Control-flow integrity. Technical Re-
port MSR-TR-05-18, Microsoft Research, Red-
mond, WA, February 2005.

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and
Jay Ligatti. A theory of secure control flow. Tech-
nical Report MSR-TR-05-17, Microsoft Research,
Redmond, WA, February 2005.

Todd M. Austin, Scott E. Breach, and Gurindar S.
Sohi. Efficient detection of all pointer and ar-
ray access errors. In Proceedings of the SIG-
PLAN ’94 Conference on Programming Language
Design and Implementation, pages 290-301, Or-
lando, FL, USA, June 1994.

[ABELO5b]

[ABS94]

[AppO1]

[ATLLW96]

[BY96]

[CCNSO05]

[CHM 03]

[CPM 98]

[ES99]

[GPF03]

[HI92]

[KBA02]

Andrew W. Appel. Foundational proof-carrying
code. In /6th Annual IEEE Symposium on Logic
in Computer Science (LICS’01), June 2001.

Ali-Reza Adl-Tabatabai, Geoff Langdale, Steven
Lucco, and Robert Wahbe. Efficient and language-
independent mobile programs. In Proceedings of
the SIGPLAN ’96 Conference on Programming
Language Design and Implementation, Philadel-
phia, PA, May 1996.

Robert S. Boyer and Yuan Yu. Automated proofs
of object code for a widely used microprocessor.
Journal of the ACM, 43(1), 1996.

Bor-Yuh Evan Chang, Adam Chlipala, George C.
Necula, and Robert R. Schneck. The open veri-
fier framework for foundational verifiers. In Pro-
ceedings of the 2005 ACM SIGPLAN International
Workshop on Types in Language Design and Im-
plementation, Long Beach, California, January
2005.

Jeremy Condit, Mathew Harren, Scott McPeak,
George C. Necula, and Westley Weimer. CCured
in the real world. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Lan-
guage Design and Implementation, San Diego,
CA, June 2003.

Crispin Cowan, Calton Pu, Dave Maier, Heather
Hinton, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, and Qian
Zhang. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Pro-
ceedings of the 7th USENIX Security Symposium,
Austin, Texas, January 1998. USENIX Associa-
tion.

Ulfar Erlingsson and Fred B. Schneider. SASI
enforcement of security policies: A retrospec-
tive. In Proceedings of the 1999 New Secu-
rity Paradigms Workshop, Caledon Hills, Ontario,
September 1999.

Andreas Gal, Christian W. Probst, and Michael
Franz. A denial of service attack on the Java byte-
code verifier. Technical Report 03-23, University
of California, Irvine, School of Information and
Computer Science, November 2003.

Reed Hastings and Bob Joyce. Purify: A tool for
detecting memory leaks and access errors in C and
C++ programs. In Proceedings of the Winter 1992
USENIX Conference, pages 125-138, San Fran-
cisco, California, January 20-24, 1992.

Vladimir Kiriansky, Derek Bruening, and
Saman P. Amarasinghe. Secure execution via
program shepherding. In Proceedings of the 11th
USENIX Security Symposium, San Francisco,
California, August 2002. USENIX Association.

16

[KBAO3]

[KM97]

[Lu00a]

[LuOO0b]

[MA0O]

[MCG™199]

[MWCG99]

[NL96]

[NL98]

[NS03]

[PBP02]

Vladimir Kiriansky, Derek Bruening, and Saman
Amarasinghe. Execution model enforcement via
program shepherding. Technical Report MIT-
LCS-TM-638, Massachusetts Institute of Technol-
ogy Laboratory for Computer Science, May 2003.

Matt Kaufmann and J Strother Moore. An indus-
trial strength theorem prover for a logic based on
Common Lisp. [EEE Transactions on Software
Engineering, 23(4):203-213, April 1997.

Fei Lu. C Plus J software architecture. Undergrad-
uate thesis, Shanghai Jiaotong University, June
2000.

Fei Lu. Introducing C+J research project,
2000. http://flyland.cs.jhu.edu/
cpj/CPJ_guide.htm

Neophytos G. Michael and Andrew W. Ap-
pel. Machine instruction syntax and seman-
tics in higher order logic. In I7th International
Conference on Automated Deduction (CADE-
17); Lecture Notes in Artificial Intelligence 1831.
Springer-Verlag, June 2000.

Greg Morrisett, Karl Crary, Neal Glew, Dan
Grossman, Richard Samuels, Frederick Smith,
David Walker, Stephanie Weirich, and Steve
Zdancewic. TALx86: A realistic typed assembly
language. In ACM SIGPLAN Workshop on Com-
piler Support for System Software, pages 25-35,
Atlanta, Georgia, May 1999.

Greg Morrisett, David Walker, Karl Crary, and
Neal Glew. From System F to typed assembly lan-
guage. ACM Transactions on Programming Lan-
guages and Systems, 21(3):527-568, May 1999.

George C. Necula and Peter Lee. Safe kernel ex-
tensions without run-time checking. In Proceed-
ings of the Second Symposium on Operating Sys-
tems Design and Implementation, Seattle, Wash-
ington, October 1996.

George C. Necula and Peter Lee. The design and
implementation of a certifying compiler. In Pro-
ceedings of the ACM SIGPLAN’98 Conference on
Programming Language Design and Implemen-
tation, pages 333-344, Montreal, Canada, 17—
19 June 1998.

Nicholas Nethercote and Julian Seward. Valgrind:
A program supervision framework. In Proceed-
ings of the Third Workshop on Runtime Verifica-
tion (RV’03), Boulder, Colorado, USA, July 2003.

David S. Peterson, Matt Bishop, and Raju Pandey.
A flexible containment mechanism for execut-
ing untrusted code. In Proceedings of the 11th
USENIX Security Symposium, San Francisco, Cal-
ifornia, August 2002. USENIX Association.

[PFHO3]

[Riv92]

[SD02]

[Sil96]

[SS97]

[WL9S8]

[WLAG93]

[XDS04]

Niels Provos, Markus Friedl, and Peter Honey-
man. Preventing privilege escalation. In Pro-
ceedings of the 12th USENIX Security Symposium,
Washington, D.C., August 2003. USENIX Associ-
ation.

Ronald Rivest. RFC 1321: The MD5 message-
digest algorithm, April 1992. Status: INFORMA-
TIONAL.

Kevin Scott and Jack Davidson. Safe virtual exe-
cution using software dynamic translation. In Pro-
ceedings of the 2002 Annual Computer Security
Application Conference, Las Vegas, Nevada, De-
cember 2002.

Scott M. Silver. Implementation and analysis of
software based fault isolation. Technical Report
PCS-TR96-287, Dartmouth College, June 1996.

Christopher Small and Margo Seltzer. MiSFIT: A
tool for constructing safe extensible C++ systems.
In Proceedings of the Third USENIX Conference
on Object-Oriented Technologies, Portland, Ore-
gon, June 1997.

Robert S. Wahbe and Steven E. Lucco. Methods
for safe and efficient implementations of virtual
machines. U.S. Patent 5,761,477, June 1998. As-
signed to Microsoft Corporation.

Robert Wahbe, Steven Lucco, Thomas E. Ander-
son, and Susan L. Graham. Efficient software-
based fault isolation. In Proceedings of the
14th Symposium on Operating Systems Principles,
pages 203-216, New York, NY, USA, December
1993.

Wei Xu, Daniel C. DuVarney, and R. Sekar. An
efficient and backwards-compatible transforma-
tion to ensure memory safety of C programs. In
Proceedings of the ACM SIGSOFT 12th Sympo-
sium on the Foundations of Software Engineering
(FSE 2004), Newport Beach, CA, USA, Novem-
ber 2004.

17

