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Abstract

Typestate systems ensure many desirable properties ofatiyee
programs, including initialization of object fields and k@t use of
stateful library interfaces. Abstract sets with cardityationstraints
naturally generalize typestate properties: relatiorshigtween the
typestates of objects can be expressed as subset and tdisfzin
relations on sets, and elements of sets can be represensetsas
of cardinality one. In addition, sets with cardinality ctmants
provide a natural language for specifying operations aunariants
of data structures.

Motivated by these program analysis applications, thisepap
presents new algorithms and new complexity results fortcaimss
on sets and their cardinalities. We study several classe®mf
straints and demonstrate a trade-off between their expegsewer
and their complexity.

Our first result concerns a quantifier-free fragment of Baole
Algebra with Presburger Arithmetic. We give a nondeterstini
polynomial-time algorithm for reducing the satisfiability sets
with symbolic cardinalities to constraints on constantigalities,
and give a polynomial-space algorithm for the resultingopem.
The best previously existing algorithm runs in exponerg@hce
and nondeterministic exponential time.

In a quest for more efficient fragments, we identify several
subclasses of sets with cardinality constraints whosesfisdiil-
ity is NP-hard. Finally, we identify a class of constraintsit has
polynomial-time satisfiability and entailment problemsdacan
serve as a foundation for efficient program analysis. We gisgs-
tem of rewriting rules for enforcing certain consistencpperties
of these constraints and show how to extract complete irdtom
from constraints in normal form. This result implies the isdniess
and completeness of our algorithms.

1. Introduction

Program analyses that reason about deep semantic prepediof
great value for software development; the value of suchyaral
is growing with the adoption of language constructs thahiglate
low-level program errors. Many deep semantic propertiesatu-
rally expressible in fragments of set theory, so constishiting for
such fragments is of interest. This paper presents newitigw
and improved complexity bounds for fragments of set thebg
starting point of our constraints is the boolean algebranitifi(but
unbounded) sets.

Sets in program analysis. The boolean algebra of finite sets
is a fragment of set theory that allows the basic set opemstio
of intersection, union, and complement on sets of uninétegr
elements. Although simple, it turns out that this fragmeah c
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express many properties of interest in program analysiarrpies
include typestate properties and public interfaces of skatetures.

Set specifications generalize typestate properties [20,t26
fact that an objecb is in the typestate is represented as the set
membership ofo in ¢t. Through inclusion and disjointness con-
straints, sets can also express relationships (such emdtigror
orthogonality) between different typestates. Objects lsarrep-
resented as sets of cardinality one using a cardinality tcaing
lo| = 1, so set membership reduces to subset. Multiple set member-
ships can then encode constraints sucltjas & for any constant

ol

Sets can also provide natural abstractions of containea dat
structures. When a content of a data structure is represastan
abstract set, an operation such as insertion can be characterized
by a postconditions’ = s U e wheree is the set corresponding
to the element being inserted. By expressing both typestaid
data structure abstractions, sets can be used to combinesthies
of different analyses operating on the same program. Such an
approach allows us to combine the scalability of typestatdysis
with the precision of shape analysis and theorem proving 280
27, 46].

Sets with cardinality constraints. The use of the cardinality op-
erator on sets leads to a connection between set algebra-oper
tions and integer linear arithmetic, as evidenced, for gtayin
the condition|a U b| = |a| + |b| for disjoint setsa andb. It is
therefore natural to consider constraints that combiregitlinear
arithmetic with set algebra operations. These constraonstitute
the Quantifier-Free Boolean Algebra with Presburger Aritim

or QFBAPA for short — they are the quantifier-free fragment of
BAPA constraints whose decision procedure and complexity we
have studied in [23, 22[QFBAPA constraints can be used to ver-
ify an invariant such ak:| = |b| which allows us to conclude that
if a is nonempty, so i$, and therefore it is possible to call an op-
eration that removes an element frénSimilarly, if 7 is an integer
variable ands is a set, it is possible to verify an invariap{ = 4
stating that an integer correctly maintains the size of the set

In our experience, specialized decision procedures sufdPhare
the only automated technique for deciding with non-tridaldi-
nality constraints. Currently, however, the complexitytteése de-
cision procedures limits their applicability. In this papee give
new algorithms for solving set cardinality constraintsgé algo-
rithms provide exponential improvements over existingrapphes
and make the checking of cardinality constraints in largemiulas
more feasible.

Our paper provides a systematic study of constraints onirsets
the presence of cardinalities. We study both more expressid
less expressive fragments and demonstrate a trade-ofebetthe
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Figure 1. Quantifier-Free Formulas of Boolean Algebra with Pres-
burger Arithmetic QFBAPA)

expressive power and the efficiency of the algorithms. Thenma
contributions of our paper are the following:

e PSPACE algorithm for QFBAPA. The best previously
known algorithms forQFBAPA [23, 22, 45] execute in non-
deterministic exponential time, and involve searchingafoex-
ponentially large object. In this paper we first give a form of
bounded model property that shows that it is possible tagepl
reasoning about symbolic cardinalities such@s= i A|a| = 4
wherei is an integer variable, with guessing sufficiently large
constant cardinalities, such g = 1000 A |b| = 1000. More-
over, we give a space-efficient algorithm for solving thautes
ing constraints on sets with large constant cardinalifiéss
gives a PSPACE decision procedure fQFBAPA and is the
first contribution of this paper.

A Polynomial-Time Class. Given thatQFBAPA constraints
are NP-hard, the question remains whether there are itteres
ing fragments of sets with cardinalities which can be readon
about in polynomial time. In a quest for such fragments, we
identify several features of constraints, each of whichiset®
NP-hardness. By eliminating these features we have disedve
a class (called+treeg that has a polynomial-time satisfiability
and entailment (subsumption) problems, while still sugpgr
subset, union, disjointness, and arbitrarily large cadityncon-
straints. This class can therefore express generalizesstiyie
constraints such as multiple orthogonal classificatiottsiimde-
pendent or disjoint sets. The identification of this polyaim
time class, and the development of algorithms for testirg th
satisfiability and subsumption of constraints in this cliashe
second contribution of this paper. While the resulting algo
rithms are efficient, the proof of their completeness is some
what lengthy, and involves characterizations of normainfer
of i-trees and the construction of models for i-trees in rarm
form. We therefore only summarize the main ideas; we refer
the reader to the full version of the paper [32] for detailddA
tional proofs are also included in the Appendix.

We proceed by defining the fragmeQFBAPA in Section 2. We
present a PSPACE algorithm fQFBAPA in Section 3, defining
the simplerCBAC constraints and identifying their NP-complete
fragment,CBASC constraints.

2. Constraints on Sets with Cardinalities

Boolean Algebra with Presburger Arithmetic. Figure 1 presents
the syntax of the constraints studied in this paper, we loaie: for-
mulas Quantifier-Free Boolean Algebra with Presburgehfmtic
(QFBAPA). QFBAPA constraints contain two kinds of values: in-
tegers and sets, each with corresponding applicable ipesafhe
sets are interpreted as subsets of some arbitrarily larige §et.s
denotes a set variablé,denotes an integer variable. The symbol
| B| denotes the cardinality of the sBtand establishes the connec-
tion between set and integer ter$AXC is a special free variable
denoting the size of the universal setblfs a set,b denotes its
complementK dvd T denotes thaK dividesT. K denotes con-
stants, encoded in binary: a constaris encoded usin@(log k)
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bits. The symbol in Figure 1 denotes atomic formulas; a literal is
an atomic formula or its negation.

A quantified versionof this language BAPA) is studied in
[23, 22]; where we give an algorithm that establishes a doeki
ponential space upper bound on the complexity. Becausetiquan
fied BAPA subsumes Presburger arithmetic, the doubly exponential
nondeterministic time lower bound [15] appliesBAPA as well.

Preliminaries. If S is a finite set,|S| denotes the number of
elements inS. A literal is an atomic formula or its negatiofi. =
{...,—1,0,1,...} is the set of integers\ = {0,1,...} is the
set of natural numberga..b] denotes the set of integefs, a +
1,...,b}. If f : A — B s a function andS C A, we define
f18]=A{f(a) | a € 5}.

If Ais a set, the notatioml¥ has several potential meanings;
the specific meaning should be clear from the conteit. for
n € {1,2,..., } is the set of vectoréas, . .. ,a,) wherea; € A
forl1 < j < n, andA™" is the set of matricefuyq] with m
rows andn columns with elements,, for 1 < p < m and
1 < g < n. The expressiom® denotes the complement of the
setA. If o € {0, 1}, then A* denotesA for « = 1 and A° for
a=0.

The relation= denotes the equality of the values of metavari-
ables denoting syntactic objects, sg¢fifand f> are formulas, then
f1 = f2 means that they are the same formula. In the context of
inclusion diagrams (Section 4%, will denote the semantic equiva-
lence of diagrams (we use to denote the equality of diagrams).

3. A PSPACE Algorithm for QFBAPA

Verification conditions arising in program verification caften
be expressed using quantifier-free formulas, so it is natarax-
amine whether more efficient algorithms exist QFBAPA con-
straints. When applied tQFBAPA formulas, existing algorithms
run in non-deterministic exponential time (NEXPTIME): thé
gorithm [45] requires nondeterministically guessing apanen-
tially large object, whereas the algorithmfrom [22] produces an
exponentially large quantifier-free Presburger arithméiirmula.
The question arises whether there exist algorithms thad anan-
deterministically guessingxponentially large objects. We show
that this is indeed the case. Namely, we first show that Prgebu
arithmetic formulas generated by the algorithnfrom [22] can in
fact be solved ileterministicexponential time. Our result reduces
QFBAPA to a simpler system dBAC constraints (shown in Fig-
ure 3), then applies a theorem by Papadimitriou [36] in a hove
way. This leads to a deterministic EXPTIME decision procedu
for QFBAPA satisfiability, which is an improvement on previously
existing algorithms. Nevertheless, the question arisestiven it is
possible to avoid the construction of a non-determinifitidarge
system of equations. It turns out that this is indeed possilte
present an alternating polynomial-time (and thereforeRPACE)
algorithm forQFBAPA. Therefore, itis possible to solN@gFBAPA
using solvers for quantified boolean formulas [9, 48, 37].

Figures 2 and 4 present our PSPACE algorithmQ@&BAPA.
The algorithm has two phases.

In the first phase, the non-deterministic polynomial-tinigoa
rithm in Figure 2 reduceQFBAPA constraints to a simpler class
of constraints. We call these simpler constrai@tnjunctions of
Boolean Algebra expressions with Cardinaliti@SBAC). CBAC
constraints have a very simple syntactic structure (sear€ig),
but capture the key difficulty in solvin@FBAPA: the need to con-
sider exponentially large cardinalities on exponentiafigny set
partitions.

In the second phase, the algorithm in Figure 4 checks the-sati
fiability of CBAC in alternating polynomial time and therefore in
polynomial space. The key insight behind our algorithm &t ih
is possible to use a divide and conquer approach to avoidtcéekpl
representing all possible regions in the Venn diagram.
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Let f be the inpuQFBAPA formula.
1. Replace eactZ-variable with a difference of twaN-

variables:
Cliv,s ... in]) — Cliy — i, ... il —ilt]
1,47, ..., 1,1 are fresiN-variables

2. Ensure that all set algebra expressions appear within
cardinality constraints by normalizing with the following
rules:

C[bl = bz] —>C[b1 C by ANby C bl]
Clb1 C ba] — C[b1 NBS| = 0]

3. Eliminate divisibility constraints:
C[kdvdt] — C[ki = t], i is freshN-variable

4. Move all cardinality constraints to top level:
C[|b1|7 B |bn|] e fl A f2

de
where f1 _fC[il,.. s ima |
|1|—MAXC A /\ |bj|=1;
andz‘l, ..., im, are freshN- varlables
5.Let p be a propositional formula such that
plai,...,am,) = fi for atomic formulaszy, . . ., am,.

Nondetermlnlstlcally select the truth valug € {0 1}
for each atomlc formulazj, so thatp(ai, ..., am,) IS

true. Letf11 o /\ aj' .
j=1

6. For each conjunct —=(t1=t2) in fi1, non-
deterministically replace the conjunct with one of
the conjunctst; + 1 < t3) or (t2 + 1 < ¢1).

7. Transform linear integer constraints to normal form:
Cl~(t1 < t2)] = Clt2 + 1 < 4]
Clt1 <ts]  —Clti —t2+i=0]
Clti=ts] —C[C]_, cji; = k]

8. Let no be the number of integer variables in the entire
formula. The resulting system is of the form:

Av=dA /\;n:ll |bj] = ip;

whereA € Z™0"0, d € Z™°, andv = (i1,...,%no)
where eachi; is a variable ranging oveZ and1 <

p1,...,Pm,; < mi are variables denoting cardinalities
of sets. LetS be the total number of set variables in
bi,...,bm,. Letm = mo +mi, n = max(no725),
and letM = n(ma)*™ .

9. Non-deterministically select a vectbr= (k1, ..., kn,)
wherek; € {0,1,...,M} for 1 < j < no, such that
Ak =d.

10. Call CBAC decision procedure ory\ |bj| = kp;. If

there exists a solution, then report the formula satisfiable

Figure 2. An NP Algorithm for ReducingQFBAPA Constraints
to CBAC constraints of Figure 3
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Figure 3. Conjunctions of Boolean Algebra expressions with Car-
dinalities CBAC)

Given aCBAC constraint

my
Z|bj| =kj

where the free set variables &f, . . ., b,,, are amongu, ..., ss,
run CBAC-check([], d) with d = (kl, coiykmy).
procCBAC-check([v1, . . ., vn], d) returnsresult

wherevy, ..., vn, result € {0,1}; d € N™
if (n < S)then
existentially choosdy, di € N™* such thatlp + di = d;
universally do
r1 = CBAC-check([v1,...,vn,0],do) and
ro = CBAC-check([v1,...,Vn, 1], d1);
returnry A rg;
else
let p; =eval(bj, [s1 — v1,...,8s — vs])
forall (1 <j <mi);
Jo=A{d; | pj = 0};
Ji={d; | p; =1}
returnJo C {0} A |J1] < 1.

proceval(b, ) returnsresult
where b : Boolean Algebra formula
a:{s1,...,ss} — {0,1}
result € {0,1}
treatingb as a propositional formula,
return the value ob under assignmernt.

Figure 4. An Alternating Polynomial-Time (and PSPACE) Algo-
rithm for Checking the Satisfiability dEBAC Constraints

We next discuss our algorithm in more detail and argue that it
correct. We begin with the description of the steps of therillgm
in Figure 2, which reduces symbolic cardinalities to largastant
cardinalities.

1. Non-negative integers. To simplify the later steps, the first step
makes all integer variables range over non-negative inségeby
replacing each integer variablavith a differencei; — i of fresh
non-negative integer variablés, i-.

2,3. Eliminating set equality and subset, and integer dibisity.
The next step converts set equality and set subset intoncaitgii
constraints. This step helps the later separation betviredwoinlean
algebra part and the integer linear arithmetic part. We #iani-
nate any divisibility relations using multiplication andrash vari-
able.

4. Flattening. The next step separates the formula into the
boolean algebra part, denotgd and the integer linear arithmetic
part, denotedf,. This step simply amounts to naming the cardinal-
ity of each set by a fresh integer variable.

5,6. From quantifier-free formulas to conjunctions. An obvious
source of NP-completeness@QFBAPA is the presence of arbitrary
propositional combinations of atomic formulas. An effeetivay
of dealing with propositional combinations is to enumertite
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satisfying assignments of the propositional formula usan§AT
solver, and then solve the conjunctions of literals [16, Stéps 5
and 6 of the non-deterministic algorithm in Figure 2 are astralot
description of such procedure. The goal of step 6 is to elain
disequalities, which involve non-deterministic choicevieen the
two inequalities.

7. Normal form for integer constraints. The algorithm elimi-
nates the remaining negations of atomic formulas and twamsf
linear constraints into normal forv = d.

8,9,10. Estimating sizes of integer variablesThe resulting sys-
tem contains linear integer equations of the forjj_, c;i; = k,
and set cardinality constraints of the fotti = <. The algorithm
computes an upper bount on integer variables in any poten-
tial solution of the system, using several parameters: theber

of conjunctsn, the number of integer variables and the number
of set variablesS. The computation of the upper bound is based
on an observation that the satisfiability of the conjunctibrton-
straints|b| = ¢ can be reduced to the satisfiability of equations
of the form3_"_, I; = 4, where variables; denote sizes of set
partitions (regions in Venn diagram) whose union is thebs#tis

is a specialization of the idea in [22] to the case of quamiffiee
formulas.

Let s1,...,ss be all set variables appearing in formula and
consider a constraind| = i. Consider all partition§;_, s?’
for a;; € {0,1}. For each such partitioh,, introduce a fresiN-
variablel,, which denotes the cardinality of cubg Then consider
a constraint of the fornb| = <. Each set is a union of regions in the
Venn diagram (by the disjunctive normal form theorem) sqsgp
thatb = b,, U... U b,,. Then replace the teriip| = ¢ with the

=1 lp, = i. We use the termCBAC linear equations” to denote
a system of linear equations resulting from the constraifts-
as described above.

As a result, we obtain a system ofy + m; linear equations
over non-negative integers, wherg equations have a polynomial
number of variables, anth, equations CBAC linear equations)
have exponentially many variables. It is easy to see that #ndsts
a surjective mapping of solutions of the original consttsian
sets onto solutions of the resulting linear equations (th@pmng
computes the cardinality of each Venn diagram). Thereftire,
original system is satisfiable if and only if the resultingiations
are satisfiable. Moreover, we have the following fact.

FACT 1 (Papadimitriou [36])Let A be anm x n integer matrix
andb an m-vector, both with entries frorf+-a..a]. Then the system
Az = b has a solution inN" if and only if it has a solution in
[0..M]™ whereM = n(ma)*™*!.

Fact 1 implies that the estimald computed in step 8 of the algo-
rithm in Figure 2 is a correct upper bound. Using this estensiep
9 of the algorithm non-deterministically guesses the \aloiall
integer variables such that the original linear equatidrs= d are
satisfied. All this computation can be performed in nonaetieis-
tic polynomial time, and (unlike [22]), does not involve sbiruct-
ing explicitly a system with exponentially many equatioHaving
picked the values of integer variables, including the \@€ds: on
the right hand side of constrainfl§ = ¢, we obtain a conjunction
of constraints of the formb| = k wherek is a constant whose
binary representation has polynomially many bits—thesepae-
cisely theCBAC constraints in Figure 3. We have therefore shown
the following.

LEMMA 1. The algorithm in Figure 2 reduces in non-deterministic
polynomial time the satisfiability of FBAPA formula to the
satisfiability of CBAC formulas.

It remains to find an algorithm fa€BAC constraints.

On Algorithms and Complexity for Sets with Cardinality Cioaisits

A PSPACE algorithm for CBAC. One correct way to solve
CBAC constraints is to solve the associateBAC linear equa-
tions. This system has exponentially many variables, etalnich
can take any value frorfi)..M]. Therefore, guessing the values of
each of these variables can be done in non-deterministicrexp
tial time; similar approaches not based on equations algoine
guessing exponentially large objects [45]. Note, howetat, there
are only polynomially manZBAC linear equations. Using the idea
of the proof [36, Corollary 1], we can therefore show that aaiyic
programming algorithm can be used to solve the system impely
mial time. In fact, we can use the dynamic programming athori
from the proof of [36, Corollary 1]. Instead of fixing the siakthe
equationsn; to be constant, we simply observe that is poly-
nomial in the size of the input, whereas the number of vaembl
is singly exponential. The bound/ therefore yields a singly ex-
ponential deterministic time dynamic programming alduoritfor
CBAC. While this is better than existing results, we show that an
even better result is achievable.

Clearly, any algorithm that explicitly construcBAC equa-
tions will require at least exponential time and space. @lut®n
is therefore to adapt the dynamic programming algorithm ¢ a
vide and conquer approach that always represents the eqsiati
terms of their original, polynomially sized, boolean algebxpres-
sion. Such an algorithm runs in alternating polynomial timen-
suming polynomial space, and is presented in Figure 4. Ttheee
idea of our PSPACE algorithm, consider tiBAC linear system
of equations written in the vector fornj:?';1 ajl; = d whered,
a; are vectors and; are the variables for < 5 < 2P. The algo-
rithm guesses the vectads, d1 € N such thatly + d1 = d, and
recursively solves two equations:

oP
A Z a]-l]- =d1

j=2pr—1

P11

Z a]-lj = d()
j=1

This algorithm creates an OR-AND tree whose search gives the
answer to the original problem. A position in the tree is gitwy the
propositional assignmetjts, ..., v,] to boolean variables. Each
leaf in the tree is given by a complete assignmpnt ..., vs]

to set variables. Note that we never need to explicitly naémt
the system during the divide phase of the algorithm, it seffito
determine in the leaf cage = 0 whether the coefficient; is 0

or 1. The algorithm does this by simply evaluating each Baiole
algebra expressionfor the assignmenjvs, . . ., vs].

THEOREM1. The algorithm in Figure 4 checks the satisfiability of
CBAC constraints in PSPACE. The algorithm given by Figures 2
and 4 checks the satisfiability @F BAPA constraints in PSPACE.

Theorem 1 improves the existing algorithms fQFBAPA from
both a complexity theoretic and an implementation viewpoin
deterministic realization of previous NEXPTIME algoritermuns
in doubly exponential worst-case time and requires expialen
space; a deterministic realization of our new algorithmsrim
singly exponential time and consumes polynomial spaceidus
algorithms would require running a constraint solver such SAT
solver [47] on an exponentially large constraint; the negoathm
can be solved by running a quantified boolean algebra sod83r [
on a polynomially large constraint.

NP fragments of CBAC. We have seen that botéBAC and
QFBAPA constraints are in PSPACE. Both of these classes of con-
straints are NP-hard, because the constiajnt 1 is satisfiable iff

b is corresponds to a satisfiable propositional formula. Meee,
Lemma 1 shows th@FBAPA constraints are in NP ifEtBAC con-
straints are in NP. For some subclasse6BAC constraints we can
indeed show membership in NP. Define conjunctions of bodéan
gebra expressions wigmall cardinalities, denote@BASC, to be

the same a€£BAC but with constant integers encoded unary
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notation, where an integer is represented in spac®(x) as op-
posed toO(log x); such encoding can therefore be exponentially
less compact.

LEMMA 2. The satisfiability of CBASC constraints is NP-
complete.

CBASC solutions are NP-hard becaugé¢ = 1 is aCBASC con-

straint. One way to prove membership in NP is to observe that

CBASC is subsumed by the language of set-valued fields which
was proven to be in NP [24, 25] by reduction to the universassl
of first-order logic formulas, which has the small model pndp
[7, Page 258]. Another way is to consider the notiosdirse solu-
tionsof CBAC linear equations. Ald/-sparse solution is a solution
to CBAC linear constraints with at most/ non-zero elements. An
M-sparse solution t€BAC linear constraints witl2® variables
can be encoded as ad-tuple of pairs([vi, . .., vs], k) where the
propositional assignmerfts, . .., vs]; encodes one of thg’ in-
teger variables, an#l specifies the value of that integer variable.
This encoding is polynomial id/Sw wherew is the number of
bits for representing the largest component of the soluffon any
CBAC linear constrainf\;_, [b;| = k;, each solution i8//-sparse
whereM = max(ki,...,km). ForCBASC solutions,M is poly-
nomial in the size of th€ BASC representation because edghs
encoded in unary, so sparse solutions can be guessed iroptbin
time. This proves thafBASC constraints are in NP.

4. Inclusion Diagrams

This section introduces inclusion diagrams (i-diagrarasyraph
representation dBAC constraints. Figure 5 shows a formula with
sets and cardinalities and an equivalent i-diagram. Irdiag allow
us to naturally describe fragments@BAC constraints and the al-
gorithms for checking satisfiability and subsumption ofsthéag-
ments. The basic idea of i-diagrams is to represent the spasal
order using a graph where sets are annotated with card#satind
then indicate the disjointness and union relations by caims on
direct subsets of a set. To efficiently represent equal $etsiodes
in the i-diagram stand not for set names, but for collectioinset
names that are guaranteed to be equal. Finally, we assariate
interpreted predicates with collections of nodes, reprisg the
fact that elements of given sets satisfy the propertiesngoyethe
predicate. The uninterpreted predicates illustrate a wapmbine
i-diagram representations with other constraints.

DEFINITION 1 (i-diagrams).We fix a finite seEN of Set-Names,
and a finite sePN of predicatenames. We denote BN® the set
of atoms{+P, —P|P € PN}.

Ani-diagram(Inclusion-Diagram) is either thaull-diagram. ; or
atuple(S, @4, Sons, Split, Comp, CInf, CSup, ®) such that:

e S C P(SN) is a partition ofSN containing (nonempty) equiva-
lence classes of set names that are guaranteed to be eqtial, wi

+P Byls2)
\\. [0..0]
{sS,s6}/O/ /(4
0.3
O —0cg (s4) [gSZ}J
[1.1] -Q

D is such thaCInf({s1}) = 1, CSup({s1}) = 5, Sons({s1}) =
{{ss,s6}, {sa}, {ss}}, Comp({s1}) = {{{s5, 56}, {sa}, {s3}}}
Split({s1}) = {{{ss,s6}}, {{sa}, {ss}}}, ©({s1}) = {+P}

and is equivalent to

so=0 A s5 =56 A

soUssUsgsUss CTs1 A st Css A sgCsa A ss Csy
s3MNsa=0 A s1 Cs3UsqsUss A sq4 C s
IS|81|§5/\|84|:1/\|85|§3/\|83|S?/\

Va € s1. P(xz) A Va € s3. Q(x)

Figure 5. An example i-diagran® and an equivalent formula

represent pairwise disjoint sets, af@mp(S) is a set ofcom-
plete viewseach of which is a set of nodes that represent sets
whose union is equal to the father; we require

U Split(S) = Sons(S)
J Comp(S) C Sons(5)

forall S €S;

e CInf,CSup : S — N specify lower and upper bounds on the
cardinality of sets;

P : S — P(PNi) maps nodes to the uninterpreted unary
predicates and their negations that are true for all sets of a
node.

To avoid confusion between set names, nodes (sets of sesjlame
and views (sets of nodes), we use lowercase letiess, s’ to
denote set names, uppercase lett§rs;, S’ to denote nodes,
and lettersQ,C to denote views and sets of nodes in gen-
eral. WhenD #.1, is a diagram, unless otherwise stated, we
name its componentsS, #4, Sons, Split, Comp, CInf, CSup, @,
and similarly we name the components of)’ as

S’, 0%, Sons’, Split’, Comp’, CInf’, CSup’, ®'.

In a graphical representation of an i-diagram, we represent
each elementS € S whereS = {si,...,s»} using underly-
ing sets{s1,...,sn}. We represent inclusio®; ~» Sz by an
arrow from S; to S2. We represent a split viewp € Split(.S)
where@ = {51, ..., S»} with a circle connected with undirected
edges toSy, ..., S, and an arrow leading t6. We represent a
complete view similarly, using a filled square instead of @lei

0a € S the equivalence class corresponding to names of sets For each nodes € S we indicate its cardinality bounds by anno-

whose interpretation is the empty et

e Sons : S — P(S) represents subset relation;
we defineS ~ S €% S € Sons(S'); then (S,~) is a
graph, so we call elements 8fnodes and the elements ef
edgeswe write~~ for the transitive closure of-;

¢ Split, Comp : S — P(P(S)) represent disjointness and com-
pleteness of set inclusions;Sfis a node, the$plit(S) is a set
of split views where each view is a nonempty set of sons that

1Sparse solutions are interesting for gen€&BIAC constraints as well. As
of yet we have no example of@GBAC constraint whose associat€BAC
equation system is satisfiable but has no sparse soluti@rsover, we can
generalize the notion of sparse solutions to solutionsessprtable using
binary decision diagrams [8] while preserving polynomiaie verifiability.

On Algorithms and Complexity for Sets with Cardinality Cioaisits

tating the node witHa..b] wherea = CInf(S), b = CSup(S).
We represenE(S) = {£P,...,£P,} by annotatingS with
+P,...,£P,. We represenfl; = {s1,...,sn} by annotating
the node{s1, ..., sn} with 0.

DEFINITION 2 (Semantics of i-diagramspninterpretatiorof SN
andPN is a triple (A, «, ) where

o Ais afinite set (the universe);
: SN — P(A) specifies the values of sets;
: PN — P(A) specifies the values of unary predicates;

Lo
.

[1]

An interpretation/ is amodelfor an i-diagramD, denoted/ = D,
iff Vs € Dq.c(s) = 0, and for all.S € S whereS = {s1,...,sn},
the following conditions hold:

5 2005/8/3



e a(s1)=...=asn);
accordingly, define_x(S)d fa(sl) =...=al(sn)
e CInf(S) < |a(S)| < CSup(S)
* VP. (+P) € B(S) = a(S) C Z(P)
e VP. (—P) € ®(5) = @(S) C E(P)°
* VS" € Sons(9). a(S’) C a(9)

L] VQ (S Sp|lt(S) VSl, Sy € Q S ;é Sy = E(Sl)ﬂa(SQ) =0
* VQ € Comp(S). @(S) C UsleQ a@(S1)

We use the standard notions of satisfiability, subsumpeora(-
ment), and equivalence:

Dis satisfiable «<— 3I. I=D
D'ED < VI.IED =I1ED
D'=D — D EDADED

DEFINITION 3 (Explicit Disjointness).
We writedisjy, g, (51, S2) as a shorthand for

S1 7& Sa A HQ S SOnS(So). 51752 S Q

and we say thatS;, S are explicitly disjoint and we write
disj%,(Sl, SQ) iff

351,55, 50 €S,51 < 51 A Sa~> S5 Adisjp g (51,55)

LEMMA 3. I-diagrams have the same expressive powe€B&C
constraints.

By “same expressive power” we here mean that there is a hatura

pair of mappings between the models of i-diagrams and soisiti
to CBAC constraints.

proc Simplify (D) :

1. use fixpoint iteration to computeas
the smallest equivalence relation such that:
L.1. S1~% 82 A Sa~~ 81 = (S1,82) €p
1.2. (S,04) € pA S1~+8 = (S1,04) € p
1.3. @ € Comp(S) = (S,0q) € p
1.4. dist750(51, S2) A (S1,S52) € p= (S2,04) € p
1.5. diSjD’SO(Sl, S2) A (So,51) € p= (S2,04) € p
1.6. {S1} € Comp(S) = (S,51) €p
2.D:=D/p
[ Split(S) «{Q —{0a}|Q € Split(S), S ¢ Q}
3. | Comp(S)+{Q — {0a}|Q € Comp(S),S ¢ Q}
Sons(S) «Sons(S) — {04, S}
'Spllt( ) <« Split(S) — {0}
—{Q | 3Q" € Split(5), Q" 2 Q}
4. | Comp(S) « Comp(S) — {0}
—{Q13Q" € Comp(S5),Q" < Q}

L Ses

Ses

6. returnD

Where[a < b] denotes the result of updating the component
i-diagramD with valueb.

Because nodes in i-diagrams are collections of set names, werjgyre 6. Polynomial-time algorithmSimplify to compute an

can define the following operations.

DEFINITION 4 (Factor-i-diagram)Let p C S x S be an equiv-
alence relation on nodes. We defiig/p as follows. Define
La/p =La. LetD = (S, Bq, Sons, Split, Comp, Cinf, CSup, ®).
We defineD/p = D' = (S’, Sons’, Split’, Comp’, Clnf’, CSup’,
®’) as follows. Definéy so that if{S1, ..., S, } is the equivalence
class ofS underp, thenh(S) = S1 U... U S,. If Q@ C S, define
R[Q] = {h(S) | S € Q}. Then letS’ = h[S]. ConsiderS’ € S'.
BothS andS’ are partitions, and givers’ € S’ there is a unique
set{S1,...,S.} C Ssuchthats’ = S; U...US,. Then define:

Clnf’(S") = max(CInf(S1), ..., CInf(S,))
CSup’(S’) =min(CInf(S1),. .., CInf(S,))
Sons’(S’) h[Sons(S1) U. ..U Sons(S,)]
&/($)=B(S1) U... U B(S,) |
Split’ (S’) {h[Q] | Q € Split(S1) U...USplit(S»)}
Comp’(S")=1{h[Q] | Q € Comp(Sl) ..U Comp(S,)}

DEFINITION 5 (Merge). For any i-diagramD we define the i-

diagram D[Merge(Q)] wef D/p for the equivalence relatiop =
{(51,82) | S1,82 € QY U{(S,9) | S €S}

In the sequel we impose the following restrictions on therfor
of i-diagrams.

DEFINITION 6 (Simple Diagrams)A diagram isD is simple iff
D = (), or all of the following conditions hold for alf € S:

a) (S,~) has no cycles, in particulaf ¢ Sons(.S)

b) 0p & Sons(S)

c) 0 & Split(S) AD & Comp(S)

d) vVQ,Q". Qe Split(S)AQ € Q= Q" &Split(S)
e)VQ,Q". Q € Comp(S) A Q" 2 Q= Q" ¢ Comp(S)

f) CSup(P4) = 0,Sons(Dq)=® (D) = 0
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equivalent simple i-diagram

Simplicity eliminates redundancy from diagrams, but doesra-
strict their expressive power, as the following lemma shows

LEMMA 4. For every i-diagramD we can obtain an equivalent
simple i-diagram using the polynomial-time algoritt8itmplify
in Figure 6.

5. Sources of NP Hardness and Definition of
I-Trees

The satisfiability of i-diagrams is NP-hard because i-chags have
the same expressive power@AC constraints. We have observed
that the general directed acyclic graph structure of iHdiag al-
lows us to encode NP-complete problems; this motives thewel
ing two restrictions.

DEFINITION 7.

An i-diagramD is tree shapedff

(S,~) is a tree (with an additional isolated nodk)
An i-diagramD hasindependent viewsf

for all Q1,Q2 € Split(S) U Comp(S) at least one one of the
following two conditions holds:

e QiNQ2=10
e Q1 € Split(S) A Q2 € Comp(S) A Q1 C Q2.

Recall that, by Lemma 4, it suffices to consider i-diagramthwi
acyclic graphs of the subset relation. The tree shape d¢ondg
then a natural next restriction on the structure of i-diaggaHow-
ever, due to the presence $lit and Comp, the tree shape condi-
tion by itself does not reduce the expressive power of i+diar,
and further restrictions are necessary. The independemwswon-
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dition extends the tree condition to the entire graphicptesenta-
tion of i-diagrams, including the circles and squares teptesent
Split and Comp views. The conjunction of these two conditions
can be expressed by saying that the graphical represantstio
diagram is a tree.

REMARK 1. We can express the combination of the conditions:

being simple, being tree shaped, and having independems \ig
saying that there are only four kinds of edges in the cormeding
graphical representaticn:

e from an element € S—{04} to acircle

¢ from a circle to a square, indicating that all nodes of a sjditv
belong to a complete view

e from a circle to an elemerft € S—{04},

« from a square to an elemefitc S—{0,}.

Unfortunately, the restrictions on tree shape and independews
are not sufficient to guarantee a polynomial-time decisimtg-
dure in the presence of predicates associated with nodesteBh
son is that the ability to encode disjointness of arbitratg teads to
NP-hardness, yet even with tree structure and independ®ms vt

is possible to assert that two arbitrary s&tsandS- are disjoint by
letting (+P) € ®(S1) and(—P) € ®(S2) for some uninterpreted
predicateP. A simple way to avoid this problem is to require that
& contains only positive atoms+-P). A more flexible restriction
is the following.

DEFINITION 8. An i-diagramD hasindependent signaturesf

for every pair of distinct nodes, S> such that(—P) € ®(S1)
and(+P) € ®(S2) forsomeP € PN, at least one of the following
two conditions holds:

1. S; and S, are explicitly disjoint, that is,disj} (S1, S2)
2. S1 and S; havecompatible signatureshat is, there exists a
nodesS such that

S1~58 A Sa b S A
Sig(S1) N Sig(S2) C Sig(S)

whereSig(S) = {P | (+P) € ®(S) Vv (—P) € &(9)}.

The independent signatures condition ensures that argirdisgss
conditions are either 1) a result of the fact that the ancestd
S1 and S2 are explicitly stated as disjoint, or 2) a result of a
contradictory predicate assignment (the case whieand.S> have
compatible signatures, so there exists a parent that essaltich
of (+P) or (—P) hold for bothS; andsS2).

The discussion above leads to the definition of i-trees, fuckv
we will give polynomial-time algorithms for satisfiabilignd sub-
sumption in Sections 6 and 7.

DEFINITION 9 (i-treesiT). An i-tree 7 is a simple i-diagram
such thatZ =1, or such that all of the following three conditions
hold:

1. 7 istree shaped
2. T hasindependent views
3. 7 hasindependent signatures

We denote byT the set of i-trees.

The following theorem justifies why all three conditions imr alef-
inition of i-trees are necessary. Its proof is based on aatiatu
from graph 3-colorability, which can be encoded using sljgéiif-
ferent i-diagrams for each of the three cases. The commarepso
of these diagrams is that they can encode disjointness iifaasb
pairs of nodes.

2As a result, we can recognize this structure in linear timimgjsfor
example, a tree-automaton [12].
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THEOREM2. Omitting any one out of three conditions from Defi-
nition 9 yields a class of diagrams whose satisfiability is-hd.

We note that in addition to NP-hardness, the omission of tree
shaped or independent views properties in fact retains ule f
expressive power o€EBAC constraints, using a similar argument
asin Lemma 3.

Our ability to specify i-trees as a natural subclass of gchans
justifies the definition of i-diagrams themselves. For examine
definition of i-trees would have been more complex had weahos
to represent disjointness using a binary relatipm s, = (.

Let us also observe that, despite the imposed restrictiens,
trees are fairly expressive. In particular they can exprésgr-
chical decomposition of a set given by a naslénto disjoint sets
S1,...,Sn, by letting{Si,...,Sn} € Split(S) N Comp(S). De-
spite the independent view condition, we can have multipieogy-
onal decompositions, 51, . .., S, } € Split(S) N Comp(.S) for
{S1,...,8,}N{S1,...,Sn} = 0. This allows i-trees to naturally
express generalized typestate constraints.

6. Deciding the Satisfiability of I-Trees

In this section we prove that the satisfiability of i-treedésidable
in polynomial time. For this purpose we introduce a setvefik
consistencyonditionsC; (Definition 10) such that:

(6.1) We can enforce weak consistency for any satisfiablee-tis-

ing a rewriting systenR"” (Definition 11) with the following
properties (Lemma 5):

e RY is semantic-preserving;

e if a non-L4 i-tree is iNR* normal form, then it satisfies
weak consistency conditions;

o for a particular strategy (Figure 9) the systé¥ termi-
nates in polynomial time.

(6.2) Every i-tree that satisfies weak consistency conuitie satisfi-

able; Lemma 6 gives an algorithm for constructing a model for
any i-tree that satisfies weak consistency conditions.

Figure 9 summarizes the polynomial-time satisfiability iden
procedure whose correctness (Theorem 3) follows from theltse
of this section.

DEFINITION 10 (Weak Consistency)An i-tree satisfies weak
consistencyiff 7 #.1, and 7 satisfies the following conditions
forall S €S:

VS" € Sons(S). ®(S’) 2 ®(S) (C1)
CSup(S) > 0= VP € PN. {+P,—P} € ®(S) (C2)
VQ € Comp(S). CSup(S) < 3(CSup[Q]) (C3)
V@ € Split(S). CInf(S) > Z(CInfQ]) (Cs)
Clnf(S) < CSup(S) (Cs)

6.1 A Rewriting SystemR" for Enforcing Weak Consistency

We introduce the following rewriting system to enforce weak-
sistency properties when possible.

DEFINITION 11 (SystemR™). For each tuple £, name,
condition, effect) in Figure 7, we define a rewriting rule on
i-diagrams by

spot ; def

DEED & (D #Lg Acondition A D' = Dleffect])

name

for each assignmergpot of the free variables appearing in the
conditioncolumn. We defin&;, by
spot

DD &L Jspot. DD

Ry, name

We defineéR™ as union ofR—> for1 <j <5.
J
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conditions

a1) S € Sons(S")

1 | DnPhi | b1) ¢, = ®(S) U B(S")
c1) pn & (I)(S)

a2) {+P,—P} C ®(5)
2 | Unsat ba)n =

[ k [ name

| effect |

B(S5) —dn

CSup(S)«—n

3| UpSup | b3 CSup(S)«—n

4 | UpInf | b4 CInf(S)«<—n

5 | Error as D+—l1y4

A A A A
[3..5] [3.5] [3..5] [3.2]
+P +P +P +P
B | T B 7B B
[4..5] [4.5] [4..5]) [4.5] d
C C C
[2?2] [2.2] [2.2] [2.2]
D D D D
0.6 [0..0] [0..0]
03! J[rP—l4 +P—P +P—P
'Z’b D_’A> ’]'1 i) A,{C,D} T i) J_d
DnPhi Unsat UpSup Error

Figure 8. An example sequence of rewriting steps fof’

Figure 8 shows an example sequence of rewriting steps dpplie
an i-tree.

LEMMA 5 (Properties ofR*).
1. RY isiT-stable, that is
T €iT A TﬁT’ =T €iT
2. R" preserves the semantics, that is
D D=D=D

3. R" enforces weak consistency when possible, that is, a dia-

gramD in R* normal form is either equal ta 4 or it is weakly
consistent

4, R terminates in polynomial for the strategy corresponding to
the algorithmRyr in Figure 9.

Proof sketch.

1. Follows easily from the fact th®&* rules do not modifySons,
Split, Comp.

2. Follows by construction oR* rules. Suppos® e D'. Then
D E D’ follows from conditionsa; (1<:<5), andD’ = D
follows from conditions; (1<i<4).

3. For everyk = 1..5, the condition of application of the rulg,,
corresponds to the negation@f. When a diagram is in normal
form for the ruleRy, it either satisfie€, or is L 4.

4. To prove thatRyr corresponds to a polynomial strategy, we
prove by induction that applying the rulg, in the speci-
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proc Ry (7)
1. for every S € S from the root to the leaves
for every@ € Comp(S)
try to applyDnPhi(S, Q) to 7
2.for everyS € S
for everyP € PN
try to applyUnsat(S, P)to 7
3. for every S € S from the leaves to the root
for every@ € Comp(S)
try to applyUpSup(S, Q) to T
4. for every S € S from the leaves to the root
for every@ € Split(.5)
try to applyUplInf (S, Q) to 7
5. foreveryS € S
try to applyError(S) to T
return7

procItreeSAT(T)
if (RNe(7) =Lq) returnsatisfiable
else returrunsatisfiable

Figure 9. Polynomial-time algorithm®Ryr and ItreeSAT to
computeR™ normal form and check satisfiability of i-trees

fied direction (from the root to the leaves or from the leaves
to the root), enforceg€;. everywhere, and whefi;, holds, the
rule is not applicable anymore. Finally, we prove that each
rule Ry for k = 1..12 preserves the conjunction of proper-
ties \;_; (1) R, and as a consequence, we never need to
reapply any of the ruleR; for j < k.m

6.2 Constructing Models for Weakly Consistent I-Trees

The following Lemma 6 is crucial for the completeness of our
algorithm, and justifies the definition of weak consistency.

LEMMA 6 (Model Construction)If an i-tree 7 is weakly consis-
tent, then we can construct a model fbr

The high-level idea of the proof of Lemma 6 is to first build finst
two componentg A, «) of the model, and then extend the model
with Z using the independent signatures condition for i-trees. We
build the (A, «) part of the model by building a model for each
subtree using an induction on the height of the i-tree. Tetant
models that satisfisplit and Comp constraints in the inductive
step, we use a stronger induction hypothesis: we show tleag th
exists a mode(A, «) for a tree rooted in nod& with |[A| = &
for all CInf(S) < k < CSup(S), and we rely on the properties
of weak consistency to prove the inductive step. The prodhisf
lemma is interesting because similar ideas are used whédirtgui
example models that show the completeness in Section 7.

Putting all results in this section together using the argpinat
the beginning of the section, we obtain the following thewore

THEOREM3 (ItreeSAT Correctness)7 is satisfiable if and only
if WeakNF(7) #.1,4. Therefore, the algorithritreeSAT in Fig-
ure 9 is a sound and complete polynomial-time decision mhoee
for the satisfiability of i-trees.

7. Deciding Subsumption of I-Trees

The goal of this section is to prove that we can decide thewsups
tion of i-trees in polynomial time. Note that the subclass-wées
is not closed under negation or implication, so we cannoidéec
7T E T’ by checking the satisfiability of:(7 = 7). Instead,
our approach is to brin@ into a form where the properties of the
models of7 areeasy to readrom 7. We then check thaf en-
tails each of the conditions that correspond to the sensofi”’.
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[k [name | condition [effect pr?CRl\éF(;:) WealdNF(T)
7 NSO N — ea

Z")) ({;S}CL? 16;2(%2/)6 Comp(S7) 6. for eachS’ € S from the root to the leaves
6 | DnInf | 7" iz(gsup[Qo]) CInf(S)—n for eachQ € Comp(9)

c6) n > CInf(S) for e‘t’g“]’jsnfn?( 5.5.0)

a7) ({S} W Qo) €Split(S") ' .

b = CSun(S 7. for eachS’ € S from the root to the leaves
7 | DnSup 7) n = CSup(S') CSup(S)«—n for each@ € Split(.S)

—2(CInf[Qo]) for eachS € Q
S g o510
. for eachS €
n = try CCmp(S, Q

CS)) %Legccom?g)/\ 9. for eachS € S

as omp for each@ € Comp(S)
o | csplit'| , \ SMTS) = HICSURIQD) oo s) —c, try CSplit (S, Q)

9) Cn =Sp !t( u{Q} 10. for eachS € S from the leaves to the root
220 & Comp) e P o)
. . ry UpPhi(s,

10| UpPhi 510; in Z gggg UNPQ] |2(5) « ¢n 11. for eachS € S from the leaves to the root

€10) ¢n try Void(S)
11| Void™ | a12) S # 0a A CSup(S) = 0|Merge({S, 0a}) 12. foreachS € S
12| Equal® | a11) {S"} € Comp(9) Merge({S, S'}) for each@ € Comp(S)

try Equal(S, Q)

*Follow the application of these rules Bymplify . returnT

Figure 10. Rules for SystenR

Figure 11. Polynomial-time algorithmRne(7) to computeR

. N " ) ) normal form
We formalize the intuitive condition of being easy to readhe
notion of strong consistencyVe build on the syster®™ from the
previous section to create a larger rewriting systrfor ensuring 3. R enforces strong consistency when possible, that is, a aiagr
strong consistency. We introduce a polynomial-time sgpfer R D in R normal form is either equal taly or it is strongly
that transforms every i-tree intb, or into an i-tree that is strongly consistent.

consistent, and we give polynomial-time algorithms forasting

the information from strongly consistent i-trees. 4. R terminates in polynomial time for the strategy correspoidi

to the algorithmRyg described in Figure 11.
DEFINITION 12 (Strong ConsistencyAn i-tree 7 is strongly
consistentff it is weakly consistent and satisfies all of the following  Proof sketch.

properties: 1. The iT-stability is trivial for the rulesDnlInf, DnSup,
vQ € Comp(S). VSo € Q. UpPhi. The other rules are marked with a star and we use the
CInf(So) = CInf(S) — X(CSup[Q — {So}]) (Ce) algorithm Simplify. In fact, we can show that it is not necays
. to applySimplify in its full generality, but only to remove any
V@ € Split(S). VSo € Q. ;. . .
_ _ c redundant views introduced ¢ Cmp and CSplit, remove
CSup(So) < CSup() — R(CInflQ = {So}]) () any self edges introduced by the operatMarge used in the
vQ € Split(S). Q ¢ Comp(S) = rulesEqual and Void, and to remove the edges going(t
CSup(S) > 2(CInf[Q]) (Cs) that can be introduced by the ril&id.
VQ € Comp(9). Q & Split(S) = 2,3. Fo]low by .COT’I.SII’L.JC.:IIOH as in the previous section.
CInf(S) < Z(CSup[Q)) (Co) 4. This part is significantly more difficult than for systeRi”,
because the interactions between the rules are more complex
VQ € Comp(S). N(2[Q]) € ©(5) (C10) but follows the same structure as the proof Rt .
S # (p = CSup(S) >0 (Cn1)
Q € Comp(S) = Q] > 1 (C12) 7.2 Extracting Information from Strongly Consistent I-Tre es
. . In this section we start from a strongly consistent i-tfeand con-
7.1 Arewriting systemR to enforce strong consistency sider the problem of checking = D’. Analyzing Definition 2,
This section follows the development of Section 6.1. we observe that a diagram corresponds to a conjunction of con

I straints. Therefore, the subsumption probt&ni= D’ corresponds
DEFINITION 13 (SysteniR). The systenR extendsR* with the to the problem of verifying thaf” entails atomic formulas of the

additional rules of Figure 10, analogously to Definition 11. forms = 0, s1 = s2,51 C s2,a < |s| < b,s C P, s C P,
s1Ns2 =Pands C Y{s1,...,sn}. Without the danger of con-
LEMMA 7 (Properties ofR). 1. R isiT-stable, thatis fusion, we writeZ7 = A when the atomic formulal holds in all

TEiT A T—T =T eil models for"
THEOREMA4. Let T be a strongly consistent i-tree and It for
atomic formulaA be as defined in Figure 12. Thén = A if and
DD =D=T7 only if HZ.

2. R preserves the semantics, that is
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procSubsumes(T, D) and only decreaseSSup. At each step we distinguish three

T = Rue(T) cases:
= Iunr
let f : SN — S such that/s € SN. s € f(s) (a) bothUpSup andUplnf are applicable; then the result fol-
leth’ : S — SN be any function such thatS’ € S. »'(S") € S’ lows fromCs;
check all of the following conditions: (b) only UpSup is applicable; then the result follows frofi;
. A A HSTFS2 (c) only Uplnf is applicable; then the result follows frofs.
Ses’ s1,52€8
T def . 2. Follows easily from the hypothes@Inf(S) < i < s <
) VI_\:gereHSF% = fls1) = f(s2) CSup(S) and the fact thaR}ir is semantics preserving.
Ch(0)=0 3. Itis enough to notice that only ruléspInf andUpSup are used
whereHST:@ el f(s) =04 when applyingRyg, and these rules are applied in the bottom-

3. S/\S Hanf’(s)g\h(s)\gcsw’(s) up directions
e /

T def The fact that the resulting i-tré&gr is not strongly consistent any-
whereH, <<, <> CInf(f(s)) <a <b<CSup(f(s))  more prevents us to apply this lemma twice from a given sfsong

4. A A HiP(h(S)) consistent i-tree. To enforce more than one restrictionneed to
ses’ (+P>€q"(5>d . refine simultaneously the bounds of several nodes. For tijmse,
whereHT ;) % (+P) € ®(f(s)) we use the following lemma.

5. S/E\S/ (_P)é\q)/(s) HZ p(nisy) LEMMA 9 (Parallel Bounds Refinement)et7 be a strongly con-

T def sistent i-tree, andQo, ~) a subtree off” such that
whereH- 5, < (=P) € ®(f(s)) o .

6. A A H;{(S)Ch(sq e The nodes of)o are pairwise independent, that is,
Ses’ S’ eSons! (S) = VS1, S2 € Qo. ~(disj(S1, S2))
whereHglgS2 e, F(s1) = 0a V f(s1) > f(s2) ¢ (Qo,~) has the same root &5.

T AN A A His)nn(ss)=o Then the i-tred” defined by the simultaneous update
SES’ QESPlit'(S) 5, 5,e0

1755 T T [ VS € Qo:CInf(S)—CSup(S) ]
whereH” . _, &l f(s1)=0qV f(s2) =04V . o w , def w g -
12 disi%- (51, S2) is such that itsR* normal form7Zy: = Ry (77) satisfies

& A A Hiscona 1L T #La

SeS’ QeComp! (S) 2T =T

whereH7_, &4 = (4 V Included fl21, T
sSua 1) a V Included(f(s), £[2], 7) Lemmas 8 and 9 are the basic tools we need to show that

where procIncluded(So, C, 7)) the information syntactically computed from an i-tree ig thost
return V Incl(S5) precise information computable from the semantics of tired-
So~ 5 We prove this property for each of the atomic formukas
procIncl(S)
if S € C then returrtrue LEMMA 10. Ifan i-tree T is strongly consistent, then for &l € S
elsereturn \/ ( A Incl(S’)) we have
QeComp(S) \ S’eQ

S#£0g=IM METANaM(S)#D

Figure 12. An Algorithm for ComputingZ |= D’ for a an i-tree Proof. If S # 04, we haveCSup(S) > 0 by Ci1 and therefore

7 and an arbitrary diagrar’. the i-tree7” < T[Clnf(S)— max(1, CInf(S))] subsumes . By
Lemma 8,7 is satisfiable, and we can take any model/dfas a
model of 7. m

It is easy to verify thaH? implies7 = A. The proof of the

converse is based on the following two lemmas, which progide LEMMA 11.Ifani-tree7 is strongly consistent, then for &l € S

link between strong and weak consistency. we have

LEMMA 8 (Bounds Refinementl.et7 be a strongly consistent i- gﬁ ﬁ "z ;2 }gﬁgg%{ _ glsn:éfgw)

tree, S € S, 4,s such thatCInf(S) < i < s < CSup(9), let

T’ = T[CInf(S) « i,CSup(S) « s] andTgr = Ryp(7"). Then Proof. According to Lemma 8, the two i-trees

1) Tyr #La, 2) Tie = 7, and 3) if~(S ~ So), then T, T[CSup(S)—Clnf(S)] and 77 < T[CInf(S)—CSup(S)]

Inf — (CInf" / ) are satisfiable, and boff and7; trivially subsumeZ. Any model

(CInf(So), CSup(So)) = (Clnfie (So), CSupkr (50)) M, of 77 is such thafaq, (S)| = CInf(S), and any modei,
Proof sketch. of 73 is such thatau, (S)| = CSup(S).m

1. We prove this result by induction on the depthSoin the tree LEMMA 12. If an i-tree 7 is strongly consistentS, € S, C' €
(S, ~). The key step of this proof is to show that the application P(S), andIncluded(So, C, T) returnsfalseg then
of UpSup and/orUplnf to the fatherS’ of S does not produce
a situation whereis holds in the resulting diagrard@”’ (and IMMET AN am(So) € UEM C]
therefore the rul&rror is not applicable i7”’). We use the fact
that Rye applies the ruled)pinf and UpSup bottom up, and Proof sketch. Assume thaflncluded returnsfalse We argue
prove that each application presen@s only increase<Inf that the modelM exists in several steps. L&)y be the smallest
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set of nodes such that:

SQJ;S :>S€Q0

S € Qo A C1 € Comp(S5)
AS1 € CyA—Inel(Sy) [~ 51 € Qo

By definition of Incl, we haveQo N C = 0.

From the previously stated lemmas, we can prove Theorem 4.
From Theorem 4 and Lemma 7 we conclude that the algorithm in
Figure 12 is a correct and complete test for subsumptionomigt
of between trees, but also between a tree and an arbitragyadia

8. Related Work

Qo is tree-shaped by construction, but may contain two nodes ggglean algebras with cardinalities. Quantifier-free formulas of

which are explicitly disjoint. We therefore compute a sabtp; of

boolean algebra are NP-complete [33]. Quantified formullas o

Qo, by starting from the root and keeping at most one son for each poolean algebra are in alternating exponential space with-a

complete view. In this process we ensure tatcontainsSy, by
avoiding to cut the branch which leadsSg.

We then apply Lemma 9 t@; and construct a model of the
resulting i-tree while enforcing that a certain element a(S) is
such thatr € @(9’) & S’ € Q1 forall " € S. More precisely,
we prove by induction on that for each nodé; of Q1 of depthn
in the tree); we can construct a modél\, «, Z) for the sub-i-tree
of 7" with root.S; such that

VS 858 = (zeals) & S eqQr)

If n = 0thenS; is aleaf of(Q1, ~) and has no complete view by
construction ofQ. Then usingCs we show that we can construct
a model of the sub-i-tree with rodt; containing a fresh element
(not included in any of the sons 6F).

If n > 0, we can deal with the split views in the same way, but
this time S, can have some complete views. If this complete view
contains a unique split view, we avoid merging a son ofS; with
elements in the other sons 6f. If there exist more than one split
view, we can us€g and construct the model using a refinement of
the ideas of Lemma 6.

Finally, sinceSo € @i, we havex € @(Sp), and since
CNQy=0wehaver ¢ Ja[Cl.m

LEMMA 13. Ifani-treeT is strongly consistent, forali;, S2 € S
such thatS; # () andS2 # @ we have

=(S1 J*Sz) = IM. MET ATM(S1) € Ta(S2)

Proof. The propertyaM. M = T Aam(S1) € am(S2) can
be checked usindncluded(S1, {S2}, 7). Using C12 we show
that this test is equivalent to teSt ~ S>. m

LEMMA 14. Ifani-treeT is strongly consistent, forali;, S2 € S
we have

S1 ;é So = IM. M ':T/\EM(Sl) #EM(SQ)

Proof. If Si # Sa, then—(S1 ~% Sa) or =(S2 ~+ S1). In either
case the result follows from Lemma 8.

LEMMA 15. Ifani-tree7 is strongly consistent, then for &l € S
and P € PN we have

(+P) € &(S) = IM. M =T Aam(S) Z Z(P)
(—P) € 3(S) = IM. M =T Aam(S) € =(P)°

Proof sketch. LetS € S be such that+P) ¢ ®(S). We define

Qr (S € S|(+P) € ®(S')}. UsingCio andC; we show that

Included(S, Qp,7T) returns false. By Lemma 12, there exists a
model such thai(S) Z |J@[Qpr]. We then change the model by
redefining=’ on PN as='(P) = J@[Qr], soa(S) € Z'(P).
The casd —P) ¢ ®(S) is dual and follows from the previous case
by swapping+P) and(— P) in the i-tree and taking complements
of Z(P).m

LEMMA 16. If an i-tree 7 is strongly consistent, then for all
51,52 € S such thatSy # 04, S2 # 04 we have

ﬁ(disj}(Sl, Sg)) =M. M ': ’Z’/\EM(Sl) ﬂaM(Sg) ;é 0.

On Algorithms and Complexity for Sets with Cardinality Cioaisits

ear number of alternations [21]. Cardinality constrairasurally
arise in quantifier elimination for boolean algebras [31, 43].
Quantifier elimination implies that each first-order formulf the
language of boolean algebras is equivalent to some quaxitiie
formula with constant cardinalities; however, quantifimea-
tion may introduce an exponential blowup. The first-ordeotly

of boolean algebras of finite sets with symbolic cardingditior,
equivalently, boolean algebras of sets with equicardinajperator

is shown decidable in [14]. These results are repeatedyateti
by constraint solving applications, in [23, 39] and a specése
with quantification over elements only is presented in [&fper
and lower bounds on the complexity of this problem were shiown
[22] which also introduces the nanBAPA, for Boolean Algebra
with Presburger Arithmetic. The quantifier-free cas@8iPA was
studied in [45] with an NEXPTIME decision procedure, whish i
also achieved as a special case of [23, 22]. The new decisi®n p
cedure in the present paper improves this bound to PSPACE and
gives insight into the problem by reducing it to boolean bigs
with binary-encoded large cardinalities, and showing that not
necessary to explicitly construct all set partitions.

Several decidable fragments of set theory are studied ih [10
Cardinality constraints also occur in description logi&$ &nd
two-variable logic with counting [35, 19, 38]. However, &bics
of counting that we are aware of have complexity that is bdyon
PSPACE.

We are not aware of any previously known fragments of boolean
algebras of sets with cardinality constraints that havgrpmhial-
time satisfiability or subsumption algorithms. Our polynahtime
result for i-trees is even more interesting in the light @& fact that
our constraints can express some “disjunction-like” progs such
asA=BUC.

Set constraints. Set constraints [1, 3, 2, 6] are incomparable to
the constraints studied in our paper. On the one hand, sstraarts
are interpreted over ground terms and contain operaticatsaihr
ply a given free function symbol to each element of the setclwvh
makes them suitable for encoding type inference [4] andpnbee-
dural analysis [20, 34]. Researchers have also exploregffibent
computation of the subset relation for set constraints.[D8] the
other hand, set constraints do not support cardinalityaipes that
are useful in modelling databases [40, 11] and analysiseo$ites
of data structures [29]. Tarskian constraints use uning¢ed func-
tion symbols instead of free function symbols and have végh h
complexity [18].

9. Conclusions

Constraints on sets and relations are very useful for aisatysoft-
ware artifacts and their abstractions. Reasoning abositaset re-
lations often involves reasoning about their sizes. Fompta, an
integer field may be used to track the size of the set of oboted
in a data structure. In this paper, we have presented newlegityp
results and algorithms for solving constraints on booldaelaa
of sets with symbolic and constant cardinality constraivits have
presented symbolic constraints and large constant camstrgave
more efficient algorithm for quantifier-free symbolic caastts,
identified several sources of NP-hardness of constraintspee-
sented a new class of constraints for which satisfiability en-
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tailment are solvable in polynomial time. We hope that osutes
will serve as concrete recipes and general guidance in gigrdef
algorithms for constraint solving and program analysis.
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A. Proofs
A.1 I-Diagrams

Lemma 3 I-diagrams have the same expressive powe€B&C
constraints.

Proof. We translate an i-diagram into@AC constraint as fol-
lows. As in Figure 2, we note that = bs, b1 C by can be ex-
pressed in the forrtb| = 0, so we may assume that they are part of
CBAC. Similarly, |b] < k can be expressed &sC s A |s| = k
for a fresh variables, and |b] > k can be expressed as C
b A |s| = k. We translatel ; into e.g.|0| = 1. Next consideD =
(S, 0a, Sons, Split, Comp, CInf, CSup, ®). For eachS € S, let
n(S) € S be a representative set name. For esicke S\ {n(S)}
introduce conjunctS; = n(.S). Next, for eachS; € Sons(S), in-
troduce a conjunct; C S. For eachH-P € ®(S), introduce con-
junctS C P, and for each-P € ®(S) conjunctS C P¢. Express
the bounds using conjuncts| < CSup(S) and|S| > CInf(S).
For each@ € Split(S) andS1,S2 € Q whereS; # Sy, intro-
duce conjunctS; N Sz| = 0. For each{Sy,...,Sn} € Comp(S)
introduce conjunct = S; U...US,.

We translate £BAC constraint into i-diagram using the follow-
ing observations. It is sufficient to translate the follogvimoolean
algebra expressionsy s1 U s2, so = s, and|s| = k. We
construct an i-diagram whose nodes are singletons. We piek o
set variableu to act as a universal set and put} € Sons({u})
for every set variable in the i-diagram. We translate = s; U
s2 as{{s1},{s2}} € Comp({so}) and translateso s as
{{so}, {s1}} € Split({u}), {{so},{s1}} € Comp({u}). We
translate|s| = k asCInf({s}) = k andCSup({s}) = k. Then
for each satisfiable assignment ©®BAC there is a model for the
constructed i-diagram whe#ra:} is interpreted as a universal set.
Conversely, for a model of i-diagram whefig¢{s}) = A, we let
[s — ANna(u)]. The result is an assignment that satisfies the orig-
inal CBAC formula.m

Lemma 4 For every i-diagramD we can obtain an equivalent
simple i-diagram using the polynomial-time algorithm irg&ie 6.

Proof. We argue that algorithm in Figure 6 produces diagram that
isi) well-formed,ii) simple,iii) equivalent to the original diagram.

We first observe that after step 2, the following two condisio
hold:

C) if Q € Split(S) andS € Q, then@ C {S, 04}. This condition

certain step and not violated afterwards, according todheviing

table:
by[old e ]])

3.14.]4. 14 ]5.

iii) We show that semantics is preserved when executing each
sequence of steps...,k for 2 < k < 5, that is, each step pre-
serves the semantics provided that it is executed afterrthequs
steps.

k = 2. Each equality introduced intp is a semantic conse-
guence of the diagram, because

1.1 a(Sl) C S5 anda(Sg) - E(Sl),

1.2 a(Sl) - a(@d) =0,

1.3 a(Sl) - U@ =0,

L4a(Sy) Na(Ss) = 0 fora(Si) —

L5@(Sy) Na(Ss) = 0, fora(Sy) =
S0 agairm(Sz) =

16a(S1) C S anda(s) C Ufa(S1)} = a(Sh).

It follows that the condition on equality of sets, as well las ton-
ditions onClInf, CSup, Sons, ®, Comp are all semantically equiv-
alent when applied to the original and the factor diagrane aifly
semantic condition which can be lost in factor-diagram twics
tion isdisjp g, (S1,.52) whenS: and Sz nodes are merged, that is,
when (S1, S2) € p. However, in this case the disjointness condi-
tion follows from@(S1) = 0, which is enforced in 1.3. Therefore,
for the particular relation constructed in step 1, factiaigdam is
an equivalence preserving transformation.

k = 3. We need to show that no information is lost by removing
04 and S from the sons, as well as split and complete views of
S. Clearly, removingS and @; from Sons(S) does not change
the subset conditions becaugeC @(S) anda(S) C @(9).
Eliminating @, from Q@ € Comp(S) is justified because the view
has the same semantics with or with@ut Dropping a viewQ €
Comp(S) for S € @ is justified because in that cag&S) C
Us, co @(S1) holds trivially. Eliminating@q from @ € Split(S)
is justified because intersection with empty set is alwayptgm
so this condition does not bring any new information. Fipall
dropping & € Split(S) with S € Q is justified because condition
(C) implies that in such cas@ C {04, S} so theSplit condition is
trivial.

k = 4. Removing{@} from Split(S) preserves semantics
because such view carries no information. Similarly, beeaall

(SQ) SO&(SQ)
(So), anda(Sg)

e}
e}

0,0
Q()

holds because the step 1.5 of the algorithm merges all nodesmaximal views are preserved, removing their subsets doés no

Q\ {S} with 0, whens € Q € Split(5).
D) if @ € Comp(S), then@ # 0 (by step 1.3) and ifQ| = 1 then
Q = {S} (by step 1.6).

i) To see that the resulting i-diagram is well-formed, it suféic
to check the conditionis) Split(S) = Sons(.S) and|J Comp(S) C
Sons(S). This condition is preserved by factor-diagram construc-
tion (for any equivalence relation). It is preserved by Sdpr the
following reason. The only nodes removed fr&wons(S) are (4
and S. These nodes do not appear(ifComp(S) because), is
removed from each view), and views withS € @Q are removed.

It remains to check thaions(S) C |JSplit(S) after step 3, and
this holds because our condition (C) implies that no eleroémer
than s, 4 is lost from( Split(S) in step 3. The well-formedness
condition is preserved by step 4 because this step does angeh
J Comp(S) or |JSplit(S). Step 5 does not violate this condition
either because it sets the componentf afo 0.

i) To see that the resulting diagram is simple, we show that
it satisfies conditionsy),. .. ,f) of Definition 6. After step 2 of the
algorithm, the resulting factor-diagram has no cycles afjth 2
or more, there are only potentially some self-cycles. Thase
eliminated in step 3 and no further edges are introducedcéien
a) holds. For each of the following condition, they are enfdrae
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change the semantics. Fosmp(.S), we consider two cases. In first
casef) ¢ Comp(S). In this case, removing does not have any
effect, and it is sound to remove all non-minimal views beeau
they are implied by the minimal views. The second cas@ is
Comp(S). By condition D) on the step 1, we know th@t# () after
the step 2, and the only node removed in step/3 iso it must have
been the case thgt = {0} after step 2. By condition D), we then
haveS = (4. Because the semantic condition ©omp for Q@ = 0
reduces tav(.S) = 0, this condition brings no new information, so
we can remove it.

k = 5. Becausex(f4) =, CSup(hs) = 0 does not change
semantics, similarly fo(0;) = 0. We also know tha$ons(.5) C
{04} because this condition is ensured by step 2 and is not viblate
afterwards. Because we have already observed that theathagr
is well-formed, we conclud€omp(S) C {04} andSplit(S) C
{04}, so setting these valuesialoes not change the semantiss.
Theorem 2 Omitting any one out of three conditions from Defini-
tion 9 (1. being tree-shaped, 2. having independent viend, 3
having independent signatures) yields a class of diagramsse/
satisfiability is NP-hard.

Proof. Suppose that at least one of the three conditions does not
apply to a class of i-diagrams. We then give a reduction froen t
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problem 3COL to the satisfiability of i-diagrams in this claklere
3COL denotes the NP-complete problem of deciding, given an
indirected graph, whether the graph can be colored usindddsco
such that adjacent nodes have different colors [41, Page 275

Given a graph(N, E) whereE C N x N is a symmetric ir-

reflexive relation, we first build the i-diagraf defined as follows:
S = NU{U}, CInf(U) = CSup(U) = 3, Sons(U) = N,
Split(U) = {{n}n € N}, andComp(U) = ®(U) = 0. For
all n € N we letCInf(n) = CSup(n) = 1 and letSons(n) =
Split(n) = Comp(n) = ®(n) = 0.

Each model of this diagram is a tripleA, «, Z) such that
[@(U)| = 3 and for alln, @(n) is a singleton included im(U).

If we considera(U) as a set of three colors, then in each model
with this property@(n) indicates the color of node.

Then for each edgéni,n2) € E we encode the fact that
n1 andne must have different colors by enforcing the property
@(n1) Na@(n2) = 0 on the models oD. We encode this constraint
in different ways depending on the class of i-diagrams:

o If D allows dependent signatures, we introduce a fresh pred-

icate symbol P, »,, and add(+Px, n,) to ®(ni), and
(=Pny,ny) t0P(n2).

o If D allows dependent views, we adld, n2} to Split(U).

e If D allows multiple fathers, then we simulate depen-
dent views by introducing a new noden(ni,n2).
We let CInf(m(ni,n2)) = CSup(m(ni,n2)) = 2,
Sons(m(ni,n2)) = {ni,n2}, Split(m(ni,n2)) =
Comp(m(ni,n2)) = {{n1,n2}}, and®(m(ni,n2)) = 0.
We then remover, no from Sons(U), and addm(n1,n2) to
Sons(U) instead.

None of these constructions violates more than one of tlee tton-
sidered restrictions. It is straightforward to verify thlaé diagram

is satisfiable iff the graph is colorable, and that the camsion of

D can be done in polynomial time. This proves that the satisfia-
bility of i-diagrams with any of the three restrictions reved is
NP-hardm

A.2 Termination of SystemR

LEMMA 17 (Invariants ofR). For everyk € [1..12] the rule Ry,
preserves\,_, ,_,)C;orreturns.L,.

Proof. We analyze each rul®y, for two i-trees7 and7’ such

thatTR—>T/ , assuming thatl” satisfies/\;,_, ,_,,C;, and,
'k

more preciselyﬂ’%"tﬂ”, wherespotare variable names as they
k.
appear in the definition oR.

1. (DnPhi). Trivial.

2. (Unsat). (C1) does not depend o@Sup.

3. (UpSup). If n = 0, (Co) is trivialy true for S in D’. If
n > 0, by (c3) CSup(S) > 0 and we have alreadyP €
PN.{+P, —P} € ®(S) and sinced’ = ®, (C2) holds in7".

4. (Uplnf). Neither (1),(C2) nor (Cs) depend orClinf.

5. (Error). 7' =14

6. (DnlInf). Only (C4) and(Cs) depends or€Inf.

e (Cs) is maintained foiS in 7’ because, noticing tha€y) is
maintained forS” £ S, we have
Clnf’(S) = CInf(S") — 3(CSup(Qo))
< CSup(S”) — 2(CSup(Qo))  (byCs)
< CSup(S) (byCs)
¢ To prove that ¢4) is maintained in7’ we need to check
that (C4) is maintained forS, which is trivial by (c¢), and
that (4) is maintained for the fathe$’ of S and the views
Q € Split(S’) containingS. By property of independent
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views there exists only one such viey = ({S} W Qp)
such that)y € Qo and

2CInf'(Q) = CInf'(S) +2CInf(Q))
= (CInf(S")—XCSup(Qo)) +SCInf(S)
= Clnf(S") —2CSup(Qo — Qo)
+syeq; (CInf(Sh) — CSup(Sh))
< CInf(5")~£CSup(Qo — Q) (byCs)
< CInf(5")
=CInf'(S)

7. (DnSup). Only (C2), (Cs) and(Cs) depend orCSup. (C2) is
maintained thanks ta:{) as for the case of rul®lpSup.

e (C5) is maintained forS in 7’ because, noticing tha€{) is
maintained forS” # S we have

CSup’(S) = CSup(S") — Z(CInf(Qo))
> CInf(S") — Z(CInf(Qo))  (byCs)
> CInf(S) (by Cs)

e To prove that €3) is maintained in7’ we need to check
that (C3) is maintained forS, which is trivial by (c¢7), and
that (Cs) is maintained for the fathe$’ of S and the views
Q@ € Comp(S’) containingS. By property of independent
views there exists only one such vielv= ({S} W Qo) and

ECSup’(Q) = CSup’(S)+XCSup(Qo)
= (CSup(S")—ZClInf(Qo))+XCSup(So)
= CInf(S")+Xs,eq, (CSup(So) — CInf(So))
> CInf(S")  (byCs)
=ClInf’(S")
8. (CCmp). Only (C3) and(Cg) depend orComp.
e (Cs3) is maintained foiS, Q because

CSup’(S) = CSup(S)

<X(CInf(Q))  (byas)
<X(CSup(Q))  (byCs)
=X(CSup’(Q))

® (Cs) is maintained forS, @Q and all.Sy € @ because
CInf’(S) = CInf(S)

< CSup(S) (by Cs)
< 3(CInf(Q)) (by as)
= CInf(Sp) + 2(CInf(Q — {So0}))

< Cinf(50) + 2(CSup(@ — (501))  (byCs)

= Clnf'(So) + S(CSup'(Q — {So}))
(Remarh. If ever we use a simplification afterwards, as indi-
cated by the star in figure 10, it can only consists in removing
a complete viewQ’ such thai)’ < Q. This operation trivially
maintains/\;_, ;) C; because in every properties of consis-
tency where complete views appear they are universally-quan
tified.
9. (CSplit). Only (C4) and(C7) depend orbplit.
¢ (C4) is maintained foiS, Q because

CInf'(S) = CInf(S)

> 2(CSup(Q))  (by a)
> S(CInf(Q) (by Cs)
= 3(Cinf'(Q))

¢ (Cr) is maintained forS, @ and allSy € @ because
CSup’(S) = CSup(S)

> CInf(5S) (by Cs)
> 5(CSup(Q)) (by as)
= CSup(So) + (CSup(Q ~ {So})
> CSup(So) + S(CInf(Q — {So}))  (by Cs)
= CSup'(So) + S(CInf’ (Q — {S0}))
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(Remarh. If ever we use a simplification afterwards, as indi-
cated by the star in figure 10, it can only consists in remov-

ing a split viewQ’ such that)’ C Q. This operation trivially

maintains/\,_, g C; because in every properties of consistency

where split views appear they are universally quantified.
10. (UpPhi). Only (C;) and(Cz) depend orb

¢ (C;) is maintained forS and allS’ € Q because

'(8)=2(S)UNP(Q) (by b1o)
=d(S) U ((S)N2(Q—{5'})
CO(S) U ()
Co(9) (by C1)
:(I)I(Sl)

e We can also prove that{) is maintained forS. Suppose
there existsP in PN such that{+P, — P} € ®'(S). Then
we distinguish three cases.

v if {+P,—P} C ®(S), by Cz, CSup(S) =0

v if {+P,—P}N®(S) = 0, then{+P, —P} € N ®(Q).
Then for allS’ € Q, CSup(S’) = 0 by C2. Then byCs,
CSup(S) =0

vif {+P,—P} N ®(S) = +P for one atom+P €
{+P,—P}. Then the opposite atomEP belong
(N ®(Q) and byCy, £ P belong to) ®(Q). By C2, each
nodeS’ € @ is such thatCSup(S’) = 0 and byCs,
CSup(S) =0

In the three caseSSup’(S) = CSup(S) = 0.

11. (Void). If S is the root,the resulting i-tred”’ is such that
S = {SN} = {04} and(; is trivial for all i € [1..11].
Otherwize, we have to check that removing the nédéfom
the sons of the father of (as indicated in the step 3 of the
proceduresimplify) maintains/\ ,_, ,,C;. We denote bySy
the father ofS and byQ, the split view of Sy containing$. If
S is also contained in a complete view 8§ we denote byCy

this complete view.

e (C1) and (o) are trivially maintained.
¢ (Cs) is maintained because,df, exists and”) = Co—{S}

is not empty
CSup’(So) = CSup(So)
<XCSup(Co)  (byCs)
=3CSup(Cy) (byais)
=2CSup’(C))

e (C4) is maintained because,if, = Qo — {S} is not empty

CInf'(So) = CInf(So)
> YCInf(Qo)
> %CInf(Qp)
= XCInf'(Qh)

(byCa)

e (Cs) is maintained for the nod&, = S U ()4 of 7/ because
by (a12) and(Cs), CInf(S) < CSup(S) = 0, by simplic-
ity and (Cs), CInf(fq) < CSup(#s) = 0, and therefore
ClInf'(0}) = Maz(CInf(S), CInf(#4)) = 0 < CSup’(0),).

¢ (Cs) is maintained foiSy, Cp and everyS; € Co such that
S1 # S because

CInf'(S1) = CInf(S1)
> CInf(So)—X(CSup(Co—{S1})) (by Cs)
= CInf(So) —%(CSup(Co—{S}—{51})) (by a12)

= CInf’(So)—2(CSup’ (CH—{S1}))
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¢ (Cr7) is maintained foiSy, Qo and everyS; € Qo such that
S1 # S because

¢ (Cs) is maintained foQ, because

CSup’(So) = CSup(So)
> ¥(CInf(Qo))
> X(ClInf(Qo — {So}))
=X(CInf"(Q0))

e (Cy) is maintained foiCy (if exists andC = Co — {So} #

(byCs)

() because
CInf'(So) = CInf(So)
< Z(CSup(Qo)) (byCo)
=2(CSup(Qo — {So})) (byau1)

= %(CSup’(Qo))
* (C10) is maintained o, (if exists andCy = Co—{So} #

() because
N (Co) =N2(Co — {So})
SN @(Co)
Q ‘I:'(So) (bwa)
=®'(5)

12. (Equal). Before to mergeS and.S’ for {S’} € Comp(S) we
have
e CInf(S) = CInf(S") by C4 andCs
e CSup(S) = CSup(S’) by C5 andC~
L] (IJ(S) = (IJ(S,) byc’1 andClo

Therefore all the propertie§; for i =
maintained.

1..10 are trivially

A.3 Model Construction

Lemma 6 (Model Construction) If an i-tree 7 is weakly consis-
tent, then we can construct a model fbr

Proof. Let7 be aweakly consistent i-tree.

We construct a mod€lA, «, =) by first constructing a partial

model (A, «) for all parts of 7 except®, and then extending
(A, ) with E to satisfy®.
Constructing (A, o). We write(A, «) = 7 to denote that\ and
« satisfy those conditions @ Sons, Split, Comp, CSup, Cinf that
do not mentior in Definition 2. To show we can construah, «)
such that(A, «) = 7 we prove by induction om the following
more general claim.

CLAIM 1. For every i-treeT of heightn with root Sk:

Vk € [CInf(Sg), CSup(Sg)].
3(A, ). (A,a) ED A [a(Sg)| = |A] =k

If n = 1, the claim holds b¥s taking
A=a(Sg)={1,...,k}

For n>1, consider an i-tree7 with root Sgp and &k €
[CInf(Sr), CSup(Sr)]. By examining the constraints if, we
choose the cardinalities for subtrees®f use the induction hy-
pothesis to construct models for subtrees, and paste thelsniuad
subtrees into a model faF. We decompose this process into three
steps:
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1. For eachiC' € Comp(SRr), consider a subtre@&: built from 7
by removing all sons outsidg) C. We construct a modeM ¢
for 7¢ of cardinalityk.

. For each remainin@ € Split(Sr) where@ < |J Comp(Sr),
consider a subtre@, with the same rooSr but without the
sons outsid¢ J Q. We construct a modeM ¢ for 7¢ of cardi-
nality k.

. Because the constructed models have the same cardimadity
can easily merge them to obtain a modelfar

Step 1. Let C € Comp(Sgr), andC C Split(Sr) such that

C' = UC. For eachy € C, letto ““ min(k, £(CSup[Q])). Using
k > CInf(Sg) andC4 we can show

S(CInflQ)) < to < S(CSup[Q)) (H1)

To each nodeS € @ we can therefore assign an inted€(S) <
[CInf(.S), CSup(S)] such thatg = Z(K[Q]). Let 75 be the sub-
i-tree of 7 rooted atS. By induction hypothesis, leM s be the
model of 75 of cardinality K (S). We can then take the disjoint
union of these models to construct a modelys,, of sizetq for
the forestUseQ Ts.

For all @ € C, we havetg < k by definition oftg and k.
We can also prove that < Ygecctqg. Indeed, if there exists a
Qo € C such thattg, = k, this is trivial. Otherwise, becausg
is weakly consistent, frors we can show that < CSup(S) <
3(CSup[C]) because

% (CSup[C])

= % (Z(CSuplQ))) = = (tq).
Qec QecC

We finally obtain

et k= Gt ()
Thanks to( H2), we can build a model for the i-tre&:, as follows.

We start with the disjoint union of model®t, for 7 for Q € C.

This model has cardinalitf.gecctq. Then, we rename elements
from different models to be identical to elements from otimexd-

els. Such merging is possible as long as there is no modelevhos
domain contains the domains of all others, so we can reach any
cardinalityk for maxgec < k.

REMARK 2. (Freedom in the choice dft;}c[1..,)) In Section 7
we enforce some additional properties on models using ardiff
ent choice ofg. Such construction is possible whenevgsatisfy
(H1)and(H2). Moreover, ifK (S) denotes some chosen cardinal-
ity for each nodeS, and the valued((S) satisfy certain assump-
tions, then we can enforce additional properties when mgrtjie
models M corresponding for) € Split(.S). The following two
cases are of interest.

1.If > tg > K(S), we can chose any pair of different split
QeC
views Q1, Q2 € C, and two elements; from Mg, andz
from Mg, and decide to merge them.

2.fC = {Qo}wCo andglez%cx tg < K(S), we can chose any
0

element in the modeM g, and decide not to merge it with any
of the elements of the modelst, for Q" € Co.

Step 2. Let @ € Split(Sr), such that? is not included in any
complete view. We construct a model ¢ of sizek for the i-forest
Tr by first building a model of sizé((S") = CInf(S’) for each
S’ € Q. Becausé: > CInf(S) > X(CInf[Q]), by C4, the disjoint
union of these models has cardinality smaller tharBy adding
the correct number of fresh elements/Ag we obtain a model of
cardinalityk.

REMARK 3. (Existence of fresh elements) In Section 7 we use the
following property: For allQ € Split(S) and@ ¢ UComp(S),
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if X(CInf[Q]) < K(S), then there exists a model such thts)
contains an element which does not belong to@g') for any of
the sons ofS.

Step 3. We can apply an arbitrary bijectionc : Ac — [1..n]

to each mode/M ¢ constructed as previously described before to
build a model for the entire i-tree. We [&(Sr) = [1..n] and for

all S # Sg, @(S) = ac(S) whereC is the view containing an
ancestor ofS in Split(Sr) or Comp(Sr).

REMARK 4. (Freedom in the choice of.) If we know that
K(S) > 0, for any pairS, Sz of sons ofS such thatSy, S2 belong
neither to the same split view nor to the same complete viexv, f
each choice of elements , z2 in the modelsZs, and7s, we can

chooseo 1, o2 such thato (z1) = o2(x2) 4/ ¢ and the resulting
i-tree will be such that € @(S1) N@(S2).

Extending the model with =. Let (A,«) = 7. Then for each
P € PN, define

2(P) = J{a(s) | SesAPe®S))}

Then (+P) € ®(S) = @(S) C Z(P) holds by construction,
it remains to show(—P) € ®(S) = @(S) C =(P)° for every
nodeS. ConsiderS; € S such that—P) € ®(S1). If S1 = 04,
then@(S1) = 0, so the condition trivially holds. Similarly, if
(+P) € ®(S1), then byCs, CSup(S1) = 0 soa(S;) = @ and the
condition holds. Otherwise, assure P) ¢ ®(S1). For the sake
of contradiction suppose that there exists an elemeat @(S1),
x € Z(P). By definition of Z(P), there exists a nods. # Si
such thatr € @(S2) and (+P) € ®(S2). By the condition on
independent signatures, one of the followig two cases eppli

1. disj5(S1, S2). Then@(S1) N @(S2) = 0 by the semantics
of i-diagrams, which is a contradiction with € @(S1) and
x € @(S2).

S1 and S> have compatiable signatures. Then there exists a
node S such thatS; ~» S, Sz ~» S andSig(S;1) N Sig(S2) C
Sig(S). Because(—P) € ®(S1), (+P) € Sig(S1), and
becausg¢—P) € ®(S:), P € Sig(S2). ThereforeP € Sig(5S).
We have two cases:

(@) (+P) € ©(S). By Cy, then(+P) € ®(S1), a contradic-

2.

tion.

(b) (—P) € ®(S5). By Cs, then(—P) € ®(S2). By C2 then
CSup(S2) = 0, soa(S2) = 0, a contradiction withe €
E(Sg).

We have reached the contradiction in each case, so we cenclud
a(S1) CE(P)°.m

A.4 Details of the Proofs for Subsumption Completeness
A.4.1 Refinemenents of Lemma 6

According to the remarks in the proof of Lemmaf an i-tree7 is
weakly consistent, there exists a choice of cardinalfiiesS — N,

such that we can build a modél, a, =) for 7 with the property
[@(S)| = K(S) forall S € S. For a fixed choice of cardinalities
K, we can, in certain cases, enforce some additional pregerti
by choosing which element we merge in the steps 1 and 3 of the
construction. The three following Lemmas are based on dia.i

LEMMA 18 (Non-empty intersection (1)).etS: and.S; be nodes
in a weakly consistent i-tre€ is such that

CInf(S1) >0AS1~5 81 A5 €Q1 A
CInf(S2) > 0 A So~% S5 ASh € Qo

for someS, S1, 55 € S, Q1,Q2 € Split(S) where@Q:1 # Q- and
=(3C € Comp(S). Q1 € C A Q2 C C). Then there exists a
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model(A, «, E) for 7 such that
a(S1) Na(S2) # 0.

Proof. We use the construction described in Lemma 6, with the
exception of step 3 of the construction of the modédls for the
subtreeZs with root S, where we do the following:
* We choose an element in@:(S1) inthe modelM s, built for
Ts; (we know there exists one sueh becauseinf(S1) > 0)
¢ Analogously, we choose an elemantin @ (S2) in the model
Mg, build for 7,
¢ We choose the bijectionsg, and og, in step 3 such that
TQ1 (xl) =0Q2 (x2) L
LEMMA 19 (Non-empty intersection (2)).etS: and.S; be nodes
in a weakly consistent i-tre€ is such that

CInf(S1) > 0A ST~ ST AS €Q1 A
CInf(S2) > 0 A S2~% S5 ASh € Qa
for someS, S1, S5 € S, Q1, Q2 € Split(S) whereQ: # @2, and
Q1 C C, Q2 C CforsomeC € Comp(S) with the property
CSup(S) < E(CSup[C]).
Then there exists a modeh, «, =) for 7 such that
a(S1) Na(Ss2) # 0.

Proof. We use the construction described in the proof of
Lemma 6, except for the step 1 of the construction of the model
M s for the subtre€s with root S, for which we do the following.
From K(S) < CSup(S) < X(CSup[Q]), we conclude that the
choice of cardinalitiesg for @ € C in the proof of Lemma 6 is
such thatgectq > K(S), by considering two cases.

1. There exists) € C such that
tq = min(K(S), 2(CSup[Q))) = K(S).
Then we choos&); € {Q1,Q2} such thatQ; # Q. Since
CInf(S1) > 0 A S~ Si ~ S, repeatedly applyings and
usingCs, we have
e 3(CSup[Q;]) > CSup(S;) > CInf(S’) > Clnf(
e K(S) > CInf(S) > CInf(S;) >
As a consequencg,, = min(K(S),
Lqectq = to +tq, > K(5).
2. For allQ € C, tg 3(CSup[Q)])). Then Xgecto =
3(CSup[C]) > CSup(S) > K(S).
Becausetqectq > K(S), we can apply Remark 2 and choose
one elementr; in @:(S1) in the model M, built for 7, , and
an elementr2 in @2(.S2) in the model built’ forZg,, and decide

Si) >0

X(CSup[Q:])) > 0 and

Proof. We use a variation of the construction in the proof of
Lemma 6. We apply the assumptions about the sultpre® show
that we always have enough “slack” to avoid merging one §ipeci
element from@; with the elements of neighbors. We being by
describing a slightly modified Step 1 of the proof of Lemma 6.
Step 1’ (for nodes of @Q1). Consider the rootSg € @Q;. Let
C € Comp(Sgr), andC C Split(Sr) such thatC = UC. By
construction, there exists a unique s6h ¢ @ of Sk and a
corresponding split view))’ such thats’ € Q" andC = {Q’'}wC.
We deflnetQ, = min(k, X(CSup[Q'])) and for eact)o € Co, we

defineto, < min(k—1, ©(CSup[Qo])). For eachQ, € Co, since
k > CInf(Sr) by choice ofk andCInf(Sr) > X(CInf[Qo]) by
hypothesis 3 o7, we haveX(CInf[Qo]) < k—1, so

E(CInf[Qo]) < tq, < X(CSup[Qo)) (H1)
and the property (H1) also holds ftw,, becausé, is defined as
in Lemma 6.

By definition of ¢ we clearly havenaxgectqo < k. We next
show ¥ tg > k by considering the following cases.
Qec

e tor = k. Then the claim is obvious.

e Forall@Q € C we havetqg = X(CSup[Q]). The claim follows
from Cs and the choice of becausestg > X(CSup[C]) >
CSup(Sr) > k.

e There existsQo € Co such thattg, k — 1. Using
Y(CSup[@’]) > CSup(S’) > 0andk > CInf(Sg) > 0
we obtaintg, > 0, SO

Y tg 2l tigr 2
QeC

(k—1)+1>k.

We finally obtain

<k< H?2
maxtQ < k Zote (H2)

By definition of alltg, we then have
VQQ e Co. tQO <k (HS)

According to Remark 2, H3 allows us to choose an element of the
model M g, constructed for the subtr&g. and decide notto merge

it with any other element. This observation allows us to reively
enforcezr € @(S) < S € Q1.

Indeed, consider a nod§z € Q. and let{Sg,..., S} =
Sons(Sr) N Q1 be its sons inR;. For each;, we can then recur-
sively ensurer; € @(S) <= S € Q: for eachS in the S
subtree i.e. for eacly for which S~ S%. By definition of Qy,
eachS}, is in a different complete view, so we can apply bijection
to the submodels (Remark 4) andde{z1) = ... = op(zp) = z.

We ensure that does not belong to any subtree rooted at a node
So € Sons(Sr) \ Q1, using Remark 2 to make sure thats not
merged with any of the elements®@{S, ), which is possible thanks

to H3. Finally, for the base case, wh8rhas no sons, we pickto

to merge these elements in the step 1 of the construction. We be a fresh element, which is possible by assumption 3 on the su

know that such elements;, z» exist becaus€Inf(S;) > 0 and
CInf(S2) > 0.m

LEMMA 20 (Isolated elementlet 7 be a weakly consistent i-
tree and(Q1,~~) a subtree of(S, ~~) with the same rooy as
T, such that for allS € @ all the following conditions hold:

1. CInf(S) > 0
2.YC € Comp(S). 3='Q € Split(S ).QQC/\|Q0Q1|:1
3.VQ € Split(S). [QNQi[#1

(1QNQ1=0A Z(CInf[Q]) < CInf(9)).
Then we can construct a model férsuch that
Jrzea@(R).VSES. (zealS) & Se@)
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treeQq, as noted in Remark &.
A.4.2 Links between weak and strong consistency

Lemma 8 (Bounds Refinement)Let 7 be a strongly consistent
i-tree, S € S, 4, s such thatCInf(S) < ¢ < s < CSup(9), let
T’ = T[CInf(S) « i, CSup(S) « s] andZyr = R{e(7'). Then
1) Te #La, 2) Tye = 7, and 3) if=(S ~> Sp), then

(CInf(So), CSup(So)) = (CInfne(So), CSupye(So))-
Proof.

1. We prove this result by induction on the depthSin the tree
(S, ~). The key step of this proof is to show that the application
of UpSup and/orUplnf to the fatherS’ of S do not produce
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a situation whereus holds in the resulting diagrard”’ (and Therefore, 7" is already in normal form, s@y is identical to7”
therefore the rul&rror is not applicable ir7"’). We distinguish and is clearly distinct fromL4, proving condition 1. Condition 2
three different cases : holds becaus&” |= 7 because the cardinality bounds7r are at

e When UpSup and UpInf are both applicable to this node least as strong as . Condition 3 holds because
S" we haveClnf”(S’) < CSup”(S’) because folC' € S(CInf'[Q]) = =(CInf[Q])  (becaus&) N Qo = ()
Comp(S’), Q@ € Split(S’) such thai) C C,Q = {S} W < CSup(S) (by Cs)
’ ’ _ ! SR 72
Qo, C = {5} W Cy andT”’ 55,6 S5 71 e have =CInf’(5) (by definition of 7")

UpSup Uplnf

|
" / —

CInf"(S );ggg::” Biglsn:p(?)) E?yf‘;g LEMMA 21 (Parallel Bounds Refinement (2))et7 be a strongly
< S(CSup'[Qo]) + CSup'(S)  (byCs) consistent i-tree andi, Sz, 57, 53, S € S andC, Q such that
< g(csyp [Col) + CSup’(S)  (Qo C Co) C € Comp(S), Q1, Q2 € Split(S)
= CSup”(5") (by bs) S5 8TASLEQLAQICC

e When onlyUpSup is applicable to this nod&’ we have Sa~~ 85N S5 EQNQ2 CC
CInf”(S") < CSup”(S’) because forlC' € Comp(S’), Q1 # Q2 B
_ , S’ C
C={S}¥CoandT” —- T"we have Define
CSup”(8") = . E(ggup [Co]) + EISufp’gS) (by<b3) T TS, 8 5 85 S CInf(S') — CSup(S")]
> Cl(nf/(Lg)/)[Q ol) + Clnf'(S) EE@Z% [VS', 85~ §' <5 Sy« CInf(S") « CSup(S")]
> de w
=ClInf"(S") Tne = NF(77)

1 def pw / 7 /
e When only Uplnf is applicable to this node&’ we have 7" = Rije(Tne[CSup™(S) — Clnfie (S)])
Cinf”(S") < CSup”(S’) because forQ € Split(S"), ThenT” #14,T" |= T, andCSup” (S) < £(CSup”[C)).

— {SYwQoandT’ =S T" we have . .
@=1{5}wQo U;if Proof. As in the proof of Lemma 9, weak consistency con-

CInf"(8") = £(CInf'[Qo]) + CInf'(S)  (by ba) ditions hold in 7" for all nodes inS’ such thatS; ~% 5] or
<X(CInf'[Qo]) + CSup’(S) (i< s) Sa 5 S5. Therefore, the only rewrite step that mat be applicable
chup/(sl) (by_C7) in 7' is the.appllcatlon oﬂjplnf to S. This application may
;CSup”(S’) lead to applications of other instances GpInf, but the proof

of Lemma 8 shows that this process will result in a weakly con-
2. Follows easily from the hypothesSInf(S) < i < s < sistent i-tree, sdfyg #.Lq4. Moreover, the process of comput-
CSup(S) and the fact thaRyr is semantics preserving. ing Rk (Tne[CSup”(S) « Clnfye(S)]) is identical to applying

3. Itis enough to notice that only ruléfpinf andUpSup are used ~ Lemma 8 to7” with boundsi = s = Clnfye(S5), and therefore
when applyingRjir, and these rules are applied in the bottom-  leads to a weakly consistent i-tr@€’, so7" # L.
up directionm The condition7” = T follows becauseRy is semantics-
preserving, and the updates of trees only shrink the bounds o
Lemma 9 (Parallel Bounds Refinement (1)Let 7 be a strongly ~ nodes, so they convert a diagram into a stronger one.
consistent i-tree, andQo, ~) a subtree off” which has the same To prove CSup”’(S) < X(CSup”[C]), observe first
root as7 and is such that that CSup”(S) = CiInf\e(S) by definition of 7”, and
3(CSup”[C]) = =(CSup[C]) because Sup does not change for
any ancestors af. Therefore, it suffices to show

V51, 52 € Qo.~(disiz (51, 52)) CInfie(S) < B(CSup[C])
Then the i-tred” defined by

¢ The nodes of), are pairwise independent, that is

We prove this condition by distinguishing two cases.

T T [VS € Qu:ClInf(S)—CSup(S) ] 1. UplInf is not applicable t&. ThenClnfie (S) = CInf(S) and
_ _  def ) o the condition follows byCs.
is such that hisR"™ normal formZy = Ry (77) satisfies 2. Uplnf is applicable toS. Then for some:, b where{a, b} =
1T #14 {1, 2} we have
2Tve ET Cinfye(S) = X(CInf’[Qa))
3.VS € Qo. VQ € Splitle(S). QN Qo = 0 = < X(CInf'[Qa]) + E(CInf'[Qs])

S(CInfie[Q]) < Clnfie(S) < X(CInf[C])
< E(CSuplC])

Proof. If we apply[CInf(S’)«CSup(S”)] to every node5’ of Q¢
starting from the root to the leaves, we always maintirCs, Cs
because® and CSup are never modified. We also maintaih
because for each € Qo and each view) € Split(S) such that
there existsS’ € Q N Qo, by —disj’-(S1, S2), we know thatS’ is
the only modified node, and

A.4.3 Completeness of the algorithnSubsumes

Theorem 4 Let7 be a strongly consistent i-tree and léf; for
atomic formula4 be as defined in Figure 12. Thet?, if and only

CInf’(S) = CSup(S) it 7 = A.
> 2(CInf[Q — {S"}]) + CSup(S’) (byCr) The (=) direction of Theorem 4 is trivial by the semantics of i-
=(CInf'[Q)) diagrams. For<) direction we prove the following characteriza-
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tions:
S04 = IM. a(S) #0
k € [CInf(S), CSup(S)] = IM. [a(S)[ = k
—(Included(So,C, 7)) = IM. @a(So) £ Ua[C]
S1 7& Dag A —‘(Sl e SQ) = IM. a(Sl) Z 5(52)
Si # Sy = M. @(S1) £ a(Ss)
Dq g {Sl,SQ} A ﬁdisj}(Sl, SQ) = IM. a(Sl) ﬂa(SQ) ;é 0
TP d(S) = IM. @(S) g =(P)
P ®(S) = IM. a(S) Z Z(P)°

where M denotes a modeM = (A, a, E) of 7. We next present
the remaining lemmas that prove these characterizati@esalso
Section 7).

Lemma 12 If an i-tree 7 is strongly consistentSy, € S,C €
P(S), andIncluded(So, C, T) returnsfalse then
aM. a(So) ¢ | JalC]

Proof. Let Qo be the smallest set of nodes such that:

Sog~ S
S € QoA Q1€ Comp(S)A
Sy € Q1 A —‘Il’lCl(Sl,C)

=5 € Qo
}:>Sl € Qo

By definition of Incl we know thatQo N C = (.

Qo is tree-shaped by construction, but may contain two nodes

which are explicitly disjoint. We compute a subtrén of Qo,

by starting from the root and keeping each time at most one son

for each complete view. We also impose tigat containsS, by
avoiding to cut the branch which leadsSo
We then define

T' = Ry (TVS € Q1 : CInf(S)—CSup(S)))

According to Lemma 9 (Parallel Bounds Refinement) we have

T #14.

We then apply Lemma 20 to construct a model for the weakly

consistent i-tred’ such that

VS eS. (zea(s) & S €Qr)
for some element € @(S). Becauses € @1, we haver € @(95).
Because&®' N Q1 = 0, we haver ¢ N@[C].m

Lemma 15 If an i-tree 7 is strongly consistent, then for afl € S
and P € PN we have

(+P) € O(S) = IM. METAam(S) L E(P)

(=P) € ®(S) = IM. METANam(S) L E(P)°

Proof. Let S € S be such that+P) ¢
def

Q+p =49 € S|(+P) € d(Y
Included(S, Q+p,

®(S). We define
)}. Using C10 we show that

by redefining=" by:

vP e PN. 2'(P) = J{@a(s")|S" € Q+r}
to ensure tha€'(P) ¢ @a(S). The case of —P) ¢ &(9) is
analogous by taking a model such ti&tS) Z (Ja[@-p]) and
redefining=’ by:
VP ePN. 2/ (P)=A - J{a(s)|s" € Q_»}

Lemma 16 If an i-tree 7 is strongly consistent, then for all

S1,S2 € Ssuch thatS; # 0, S2 # 0 we have
ﬁ(disj}(Sl, Sg)) = IM. a(Sl) ﬂa(SQ) ;é 0.

On Algorithms and Complexity for Sets with Cardinality Cioaisits

T') cannot return true. Then, there exists a
model such thate(S) € (Ja[Q+p]). We then change the model

Proof. Let 51,52 € S\ {04} such that—(disj}(S1,S2)). If
S1 = S2 we can find a modeM wherea(S1) = @(S2) # 0 by
Lemma 10, in this modek(S1) N @(S2) = @(S2) # 0. Suppose
S1 # S2. DefineSt, S5, So as the unique nodes such tisatis the
least common ancestor 6f andS: in 7, andS1,S5 € Sons(Sp)
are the ancestors &f; and S», respectively. We distinguish two
cases:

¢ 51 andS; do not belong to a same complete viewSf Then
apply Lemma 9 to the subtree

Qo {Ses|8 58V, S}

whose nodes are pairwise independent by the hypothesis
disj>(S1, S2). The resulting treeZy; satisfies the hypothesis

of Lemma 18, so there exists a model = (A, «, =) for Tyr

such that

a(S1) Na(S2) # 0.
M is also a model of” becauseZy; = 7.
S1 andS; belong to a same complete vigit Define

T YR (TVS, S1% 5% 81+ CInf(S') — CSup(S)
[VS’, So ~» S' <5 84 Clnf(S")—CSup(S")])

TR (T'[CSup” (S) — Clnf'(S)]
By Lemma 21, the” = 7 andCSup” (S) < X(CSup”[C)).

This last property allows us to apply Lemma 19 and prove
the existence of a mod¢l\, o, ) for 7 such thatx(S1) N

a(S2) #0.m
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