
Automatic Software Upgrades for Distributed Systems

Abstract

Upgrading the software of long-lived, highly-available
distributed systems is difficult. It is not possible to up-
grade all the nodes in a system at once, since some nodes
may be unavailable and halting the system for an upgrade
is unacceptable. Instead, upgrades must happen grad-
ually, and there may be long periods of time when dif-
ferent nodes run different software versions and need to
communicate using incompatible protocols. We present
a methodology and infrastructure that make it possible
to upgrade distributed systems automatically while lim-
iting service disruption. We introduce new ways to rea-
son about correctness in a multi-version system. We also
describe a prototype implementation that supports auto-
matic upgrades with modest overhead.

1 Introduction

Internet services face challenging and ever-changing re-
quirements: huge quantities of data must be managed
and made continuously available to rapidly growing client
populations. Examples include online email services,
search engines, persistent online games, scientific and fi-
nancial data processing systems, content distribution net-
works, and file sharing networks.

The distributed systems that provide these services are
large and long-lived and therefore will need changes (up-
grades) to fix bugs, add features, and improve perfor-
mance. Yet while a system is upgrading, it must continue
to provide service to users. This paper presents a flexible
and generic automatic upgrade system that enables dis-
tributed systems to provide service during upgrades.

Our system is designed to satisfy a number of require-
ments. To begin with, upgrades must be easy to define.
In particular, we want modularity: to define an upgrade,
the upgrader must understand only a few versions of the
system software, e.g., the current and new versions.

In addition, we require generality: an upgrade should
be able to change the software in arbitrary ways. This im-
plies that the new version can be incompatible with the
old one: it can stop supporting legacy behavior and can
change communication protocols. Generality is impor-
tant because otherwise a system must continue to support
legacy behavior, which complicates software and makes

it less robust. Our approach allows legacy behavior to be
supported as needed, but in a way that avoids complicat-
ing the current version and that makes it easy to retire the
legacy behavior when the time comes.

A third point is that upgrades must be able to retain yet
transform persistent state. Persistent state may need to
be transformed in some application dependent way, e.g.,
to move to a new file format, and transformations can be
costly, e.g., if the local file state is large. We do not at-
tempt to preserve volatile state (e.g., open connections)
because upgrades can be scheduled (see below) to mini-
mize inconvenience to users of losing volatile state.

A fourth requirement is automatic deployment. The
systems of interest are too large to upgrade manually (e.g.,
via remote login). Instead, upgrades must be deployed au-
tomatically: the upgrader defines an upgrade at a central
location, and the upgrade system propagates and installs
it on each node.

A fifth requirement is controlled deployment. The
upgrader must be able to control when nodes upgrade.
Reasons for controlled deployment include: allowing a
system to provide service while an upgrade is happen-
ing, e.g., by upgrading replicas in a replicated system
one-at-a-time (especially when the upgrade involves a
time-consuming persistent state transform); testing an up-
grade on a few nodes before installing it everywhere; and
scheduling an upgrade to happen at times when the load
on nodes being upgraded is light.

A sixth requirement is continuous service. Controlled
deployment implies there can be long periods of time
when the system is running in mixed mode, i.e., when
some nodes have upgraded and others have not. Nonethe-
less, the system must provide service, even when the up-
grade is incompatible. This implies the upgrade system
must provide a way for nodes running different versions
to interoperate, without restricting the kinds of changes an
upgrade can make.

Our system provides an upgrade infrastructure that sup-
ports these requirements. We make two main contribu-
tions. Ours is the first approach to provide a complete so-
lution for automatic and controlled upgrades in distributed
systems. It allows upgraders to define scheduling func-
tions that control upgrade deployment, transform func-
tions that control transforming persistent state, and sim-
ulation objects that enable the system to run in mixed
mode. Our techniques are either entirely new, or are major

1

extensions of what has been done before. We support all
schedules used in real systems, and our support for mixed
mode improves on what is done in practice.

Second, our approach allows mixed mode operation.
But this raises a question: what should happen when a
node runs several versions at once, and different clients
interact with the different versions? We address this ques-
tion by defining requirements for upgrades and providing
a way to specify upgrades that enables reasoning about
whether the requirements are satisfied. The specifica-
tion captures the meaning of executions in which differ-
ent clients interact with different versions of an object
and identifies when calls must fail due to irreconcilable
incompatibilities. The upgrade requirements and specifi-
cation technique are entirely new.

We have implemented a prototype, called Upstart, that
automatically deploys upgrades on distributed systems.
We present results of experiments that show that our in-
frastructure introduces only modest overhead, and there-
fore our approach is practical. We also discuss the usabil-
ity of our approach in the context of several upgrades we
have implemented and run.

The remainder of the paper is organized as follows.
Section 2 presents an overview of our approach. Sec-
tion 3 describes how to specify upgrades. Sections 4– 6
discuss the three core components of our approach; Sec-
tion 7 presents an example upgrade. Section 8 evaluates
the overhead of our prototype, and Section 9 discusses the
usability of our approach. Section 10 discusses related
work, and Section 11 concludes. A more detailed discus-
sion of the approach can be found in a technical report [1].

2 Overview

This section presents an overview of our methodology and
infrastructure.

We model a distributed system as a collection of ob-
jects. An object has an identity, a type that defines its be-
havior, and a state; it is an instance of a class that defines
how it implements its type. Objects communicate by call-
ing one another’s methods (e.g., via RPC [26]); extending
the model to general message-passing is future work. A
portion of an object’s state may be persistent. A node may
fail at any point; when it node recovers, the object reini-
tializes itself from the persistent portion of its state.

To simplify the presentation, we assume each node runs
a single top-level object that responds to remote calls.
Thus, each node runs a top-level class—the class the top-
level object. Upgrades are limited to replacing top-level
classes: we upgrade entire nodes at once. The top-level
object may of course make use of other objects on its node
to respond to requests, and an upgrade will also contain
new code for these lower-level objects. We could extend

Figure 1: The structure of a node.

this model to allow multiple top-level objects per node, in
which case each could be upgraded independently.

An upgrade moves a system from one version to the
next by specifying a set of class upgrades, one for each
(top-level) class that is being replaced. The initial version
has version number one (1) and each subsequent version
has the succeeding version number.

A class upgrade has six components: 〈oldClass, new-
Class, TF, SF, pastSO, futureSO〉. OldClass identifies the
class that is now obsolete; newClass identifies the class
that is to replace it. TF identifies a transform function
that generates an initial persistent state for the new object
from the persistent state of the old one. SF identifies a
scheduling function that tells a node when it should up-
grade. PastSO and futureSO identify classes for simula-
tion objects that enable nodes to interoperate across ver-
sions. A futureSO object allows a node to support the new
class’s behavior before it upgrades; a pastSO object al-
lows a node to support the old class’s behavior after it
upgrades. These components can be omitted when not
needed.

The effect of an upgrade is (ultimately) to cause every
node running an object of an old class to instead run an
object of the new one. We could add filters to the model
that would determine some subset of nodes that need to
upgrade. Adding filters is enough to allow restructuring
a system in arbitrary ways. Of course it is also possible
(without using upgrades) to add new nodes to a system
and to initialize them to run either existing classes or en-
tirely new ones.

2.1 How an Upgrade Happens

Our system consists of an upgrade server, upgrade
database, and upgrades layers at the nodes. The upgrade
server provides a central repository of information about
upgrades, and the upgrade database (UDB) provides a
central store for information about the upgrade status of
nodes. Each node runs an upgrade layer (UL) that in-

2

stalls upgrades and handles cross-version calls; the UL
also maintains a local database in which it stores infor-
mation about the upgrade status of nodes with which this
node has communicated recently.

The structure of a node is shown in Figure 1. The
node’s current version identifies the most recently in-
stalled upgrade (or the initial version); the node’s current
object is an instance of its current class, which is the new
class of this upgrade. The node may also be running a
number of simulation objects: future SOs to simulate ver-
sions not yet installed at the node, and past SOs to simu-
late versions that are older than the current version.

Past and future SOs are typically implemented using
delegation: they call methods of the object for the next or
previous version, which may be the current object or an-
other SO. These calls all move toward the current object,
as shown in Figure 1.

A node’s UL labels outgoing calls with the version
number of the caller: calls made by the current object are
labeled with the node’s current version number, and calls
made by an SO are labeled with the SO’s version num-
ber. The UL dispatches incoming calls by looking at their
version number and sending them to the local object that
handles that version number.

Nodes learn about upgrades because they receive a
call from a node running a later version, through peri-
odic communication with the upgrade server, or via gos-
sip: nodes gossip with one another periodically about the
newest version and their own status, e.g., their current ver-
sion number and class.

When the UL learns of a newer version, it communi-
cates with the upgrade server to download a small upgrade
description. Then it checks whether upgrade affects it, i.e.,
whether the upgrade contains an old class that matches its
current class if it isn’t running any future SOs, or else the
class of its latest future SO. (A node might be several ver-
sions behind, but it can process the upgrades one-by-one.)
If the node is affected, the UL fetches the class upgrade
components that concern it and starts a future SO if nec-
essary, e.g., if the new type is a subtype of the old one.

Next, the upgrade layer invokes the class upgrade’s
scheduling function, which runs in parallel with the
node’s other processing. The scheduling function notifies
the UL when it is time to upgrade.

To upgrade, the UL restarts the node and runs the trans-
form function to convert the node’s persistent state to the
representation required by the new class. After this, the
UL does “normal” node recovery, during which it cre-
ates the current object and the SOs. Because SOs dele-
gate toward the current object, the UL must create them
in an order that allows this. First, it creates the current
object, which recovers from the newly-transformed per-
sistent state. Then it creates any past and future SOs as
needed, in order of their distance from the current object.

Finally, the upgrade layer notifies the upgrade database
that its node is running the new version.

When all nodes have moved to a new version, the pre-
vious version can be retired. Information about retirement
arrives in messages from the upgrade server. In response,
a UL discards past SOs for retired versions. This can be
done lazily, since keeping past SOs around does not affect
the behavior or performance of later versions.

3 Simulation

A key contribution of our approach is that we allow sim-
ulation so that nodes running different versions can nev-
ertheless interact. But for simulation to make sense, we
need to understand what it means.

Because of simulation, at a given time, a node may sup-
port multiple types. It implements its current type using
its current object; it simulates old types (of classes that it
upgraded from in the past) using past SOs and new types
(of classes that it will upgrade to in the future) using future
SOs. Some clients interact with the node via the current
object, while others interact with a simulation object. Yet
all these objects share a single identity and thus each call
needs to affect and be affected by the others. It’s straight-
forward to define these interactions when the old and new
class implement the same type, or one is a subtype of the
other, because in these cases the types already have a rela-
tionship that defines the meaning of the upgrade. Things
get interesting, however, when there is an incompatible
upgrade: when the two types are unrelated.

This section explains what it means to simulate cor-
rectly. We capture the effects of simulation for a particular
class upgrade by defining a specification for the upgrade;
the specification guides the design of the simulation ob-
jects and transform function. Our approach is modular:
all the upgrader needs to understand is the old and new
types for that upgrade.

Correct simulation must support reasoning about client
programs, not only when they call nodes that are running
their own version, but also when they call nodes that are
running newer or older versions, when they interact with
other clients that are using the same node via a differ-
ent version, and when the client itself upgrades and then
continues using a node it was using before it upgraded.
Furthermore upgrades of servers should be transparent to
clients: clients should not notice when a node upgrades
and changes its current type (except that more or fewer
calls may fail as discussed below). Essentially, we want
nodes to provide service that makes sense to clients, and
we want this service to make sense across upgrades of
nodes and clients.

We begin by defining some requirements that an up-
grade must satisfy. Clearly, we require:

3

Type Requirement The class for each version must im-
plement its type.

In particular, the class implementing a future SO must im-
plement the new type, and a class implementing the past
SO must implement the old one. This requirement ensures
that a client’s call behaves as expected by that client.

However, we also need to define the effects of inter-
leaving. Interleaving occurs when different clients run-
ning different versions interact with the same node, e.g.,

O1.m(args); O1.m(args); [version 2 introduced at server];
O1.m(args); O2.p(args); [server upgrades from 1 to 2];
O1.m(args); O2.p(args); [version 1 retired];
O2.p(args); O2.p(args);

where ON is the object with which version N clients inter-
act. Between the introduction of version 2 and the retire-
ment of version 1, there can be an arbitrary sequence of
calls to O1 and O2. If the server is supporting more than
two types, calls to objects of all supported types can be
interleaved. Although these calls can be running concur-
rently, we assume they occur one-at-a-time in some serial
order; we discuss concurrency in Section 4.3.

To define what happens with interleaving we require:

Sequence Requirement Each event in the computation
at a node must reflect the effects of all earlier events
in the computation in the order they occurred.

An event is a call, an upgrade, or the introduction of a
version.

This requirement means method calls to a current ob-
ject or SO must reflect the effects of calls made to the
others. If the method is an observer, its return value must
reflect all earlier modifications made via other objects; if
it is a mutator, its effects must reflect all earlier modifica-
tions made via other objects, and must be visible to later
calls made via other objects.

When the node upgrades and its current type changes,
observations made via any of the objects after the upgrade
must reflect the effects of all modifications made via any
object before the upgrade. For example, if a node is run-
ning several versions of a file system, modifications to a
file using one of the versions must be visible to clients us-
ing the others and must continue to be visible when the
node upgrades.

Together, the type and sequence requirements can be
overconstraining: it may not be possible to satisfy them
both for all possible computations. When this happens,
we resolve the problem by disallowing calls. The sys-
tem causes disallowed calls to fail (i.e., to throw a failure
exception). In essence, we meet the requirements above
by ruling out calls that would otherwise cause problems.
However, we require:

Disallow Constraint Calls to the current object must not
be disallowed.

In other words, we can only disallow calls to past and fu-
ture SOs. The rationale is that the current object provides
the “real behavior” of the node, so it should not be af-
fected by the node’s support for other versions. Another
point is that the code that implements the current object
need not be concerned with whether there are simulation
objects also running at its node, and therefore we simplify
the implementation that really matters.

Disallowing takes advantage of the fact that any RPC
can fail, e.g., because of network problems, so that clients
won’t be surprised by such a failure. We can disallow
whole methods, in which case any call to those methods
fail, or we can disallow at a finer granularity, e.g., based
on the arguments of a call.

3.1 Specifying Upgrades

Now we describe how to specify an upgrade involving
two unrelated types Tnew and Told. An upgrade specifi-
cation has three parts, an invariant, a mapping function,
and shadow methods.

The invariant, I(Oold,Onew), relates the old and new ob-
jects throughout the computation: assuming I(Oold,Onew)
holds when a method call on one of the objects starts,
I(Oold,Onew) also holds when the method returns. The
invariant must be total: for each legal state Onew of
Tnew, there exists some legal state Oold of Told such that
I(Oold,Onew) holds, and vice versa.

The invariant is likely to be obvious to the upgrader.
For example, if Oold and Onew are file systems, an obvi-
ous invariant is that the new and old file systems contain
the same files (although some file properties may differ).
However, weaker invariants can lead to fewer disallowed
methods (as discussed in Section 3.2).

The mapping function (MF) defines an initial state for
Onew given the state of Oold when Tnew is introduced. For
example, the MF from the old file system to the new one
would state that the new file system contains all the old
files; it would also define default values for any new file
properties. The MF must be total and must establish the
invariant: I(Oold,MF(Oold)) must hold.

I tells us something about what we expect from method
calls. In particular, it constrains the behavior of mutators.
For example, it wouldn’t be correct to add a file to Onew

but not to Oold. But I doesn’t tell us exactly what effect a
mutator on Onew should have on Oold, or vice versa. This
information is given by shadow methods.

For each mutator Told.m, we specify a related method,
Tnew.shadowTold$m (read as “the shadow of Told’s method
m”). The specification of Tnew.shadowTold$m explains
the effect on Onew of running Told.m. Similarly, for

4

each mutator Tnew.p, we specify a related method,
Told.shadowTnew$p, that explains the effect on Oold of run-
ning Tnew.p.

A shadow method must be able to run whenever the
corresponding real method can run. This means the pre-
condition for a shadow method must hold whenever the
precondition for the corresponding real method holds:

prem(Oold) ∧ I(Oold,Onew) ⇒ preshadowTold$m(Onew)

prep(Onew) ∧ I(Oold,Onew) ⇒ preshadowTnew$p(Oold)

Also, shadow methods must preserve the invariant:

I(Oold,Onew)⇒

I(Oold.m(args),Onew.shadowTold$m(args))

I(Oold,Onew)⇒

I(Oold.shadowTnew$p(args),Onew.p(args))

Given these constraints, we can prove that the invariant
holds throughout the computation of a node that imple-
ments the old and new types simultaneously. The proof
is by induction: the mapping function establishes the base
case (when the new type is introduced), and shadow meth-
ods give us the inductive step (on each mutation).

As an example, consider a upgrade that replaces a set of
colored integers with a set of flavored integers. This ex-
ample is analogous to an upgrade that changes a property
of files in a file system.

We begin by choosing an invariant I that we want to
hold for each ColorSet (Oold) and FlavorSet (Onew). We
could require that the two sets contain the same integers:

{ x | 〈x, c〉 ∈ Oold } = { x | 〈x, f 〉 ∈ Onew } (1)

A stronger invariant maps colors to flavors:

〈x, blue〉 ∈ Oold ⇔ 〈x, grape〉 ∈ Onew,

〈x, red〉 ∈ Oold ⇔ 〈x, cherry〉 ∈ Onew,

... (2)

Whereas (1) treats colors and flavors as independent prop-
erties, (2) says these properties are related. A weaker in-
variant allows Onew to contain more elements than Oold:

{ x | 〈x, c〉 ∈ Oold } ⊆ { x | 〈x, f 〉 ∈ Onew } (3)

The next step is to define a mapping function. For in-
variant (1), we might have:

Onew = MF(Oold) = { 〈x, grape〉 | x ∈ Oold } (4)

As required, this MF establishes I.
Here are possible definitions of the shadow methods,

assuming that both types have an insert method that adds
an element with a specified color or flavor, and a delete
method.

void ColorSet.shadowFlavorSet$insertFlavor(x, f)
effects: ¬∃ 〈x, c〉 ∈ thispre ⇒

thispost = thispre ∪ {〈x, blue〉}
void ColorSet.shadowFlavorSet$delete(x)

effects: thispost = thispre − {〈x, c〉}

void FlavorSet.shadowColorSet$insertColor(x, c)
effects: ¬∃ 〈x, f 〉 ∈ thispre ⇒

thispost = thispre ∪ {〈x, grape〉}
void FlavorSet.shadowColorSet$delete(x)

effects: thispost = thispre − {〈x, f 〉}

These definitions satisfy invariant (1). They do not work
for invariant (2) since in that case the shadows must pre-
serve the color-flavor mapping. Our original mapping
function and shadow methods would work for invari-
ant (3), but we could use weaker definitions, e.g., define
FlavorSet.shadowColorSet$delete to have no effect.

3.2 Disallowed Calls

There was no need to disallow any methods in the exam-
ple above. But sometimes disallowing is needed because
preserving the invariant I between two objects causes one
of them to violate its specification.

For example, consider an upgrade that replaces
GrowSet with IntSet; a GrowSet is like an IntSet except
that it never shrinks because it has no delete method. The
shadow of delete on a GrowSet object must remove the
deleted object, assuming the invariant that the two objects
have the same elements. Since GrowSet objects never
shrink, we must disallow the delete method in the fu-
ture SO for IntSet. However, once the node upgrades,
we can no longer disallow this method since the current
object is now an IntSet. Therefore the state of the past
SO for GrowSet can shrink. Since this does not match the
specification of GrowSet, we must disallow any GrowSet
methods that would expose the problem. Thus we would
need to disallow GrowSet.isIn.

The methodology for disallowing is as following:

• Provide shadows for all mutators of the old and new
types.

• The future SO must disallow any methods that would
cause violations of the specification of the old type.
Also if shadows of any old type methods violate the
specification of the new type, the future SO must dis-
allow methods that expose these violations.

• The past SO must disallow any methods that would
cause violations of the specification of the new type.
Also, if any shadows of the new type methods violate
the specification of the old type, the past SO must
disallow methods that expose these violations.

5

This notion of “exposing violations” has a different
meaning for past and future SOs, because a future SO
will eventually become the current object and at that point
all its methods will be allowed. These calls represent an-
other way of noticing a violation, and must be taken into
account when disallowing. For example, consider the re-
verse upgrade (from IntSet to GrowSet). The future SO
in this case must disallow both isIn and insert. It must
disallow insert because once the GrowSet becomes the
current object, calls of isIn will be allowed, and at that
point the absence of an object that had previously been
inserted into the GrowSet object would be noticed!

Weakening the invariant can reduce the need to disal-
low. For example, if we allowed the GrowSet object to
contain a superset of the elements of the IntSet object, we
would not need to disallow any methods in either the past
or future SO.

In general, the upgrader should choose the weakest in-
variant that makes sense for the two types in the upgrade,
in order to disallow as little as possible.

4 Simulation Objects

This section presents ways to use simulation objects to
implement multiple types. The approaches differ in how
calls are dispatched to objects (i.e., which objects imple-
ment which types) and how simulation objects can inter-
act with one another.

4.1 Interceptor Approach

In the interceptor approach, the simulation object for the
latest version handles all calls (it intercepts calls intended
for the earlier versions). The upgrade layer dispatches all
calls for any version to the newest future SO. That SO
handles all the calls, but it delegates to the preceding ob-
ject, which may be the current object or another SO.

When the node upgrades, it replaces its current object
and the future SO with an instance of the new class; this
instance becomes the current object of the node. The cur-
rent object continues to handle all calls intended for its
predecessor. There is no need for a past SO, because calls
made by clients running at the old version are handled by
the current object. Thus this approach has no past SOs.

The interceptor approach is simple and powerful, be-
cause a single object manages all the types of the node.
The approach works very well when the new type is a
subtype of the old one, because the new object is already
prepared to handle all calls to its predecessor; thus no ad-
ditional effort is required of the upgrader in this case. The
approach doesn’t work so well for incompatible upgrades
nor for upgrades where the the new type is a supertype
of the old one. The main problem is that the approach

forces continued support for legacy behavior. Supporting
legacy behavior for a short time, e.g., just in the future
SO for an incompatible upgrade, is acceptable. But us-
ing interceptors for a sequence of incompatible upgrades
means the upgrader must understand every type that the
node supports and the relationships between them. Thus
the approach can be highly non-modular, and in this case,
the likelihood that the interceptor code is correct declines.

4.2 Direct Approach

In the direct approach, calls for each version are dis-
patched directly to the object that implements the type for
that version. Each SO implements just its own type and
can delegate calls to the next object closer to the current
object: the next older object for future SOs, the next newer
object for past SOs. When an upgrade is installed, a past
SO for the old type is created if necessary (i.e., if the new
type isn’t a subtype of the old type).

The direct approach is modular because the upgrader
only needs to understand the old and new types of a class
upgrade; all earlier upgrades can be ignored, unlike in the
interceptor approach. But it has limited expressive power.
The most serious problem is that there is no way for an
SO to be informed about calls that go directly to its del-
egate, and as a result it can do the wrong thing. For ex-
ample, consider an SO that implements ColorSet by del-
egating to an object that implements IntSet. The dele-
gate stores the state of the set (the integers in the set),
and the SO stores the associated colors, which it updates
when it runs its own methods. However, consider the fol-
lowing sequence of calls (here O refers to the SO’s del-
egate): SO.insertColor(1, red); O.delete(1); O.insert(1);
SO.getColor(1). The result of the final call will be “red,”
because the SO cannot know that 1 was ever removed; but
because 1 was removed and re-inserted, its color should be
the default color, e.g., “blue”, as specified for the shadow
of IntSet.insert(x).

Since we cannot prevent the SO state from being stale,
our only recourse is to disallow SO methods (we cannot
disallow O.delete because of the disallow constraint). It
seems that we must disallow SO.getColor, since it is the
method that revealed the problem in our example, but in
fact we must disallow SO.insertColor because otherwise
we’ll be above to observe the problem when the upgrade is
installed (since at that point calls to the getColor will be
allowed). And disallowing SO.insertColor is sufficient;
we needn’t disallow SO.getColor in addition (because ev-
ery integer is blue).

4.3 Concurrency Control

So far we have assumed a node runs calls one-at-a-time.
But, a node may process many calls concurrently, and if

6

the UL imposes restrictions on concurrency, this could
lead to reduced performance or even deadlock. Therefore
we have no choice but to let the objects on a node—the
current object and simulation objects—implement syn-
chronization themselves.

Implementing synchronization is straightforward using
interceptors, because interceptors handle all calls that af-
fect their state and so can control the order in which they
are applied. But non-interceptors cannot control how calls
are applied to their delegates. For example, suppose the
current object implements a queue with methods enq and
deq, and the future SO implements a queue with an ad-
ditional method, deq2, that dequeues two consecutive
items. If the SO is an interceptor, it can implement deq2
by calling deq twice on the delegate and ensuring no other
deq calls are in progress. But a non-interceptor cannot do
this, because a client could call deq on the current object
in between the non-interceptor’s deq calls.

In a case like this, the delegate might provide some
form of application-level concurrency control such as a
lockdeq method that locks the queue on behalf of the
caller for any number of deq calls, but allows enq calls
from other clients to proceed. The non-interceptor can use
lockdeq to implement deq2 correctly. If the delegate does
not provide appropriate concurrency control methods, the
upgrader’s only choice is to disallow deq2.

4.4 Revisiting Interceptors

The interceptor approach has greater expressive power
than the direct approach: it provides full control over in-
terleaving and concurrency and so avoids the need to dis-
allow calls for these reasons. However, the interceptor
approach does not work well for incompatible upgrades,
as it requires the future SO to support legacy behavior.

However, in practice incompatible upgrades occur less
often than compatible ones. And if there is never more
than one incompatible upgrade in progress, we can pro-
vide an approach in which all SOs run as interceptors.

To get an all-interceptor approach, we must consider
both future SOs and past SOs.

When an incompatible upgrade is introduced, its future
SO can run as an interceptor assuming there is no other
incompatible upgrade in progress. Note that the upgrader
can easily define such an SO, since he knows about both
the old type (Told) and new type (Tnew).

But now one of two things can happen: another up-
grade is introduced, or the incompatible upgrade is in-
stalled. Consider first what happens when the next up-
grade is introduced, and let’s assume that this is a com-
patible upgrade, since incompatible upgrades are likely to
be rare; thus Tnewnew is a subtype of Tnew. We can run the
future SO for Tnewnew as an interceptor provided it handles
both its own type (Tnewnew) and the old type of the last in-

compatible upgrade (Told). Note that having the future SO
handle this extra behavior is not much of a burden either
for its specification or its implementation: it simply in-
herits shadow method specifications from Tnew, and it can
delegate calls on Told methods to the Tnew object.

Now let’s consider what happens when the incompat-
ible upgrade is installed. At this point, a past SO must
be provided for the old type, and to avoid having it disal-
low calls, we would like to run it as an interceptor. This
means that it must implement both its own type (Told) and
the new type (Tnew), though it can implement the latter by
delegating to the current object.

In this example, when a call intended for the current ob-
ject arrives, it goes first to the future SO for Tnewnew, then
to the past SO for Told, and finally to the current object.
Thus the future SO needs to continue to support Told even
though the incompatible upgrade has been installed.

This situation continues until the incompatible upgrade
is retired. At this point the past SO can be removed; the
future SOs will stop receiving any Told calls since this type
is no longer in use; and if a new incompatible upgrade is
introduced, its future SO can run as an interceptor.

Thus we can run entirely in interceptor mode, thereby
allowing full expressibility for SOs, provided incompati-
ble upgrades aren’t introduced too frequently. In partic-
ular, the previous incompatible upgrade must be retired
before the next one is introduced. We believe this is likely
to be the common situation in practice.

To write SOs in this all-interceptor approach, the up-
grader needs to be aware of the most recent incompati-
ble upgrade, though this may not be the immediately pre-
ceding version. However, we still satisfy our modularity
constraint, since there is a bound on what the upgrader
must know: to implement a new compatible upgrade, the
upgrader needs to know the old type of the most recent
incompatible upgrade, plus the old and new types of the
current upgrade.

If a second incompatible upgrade arrives too early we
can run the SOs for the new one using the direct ap-
proach (with disallowing) until the previous incompatible
upgrade retires, and we might speed up the scheduling of
the previous incompatible upgrade to retire it quickly. The
alternative would be to incorporate still more knowledge
(i.e., the upgrader must know the old types of multiple
incompatible upgrades), which is probably not desirable.

5 Transform Functions

A transform function (TF) reorganizes a node’s persistent
state from the representation required by the old instance
and future SO to that required by the new instance and
past SO. It must implement the identity mapping: the
post-TF abstract state of the past SO is the same as the

7

pre-TF state of the old object, and the post-TF abstract
state of the new object is the same as the pre-TF state of
the future SO. Thus, clients do not notice that the node has
upgraded, except that clients of the new type may see im-
proved performance and fewer rejected calls, and clients
of the old type may see decreased performance and more
rejected calls.

A TF must be restartable, because the node might fail
while the TF is running. If this happens, the upgrade in-
frastructure simply re-runs the TF, which must recover ap-
propriately.

A TF may not call methods on other nodes, because we
can make no guarantees about when one node upgrades
relative to another, so other nodes may not be able to han-
dle the calls a TF might make. If a node needs to recover
state from another node (e.g., in a replicated system), it
should transfer this state after it has completed the up-
grade, not during the TF. This helps avoid deadlocks that
may occur if nodes upgrading simultaneously attempt to
obtain state from each other. It also makes TFs simpler
to implement and reason about. This restriction does not
limit the expressive power of TFs: a transformation is
simply a node restart during which the node’s persistent
representation may change in arbitrary ways.

6 Scheduling Functions

Scheduling functions (SFs) allow an upgrader to control
upgrade progress. SFs run on the nodes themselves, so
they can consider the node’s state in deciding when to up-
grade. They can also consult additional information: a
central database that records the upgrade status of every
node and can contain user-defined tables, and per-node
local databases that record information about the status
of other nodes with which this node communicates regu-
larly. Each class upgrade has its own scheduling function,
which allows the upgrader to consider additional factors,
such as the urgency of the class upgrade and how well the
SOs for that class upgrade work.

When defining an SF, the first priority is to ensure that
all nodes eventually upgrade. We guarantee this trivially
by requiring that the upgrader specify a timeout for each
SF. The second priority is to minimize service disruption.
How this is accomplished depends on how the system
is designed. Consider the upgrade schedules described
in [9]: A rolling upgrade causes a few nodes to upgrade
at a time; this makes sense for replicated systems and can
be implemented by an SF that queries its local database
to decide when its node should upgrade. A big flip causes
half the nodes in a system to upgrade at once; this makes
sense for systems that need to upgrade quickly during off-
peak hours and can be implemented by an SF that flips
a coin to decide whether its node should be in the first

or second upgrade group. A fast reboot causes all nodes
to upgrade at once; this make sense when cross-version
simulation is poor and can be implemented by an SF that
causes its node to upgrade at a particular wall-clock time.
The implementations of these SFs are each just a few lines
of script.

By combining per-node and centralized information, a
variety of other schedules are possible, such as “wait un-
til the node’s servers upgrade,” “wait until all nodes of
class C upgrade,” “wait for the all clear signal,” “wait un-
til the node is lightly loaded,” and “avoid creating blind
spots in the sensor network.” A schedule can be chosen to
avoid implementing difficult SO features; the first sched-
ule above might be chosen for this reason.

7 Example

We present a brief example to illustrate our approach. Our
upgrade replaces a replicated file server that uses Unix-
style permissions with one that uses per-file access con-
trol lists (ACLs) [17]. It also switches clients from using
permissions to using ACLs. Thus, this upgrade contains
two class upgrades: one for clients and one for servers.

Scheduling is simple: the client SF waits until the client
is idle. The server SF upgrades replicas round-robin.

Each file in the old system has read, write, and exe-
cute bits for its owner, its group, and everyone else (the
“world”). Thus, the old state (Oold) is a set of tuples:
〈filename, content, owner, or, ow, ox, group, gr, gw, gx,
wr, ww, wx〉. Only the owner of a file can modify the file’s
permissions, group, or owner. The new state (Onew) is a set
of 〈filename, content, acl〉 tuples, where acl is a sequence
of zero or more 〈principal, r, w, x, a〉 tuples. Principals
with the a permission are allowed to modify the ACL.

Now we can define an invariant I(Oold, Onew):

〈filename, content, owner, or, ow, ox,
group, gr, gw, gx,
wr, ww, wx〉 ∈ Oold

⇔ (〈filename, content, acl〉 ∈ Onew

∧ (〈owner, or, ow, ox, “true”〉 ∈ acl
∨ (owner = “nobody” ∧ ¬ or ∧ ¬ ow ∧ ¬ ox))

∧ (〈group, gr, gw, gx, “false”〉 ∈ acl
∨ (group = “nobody” ∧ ¬ gr ∧ ¬ gw ∧ ¬ gx))

∧ (〈“system:world”, wr, ww, wx, “false”〉 ∈ acl
∨ (¬ wr ∧ ¬ ww ∧ ¬ wx))

This says that each file in Oold is in Onew with the same
contents, and either the owner of the file in Oold appears in
the ACL in Onew with the same permissions plus the ACL-
modify permission, or the owner is the special user “no-
body” and the owner permissions are all false, and sim-
ilarly for the group and world permissions (except these
have no ACL-modify permission). We need the “nobody”

8

case so that I is total, i.e., so there is a defined state of
Oold for each state of Onew, and vice versa (in particu-
lar, consider the case when the ACL is empty). Clearly
other invariants are possible, e.g., to select the default per-
missions differently. The invariant above is a particularly
weak (i.e., permissive) one.

The mapping function for this upgrade states that each
file in Onew has the same contents as in Oold and an ACL
containing the owner, group, and world permissions from
Oold. The initial ACL grants ACL-modify permissions
only to the owner.

The shadow methods must preserve I: when a client
modifies a file in Oold, that file is also modified in Onew,
and vice versa. Furthermore, the file system must only
allow file operations that are consistent with the file’s per-
missions (in the old system) or ACL (in the new system).
But consistency is a problem, since ACLs are more ex-
pressive than permissions.

Let’s consider the case of the future SO first. If the
future SO allows modifications of ACLs, then clients of
the permissions system may see modifications made by
clients of the new system that do not appear to have the
correct permissions. To prevent this, we might disallow
such operations in the future SO, but of course we cannot
disallow them once the server has upgraded; at this point,
users of the permissions system will observe odd behav-
ior, unless we refuse to allow them to do anything at all.
For example, an owner in the ACL system might add as a
second owner a client of the permissions system, and then
later remove that client as an owner.

Clearly we don’t want to prevent users of the permis-
sions system access to files. Furthermore, file systems
don’t guarantee that owners are in complete control, since
the superuser can change anything: the specification of a
file system does not rule out the kinds of odd behavior
discussed above.

Therefore our solution is to allow all methods in both
the past and future SO. The shadow methods spell out the
details; for example, a modification to the ACL may cause
the corresponding permissions to change.

Now let’s consider how to implement the past and fu-
ture SOs. Implementing the past SO is easy: it just needs
to present the permissions corresponding to the ACLs in
Onew and map any permissions modifications to the appro-
priate ACL modifications.

The implementation of the future SO is trickier. If it
allows ACL mutations without restrictions it must keep
track of all the entries in each ACL, not just the ones that
map to permissions in Oold (Onew may be more permissive
than Oold because of these extra ACL entries). Further-
more, it would need to run with superuser privileges in
order to support the behavior in the ACL, which may be
undesirable. Therefore the upgrader might choose to dis-

allow the creation of ACLs via the future SO that have
entries with no corresponding permissions in Oold.

The TF must produce the state of Onew (files and ACLs)
from that of Oold (files and permissions) and the future SO
(if it has state). We discuss an implementation of this TF
in Section 9.2.

While this example seems simple initially, on closer in-
spection it has several subtleties. Such subtleties are com-
mon in real systems; the purpose of our methodology is to
help upgraders design correct upgrades nonetheless.

8 Evaluation

This section evaluates Upstart, our upgrade infrastructure.
Upstart implements the upgrade server as an Apache

web server. The upgrade server stores upgrade descrip-
tions and code for upgrades. The upgrade descriptions are
small; they identify the new code using URLs. To reduce
load on the upgrade server, we use the Coral content dis-
tribution network [13] to cache and serve the code.

The upgrade database (UDB) is implemented as a Post-
Gres database that resides on the upgrade server. Nodes
append new records to the UDB periodically but do not
write to the UDB directly, as this would cause too much
contention in a large system. Instead, nodes send their
header over UDP to a udb logger process that in turn in-
serts records in the UDB. Under heavy load, some headers
may be lost; but this is okay, as they will be resent later.

The upgrade layer runs on each node, in a separate pro-
cess from the application. This separation is important: if
the application has a bug (e.g, that causes it to loop for-
ever), the upgrade layer must be able to make progress
so that it can download and install code that fixes the
bug. The UL fetches upgrades from the upgrade server,
runs the SF (in a separate process), runs SOs, installs up-
grades, and writes status information to the UDB. Once
a minute, the UL piggybacks headers on the messages it
sends to other nodes it has communicated with lately to
inform them of its status. Each UL maintains status in-
formation in a local PostGres database (LDB); scheduling
functions can query the LDB to make scheduling deci-
sions. To avoid writing to the LDB on the critical path,
the UL passes headers to a local udb logger process.

The UL is implemented as a TESLA handler [23].
TESLA is a dynamic interposition library that intercepts
socket, read, and write calls made by an application
and redirects them to handler objects. When the appli-
cation creates a new socket, TESLA creates an instance
of the UL handler. When the application writes data to
the socket or when data arrives on that socket from the
network, TESLA notifies the UL via method calls. Since
TESLA is transparent to the application, the application
can listen on its usual port and communicate normally,

9

which is important for applications that exchange their
network address with other nodes, such as peer-to-peer
systems.

To minimize communication overhead, we implement
the UL and SOs in event-driven C++. To reduce the im-
plementation burden on the upgrader, we provide code-
generation tools that simplify the process of implement-
ing SOs for systems that use Sun RPC [26]. Providing
support for other kinds of systems is straightforward and
requires no changes to the upgrade infrastructure.

8.1 Experiments

The most important performance issue is the overhead im-
posed by the upgrade layer, both when no upgrades are
happening, and when running simulation objects. This
section presents experiments that measure these over-
heads and show them to be reasonable. We ran the ex-
periments with the client and server on the same machine
(connected over the loopback interface) and on separate
machines (connected by a crossover cable). Each machine
is a Dell PowerEdge 650 with four 3.06 GHz Intel CPUs,
512 KB cache, 2 GB RAM, and an Intel PRO/1000 giga-
bit ethernet card. We also ran experiments on the Internet;
we do not report the results here, as the latency and band-
width constraints of the network dwarf the overhead of the
upgrade infrastructure.

In each experiment we ran a benchmark and compared
its baseline performance with the costs imposed by our
system. In the graphs, Baseline measures the perfor-
mance of the benchmark alone. TESLA measures the
performance of the benchmark running with the TESLA
“dummy” handler on all nodes; it adds the overhead for
interposing between the benchmark and the socket layer,
context switching between the benchmark and the TESLA
process, and copying data between the benchmark to the
TESLA process. Upstart measures the performance of the
benchmark running with the upgrade layer on all nodes;
it adds the overhead for adding/removing version num-
bers on messages and bookkeeping in the proxy object. In
our experiments, we disabled upgrade server polling and
periodic header exchanges. In our prototype, prepend-
ing a version number to a message requires copying the
message to a new buffer; so each RPC incurs two ex-
tra copies. These copies could be avoided by extending
TESLA to support scatter-gather I/O. Finally, With SO
measures the performance of the benchmark with a null
SO on the server, i.e., an SO that just delegates; it adds the
overhead of dispatching calls through the SO, unmarshal-
ing data from the network into RPCs, and remarshaling
RPCs to pass them to the benchmark.

Figure 2 shows the cumulative distribution function
(CDF) for null RPC latencies over the loopback inter-
face. In this experiment, a client issues empty RPCs to

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
D

F

RPC latency (ms)

Baseline
TESLA
Upstart

With SO

Figure 2: Null RPCs over the loopback interface (N=100000)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

RPC latency (ms)

Baseline
TESLA
Upstart

Figure 3: Null RPCs over a gigabit ethernet crossover cable
(N=100000)

a server one-at-a-time using UDP. The Baseline median
latency is 51µs; TESLA, 139µs; Upstart, 206µs; and With
SO, 215µs. By instrumenting the code with timers, we
found that the time spent in the client and server ULs is
approximately equal, which is as expected since each side
sends and receives one message per RPC. Half the time
in the UL is spent in the proxy objects, and the other half
is spent adding and removing version numbers. The ex-
tended tail for With SO comes from delays due to down-
loading and installing the SO.

Figure 3 shows the CDFs for the latencies of null RPCs
over a crossover cable. The Baseline median latency is
382µs; TESLA, 382µs; Upstart, 388µs. We omit With SO,
as it provides no additional information in this case. The
CDFs stair-step at 125µs intervals; we believe this is due
to interrupt coalescing done by the gigabit ethernet card,
in which the card and/or driver delay interrupts so that
one interrupt can be used for multiple packets. We be-
lieve the reason 40% of Upstart’s messages have lower

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
D

F

Time to transfer 100 MB (s)

Baseline
TESLA
Upstart

Figure 4: 100 MB TCP transfer over a gigabit ethernet
crossover cable (N=100)

latency than Baseline is because of the difference in Up-
start’s messages’ processing time and size.

Figure 4 shows latencies for an experiment in which
a client transfers 100 MB of data to a server using TCP
(without RPCs) over a crossover cable. The median Base-
line throughput is 893 MB/s; TESLA, 891 MB/s; and Up-
start, 882 MB/s. The upgrade layer sees the 100 MB
transfer as 12,800 8 KB messages (8 KB is the block size
in the benchmark). The UL overhead is due to copying
these messages and adding/removing version numbers.

9 Usability

This section evaluates the usability of our approach by
considering how hard it is to implement upgrades. We
begin by discussing SOs, since this is where the upgrader
is likely to do the most work. Then we discuss our expe-
rience implementing upgrades.

9.1 Simulation Objects

This section discusses implementing SOs that run as inter-
ceptors, since this is the hardest and also the most likely
case (as discussed in Section 4.4).

Let’s consider compatible upgrades first. In this case
the future SO can delegate supertype methods calls to its
predecessor. But it may still need to do quite a bit of work
itself because sometimes the behavior added by the new
type is complex. For example, consider a document-ser-
ving system and an upgrade that adds the ability to trans-
late documents into new languages. The new version con-
tains code to implement translation and to keep a persis-
tent cache of translated documents as an optimization.

The future SO for this upgrade must also provide doc-
ument translation. However, since it is implemented in
conjunction with the new version, it can do translation by

using the new translation library. But how to store trans-
lations persistently? In this example, the best option is
probably to retain only a volatile cache. But if the new
state had to be persistent, one option is to use a simple but
perhaps inefficient approach, e.g., just log new informa-
tion in a file or a persistent store like BerkeleyDB [20].
The other (more efficient) option is to provide persistence
by using code provided in the new current object for this
purpose. Thus providing persistence isn’t difficult.

Of course, if the future SO has persistent storage, this
will affect the TF. The upgrader needs to keep this in mind,
and choose a persistent storage approach that is both easy
for the SO to use, and easy for the TF to interpret.

Now let’s consider incompatible SOs. A future SO
(or past SO) for an incompatible upgrade has to do two
things: implement the new behavior, and implement the
shadow methods. The former can be done exactly as dis-
cussed above, but implementing shadow methods is ad-
ditional work. For example, consider the permissions to
ACLs example discussed in Section 7, and suppose the fu-
ture SO for ACLs allows the setAcl method. Then it will
need to compute the effect of a setPerms call on the ACL,
and it will need to compute the effect of a setAcl call on
permissions and call the appropriate methods of the old
object to effect the proper modifications.

The main point is the following: The shadow methods
are the one place where the upgrader has extra work to do,
i.e., where the work can’t be done mostly by delegation.
And if shadow methods are hard to implement, the right
thing may be for the upgrader to disallow behavior; disal-
lowing methods to reduce the difficulty of implementing
an SO is always acceptable.

9.2 Experience

This section reports on our experience with upgrades.
Simulation Objects. We evaluated the difficulty of

writing simulation objects with an upgrade for a small ap-
plication called DocServer. This example is interesting
because there is new behavior, new persistent state, and
it is an incompatible upgrade. DocServer stores a persis-
tent mapping from names to documents, and makes the
mapping persistent by keeping it in a local database. The
upgrade allows clients to attach persistent comments to
documents. This upgrade is incompatible because the new
type no longer supports the getDoc method (the new type
only has getDocWithComments).

Since the new version introduces persistent comments,
the future SO must maintain this state. Our implementa-
tion keeps the state in a local database. The past SO is
trivial: it has no persistent state, and it implements get-
Doc by calling getDocWithComments and stripping out
the comments.

11

The transform function merges the name-document and
name-comment mappings into a single table that is used
by the new version of DocServer. Since the past SO has
no persistent state of it own, the TF need not do anything
for it.

The future SO implementation is 93 lines of C++, and
the past SO is 60 lines. In Python, the same two SOs are
32 lines and 12 lines, respectively. About half of each
C++ SO implementation is boilerplate code that could be
generated automatically.

Transform functions. To evaluate the difficulty of
writing transform functions, we implemented a TF that
adds an access control list to every file and directory in a
file system, as required by our example upgrade in Sec-
tion 7. This upgrade is interesting because it needs to
transform large amounts of state.

The ACL format is that of SFSACL [17]: the first 512
bytes of a file’s contents contain its ACL, which is a block
of text that starts with ACLBEGIN and ends with ACLEND.
Each line in between defines the permissions for a user or
group. The ACL for each directory is kept in a file called
.SFSACL in that directory.

The TF traverses the file system, adding ACLs to files
and directories along the way. The initial contents of a file
or directory’s ACL are derived from the Unix permissions
of that file or directory. The TF assumes no additional
ACL state is kept by the future SO; if there were such
state, the TF would need to obtain ACLs from it instead.

An ACL must be inserted at the beginning of each file.
To do this, the TF copies the file to a temporary location,
writes the file’s ACL to the file’s original location, then
appends the the file’s contents to the ACL. Thus, the ex-
ecution time of the TF is dominated by the time required
to copy each file’s contents twice.

We implemented this TF as a 162-line Python script.
The implementation was straightforward: it uses the
os.walk library function to traverse the file system, then
transforms each directory and file as it is encountered.

Scheduling functions. Scheduling functions are easy
to implement: they are typically small scripts that wait
for a particular time or for some query in the upgrade
database to be satisfied. Furthermore, it would be easy
to provide a library of common SFs so that usually up-
graders won’t need to implement their own.

Of course, we would like to know whether upgrade
schedules work in practice, especially in large systems. To
answer this question, we defined and ran a simple upgrade
on PlanetLab, a large research testbed [21]. Specifically,
we deployed DHash [11], a peer-to-peer storage system,
on 205 nodes and installed a null upgrade on it.

Defining the upgrade was straightforward: no TF or
SOs were required. The SF upgraded nodes gradually:
it flips a biased coin periodically and signals if the coin is
heads; we used a heads probability of 0.1 and a period of

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

fr
ac

tio
n

of
 r

ep
or

tin
g

no
de

s
th

at
 h

av
e

up
gr

ad
ed

time since upgrade installed (s)

Figure 5: Cumulative fraction of upgraded nodes on PlanetLab.

3 minutes between flips (this SF is implemented as a 6-
line Perl script). We set the time limit for the scheduling
function to 6000 seconds (100 minutes); by this time, we
expect 97% of nodes to have upgraded.1

The upgrade ran as expected, and the DHash network
remained functional throughout. Figure 5 depicts the frac-
tion of nodes upgraded over time. This experiment identi-
fied the need to have nodes retransmit their status period-
ically, as the UDB never received the post-upgrade status
update for 54 of the nodes! (These are omitted from the
graph.) In the future, we plan to re-run these experiments
to get the full upgrade trace.

We also ran an experiment to evaluate the effect of an
upgrade on DHash client performance. Here the system
consisted of four nodes, each running a DHash server; one
node also ran the DHash client. Before the upgrade began,
we stored 256 8KB data blocks in the system. The client
fetches the blocks one-at-a-time in a continuous loop and
logs the latency of each fetch. Figure 6 depicts the fetch
latencies over the course of the experiment.

The three non-client nodes upgrade round-robin, two
minutes apart. The TF causes an upgrading node to sleep
for one minute. Figure 6 reveals a stutter in client perfor-
mance when each node goes down, but the client fetches
resume well before each node recovers. The fetch perfor-
mance while one node is down is slightly less than when
all nodes are up.

The precise effect of an upgrade on clients depends
somewhat on the application. With better timeouts, for ex-
ample, the DHash client may see less stutter when nodes
fail. Furthermore, we expect the client to see very little
stutter in a larger system, as clients are less likely to need
to access a node that is upgrading. In the future, we plan
to run similar experiments with larger networks.

1P(node has upgraded after n seconds) = 1 − ((1 − p)n/s), where p is
the heads probability (0.1) and s is the seconds between flips (180).

12

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 3 4 5 6 7 8 9

B
lo

ck
 fe

tc
h

la
te

nc
y

(m
s)

Time (min)

^ Node 2 down
^ Node 2 up

^ Node 3 down
^ Node 3 up

^ Node 4 down
^ Node 4 up^ Upgrade installed

Figure 6: DHash block fetch performance during an upgrade.

10 Related Work

In earlier work, distributed upgrades were studied in sys-
tems with a wide variety of requirements, some similar,
some different from ours. We consider these requirements
and the techniques developed in the earlier systems.

The traditional approach in systems that can tolerate
downtime is to synchronize the software on a set of nodes
using package installers or centralized software manage-
ment systems; we do not discuss these further here.

Reconfigurable distributed systems [4, 6, 7, 16, 18, 22]
support the replacement of subsystems for specific dis-
tributed object systems, provided the new type imple-
mented by a subsystem is compatible with the old one.
These approaches stall when nodes in the subsystem fail.

Systems that must provide continuous service dur-
ing upgrades sometimes use custom schedules [9].
Google [10] upgrades entire data centers at once and pro-
vides service by redirecting clients to other data centers.
This approach only supports protocol changes within data
centers. Gnucleus [2], a peer-to-peer file-sharing system,
disseminates upgrades eagerly by gossip. There is no sup-
port for interaction between versions, so service may be
interrupted for incompatible upgrades.

Many systems support upgrades by requiring back-
wards compatibility. These systems are tiered, and nodes
in higher tiers upgrade before those in lower tiers; for ex-
ample, storage servers upgrade before application servers,
which in turn upgrade before front-end servers. Rolling
upgrades [9] are used to upgrade nodes within tiers.

Some systems support incompatible upgrades with im-
plementations that handle multiple versions at once, e.g.,
NFS servers implement both NFSv2 and NFSv3. There
is no barrier between these implementations, so one can
corrupt the other; SOs prevent this.

Many systems, e.g., Google and Gnutella [3], support
limited kinds of incompatible upgrades using extensible

protocols, consisting of a baseline protocol and a set of ex-
tensions that only some nodes handle. The problem here
is that nodes must function correctly with or without the
extensions, which complicates software design.

A few systems support cross-version interaction us-
ing wrappers: PODUS [14] supports asynchronous up-
grades to individual procedures in a (possibly distributed)
program, and The Eternal system [27] supports asyn-
chronous upgrades for replicated CORBA objects. But
these systems do not consider the correctness issues of
cross-version interoperation. Moreover, they use a weaker
implementation model than Upstart since they do not al-
low chaining of wrappers and therefore do not meet our
modularity requirement.

The closest approach to ours is Senivongse’s “evolution
transparency” approach [24], which uses chained map-
ping operators to support cross-version interoperation in a
modular way. However, this work does not provide a cor-
rectness model: it does not define what system behavior
clients can expect after they upgrade or when they com-
municate with clients running different versions.

Many of the correctness issues that arise in upgrad-
ing distributed systems also arise in schema evolution
for object-oriented databases, where one object calls the
methods of another, even though one of the objects has
upgraded to a new schema, but the other has not. Some
approaches transform the non-upgraded object just in time
for the method call [8], others [19, 25] use mixed mode:
they allow objects of different versions to interact. The
work on views in O2 [5] provides a comprehensive study
of how mutations made to one object type (a view type)
are reflected on another (the base type) and so has much
in common with our model for supporting multiple types
on a single node. However, whereas a database can use
schema information to detect correctness violations and
reject mutations dynamically, the SO implementor must
determine which calls to disallow statically.

Finally, we consider the state preservation requirement.
The goal of dynamic software updating [12, 15] is to en-
able a node to upgrade its code and transform its volatile
state without shutting down. These techniques require the
implementor to identify where in the program reconfigu-
ration can take place and are typically language-specific.
In contrast, our system uses a language-independent ap-
proach and only preserves persistent state. Nonetheless,
these approaches are complementary to ours and could be
used to reduce downtime during upgrades.

11 Conclusions

We have presented a new automatic upgrade system. Our
approach targets upgrades for large-scale, long-lived dis-
tributed systems that manage persistent state and need to

13

provide continuous service. We support very general up-
grades: the new version of the system may be incompat-
ible with the old. Such incompatible upgrades, while in-
frequent, are important for controlling software complex-
ity and bloat. We allow upgrades to be deployed auto-
matically, but under control: upgraders can define flexi-
ble upgrade scheduling policies. Furthermore, our system
supports mixed mode operation in which nodes running
different versions can nevertheless interoperate.

In addition, we have defined a methodology for up-
grades that takes mixed mode operation into account. Our
methodology defines requirements for upgrades in sys-
tems running in mixed mode and provides a way to spec-
ify upgrades that enables reasoning about whether the re-
quirements are satisfied. Our specification techniques are
modular: only the old and new versions of the upgrade
must be considered.

We also presented a powerful implementation approach
(running SOs as interceptors) that allows all behavior per-
mitted by the upgrade specification to be implemented.
Our approach here is also modular, although we extended
what the upgrader needed to know to include in addition
the old version of the previous unretired incompatible up-
grade. Our approach allows the upgrader to define how
long legacy behavior must be supported, by defining the
deployment schedule for the incompatible upgrade.

We have implemented a prototype infrastructure called
Upstart and shown that it imposes modest overhead. We
have also evaluated the usability of our system by imple-
menting a number of examples. The most challenging
problem is defining SOs, but they can mostly be imple-
mented by a combination of delegation and use of code
that will be in the new version provided by the upgrade.

References
[1] Anonymized.

[2] The Gnucleus open-source Gnutella client. http://www.
gnucleus.com/Gnucleus/.

[3] The Gnutella file sharing protocol, 2000. http://

rfc-gnutella.sourceforge.net.

[4] Joao Paulo A. Almeida, Maarten Wegdam, Marten van
Sinderen, and Lambert Nieuwenhuis. Transparent dy-
namic reconfiguration for CORBA, 2001.

[5] S. Amer-Yahia, P. Breche, and C. Souza. Object views and
updates. In Journes Bases de Donnes Avances, 1996.

[6] C. Bidan, V. Issarny, T. Saridakis, and A. Zarras. A dy-
namic reconfiguration service for CORBA. In ICCDS,
pages 35–42, Annapolis, MD, May 1998.

[7] Toby Bloom. Dynamic Module Replacement in a Dis-
tributed Programming System. PhD thesis, MIT, 1983.

[8] Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira,
Chuang-Hue Moh, and Steven Richman. Lazy modular
upgrades in persistent object stores. In OOPSLA, 2003.

[9] Eric A. Brewer. Lessons from giant-scale services. IEEE
Internet Computing, July 2001.

[10] Sergey Brin and Lawrence Page. The anatomy of a large-
scale hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[11] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica. Wide-area cooperative storage with
CFS. In SOSP, October 2001.

[12] R. S. Fabry. How to design systems in which modules can
be changed on the fly. In ICSE, 1976.

[13] Michael J. Freedman, Eric Freudenthal, and David
Mazires. Democratizing content publication with Coral.
In NSDI, San Francisco, CA, March 2004.

[14] Ophir Frieder and Mark E. Segal. On dynamically updat-
ing a computer program: From concept to prototype. Jour-
nal of Systems and Software, pages 111–128, 1991.

[15] Michael W. Hicks, Jonathan T. Moore, and Scott Nettles.
Dynamic software updating. In PLDI, pages 13–23, 2001.

[16] Christine R. Hofmeister and James M. Purtilo. A frame-
work for dynamic reconfiguration of distributed programs.
Technical Report CS-TR-3119, University of Maryland,
College Park, 1993.

[17] Michael Kaminsky, George Savvides, David Mazières, and
M. Frans Kaashoek. Decentralized user authentication in a
global file system. In SOSP, pages 60–73, October 2003.

[18] J. Kramer and J. Magee. The Evolving Philosophers Prob-
lem: Dynamic change management. IEEE Transactions on
Software Engineering, 16(11):1293–1306, 1990.

[19] Simon Monk and Ian Sommerville. A model for version-
ing of classes in object-oriented databases. In BNCOD 10,
pages 42–58, Aberdeen, 1992.

[20] Michael A. Olson, Keith Bostic, and Margo Seltzer. Berke-
ley DB. In USENIX, 1999.

[21] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A
blueprint for introducing disruptive technology into the In-
ternet. In HotNets I, October 2002.

[22] Tobias Ritzau and Jesper Andersson. Dynamic deployment
of Java applications. In Java for Embedded Systems Work-
shop, London, May 2000.

[23] Jon Salz, Alex C. Snoeren, and Hari Balakrishnan.
TESLA: A transparent, extensible session-layer architec-
ture for end-to-end network services. In USITS, 2003.

[24] Twittie Senivongse. Enabling flexible cross-version inter-
operability for distributed services. In DOA, 1999.

[25] Andrea H. Skarra and Staney B. Zdonik. The management
of changing types in an object-oriented database. In OOP-
SLA, pages 483–495, 1986.

[26] R. Srinivasan. RPC: Remote procedure call specification
version 2. RFC 1831, Network Working Group, 1995.

[27] L. A. Tewksbury, L. E. Moser, and P. M. Melliar-Smith.
Live upgrades of CORBA applications using object repli-
cation. In ICSM, pages 488–497, November 2001.

14

