
On Field Constraint Analysis

Thomas Wies1, Viktor Kuncak2,
Patrick Lam2, Andreas Podelski1, and Martin Rinard2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{wies,podelski }@mpi-inf.mpg.de

2 MIT Computer Science and Artificial Intelligence Lab, Cambridge, USA
{vkuncak,plam,rinard }@csail.mit.edu

Abstract. We introducefield constraint analysis, a new technique for verifying data struc-
ture invariants. A field constraint for a field is a formula specifying a set of objects to which
the field can point. Field constraints enable the application of decidable logics to data struc-
tures which were originally beyond the scope of these logics, by verifying the backbone
of the data structure and then verifying constraints on fields that cross-cut the backbone in
arbitrary ways. Previously, such cross-cutting fields could only be verified when they were
uniquely determined by the backbone, which significantly limited the range of analyzable
data structures.
Our field constraint analysis permitsnon-deterministicfield constraints on cross-cutting
fields, which allows to verify invariants of data structuressuch as skip lists. Non-deterministic
field constraints also enable the verification of invariantsbetween data structures, yielding
an expressive generalization of static type declarations.
The generality of our field constraints requires new techniques, which are orthogonal to the
traditional use of structure simulation. We present one such technique and prove its sound-
ness. We have implemented this technique as part of a symbolic shape analysis deployed
in the context of the Hob system for verifying data structureconsistency. Using this imple-
mentation we were able to verify data structures that were previously beyond the reach of
similar techniques.

1 Introduction

The goal of shape analysis [29, Chapter 4], [2, 4–6, 24, 27, 28, 35] is to verify com-
plex consistency properties of linked data structures. Theverification of such proper-
ties is important in itself, because the correct execution of the program often requires
data structure consistency. In addition, the information computed by shape analysis is
important for verifying other program properties in programs with dynamic memory
allocation.

Shape analyses based on expressive decidable logics [12, 14, 28] are interesting for
several reasons. First, the correctness of such analyses iseasier to establish than for
approaches based on ad-hoc representations; the use of a decidable logic separates the
problem of generating constraints that imply program properties from the problem of
solving these constraints. Next, such analyses can be used in the context of assume-
guarantee reasoning because logics provide a language for specifying the behaviors of
code fragments. Finally, the decidability of logics leads to completeness properties for
these analyses, eliminating false alarms and making the analyses easier to interact with.
We were able to confirm these observations in the context of Hob system [16, 22] for
analyzing data structure consistency, where we have integrated one such tool [28] with
other analyses, allowing us to use shape analysis in the context of larger programs: in
particular, Hob enabled us to leverage the power of shape analysis, while avoiding the

associated performance penalty, by applying shape analysis only to those parts of the
program where its extreme precision is necessary.

Our experience with such analyses has also taught us that some of the techniques
that make these analyses predictable also make them inapplicable to many useful data
structures. Among the most striking examples is the restriction on pointer fields in the
Pointer Assertion Logic Engine [28]. This restriction states that all fields of the data
structure that are not part of the data structure’s tree backbone must be functionally
determined by the backbone; that is, such fields must be specified by a formula that
uniquely determines where they point to. Formally, we have

∀x y. f(x)=y ↔ F (x, y) (1)

wheref is a function representing the field, andF is the defining formula forf . The re-
striction thatF is functional means that, although data structures such as doubly linked
lists with backward pointers can be verified, many other datastructures remain beyond
the scope of the analysis. This includes data structures where the exact value of pointer
fields depends on the history of data structure operations, and data structures that use
randomness to achieve good average-case performance, suchas skip lists [33]. In such
cases, the invariant on the pointer field does not uniquely determine where the field
points to, but merely gives a constraint on the field, of the form

∀x y. f(x)=y → F (x, y) (2)

This constraint is equivalent to∀x. F (x, f(x)), which states that the functionf is a
solution of a given binary predicate. The motivation for this paper is to find a technique
that supports reasoning about constraints of this, more general, form. In a search for
existing approaches, we have considered structure simulation [9,11], which, intuitively,
allows richer logics to be embedded into existing logics that are known to be decidable,
and of which [28] can be viewed as a specific instance. Unfortunately, even the general
structure simulation requires definitions of the form∀x y. r(x, y) ↔ F (x, y) where
r(x, y) is the relation being simulated. When the relationr(x, y) is a function, which
is the case with most reference fields in programming languages, structure simulation
implies the same restriction on the functionality of the defining relation. To handle the
general case, an alternative approach therefore appears tobe necessary.

Field constraint analysis. This paper presents field constraint analysis, our approach
for analyzing fields with general constraints of the form (2). Field constraint analysis is
a proper generalization of the existing approach and reduces to it when the constraint
formula F is functional. It is based on approximating the occurrencesof f with F ,
taking into account the polarity off , and is always sound. It is expressive enough to
verify constraints on pointers in data structures such as two-level skip lists. The appli-
cability of our field constraint analysis to non-deterministic field constraints is impor-
tant because many complex properties have useful non-deterministic approximations.
Yet despite this fundamentally approximate nature of field constraints, we were able to
prove its completeness for some important special cases. Field constraint analysis natu-
rally combines with structure simulation, as well as with a symbolic approach to shape
analysis [32,36]. Our presentation and current implementation are in the context of the

2

monadic second-order logic (MSOL) of trees [13], but our results extend to other log-
ics. We therefore view field constraint analysis as a useful component of shape analysis
approaches that makes shape analysis applicable to a wider range of data structures.

Contributions. This paper makes the following contributions:
– We introduce analgorithm (Figure 12) that uses field constraints to eliminate de-

rived fields from verification conditions.
– We prove that the algorithm is bothsound(Theorem 1) and, in certain cases,com-

plete. The completeness applies not only to deterministic fields (Theorem 2), but
also to the preservation of field constraints themselves over loop-free code (The-
orem 3). The last result implies a complete technique for checking that field con-
straints hold, if the programmer adheres to a discipline of maintaining them e.g. at
the beginning of each loop.

– We describe how to combine our algorithm with symbolic shapeanalysis [36] to
infer loop invariants .

– We describe animplementation and experience in the context of the Hob system
for verifying data structure consistency.

The implementation of field constraint analysis as part of the Hob system [16,22] allows
us to apply the analysis to modules of larger applications, with other modules analyzed
by more scalable analyses, such as typestate analysis [21].

2 Examples
We next explain our field constraint analysis with a set of examples. The doubly-linked
list example shows that our analysis handles, as a special case, the ubiquitous back
pointers of data structures. The skip list example shows howfield constraint analy-
sis handles non-deterministic field constraints on derivedfields, and how it can infer
loop invariants. Finally, the students example illustrates inter-data-structure constraints,
which are simple but useful for high-level application properties.

2.1 Doubly-Linked List with an Iterator

This section presents a doubly-linked list with a built-in iterator. It illustrates the use-
fulness of field constraints for specifying pointers that form doubly-linked structures,
and introduces the language we use for writing implementations and specifications in
the Hob system [22,23].
impl module DLLIter {

format Entry { next : Entry; prev : Entry; }

var root, current : Entry;
proc remove(n : Entry) {

if (n==current) { current = current.next; }
if (n==root) { root = root.next; }
if (n.prev != null) { n.prev.next = n.next; }
if (n.next != null) { n.next.prev = n.prev; }
n.next = null; n.prev = null;

}
}

Fig. 1. Iterable list implementation section, containing standard imperative code

Our doubly-linked list implementation is a global data structure with operations
add andremove that insert and remove elements from the list, as well as the opera-

3

tions initIter , nextIter , andlastIter for manipulating the iterator built into
the list. We have verified all these operations using our system; we here present only
the remove operation. Our list data structure is implemented in the form of a Hob
module. A module consists of an implementation section, which suffices to execute the
module (Figure 1), a specification section, which suffices for abstract reasoning about
the behavior of the module (Figures 2), and an abstraction section, which connects im-
plementations and specifications by defining the abstraction function and representation
invariants (Figure 3). As Figure 1 shows, we implement the doubly-linked list with two
private fields,next andprev that apply to type (format)Entry , the privateroot
variable of the doubly-linked list, and the privatecurrent variable that indicates the
position of the iterator in the list. The specification section in Figure 2 specifies the
behavior of the operationremove using two sets:Content , which contains the set
of elements in the list, andIter , which specifies the set of elements that remain to
be iterated over. These two sets abstractly characterize the behavior of operations, al-
lowing the clients to soundly reason about the hidden implementation of the list. This
reasoning is sound because our analysis verifies that the implementation conforms to
the specification, using the definitions of setsContent andIter in Figure 3. These
definitions are expressed in a subset of Isabelle [31] formulas that can be translated into
monadic second-order logic [13]. The module definesContent as the set of all ob-
jects reachable fromroot andIter as the set of all objects reachable fromcurrent .
Functionrtrancl is a higher-order function that accepts a binary predicate on objects
and returns the reflexive transitive closure of this predicate. The abstraction section in
Figure 3 also contains module representation invariants; our system ensures that these
invariants are maintained by each operation in the module. The first invariant is a global
invariant saying that nonext fields point to the root of the list. The second invariant is
recognized by our analysis as a field constraint on the fieldprev . This invariant indi-
cates to the system thatprev is a derived field. Thenext field has no field constraints,
so our system treats it as a backbone field.
spec module DLLIter {

format Entry;
specvar Content, Iter : Entry set;

invariant Iter in Content;

proc remove(n : Entry)
requires card(n)=1 & (n in Content);
modifies Content, Iter
ensures (Content’ = Content - n) &

(Iter’ = Iter - n);
}

Fig. 2. Iterable list specification section, containing procedureinterfaces

Our system verifies that theremove procedure implementation in Figure 1 con-
forms to its procedure contract in Figure 2 as follows. The system expands the modifies
clause into a frame condition, which it conjoins with the ensures clause. Next, it con-
joins the public set-based invariantIter ⊆ Content to both the requires and ensures
clause. The resulting pre- and postcondition are expressedin terms of the setsContent
andIter , so the system applies the definitions of the sets in Figure 3 to obtain pre and
postcondition expressed in terms ofnext andprev , and conjoins the first invariant

4

from Figure 3 to both pre and postcondition. It then uses standard weakest precondi-
tion computation [1] to generate a verification condition that captures the correctness of
remove .

To decide the resulting verification condition, our system treats the field constraint
invariant specially: it exploits the fact thatnext is a backbone field andprev is a field
given by a field constraint to reduce the verification condition to one expressible using
only thenext field. (This elimination is given by the algorithm in Figure 12.) Because
next fields form a tree, the system can decide the verification condition using monadic
second-order logic on trees [13]. To ensure the soundness ofthis approach, the system
also verifies that the structure remains a tree after each operation.

We note that our first implementation of the doubly-linked list with an iterator was
verified using a Hob plugin [20] that relies on Pointer Assertion Logic Engine tool
[28]. While verifying the initial version of the list module, we discovered an error in
remove : the first line ofremove procedure in Figure 1 was not present, resulting in
violation of the specification ofremove in the special case when the element being
removed is the next element to iterate over. What distinguishes our system from the
previous Hob analysis based on PALE is the ability to handle the cases where the field
constraints are non-deterministic. We illustrate such cases in the examples that follow.
Additionally, we show how our new analysis synthesizes loopinvariants using symbolic
shape analysis [36].
abst module DLLIter {

use plugin "Bohne decaf";

Content = {x : Node | "rtrancl (% v1 v2 . next v1 = v2) root x"};
Iter = {x : Node | "rtrancl (% v1 v2 . next v1 = v2) current x"};

invariant "ALL x . root ˜= null --> next x ˜= root";
invariant "ALL x y. prev x = y -->

(x = root --> y = null) &
(x ˜= root & (rtrancl (% v1 v2. next v1 = v2) root x)) --> next y = x ";

}

Fig. 3. Iterable list abstraction section, containing abstraction function and invariants

2.2 Skip List

We next present the analysis of a two-level skip list. Skip lists [33] support logarithmic
average-time access to elements by augmenting a linked listwith sublists that skip over
some of the elements in the list. The two-level skip list is a simplified implementation
of a skip list, which has only two levels: the list containingall elements, and a sublist of
this list. Figure 4 presents an example two-level skip list.Our implementation uses the
next field to represent the main list, which forms the backbone of the data structure,
and uses the derivednextSub field to represent a sublist of the main list. We focus
on theadd procedure, which inserts an element into an appropriate position in the
skip list. Figure 5 presents the implementation ofadd , which first searches through
nextSub links to get an estimate of the position of the entry, then finds the entry by
searching throughnext links, and inserts the element into the mainnext -linked list.
Optionally, the procedure also inserts the element intonextSub list, which is modelled
using a non-deterministic choice in our language and is an abstraction of the insertion
with certain probability in the original implementation. Figure 6 presents a specification

5

for add , which indicates thatadd always inserts the element into the set of elements
stored in the list. Figure 7 presents the abstraction section for the two-level skip list.
This section defines the abstract setS as the set of nodes reachable fromroot.next ,
indicating thatroot is used as a header node. The abstraction section contains three
invariants. The first invariant is the field constraint on thefield nextSub , which defines
it as a derived field.

Note that the constraint for this derived field is non-deterministic, because it only
states that ifx.nextSub==y , then there exists a path of length at least one fromx to
y alongnext fields, without indicating wherenextSub points. Indeed, the simplicity
of the skip list implementation stems from the fact that the position of nextSub is
not uniquely given bynext ; it depends not only on the history of invocations, but
also on the random number generator used to decide when to introduce newnextSub
links. The ability to support such non-deterministic constraints is what distinguishes
our approach from approaches that can only handle deterministic fields.

The last two invariants indicate thatroot is never null (assuming, for simplicity of
the example, that the state is initialized), and that all objects not reachable fromroot
are isolated: they have no incoming or outgoingnext pointers. These two invariants
allow the analysis to conclude that the object referenced bye in add(e) is not refer-
enced by any node, which, together with the preconditionnot(e in S) , allows our
analysis to prove that objects remain in an acyclic list along thenext field.3

Our analysis successfully verifies thatadd preserves all invariants, including the
non-deterministic field constraint onnextSub . While doing so, the analysis takes ad-
vantage of these invariants as well, as is usual in assume/guarantee reasoning. In this
example, the analysis is able to infer the loop invariants inadd . The analysis constructs
these loop invariants as disjunctions of universally quantified boolean combinations of
the unary predicates that correspond to the sets of elementssupplied foradd in the
abstraction section, using symbolic shape analysis [32,36].

2.3 Students and Schools

Our next example illustrates the power of non-deterministic field constraints. This ex-
ample contains two linked lists: one containing students and one containing schools.
EachElem object may represent either a student or a school; students have a pointer to
the school which they attend. Both students and schools use thenext backbone pointer
to indicate the next student or school in the relevant linkedlist.

Figures 8 and 10 present the interface and implementation ofour students example.
TheaddStudent procedure adds a student to the student list and associates it with a
school that is supposed to be already contained in the schooldata structure. The proce-
dure may assume that the relevant data structure invariants(described below) hold upon
entry, but must guarantee that they hold upon exit, if the stated postcondition is to make
any sense at all.

Figure 9 presents the abstraction section for our module.ST denotes all students,
that is, allElem objects reachable from the rootstudents reference throughnext

3 The analysis still needs to know thate is not identical to the header node. In this example we have used an
explicit (assume "e 6= root") statement to supply this information. Such assume statements can
be automatically generated if the developer specifies the set of representation objects of a data structure,
but this is orthogonal to field constraint analysis itself.

6

root
next next next next next

nextSub
nextSub

Fig. 4.An instance of a two-level skip list
impl module Skiplist {

format Entry {
v : int;
next, nextSub : Entry;

}
var root : Entry;

proc add(e:Entry) {
assume "e ˜= root";
int v = e.v;
Entry sprev = root, scurrent = root.nextSub;
while ((scurrent != null) && (scurrent.v < v)) {

sprev = scurrent; scurrent = scurrent.nextSub;
}
Entry prev = sprev, current = sprev.next;
while ((current != scurrent) && (current.v < v)) {

prev = current; current = current.next;
}
e.next = current; prev.next = e;
choice { sprev.nextSub = e; e.nextSub = scurrent; }

| { e.nextSub = null; }
}

Fig. 5.Skip list implementation
spec module Skiplist {

format Entry;
specvar S : Entry set;

proc add(e:Entry)
requires card(e) = 1 & not (e in S)
modifies S
ensures S’ = S + e’;

}

Fig. 6.Skip list specification
abst module Skiplist {

use plugin "Bohne";

S = {x : Entry | "rtrancl (% v1 v2. next v1 = v2) (next root) x"};
invariant "ALL x y. (nextSub x = y) --> ((x = null --> y = null) &

(x ˜= null --> rtrancl (% v1 v2. next v1 = v2) (next x) y))";
invariant "root ˜= null";
invariant "ALL x. x ˜= null &

˜(rtrancl (% v1 v2. next v1 = v2) root x) -->
˜(EX y. y ˜= null & next y = x) & (next x = null)";

proc add {
has_pred = {x : Entry | "EX y. next y = x"};
r_current = {x : Entry | "rtrancl (% v1 v2. next v1 = v2) current x"};
r_scurrent = {x : Entry | "rtrancl (% v1 v2. next v1 = v2) scurre nt x"};
r_sprev = {x : Entry | "rtrancl (% v1 v2. next v1 = v2) sprev x"};
next_null = {x : Entry | "next x = null"};
sprev_nextSub = {x : Entry | "nextSub sprev = scurrent"};
prev_next = {x : Entry | "next prev = current"};

}
}

Fig. 7.Skip list abstraction (including invariants)

7

fields.SCdenotes all schools, that is, allElem objects reachable fromschools . The
abstraction section then gives three module invariants. The first two module invari-
ants state disjointness properties: no objects are shared betweenST andSC (if an ob-
ject is reachable fromschools throughnext fields, then it is not reachable from
students throughnext fields, and vice-versa). The third module invariant states
that if an objectx is not in eitherST or SC, then itsnext field is set tonull , and
no object points tox. Combined, these invariants guarantee the well-formedness of the
schools and students linked lists.

The abstraction section also gives a field constraint on theattends field. Sec-
tion 3 describes how we verify the validity of the non-deterministic constraint on the
attends field. In particular, our analysis can successfully verify the property that for
any student,attends points to some (undetermined) element of theSCset of schools.
Note that this goes beyond the power of previous analyses, which required the identity
of the school pointed to by the student be functionally determined by the identity of
the student. The example therefore illustrates how our analysis eliminates a key restric-
tion of previous approaches—certain data structures exhibit properties that the logics
in previous approaches were not expressive enough to capture. In general, previous ap-
proaches could express and verify properties that were, in some sense, more restrictive
than the properties of many data structures that we would like to implement. Because
our analysis supports properties that express the correct level of partial information (for
example, that a field points to some undetermined object within a set of objects), it is
able to successfully analyze these kinds of data structures.
spec module Students {

format Elem;
specvar ST : Elem set;
specvar SC : Elem set;

proc addStudent(st:Elem; sc:Elem)
requires card(st)=1 & card(sc)=1 & (sc in SC) &

(not (st in ST)) & (not (st in SC))
modifies ST
ensures ST’ = ST + st;

}

Fig. 8.Specification for students example

abst module Students {
use plugin "Bohne decaf";

ST = { x : Elem | "rtrancl (% v1 v2. next v1 = v2) students x" };
SC = { x : Elem | "rtrancl (% v1 v2. next v1 = v2) schools x" };

...

invariant "ALL x y. (attends x = y) -->
(x ˜= null -->
((˜(rtrancl (% v1 v2. next v1 = v2) students x) --> y = null) &

((rtrancl (% v1 v2. next v1 = v2) students x) -->
(rtrancl (% v1 v2. next v1 = v2) schools y))))";

}

Fig. 9. Abstraction for students example

8

impl module Students {
format Elem {

attends : Elem;
next : Elem;

}
var students : Elem;
var schools : Elem;

proc addStudent(st:Elem; sc:Elem) {
st.attends = sc;
st.next = students;
students = st;

}
}

Fig. 10.Implementation for students example
students

n
ex

t
n
ex

t
n
ex

t

schools

n
ex

t
n
ex

t

attends

attends

atten
d
s

attends

Fig. 11.Students data structure instance

3 Field Constraint Analysis

This section presents the field constraint analysis algorithm and proves its soundness as
well as, for some important cases, completeness.

We consider a logicL over a signatureΣ whereΣ consists of unary function sym-
bolsf ∈ Fld corresponding to fields in data structures and constant symbols c ∈ Var

corresponding to program variables. We use monadic second-order logic (MSOL) over
trees as our working example, but in general we only requireL to support conjunction,
implication and equality reasoning.

A Σ-structureS is a first-order interpretation of symbols inΣ. For a formulaF in
L, we denote byFields(F) ⊆ Σ the set of all fields occurring inF .

We assume thatL is decidable over some set of well-formed structures and we
assume that this set of structures is expressible by a formula I in L. We call I the
simulation invariant[11]. For simplicity, we consider the simulation itself to be given
by the restriction of a structure to the fields inFields(I), i.e. we assume that there exists
a decision procedure for checking validity of implicationsof the formI → F where
F is a formula such thatFields(F) ⊆ Fields(I). In our running example, MSOL, the
simulation invariantI states that the fields inFields(I) span a forest.

We call a fieldf ∈ Fields(I) a backbone field, and call a fieldf ∈ Fld \ Fields(I)
a derived field. We refer to the decision procedure for formulas with fields in Fields(I)
over the set of structures defined by the simulation invariant I as the underlying de-
cision procedure. Field constraint analysis enables the use of the underlying decision
procedure to reason about non-deterministically constrained derived fields. We state
invariants on the derived fields using field constraints.

Definition 1 (Field constraints on derived fields).A field constraintDf for a simula-
tion invariantI and a derived fieldf is a formula of the form

Df ≡ ∀x y. f(x) = y → FCf (x, y)

whereFCf is a formula with two free variables such that (1)Fields(FCf) ⊆ Fields(I),
and (2)FCf is total with respect toI, i.e.I |= ∀x. ∃ y . FCf (x, y).

9

We call the constraintDf deterministicif FCf is deterministic with respect toI, i.e.

I |= ∀x y z. FCf (x, y)∧FCf (x, z) → y = z .

We writeD for the conjunction ofDf for all derived fieldsf .

Note that Definition 1 covers arbitrary constraints on a field, becauseDf is equivalent
to ∀x. FCf (x, f(x)).

The totality condition (2) is not required for the soundnessof our approach, only for
its completeness, and rules out invariants equivalent to “false”. The condition (2) does
not involve derived fields and can therefore be checked automatically using a single call
to the underlying decision procedure.

Our goal is to check validity of formulas of the formI ∧D → G, whereG is a
formula with possible occurrences of derived fields. IfG does not contain any derived
fields then there is nothing to do, because in that case checking validity immediately
reduces to the validity problem without field constraints, as given by the following
lemma.

Lemma 1. LetG be a formula such thatFields(G) ⊆ Fields(I).
ThenI |= G iff I ∧D |= G.

To check validity ofI ∧D → G, we therefore proceed as follows. We first obtain
a formulaG′ from G by eliminating all occurrences of derived fields inG. Next, we
check validity ofG′ with respect toI. In the case of a derived fieldf that is defined by
a deterministic field constraint, occurrences off in G can be eliminated by flattening
the formula and substituting each termf(x) = y by FCf (x, y). However, in the general
case of non-deterministic field constraints such a substitution is only sound for negative
occurrences of derived fields, since the field constraint gives an over-approximation of
the derived field. Therefore, a more sophisticated elimination algorithm is needed.

Eliminating derived fields. Figure 12 presents our algorithmElim for elimination of
derived fields. Consider a derived fieldf and letF ≡ FCf . The basic idea ofElim is that
we can replace an occurrenceG(f(x)) of f by a new variabley that satisfiesF (x, y),
yielding a stronger formula∀y. F (x, y) → G(y). As an improvement, ifG contains
two occurrencesf(x1) andf(x2), and if x1 andx2 evaluate to the same value, then
we attempt to replacef(x1) andf(x2) with the same value.Elim implements this idea
using the setK of triples(x, f, y) to record previously assigned values forf(x). Elim

runs in timeO(n2) wheren is the size of the formula and produces an at most quadrati-
cally larger formula.Elim accepts formulas in negation normal form, where all negation
signs apply to atomic formulas (see Figure 16 in the Appendixfor rules of transforma-
tion into negation normal form). We generally assume that each quantifierQ z binds a
variablez that is distinct from other bound variables and distinct from the free variables
of the entire formula. The algorithmElim is presented as acting on first-order formulas,
but is also applicable to checking validity of quantifier-free formulas because it only
introduces universal quantifiers which can be replaced by Skolem constants. The algo-
rithm is also applicable to multisorted logics, and, by treating sets of elements as a new
sort, to MSOL. To make the discussion simpler, we consider a deterministic version of
Elim where the non-deterministic choices of variables and termsare resolved by some

10

S − a term or a formula
Terms(S) − terms occurring inS

FV(S) − variables free inS
Ground(S) = {t ∈ Terms(S). FV(t) ⊆ FV(S)}
Derived(S) − derived function symbols inS

proc Elim(G) = elim(G, ∅)
proc elim(G : formula in negation normal form;

K : set of (variable,field,variable) triples):
let T = {f(t) ∈ Ground(G). f ∈ Derived(G) ∧ Derived(t) = ∅}
if T 6= ∅ do

choosef(t) ∈ T

choosex, y fresh first-order variables
let F = FCf

let F1 = F (x, y) ∧
V

(xi,f,yi)∈K
(x = xi → y = yi)

let G1 = G[f(t) := y]
return ∀x. x = t → ∀y. (F1 → elim(G1, K ∪ {(x, f, y)}))

else caseG of
| Qx. G1 whereQ ∈ {∀,∃}:

return Qx. elim(G1, K)
| G1 op G2 whereop ∈ {∧,∨}:

return elim(G1, K) op elim(G2, K)
| else returnG

Fig. 12.Derived-field elimination algorithm

arbitrary, but fixed, linear ordering on terms. We writeElim(G) to denote the result of
applyingElim to a formulaG.

The correctness ofElim is given by Theorem 1. The proof of Theorem 1 relies on
the monotonicity of logical operations and quantifiers in negation normal form of a
formula.

Theorem 1 (Soundness).The algorithmElim is sound: ifI ∧ D |= Elim(G), then
I ∧ D |= G. What is more,I ∧ D ∧ Elim(G) |= G.

Completeness.We now analyze the classes of formulasG for whichElim is complete.

Definition 2. We say thatElim is complete for(D, G) iff
I ∧ D |= G impliesI ∧ D |= Elim(G).

Note that we cannot hope to achieve completeness for arbitrary constraintsD. Indeed,
if we let D ≡ true, thenD imposes no constraint whatsoever on the derived fields,
and reasoning about the derived fields becomes reasoning about uninterpreted function
symbols, that is, reasoning in unconstrained predicate logic. Such reasoning is undecid-
able not only for monadic second-order logic, but also for much weaker fragments of
first-order logic [7]. Despite these general observations,we have identified two cases
important in practice for whichElim is complete (Theorem 2 and Theorem 3).

Theorem 2 expresses the fact that, in the case where all field constraints are deter-
ministic,Elim is complete (and then it reduces to previous approaches [11,28] that are
restricted to the deterministic case). The proof of Theorem2 uses the assumption that

11

F is total and functional to conclude∀x y. F (x, y) → f(x)= y, and then uses an
inductive argument similar to the proof of Theorem 1.

Theorem 2 (Completeness for deterministic fields).AlgorithmElim is complete for
(D, G) when each field constraint inD is deterministic.
What is more,I ∧ D ∧ G |= Elim(G).

x ∈ Var − program variables f ∈ Fld − pointer fields
e ∈ Exp ::= x | e.f F − quantifier free formula
c ∈ Com ::= e1 := e2

| havoc(x) (non-deterministic assignment tox)
| assume(F) | assert(F)
| c1 ; c2 (sequential composition)
| c1 � c2 (non-deterministic choice)

Fig. 13.Loop-free statements of a guarded command language (see e.g. [1])

We next turn to completeness in the cases that admit non-determinism of derived
fields. Theorem 3 states that our algorithm is complete for derived fields introduced
by the weakest precondition operator to a class of postconditions that includes field
constraints. This result is very important in practice. Forexample, when we used a
previous version of an elimination algorithm that was incomplete, we were not able
to verify the skip list example in Section 2.2. To formalize our completeness result, we
introduce two classes of well-behaved formulas:nice formulasandpretty nice formulas.

Definition 3 (Nice formulas). A formulaG is a nice formulaif each occurrence of
each derived fieldf in G is of the formf(t), wheret ∈ Ground(G).

Nice formulas generalize the notion of quantifier-free formulas by disallowing quanti-
fiers only for variables that are used as arguments to derivedfields. Lemma 2 shows that
the elimination of derived fields from nice formulas is complete. The intuition behind
Lemma 2 is that ifI ∧D |= G, then for the choice ofyi such thatF (xi, yi) we can find
an interpretation of the function symbolf such thatf(xi) = yi, andI ∧ D holds, soG
holds as well, andElim(G) evaluates to the same truth value asG.

Lemma 2. Elim is complete for(D, G) if G is a nice formula.

Definition 4 (Pretty nice formulas). The set ofpretty nice formulasis defined induc-
tively by 1) a nice formula is pretty nice; 2) ifG1 andG2 are pretty nice, thenG1 ∧G2

is pretty nice; 3) ifG is pretty nice andx is a first-order variable, then∀x.G is pretty
nice.

Pretty nice formulas therefore additionally admit universal quantification over argu-
ments of derived fields. Define functionskolem as follows: 1)skolem(∀x.G) = G; 2)
skolem(G1 ∧ G2) = skolem(G1) ∧ skolem(G2); and 3)skolem(G) = G if G is not of
the form∀x.G or G1 ∧ G2.

Lemma 3. The following observations hold:

1. each field constraintDf is a pretty nice formula;
2. if G is a pretty nice formula, thenskolem(G) is a nice formula and

H |= G iff H |= skolem(G) for any set of formulasH .

12

The next Lemma 4 shows that pretty nice formulas are closed underwlp; the lemma
follows from the conjunctivity of the weakest preconditionoperator.

Lemma 4. Let c be a guarded command of the language in Figure 13. IfG is a nice
formula, thenwlp(c, G) is a nice formula. IfG is a pretty nice formula, thenwlp(c, G)
is equivalent to a pretty nice formula.

Lemmas 4, 3, 2, and 1 imply our main theorem, Theorem 3. Theorem 3 implies that
Elim is a complete technique for checking preservation (over straight-line code) of field
constraints, even if they are conjoined with additional pretty nice formulas. Elimination
is also complete for data structure operations with loops aslong as the necessary loop
invariants are pretty nice.

Theorem 3 (Completeness for preservation of field constraints). Let G be a pretty
nice formula,D a conjunction of field constraints, andc a guarded command (Fig-
ure 13). Then

I ∧ D |= wlp(c, G ∧ D) iff I |= Elim(wlp(c, skolem(G ∧ D))).

Example 1.The example in Figure 14 demonstrates the elimination of derived fields
using algorithmElim. It is inspired by the skip list module from Section 2.

DnextSub ≡ ∀v1 v2. nextSub(v1) = v2 → next
+(v1, v2)

G ≡ wlp((e.nextSub := root .nextSub ; e.next := root), DnextSub)
≡ ∀v1 v2. nextSub [e := nextSub(root)](v1) = v2 → (next [e := root])+(v1, v2)

G′ ≡ skolem(Elim(G)) ≡
x1 = root → next

+(x1, y1) →
x2 = v1 → next

+[e := y1](x2, y2) ∧ (x2 = x1 → y2 = y1) →
y2 = v2 → (next [e := root])+(v1, v2)

Fig. 14.Elimination of derived fields from a pretty nice formula. Thenotationnext
+ denotes the

irreflexive transitive closure of predicatenext(x) = y.

The formulaG expresses the preservation of field constraintDnextSub for updates
of fieldsnext andnextSub that inserte in front of root . This formula is valid under the
assumption that∀x. next(x) 6= e holds. The algorithmElim first replaces the inner oc-
currencenextSub(root) and then the outer occurrence ofnextSub. Theorem 3 implies
that the resulting formulaskolem(Elim(G)) is valid under the same assumption as the
original formulaG.

Limits of completeness. In our implementation, we have successfully usedElim in
the context of MSOL, where we encode transitive closure using second-order quan-
tification. Unfortunately, formulas that contain transitive closure of derived fields are
often not pretty nice, leading to false alarms after the application ofElim. This behav-
ior is to be expected due to the undecidability of transitiveclosure logics over general
graphs [10]. On the other hand, unlike approaches based on axiomatizations of tran-
sitive closure in first-order logic, our use of MSOL enables complete reasoning about

13

reachability over the backbone fields. It is therefore useful to be able to consider a field
as part of a backbone whenever possible. For this purpose, itcan be helpful to verify
conjunctions of constraints using different backbone for different conjuncts.

Verifying conjunctions of constraints. In our skip list example, the fieldnextSub
forms an acyclic (sub-)list. It is therefore possible to verify the conjunction of con-
straints independently, withnextSub a derived field in the first conjunct (as in Sec-
tion 2.2) but a backbone field in the second conjunct. Therefore, although the reasoning
about transitive closure is incomplete in the first conjunct, it is complete in the second
conjunct.

Verifying programs with loop invariants. The technique described so far supports the
following approach for verifying programs annotated with loop invariants:

1. generate verification conditions using loop invariants,pre-, and postconditions;
2. eliminate derived fields from verification conditions usingElim (andskolem);
3. decide the resulting formula using a decision procedure such as MONA [13].

Field constraints specific to program point. Our completeness results also apply
when, instead of having one global field constraint, we introduce different field con-
straints for each program point. This allows the developer to refine data structure in-
variants with the information about the data structure specific to particular program
points.

Field constraint analysis and loop invariant inference. Field constraint analysis
is not limited to verification in the presence of loop invariants. In combination with
abstract interpretation [3] it can be used to infer loop invariants automatically. Our im-
plementation combines field constraint analysis with symbolic shape analysis based on
Boolean heaps [32, 36] to infer loop invariants that are universally quantified Boolean
combinations of unary predicates over heap objects.

Symbolic shape analysis casts the idea of three-valued shape analysis [35] in the
framework of predicate abstraction. It uses the machinery of predicate abstraction to
automatically construct the abstract post operator and this construction solely goes
by deductive reasoning. In fact, the computation of the abstraction amounts to check-
ing validity of entailments that are of the form:Γ ∧C → wlp(c, p). HereΓ is an
over-approximation of the reachable states,C is a conjunction of abstraction predicates
andp is a single abstraction predicate. We use field constraint analysis to check valid-
ity of these formulas by augmenting them with the appropriate simulation invariantI
and field constraintsD that specify the data structure invariants we want to preserve:
I ∧D∧Γ ∧C → wlp(c, p). The only problem arises from the fact that these ad-
ditional invariants may be temporarily violated during program execution. To ensure
applicability of the analysis, we abstract complete loop free paths in the control flow
graph of the program at once. That means we only require that simulation invariants are
valid at loop cut points and hence part of the loop invariants. This supports the program-
ming model where violations of data structure invariants are confined to the interior of
basic blocks [28].

Amortizing invariant checking in loop invariant inference . A straightforward ap-
proach to combine field constraint analysis with abstract interpretation would do a well-
formedness check for global invariants and field constraints at every step of the fixed-

14

point computation, invoking a decision procedure at iteration of the fixed-point compu-
tation. The following insight allows us to use a single well-formedness check per basic
block: the loop invariant synthesized in the presence of well-formedness is identical
to the loop invariant synthesized by ignoring the well-formedness check. We therefore
speculatively compute the abstraction of the system under the assumption that both the
simulation invariant and the field constraints are preserved. After the least fixed-point
lfp# of the abstract system has been computed, we generate for every loop free pathc
with start pointℓc a verification condition:I ∧D∧ lfp

#
ℓc

→ wlp(c, I ∧D) wherelfp
#
ℓc

is the projection oflfp# to program locationℓc. We then use again ourElim algorithm
to eliminate derived fields and check the validity of these verification conditions. If they
are all valid then the analysis is sound and the data structure invariants are preserved.
Note that this approach succeeds whenever the straightforward approach would have
succeeded, so it improves analysis performance without degrading the precision. More-
over, when the analysis detects an error, it repeats the fixed-point computation with the
simple approach to obtain an indication of the error trace.

4 Deployment as Modular Analysis Plugin

We have implemented our field constraint analysis and deployed it as the “Bohne” anal-
ysis plugin of our Hob framework [16,22]. We have successfully verified singly-linked
lists, doubly-linked lists with and without iterators and header nodes (Section 2.1), two-
level skip lists (Section 2.2), and our students example from Section 2. When the de-
veloper supplies loop invariants, these benchmarks, including skip list, verify in 1.7
seconds (for the doubly-linked list) to 8 seconds (for insertion into a tree). Bohne auto-
matically infers loop invariants for insertion and lookup in the two-level skip list in 30
minutes total. We believe the running time for loop invariant inference can be reduced
using ideas such as lazy predicate abstraction [8].

Because we have integrated Bohne into the Hob framework, we were able to verify
just the parts of programs which require the power of field constraint analysis with the
Bohne plugin, while using less detailed analyses for the remainder of the program. We
have used the list data structures verified with Bohne as modules of larger examples,
such as the 900-line Minesweeper benchmark and the 1200-line web server benchmark.
Hob’s pluggable analysis approach allowed us to use the typestate plugin [21] and loop
invariant inference techniques to efficiently verify client code, while reserving shape
analysis for the container data structures.

5 Further Related Work

We are not aware of any previous work that provides completeness guarantees for an-
alyzing tree-like data structures with non-deterministiccross-cutting fields for expres-
sive constraints such as MSOL. TVLA [26, 35] was initially designed as an analysis
framework with user-supplied transfer functions; subsequent work addresses synthesis
of transfer functions using finite differencing [34], whichis not guaranteed to be com-
plete. Decision procedures [18,27] are effective at reasoning about local properties, but
are not complete for reasoning about reachability. Promising, although still incomplete,
approaches include [25] as well as [19,30]. Some reachability properties can be reduced
to first-order properties using hints in the form of ghost fields [15, 27]. Completeness

15

of analysis can be achieved by representing loop invariantsor candidate loop invari-
ants by formulas in a logic that supports transitive closure[17, 28, 32, 36–39]. These
approaches treat decision procedure as a black box and, whenapplied to MSOL, inherit
the limitations of structure simulation [11]. Our work can be viewed as a technique
for lifting existing decision procedures into decision procedures that are applicable to
a larger class of structures. Therefore, it can be incorporated into all of these previous
approaches.

6 Conclusion

Shape analysis is one of the most challenging problems in thefield of program analysis;
its central relevance stems from the fact that it addresses key data structure consistency
properties that are 1) important in and of themselves 2) critical for the further verifica-
tion of other program properties.

Historically, the primary challenge in shape analysis was seen to be dealing effec-
tively with the extremely precise and detailed consistencyproperties that characterize
many (but by no means all) data structures. Perhaps for this reason, many formalisms
were built on logics that supportedonlydata structures with very precisely defined ref-
erencing relationships. This paper presents an analysis that supports both the extreme
precision of previous approaches and the controlled reduction in the precision required
to support a more general class of data structures whose referencing relationships may
be random, depend on the history of the data structure, or vary for some other reason
that places the referencing relationships inherently beyond the ability of previous logics
and analyses to characterize. We have deployed this analysis in the context of the Hob
program analysis and verification system; our results show that it is effective at 1) an-
alyzing individual data structures to 2) verify interfacesthat allow other, more scalable
analyses to verify larger-grain data structure consistency properties whose scope spans
larger regions of the program.

In a broader context, we view our result as taking an important step towards the
practical application of shape analysis. By supporting data structures whose backbone
functionally determines the referencing relationships aswell as data structures with in-
herently less structured referencing relationships, it promises to be able to successfully
analyze the broad range of data structures that arise in practice. Its integration within the
Hob program analysis and verification framework shows how toleverage this analysis
capability to obtain more scalable analyses that build on the results of the shape analy-
sis to verify important properties that involve larger regions of the program. Ideally, this
research will significantly increase our ability to effectively deploy shape analysis and
other subsequently enabled analyses on important programsof interest to the practicing
software engineer.

References

1. R.-J. Back and J. von Wright.Refinement Calculus. Springer-Verlag, 1998.
2. I. Balaban, A. Pnueli, and L. Zuck. Shape analysis by predicate abstraction. InVMCAI’05,

2005.
3. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. InProc. 6th

POPL, pages 269–282, San Antonio, Texas, 1979. ACM Press, New York, NY.

16

4. D. Dams and K. S. Namjoshi. Shape analysis through predicate abstraction and model check-
ing. In Proc. 4th International Conference on Verification, Model Checking and Abstract
Interpretation, volume 2575 ofLNCS, pages 310–323, 2003.

5. P. Fradet and D. L. Métayer. Shape types. InProc. 24th ACM POPL, 1997.
6. R. Ghiya and L. Hendren. Is it a tree, a DAG, or a cyclic graph? In Proc. 23rd ACM POPL,

1996.
7. E. Grädel. Decidable fragments of first-order and fixed-point logic. From prefix-vocabulary

classes to guarded logics. InProceedings of Kalmár Workshop on Logic and Computer
Science, Szeged, 2003.

8. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. InPOPL ’02:
Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 58–70, New York, NY, USA, 2002. ACM Press.

9. N. Immerman.Descriptive Complexity. Springer-Verlag, 1998.
10. N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, and G.Yorsh. The boundary between

decidability and undecidability for transitive-closure logics. In Computer Science Logic
(CSL), pages 160–174, 2004.

11. N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, and G.Yorsh. Verification via
structure simulation. InCAV, pages 281–294, 2004.

12. J. L. Jensen, M. E. Jørgensen, N. Klarlund, and M. I. Schwartzbach. Automatic verification
of pointer programs using monadic second order logic. InProc. ACM PLDI, Las Vegas, NV,
1997.

13. N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA implementation secrets. InProc.
5th International Conference on Implementation and Application of Automata. LNCS, 2000.

14. N. Klarlund and M. I. Schwartzbach. Graph types. InProc. 20th ACM POPL, Charleston,
SC, 1993.

15. V. Kuncak, P. Lam, and M. Rinard. Role analysis. InProc. 29th POPL, 2002.
16. V. Kuncak, P. Lam, K. Zee, and M. Rinard. Implications of adata structure consistency

checking system. InInternational conference on Verified Software: Theories, Tools, Experi-
ments (VSTTE, IFIP Working Group 2.3 Conference), Zürich, Switzerland, 10–13th October
2005.

17. V. Kuncak and M. Rinard. Boolean algebra of shape analysis constraints. InProc. 5th
International Conference on Verification, Model Checking and Abstract Interpretation, 2004.

18. V. Kuncak and M. Rinard. Decision procedures for set-valued fields. In1st International
Workshop on Abstract Interpretation of Object-Oriented Languages (AIOOL 2005), 2005.

19. S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. InPOPL’06,
2006.

20. P. Lam, V. Kuncak, and M. Rinard. On our experience with modular pluggable analyses.
Technical Report 965, MIT CSAIL, September 2004.

21. P. Lam, V. Kuncak, and M. Rinard. Generalized typestate checking for data structure con-
sistency. In6th International Conference on Verification, Model Checking and Abstract
Interpretation, 2005.

22. P. Lam, V. Kuncak, and M. Rinard. Hob: A tool for verifyingdata structure consistency. In
14th International Conference on Compiler Construction (tool demo), April 2005.

23. P. Lam, V. Kuncak, K. Zee, and M. Rinard. The Hob project web page.
http://hob.csail.mit.edu, 2004.

24. O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using grammar-based
shape analysis. InESOP, 2005.

25. T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastava, and G. Yorsh. Simulating
reachability using first-order logic with applications to verification of linked data structures.
In CADE-20, 2005.

17

26. T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work for verifica-
tion: A case study. InInternational Symposium on Software Testing and Analysis, 2000.

27. S. McPeak and G. C. Necula. Data structure specificationsvia local equality axioms. In
CAV, pages 476–490, 2005.

28. A. Møller and M. I. Schwartzbach. The Pointer Assertion Logic Engine. InProgramming
Language Design and Implementation, 2001.

29. S. S. Muchnick and N. D. Jones, editors.Program Flow Analysis: Theory and Applications.
Prentice-Hall, Inc., 1981.

30. G. Nelson. Verifying reachability invariants of linkedstructures. InProceedings of the 10th
ACM SIGACT-SIGPLAN symposium on Principles of programminglanguages, pages 38–47.
ACM Press, 1983.

31. T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, volume 2283 ofLNCS. Springer-Verlag, 2002.

32. A. Podelski and T. Wies. Boolean heaps. InSAS, 2005.
33. W. Pugh. Skip lists: A probabilistic alternative to balanced trees. InCommunications of the

ACM 33(6):668–676, 1990.
34. T. Reps, M. Sagiv, and A. Loginov. Finite differencing oflogical formulas for static analysis.

In Proc. 12th ESOP, 2003.
35. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.ACM

TOPLAS, 24(3):217–298, 2002.
36. T. Wies. Symbolic shape analysis. Master’s thesis, Universität des Saarlandes, Saarbrücken,

Germany, Sep 2004.
37. G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract operations

for shape analysis. In10th TACAS, 2004.
38. G. Yorsh, T. Reps, M. Sagiv, and R. Wilhelm. Logical characterizations of heap abstractions.

TOCL, 2005. (to appear).
39. G. Yorsh, A. Skidanov, T. Reps, and M. Sagiv. Automatic assume/guarantee reasoning for

heap-manupilating programs (ongoing work). In1st AIOOL Workshop on Abstract Interpre-
tation of Object-Oriented Programs, 2005.

A Semantics of Guarded-Command Language

To make the completeness statement for our guarded command language precise, we
present in Figure 15 the weakest precondition semantics forthe language presented in
Figure 13.

wlp(x := e,G)
def
= G[x := e]

wlp(e1.f := e2, G)
def
= G[f := λv . if v = e1 then e2 else f(v)]

wlp(havoc(x),G)
def
= G[x := x0] with x0 a fresh constant symbol

wlp(assert(F),G)
def
= F ∧G

wlp(assume(F),G)
def
= ¬F ∨G

wlp(c1 ; c2, G)
def
= wlp(c1, wlp(c2, G))

wlp(c1 � c2, G)
def
= wlp(c1, G) ∧ wlp(c2, G)

Fig. 15.Weakest Precondition Semantics

18

B Negation Normal Form

To avoid any ambiguity, Figure 16 presents rules for transforming a formula into nega-
tion normal form. This transformation ensures that all occurrences of field constraint
formulas introduced byElim are negative in the top-level formula.

proc NegationNormalForm(G : formula with connectives∧,∨,¬):
apply the following rewrite rules:

¬(∀x.G) → ∃x.¬G

¬(∃x.G) → ∀x.¬G

¬¬G → G

¬(G1 ∧ G2) → (¬G1) ∨ (¬G2)
¬(G1 ∨ G2) → (¬G1) ∧ (¬G2)

Fig. 16.Negation Normal Form

19

C Proofs

Proof of Lemma 1. The left-to-right direction follows immediately. For the right-
to-left direction assume thatI ∧D → G is valid. Let S be a structure such that
S |= I. By totality of all field constraints inD there exists a structureS′ such that
S′ |= I ∧D andS′ differs from S only in the interpretation of derived fields. Since
Fields(G) ⊆ Fields(I) andI contains no derived fields we have thatS′ |= G implies
S |= G.

Proof of Theorem 1. By induction on the first argumentG of elim we prove that, for
all finite K,

I ∧ D ∧ elim(G, K) ∧
∧

(xi,fi,yi)∈K

FCfi
(xi, yi) |= G

For K = ∅ we obtainI ∧ D ∧ Elim(G) |= G, as desired. In the inductive proof,
the cases whenT = ∅ are straightforward. The casef(t) ∈ T uses the fact that if
M |= G[f(t) := y] andM |= f(t) = y, thenM |= G.

Proof of Theorem 2. Consider a field constraintF ≡ FCf and letx̄ andȳ be such that
F (x̄, ȳ). BecauseF (x̄, f(x̄)) andF is deterministic by assumption, we haveȳ = f(x̄).
It follows that I ∧ D ∧ F (x, y) |= f(x) = y. We then prove by induction on the
argumentG of elim that, for all finiteK,

I ∧ D ∧ G ∧
∧

(xi,fi,yi)∈K

fi(xi) = yi |= elim(G, K)

ForK = ∅ we obtainI ∧D ∧G |= Elim(G), as desired. The inductive proof is similar
to the proof of Theorem 1. In the casef(t) ∈ T , we consider a modelM such that
M |= I∧D∧G∧

∧
(xi,fi,yi)∈K fi(xi) = yi. Consider anȳx, ȳ such that: 1)M |= x = t,

2) M |= F (x, y) and 3)M |= x = xi → y = yi for all (xi, f, yi) ∈ K. To showM |=
elim(G1, K ∪ {(x, f, y)}), we consider a modified modelM1 = M [f(x̄) := ȳ] which
is like M except that the interpretation off at x̄ is ȳ. By M |= F (x, y) we conclude
M1 |= I∧D. By M |= x = xi → y = yi, we concludeM1 |=

∧
(xi,fi,yi)∈K fi(xi) =

yi as well. BecauseI ∧ D ∧ F (x, y) |= f(x) = y, we concludeM1 |= f(x) = y.
BecauseM |= x = t andDerived(t) = ∅, we haveM1 |= x = t so fromM |= G

we concludeM1 |= G1 whereG1 = G[f(t) := y]. By induction hypothesis we then
concludeM1 |= elim(G1, K ∪ {(x, f, y)}. Then alsoM |= elim(G1, K ∪ {(x, f, y)}
because the result ofelim does not containf . Becausēx, ȳ were arbitrary, we conclude
M |= elim(G, K).

Proof of Lemma 2. Let G be a nice formula. To show thatI ∧ D |= G implies
I ∧ D |= Elim(G), let I ∧ D |= G and letf1(t1), . . . , fn(tn) be the occurrences of
derived fields inG. By assumption,t1, . . . , tn ∈ Ground(G) andElim(G) is of the form

∀x1 y1. x1 = t1 → (F 1
1 ∧

∀x2 y2. x2 = t′2 → (F 2
1 ∧

. . .

∀xn, yn. xn = t′n → (Fn
1 ∧ G0) . . .))

20

wheret′i differs fromti in that some of its subterms may be replaced by variablesyj for
j < i. HereF i = FCfi

and

F i
1 = F i(xi, yi) ∧

∧

j<i,fj=fi

(xi = xj → yi = yj).

Consider a modelM of I ∧ D, we showM is a model forElim(G). Consider any
assignment̄xi, ȳi to variablesxi, yi for 1 ≤ i ≤ n. If any of the conditionsxi = ti
or F i

1 are false for this assignment, thenElim(G) is true because these conditions are
on the left-hand side of an implication. Otherwise, conditionsF i

1(xi, yi) hold, so by
definition ofF i

1 , if x̄i = x̄j , thenȳi = ȳj . Therefore, for each distinct function symbol
fj there exist a function̄fj such thatf̄(xi) = ȳi for fj = fi. BecauseF i(xi, yi) holds
and eachFCf is total, we can define such̄fj so thatD holds. LetM ′ = M [fj 7→ f̄j]j
be a model that differs fromM only in thatfj are interpreted as̄fj. ThenM ′ |= I

becauseI does not mention derived fields andM ′ |= D by construction. We therefore
concludeM ′ |= G. If t̄i is the value ofti in M ′, thenx̄i = t̄i becauseM |= xi = ti and
Derived(ti) = ∅. Using this fact, as well as̄fj(x̄i) = ȳi, by induction on subformulas
of G0 we conclude thatG0 has the same truth value asG in M ′, soM ′ |= G0. Because
G0 does not contain derived function symbols,M |= G0 as well. Becausēxi and ȳi

were arbitrary, we concludeM |= Elim(G). This completes the proof.

Remark. Note that it is not the case that a stronger statementI ∧ D ∧ G |= Elim(G)
holds. For example, takeD ≡ true, andG ≡ f(a) = b. ThenElim(G) is equivalent to
∀y.y = b and it is not the case thatI ∧ f(a) = b |= ∀y.y = b.

Proof of Lemma 4. Using the conjunctivity properties ofwlp:

wlp(c, ∀x.G) ↔ ∀x.wlp(c, G)

and
wlp(c, G1 ∧ G2) ↔ wlp(c, G1) ∧ wlp(c, G2)

the problem reduces to proving the lemma for the case of nice formulas.
Since we definedwlp recursively on the structure of commands, we prove the state-

ment by structural induction on commandc. Forc = (e1 := e2) andc = havoc(x) we
have thatwlp replaces ground terms by ground terms, i.e. in particular all introduced
occurrences of derived fields are ground. Forc = assume(F) andc = assert(F) every
occurrence of a derived field introduced bywlp comes fromF . SinceF is quantifier
free, all such occurrences are ground. The remaining cases follow from the induction
hypothesis for component commands.

Proof of Theorem 3. Let G be a quite nice formula,D a conjunction of field con-
straints, andc a guarded command. Sinceskolem(G ∧ D) is a nice formula, Lemma 4
implies thatwlp(c, skolem(G ∧ D)) is a nice formula, so we have

I ∧ D |= wlp(c, G ∧ D)
I ∧ D |= wlp(c, skolem(G ∧ D)) (by Lemma 3)
I ∧ D |= Elim(wlp(c, skolem(G ∧ D))) (by Lemma 2)
I |= Elim(wlp(c, skolem(G ∧ D))) (by Lemma 1)

21

D Specifying Bohne Analysis Tasks

In this appendix, we expand on Section 4 and describe how a developer actually uses
Bohne to verify program parts using shape analysis. When developing programs with
the Hob framework, the developer divides the program into a set of modules. For each
module, the developer must provide module implementations(in a standard program-
ming language) and specifications (in a set-based specification language) for program
modules. To make sense of the set specifications, an analysisclearly needs to know
what each set means. Hob enables developers to supply set definitions using customized
abstraction function languages: each analysis plugin can verify that a module’s imple-
mentations conforms to its specification using the module’sabstraction section.

We next describe the contents of Bohne abstraction modules;these abstraction mod-
ules express set definitions and invariants using first-order formulas with reflexive tran-
sitive closure, thereby enabling the Bohne plugin to verifythat a module implementa-
tion conforms to its specification. Abstract sets in procedure preconditions and post-
conditions are translated using the set definitions in the abstraction modules. Invariants
ensure that the set definitions are always meaningful by constraining the concrete pro-
gram state. They prohibit backbone fields from forming non-tree data structures and
give field constraints for derived fields. Invariants are always assumed upon entry to a
procedure and verified upon exit from a procedure; they may temporarily be violated
within procedures. Given module implementations, specifications, invariants, and set
definitions, the Bohne plugin emits and approximates verification conditions using the
techniques described in Section 3 and checks them using the MONA decision proce-
dure.

Specifying heap predicates.The abstraction function used in the analysis of the Bohne
plugin is induced by a set of unary heap predicates. Heap predicates are specified by the
developer in terms of sets. These sets are defined by using formulas in first-order logic
with reflexive transitive closure. In particular, the developer must provide the definitions
of all abstract sets used in the specification section of the module. Furthermore, addi-
tional heap predicates are often needed for Bohne to successfully infer loop invariants;
theproc construct allows the developer to define these heap predicates.

In addition to user-provided heap predicates, the plugin automatically introduces
heap predicates for every global and local object-typed variable of the analyzed pro-
cedure and thenull object. Moreover, for every unprimed abstract setS that occurs
in a post condition of the analyzed procedure, atick predicate′S is introduced. The
Bohne plugin uses these tick predicates to compute a procedure summary that allows
the verification of the post condition.

Specifying representation invariants. The developer specifies the representation
invariants for the Bohne plugin using invariant declarations in the abstraction section,
as previously illustrated, for instance, in Figure 7. The Bohne plugin supports two kinds
of representation invariants:

– field constraints, given by formulasDf of the form

∀x y. f(x) = y → F (x, y)

– andstate invariants, given by any formula which is not a field constraint.

22

A field constraint describes a fieldf in terms of a formulaF ≡ Df . An example of such
a derived field—that is, a field specified using only field constraints—in Figure 7 is the
field prev . Field constraints impose additional implicit well-formedness constraints
on the heap: all fields without a field invariant are considered to span a forest. The
field constraints themselves and the treeness property for the non-derived fields may
be violated within the procedure, with the exception of loopcut points and exit points
of the procedure. This means, in particular, that the field constraints and the treeness
property are part of all loop invariants.

State invariants may be violated at any point within the procedure, as long as they
are reestablished by the end of the procedure. An example of astate invariant is the
invariant given in Figure 7 which says that, ifroot is not pointing tonull , then it has
no incomingnext edges,

The analysis restricts the heap to the part visible from program variables in the an-
alyzed procedure. Moreover, all constraints apply to the projection of the heap onto the
fields declared in the currently analyzed module. In keepingwith the Hob philosophy of
modular analysis, field and treeness constraints do not apply to fields declared in other
modules, which enables objects to participate in multiple data structures and makes the
Bohne plugin applicable to more general program components.

23

