On Field Constraint Analysis

Thomas Wies, Viktor Kuncalé,
Patrick Lan?, Andreas Podelskj and Martin Rinard

1 Max-Planck-Institut fur Informatik, Saarbriicken, Genny
{wies,podelski }@mpi-inf.mpg.de
2 MIT Computer Science and Artificial Intelligence Lab, Caidge, USA
{vkuncak,plam,rinard }@csail.mit.edu

Abstract. We introducefield constraint analysisa new technique for verifying data struc-
ture invariants. A field constraint for a field is a formula sifging a set of objects to which
the field can point. Field constraints enable the applicaticdecidable logics to data struc-
tures which were originally beyond the scope of these lodigsverifying the backbone
of the data structure and then verifying constraints on digh@t cross-cut the backbone in
arbitrary ways. Previously, such cross-cutting fields darily be verified when they were
uniquely determined by the backbone, which significantlyited the range of analyzable
data structures.

Our field constraint analysis permiton-deterministidield constraints on cross-cutting
fields, which allows to verify invariants of data structusesh as skip lists. Non-deterministic
field constraints also enable the verification of invaridyesveen data structures, yielding
an expressive generalization of static type declarations.

The generality of our field constraints requires new teahesg which are orthogonal to the
traditional use of structure simulation. We present onéa $sechnique and prove its sound-
ness. We have implemented this technique as part of a syerdiwdipe analysis deployed
in the context of the Hob system for verifying data structtmasistency. Using this imple-
mentation we were able to verify data structures that wesegipusly beyond the reach of
similar techniques.

1 Introduction

The goal of shape analysis [29, Chapter 4], [2, 4-6, 24, 2,i3%Bis to verify com-
plex consistency properties of linked data structures. vidrdication of such proper-
ties is important in itself, because the correct executioih® program often requires
data structure consistency. In addition, the informatiomputed by shape analysis is
important for verifying other program properties in pragiawith dynamic memory
allocation.

Shape analyses based on expressive decidable logics [28]Bte interesting for
several reasons. First, the correctness of such analysasiisr to establish than for
approaches based on ad-hoc representations; the use dflaldedogic separates the
problem of generating constraints that imply program prige from the problem of
solving these constraints. Next, such analyses can be nsbe icontext of assume-
guarantee reasoning because logics provide a languagedoifysng the behaviors of
code fragments. Finally, the decidability of logics leanlsdmpleteness properties for
these analyses, eliminating false alarms and making tHgsasaeasier to interact with.
We were able to confirm these observations in the context @f $ystem [16, 22] for
analyzing data structure consistency, where we have mt@gjone such tool [28] with
other analyses, allowing us to use shape analysis in thextooit larger programs: in
particular, Hob enabled us to leverage the power of shapgsasavhile avoiding the

associated performance penalty, by applying shape araipdy to those parts of the
program where its extreme precision is necessary.

Our experience with such analyses has also taught us tha sbthe techniques
that make these analyses predictable also make them inaplgito many useful data
structures. Among the most striking examples is the re&irion pointer fields in the
Pointer Assertion Logic Engine [28]. This restriction s&that all fields of the data
structure that are not part of the data structure’s tree limok must be functionally
determined by the backbone; that is, such fields must befgzkby a formula that
uniquely determines where they point to. Formally, we have

Vry. f(z)=y < F(z,y) 1)

wheref is a function representing the field, afhds the defining formula fof. The re-
striction thatZ" is functional means that, although data structures sucbaslyllinked
lists with backward pointers can be verified, many other datactures remain beyond
the scope of the analysis. This includes data structuresathe exact value of pointer
fields depends on the history of data structure operationsdata structures that use
randomness to achieve good average-case performancesakip lists [33]. In such
cases, the invariant on the pointer field does not uniquetgraene where the field
points to, but merely gives a constraint on the field, of threnfo

Vry. f(z)=y — F(z,y))

This constraint is equivalent téx. F'(z, f(z)), which states that the functiofiis a
solution of a given binary predicate. The motivation fosthaper is to find a technique
that supports reasoning about constraints of this, morergérform. In a search for
existing approaches, we have considered structure siml&; 11], which, intuitively,
allows richer logics to be embedded into existing logics #ra known to be decidable,
and of which [28] can be viewed as a specific instance. Unfiattely, even the general
structure simulation requires definitions of the fovm y. r(z,y) < F(z,y) where
r(z,y) is the relation being simulated. When the relatidm, y) is a function, which
is the case with most reference fields in programming langsiagfructure simulation
implies the same restriction on the functionality of the wliefj relation. To handle the
general case, an alternative approach therefore appdaestecessary.

Field constraint analysis. This paper presents field constraint analysis, our approach
for analyzing fields with general constraints of the form @gld constraint analysis is

a proper generalization of the existing approach and regitecé when the constraint
formula F' is functional. It is based on approximating the occurrerafeg with F,
taking into account the polarity of, and is always sound. It is expressive enough to
verify constraints on pointers in data structures such asléwel skip lists. The appli-
cability of our field constraint analysis to non-determiigigield constraints is impor-
tant because many complex properties have useful nonrdigistic approximations.
Yet despite this fundamentally approximate nature of fieldstraints, we were able to
prove its completeness for some important special caselsl €dnstraint analysis natu-
rally combines with structure simulation, as well as wittyenbolic approach to shape
analysis [32, 36]. Our presentation and current implentemare in the context of the

monadic second-order logic (MSOL) of trees [13], but ountessextend to other log-
ics. We therefore view field constraint analysis as a useffgonent of shape analysis
approaches that makes shape analysis applicable to a w&itlge of data structures.

Contributions. This paper makes the following contributions:

— We introduce aralgorithm (Figure 12) that uses field constraints to eliminate de-
rived fields from verification conditions.

— We prove that the algorithm is bodound (Theorem 1) and, in certain casesm-
plete. The completeness applies not only to deterministic fieldeérem 2), but
also to the preservation of field constraints themselves loep-free code (The-
orem 3). The last result implies a complete technique fockimg that field con-
straints hold, if the programmer adheres to a discipline a@ftaining them e.g. at
the beginning of each loop.

— We describe how to combine our algorithm with symbolic shapalysis [36] to
infer loop invariants.

— We describe ammplementation and experience in the context of the Hob system
for verifying data structure consistency.

The implementation of field constraint analysis as partetlob system [16,22] allows
us to apply the analysis to modules of larger applicatiotith, other modules analyzed
by more scalable analyses, such as typestate analysis [21].

2 Examples

We next explain our field constraint analysis with a set ofheples. The doubly-linked
list example shows that our analysis handles, as a speaal tae ubiquitous back
pointers of data structures. The skip list example shows fiel constraint analy-
sis handles non-deterministic field constraints on derfigds, and how it can infer
loop invariants. Finally, the students example illustsatger-data-structure constraints,
which are simple but useful for high-level application pedes.

2.1 Doubly-Linked List with an Iterator

This section presents a doubly-linked list with a builtt@rator. It illustrates the use-
fulness of field constraints for specifying pointers thatiadoubly-linked structures,
and introduces the language we use for writing implemesttatand specifications in
the Hob system [22, 23].
impl module DLLIter {

format Entry { next : Entry; prev : Entry; }

var root, current : Entry;

proc remove(n : Entry) {
if (n==current) { current = current.next; }
if (n==root) { root = root.next; }
if (n.prev != null) { n.prev.next = n.next; }
if (n.next != null) { n.next.prev = n.prev; }
n.next = null; n.prev = null;

Fig. 1. Iterable list implementation section, containing staddarperative code

Our doubly-linked list implementation is a global data stcwe with operations
add andremove that insert and remove elements from the list, as well as pleeao

tionsinitlter , hextlter , andlastlter for manipulating the iterator built into
the list. We have verified all these operations using ouresystve here present only
theremove operation. Our list data structure is implemented in thenfef a Hob
module. A module consists of an implementation section¢tvkuffices to execute the
module (Figure 1), a specification section, which sufficesafustract reasoning about
the behavior of the module (Figures 2), and an abstractictiogg which connects im-
plementations and specifications by defining the abstrafitioction and representation
invariants (Figure 3). As Figure 1 shows, we implement thebdip-linked list with two
private fields,next andprev that apply to type (formatentry , the privateroot
variable of the doubly-linked list, and the privaterrent variable that indicates the
position of the iterator in the list. The specification sewtin Figure 2 specifies the
behavior of the operatioremove using two setsContent , which contains the set
of elements in the list, antler , which specifies the set of elements that remain to
be iterated over. These two sets abstractly characterizbehavior of operations, al-
lowing the clients to soundly reason about the hidden implatation of the list. This
reasoning is sound because our analysis verifies that thiermeptation conforms to
the specification, using the definitions of s€wentent andlter in Figure 3. These
definitions are expressed in a subset of Isabelle [31] faastilat can be translated into
monadic second-order logic [13]. The module defiGemtent as the set of all ob-
jectsreachable fromoot andlter as the set of all objects reachable froorent
Functionrtrancl s a higher-order function that accepts a binary predicatects
and returns the reflexive transitive closure of this preic@he abstraction section in
Figure 3 also contains module representation invariantssystem ensures that these
invariants are maintained by each operation in the modtie fifst invariant is a global
invariant saying that noext fields point to the root of the list. The second invariant is
recognized by our analysis as a field constraint on the fied¢ . This invariant indi-
cates to the system thatev is a derived field. Thaext field has no field constraints,
SO our system treats it as a backbone field.

spec module DLLIter {
format Entry;
specvar Content, Iter : Entry set;

invariant Iter in Content;

proc remove(n : Entry)
requires card(n)=1 & (n in Content);
modifies Content, lter
ensures (Content’ = Content - n) &
(Iter’ = lter - n);

Fig. 2. Iterable list specification section, containing procednterfaces

Our system verifies that theemove procedure implementation in Figure 1 con-
forms to its procedure contract in Figure 2 as follows. Thetesy expands the modifies
clause into a frame condition, which it conjoins with the umes clause. Next, it con-
joins the public set-based invaridtér C Content to both the requires and ensures
clause. The resulting pre- and postcondition are expressedns of the set€ontent
andlter , so the system applies the definitions of the sets in FiguoeoBtain pre and
postcondition expressed in termsradxt andprev , and conjoins the first invariant

from Figure 3 to both pre and postcondition. It then usesdstethweakest precondi-
tion computation [1] to generate a verification conditioattbaptures the correctness of
remove .

To decide the resulting verification condition, our systeeats the field constraint
invariant specially: it exploits the fact thaéxt is a backbone field angrev is a field
given by a field constraint to reduce the verification cowditio one expressible using
only thenext field. (This elimination is given by the algorithm in Figur2.}Because
next fields form a tree, the system can decide the verificationitiondising monadic
second-order logic on trees [13]. To ensure the soundneahssapproach, the system
also verifies that the structure remains a tree after eactatipie.

We note that our first implementation of the doubly-linkesd With an iterator was
verified using a Hob plugin [20] that relies on Pointer AssertLogic Engine tool
[28]. While verifying the initial version of the list moduleve discovered an error in
remove : the first line ofremove procedure in Figure 1 was not present, resulting in
violation of the specification ofemove in the special case when the element being
removed is the next element to iterate over. What distifgagsour system from the
previous Hob analysis based on PALE is the ability to harttbecses where the field
constraints are non-deterministic. We illustrate suclkesas the examples that follow.
Additionally, we show how our new analysis synthesizes liowariants using symbolic
shape analysis [36].
abst module DLLIter {

use plugin "Bohne decaf";

Content = {x : Node | "rtrancl (% v1 v2 . next vl = v2) root x"};
Ilter = {x : Node | "rtrancl (% v1 v2 . next vl = v2) current x"};

invariant "ALL x . root "= null --> next x "= root";
invariant "ALL x y. prev x =y -->
(x = root -->y = null) &
(x "= root & (rtrancl (% v1 v2. next vl = v2) root X)) --> next y = x

}

Fig. 3. Iterable list abstraction section, containing abstractimction and invariants

2.2 Skip List

We next present the analysis of a two-level skip list. Skspsl{33] support logarithmic
average-time access to elements by augmenting a linkeditissublists that skip over
some of the elements in the list. The two-level skip list isnapdified implementation
of a skip list, which has only two levels: the list containimelements, and a sublist of
this list. Figure 4 presents an example two-level skip @gir implementation uses the
next field to represent the main list, which forms the backbonéefdata structure,
and uses the derivetextSub field to represent a sublist of the main list. We focus
on theadd procedure, which inserts an element into an appropriatéigosn the
skip list. Figure 5 presents the implementationaofd, which first searches through
nextSub links to get an estimate of the position of the entry, thenditite entry by
searching throughext links, and inserts the element into the maaxt -linked list.
Optionally, the procedure also inserts the elementrieiiSub list, which is modelled
using a non-deterministic choice in our language and is atradttion of the insertion
with certain probability in the original implementatiorigbire 6 presents a specification

for add, which indicates thaadd always inserts the element into the set of elements
stored in the list. Figure 7 presents the abstraction seétipthe two-level skip list.
This section defines the abstract Seis the set of nodes reachable frooot.next
indicating thatroot is used as a header node. The abstraction section contaées th
invariants. The firstinvariant is the field constraint onfie nextSub , which defines
it as a derived field.

Note that the constraint for this derived field is non-deieistic, because it only
states that ik.nextSub==y , then there exists a path of length at least one fxotm
y alongnext fields, without indicating whereextSub points. Indeed, the simplicity
of the skip list implementation stems from the fact that tlesifion of nextSub is
not uniquely given bynext ; it depends not only on the history of invocations, but
also on the random number generator used to decide whenadire newnextSub
links. The ability to support such non-deterministic coaistts is what distinguishes
our approach from approaches that can only handle detestigifields.

The last two invariants indicate thatot is never null (assuming, for simplicity of
the example, that the state is initialized), and that aleotg not reachable fronoot
are isolated: they have no incoming or outgoimext pointers. These two invariants
allow the analysis to conclude that the object referenced loyadd(e) is not refer-
enced by any node, which, together with the preconditiotte in S) , allows our
analysis to prove that objects remain in an acyclic list gltrenext field .3

Our analysis successfully verifies thedd preserves all invariants, including the
non-deterministic field constraint arextSub . While doing so, the analysis takes ad-
vantage of these invariants as well, as is usual in assumigiee reasoning. In this
example, the analysis is able to infer the loop invariangid. The analysis constructs
these loop invariants as disjunctions of universally gifi@dtboolean combinations of
the unary predicates that correspond to the sets of elersapgdied foradd in the
abstraction section, using symbolic shape analysis [32, 36

2.3 Students and Schools

Our next example illustrates the power of non-determinigld constraints. This ex-
ample contains two linked lists: one containing students @me containing schools.
EachElem object may represent either a student or a school; studemésehpointer to
the school which they attend. Both students and schooldhiesext backbone pointer
to indicate the next student or school in the relevant linksd

Figures 8 and 10 present the interface and implementationradtudents example.
TheaddStudent procedure adds a student to the student list and assodiatitls a
school that is supposed to be already contained in the scadstructure. The proce-
dure may assume that the relevant data structure inva(@edsribed below) hold upon
entry, but must guarantee that they hold upon exit, if theedtpostcondition is to make
any sense at all.

Figure 9 presents the abstraction section for our modiledenotes all students,
that is, allElem objects reachable from the rostudents reference throughext

3 The analysis still needs to know thais not identical to the header node. In this example we hase as
explicit (assume "e # root") statement to supply this information. Such assume statsnoam
be automatically generated if the developer specifies thefsepresentation objects of a data structure,
but this is orthogonal to field constraint analysis itself.

nextSub

nextSub

next M\ next M) next next M) next
N\ N\ N\

N\

Fig. 4. An instance of a two-level skip list

impl module Skiplist {
format Entry {
v oint;
next, nextSub : Entry;

}

var root : Entry;

proc add(e:Entry) {

assume "e "= root";

int v =e.v;

Entry sprev = root, scurrent = root.nextSub;

while ((scurrent != null) && (scurrent.v < v)) {
sprev = scurrent; scurrent = scurrent.nextSub;

}

Entry prev = sprev, current = sprev.next;

while ((current != scurrent) && (current.v < v)) {
prev = current; current = current.next;

}

e.next = current; prev.next = e;

choice { sprev.nextSub = e; e.nextSub = scurrent; }

| { e.nextSub = null; }

Fig. 5. Skip list implementation

spec module Skiplist {
format Entry;
specvar S : Entry set;

proc add(e:Entry)
requires card(e) = 1 & not (e in S)
modifies S
ensures S’ = S + e

Fig. 6. Skip list specification

abst module Skiplist {
use plugin "Bohne";

S = {x : Entry | "rtrancl (% v1 v2. next vl = v2) (next root) x"};
invariant "ALL x y. (nextSub x =vy) --> ((x = null --=>y = null) &
(x "= null --> rtrancl (% vl v2. next vl = v2) (next x) y))"
invariant “"root "= null";
invariant "ALL x. x "= null &
“(rtrancl (% v1 v2. next vl
“EX y.y = null & nexty

v2) root x) -->
X) & (next x = null)";

proc add {
has_pred = {x : Entry | "EX y. next y = x"};
r_current = {x : Entry | "rtrancl (% v1 v2. next vl = v2) current
r_scurrent = {x : Entry | "rtrancl (% v1 v2. next vl = v2) scurre

r_sprev = {x : Entry | "rtrancl (% v1 v2. next vl
next_null = {x : Entry | "next x = null'};
sprev_nextSub = {x : Entry | "nextSub sprev = scurrent};
prev_next = {x : Entry | "next prev = current"};

v2) sprev X"}

Fig. 7. Skip list abstraction (including invariants)

X"}

nt x"};

fields.SCdenotes all schools, that is, &llem objects reachable froschools . The
abstraction section then gives three module invariants. first two module invari-
ants state disjointness properties: no objects are shatagbnST andSC (if an ob-
ject is reachable fronschools throughnext fields, then it is not reachable from
students throughnext fields, and vice-versa). The third module invariant states
that if an objectr is not in eitherST or SC then itsnext field is set tonull , and

no object points ta:. Combined, these invariants guarantee the well-formedoithe
schools and students linked lists.

The abstraction section also gives a field constraint orattends field. Sec-
tion 3 describes how we verify the validity of the non-detaristic constraint on the
attends field. In particular, our analysis can successfully verifg property that for
any studentattends points to some (undetermined) element of #t&set of schools.
Note that this goes beyond the power of previous analyseshwhquired the identity
of the school pointed to by the student be functionally deteed by the identity of
the student. The example therefore illustrates how oulyaisatliminates a key restric-
tion of previous approaches—certain data structures éxibperties that the logics
in previous approaches were not expressive enough to eaprtugeneral, previous ap-
proaches could express and verify properties that wer@riresense, more restrictive
than the properties of many data structures that we wouddtbkimplement. Because
our analysis supports properties that express the coaegtdf partial information (for
example, that a field points to some undetermined objectmwilset of objects), it is
able to successfully analyze these kinds of data structures

spec module Students {
format Elem;
specvar ST : Elem set;
specvar SC : Elem set;

proc addStudent(st:Elem; sc:Elem)
requires card(st)=1 & card(sc)=1 & (sc in SC) &
(not (st in ST)) & (not (st in SC))
modifies ST
ensures ST = ST + st;

Fig. 8. Specification for students example

abst module Students {
use plugin "Bohne decaf";

{ x : Elem | "rtrancl (% v1 v2. next vl = v2) students x" };
{ x

ST
SC . Elem | "rtrancl (% v1 v2. next vl = v2) schools x" };

invariant "ALL x y. (attends x = y) -->
x "= null -->
(C(rtrancl (% v1 v2. next vl = v2) students x) --> y = null) &
((rtrancl (% v1 v2. next vl = v2) students x) -->

(rtrancl (% v1 v2. next vl = v2) schools Y))))";

Fig. 9. Abstraction for students example

impl module Students {
format Elem {
attends : Elem;
next : Elem;

attends

var students : Elem;
var schools : Elem;

next

proc addStudent(st:Elem; sc:Elem) {
st.attends = sc;
st.next = students;
students = st;

next ™ next ,»\ next

next

}

Fig. 10.Implementation for students example T
students schools

Fig. 11.Students data structure instance

3 Field Constraint Analysis

This section presents the field constraint analysis algordand proves its soundness as
well as, for some important cases, completeness.

We consider a logi€ over a signature’ whereX' consists of unary function sym-
bols f € Fld corresponding to fields in data structures and constant slgmbe Var
corresponding to program variables. We use monadic secoiet-logic (MSOL) over
trees as our working example, but in general we only regfiit@ support conjunction,
implication and equality reasoning.

A XY-structureS is a first-order interpretation of symbols ¥i. For a formulaZ’ in
L, we denote byFields(F') C X the set of all fields occurring if'.

We assume thaf is decidable over some set of well-formed structures and we
assume that this set of structures is expressible by a fariin £. We call I the
simulation invarianf11]. For simplicity, we consider the simulation itself te given
by the restriction of a structure to the fieldshields(7), i.e. we assume that there exists
a decision procedure for checking validity of implicatiasfshe form/ — F where
F is a formula such thatields(F') C Fields(I). In our running example, MSOL, the
simulation invariant states that the fields ifields(/) span a forest.

We call a fieldf € Fields(I) abackbone fieldand call a fieldf € Fid \ Fields(1)
aderived field We refer to the decision procedure for formulas with fiefuBields(I)
over the set of structures defined by the simulation invarlaasthe underlying de-
cision procedureField constraint analysis enables the use of the underigé@cision
procedure to reason about non-deterministically constchiderived fields. We state
invariants on the derived fields using field constraints.

Definition 1 (Field constraints on derived fields).A field constrainD; for a simula-
tion invariant/ and a derived field’ is a formula of the form

Dy = Vay. f(x) =y — FCs(xz,y)

whereFC; is a formula with two free variables such that @iglds(FC¢) C Fields(1),
and (2)FCy is total with respect td, i.e.I = Vz. 3y . FCy(z,y).

We call the constrainD ; deterministidf FC is deterministic with respect th i.e.
I =EVeyz FCy(z,y) NFCy(z,2) — y=12 .
We write D for the conjunction oD, for all derived fieldsf.

Note that Definition 1 covers arbitrary constraints on a fielecaus® ; is equivalent
toVz. FCy(z, f(x)).

The totality condition (2) is not required for the soundnefssur approach, only for
its completeness, and rules out invariants equivalentaizéf. The condition (2) does
not involve derived fields and can therefore be checked aatioally using a single call
to the underlying decision procedure.

Our goal is to check validity of formulas of the forif\ D — G, whereG is a
formula with possible occurrences of derived fields=IHoes not contain any derived
fields then there is nothing to do, because in that case agekilidity immediately
reduces to the validity problem without field constraints,gaven by the following
lemma.

Lemma 1. LetG be a formula such théfields(G) C Fields(1).
Thenl =Giff IND =G.

To check validity of/ A D — G, we therefore proceed as follows. We first obtain
a formulaGG’ from G by eliminating all occurrences of derived fieldsGh Next, we
check validity of G’ with respect tdl. In the case of a derived fielfithat is defined by

a deterministic field constraint, occurrencesfah G can be eliminated by flattening
the formula and substituting each teffitw:) = y by FC¢(z, y). However, in the general
case of non-deterministic field constraints such a sulbistitis only sound for negative
occurrences of derived fields, since the field constrairegan over-approximation of
the derived field. Therefore, a more sophisticated elinomeadlgorithm is needed.

Eliminating derived fields. Figure 12 presents our algorithBiim for elimination of
derived fields. Consider a derived figldaind let/” = FC;. The basic idea dElim is that
we can replace an occurrenGéf(x)) of f by a new variable that satisfied’(«x, y),
yielding a stronger formulay. F(x,y) — G(y). As an improvement, i7 contains
two occurrenceg(z1) and f(z2), and if z; andx evaluate to the same value, then
we attempt to replacé(x;) and f (z2) with the same valueElim implements this idea
using the sef{ of triples (z, f,y) to record previously assigned values fdr). Elim
runs in timeO(n?) wheren is the size of the formula and produces an at most quadrati-
cally larger formulaElim accepts formulas in negation normal form, where all negatio
signs apply to atomic formulas (see Figure 16 in the Appefatixules of transforma-
tion into negation normal form). We generally assume thahepantifierQ z binds a
variablez that is distinct from other bound variables and distinctfrihe free variables
of the entire formula. The algorithilim is presented as acting on first-order formulas,
but is also applicable to checking validity of quantifieedrformulas because it only
introduces universal quantifiers which can be replaced lpjesk constants. The algo-
rithm is also applicable to multisorted logics, and, by tiregasets of elements as a new
sort, to MSOL. To make the discussion simpler, we considetarchinistic version of
Elim where the non-deterministic choices of variables and temmasesolved by some

10

S — aterm or a formula

Terms(S) — terms occurring i
FV(S) — variables free irt
Ground(S) = {t € Terms(S). FV(t) C FV(S)}
Derived(.S) — derived function symbols iy

proc Elim(G) = elim(G, 0)
proc elim(G : formula in negation normal form
K : set of (variable,field,variable) triplgs
letT = {f(t) € Ground(G). f € Derived(G) A Derived(t) = 0}
if T# (0 do
choosef(t) € T
choosez, y fresh first-order variables
let ' = FCf
let Fi = F(z,y) A /\(zi,f.,yi)EK(:r =z — Yy =1yi)
let Gw = G[f(t) :=y]
return Ve.z =t — Vy. (F1 — elim(Gi, KU {(z, f,y)}))
else cas&: of
| Qz. Gy where@ € {V,3}:
return Qz. elim(G1, K)
| G1opGzwhereop € {A,V}:
return elim(G1, K) op elim(G2, K)
| elsereturnG

Fig. 12. Derived-field elimination algorithm

arbitrary, but fixed, linear ordering on terms. We wifiem(G) to denote the result of
applyingElim to a formulaG.

The correctness dlim is given by Theorem 1. The proof of Theorem 1 relies on
the monotonicity of logical operations and quantifiers imgat@n normal form of a
formula.

Theorem 1 (Soundness)The algorithmElim is sound: ifI/ A D = Elim(G), then
IND = G.Whatismore] A D AElIm(G) = G.

CompletenessWe now analyze the classes of formut@$or which Elim is complete

Definition 2. We say thaElim is complete fo(D, G) iff
IND = GimpliesI A D = Elim(G).

Note that we cannot hope to achieve completeness for asbiteamstraintsD. Indeed,
if we let D = true, then D imposes no constraint whatsoever on the derived fields,
and reasoning about the derived fields becomes reasoning afiaterpreted function
symbols, that is, reasoning in unconstrained predicaie.l8gich reasoning is undecid-
able not only for monadic second-order logic, but also focmweaker fragments of
first-order logic [7]. Despite these general observatioreshave identified two cases
important in practice for whicklim is complete (Theorem 2 and Theorem 3).
Theorem 2 expresses the fact that, in the case where all bektraints are deter-
ministic, Elim is complete (and then it reduces to previous approacheg@l that are
restricted to the deterministic case). The proof of TheoPeuses the assumption that

11

F is total and functional to concludér y. F(z,y) — f(x)=vy, and then uses an
inductive argument similar to the proof of Theorem 1.

Theorem 2 (Completeness for deterministic fields)Algorithm Elim is complete for
(D, G) when each field constraint ify is deterministic.
What is more/ A D A G = Elim(G).

x € Var — program variables f € FId — pointer fields
ecExpu==z|e.f F — quantifier free formula
ce Com:= e :=e2
| havoc(z) (non-deterministic assignment 19
| assume(F) | assert(F')
| e15ce2 (sequential composition)
| eca0c2 (non-deterministic choice)

Fig. 13.Loop-free statements of a guarded command language (sd&]e.g

We next turn to completeness in the cases that admit nomndieiem of derived
fields. Theorem 3 states that our algorithm is complete foivee fields introduced
by the weakest precondition operator to a class of posttiondithat includes field
constraints. This result is very important in practice. Egample, when we used a
previous version of an elimination algorithm that was inpdete, we were not able
to verify the skip list example in Section 2.2. To formaliag completeness result, we
introduce two classes of well-behaved formutase formulasandpretty nice formulas

Definition 3 (Nice formulas). A formula G is a nice formulaif each occurrence of
each derived field in G is of the formf(¢), wheret € Ground(G).

Nice formulas generalize the notion of quantifier-free fakas by disallowing quanti-
fiers only for variables that are used as arguments to défigdeld. Lemma 2 shows that
the elimination of derived fields from nice formulas is coetpl The intuition behind
Lemma2isthatiff A D = G, then for the choice of; such thatF'(z;, y;) we can find
an interpretation of the function symbpisuch thatf (z;) = y;, andI A D holds, soG
holds as well, an&lim(G) evaluates to the same truth value(as

Lemma 2. Elim is complete fo D, G) if G is a nice formula.

Definition 4 (Pretty nice formulas). The set ofpretty nice formulass defined induc-
tively by 1) a nice formula is pretty nice; 2)i, andG- are pretty nice, thelir; A G2
is pretty nice; 3) ifG is pretty nice and: is a first-order variable, thewz.G is pretty
nice.

Pretty nice formulas therefore additionally admit uniadrguantification over argu-
ments of derived fields. Define functiakolem as follows: 1)skolem(Vz.G) = G; 2)
skolem(G1 A G2) = skolem(G1) A skolem(G5); and 3)skolem(G) = G if G is not of
the formVz.G or G A Gbs.

Lemma 3. The following observations hold:

1. each field constrair is a pretty nice formula;
2. if G is a pretty nice formula, theskolem(G) is a nice formula and
H |= Giff H |= skolem(G) for any set of formulag?.

12

The next Lemma 4 shows that pretty nice formulas are closeénwip; the lemma
follows from the conjunctivity of the weakest preconditioperator.

Lemma 4. Let ¢ be a guarded command of the language in Figure 187 [§ a nice
formula, thenwlp(c, G) is a nice formula. IiG is a pretty nice formula, thewlp(c, G)
is equivalent to a pretty nice formula.

Lemmas 4, 3, 2, and 1 imply our main theorem, Theorem 3. The@&émplies that
Elim is a complete technique for checking preservation (ovaigdit-line code) of field
constraints, even if they are conjoined with additionatfyreice formulas. Elimination
is also complete for data structure operations with loopgs®g as the necessary loop
invariants are pretty nice.

Theorem 3 (Completeness for preservation of field constrais). Let G be a pretty
nice formula,D a conjunction of field constraints, anda guarded command (Fig-
ure 13). Then

IND =wlp(c, GAD) iff I = Elim(wlp(c,skolem(G A D))).

Example 1.The example in Figure 14 demonstrates the elimination af/eeérfields
using algorithnElim. It is inspired by the skip list module from Section 2.

Diestsuy = Yv1 va. nextSub(vi) = v2 — next™ (vi,v2)
G wlp((e.nextSub := root.nextSub ; e.next := root), Dpegtsus)
Yoy ve. nextSuble := nextSub(root)](v1) = va — (next[e := root])™ (v, v2)

el skolem(Elim(G)) =
x1 = root — nemt+(x17y1) —
o =v1 — nextt[e:=y1](wa,y2) A (T2 =21 — Y2 =11) —

Yo = va — (nextle := root]) ™ (v, v2)

Fig. 14.Elimination of derived fields from a pretty nice formula. Tinatationnezt* denotes the
irreflexive transitive closure of predicatest(z) = y.

The formulaG expresses the preservation of field constrBint.;s., for updates
of fields next andnextSub that insert in front of root. This formulais valid under the
assumption thatz. next(x) # e holds. The algorithnilim first replaces the inner oc-
currencenextSub(root) and then the outer occurrencerofrtSub. Theorem 3 implies
that the resulting formulskolem(Elim(G)) is valid under the same assumption as the
original formulaG.

Limits of completeness. In our implementation, we have successfully uggieh in
the context of MSOL, where we encode transitive closuregisigcond-order quan-
tification. Unfortunately, formulas that contain trangiticlosure of derived fields are
often not pretty nice, leading to false alarms after the iappbn of Elim. This behav-
ior is to be expected due to the undecidability of transitikasure logics over general
graphs [10]. On the other hand, unlike approaches basediomatizations of tran-
sitive closure in first-order logic, our use of MSOL enablemplete reasoning about

13

reachability over the backbone fields. It is therefore udefbe able to consider a field
as part of a backbone whenever possible. For this purposenibe helpful to verify
conjunctions of constraints using different backbone ftiecent conjuncts.

Verifying conjunctions of constraints. In our skip list example, the fieldextSub
forms an acyclic (sub-)list. It is therefore possible toifyethe conjunction of con-
straints independently, withextSub a derived field in the first conjunct (as in Sec-
tion 2.2) but a backbone field in the second conjunct. Theeetdthough the reasoning
about transitive closure is incomplete in the first conjuiiés complete in the second
conjunct.

Verifying programs with loop invariants. The technique described so far supports the
following approach for verifying programs annotated witbp invariants:

1. generate verification conditions using loop invariapts;, and postconditions;
2. eliminate derived fields from verification conditionsngsklim (andskolem);
3. decide the resulting formula using a decision proceduch as MONA [13].

Field constraints specific to program point. Our completeness results also apply
when, instead of having one global field constraint, we ohice different field con-
straints for each program point. This allows the developeefine data structure in-
variants with the information about the data structure gjgeto particular program
points.

Field constraint analysis and loop invariant inference. Field constraint analysis
is not limited to verification in the presence of loop invat& In combination with
abstract interpretation [3] it can be used to infer loop frvats automatically. Our im-
plementation combines field constraint analysis with syliclehape analysis based on
Boolean heaps [32, 36] to infer loop invariants that are ers&lly quantified Boolean
combinations of unary predicates over heap objects.

Symbolic shape analysis casts the idea of three-valuede<haglysis [35] in the
framework of predicate abstraction. It uses the machinépredicate abstraction to
automatically construct the abstract post operator arsl dbinstruction solely goes
by deductive reasoning. In fact, the computation of therab8bn amounts to check-
ing validity of entailments that are of the forli:AC' — wilp(c¢, p). HereI is an
over-approximation of the reachable statéss a conjunction of abstraction predicates
andp is a single abstraction predicate. We use field constramiais to check valid-
ity of these formulas by augmenting them with the approprsitulation invarianf
and field constraint® that specify the data structure invariants we want to pueser
INDAIANC — wlp(c,p). The only problem arises from the fact that these ad-
ditional invariants may be temporarily violated during gram execution. To ensure
applicability of the analysis, we abstract complete logefpaths in the control flow
graph of the program at once. That means we only requireithatation invariants are
valid at loop cut points and hence part of the loop invariariss supports the program-
ming model where violations of data structure invarianes@mfined to the interior of
basic blocks [28].

Amortizing invariant checking in loop invariant inference. A straightforward ap-
proach to combine field constraint analysis with abstraetpretation would do a well-
formedness check for global invariants and field constsahevery step of the fixed-

14

point computation, invoking a decision procedure at iferadf the fixed-point compu-
tation. The following insight allows us to use a single wiellmedness check per basic
block: the loop invariant synthesized in the presence of well-éahness is identical
to the loop invariant synthesized by ignoring the well-fedmess checkVe therefore
speculatively compute the abstraction of the system utdeassumption that both the
simulation invariant and the field constraints are preskrdter the least fixed-point
Ifp” of the abstract system has been computed, we generate fyrleup free path:
with start point/.. a verification conditionf A D A prjf — wlp(¢c, I AD) wherelfpjf

is the projection offp™ to program locatiorf.. We then use again ollim algorithm
to eliminate derived fields and check the validity of theséfioation conditions. If they
are all valid then the analysis is sound and the data strigtvariants are preserved.
Note that this approach succeeds whenever the straigtafdrapproach would have
succeeded, so it improves analysis performance withoutdatg the precision. More-
over, when the analysis detects an error, it repeats the-fimgtt computation with the
simple approach to obtain an indication of the error trace.

4 Deployment as Modular Analysis Plugin

We have implemented our field constraint analysis and depldas the “Bohne” anal-
ysis plugin of our Hob framework [16, 22]. We have succesgfugrified singly-linked
lists, doubly-linked lists with and without iterators aneuer nodes (Section 2.1), two-
level skip lists (Section 2.2), and our students examplef&ection 2. When the de-
veloper supplies loop invariants, these benchmarks, dtuskip list, verify in 1.7
seconds (for the doubly-linked list) to 8 seconds (for itisarinto a tree). Bohne auto-
matically infers loop invariants for insertion and lookurpthe two-level skip list in 30
minutes total. We believe the running time for loop invatigufierence can be reduced
using ideas such as lazy predicate abstraction [8].

Because we have integrated Bohne into the Hob framework,eve able to verify
just the parts of programs which require the power of fieldst@int analysis with the
Bohne plugin, while using less detailed analyses for theaieder of the program. We
have used the list data structures verified with Bohne as reedi larger examples,
such as the 900-line Minesweeper benchmark and the 1280véb server benchmark.
Hob’s pluggable analysis approach allowed us to use thestgeeplugin [21] and loop
invariant inference techniques to efficiently verify clieaode, while reserving shape
analysis for the container data structures.

5 Further Related Work

We are not aware of any previous work that provides compésteiguarantees for an-
alyzing tree-like data structures with non-deterministicss-cutting fields for expres-
sive constraints such as MSOL. TVLA [26, 35] was initiallysigmed as an analysis
framework with user-supplied transfer functions; subsequwork addresses synthesis
of transfer functions using finite differencing [34], whichnot guaranteed to be com-
plete. Decision procedures [18, 27] are effective at reiagpabout local properties, but
are not complete for reasoning about reachability. Pramgjsilthough still incomplete,
approaches include [25] as well as [19,30]. Some reaclapiibperties can be reduced
to first-order properties using hints in the form of ghostd#e]15, 27]. Completeness

15

of analysis can be achieved by representing loop invariantsaindidate loop invari-
ants by formulas in a logic that supports transitive clogaig 28, 32, 36—39]. These
approaches treat decision procedure as a black box and,apipéiad to MSOL, inherit
the limitations of structure simulation [11]. Our work caa biewed as a technique
for lifting existing decision procedures into decision gedures that are applicable to
a larger class of structures. Therefore, it can be incotpdriato all of these previous
approaches.

6 Conclusion

Shape analysis is one of the most challenging problems ifigldeof program analysis;
its central relevance stems from the fact that it addressgsd&ta structure consistency
properties that are 1) important in and of themselves 2igatifor the further verifica-
tion of other program properties.

Historically, the primary challenge in shape analysis weensto be dealing effec-
tively with the extremely precise and detailed consistgooperties that characterize
many (but by no means all) data structures. Perhaps foreason, many formalisms
were built on logics that supporteahly data structures with very precisely defined ref-
erencing relationships. This paper presents an analyaistipports both the extreme
precision of previous approaches and the controlled rémtuict the precision required
to support a more general class of data structures whosemnefag relationships may
be random, depend on the history of the data structure, grfeaisome other reason
that places the referencing relationships inherently héybe ability of previous logics
and analyses to characterize. We have deployed this asatysie context of the Hob
program analysis and verification system; our results shawit is effective at 1) an-
alyzing individual data structures to 2) verify interfatkat allow other, more scalable
analyses to verify larger-grain data structure consist@naperties whose scope spans
larger regions of the program.

In a broader context, we view our result as taking an imporségp towards the
practical application of shape analysis. By supportingdatuctures whose backbone
functionally determines the referencing relationships/alt as data structures with in-
herently less structured referencing relationships,dhpses to be able to successfully
analyze the broad range of data structures that arise itiggalts integration within the
Hob program analysis and verification framework shows holgvterage this analysis
capability to obtain more scalable analyses that build erréisults of the shape analy-
sis to verify important properties that involve larger g of the program. Ideally, this
research will significantly increase our ability to effeelly deploy shape analysis and
other subsequently enabled analyses on important progrimterest to the practicing
software engineer.

References

1. R.-J. Back and J. von WrighRefinement CalculusSpringer-Verlag, 1998.

2. |. Balaban, A. Pnueli, and L. Zuck. Shape analysis by pagdiabstraction. INMCAI'05,
2005.

3. P. Cousot and R. Cousot. Systematic design of programysasdtameworks. IrProc. 6th
POPL, pages 269-282, San Antonio, Texas, 1979. ACM Press, Nely Xof.

16

o1

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

D. Dams and K. S. Namjoshi. Shape analysis through predidsstraction and model check-
ing. In Proc. 4th International Conference on Verification, Modéie€king and Abstract
Interpretation volume 2575 of. NCS pages 310-323, 2003.

. P. Fradet and D. L. Métayer. Shape typesPioc. 24th ACM POP[1997.
. R. Ghiya and L. Hendren. Is it a tree, a DAG, or a cyclic gfaiProc. 23rd ACM POPL

1996.

. E. Gradel. Decidable fragments of first-order and fixetiplogic. From prefix-vocabulary

classes to guarded logics. Rroceedings of Kalmar Workshop on Logic and Computer
Science, Szeged003.

. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Ldstraction. InPOPL '02:

Proceedings of the 29th ACM SIGPLAN-SIGACT symposium awipkés of programming
languagespages 58-70, New York, NY, USA, 2002. ACM Press.

. N. Immerman Descriptive ComplexitySpringer-Verlag, 1998.
. N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, andd@sh. The boundary between

decidability and undecidability for transitive-closuregics. InComputer Science Logic
(CSL) pages 160-174, 2004.

N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, andY@sh. Verification via
structure simulation. ICAV, pages 281-294, 2004.

J. L. Jensen, M. E. Jargensen, N. Klarlund, and M. |. Sdlabach. Automatic verification
of pointer programs using monadic second order logi®roc. ACM PLDI| Las Vegas, NV,
1997.

N. Klarlund, A. Mgller, and M. I. Schwartzbach. MONA ingphentation secrets. roc.
5th International Conference on Implementation and Agpian of AutomataLNCS, 2000.
N. Klarlund and M. I. Schwartzbach. Graph types.Phc. 20th ACM POPLCharleston,
SC, 1993.

V. Kuncak, P. Lam, and M. Rinard. Role analysisPhoc. 29th POP1.2002.

V. Kuncak, P. Lam, K. Zee, and M. Rinard. Implications afia&a structure consistency
checking system. Iimternational conference on Verified Software: Theoriem|§, Experi-
ments (VSTTE, IFIP Working Group 2.3 Conferenaéirich, Switzerland, 10-13th October
2005.

V. Kuncak and M. Rinard. Boolean algebra of shape armlysnstraints. I[Proc. 5th
International Conference on Verification, Model Checking &bstract Interpretatior2004.
V. Kuncak and M. Rinard. Decision procedures for setredlfields. Inlst International
Workshop on Abstract Interpretation of Object-Orientedggaages (AIOOL 20052005.

S. K. Lahiri and S. Qadeer. Verifying properties of wiellnded linked lists. IiPOPL'06,
2006.

P. Lam, V. Kuncak, and M. Rinard. On our experience wittdutar pluggable analyses.
Technical Report 965, MIT CSAIL, September 2004.

P. Lam, V. Kuncak, and M. Rinard. Generalized typesthexking for data structure con-
sistency. In6th International Conference on Verification, Model Chagkand Abstract
Interpretation 2005.

P. Lam, V. Kuncak, and M. Rinard. Hob: A tool for verifyidigta structure consistency. In
14th International Conference on Compiler Constructiavo(tdemo) April 2005.

P. Lam, V. Kuncak, K. Zee, and M. Rinard. The Hob projectbwpage.
http://hob.csail.mit.edu, 2004.

O. Lee, H. Yang, and K. Yi. Automatic verification of pa@nprograms using grammar-based
shape analysis. IESOR 2005.

T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastaaad G. Yorsh. Simulating
reachability using first-order logic with applications teriication of linked data structures.
In CADE-2Q 2005.

17

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

A

T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Puttingt&tanalysis to work for verifica-
tion: A case study. Iihnternational Symposium on Software Testing and Anal26i80.

S. McPeak and G. C. Necula. Data structure specificatienkcal equality axioms. In
CAV, pages 476-490, 2005.

A. Mgller and M. I. Schwartzbach. The Pointer Asserti@yic Engine. InProgramming
Language Design and Implementati@®01.

S. S. Muchnick and N. D. Jones, editdPsogram Flow Analysis: Theory and Applications
Prentice-Hall, Inc., 1981.

G. Nelson. Verifying reachability invariants of linkstfuctures. IrProceedings of the 10th
ACM SIGACT-SIGPLAN symposium on Principles of programrainguagespages 38—47.
ACM Press, 1983.

T. Nipkow, L. C. Paulson, and M. Wenz&abelle/HOL: A Proof Assistant for Higher-Order
Logic, volume 2283 of. NCS Springer-Verlag, 2002.

A. Podelski and T. Wies. Boolean heapsSKS 2005.

W. Pugh. Skip lists: A probabilistic alternative to batad trees. I€ommunications of the
ACM 33(6):668-6761990.

T. Reps, M. Sagiv, and A. Loginov. Finite differencingagical formulas for static analysis.
In Proc. 12th ESOP2003.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape aizalyja 3-valued logic. ACM
TOPLAS 24(3):217-298, 2002.

T. Wies. Symbolic shape analysis. Master’s thesis, éigitat des Saarlandes, Saarbriicken,
Germany, Sep 2004.

G. Yorsh, T. Reps, and M. Sagiv. Symbolically computingstrprecise abstract operations
for shape analysis. 1h0th TACAS2004.

G. Yorsh, T. Reps, M. Sagiv, and R. Wilhelm. Logical cleteazations of heap abstractions.
TOCL, 2005. (to appear).

G. Yorsh, A. Skidanov, T. Reps, and M. Sagiv. Automat&uase/guarantee reasoning for
heap-manupilating programs (ongoing work).1st AIOOL Workshop on Abstract Interpre-
tation of Object-Oriented Program&005.

Semantics of Guarded-Command Language

To make the completeness statement for our guarded comraagddge precise, we
present in Figure 15 the weakest precondition semantichélanguage presented in
Figure 13.

U
&

e

wip(z :=¢,G
wlp(ei.f :=e2, G
wlp(havoc(z), G

Glz =]

= Q[f := Av.if v = ey then ey else f(v)]
G
FA

U
&

def

[x: mo] with zg a fresh constant symbol

D~

wlip(assert(F),

U
&

e

G
wlp(assume(F),G) = -FVG
&) = wip(c1, wip(c2, G))

é (017G) A Wlp(627G)

wlp(er ; ez,

)
)
)
) def
)
)
G)

wlp(er O ez,

Fig. 15.Weakest Precondition Semantics

18

B Negation Normal Form

To avoid any ambiguity, Figure 16 presents rules for tramsfiog a formula into nega-
tion normal form. This transformation ensures that all eoences of field constraint

formulas introduced b¥lim are negative in the top-level formula.

proc NegationNormalForm (G : formula with connectives\, v, —):
apply the following rewrite rules:
-(Vz.G) — Jz.-G
-(3z.G) — V.-G
-—G — G
“(G1 AG2) — (=G1)V (=G2)
(G Vv G2) = (2G1) A (2Go)

Fig. 16.Negation Normal Form

19

C Proofs

Proof of Lemma 1. The left-to-right direction follows immediately. For th&ht-
to-left direction assume thatA D — G is valid. Let .S be a structure such that
S E I. By totality of all field constraints inD there exists a structur&’ such that
S’ = IAD andS’ differs from .S only in the interpretation of derived fields. Since
Fields(G) C Fields(I) andI contains no derived fields we have ti##t|= G implies
SEG.=

Proof of Theorem 1. By induction on the first argumeidt of elim we prove that, for
all finite K,
INDAelim(G,K) A /\ FCy, (xi,yi) EG
(i, fiyi) EK

For K = () we obtain A D A Elim(G) & G, as desired. In the inductive proof,
the cases wheff' = () are straightforward. The cagét) € T uses the fact that if
M EG[f(t):=ylandM = f(t) =y, thenM = G.m

Proof of Theorem 2. Consider a field constraift = FC; and letz andy be such that
F(z,y). Because'(z, f(z)) andF' is deterministic by assumption, we haye- f(z).

It follows thatI A D A F(z,y) E f(z) = y. We then prove by induction on the
argument= of elim that, for all finite K,

INDAGA N filw) =yi | elim(G, K)

(zi,fi,yi)EK

For K = () we obtainl A D A G k= Elim(G), as desired. The inductive proof is similar
to the proof of Theorem 1. In the cagét) € T, we consider a mod&l/ such that
M = INDANGAN (., 1. yoer filxi) = yi. Consider ang, y such that: 1M =« = ¢,
Q)M | F(x,y)and3)M = o = x; — y=vy; forall (a;, f,y;) € K.To showM |=
elim(Gy, K U{(z, f,y)}), we consider a modified modél; = M|[f(z) := y] which
is like M except that the interpretation gfatz is y. By M = F(z,y) we conclude
My EIND.ByM |z =z — y=y;,weconcludeVy = A, 4 o er fil@i) =
y; as well. Becausé A D A F(z,y) = f(x) = y, we concludeM; E f(z) = y.
BecauseM = x = t andDerived(t) = 0, we haveM; = =z = t so fromM = G
we concludeM; = G, whereG; = G[f(t) := y]. By induction hypothesis we then
concludeM; = elim(G1, K U {(z, f,y)}. Then alsaM = elim(G1, K U {(z, f,vy)}
because the result efim does not contairf. Because:, iy were arbitrary, we conclude
M = elim(G,K).m

Proof of Lemma 2. Let G be a nice formula. To show thdtA D = G implies
IND [= Elim(G), letI AD |= G and letfi(t1),..., fn(tn) be the occurrences of
derived fields inG. By assumption, . . ., t, € Ground(G) andElim(G) is of the form

Veiyr.x1 =t — (Fll A\
2

Vg y2. To :tlz — (Fl A\
vxnvyn-xn :t;.b — (F{L/\G())))

20

wheret!, differs from¢; in that some of its subterms may be replaced by variaplésr
j <i.HereF"=FCy, and

Fi=F'z,y)n [\ (@i=z; — yi=1y,).
J<i,fj=fi

Consider a modeM of I A D, we showM is a model forElim(G). Consider any
assignment:;, y; to variablese;, y; for 1 < i < n. If any of the conditions;; = ¢;

or I} are false for this assignment, th&tim(G) is true because these conditions are
on the left-hand side of an implication. Otherwise, comdisi 7 (x;,y;) hold, so by
definition of £}, if z; = z;, theny; = y;. Therefore, for each distinct function symbol
f; there exist a functiorf; such thatf (x;) = y; for f; = f;. Because(z;, y;) holds
and eaclFC; is total, we can define sucf) so thatD holds. LetM’ = M|f; — f;];
be a model that differs from/ only in that f; are interpreted ag;. ThenM’ |= I
becausd does not mention derived fields and’ = D by construction. We therefore
concludeM’ = G. If ; is the value of; in M’, thenz; = t; becausé/ |= x; = ¢; and
Derived(t;) = . Using this fact, as well ag;(z;) = ¥;, by induction on subformulas
of Gy we conclude thaf?y has the same truth value @in M’, soM’ = Gy. Because
G does not contain derived function symbald, = G, as well. Because; andy;
were arbitrary, we conclud®/ |= Elim(G). This completes the proof.

Remark. Note that it is not the case that a stronger staterhientD A G | Elim(G)
holds. For example, takB = true, andG = f(a) = b. ThenElim(G) is equivalent to
Vy.y = b anditis not the case thét\ f(a) =b = Vy.y =b.m

Proof of Lemma 4. Using the conjunctivity properties oflp:
wlp(c,Vz.G) < Vz.wlp(c,G)

and
wlp(c, G1 A G2) < wlp(c, G1) Awlp(c, Ga)

the problem reduces to proving the lemma for the case of pigalilas.

Since we definedip recursively on the structure of commands, we prove the-state
ment by structural induction on commaad-orc¢ = (e; := e3) andc = havoc(z) we
have thatwlp replaces ground terms by ground terms, i.e. in particulanttbduced
occurrences of derived fields are ground. et assume(F') andc = assert(F') every
occurrence of a derived field introduced Wip comes fromF'. Sincel’ is quantifier
free, all such occurrences are ground. The remaining cafles/ffrom the induction
hypothesis for component commansls.

Proof of Theorem 3. Let G be a quite nice formulal) a conjunction of field con-
straints, and: a guarded command. Sinsleolem(G A D) is a nice formula, Lemma 4
implies thatwlp(c, skolem(G A D)) is a nice formula, so we have

IND E=wlp(c, GAD)

I A D E wlp(e, skolem(G A D)) (by Lemma 3)
I A D = Elim(wlp(e, skolem(G A D))) (by Lemma 2)
I = Elim(wlp(c, skolem(G A D))) (by Lemma 1)

21

D Specifying Bohne Analysis Tasks

In this appendix, we expand on Section 4 and describe how el@@r actually uses
Bohne to verify program parts using shape analysis. Whegrldping programs with
the Hob framework, the developer divides the program intetatmodules. For each
module, the developer must provide module implementationa standard program-
ming language) and specifications (in a set-based spemficdainguage) for program
modules. To make sense of the set specifications, an analgsidy needs to know
what each set means. Hob enables developers to supply setides using customized
abstraction function languages: each analysis plugin egifyvthat a module’s imple-
mentations conforms to its specification using the modualb&raction section.

We next describe the contents of Bohne abstraction modulese abstraction mod-
ules express set definitions and invariants using firstrdodenulas with reflexive tran-
sitive closure, thereby enabling the Bohne plugin to vettifyt a module implementa-
tion conforms to its specification. Abstract sets in procedureconditions and post-
conditions are translated using the set definitions in tistrattion modules. Invariants
ensure that the set definitions are always meaningful byt@inieg the concrete pro-
gram state. They prohibit backbone fields from forming n@®tdata structures and
give field constraints for derived fields. Invariants areat&/assumed upon entry to a
procedure and verified upon exit from a procedure; they mayptearily be violated
within procedures. Given module implementations, spetifics, invariants, and set
definitions, the Bohne plugin emits and approximates vaitific conditions using the
techniques described in Section 3 and checks them using @dA/Mdecision proce-
dure.

Specifying heap predicatesThe abstraction function used in the analysis of the Bohne
pluginisinduced by a set of unary heap predicates. Heapqated are specified by the
developer in terms of sets. These sets are defined by usimyifas in first-order logic
with reflexive transitive closure. In particular, the dexgdr must provide the definitions
of all abstract sets used in the specification section of tbdute. Furthermore, addi-
tional heap predicates are often needed for Bohne to sdattgssfer loop invariants;
theproc construct allows the developer to define these heap predicat

In addition to user-provided heap predicates, the plugioraatically introduces
heap predicates for every global and local object-typedhlie of the analyzed pro-
cedure and thaull object. Moreover, for every unprimed abstract Sehat occurs
in a post condition of the analyzed procedurdick predicate’ S is introduced. The
Bohne plugin uses these tick predicates to compute a proestimmary that allows
the verification of the post condition.

Specifying representation invariants. The developer specifies the representation
invariants for the Bohne plugin using invariant declanagién the abstraction section,
as previously illustrated, for instance, in Figure 7. ThéBeplugin supports two kinds
of representation invariants:

— field constraintsgiven by formula® ; of the form

Vey. f(z)=y — F(x,y)

— andstate invariantsgiven by any formula which is not a field constraint.

22

Afield constraint describes a fieftin terms of a formula” = D;. An example of such
a derived field—that is, a field specified using only field coaists—in Figure 7 is the
field prev . Field constraints impose additional implicit well-foradreess constraints
on the heap: all fields without a field invariant are considee span a forest. The
field constraints themselves and the treeness properthénon-derived fields may
be violated within the procedure, with the exception of l@op points and exit points
of the procedure. This means, in particular, that the fieldstraints and the treeness
property are part of all loop invariants.

State invariants may be violated at any point within the pdae, as long as they
are reestablished by the end of the procedure. An examplestste invariant is the
invariant given in Figure 7 which says thatrdfot is not pointing tonull , then it has
no incomingnext edges,

The analysis restricts the heap to the part visible from pnogvariables in the an-
alyzed procedure. Moreover, all constraints apply to ttogaation of the heap onto the
fields declared in the currently analyzed module. In keepiitig the Hob philosophy of
modular analysis, field and treeness constraints do noy apikelds declared in other
modules, which enables objects to participate in multigleadtructures and makes the
Bohne plugin applicable to more general program components

23

