UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classitication of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Cotporate author) 2a. REFPORT SECURITY CLASSIFICATION
MASSACHUSETTS INSTITUTE OF TECHNOLOGY UNCLASSIFIED
2b. GROUP
PROJECT MAC NONE
3. REPORT TITLE
STORAGE HIERARCHY SYSTEMS
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
INTERIM SCIENTIFIC REPORT
5. AUTHOR(S) (First name, middle initial, last name)
STUART E. MADNICK
6. REPORT DATE 7a8. TOTAL NO. OF PAGES 7b. NO. OF REFS
APRIL, 1973 155 90
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERI(S)
NO0014-70-A-0362-0006
b. PROJECT NO. MAC TR-107
c. 9b. OTHER REPORT NOI(S) (Any other numbers that may be assigned
this report)
. NONE
10. DISTRIBUTION STATEMENT
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
PH.D. THESIS, DEPT. OF
ELECTRICAL ENGINEERING, OFFICE OF NAVAL RESEARCH
MAY 15, 1972

13. ABSTRACT

The relationship between the page size, program behavior, and
page fetch frequency in storage hierarchy systems is formalized and
analyzed. It is proven that there exist cyclic program reference
patterns that can cause page fetch frequency to increase signifi-
cantly if the page size used 1s decreased (e.g., reduced by half).
Furthermore, it is proven in Theorem 3 that the limit to this
increase is a linear function of primary store size. Thus, for
example, on a typical current-day paging system with a large
primary store, the number of page fetches encountered during the
execution of a program could increase 200-fold if the page size
were reduced by half.

The concept of temporal locality versus spatial locality is
postulated to explain the relationship between page size and pro-
gram behavior in actual systems. This concept is used to develop
a technique called the "tuple-coupling" approach.

Consistent with the results above and by generalizing conven-
tional two-level storage systems, a design for a general multiple
level storage hierarchy system is presented. Particular algorithms
and implementation techngiues to be used are discussed.

FORM
DD 1 NOV 551473 (PAGE 1) UNCLASSIFIED

S/N 0102-014-6600 Security Classification

UNCLASSIFIED

Security Classification

14, LINK A LINK B LINK C
KEY WORDS

ROLE wT ROLE wT ROLE wT

Storage Hierarchy

Virtual Memory

Dynamic Storage Allocation
Operating Systems

Paging

Page Sirze

Replacement Algorithms
Computer Architecture
Multi-level Memoires

Spatial Locality

DD ."2%..1473 (8ack) UNCLASSIFIED

(PAGE 2) Security Classification

STORAGE HIERARCHY SYSTEMS

Stuart E. Madnick

April 1973

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

Storage Hierarchy Systeums 2

STOKASE HIERARCHY SYSTEMS

Dy
STUART ELLIOT MADNICK

Submitted to the Department of Electrical Engineering on May
15, 1372, in partial fulfillment of the requirements for the
d2gre2 of Doctor of Philosophy.

ABSTRACT

The relationship betveen page size, prograa behavior,
and page fetch frequzancy in storage hierarchy systems 1is
tormalized and analyzed. It is proven that there exist
cyclic program reference patterns that can cause page fetch
freyu2ncy to increase significantly if the page size used is
l2creased (e.g., relucea by half). Furthermore, it 1is
provan in Theorem 3 that the limit to this increase 1is a
lin2acr function of primary store size. Thus, for example,
on a typical current-iay paging system with a large primary
store, the number of page fetches encountered during the
2xecution of a progrim could increase 200-fold if the page
size were reduced by aalf,

The concept of temporal 1locality versus spatial
1>cality is postulatad to explain the relaticnship between
page size and prograa behavior 1in actual systenms. This
concept is used to devalop a technique callied the
"tupl2-coupling” approach. It 1is proven in Theorem 5 that
when used in conjun:tion with <conventional hierarchical
storaje system replacement algorithms, tuple-coupling yields
the benefits of smiller page sizes without the dangers of
2xplosive page fetch activity,

Zonsistent with the results above and by generalizing
conventional two-leva2l storage systems, a design for a
jenaral multiple lavel storage hierarchy systenm is
presented, Particular algorithnms and implementation
tachnigques to be used are discussed,

THESIS SUPERVISOR: Joan J, Donovan
PITLE: Associate Professor of Electrical Engineeriny

Storage Hierarchy Systeas 3

ACKNOWLEDGEMENT

Phis thesis describes research done at M,I.T. in
conjunction with Project MAC and the Department of
Electrical Engineering, both of whose support and
2ncouragema2nt are gratefully acknowledged. buraing the
cours2 of this research, I have been fortunate to have had
tae cooperation of taes IBM Cambridge Scientific Center and

the Honeywell Information Sciences Center.

I have also bénafited greatly from conversations with
numersus colleaques, In particular, special mention must be
ea1d2 of Professor J. H. Saltzer, Don Hatfield, Harold
Schweak, Paul Wood, Sta2ve Zilles, Leonard Goodman, and Jerry
Johnson, who provilel receptive ears and were helpful in

uaravaling many of the= important issues,

By agreeing to be Readers, presumably at a weak moment,
Protessor J., C. R. Licklider and Dr. Ugo Gagliardi were
iaflicted upon by this thesis and the associated chaos. 1
appreciate their «cooperation and understanding and look
forward to their assistance in the continuation of this

rasearch.

5torige Hierarchy Systeas 4

I am obligated to acknowledge Professor John Donovan as
my supervisor for this thesis. But, during ay studies as a
jraduite stud=snt stud=2ant, he has been @uch more than just a
tnesis supervisor, He has been my teacher, advisor,
cslleague, and friend, His cooperation and assistance, not
to m2ation his enthusiasm, have had a profound affect upon

uy research and I am truly grateful.

Most importantly, I thank my wife, Ethel, for
strigyling through and surviving the tortures of being
marri2d to a graduate student for countless years (I'm sure
that she has counteld themnm). The same commendations are
2xtenled to my sons, doward and Michael. Unfortunately, I
fzar that the damage to thewm might be more permanent. I
rzalized this recently when I learned that in response to a
first-grade assignment to write about what you want to be
when you grow up, iHoward had writtem: "When I grow up i want

t> be a student like ay daddy".

work reported herein was supported, in part, by Project MAC,
an M.I.T. research prd>ject sponsored by the Advance Research
Projects Agency, Department of Defense, under Office of

Navil Research Contract Nonr-4102(C1).

A3STRACT

Storaje Hierarchy Systems

§

CONTENTS

S 52 5929 2000 080 0PP OO NS S OOLP AR OT SIS EP D ERNR SR BOS

A:KNQHLEDSEMENT LA AR EENE R IR N NI I BN I I A R R I BN BN I N Y N 'Y

1.

2.

3.

5.

INTRODUCTION AND PLAN OF THESIS seeessasssssesocssans
1.0 Introduction ® 55 00 000 000 NI EBOLELELELEIIETIPIETDNYE
1.1 Significanca of Problen Se re 200 0L et EsRLBLERLEEEES
1.2 Specific Goals and Accomplishments seeeescsss
1.3 General Structure Of ThESLS seeesessasesssoses

THE STORAGE HLIERARCAY PROBLEM cecesvsovcencssssoscosses
2.0 Introductioa $ 20 85 90 8000800000080 I BLEEDLTTS
2.1 Storage Hierarcny Ubjectives e 900 sensn s se s
2.2 Storage HierarChy APPrCACReS ecesoesssessncsae

FORMALIZATION OF STORAGE HIERARCHIES eeecesscsssosnne
3.0

W w W W

N

Inttoduction 20 00 900 9 900 I PORSIPLSLIEOISO GO SIS TDBSE
MajOr PAram2ters s essesscessscscsccsssnosncnsss
The Storage Hierarchy Model seesevecssosconss
Performance MEASULES sesssssesscssnnsonssnsas
Related Res2arch S 00002V LIISIIOERRIALESILEISBIOEOLOLEETDES

ASTORAGE HIERABCHY SYSTEH LI B B B B BN B BRI B I I B BN BN BN NN N N R R N R 1
4.0
4.1

&8 g e E s
e » 5 e o @

O U E W N

Introdu:tiou S 5 & 60 00855 60025 0N B2 PP S OSSN PIIEPPIOIIE
continuous HierarChY s 900 0 s BB s sDeERINEELIEOELOE RS
Shadow Storage and Page SplittiNg eseeseesosses
Direct Transfer $o 0009000 P00 00 0PRs0L IR OIROTLLS
Reaid rhrougﬂ LI R N I I N I T N R S S A S S N S Y
Store Behindl seieevrssevescsoscsscsossnncnsnssss
Automatic ﬂanagement L N R N A A A N R X
Comments on Storage Hierarchy System Desiyn .

ANALYSIS OF PAGE SILZE CONSIDEHRATIONS sescsesoasssnes
5.0

INtroduCtion s eseessssecsssssensscsssssncssna
The Page Size Issue S e esns sR NI RBPOERINOIIELIE TSRS
Anomalies ©5 080 90 00 0000 LI PRENRENIELNRIOEEIPEE OGS
The Page Siza2 A“Oﬂaly 2000 2000 e rs P sV s N A
Significanc2 of the Page Size AnOmAlYy eeeesee
Bounds on th2 Pagye Fetch Frequency Ratio

Storije Hierarchy Systeas

6., SPATIAL VS. TEMPORAL LOCALITY MODEL seeecovcvcccsses

6.0 Introductiol ssesesssssneas
6.1
6.2
643
5.1 LOCality MiXeS seesevsvese
6.5
6.6

7. SPATIAL REMOVAL ALSIORITHMS sseese
7.0 Introductiol esessesvssesas
7.1 Tuple-Coupling Approach ..

Types of Program Reference Locality eesessons
Conventional Removal Algorithms s 9D s sREOELIGSS
Locality in ACtual PLOQLAMS eocvessrsnrsssssnne

Spatial LQCﬂlitY Algorithﬂs e 0nsssssses s
Comments on tne Page Size Anomaly eceecesscesen

[2 B BE BN BN B BE BE BN BF BN BN R BN N AN A J

22 80 09 5 50000 "D S0 eSS

7.2 Effectiveness of Tuple-Coupling ss s s s

3. DISCUSSION AND CONCLUSIONS sesnse
8.0 INtroduCtionN eescevsonssoes
8'1 Sunﬂary ® 0 36 & 0 5O OB OB OB SPODS
8,2 FUrther WOILK sesssssessese

REFERENCES AND BIBLIOGRAPHY seesesee

B[OGRAPHICAL NOTE .ll.»..'.......'...

S 82 8 05 59 80P 0N ENERSS

EIE K 20 IR BE BE BN BN BN BE K BN BN BN IR BR BR

[N B BN BN BN BN BN B B B BN BRI BN R N BN

L I IR BN BN B BN B B RN BE B BE AR BN BN R AN I

295 995 560 0059 90 08009

o9 » 8 5002 DSBS S PES S

120
120
120
122
122
123
124
125

126
126
126
135
137
137
137
139
141

154

8.
9,
1.
11,
12.
13,

14,

Storage Hierarchy Systems

ILLUSTRATIONS

Structure of a Storige HierarChy SYSteM ecseeecesesrss
Format of Logical AddCreSS eeesvesesesssesscssassssss
Example of Page Trace Simulatiol seeecesssscsescsone
Paje Splitting and ShadowWw StOrage seesesssasssessssss

Reazd Through SECUCLULE sasnsssnvvossssossnssnsonsees

Example of Casel ® 55 20 28 5500 BB DIDP OOV O EE BB R PSPPSR

Exdmple OFf CASe 2 evevnnsassssnsnnssssscsessssscsnsans
Example of Case3 LIS B0 B BRI BE R BE BE BE I BN BN BN I BN BN N BN BE BRI BN R BN NN N BN BN NE BN RN BN

Example of Case 3 (for LEU RemOVAl) sssscesnnencnnss

2 L B 20 B BE BE BN R 2N 20 B BE 2R BN Bk BR BN BN

lyclic Page Trace with |41

3 E 2K B DR BN BF IR B BN BN BE B BE NN BE BN AR BN AN J

Cyclic Page Trace with |M1|
Cyclic Page Trace with FIFO REBOVALl seessasecnnsase
gxample of LRU Removal with Tuple-Coupling sesess e

Example of FIFO R2moval with Tuple-Coupling seseces

75

90

93

94

98

103

100

118

128

131

Storige Hierarchy Systenas

TABLES

1. Repfeseﬂtative Storage HierarChy sesessenssssnssssss 28
Z., Major Parameters of Storage Hie€rarChY .veeseseccocevss 40

3. Marginal Increase in Page Transfel TileS .cecesences 66

MAJOR THEOREMS

i. Paje Size Anomaly Existence Theorem (FIFO) ssvevsses 95
2, Paje Size Anomaly Existence Theorem (LBU) sesesssnse 97
3. St2ady-State Page Fetch Ratio (LRU), /r/=|M'}+1 105
4. Steady-State Page Pa2tch Ratio (FIFO) seessesssesssss 119

5. "Taple-COupling" Limits r to 2 esesessensensvssesssae 132

Storije Hierarchy Systeams 9

CHAPTER 1.

INTRODUCTION AND PLAN OF THESIS

—— o D 2 e

Ihe primary goal of this thesis is to provide insight
int> and shed additional light on several key problems in
the design and analysis of general storage hierarchy

systeas,

1.1 significance o

i+

Problen

Phe importance of research in stcrage hierarchy systeas
his b2en pointed out by Prof. F. J. Corbatd recently in the

AIT Project MAC Progra2ss Report VIII (July 1971):

"BY now, it has become accepted lcre in the computer
system field that use Oof automatic management
algorithas for memory systenms, constructed ot
s2veral levels with different access times, can
pcovide a significant simplification of programminy
effort. ... Unfortunately, behind the @wmask of
acceptance hides a worrisome lack of knowledge
b2hind how to engineer a multilevel memory systen
with appropriate alyorithms which are matched to the
load and hardware characteristics."

On multiple level storage hierarchies, Prot. J. H.

Storage Hierarchy Systems 10

Saltzar vas even more explicit {subject notes on

"Information Systems", MIT, 1972, p. 4-58):
"An interestiny problem arises if one has three or
more technologies to deal with., ... The problem of
predicting the performance of a three level,
automatically maniged system 1s not at all well
understood. ... Although the need for more than one
l2vel has already been argued, there is currently no
kaown criterion for introducing three, four, or N
lavels for a given system. ... Although there are by
now many implemantations of two level memory
systems, the dynaaic management of a three or more
l2vel memory syst2m 1is such an uncharted area that

there do not yot exist examples of practical
algorithms which one can examine.,"

1.2 gpecific Goals and Accomplishments

lhe specific goals and acccmplishments of this thesis,

wiich are further elaonorated later, are:

* Analyze the affect of «certain parameters, such as
page size, wupon the performance of a storage
systen.

* Develop a concept of 1locality based upon both
spatial and temporal adjacency in address
reference patterns that explains certain anocmalies
discovered in actual paging systess.

¢ Propose, formalize, and measure the pertormance of
nawv "spatial-removal® storage mapagement
algorithms, 1u particular "tuple-coupiing",

* Design a practical algorithnm for eftective

Storage Hierarchy Systenms 11

management of wmultiple level storage hierarchy
systems anl demonstrate its effectiveness under

some simulatad system loads,

The key plan of this thesis is to investigate several
Ctucial problems and requirements of multiple level storage
hierarchy systenms. Particular areas are identified and
corrasponding theorias developed and proven., A new and
J2n2ral design for storage hierarchy systems 1is also
presented and evaluated. Finally, empirical measurements are
presented to validate and calibrate the overall design and

specific theoretical -onjectures.,

I'his thesis is organizationally aivided 1into 8
chaptars. The structure can be best introduced by outlining

the content of the following chapters in the sections below.

1. 3.1 Chapter 2: Motivation for Storage Hierarchy Systems

lhis <chapter presents a perspective on the storage
hierarchy problem and the motivation for such systems., It
1s primarily written for the benefit of people knowledgeable
ia the2 general computer field but who are not especially

experienced in storage hierarchy systems., For the expert

Storage Hierarchy Systeas 12

realer, this chapter exposes the biases and orientations of
the author and thus sets the tone for the remainder of the
thesis. This chapter also briefly reviews the history of

rasearch in storage systems and cites numerous references.

1.3.2 Chapter 3: Formalization of Storage Hierarchy Systems

A description and formalization of the basic
characteristics of storage hierarchy systems is presented in
tais chapter., This is followed by a summary and critical
analysis of research that directly relates to the specific

joals of this thesis,

1. 3.3 Chapter 4: A Storage Hierarchy Systen

In this chapter the key coacepts of the fproposed
storage hierarchy system are presented and discussed, The

principle and novel technigques are briefly described below:

1.3,3.1 Continuous Hierarchy

Fhe ratio of p2rformance between adjacent levels 1is
kept wmoderate (e.g., a factor of 1C0 or less) to minimize
diszontinuities or awkward special-case algorithms. This is
ia coatrast to many current systems with inter-level ratios

of 1000 or more.

Storage Hierarchy Systenms 13

1.3.3.2 Shadow Storage and Page Splitting

Information is transferred in decreasing smaller size
blocks as it is passeil up from low pertormance levels of the
hieracrchy toward the "reguest generator" at the uppermost
level., Thus, the information that is finally received by the
raquast generator has left a "“shadow!Y behind in the lower
levels. The significaace and rationale for this technique is

turther elaborated in Chapter 6,

1.3.3.3 Automatic Management

In order to reduce the 1load on the central processor
and provide for more 2fficient and parallel cperations, the
storaje management function will be distributed and
incorporated into tha2 storage levels (e.g., "intelligent"
i2vic2 controllers {1], etc.,)., This technique also reduces

the complexity of the operating system software.

1.3.3.4 Direct Transfer

Storage transfers between two adjacent levels need not

have any effect upon nor require the assistance ot any cther

la2vels (e.g., there 1is no need to move information from

Storaje Hierarchy Systeas 14

lz2vel n to level 1 aind then frcm level 1| to level n-1 if
only level n to level n-1 was needed; this two step process
Ls often required on contemporary systems). Direct transfer
i3 accomplishel by synchronizing non-mechanical storage
jevices or by using "rubber-band" buffers [33] between

2lectro-mechanical storage devices.
1¢3.3.5 Read Through

Storage transfers, as noted above, are only made
batwe2n adjacent levels of the hierarchy, such as from level
n to level n-1. But, each level, such as level n-1, can
connec-t its input bus (from lower level n) to its output bus
(to higher level n-2) so that the data can be read through
(L.2., transtferred to level n-2 while being stored in level
n-1. A similar, though specialized, technigue 1is already
asel in certain systa2ams, such as the IBM System/370 Models

155 and 165 cache systams {52].

This results in performance similar toc a direct
connection from each level to the request generator but it
proviles much more control in the storage levels and a much

simpler structure,

Storage Hierarchy Systems 15

1.3.3.6 Store Behind

By using ths excess capacity of the inter-level
ciann2ls, there is a continual tlow of altered data froam tae
higher levels to the lowest level permanent storage. Thus,
tae actual updated information is stored behind (after) the
store initiation froa the reguest generator. The updated
iaforaation 1is propagated down, level by level. Whenever

iaforsation is altereld at a particular level, it is tagged

as altered and is schz2duled for a "store behind" operation.
1. 3.4 Chapter 5: Analysis of Page Size Considerations

Jne of the most 1important parameters of a storage
hierarchy system 1is the page size chosen as the unit of
transfer between two levels of the hierarchy. In this
Caaptar, the factors influencing page size are examined froam
the device charactaristics viewpoint and the prograuw

p2havior viewpoint,

Jf particular concern, it has been noticed by Hattfield

{47]) and Seligman [78] and formalized in Chapter 5 that:

"There exists a page trace, P, and depand-tetch
FIFO-removal or LRU-removal inter-level storage
systems, 5 and S', with page =sizes N and N'=N/2,
respectively, such that the ratio, r, of fetch
frequency f' to f exceeds 2.%

Storaje Hierarchy Systems 16

'his result runs counter tc¢ the hoped for behavior of
dacreased page sizes as noted by Denning [25]:

" ,.. small pages permit a great deal of compressioun

without loss of =2fficiency. Small page sizes will

yield significant improvements in storage
utilization e.. "

In this chapter the significance of this prcblem is
i2monstrated by proving that even "well-behaved" removal
alyorithnms, such as stack algorithms [63], are not immune to
this adverse performanze behavior. Furthermore, the nature
ot this phenomenon 1is analyzed and bounds on its behavior

dare developed.

1.3.5 Chapter 6: Spatial vs. Temporal Locality Model of

Program Behavior

A primary rationale for hierarchical storage systems is
based upon the "Principle of Locality", Unfortunately, this
principle is still 1 poorly understood, or at least
controversial, phenom2non., It is difficult to determine the
original "discoverec" of this principle but it is
iataresting to note that its definition has changed in time.
For 2xample, Denning {29, p.3], 1in 1968 1loosely described

locality as:

Storige Hierarchy 3ystens 17

"the idea that a computation will, during an
interval of time, favor a subset of the information
available to it,.,™
Later, in 1970, Denning [26, p.180] defined it more
precisely based upon the «concepts of "working set"™ and
"reference density", which for a page i at time k:
a(i,k) = Pr[reference r(k)=i],
sica that R(k) is tae ranking of all n pages based upon
a(i,k); thus:
WPRINCIPLE OF LOCALITY: The rankings R (k) are
strict and the expected ranking lifetimes long."
This 1s a much more restrictive definition of locality than

als earlier general concept.

In fact, wmany current storage management systems were
devised first, a general model was then constructed to
d2scribe the system, and finally a "formal" definiticn of
locality was developad to be consistent with the storage
manageament model. This is a reasonable strategy as long as
tae underlying concepts of "the principle of 1locality" are
not lost 1in the procass. Unfortunately, this appears to
hiv2 happened on several occasions. In particular, wmost
popalar definitions of locality tend to be useless ftor
analyzing or explaininj either the relationship of page size

upon program behavior or the impact of generalizinyg from

Storiye Hierarchy Systenms 18

teo-l2vel storage systems to wmultiple level hierarchical

storaje systeas,

In this chapter a new view cf locality is presented (or
an old-view resurrect2d since it mos; closely resembles some
of th2 very early descriptions of locality). In particular,
it 1s shown that th2 general concept of 1locality camn be
subdivided into two separate factors, temporal locality and

spatial locality. Th2se concepts are defined and justified

and then used to explain some peculiar phencmena

("anomalies") observel in actual two-level storage systeas.

By means of address traces and storage systenm
simplifications, the temporal and spatial locality behavior
ot actual programs is emperically measured. These results
are used to reinforcz and <calibrate the storage hierarchy

systea design present21 in Chapter 4.

1.3.06 Chapter 7: Spatial Removal Storage Managenment

Algorithms

Various hierarchy storage management algoritams, such
1s tetch (e.g., demand-fetch) and temporal removal (e.g.,
rirst-in first-out (FIFQ), least recently used (LRU), etc.)
nave peen dJdeveloped, primarily for two-level hierarchies.

lhera appear to be no spatial removal algorithms described

Storage Hierarchy Systenms 19

ia th2 literature., Based upon Chapter ©6, several spatial

algorithms are proposed and analyzed,

It is also shown that some cf the problems aescribed in
Chapter 5 can be solved by spatial removal algorithms. 1In
particular, Hatfield 48] noted that:

"is yet we have been unable to prove that there is a
raplacement alyorithm using only the past history ot
page requests which cannot generate more than twice
the exceptions with half size pages.®
In this chapter a new algorithm, named tuple-coupling, is
presentei, It is formally vproven that 1t satisfies

Hatfield's requirements above,

Furthermore, the operational pehavior of tuple-coupling

i1s analyzed by measuring the performance of actual prcyrams,

1.3.7 Chapter 8: Discassion and Coanclusions

In addition to a general summary of the significant

aspects of the thesis, this chafpter also outlines important

areas for future research.

Storige Hierarchy Systenms 20

CHAPTER 2,

THE STORAGE HIERARCHY PROBLEM

2.0 Introduction

Phe evolution of computer systems has been marked by a
continually increasiny demand for faster, larger, and more
2cononical storage facilities., In addition to the obvious
concern for Dbetter parformance, the organization of a
Computer system's storage plays a key role in program
development and programmer efficiency. It has often been
claimed that "any software design blunder can be overconme by

adding more wemory",

It has become generally recognized that the confiicting
requirements of high-parformance yet low-cost storage may be
b2st satisfied by 1 mixture of technologies coumbing
zxpeasive aigh-perfarmance devices with inexpensive
lower-perforaance devices. This strategy has been given
32v2ral names, 3uch as "hierarchical storage systea”,
"iutomatic multilevel storage management", "virtual memory",
and the inevitable "virtual memory system for the automatic
maltilevel management of a hierarchy of storage devices",

la tnis thesis the somewhat shorter tern storage hierarchy

Storage Hierarchy Systeas 21

systea will be used,

Investigations into autcmated storage hierarchy
technigues can be traced back more than a decade., It we
w2r2 to 1include manual techniques, we would find storage
hierarchies at the wvary dawn of the "computer age®,
Unfortunately, there are still many unsolved and poorly
understood problems. This situation can be partly explained
by tha fact that th2se systems tend to Dbe (1) extremely
complax, (2) 1ill-suited to most conventional analytical
t2caijues, and (3) deeply influenced by the rapidly evolving
computer technology which keeps ‘“changing the ground rules®
it often frightening rates. 1In spite of these challenginy
stumbling blocks, a successful storage hierarchy system is
30 iamportant to the future usefulness of computer systems

that we cannot afford to abandon the search,

2.1 Storage Hierarchy Jbjectives

Before delving 1nto details, it is worthwhile to
briefly consider the needs and uses fcr an effective storage

hieracchy.

Storaje Hierarchy Systems 22

2.1.1 System Performance and Economics

As logic tecanology and computer architecture
t2caniques have advanced, we have found it possikle to
produce systems of incredible speed. Such systems are often
rated, vrather crudely, in terms of MIPS (millions of
iastructions per second). Experimental systea of over 100
MIPS aave been developed (e.g,, ILLIAC IV and CDC STAR) .
gven "“conventional" lirge-scale systems have passed the 5 or
1) MIPS mark (e.g., CDC 7600 and IBM 370/195). It has long
bz2zen observed that the input/output (I/0) requirements,
especially for “"seconiiry storage", of a conventional systen
t2nl to be stronyly related to the processor's speed. 1In
fact, based upon several empirical measurements, 1t has been
postuliated that a computer system averages 1 bit of 1/0 for
2very instruction ex2cuted (this is often referred tc as
Aadanl's Constant [ref]). As a result, many of these
bigh-performance syst2as have been confroanted with massive
bottlaneck problems in the I/0 area, especially since these
I/0 demands tend to occur in bursts. An effective storage
hierarchy system coull go a long way toward reducing this

probleun,

At the other end of the spectrum we find that medium-
and low-cost processors, the latter are usually called

aini-computers, have nade substantial advances in recent

—

Storage Hierarchy Systems 23

y2ars. The term "pini" can be quite misleadingy, Inese
processsors are typically huundreds of times faster than the
early commercial compiters at a fraction of the cost (eeg.,
the UNIVAC I, circa 1951, could parform about 2000 12-digit
aiditions per seconi whereas contemporary mini-computers
Jperate at around 1,233,000 5-digit additions per secaqnd).
Althoigh these mini-processors may be midgets ccmpared to
the computational problems attacked by their "big brctherst
d2scribed above, they are more than adequate for the vast
majority of infomatioa processing problems which have modest
computational requiremeats., Due to technological advances
ind economizs of scale resultinyg fronm large-scale
production, some minicomputers are available for less than
32000 with slightly slower micro-computers being offered for
as little as $66 [18], In spite of these technoloyical
alvanc2s, these processors have not had much impact cn most
1aforaation system needs due to the continuing economic
problam of produciny large Capacity 1inexpensive storagye
aevices even at the modest performance required. A 3$b6
processor 1is largely irrelevant if the storage costs are in
the $100,000 or mor2 range, By developing an effective
storage hierarchy system, we can go a long way toward
bringing the storage costs down to the level or these
lnexpansive processors, As a result, a tremendous number of
currently Known tachnical solutions to information

processing problems will finally become economically

Storige Hierarchy Systeas 24

f2asible solutions.

2¢1.2 Simplity and Automate Programming

As noted earli=2r, th2 organization of a computer's
storaje system has a considerable impact upon progran
davalopment and programmer efficiency. To a large extent,
this potential increase in prcductivity 1is obtained by
r2ducing or 2liminating constraints normally imposed by the
storage system. Thase constraints often distract the
programmer to the extent that he devotes a substantial
anount of his time tD> overcoming the system's limitations
rath2c than solving the intrinsic prcblems. Shooman [80]
ndted that:

"rhe inherent error content of some programs 1is
claimed to be related to the excess memory capacity
available, The theory here is that if the memory is
vary cramped, the2 software writers will have to

r2sort to overlays and other «coding "“tricks" to
sqyueeze the desired functions into the allocated

R2MOLYy sSpace. It 1is assumed that these tricks
introduce great complexity and are the seat of many
2rLors., This effect 1s «cited by designers of

airborne computers where the allccation of another
block of 4k of memory is a major design decision.™

For example, the proyrammer often has to worry about:

Storiage Hierarchy Systems 25

2.1.2.1 Programming language code efficiency.

if a higher-leval language compiler tends to prcduce
programs that are at all larger than those produced by a
low-1l2vel language translator, it may be necessary to use
the low-level languag2 to conserve storage. This constraint
is contrary to the gz2nerally accepted fact that high-level

lanjuages enhance programming prcductivity.

2.1.2.2 Program size,

For any specitic storaye size, there are programs that
cannot be easily written to fit into that size constraint.

Y2t, progyramnmers fregquently try - with considerable effort.

2.1.2.3 Data structures.

T'he programmer is often faced with the need to choose
ba2tdesn a data structure representation that is convenient
to use and another representation that "saves storage".
fais saving may ra2quire the use of an awxkward or

unnecassarily complex data structure representation,

Storige Hierarchy Systems 26

2.1,2.,4 Specitic a2quipment characteristics.,

If the programa=2r must get the "most" out of his
storage system in terms of capacity and performance, he may
rasort to technijues that are peculiar to his specific
storaje system equipment, if the egquipment is changed,

there2 may be a considzarable impact ufpon his software.

We would 1like t> develop storage hierarchy technigues
that eliminate, automate, or at least minimize the

programming problems liescribed above,

2. 1.3 Integrate New Ta2chnologies and Applications

Although there has been continual evolution, the basic
storigje device techaologies in commercial use have not
changad dramatically in the past decade., As a result, tnere
has b2en a tendency, motivated by actual need, to relate
ipplications to the specific available technologies., This
has caused certain application areas to be abandoned as
"infeasible™ and many storagye management strategies to be
liscredited as "irrzlavant"™ or "inefficient", In the passage
of tise we remember the applications and tecaniques in use
but frequently forget or 1ignore the alternatives fpcssible

and tne reasons for bypassing these alternatives,

Storigje Hierarchy Systems 27

After this rather long "rest", it appears that we are
on the verge of some major "awakenings" in applications and
tachnology. It is hard to guantify the new application
n2eds other than requiring more and faster storage for less
mon2y. Section 1.1.,2 presents scme of these motivations, the
ravitalized interests in time-sharing, artificial
intelligence and automatic programming are also "fanning the

firaw,

Due to the uncertainty of advanced research in storagye
davic2 technologies, it is difficult to torsee accurately
which of the many active efforts will succeed (see for
2xample, Ayling [7], Best [15], Boback {16], Camras [17],
D211 [24], Fields [35], Gardner [39], Howard [50], Matick
[6Natick.], Hyers [569], Rector [74], Shahbender [79],
Thoapson [85]). Considering the technical advances clearly
demonstrated in the laboratory and the driving Mprotit®
motivation, it is reasonable to expect some dramatic changes
1a th2 next few years. Even if we don't know what or when,

¥2 wo1ld be foolhearty to totally ignore this situaticn.

able 1 below indicates the performance and price
characteristics of typical current-day storage technologies.
T'he two entries marked by questicn marks (?), Bulk Store and

Giant Store, indicate new technologies that have already

Davica

5.

D

Cache Store
(18M 3165)

Store
3369)

Main
{1314

Bulk
(aus

Store?

Large Store

(IBM 2305-2)

Mas3 Store
(I3 3339)

siint Store?

{Gcumman
MASSTAPE)

SSU[35 J)

Storayge

Hierarchy Systeas

Randonm Maximum
Accass Iransfer
Tim2 Rate Price
{seconds) (byte/sec) ($/byte)
1.6x10~-7 1x 108 8.8x100
(16) ns) (100M b/s) ($8.890)
1.43x10-8 1.6x107 5x10—1
(1.44 us) (164 b/s) (56¢#)
1, 35 10—+ 8x 106 8.8x10—2
(130 us) (8% b/s) (8.8%)
5x10—-3 1.5x1068 2, 2x10—2
(5 ms) (1.5M b/s) (2.2¢)
3.8x10-2 8x 10S 4.5x10—+
{38 ms) (800K b/s) {.045¢)
bx1d0 6x105 242X10-S
(6 sac) (600K b/s) («0022¢2)
Table 1,

Representative Storage Hierarchy

28

(£t 1)

Capacity
(bytes)

1.6x104
{16K)

5.12x10%
(512K)

2x 106
(2 8)

1.1x107
(114)

2x 108
(200H)

1.6x1010
(16B)

Storaje Hierarchy Systeas 29

paen placed in limited use., Since these two
cost/performance positions were nct part of our
"traditional" technologies, we are faced with the prcblem of
possible modifying our applications and developing new
strategies to efficiantly, effectively, and, hopefully
optimally, integrate them into our overall hierarchaical

3torage systean,

As the wentire spectrum of computer architectures, as
well as storage device technologies, undergoes reshutflings,
pboth 2volution as well as revolutions, it 1s worthwhile to
raview and reconsider our current concepts on storaye systenm
l2sign, Taple 1, although a simplified summary of current
storage technologies, illustrates the fact that there exists
4 spectrum of devices that span about 6 orders of magnitude
of price/performance (100,00C,000%) . This is yui te
sigaificant in the light of the excitement that normally
accompanies an 1liaprovament of 10-20% imn performance or a
dacrease of 10-204 1i1a price 1in current-day systems. The
participants in this "storage sweepstakes" may change 1in
time, but with such large price/performance stakes, there

will be continuing benefits to "playing the game"™ bpetter.

Storaje Hierarchy Systenms 30

2.1.4 Understanding of Prograam and System Behavior

As noted earlier, the detailed operational behavior of
computer systems 1s often extremely complex, Thus,
12clisions on hardwar2, sotftware, and system design must
often be made in spit2 of insufficient knowledge., A better
andarstanding of program and system behavior is essential to

the intelligent and efficient development of future systems.,

It is hoped that the research tc be conducted as part
of this thesis will shed considerable 1light c¢n these

mitters,

2,2 Storag

Hieracchy Approaches

"Storage hierarchy system"™ and similar terms have been
used in many contexts, Counsistent with the objectives
outlined 1in the pr2vious section, certain partaicular

contaxts are assumed in this research.

2+2,1 Spectrum of Approaches

I'he problems ot storage hierarchy management have been

attacked by a host ot approaches, We can loosely

characterize these efforts into three categories:

Storage Hierarchy Systeas 31
2.2.1.1 Manual Hiesrarchy Management

Siven a specific ensenble of storage device
t2achnologies, after considerable thought the frogrammer can
2xplicitly or implicitly specify how his informaticn (i.e.,
programs aand data) should be organized and distributed
within the hierarchy and how and when his information should
be re-arranged, Haviny determined the distribution, he must

also specify his access to specify information accordingly.

When a programmer 1is directly operating upon his
information at the lowest level (e.g9., using machine
language, direct I/) requests, etc.), he 1is explicitly
controlling the storage hierarchy, this is explicit manual
nieracchy management. In most conventional systems, the
programmer communicates with the system via proyraoaing
languiges and control cards, Although this can relieve amuch
of th2 tedious or intricate details of storage manageuwent,
the overall control of the storage hierarchy is still
prisarily the responsibility of the proyrammer., This 1is

iapliczit manual hierarchy manaqement.

Yanual storage minagement can be very ecoumnomrical since
it usually requires nd> special hardvare features nor special

systean software. Furthermore, it places the control of the

Storaje Hierarchy Systeas 32

storige hierarchy in the hands of the programmer who 1is
presumnably tne one most familiar with his needs. Manual
storaje manayement, ia 1ts many manifestations, is the most

common storage hierarchy approach in use today.

¥anual storage management has many disadvantages,
though., The amount of detail that the programmper must
understand and wuse can add significant complexity to this
tisk., This then introduces additional areas of error and
Jdacreased productivity., Furthermore, the assumption that
the programmer 1s the beast judge of optimal storage
otganization is often wrong. The complexities and dynamics
common to modern Syst2ms are often beyond the understanding

of most application programmsers.

Multiprogramming, an almost wuaniversal technique in
current systems, necessitates strategies for global
optimization whica usually differ substantially from the
individual local optimizations cf each progran. For these

reasons therc has been Continual search for "a better way".

2,2.,1.2 Semi-Automatic Hierarchy Management

Many tochnijues nave been developed to minimize the

amount of efrfort reyguired of the proyrammer and to provide

teedback to hinm, Th2 programmer still has the ultimate

Storage Hierarchy Systems 33

contr»l 1imn such a semi-automatic hierarchy management

systenm,

Certain of these technigues are based upon tne concept
of th2 programmer providing "hints"™ to the system. 1These
hints form the basis for a partially automated, partially
manual storaye @managament system. Although not esgecially
widespread, this approiach has been used in several systeas

(2.9., Jensen et al [53], O'Neill et al [70], etc.).

If there 1s a single application that is quite large
and complex, technigyues have been developed to analyze the
actual performance and provide feedback to the programmer.
This approach 1is primarily used in specialized, dedicated,
predictable, high-performance systems, such as an airline
resarvations system, Numerous attempts have been reported,

such as Arora et al {>], Ramamoorthy et al {72], etc,

The various semi-automatic hierarchy management
approaches nelp to r2duce the programmer's effort and to
attiia a better 1locil optimization, Although useful tor
ca2rtain applications, these strategies do not remave the
disadvantages already anoted with manual hierarchy management

systeas.,

Storije Hierarchy Systeas 34

2.2.,1.3 Automaticz Hierarchy Management

Zertain aspects of logical information organization are
inherznt in a programmer's basic alyorithm. In an automatic
hrecacchy management system, all aspects of the physical
intformation organization and distraibution that are
irrel=2vant to the unlerlying logical structure should be
ramovad from the programmer's responsibility. The
prbgrammer may wish to, maybe even be encouraged to, use
algorithms tnat are xnown to perform well in conjunction
with the automated hierarchy management. But, the central
r2spoasibility of tha storage hierarchy management is

r2movad from the programnmer,

Since this approach directly tocuses on the storage
hierarchy objectives presented earlier, it will ©Le the

primary approach to be pursued in this thesis.

24242 Spectrum of Analysis Efforts

Each of the storage hierarchy approaches mentioned
above, primarily semi-automatic and automatic, have been
subjected to various torms of analysis. In this section we

briefly outline the principal aeficiencies of these efforts.

Storije Hierarchy Systenms 35

2.2.2.1 Generalized Hodels

dne popular form of analysis is to assume a generalized
43232l for hardware, sottware, and system behavior. If ocne is
carerdl in choosing the characteristics of the model (e.g.,
Poisson arrival and s2rvice times, etc.), it is possible to
dz2velop precise analytical solutions. Unfortunately, 1t is
asually difficult to validate these models except for rather
simple solutions. Furthermore, since there are few truly
aatomitic storage hi2rarchy systems in g¢eneral use, it 1s
extreaely difficult to even determine reallistic parameters

for these generalized models even if the models were valid.

Generalized wod2ls have Leen reported in several
papers, such as Aho et al [2] and Denning [25] imn the

Bibliography.

2:2424.2 Constrained Models

Another variation on the generalized model scheume 1is to
inalyze a particular program and then model 1ts relationship
to the rest of the systen. There are at least two
shortcomings in this approach., First, as in the yeneralized
model case, it 1s difficult to realistically model the
r2lationsnip between a3 program and the rest of the systen.

52cond, the analysis and measurement of the particular

Storagye Hierarchy Systenms 36

proyram is normally converted into scme form of probability
Watrix or probabalistic reference pattern. In either case,
significant effort is required to accurately measure the
projram?'s behavior, Furthermcre, the probabalistic
Cnaracteristics are usually aggregated to reflect the
overall behavior of the program and, as a result, the
dynamic nature of the program and its impact on the storage

hierarchy are often lost.

Example analyses of constrained models can be found in
references: arora and Gallo [5]), Hatfield and Gerald [47],

Lawis and Yue [60], and Ramamoorthy and Chandy {721].

2.2:2.,3 Limited Envirocnment

A commoun deficiency of'most previcus research 1is that
only a limited -environment was considered, in particular
aatomitic hierarchy management over cnly two levels using a
single page size. Of course, most current-day computers have
only 2mployed automatic hierarchy management in either Cache
Systems (cache store - main store) or Paging Systems (main
3torz - large store), Unfortunately, there is definite
r2asons to believe that many of the <conclusions and
t2caniques demonstratasd for a two-level hierarchy do not
na2cessarily generalizz to handle the spectrum of program

d=2tail and device characteristics encountered in a truly

Storage Hierarchy Systeas 37

multiple level storage hierarchy. Furthermore, many ot the
papers that attempted to investigate general storage
nierarchies assumed technijues and approaches that are

primarily based upon two-level hierarchy assumptions.

I'his limited environment has been studied by numerous
people, such as Aho et al (2], Belady et al {[10,11,12],
Coffman and Varian [19,86], Conti et al {21,22], Denning
.25], Fotheringham [33], Guertin [45], Kilburn et al (571,
Mattson et al [63], Seligman [78], Smith [81], and Wilkes

[38].

2e2¢2,% General Hierarchy Environment

T'he studies of limited two-level storage hierarchies
have been quite successful in many actual systeuns. A
rzasonabple strategy would be to extend these techniques to a
aore Jeneral storaye nierarchy environmeant. There have been
2 few attempts along these lines, but as menticned in the
previsus section, most were hampered by:

(1) attempting to directly apply two-level hierarchy
technigues without carefully considering their
applicability,

(2) attempting to generalize techniques which were not

aven tully understood in a two-level environment.

Storage Hierarchy Systeams 38

he major thrust ot this thesis is to provide insight

into and shed additional light on these problens.,

Storije Hierarchy Systeas 39

CHAPTER 3.

FORMALIZATION OF STORAGE HIZRARCHIES AND RLLATED RESEARChH

3,0 Introduction

In this Chapter a formalization ot the key
characteristics of storage nierarchies is presenteda and
parformance measures are derived, The reported perfcrmance

of actual systems is reviewed.

3.1 Major Parameters of a General Storage System

lable 2 and Fiqgure 1 illustrate the major parameters ot
A storage hierarchy system., These parameters can be grcuped
into four categuries: (1) basic technoloyy, (2)

configuration, (3) aljorithm, and (4) program behavior,

3.1.1 Basic Technology

The basic technology parameters, cost/byte, ¢, and
average access time, T, are primarily dependent upon the
physical properties of the storage device technology. At any
given time the state-of-the-art offers only a limited number

of (Z,T) alternatives that the system desiguer can select,

Storije Hierarchy Systems 40

(£t2)

» (C cost/byte

» T average ac:za2ss tine

——— o s e e . e

* L number of levels

» I iaterconnection of levels
* S size (capacity)

* B transfer rate (bandwidth)

* N number of oytes in page (page size)

* F tetch
s P placement

*+ R replacement

Table 2.
Major Parameters of a Storage Hierarchy Systenm

Lavel 1

Laval 2

L2vel 3

Level L

Storage Hierarchy Systeas 41

(£13)

Regquest
Generator
(Processor)
I A={al'a2,-oo}

I (N1,T1,81)

Mt

(Cr,s51)

T

(C2,52)

T

(C2,53)

h K4

M3

tit

s b édo

HiH

Figure 1.
Structure of a Storage Hierarchy System

Storaje Hierarchy Systems 42

3,1.2 Configuration

The system designer does have flexibility in crgamizing
these storage devices, By serial andy/or parallel structuring
2f the components o0of a given level of storage device
t2canology, it 1s possible to specify, over a vide range ot
values, the size (storage capacity), S, and the maxipua

o

tcans

I

er rate (data bandwidth), B, o¢f the system. For
axample, if a particular technology provides a tasic device
with 5=s and 8=b, coannecting n c¢f these devices in parallel
produzes a storage levz2l with S=ns and B=nb. (To some extent
the machanism and cost of the organizational structure does
influence th2 overall cost/byte and average access time of a
lava2l, this effect 1s usually minimal for small values of

a)j .

Jn a more global basis, the designer must determine the

numbar £t levels, L, 1in the storage systen, the

10

iatecconnections ot the levels, I, and the size, N, of a

e i e - s T ——— —— ——— e e

page (the unit of information moved between levels).,

3.1.3 Proyram Behavior

T'he processor, under progran control, produces a

saguentlal series of ra2ferences to the storage system. I[hese

processor refereaces are in the form of logical address

Storaje Hierarchy Systeas 43

2ferences which serv2 to uniquely identity each individual
unit of stored informatation {e.g., an d-bit Lyte)
independent of its locaticn (i.e., M1, M2, M3, .,..). The

time sequence of logical address references, A, 1s called an

s s s s g o o

unigu2 program and its 1input data will result in a different
processor address trace, For purposes of analyzing the
effectiveness of the storage hierarchy, the address trace 1s
the primary characterization of a program that is needed
(2.3., we don't care what the program's purpose 1is or what
language it is written in, etc.,, we cnly care about its
aldress trace), Thus, the address trace describes the
pctogram's behavior as observed by the storage hierarchy.

J. 1.4 Algorithm

There are three basic decision algorithms that must be
2mployed by an automitic storage mahagement system, Fetch,
P, decides when and which information should be moved up a
lavel (e.g., from H¥2 to M!'), Elacement, P, decides wnere
inforzation should be placed 1in a level, Removal or
replacement, R, decides when and which informaticn shculd be

transferred down a level (e.4., from M! to HMNZ),.

Storije Hierarchy Systenms 4y

4 completely gen2ral storage hierarchy algqgorithm, H,
muist consider all the parameters described above:
d = f {(<Technoiogy>,<Configuraticn>,<Program>,<Algorithmd)

H = f(<c,T?>, <L, I, S, B, N>, <A>, <F, P, R>)
Clearly, attempting to optimize a systew with sc many
parama2ters is diftficult. Fortumnately, it 1is possible to
elininate from concarn or at least simplify certain

parameters as explainesd below,

3. 2.1 Configuration

Zonsistent with the title of this thesis, we shall
consider only hierarchical 1interconnections of levels as
illustrated 1im Figure 1, where T1<T72<T73< etc., and NI<N2<KN3L
atc, fhe ratiomale for this decision is elaborated in the

thesis,

There are thre2 basic strategies for information
movamant sizes: (1) select a single page size value, N,
which 1s always wusa2d throughcut the hierarchy - this
approach is wused on most contemfporary automatic multilevel
storaje systeas (e.g., Hultics), (2) allow an arbitrary
range of values for N to be used - this approach is

primarily used on manually managed storage systems, and (3)

Storage Hierarchy Systems 45

s2lect L values of N, a specific unit of transfer is used
between any two levels of the hierarchy - this approach will

b2 pursued and justified in this thesis,
3.2.2 Program Behavior

Each logical address can be represented as a bits as
shown in Figure 2(a), If the payge sizes, N, are chosen to
b2 powers of 2, the set of 2**a possible addresses can be
partitioned into 2**p pages of N=2*%*n consecutive logical
aidresses each as shown in Figure 2 (b). [Note: the notation
"2**a" means 2 raised to the power a]. Since the information
movem2nt between storage levels is accomplished by
transferring pages, w2 can analyze this interlevel moveament
by merely considerinj the time sequence ot logical pages
referances, Ap, callei a page trace.

Since we allow the page size to be different between
each level and requests are only passed down to a given
lavel if they cannot b2 satisfied by any higher level, each
level will usually experience a different page trace though
all are algorithmically derivable from the same address
tcacs, In fact, if all address references were broadcast to
all storage levels, the page traces can be determined by a
simpla mapping from ldjical addresses into logical pages:

paye aadress = imnteger(logical address/N)

Storage Hierarchy Systeas

| € a bits

ADDRESS

(a) Logical Address

| € a bits

PAGE { DISPLACEMENT

e

|$— p bits —»|&———— 1n bits —>|

(a=p+n)

{(b) Logical Address

{bivided into Page Address and Displacement)

Figure 2.
Format of Logical Address

4o

(t2)

Storage Hierarchy 5ystens 47

where N is the page size for that level,

3. 2,3 Algorithnm

Fhe placement decision, P, is usually unconstrained or
minimally constrained and, as a result, has relatively

littls impact upon performance.

A demand fetch policy will be used. Assume that at time
t a regquest for 1logical address a (or, eguivalently,
pl=integer (a/N1)) arrives at level M1, At that instant the
information may currently reside in M1, otherwise it must be
tound in a lower level, Under demand fetch, if p! is in M1,
the raference proceeds, the infcrmation is passed back to
the processor, and no other page movement occurs iu the
nieracchy. It pt is not in M, a request for
p2=integer (a/N2) is sant from M! to M2, If p2 is in M2, the
page 1is transferred to #! and processing continues as
d2scribed above, otherwise a request for p3=imteger (a/N3) is
s2nt from M2 to M3, 2tc., Note that under the demand fetch
policy, information is only moved up in the hierarchy when
and if it is explicitly demanded (i.e., requested) by the

processor.

Although demand tetch 1is only one fpossible tetch
algorithm, it can b2 shown [63] that for fierarchically

structured storage systems:

Storage Hierarchy Systems 48

"..» glven any trac2 and replacement algorithm (not
n2cessarily using demand paging) ancther replacemnent
algoritnm exist that uses demand paging and causes
the same or fewar total number of pages to be
transferred ..."
In other words, as you might intuitively suspect, moving
pijJes only when necessary results in the minimal aumber ot
pige movements., Of course, if page mcvement is required and
the higher level that 1is to receive the page is already

full, the removal algjorithm must be employed to provide

space for the new page,

3. 2,4 Revised Storage Hierarchy Model

Based upon the discussion akcve, we <can slightly
simplify the vparametacrs remaining fcr consideration in the
storaje hierarchy algorithm, H, so that it need consider
oanly:

H = f({Tecanology>,<lonfiquration>,<Program>,<Algoritha>)
H = f(KC,T>, <L,S,B,8>, <A>, <k>)
In this thesis all of thase parameters will be considered
and 1nvestigated, S5pecial emphasis will be placed on
analyzing and understanding the relationship between the
piges sizes, N, and the removal algoritam, R, required for

afficient operatiou of the storage hierarchy.

Storaje Hierarchy Systeams 49

3.3 Recformance Heasures

lhere are various performance measures that we could
consider. For an overall point of view, system measures,
such as job throughput, job turn-arcund time, and processor
utilization, are guita2 significant. Unfortumately, 1t is
extremely difficult to directly relate these measures to the
performance of the storage system, even an approximation
¥4ould require consideration of Bmany more parameters. Thus,
w2 will only consider measures that relate to the eftective

performance of the storage hierarchy.

3.3.1 Performance Measurement Notation

Due to the strict hierarchical structure of our storage
system and the demand tetch pclicy, we <can analyze the
performance of the system by separately considering tae
levels of the hierarchy starting with M1, Since a given
lavel only receives a pagye fetch request ir the information
has not Dbeen found it a higher 1level, each level usually

s2es a different page trace, Ap!, Ap2, Ap3, etc,

There are several important properties of page traces,
It P is a particular page trace (e.4g., Ap!) of a program, we
dzfine:

s |P] length of the page trace sequence

Storige Hierarchy Systems 50

. Q set of distinct pages referenced im P
. 1Q1 number of pages in Q

For e@xample, 1n the page trace
p =a, b, a, ¢, b, a

w2 observe that

P} =06
Q = {a, b, c}
1 = 3

(Lower case letters will be used to represeat loyical page

aldresses instead ot page numbers).

For a specific storage hierarchy, we define |[M] to be
the size of M in units of pages receivable from the next

lower level. For example, |MLj=Sl/N2, {(M2|=S52/N3, etc,

For a specific page trace, P, storage level, M, and
removal algoritha, R, we define the result page trace or
fa2tch paqge trace, P', as the time sequenced page references
of P that were not found in N, We shall call page
rafara2nces that are found 1in M successes. The success

e e — ————

function, Sf, is the number of references satisfied by M and
can be computed as jP|-{2'}. By amalogy to the success
function, the number of reierences not satisfied by M, |P'},
is called the failure function, Ff. In general, we wish to

maximize the success function or, equivalently, minimize the

failure function. It is convenient to normalize the failure

Storige Hierarchy Systenms 51

function by defining the failure frequency function, £,

£t = (P'j/IP|

— e

The success frequency function, s, can be easily computed as
1-£; it is often called the hit rate om a two-level storage

systea. We also da2fine the system failure frequency

function, £°, of a level to be:
t® = (P']/14]
where A is the address trace generated by the processor and

A} is the length of tne address trace (it is also true that

JA always equals jpt}, thus they may be used

interchangeably). The system success frequency functicm is

correspondingly defined as s9=1-f9,

If we apply th2 definitions above to the processor
Jenerated page trace, P11, received by M!, we note that the
result page trace, P', is essentially the pagye trace, P2,
raceived by M2, There is a ﬁinor relabeling required to
3ijust for the diffarence in page size used by B2,
p2=p' (N1/N2), By repeating this process recursively, we can
da2veldop the effective page traces, failure and success
functions, and failure and success trequency functions for
each level of the hierarchy. Since we assume that all
referanced information exists im the storagye hierarchy, the

sum of the system succa2ss frequency functious must be 1.

Jdne general measure of a storage hierarchy's

Storige Hierarchy Systeas 52

parformance is its effective access time, T!', and effective
cost, C', which are defined as fcllows:

Tl

H

T1g5914p25024T3503 4, ,,
C' = (C1S1+422324(C353+,,,)/(S1+452+53+,,,)
' and C* can be view2d as characterizing the entire storage
hierarchy according to a corresponding one-level system.
From a cost/performance point of view, one should be
iadifferent between a single-level single-technology storage
device with average access time, T', and average cost/byte,
', and a storaygye hierarchy systenm with performance
parameters (I'',C')., In particular, if the system designer
n2eds a storage performance {T,C) and no such basic
t2canoloyy exists, h2 must attempt to develop a stcrage

hierarchy such that (r*',C') = (T,C).

3. 3.2 Page Trace Simulation

Jne way to determirce the success frequency function and
the result page trace for a specific page trace is to
simulate the storage management algorithms and note the
contents of M at each step of the page trace. Clearly,
these results depeni wupon numerous parameters (€« G,
specific trace, resmovil algorithm, size of M, etc.). Figure
3 illustrates this step by step simulation assuming demand
piging, FIFU (first-in first-out) removal, and |[M{| = 2

piges. For simplicity, the fpage trace, P, has been

M Contents
{after each
reference)

Page rrace,pP!

- — - - —

Pt

St

Pl

Storigje Hierarchy Systeas 53

(£3)

= a, b, b, ¢, b, a, d, ¢, a, a
= 10
= {a, b, c, d}
= 4
= 2
Bemoval
lal bl b]cibjlajldijcy|alal
R et Atk ik Ty Sy S G +———%

1 * 1 * | I * | | * § * | * | * | |
R R R il LlTY TESRpEy (NERE P (PR QY

{ a1l bl bl cj|cjaldl]lcilal]laf <"neu"
i { a| aytb{bjc})aldl}citc | <="oldn
| i i | | | |) } |]
tmmm b m b mm e m b mmpm e e pm = }

i a i b | l ¢ | l a}djci{ aly i
Ip'| =7

{P|-{P*'| = 3

70%

30%

a, b, ¢, a, d, ¢, a

Figure 3,
Example of Page Trace Simulation

StorijJe Hierarchy Systems 54

nidrmalized to be expr2ssed 1n units of receivable pages, In
particular, if M is 81, then |M|=S!'/N2 and p=integer (a/N2)
wherz a is a logical address reference and F is
corresponding page refarence, 1he pages in M are shown as
ordered to indicate the F.IFO ordering, the top page 1s the
"last" ("latest") paje fetched into ¥, whereas the botton
page 1s the "first" ("oldest") page in M and is the pgage
s2lected for repldcemant when necessary. The asterisk (x)
i1adicates that a tetch was reyguired frcm a lower level of
the hierarchy, the pige reference is thus noted as part of

the result page trace, 2°Y.

It is normally assumed that all levels, except level L,
ire eapty 1nitially, thus there 1is a tramsient stage during
wnich pages are loaded into M without any replacements
nzedel, Since there are so few gfpages in M during this
start-up stayge, thers are many fetches required. We will
Find it usetul to separate out this transient phencmenon.,
I'nis transient consists of the page trace up to the first
14| unijue page reterances, in the example ot Figure 3 this
15 the first 2 page references (i.e., a, b). Consider the
case 1f |Qf<iM|, there would be no further tetches 1into this
lavel after the 1initial transient that lcads the |Q| fpages
1nto M. In this case, |PY|=1Q] exactly, independent of (P},

and s tends toward 1 as |P| increases,

Storage Hierarchy Systenms 55

In the particuiar example illustrated in Figure 3, we
note that there were 3 'hits' and 7 'misses' out or 10 page
rzfarances, so that s=30a. Thus, P! cnly consists of 7 paye

r2ferances to the lower levels.

3.4 Ralated Research

As noted above, we wish to develop a storage hierarchy
with attractive cost/performance, (C*',T'), characteristics,
It is clear that we >an arbitrarily decrease the cost/byte
Dy maxKking the size of each level, 3, increasinygly larger as
we go Lrom the high-performance high-cost to the
low-parformance 1low-Zost levels ki.e., Ci>C2>C3>,,., and
51<52<53<,,.). In fact, this approach 1is the basic

motivation for storaye hierarchies,

Unfortunately, 1f the processor generated address
rafarences that wer2 wuniformly distributed in time and
aidress, each byte wpuld be equally likely to pe reterenced
at any instant, This probability would be:

Pr{ refera2nce aj = 1/(S1452+53+,,.)
Taus, the expectad system success function, s9, for each
lavel is proportional to the size of the level, For examplé,
SO01 = S1,/(S1+52453+,.,.).,

dut, since we have assumed that S1<52<Ss3¥¢,..,, we find that

5torage Hierarchy Systems 56

301<50%2¢503¢,,, Thus, the system success functioan for the
Lth l2vel dominates (i.e., is aprroximately 1) since vwe nave
issumed that i1t is the largest level., Referriny back to our
d2finition of effective access time, we find that T' would
p2 approximately egual to the lowest performance level
(Level L) since all the other terms wculd be neyliyible. If
tais analysis were trus, our stcrage hierarchy would result
1n A performance just slightly better than our lowest
parformance level at a moderate increase ih price - Lot an
2spacially exciting result. Fortunately, actual storage
ilerarchies do not behave this way, We willi briefly review

some related research on this subject.

3« 4.1 Locality

It has Dbeen empirically observed that actual programs
cluster their vreferences so that, during any interval ot
tim2, only a subset of the information available is actually
used, A detailed discussion of this phenomenon will be

presented in the thesis,

It 1s iaportant to note taat due to our basic rankings
of paje sizes and access times 1in the storage hierarchy,
21ch level "sees" a different view of the program. fThe high
l2vels of the hierarchy awust fcllow the @micrcscopic

instruction by instruction reference pattern whereas the

Storaye Hierarchy Systems 57

middle levels follow a more gross subroutine by subroutine
pattern. The very low levels are primarily concerned about
the processor's referz2nces as it moves from subsystem to
Subsysten, de do not have any a priori guarantee that
ldcality of referenc2 holds egually true for all of these
views, but we do hav2 some repcrted evideuce to encourage
us. Most of these studies have been basea upon twcec-level
storaje systems or restricted focrms of three-level

nlerarchies.

3.4,2 Paging Systenms

The earliest automatic storage systems were based upon
tdo-lavel core-drum hierarchies (devices 2 and 4 of Table
1. This technique vas 1introduced in the Atlas systesn
{38,57] duringy the early 1960*'s. It has since been used on

many contemporary systams,

I'he performance of paging systems has been studied by
various researchers, such as Be=lady [12], Coffman and Varian
[19,86], Hatfield [48], and Sayre [77]. In Cotfiman's
rasults, for exampls, it was noted that even thouyh
SL/(54+52)=9),25, s otten exceeded 95%. Hatfield studied
the parformance of system programs that had been carefully
d2sigaed and found that for S'/(S51+S2) ratios as low as

Je25, 1t was possible tor s! to ctten exceed 99.99a.

5torije Hierarchy Systeas 58

3. 4,3 Cache Systems

cache systems ires based upon two-level cache-main
hieracrchies (devices 1 and 2 of Table 1). Although they have
b2en proposed as early as 1965 {see Wilkes [H81]), the major
commercial wuse of <cache systems did not occur until the
introduction of the IBM System/360 HModel 65 {21,61]. More
racently, tnls tecanigue has been used in several
contemporary systems, such as the IEM System/370 dodel 155

and Model 165 {52],

In these cache systems, IBM found that it was possible
to drastically reduce 31/(51+52) to as low as 1% and still
xk2ep cthe hit ratio, s, above 90%, Similar findings were
i1lso reportad by Bell and Casasent [13], Mattson |64], Meade

.35], and Seligmaa {78].
3.4.4 Three-level Systenms

'hera have bean a few three-level systems reported in
the literature, unfortunately they have all been somewﬁat ad
12¢ in design and the results are far from coanclusive,
There have been at 1l2ast three types of such hierarchies

studiad,

Storije Hierarchy Systens 59

3.4.4,1 Main-Bulk-Mass Store Hierarchy

I'her2 have been several systems devised based upon
davices 2, 3, and 5 of Table 1, fThe Buik Store actually
used, called Large Core Store (LCS), had a much lower access
time (around 8 us) ani a much higher fprice (about 25¢/byte).
In order to compensiate for peculiarties in the hardware
structure and out of considerable concern for the extrenme
cost of LCS, these systems tended to become much more
manually managed hisrarchies than autcomatically managed,
Although they were fouand to be effective, it is difficult to
g2neralize the results. The most ambitious attempt reported
wis undertaken by Carna2jie-Mellon University [36]. Results
have 31lso been reported by Durae [31], Williams {89], and

ot hers.

3.4.4,2 #Bain-Large~-Mass Store Hierarchy

I'here does not 2ippear to be any automatically managed
systems of this type published 1n the general literature,
Tae Nultics systenm at MIT Froject MAC has recently
introduced a "page-multilevel™ strategy based upon devices
2, 4, and 5 of Tavle 1. There has only been limited finding
r2ported to date but it has been stated in the March 1972

issue of the MIT Information Processing Services Bulletin

Storaje Hierarchy Systems 60

{p. 11) that it

" does pay off since it meets fluctuating demands

on the system, reluces the wcrkload for the disks to

an efficient level, is 1inexpensive, and keeps pages

on the drum for an acceptable length of time,"
As an indication of its effect, the new strategy is reputed
to have increased the success frequency tfunction, s2, of the
icam from 29% to more than 90k (i.e., "reduced from one page
rz2ad from the disk for every four reads trom the drum, to

one page r=2ad from the disk for every ten to twenty fpages

from the drum"),

J.4,4.3 Main-Larye-Giant Stcre Hierarchy

The work of Considine and Weis [20] is difficult to
citeyorize., It is based upon a three-level hierarchy where
the first level corresponds to device 2 (main store) of
Table 1, the second level corresponds to a combination of
devicaes i (drums) and 5 (disks), and the thira level
consists of removable disks which can best be approximated
oy device 6 of Table 1., It is impossible tc compute any
success frejuency functions from their data, but it appears
that for 352/(s2+#53)=0.5, s2 is very high. They note
{p.44)), 1in particular, "most of the data moved tc the

archival storage (i.e,, #3) have stayed there,v

Js 4.5 Need for

Although
2acouraging,
aaltiple-level
This thesis is

a4rea,

Storage Hierarchy Systenms 61

Additional Research

the results of research described above is
the design and performance of general
storage hierarchies are still inconclusive,

intendel to provide specific results in this

Storage Hierarchy Systeas 62

CHAPTER 4,

A STORAGE HIERARCHY SYSTEM

4.0 Introduction

In this chapter a design for a g¢general multiple level
storaje hierarchy systew, in particular with taree or more
lavels, 1s presented., This design is based upon an crderly
and uniform treatment of the 1logical structure of the
storaje levels and their interccnnections., Iu addition to
providing a solution to convenient stcrage manayement for
the user, this design 1is intended to produce good
pertormance for the storage haierarchy as measured by 1its
2tfective access tims2, T', and effective cost, C'. The
prianciple and novel techniques to be used are described

separately 1in the sections below,

e e s . —— o . - — -

As noted wearlier, automatic storage hierarchy systeas
irte still 1in the minority. Amongst those systems that do
provile automatic storage hierarchy management, the majority
limit their scope to two levels with a few rare three level

systaas, As a result of these limitations, the user 1is

Storiye Hierarchy Systenms 03

still forced to rely on manual or semi-automatic storage
management technlijues to deal with the storaye levels tnat
are ndt automatically managed. Thus, an automatic storaye

management system should consist of a continuous higerarchy

that 2ncompasses the full range of storage levels,

4. 1.1 Cost/Performance of Adjacent Levels

A major obstacle to generalizing storage management
algorithms, ia particular in two-level paginy systems, is
the tremendous contrast, often over 3 crders of magnitude,
in cost/performance between M! and M2, As illustrated in
Table 1 (page 28), a representative Main Store, Mt, has an
access time of 1,44 us compared to a Large Store, M2, with
an access time of 5 ms. In such a two-level system, the
2f fective access time, ', is

Y = Tig501 4 T2g02

T?! T.dd4s9l + 5000s02

and since s%1+s592=1, 42 can substitute s91=1-592 tg get
T' = 1.““ - 1.‘4‘4802 + 5000802

T 1.44 + 4998,56s02

In orier to attain an effective access time, T', that is
comparable to the Main Store access time, T1, Wwe must keep
tae systea success tfaquency tunction, s°2, very close to 0
or, correspondingly, «xeep s¢! very clcse to 1. Even with

s31 at 99.8%, an improvement to 9Y9.94 would cut the

Storije Hierarchy Systenms ou

affective access time, T*, in half. With such pressure to
ittain very high s°! vilues, the systems designer 1s often
tarczd to seek out vary specialized techniques 1in contrast

to our goals of orderly and uniform algorithms.
4, 1,2 Moderate Cost/P2riormance Ratics

In order to mak2 the storage hierarchy design robust
ind flexible, the cost/performance characteristics should
differ by less than two orders of magnitude between adjacent
lavels., Thus, success frequency functions 1in the range 90%
t> 39&% are adeguate t> insure reasonable performance, If
the differences are much greater, it will be difficult to
tinl sufficiently efficient gyeneral algorithms. Since minor
cnang2s in production technigues and technology evclution
can result in a variation of a factor of two or tharee in the
cost/performance for a yiven technology, it 1s not desirable
t> decrease auch oelow oune order of magnitude difference

batwean adjacent storige levels,
4.2 Shadow Storage and Page Splitting

The time, Tm, required tc move a page between two
i2vels of the hierarchy usually consists of summing two
components: (1) the average access time, T, and (2) the

transcer time, BxN.

Storige Hierarchy Systeas L5

If all page sizes were set to provide exactly the
aaount of information, N!, requested by the processor, the
pige movement time would be

Tm = T + BxN?
where T and B8 woull depend upon the particular storage
levels, By examininj the representative devices shown in
Table 1 (page 28), we see that access time varies auch more
than transfer rate (i.e., access time spans 6 crders of
magnitude whereas transfer rate varies by only 3 orders of

magnitude).

4. 2,1 Marginal Increase in Page Transfer Time and Reference

Probability

Let us assume that N! is gquite small, such as d bytes.
We can ask the question: What is the marginal increase in Tm
it we transfer the aijacent N! bytes in addition to tae N1
bytes requested by tha2 processor? Table 3 on the next page
ansWers this guestion, Notice that the maryinal increase 1in
Ia decreases from 4 high of 5.5% (level 2 to 1level 1) to a
low of ,002% (level 6 to level 5). This fact 15 only
interesting if we als> consider the concept of locality (see
<chapters 5 and o for additional discussion) and the

question: what 1s th2 probability, PFr, that the processor

Storaje Hierarchy Systeas 66

(£t 3)
Lavel I'm Tm Marginal Increase
fransfer (1 unit) (2 unitsj) in Tm
2 to 1 (*) 1.44 us 1.52 us 5.5%
3 to 2 131 us 132 us «8%
4 to 3 5006 us 5011 us » 1%
5 to 4 38010 us 38020 us +03%
6 to 5 500013 us 600327 us »002% !
Table 3,

Marginal Increase in Page Transfer Times

* Tha figures for ccess time and transfer rate for the
Main Store listed in Table 1 are approximations that are
only meaningful for very large page sizes. For the page
sizes under consideration in this «chapter, the figures used
ia th2 table above are more apprcpriate,

Storigye Hierarchy Systems 67

will reference the adjacent N! bytes with a shcrt interval
of time, such as Tm seconds? Due ¢tc locality o©f fprcgram
reference, we would expect Pr to be much larger than merely
the reciprocal of the 1logical address space size,
Parthermore, Pr shoull increase as Tm increases, Thus, for
a given level, if Pr is larger than the marginal increase in
s, it is beneficial to transfer the additional N! bytes and
taer2by avoid the n2cessity of expending Tm seconds to

transfer these N! pytas later separately.,

I'hese same arguments can be applied to the questicn of
transferring the adjacent nxN? bytes, etc, Since the
@arginal increase in Tnm decreases monotonically as a
function or storage lavel, the number of N! byte packets to
bz transferred as a single rage should increase
monotonically, This confirms ocur earlier decision that
NIKN2<N3C etc,

-

4,2.2 Choice of Paye Size

In order to simpliry the implementation of the systen
and to be consisteut with the mapping frowm logical address
to paje address illustrated in Figure 2 (paye 46), we will
raquire that all page sizes be a power of two, Thus, each
page size (e.g., N3) 1s some pcwer of two larger than the

page size of the next higher level (€ege, NI=NZ¥x1),

Storiye Hierarchy Systems 68

Clearly, the specitic values of Pr and thus the choice for
2ach page size depenis upon the characteristics of the
programs to be run and the eftectiveness of the c¢verall
3toraje systea, Preliminary measurements 1indicate that a
ratio of 4:1 between levels 1is reasonable, Meade [65] has
rz2ported similar findings. Other important factors

it fect ing page size are discussed in Chapters 5 and 6.

4, 2.3 Page Splitting

Now let us comsidar the actual movement of information
in the storage hierarchy. At time t, the processor
jenerites a referencz for logical address a, Assume that
tne corresponding i1nformation is not currently stored in M1
or M2 but is found in M3, For simplicity, assume that paye
slzas are doubled as we go down the hierarchy (e.g., N2=2N1,
N3 =2N2=4N1, etc.; s22 Figure 4), The page of size N3
contalining a 1s copiad frow M3 to M2, M? pow contains the
nz2eded intormation, s> we repeat the process. The page oL
51ze N2 containing a is copied frcm M2 to M!, Now, finally,
the page of size N! containing a is copied from M! and
torwarded to the processor. In this process the page of
information is split (i.e., page splitting) repeatedly as it

moves up the hierarchy.

Storaye Hierarchy Systems 6Y

(£14)

Processor
<N1>
n1 1(———2N1——> |
I 2k i
Me < 4N >
M3 € 8 N1 >

—— Y N

Figure 4,
Page Splitting and Shadow Storagyge

Storagyje Hierarchy Systenms 70

4, 2.4 Shadow Storage

As a result of this splitting, the page of size N! that
is received by the processor has letft a "shadow" consisting
of itself and its adjacent pages behind in all the liower
la2vels (i.e., shadow storage). Presumably, if the program
exhibits locality ot reference, many of these shadow fpages
will b2 referenced shortly afterward and be moved further up

1n the hierarcay also.

4, 2.5 Copyiny of Pages

In the strateyy presented, [ages are actually ccofpied as
they move up the hierarchy; a page at level n has cne copy
of itself in each of the lower levels, Since processor
"fetch™ ra=24u2sts substantially outnumber %store"™ requests

2.9., Dy more tnan 5:1 in some measured programs), the
contents of pages are seldom changed. Thus, 1f a page has
ndt b2en changyed and is selected to be removed frcm one
l2v2l to a lower level, 1t need not be actually transtferred
since a valid copy already exists in the lower level, The
contents of any level of the hierarchy is always a subset of
the iaformation contained in the next lower level. Thus,
tae total intormation capacity of the system is equal tc the
size of the level L store rather than the suwm cf the

capacities of all the levels, Since the capacity orf level L

Storije Hierarchy Systenms 71

is assumed to be much larger than the capacity of L-1, ertc,,
the Jdifference in total system capacity due to shadow

storagje 1is minimal.

4,3 Direct Transfer

In the description above it is 1implied that information
actually moves betwean adjacent levels, This approach,
called direct transfer, is indeed intended. B8y ccamparison,

taoagh, many proposed and experimental multiple level

storaje systems are pased upon an ipndirect transrer (e.g.,

the Maltics ‘'page multilevel" <system mentioned in Chapter
2y« In these systems, all infcrmation 15 routed through
lavel 1. For example, to move a page from level n tc level
n-1, the page is moved from level n tc level 1 and then rrom
izvel 1 to level n-1, Cleariy, this indirect approach is
and2sirable since it requires extra page movement and
consumes a portion of the limited M! <capacity in the

process,

There nave been two major obstacles to direct traunster
in previous systems: (1) interccmnnection structure and (2)

synchronization.

Storige Hierarchy Systeams 72

4, 3.1 Interconnection Structure

For many reasons, some technical and some historical,
mdst contemporary systems are physically structured in a
radial mann=2r, That 1is, there is a central element to the
system, eitner the processor itself o¢r the [frimary store,
and all other storage devices and/or processors are directly
connec-ted to this central element, Except for some pcssible
contrbol signals, thare are no direct data transfer
connactions between the non-central elements, This
structure is, of zcourse, guite consistent with a
non-aierarchical storage management systen. A logical
storaje hierarchy system should be based upon a physically

nierarchical interconn2ction structure,

4, 3.2 Synchronization

As indicat=ad 1in Table 1, storage devices often have
dirrerent timing and transfer rate characteristics. In crder
to accomplis a direac data transfer betveen levels,
synchronization 1s necessary. It may be obvious that a
storage device can not transfer data faster than its rated
parformance, but for many storagye devices, especlally
electromechanical devices, it is not possible to transfer

data slower than its rated speed.,

Storaygye Hierarchy Systems 13

Based on current techunology, this problem <cau be
solvel, Many of the storage devices are now
uon-electromechanical (i.e., strictly electrical), suca as
tae Cache, Hdain, and Bulk Stores of Table 1. It 1is quite
f2asivle to provide lirect transfer between any of these
devices and any other storage device; this is one reason tor
the radial interconnections described above where the Main
store actad as the Common means of providing
synchronization. Using a similar approach, we can allow
direct transfer between electromechanical devices if this
transter is routed through a small and reasonably
inexpensive electrical storage buffer. Femling L33]

discusses such a devize, which he calls a rubber-band memory

presumably because it "stretches" to match the

Characteristics of tha source and destination devices.

In the description above, it is implied that a transfer
up the hierarchy trom level 2 to the processor (level 0)
consists of two segueatial steps: (1) transfer paye of size
N2 from level 2 to 1level 1, and then (2) extract the
appropriate page subset of size N! and transfer it frou
lavel 1 to the processor (level 0). In general, a transter

from level n to the processor would consist of a series of n

Storije Hierarchy Systems 74

steps. Thus the system page transfer time wculd egual the

SUm of n inter-level page transfer times (€edey,
I'nid+Im23+TmI2+ cse)a Furthermore, for many
electromechanical storage devices, the second access,

raquirad to forward the page =subset, may experience the
"maxisum" access delay vrather than the "average"® {lL.€.,
after storing the information into the 1level, a comglete
m2chanical revolution may be required to reposition to read

the same information ind forward it to the next level),

Phis inefficiency can tLe avoided by allowing
information to ba stored into all upper levels
simultaneously. Figure 5 illustrates this mechanism. If
information is to be transferred from M3 to the processor,
Y3 turns on its output data gate, G3out, when it is ready to
start and transfers N3 bytes and their correspcnding lcgical
addresses up the data bus. M2 turns on its input data gate,
3%2in, to receive these N3 Dbytes; furthermore, when the
appropriate N2 bytes needed py M! are detected by M2, it
turns on its output data gate, G2out, and these N2 bytes are

forwarded to Mt while being stored in M2, etc,

For example, assume a reference tc lcyical address a is
Jenerated by the processor and the corresponding information
153 current stored at level (and all lower levels, of

cdurse) . At the instint that the N1 bytes containing a are

Storije Hierarchy Systems

Processor
———————————— 1 3

S

Gt) M1
——
—

G2 H2
—_—

)
Cmmem

G3 M3
—_—

Figure 5,
Read Through Structure

(£15)

storage Hierarchy Systenms 76

pla;ai on the data bus by level n, these N! bytes will be
stored 1into all 1levals from level n-1 to level O (the
processor) siinultaneously. Likewise, the N2 bytes
contailning a are siwmultaneously stored into all levels fron
lavel n-1 to level 1, This strategy thus makes 1t appear
that the N! byte pajge requested by the processor is read
through directly to the processor without any delays.

4,4,1 Page Transfer Time

Using the read throuyh strateqy, the page transfer time
to th2 processor is actually less than the page transfer
time to the adjacent storage level., For example, if the
raquested information 1is stored in M3, the page traasfer
tim2 to the processor, via read through, is

Pia30 = T3 + N1B3
whereas, the page transfer time frcm M3 to M2 is
Im32 = T3 + N3IB3,

Sinze Ni1<KN3, then Tm30(Tm32,

4.4,2 Availability and Servicability

The read through mechanism descriked above ofiers some
inportant advantages to the availability and serviceability
vf th2 storage system., Note that all storage levels are

connectzd to the gatei data bus not directly to each other.

Storage Hierarchy Systems 717

If a storage 1level amust be removed from the systen for
servicing, it is merely necessary tc manually set both Gin
and Sout "o, In this case, the information is really
"read through™ this level as if it didn't exist. No other
Caangyes are needed to any of the other storage levels or the
storaje management algorithms although we would expect the

parformance to decrease.

- o o oy e st

Under normal stealy-state operation, all the levels of
the storage hierarchy will be full (except rfossibly level
L), Thus, whenever a pagye is tc be moved into a level, it
15 necessary to remove a current page. If the page selected
for removal has not been changed by means of a processor
"stora2", the new page can be immediately stored into the
lav2l since a copy of the removed page already exists in the
n2xt lower level of tne nierarchy. If the processor
J2nerates a "store" raguest, all 1levels that contain a copy
of th2 information being wmodified must ke updated. This can
92 accomplished in three basic ways: (1) store through, (2)

stor=2 replacement, or (3) store behind.

Storage Hierarchy Systenms 718

4,5, 1 Store Through

Under a store through policy, all levels are
simultaneously updated whenever the pfocessor generates a
"store" request. This is the obvious inverse of the read
tarough policy. But, there is a crucial distinction. Under
r2ad through, only storage levels 1 through n are used,
wher2 n 1is the high2st 1level containing the regquested
information, Store tarough must wupdate the contents of
lsvels n through L. raus, read through speed 1is limited by
1ts slowest level aifacted, level n; store through is always
limitad by the speed on level L, the slowest level of then
all., If 2J% of all processor requests are "“stores", the

tema success freguancy function ct level L will be at

Vi

sy
l2ast 20%. Due to its large average access time, level L

will be the dominate portion of the system's effective

access time, T?'.

Store through can be wused efficiently only if the
access time of level L is comparable to the access time of
l2vel 1, such as in a1 two-level cache systen, In fact, it
is used 1in some cache systems, such as the IBM System/370

Mod=21s 155 and 165 (52],

Storaje Hierarchy Systeas 79

4,5.2 Store Replacenment

Under a store replacement policy, the processor only
stores into M!., Ir a chany2d page 1is later selected tor
r2moval, it is then moved to the next lower level, M2,
iamediately prior to being replaced. This process occurs at
2very level and, eveatually, level L will be updated but
only after the page has been selected for removal trom all
the higher levels. Due to the extra delays causeda by
apdating changed pagyes before replacement, the effective
12Cc255 time for fetches is increased. Various versions of
store replacement are used in mcst two-level paging systeas
since it offers substantially better performance than store

through for slow second level storage devices (€edo., drums

and disks).,

4,5.3 Store Behind

Store Behind 1s a1 compromise strategy that bridges the
jap batween store through and store replacement and offers
substantially better parformance, 1In both strategies akove,
the storaye system was required tc perform the update
operation at sone sée:ific time (e.qg., at the instant of the
"store" —request for store through or at the instant of

r2moval for store replacement). Once the information to be

stored has been accepted by the storage management systen,

Storage Hierarchy Systems 80

the processor doesn't really care hcw or when the copies in
the storage hierarchy are updated, Store behind takes
aivantagye of this dajree of freedon., Due to the large
ilsparity between average access time and transfer rate for
most levels, the maximum data transfer capacity is rarely
rzached (i.e., at any instant of time, a storage level may
w3t have any outsténiing requests for service or it may be
waiting for proper positioning to service a rpending
ra2quast)., During these "idle"™ periods, data can be
transferred down to the next level of the storage hierarchy
without affecting or delaying any fetch operation. Since
these2 "idle" periods are usually very frequent under most
actual circumstances, there <c¢an be a continual flow of

cnany2d information down through the hierarchy towards level

Although an effective storage management system should
attempt to minimize page movement and 1ts associated
"housekeeping", there will still be a substantial amcunt of
wWOCK required to manije the hierarchy. It is desirable to
ramov2 as much as possible of the storage managyement from
tne concern of the processor and the programs runhing on the
procz2ssor, including the operating system. There are two

primacy motivations for this cbjective: (1) the stcrage

Storije hierarchy Systeas 51

hierarchy saould function as an independent component of the
System to eliminat2 any added complexity to the processor or
proyrams, and (2) w2 want to conserve the processor's
computational powers for solving the user's problems ratner
tnan for "system overhead", In actuality, of course, the
Storagje hierarchy can not be divorced entirely from the rest
of the system, but th2 remaining interdependencies should be

minimal,

4,6,1 Distributed Control

In the hierarchical storayge system described above, all
storaje management oparations can be determined local to a
single level or, at most, in consideration of information
troa aeighboriny levels, Thus, it is possible to distribute
tae Ccontrol of the nierarchy into the levels, this also
facilitates parallel and asynchroncus operation in the

hierarchy.

In a comprenensive multiple level storage hierarchy, as
illustrated in Tablz 1, this autcmatic and distributed
control can be accomplished by using two mechanisms: (1)

processor tunctions, anl (2) "intelligent" comntrollers.

Storage Hierarchy Systems 82

4.6,1,1 Processor Functions

The management of the first storage level must cperate
at speeds comparable to the processor, As a result, it 1is
usuilly necessary to incorporate the first level store amnd
its associated manajement operations into the processor
hardware 1itself, This approach 1s used 1in the 1IBM

System/370 cache systeas [52].

It is often desirable to incorporate the management of
the second storage 1level also 1intc the processor. This
l2vel requires substantial performance to handle the demands
for service from the first storage level, Since its
r2quirements are not Juite as demanding as the first level,
it is an ideal candidate for firmware control, assuming that
the processor is microprogrammed, This approach has not been
used in any current commercial systems, although the
integrated ({i.e., Bicroprogrammed) channels of <certain
wnodels of the IBM System/370 are based upon similar
concepts. There have been a few experimental systems, such
as the VENUS System at MITRE, which provides processor
tunctions to essentually manage the paying system via

microprograaming.

Storagje Hierarchy Systenms 83

4.6.1.2 "Intellijent” Coatrollers

For the third storage 1level and beyond, the storaye
management pertformanca2 requirements are nmuch more wmodest
since most of the storage activity should occur at the first
and s2cond levels. For these lower levels, it is possible
to develop independent storage management ccntrol facilities
for each level, This can be accomplished by extending the
tanctionality of conventional device controllers. Some
racant sophisticated iavice controllers are microprograumed
and are already capaple of performing the storage management

function [1].

4.6,2 Multiprogramminj

Jp to now we have tacitly assumed that the grccessor
b2com2s idle whenever it is necessary to fetch information
from the storage hierarchy. This may be a reasonable policy
£or two-level cache systems since the processor is aever
idle for more than one or two microseconds at a time., But,
for paging systems and general multiple level storage
hierarchies, the processor may be idled for periocds of
nunirads or thousands of microseconds at a time, It is
worthwhile to try to rind useful work for the processor
while the storagye hierarchy is retrieving the reguested

information,

S5torage Hierarchy Systems sS4

In most <conventional computer systems, processor idle
time is atilized by multiprogramming., This reguires that
trere be multiple progjrams available to be run. Whenever
one program must be dazlayed due to a time-consuming storage
raquest, the processor 1s sWitched to another proyranm,
Under reasonable circuamstances (e.g., Dany programs ready
for 2xecution and moderate load on the storage system), it
1s possible to keep the processcr ccntinually busy. Thus,
tne =2ffectiva system storage access time, T', will very

closely approximate T1,

Unfortunately, the process cf switching executicn froam
one program to anoth2r can result in a considerable amount
of processor overhead, For example, an early version of tne
dultics operating system was reported to require 10
Rilliseconds to switcan programs; typical operating systens
raguicre up to 1 millisecond. The time required to
accomplish this multiprogram switch can be drastically
reduced if the multiprogramming management 1is also
incorporated into th2 processor along with the rirst and
second storaye level management. Although the particular
purposes were different, hardvware supported multiprogramming
nis b2en available on several cowputing systems, such as the

tioneysaell 827 series [46] and nore recently in the Singer

Storaje Hierarchy Systems 85

Systea Ten [30]. The less frequently executed operatiny
systea functions, such as job scheduling and time-sharing
management algocithwes, can be supported by the sottware
operating system as on conventioal systems without adversely

atfecting performance.

4.7 Comments opn the Storage Hierarchy System Design

This <chapter has presented the key «concepts of a
ga2neral multiple level storage hierarchy system. Many of
the particular details of the system will require
consilerable investigation and experimentation to determine
an optimal implementation, Three important factors are
axt2nsively studied in the followiny chapters: (1) other
pige size considerations, (2) removal alyorithms, ana (J3)

r21l2vant models for proyram r2ference behavior.

Storage lierarchy Systems Bo

CJAAPTER 5,

ANALYSLS OF PAGE SIZE CONSIDERATIONS

5.0 Introduction

Jne of the most important parameters of a storage
nierarchy system is the page size, the unit of information
transfer Dbetwesn two levels of the hierarchy. In this
chapter, the factors influencing page size are examined from
the device characta2ristics viewpoint ana the progran

pehavior viewpoint,

On contemporary two-leveli paging systems (based upon
two davices similar to devices 2 and 4 of Table 1), the page
siz2 15 usually quite large (typically 4096 bytes for paging
systa2ms) to take advantage of M2's large transter rate to
compensate for 1ts slow access time. Such a large page size
is justified by reliance on the Principle of Locality.
considering the devices of Table 1 for example, a single
byt2 can be accessed and transferred between M and M2 in
about 5 milliseconds whereas 4096 contiguous bytes can be

fatch2d in 7.8 millis2conds, only 56% more time,

Storage idierdarchy Systems 87

5, 1.1 Page Size Iavestigations

Although paginy systems have Leen used successfully,
tae 2ffect of page slze has become the subject 0f incCreasing
investigation, This interest has been aroused due to several
considerations:

1. It has be2n noted by Denning [26] that the
utilization of M! is maximized and "page breakage" minimized
by wusing rather smill pages, such as 200 bytes. In
particular, he emphasizes:

"These results are significant ,.. small pages
parmit a great deal of compression without loss of
efficiency. Small page sizes will yiela significant
improvements in storage utilization ee."

2. The success of cache systems indicates that the

Principle of Locality applies on the micrcscopic scale as

w2ll as the macroscopic scale c¢f conventional paginy
systems.,
3. The &recent iantroduction of several new device

tschnologies, such as the "semiccnductor drum" [35] with an
average access time of about 100 micrcseconds, drastically
reduces the benefits of very large page sizes 1n a paging
systenm,

4, Although most current multilevel systems employ

only two levels, this tnesis is ccncerned with nmultiple

Storagje Hierarchy Systeams 88

lavel storage hierarchies (1.e., three c¢f more levels). In
fact, storage systems with six or more levels are gquite
plausible, A deep uniarstanding of the effects of various

paige sizes 1is essential to the development of such systens,

Thus, although there are many reasons fcr consideriag
new page sizes, there is not a ccmplete understanding ot the
impact of such a change. Denning {[26] sums up our current
knowledge as follows:
"T’wo factors primarily influence the choice of page
size: fragmentation and etfficiency of page-transgcrt
operation,"

In this <chapter some other factors of potentially crucial

importance will be discussed.

5.2 Anomalies

Jne of the more intriguing and frustrating aspects of
comnplax systems, such as paging systems, 1s the occurrence
of anomalies (i.e., phenomena that are contrary to "ccamon
s=2nsa"). For example, Belady [10] has shown that certain
storaje manaygement r2aoval algorithms, in particular FIFO
(tirst-in first-out), may actually cause performance to
dacrease as the capacity of M! is increased. This result 1is
contrary to the general belief that "more main memory maxkes

things work out batterv, Thus, one pust exercise

Storage Hierarchy Systems 89

considerable care when considering "tinkering"™ Jith the
param2ters, such as page size, of a multilevel stcraye

system.,

'he objective of this chapter is to present and analyze
some anomalies encountered when the page size parameter is

chang2d in a paging systen,

5.3 The Page Size Anomaly

For simplicity, let us start by consiaering the effect
of decreasing the paje size used in a two-level system, S,
from N to N' where N* = N/2 in this new system, S', In
particular, we wish to investigate the effects upcn the
failure frequencies which are f and f*, respectively. We
define the ratio f'/f to be r. The possible results can be
partitioned into three interesting regions:

1. r < 1.

5.3.1 Case 1: r <1 (£* < f).

This Wwould be a highly desirable resulit since the
numbecr of ©page fetcha2s is actually decreased., Furthermore,
the time reguired to access and transfer a page of size N!

would be expected to be less than that required fcr the

Parampaters

As sesn by S:

P
1P|
2
Q1
141
FIFO

® & & & o &

As sez2n by s!

. P

* P}
° Q

e il
[|Hl|
s FIFO

Simulation

?1g2 Trace:
Fatch:

M1 Contents:
SO

Fatch:

%Y Contents:

g2sults
F =
F' =
» r =

Storije Hierarchy Systems

o
LY
(=
-
{
-

ta, o, C

oo

Removal

at, bt*, c
6
{ a*, b+,
3

[L TR [1

=]
[
B &
Q
<
Y
s

at bQ- c+ a*l-

x X % %

a b ¢ a
a b cC

* K %

at bt ct ct
at b+ b+

at at

6

3

3/6 = 0.5

a,

}

+*
’

ct+

bt

ct
b+
at

gxa

at, b%, c+

}

ct

o0

ct
bt
at

Figure 6.
mple cf Case 1

90

(£4)

Storije Hierarchy Systenms 91

larger page size N, Figure 6 illustrates an instance of this
Cas2. In converting aa address trace to a page trace for N°,
the logical page addr2sses pt and p- are used to regresent
the two halves of the page p of size N. Note that when usiny
a page size of N/2 instead of N, M! actually holds twice as

@iny pages thouyh eacn paye is only half as large.

In the example of Pigure 6, r = 0.5, which means that
the number of page fetches was <cut in half by using the
smallar page size N', This type of result might be expected
from a program that exhibited a rather sparse and
aon-localized reference behavior, Recall that in typical
two-lavel paging systems, a page of size 4096 bytes 1is
fetched even thougyh 31 single reference uses only a tew
bytes. Unless the program immediately makes many more
r2fer2nces to this ©page, much of it will have been fetched
put not used, Under these circumstances, H! might pe better
utilized by nolding a larger and more diversified collection

of pajes, even if each pagye were smaller.

5, 3.2 Case 2: 1 £ < 2 (£ < f* < 2£)

Phis 1is a transitional region., For r = 1, S* will
perform better than S5 since the number of page tetches is
the same and the tiwme required for each fetch 1s less. For r
= 2, 3' wWwill requiie twice as many page fetches. This will

usually swamp any paje transfer benefit derived from the

Storagje hierarchy Systenms 92

smallsr page size, thus 5 would pertorm better. The specific
point of transition, r', depends largely upon the tinme
raquired to access and transfer a page, T apnd T!

r2spectively in S and 5', such That r' = T/T?'.

Pigure 7 illustrates an extreme example of Case 2 wnere
r = 2.0, This m2ans that the number of page fetches was
ioublad by wusing tme smaller page size N'. This type of
r2salt might be expected from a program that exhibited a

d2nsa2, localized, and sequential reference behavior.

Intuitively, the r = 2,0 result is the "worst" case
51nc2 we ar= being forced to always 1load both the p+* and p—
ailves of each original page g, thereby 1losing all the
b2nefits of the smallar N' page size and incurring twice as
many actual page fiults. This intuitive observation is

false; r = 2.0 is not the "worst" case,

5. 3.3 Case 3: r > 2 { £ > 2f)

I'his thircd ra2jyion, besides being intuitively
inpossible, is clearly undesirable, Since the number ot page
tetches required would be more than doubled, the performance
of S' would be undoubtedly worse than S. Depending upon the
1ctual wvalue of r, the perrormance could be much worse,
Figurs 8 illustrates 2 reference pattern that produces a

result of r = 2.75. This region of operation will be the

Storage lHierarchy systems

Pirameters

» p = a, a4, b, b, c, C
[} } P = 8
* 9 = {a, b, c}
e j2I =3
™ jHry = 2
* FIFO Reamoval
As sea2n by S*':
. p = a¥, a-, b%+, b-, c*, c—
e IP] =6
b ¥ = {a*, a-, b*, b=, c¥, c™ }
e oI =0
[}]Mll =
e FIFO Removal

Simulation

Page Irace: at*t a- b* b~ c+* c—

F2tch: ¥ * *

M¥ Contents: 3 a b b Cc C
a a b b

S'

Fatch: * ¥ x % x ¥

Mt Zoantents: at a- b* b~ ct+ c¢—
at a- b* p— ct

a¥t a- bt b-

at a— bt

R2sults
F = 3
F' = %
r = 6/3 = 2.0

Figqure 7.
Example of Case 2

S5torige Hierarchy Systems 94

(to)

. p a, b, 23, b, ¢, ¢, b, a, a, ¢, ¢
e {P} 11
. Q = {a, b, ¢}
* 121 =3
Y Iﬂ‘l = 2
e FIFU Removal
As s2en by St':
. P = a*, b*, a~-, b~, c*, ¢c—, bt+, at, a-, ct, c-
e |P] 11
. < = {a%*, 3=, b*, b-, ct, c™ }
* JQf =6
. |Ml' = §
« FI Removal

Simulation
Pige T'race: a* bt a~- b- ct* c- bt at a— c* c—
3

Fatch: * % * *
41 Contents: a b b b ¢ ¢ ¢ a a a a

Sl

Fatchs x x x x *x % X x *x x x

4! Contents: a* bt a- b~ ct ¢~ bt at a— ct c-
a* bt a— b~ ct* ¢c— b+ at a—- c+

a* p* a- b— c* ¢c— bt at a—

A% b* a= b— ct c— bt a+t

Hesults

- - ——

]
-—

Fl

Figure 8.
Example of Case 3

Storaje Hierarchy Systems Y5

subject of discussion for the remainder or this Chapter, We

tormalize this situation by the following existence thecren.

- -

THEOREM 1:

There exists a page trace, P, and demand-fetch
FIFO-removal two-level storage systems, S and S', with
page sizes N anl N'=N/2, respectively, such that the
ratio, r, of tetch frequency f' to f exceeds 2.

Proof:

By exauple (Figurz o).

T T T o o o e o o e e e T - - —— A —— o -

3, 3.4 Other Removal Algorithas

by a

Theorem 1 states the anomaly that decreasing page size

factor of two <c-an cause the page tetch treguency to

increase by more than a factor of two. The two-ievel

d2mand~fetch conditions of Theorem 1 are typical cf nmost

contzaporary paginy systews, But, to put this situaticn into

pP2rspactive, other resoval algoritams must be considered.

Due t> its simplicity, tne FIFO removal alyorithm was used

in many of the early paging systems. In recent tiwes it has

ba2en

found that FIFJ has certain disturbing pecularities

(e.g., the system's success frequency, s, is not a monotonic

function of primary store size, |M1] {10]). Furtheruwore,

other removal algoritnms have been fcund to be empirically

Storige Hierarchy Systems 96

closer approximations to the "optimal" removal algorithnm,
MIN [11]., MIN itself is not physically realizable since it
raquires future knowledge, but it can be used as a basis for

performance comparison with practical algorithms,

Various forms of the "least recently used" (LRU)
cemovil alygorithe hive become popular in contemporary
systens. Under LRU, the page selected tor removal from the
primary store 1is the one that has nct been referenced for
the longest time (i.e,, the least recently used page).
apirically, LRU has been found to closely approximate the
parrormance ot the ‘Moptimal" algorithm for many actual
projrams. Furthermore, Mattson et a} [63] have studied LRU
and found that it is a member of a general class of removal
algoritams called "stack algorithms", The class of stack
iigorithms, as noted by Denning {25], "contains all the
‘reasonable' algorithas". In particular, stack algcrithas
all satisfy an inclusion property that results in well
b2haved characteristics., For example, it has been proven
that all stack algorithns, including LRU, have a success
frequ2ncy that is a monotonic function of primary store size
and immune to the FIFO peculariarity observed by Belady.
Thus, one might be tampted to assume that the page size
anomaly is also a phenomenon unique to FIFO removal and
v>uld not occur if a "well bahaved® removal algorithm, such

13 LRJ, wvwere used. This expectation can be raridly destroyed

S5torige Hierarchy Systeams 97

by observing Figure 9, wnich is the same system as Figure 3
put with an LRU rewovial algorithm, In this exdwple, the page
tetch frequency ratio, r, is 2.2 which still exceeds 2. This
result leads us to Theorem 2 and Corollary 2a.
THEJRENM 2:
There &exists a page trace, P, and demand-fetch
LiU-removal two-level storage systems, S and S', with
page siza2s N and N'=N/2, respectively, such that the
ratio, r, of fet:zh frequency f!' to f exceeds ¢,
Proof:

By example (Figuce 9),

CIROLLARY Za:
s5iven a page trace, P, and demand-fetch two-level
storage systems, S and S?', with page sizes N and
N'=N/2, respectively, the use of a "stack" reuwoval
ilgorithn (L.es, an algorithm with the "inclusion
proparty") is not sufficient to guarantee that the

ratio, r, of fetch frequency f' to f will be bounded by

T R L R e ML A DR TR Gh R AR M A A e e R TS e e e A - W A — ————— - ——— — A —— - —

Storage Hierarchy Systems

. p = a, b

. 1P} = 11

* 9] = { a,

o fi = 3

e M = 2

. LRU Removal
As se2n by 3':

] p = a+'

e |P] =11

» Q = la*

* I3l =0

. ’Mll = 4

* LRU Removal

simulation

Page Trace: at bt
ESE:n: * %
4t Contents: a b
a
Sl
Fetchs: *x X
Mt Contents: at pt+
a+
dz2sults
F =5
] F* = 11
o r = 11/5 =

’

a-
b+
at

i, b, ¢, ¢C,
y C }
E a—l b_l C’
3._' b+' b’l
b~ ct ¢c— bt
-3
b ¢ ¢ b
a b b c
L T
b- ¢t ¢c— bt
a= b— ct* c¢c-
bt a— b- c+t
i+t p+ a- b-—
.2

at
b+

ct

Figure 9,
Bxample of Case 3
(for LRU Removal)

a,

a~—
at
b+
c—

a,

ct

Q

ct

at
bt

c, ¢

o

c—
Cc*

at

98

(t7)

Storage dierarchy Systeuas 99

£ the Page Size Ancmaly

he previous theorems prove that there exist page
trac2s that result 1a significantly increased paye tetch
freguancies if the paye size is decreased. It is necessary
td> consider the 1likelihood of encountering such page trace
patterns in actual proyrams. For example, it can be proven
that, as you are reading this sentence, all the molecules of
air 1in the room may suddenly move towards the opposite
corner and cause you to suffocate. If you survived the last
sa2nte2ace, you have probably deduced that the 1likelihood ot

that 2vent is extremely swmall, fortunately.

5.4, 1 Simulation Studies

Hatfield [43] and Seligeman [78] have pertormed
expariments that indicate that the page size anomaly is very
common, 1t not inevitible, in actual programs. In both cases
actual programs were monitored and their corresgondinyg page
trace reference strings were recorded, usuaily oun magnetic
tape, Then simulators wvwere developed that mimickea the
softwire and hardware of the two-level storage systeas then
in us2 or being consiieored, By supplying the monitored payge
traces as inpats to the simulators, the performance cf such
a4 system can be accurately measured., These simulatcrs Jwere

scrupulously accurate, not just apprcximations., The validity

Storage Hierarchy Systems 100

of these results have been confirmed 1n some cases oy

rinniay the real projrams under a real two-level storage

5.4,2 Hatfield Studies

Hatfield [48] performed studies 1in the hardware
environment of the IBM System/360 Model 67 with programs
ranning under the CP-67/CMS Operating System. The simulated
parformance was measured for various page sizes, N, and
various primary store sizes, |M'}y. In summary, it was
confirmed that certain programs, which were viewed as
axamples of low-density storaygye use, resulted in decreased
paye retch frequency when page size was decreased. But, it
vas observed that tor programs with much greater
localization of heavily used storag=a:

"not only does th2 smaller page size otften dgenerate
n2arly twice as miny page <fetches as the large page
siLze, it often resulted in more than twice the page
tatchas, contrary to our intuiticns."
In particular, the substantially increased page fetch
trequancy appears to be2:
"a characteristic of proyrams which have a high
locality and therefore perform well on systems usinyg
r2location hardware for address translaticn and is

characteristic of those programs in the region of
low paging rate,"®

S5torige Hierarchy Systems 101

In other words, the anomaly is most prevalent 1n programns
"optimized" rfor performance in a two-level storage systen

when running under nearly "optimal" conditions!
>3, 4.3 Seligman Studies

Whereas Hatfield was «concerned with a paging systen
with page sizes in the range from 2048 to 16384 bytes,
Saligman (78] analyzed a proposed cache system with much
smaller page sizes in the range of 8 to 256 bytes, He
obsarved that:

"interestingly, the missing page probability (for
this data) is minimized for a page size which
increases slowly with total memory size. Note that
the associative m2mory orgamization, waere page size
agjuals one word, is not optimum; tc borrow a phrase
from economics, the margyinal utility of the extra
words fetched in a page is higher than that of those
displaced",

Thus, continual decreising of page size appears to have an

inevitable adverse effact upon system performance.
Ss4,4 Other Questions Raised

Now that it nas been shown that the page size ancmaly
is th2oretically possible and likely to occur in practice,
there are several other questions of interest, Since it has

b2en proven that the page fetch frequency ratio is not

Storaje Hierarchy Systems 102

bsunded by r = 2, what bounds, if any, do exist? Hatfield
iaplicitly raised another question by the statement:
"as yet we have b22n unable to prove that there is a
raplacement algorithm using cnly the past history of

page requests which cannot generate more than twice
the exceptions with half size pages."

'ne answers to thes2 questions are the subjects of the

following sections and chapters.,

5.5 Bounds on the Page Fetch Frequency katig

It has besen shown that the page fetch frejuency ratio
can exceed r = 2, but just now bad can it get? Of equal
Laportance, what factors influence this bound? These

Juestions will be discussed in this section.

5.5.1 Cyclic Page Traces

Figures 10 and 11 represent page trace simulaticns for
téo sets of demand-fetch LRU-removal two-level storage
systems wWwith primary store sizes |[MA(=2 and |M1}=3,
ra2spectively. In both cases, it can Lke observed that the
page trace simulated is cyclic with a repeated pattern, Pc.
Ia Figure 10, the page trace consists of the repeated

pattern:

Storije Hierarchy Systems 103

(£8)
Parameters

- —— . . ——— —

As se2n by S5:

. P = a, b, z, ¢, b, a, a, b, ¢, ¢, b, a
. {1} = 12

o] = {a, b, ¢}

. it = 3

. ‘ull = 2

e LRU Removal

As s22n by St:

. P = a*, b*, ct, ¢c-, b-, a-, at, b¥, c+, c—, b-, a-
. 1P} = 12

. 2 = { a%, a-, b*, o=, c*, c— }

* Q1 =6

. jM1y = 4

* LRU Removal

Simualation

transient steady~state

j === Cylle ————=>| €= CyCle wmm=p|
Page I'race: at* bt c+ c- b— a~ at b+t ct c- b~ a-

~

Fatch: *® * * * * *

Mt Contents: a b ¢ ¢c b a a b ¢ ¢ b a
a b b ¢ b b a b b ¢ b

Sl

Fatch: x % ok ok * Kk *k k x Kk K x

M1 Contents: at bt ct z- b- a- a* b+t ¢t ¢c— b- a—-
at b* c+ c— b— a- at b+t ct c— b~

at bt ct ¢c- b— a— at bt ct+ c-

at bt ct ¢c— b— a— at* bt ct

Results
For the steady-state cycle:
. F = § ™ F = 2
FY = 12 . F' = 6
r = 12/6 = 2,0 s /r/ = 6/2 = 3.0

Figure 10,
Cyclic Pagye Trace with M2} = 2

Storage Hierarchy Systenms 104

whereas Figure 11 repsats the similar pattern:

Pc = a+ bH+ ¢+ d* 4d- ¢ b— a—

5.5.2 5teady State Cys-iic Payge Traces

Let us consider Figure 1) first, The page fetch ratio,
r, 1s 2.9 in this cass., AS noted earlier, the page trace can
b2 supdivided into an initial transient stage, Pt, with a
high page fetcn frequency followed by a steady-state stage,
Ps, with usually a lower page fetch frequency. In Figure 10,
the first Pc cycle contains the entire start-up transient
stage and completely fills all the available space 1in 1,
Thus, thae second Pc <cycle regresents the start of the
steady-state stage, Furthermore, since the content and page
ordaring of M is exactly the same at the end of the second
cycle as thay were at the beginning of that cycle for both S
and 3*', the page trace cycle, Pc, can be repeated
continuously with exactly the same results each time for
page fetch regquests andi M! contents. If /r/ is defined to be
the pigye tatch frequency ratio for the first steady-state
pa2rioi, Pc, of a cyclic paye trace, (Pc)*, /r/ 1is also the
page fetch frequency ratio for the entire steady-state
portion of the page trace defined by the regular expression:

P = ptePs = Ete (Pc)*

As the length of the page trace, |P|, Dbecomes large in

zomparison with the length of the transient stage, |Pt|, the

Storage Hierarchy Systems 105

overall page fetch freqguency ratio, r, asymptotically
approaches the value of the steady-state cycle page fetch
trequency ratio, /r/., 1In Figure 10, /r/ = 3.0, thus r will
increase from 2,0 towards 3.0 a4s the page trace is
lenjthened by continually repeating the pattern Pc. 1nus,
the page fetch trequency ratia, r, fcr the page trace

P = (‘a* bt ¢t ¢ b- a—)%

1s bounded by 3,0 when jMr| = 2,

A similar situation is illustrated in Figure 11. In
tnis example, r = 2.28 and /r/ = 4,0, Thus, the page tetch
trejuancy ratio, r, for the page trace

P= (a*t bt c* dt+ d- c- b- a-)=*
is bounded by 4.0 wh2n |M!}| = 3, By generaliziny these

2xamples, we arrive at Theorem 3 and Corollary 3a.

D - A ——— —— = — i Y ————— —— . — . —— — - —— e 7ot e e s e

(th3)

THEORE® 3:
For any two demand-fetch LRU-removal two-level storage
systems, S and 5', with page sizes N and N*=N/2 and
primary store sizes |M!| and |M1|'=2|M} |, respectively,
there exists a cyclic page trace, F = (Pc)*, where {Pc|
= 2(|MY|+1), such that the steady-state page fetcn
frequency ratio, /r/, equals |M1|+1,
Proof:

(See below).

Storage Hierarchy Systems 106

(£9)
Paramaters

As seen by 5:

. p = a,pb,c,i,d,c,b,a,a,b,c,d,d,c,b,a
e P} =16
. Q = {a, bp c, d}
4RI =4
™ 'ﬂl' = 3
* LRU Removal
As seen by S':
. |4 = a%,b+, ct+,4%,d~-,c~,b~,a~,at,b*,ct+,d*,d-,c—,b—,a
e |P] = 16
. Q = { a¥, a-, b%, b-, c¥, c—, 4%, 4~ }
* QI =8
® |M] = 6
s LRU Removal
simulation
transient steady—state
| &~——— cCycle > | € cycle ——>|
Page Trace: at bt c+ d¢t d- c— b— a— at bt c+ d+ d— c— b— a—
FatcCh: x * % % * * *
4 Contents: a b ¢ d d ¢ b a a b ¢ d 4 ¢ b a
a b ¢ c d ¢ b b a b ¢ ¢ 4 ¢ b
a b b b d ¢ ¢ ¢ a b b b 4 c
S!
Fatch: x x kx Kk k % %X *® *x *k x %k %k X % X

Mt Contents: a* b* ct+ i+ d- ¢~ b— a- at bt c+ d* d— ¢~ b~ a-
a¥ b+ ct d+ d— c— b— a— at b+ c* d+t d—- c— b~

a¥t b+t c+ 4% d— ¢~ b~ a— at bt ct+t 4+ 4d- c-

at bt ct d*% d- ¢c— b= a— at b+t c+ 4+ d-

a* bt ct d+ d—- c— b— a— at bt ct 4+

at b+ ¢+ d¢+ d— ¢c- b~ a— at bt c+*

t————-——' sane -————i

g2sults
For the steady-state cycle:
. F =17 . F =2
. Ft = 16 . F* = 8
J r = 16/7 = 2.28 « /r/ = 8/2 = 4,0

Figure 11,
Cyclic Page iTrace with M) = 3

Storage Hierarchy Systeams 107

COROLLARY 3a:
Por any two demand-fetch LRU~-removal tWwo-level storage
systems, 5 and S', witn page sizes N and N'=N/2 and
primary store sizes |Mi} and |M3|'=2|M1), respectively,
there exists a cyciic page trace, F = (Pc)*, where |Pc]
= 2(IMLt]+1), such that the overall page tetch frequency
ratio, r, asymptotically approaches the bound |NM1|+1 as

|P] approaches infinity.,.

D S R D D G A R S S —— . - ——— - A —— - ———— " o - = ——— -

5.5.3 Proof of Theorea 3

5.5.3.,1 Notation and Properties
Assum2 a fixed page size N and primary store cf size S1, let
n = tae number of pajes in M1 (Lie€ey N = |M¥} = S1/N), It
has b2en shown by Mattson et al ([€3] that 4 demand-ietca
LRU-removal algorithm has the following properties:

P1., If M! is initially empty, it tills with the first

n distinct pages referenced by the trace.
P2, At any tim2 t, M! contains the n mOst recently

referenced distinct pages,

P3. a) LRU satisfies the inclusicn property
ML(1) C M1(2) C one C M1 (m)
where Mt (1) means the contents of M!? 1f n=1,

atc,

Storage Hierarchy Systems 108

b) At any time t after M! has become filled, there
is a strict removal ordering referred to as the
LRU stack

S = { (1), 5(2) s sse, S(n) }
where

s(i) = M1 (1) - Ml (i-1) for 1 = 1, 2, esey N

and s{(n) 1s the page tc be removed next.

5.5.3.2 Definition 3-a:

For any integer n, let us consider a page trace, P9,
:onsisting of the repeated pdttern, Pc®, of 1length {Pc9§ =
2(n+1)

P® = pcO[n]*
where
PcP n] = (Pc2(1), PS2%(2), vuss, Pc9(2n+1), Pc% (2n+2) }.

Phe P29 (i)s are defined as follows:

t

2(1—1’ for i = 1, R} nt+1
PcO (i)

n+2, e ney 2n+2

i}

Gn+5-21 for i

1]
[39]

|

t

Thus, for n
PcOo{2}= {0, 2, 4, 5, 3, 1}
and

PO 2]

{0, 2, 4, 5,3, 1, 0, 2, 4, 5, 3, 1, ees }

'ne cyclic payge trace pattern, Pc®°[n], is used to define

Storige Hierarchy Systens 109

correspondiny cyclic page trace patterns, Pc{n] and Pc'(n],

for S and S', respectively. These are defined as tollcws —--

For a given value of n and i = 1, 2, ese, 2Dn¢2
Pc(i) = integer[Pc9(i) /2]
(integer[Pco (i)/2]+* if rem{ Pc® (i) /2]=0
Pct' (i) = §
(integer[Pc® (i)/2]) i1f rem[PcO (i) /2 }=1

Thus, for n 2 -
(2] = {0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 9, eos }
P 2] = (0+, 1%, 2¢, 2-, 11—, 0-, 0%, 1+, 2¢, 2—, 1—-, 0—,
see }
W2 can see that these page traces are identical to the page

traces of Figure 8 with appropriate relabeliny (i.e., a=0,

b=1, c=2).

5,5,3.3 Lemnma 3-b:
The page references of the set
{ Pc(1), see, Pc(ntl) }
are distinct.,
Proof:
Based upon the definitions c¢f Pc® n] and Pc[n], we see
that

For i =1, +e., nt1

Pc(i) integer| PcO (i) /2]

integer{2(i-1) /2]

1]

integer(i-1])

Storage Hierarchy Systeas 110

= i-1.
Thus, each value of Pz(i) for »r =1, ..., n+1 is distinct.,

Q.E.D,

5.5.3.4 Lemma 3-c:
The page references oif the set
{ Po(n+2), ve., PCc{2n+2) }
are distinct,
Proof:
B3ased upon the definitions cf Pc®{n] and Pc[n], we see
that

FPor 1 = n+2, s 00y 2n+2

it

Pc (i) integer[PcO (i) /2]

= integer| (4n+5-21i) /2]

= integer[2n+2+(1/2)-1i)

= 2n+2-1
Thus, each value of Pc(i) for 1 = D%, see, 2n+2 1is
distinct,

QQE-DQ

95¢5.3.5 Lemma 3-1:
At the end of =zach cycle, bc{n], of the page trace,
P(n), 4! contains the pages, in LRU stack order,

S = [s%°(1), eee, s9(n) }

Storiye Hierarchy Systeas 11

vhere
s?(3) = J-1 for 3 =1, 44, n
Proof:

Since each cycle, Pc{n], ¢f P[n] is of leugth 2n+2
walch 1s greater that n, the S9 LRU stack comnsists or tae
last n paye references of Pc{u] in reverse order by property
P2, P3, and Lemma 3-c. Thus,

s%{j) = Pc(2n+3-7)
such that
sO(1) = Pc(2n+2), s9(2) = Pc(2n+1), .e0, S°(n) = Pc(nt3).
#hen j takes on values { 1, +¢e, D }, 2n+3-7j takes on values
{ 2n+¢2, .., n+t+3 }. Thus, for j = 1, «es, 0 and pased upon

L2mma 3-c:

59 (J) PC(2n+3-3)
= 2n+2- (20+3-7)
= 3_1 .

GeEeDe

5.5.3.6 Lemma 3-e:

5iven a demand-fetch LRU-removal two-level storage
system, S, with page size N, primary store size S!
containing n=5'/N pages, the page fetch fuuction, F,
resulting from =2ach steady-state cycle, Pc[{n], of the
page trace P uas the value 2 (i.e., F|Pc[n]]=2 durinyg

steady state),

storage Hierarchy Systems 112

Proof:
Let us subdivid2 the Pc[n] cycle, which is of length

2n+2, into four regions as followus:

Reyion 1: Pcl = { Pc(1), ese, Pc(n) }
Reyion 2: PcZz = { Pc(n+1) }

Region 3: Pc3 = { Pc(n+2), +4e, Pc(2n+1) }
Region 4: Pc* = [Pc(2n+2) }.

and compute the number of page fetches in each region, F1,
F2, F3, F*, respectively. Since the page trace regioms are
concat=nated, the paje fetches are cumulative, so we Know
that

F = F1 ¢+ F2 + F3 + Pe,

R29g10n 1; Pclt f Pc(1) s oss, Pcn) }
From Lemma 3-b, we know that
PC(l) = l_’ i = " sy Il+1

and irom Lemma 3-d, w2 know that at the beginning of each

cycle

1' aseyg I

5°(3)

I'he page reterences { Pc(1), ..., Pc(n) } are actually the

j-1 3

s32quance { 9, +se, n-1 } which is identical to the contents
of M! at the start of the cycle, 5°, Therefore, uno page
transters are reguirei although LRU stack reordering may

occur. (Fis=

1<

) e
R2glion 2: Pc2 = { Pc(n+l) }
Page raference Pz (n+1) is page n which is nct contained

1a S° nor loaded during region 1 (in fact, no pages were

Storije Hierarchy Systeas 113

fetchad during region 1); thus, a page transfer is required
(F2=1) . Using similar techniques as in Lemma 3-d, since each
referance of Pc! is distinct, the LRU removal stack at this
paiat is
S = { 8(1), seey, s(n) }

vhere

s(j) = Pc(n+1-3) 3 =1, ¢ee, 0,
Page s(n) 1is selectel ror removal, this is actually page
Pz (n+1-n)=Pc(1)=0. Th2 new LRU stack ordering becomes

S(J) = PC(n*Z-j) J = 1' ceeey, Ile

degion 3: Pc3 = | Pc(n+2), eee, Pc(2n+1) }

he page references { Pc(n+2), ..., Pc(2u+1) } are
actually the sequence { n, ..., 1} as shown in the proof of
L2mma 3-b. The LRU stack ordering immediately prior to
referance Pc(n+2) is

SO0 = { S(1), sses S{(n) }
which is actually
{n, see, 11}
since it has been shown earlier that at reference Pc (n+2)
s{j) = Pc{n+2-3) i =1, vee, Do

Thus, as in region 1, every page referenced is already
contained ia M! and there are no page transfers required
(E3=0) .
Ragion 43 Pc* = { Pc(2n+2) }

Page reference P:-(2n+2) 1is actually page 0. This page

was not contained in 599, thus a page transfer is required

Storage Hierarchy Systeas 114

(E2=1).
Pherefore, we can coanclude
F{Pc[n]] = P1{Pcl] + F2[Pc2] + F3{Pc3] + F¢[Pc*]
=0+ 1+ 90 + 1
= 2.
Q.E.Do
5.5.,3,7 Lemma 3-f:
siven a demand-fetch LEU-removal two-level storage
system, S*, with page size N'=N/2, primary store size
LMY] containing 2n=[M!]/ (N/2) pages, the page fetch
function, F', resulting from each steady-state cycle,
Pc'[n], of the page trace P' has the value 2n+2 (i.e.,
F'[Pc*(n]]=2n+2 luring steady state).
Proot:

I'he proof follows directly from the definition of P°,
tne LRU properties, and the previous Lemmas.,
. Bach page refer2ace in the cyclic pattern Pc'(n] is
iistiact. (This <can b2 easily seen from the definition or

proven in a similar manner to Lemmas 3-b and 3-c),.

. Bach cycle is Zn+2 references lcng.
. At any time t, paye reference P'(t) = P'(t-2n-2).
. Phe primary store, M!, can hold 2n pages in S' siace

NY=N/2.

Storiage Hierarchy Systenms 115

] Since the cyclic pattern only repeats after 2n+2 steps
and M! is only 2n pages large, MY always holds the last 2n
page references (since they are distinct).

. Thus, at any time t, page reference P!'(t) will not
correspond to any paje currently in 4! (i.e., 4! holds
references { P'{t-1), ..., P'(t-2n) } and P! (t)=p*' (t-2n-2)
is not in that set)., As a result, a page fetch is reguirea
for every paye reference,

] Since there are 2n+2 page references per cycle, there
are 2n+2 page fetches required per cycle. Thus, F'=2n+2.

QuEnD.

5.5.3.8 Theorem 3:
For any two demani-fetch LRO-removal two-level storayge
systems, S and S', witi page sizes N and N'=N/Z and
primary store sizes [Hl1}'=2{M!'|, respectively, there
axists a cyclic page trace, P=(Pc) *, where
IPci=2(IM1|+1), such that the steady-state page ietch
frequency ratio, /r/, equals |M1|+1,
Proof:
rhis proof follows trivially from Lemmas 3-e and 3-f.
#2 kaow that for each steady-state cycle ot 5, F=2 (Lemma
3-e). Also, for each steady-state cycle of $', F=Zn+.l (Leuma
3-f) . Since the page fetch trequency ratio, r, is defined as

t*/t or (F'/|P|)/(F/|P|) which equals F'/F, we tind that in

3toriaje Hierarchy Systenms 110

steady-state
/r/ = FY/F = (2n#2)/2 = n+1,

CeLobs

5. 5.4 Zomments on Theorem 3

The above results expose another facet of the page size
inomaly. As the size >f the primary store, M}, 1is 1increased,
the overall page f2tch frequency ratio as stated 1in
Corollary 3a also incr2ases. This w@means that the larger the
primacy store that you have, the more "dangerous" the page
s31z2 inomaly becomes. For examfple, in a two-level paging
system based on devizas 2 and 4 frcm Table 1, {M!'| = 128
piges and N = 4096 bytes, if the page size 1is decreased by
half to 2043 Dbytes, it 1is possible that thne page fetch
treguancy would incrzase 129-told (a 12,800% increase 1in
paging activity!). Of course, on€ would assume, or at least
nope, that such pathological page trace patterms would be
vary vrare, but we «know that they can exist., It 1is
Literasting to note that th2 pathclogical pattern shown
ibove (e.9., a* bD¥ ct* - b~ a-) corresponds to the expected
referances of nested subroutine calls (i.e., subroutine a
cills subroutine b which calls subroutine ¢, etc., and each
sabroatine, of course, returns tc¢ its caller). This is also
. true of other stack-like program ccnstructs, Such highly

mddular program design is guite typical and, furthermcre, is

Storaje Hierarchy Systems 117

oft2n explicitly encouraged. In view of Hatfield's finding
where the overall r exceeded 2.0 in many programs, it 1is
reasonable to assume that there were probably regions 1in
which r was gquite small, possibly below 1,0, which were
count2rbalanced by regions with very high values cf . At
present we do not have this particular information
available, but if it were true, performance could be greatly
iaproved by eliminating the high r value regions. This

problam will be discussed in the next section,.

5.5.5 Bounds for PIFO Removal Algorithm

Theorem 3 applies to LRU removal algorithms and many
other removal algorithms, although these other «cases will
ndt b2 explicitly proven in this thesis. It is interesting
to consider whether the result of Theorem 3 applies to the
FIFD removal algorithm, Unfortunately, due to the
paculiarities of FIPO, a simple ygyeneralizable cyclic page
trace pattern has not been found. But, isolated examples
have been found, as illusfrated in Figure 12, that show that
it is possible for r to exceed |M!|+1, This result is stated
in Th2orem 4, Based upon other examples, it is conjectured

that the r, when FIF) removal is used, may be as high as

Storage Hierarchy Systenms 118

(£10)
garamaters
As seen by S5:
s P =a,c,a,b,b,c,c,a,a,b,b,c,c,a,a,b,b,c,c
e |Pt =19
. 0] ={ a, b, ¢}
* |21 =3
. lﬂll:z
» PIFO Removal
As sea2n by S':
s P =a%*,c-,a-,bt,b-,c*,c,at,a",b*t,b—,ct,c-,at,a-,bt,b-,ct,c™
e |P| =19
o Q ={ at%*, a~, b*, b-, c*, c— }
* 121 =6
['ﬂll:u
L J

SLm

I'ra

Fat
M1

g1

Fa2t
#il:

FIFO Removal

alation
steady-state
| €— transient >} <€ cycle —> |
ce: at ¢~ a—- bt b- c* ¢c— at a- b* b- ct c— at a— b* b~ ct ¢c-

* * *
4 a a a ¢ ¢ c ¢ b b b b
c ¢ ¢ b b b b a a a a ¢ ¢ ¢ c

ch: * x

Ch: * * x % % % * % *x %X % %X % %X *x o ¥ % *k

a*t ¢~ a~ bt b- ct* c- at a— bt b- c* c~ at a- bt b~ ¢+ c-
at ¢c= a—- b* b— ¢c* ¢c- at a~ b* b— ct c- at a— pt b— ct
at c- a—- b+ b= ct ¢~ at a— b* b— c* ¢c— at a- bt b—
a* ¢c— a~ b* b~ c* ¢c— a* a— bt b~ ct ¢c— at a- b+
I sanpe I
ults

—— ——

For the steady-state cycle:

F =10 . F =3

F'* = 19 . Ft = 12

r = 19/6 = 3,106 o /Jr/ = 12/3 = 4,0
Figure 12,

Cyclic Paya2 Trace with FIFO Removal

Storije dierarchy Systems 119

THEDREM 4:

For any two demand-fetch FIFO-removal two-level storage
systems, S and S', witn page sizes N and N'=N/2 and
certain primary store sizes |[M!| and (MY} '=2ju1y,
respectively, th2re exists a cyclic page trace, P =
Pte (PC)* where |Pc| = 2(|MY{+1) (IM2y), such that the
page fetch freguancy ratio, r, exceeds |Mi|+1,

Proof:

By example (Figure 12),

D e D - - A - D - " > O A e ———— o -

Storage Hierarchy Systens 120

CHAPTER 6,

SPATIAL VS. TEMPORAL LOCALITY MODEL OF PROGRAM HEHAVIOR
6.0 Introduction

Early in this thesis it was explained that a major
rationale for multilevel stotagé systems is based ufpon the
principle of Locality. Unfortunately, locality 1s still a
poorly understood, or at least controversial, phenomenos. In
this chapter some novel viewpoints and insights will be

presented,
6.1 Iypes of Program Reference Lccality

Let us consider two extreme ftorms of program reference

1>cality which will be called temporal locality and spatial

5. 1.1 Temporal Locality
If the logical addresses { al, a2, ... } are referenced
luring the time interval t-T to t, there is a high
probability that these same logical addresses will be
referenced during the time interval t to t+T,

This behavior caun be rationalized by program counstructs

Storage hierarchy Systems 121

such as: loops, {frequently used variables, and

frequently used subroutines.

6., 1.2 Spatial Locality
If the logical address a is referenced at time t, there
1s a4 high probability that a logical address 1n the
range a-A to a+A will pe referenced at time t+1,
This behavior can be ratiomalized by program constructs
such as: sequential instruction seguencing, and linear

jata structures {e.d., arrays).

b.1.3 General Locality

r'he definitions of temporal and spatial locality apove
are juite extreme, Usually we consider only the general
spatiotemporal properties and define locality as:
Locality
If the logical addresses { at!, a2, ,.. } are referenced
during the time interval t-T to t, there 1is a Ahiga
probability that the loyical addresses in the ranges
al-A to at+A, a2-4 to a2+, ..., will be referenced
during tae time interval t to t+T,
It 1is important to recognize that temporal locality and
spatial locality are indeed the underlying phenomenon and
that the "genaral locality"™ is merely a simplifying merging

and blurring of these basic concepts.

Storaje Hierarchy Systenms 122

de cau begin to understand the factors causing the page
siz2 anomaly by stidying how the various conventional
removal algorithms handle temporal and spatial locality. In
particular, we see, that whereas temporal locality policies
are yiven =2xplicit attantion, spatial locality policies are
dsually handled implicitly and subtlely. The "least recently
usedi", LRU, removal algorithm, for example, 1is very mwmuch
concerned about .the temporal aspects of the r[prcgram's
reference pattern. The spatial aspects are handled as a
by-product of the rfact that the demand fetch algorithm must
1>ad an entire page (i.e., a spatial region) at a time and
LRU r2moval decisions are based upon these pages. With these
thoughts in wmind, w2 <can see that decreasing page size
Ciuses the conventional storage management algorithms to
increase their sensitivity to temporal locality and decrease
thelr sensitivity to spatial locality. Increasing page size,

of course, results in the reverse effect.,

6.3 Locality in Actual Progranms

dany of the tachniques for improving the locality

ba2havior of programs, suca as the method or automatic

Storige lierarchy Systeas 123

program restructuring by sectcr (subroutine) reordering
d2scribed by Hatfield and Gerald [47], result in both
iicreased temporal and spatial lccality. But, it seems that
the rzordering technijue does, 1in fact, significantly favor
spatial locality since it was noted [47] that:
"the better ocrderings not only concentrate
appropriate sectors into pages, but these pages also
niturally cluster into larger wunits that satisty
nearness requirema2nts on the page level - and
cluster better than do the pages of the other

orderings +.. clustering sectors into pages also
clusters payges into larger units."

An erftective multilevel storage management system must
tak2 poth temporal and spatial locality into consideration.
AS W2 have seen from both Hatfield's and Seligman's results,
n2glecting spatial 1locality can have disasterous results.
Any jiven program, or portion of a program's operation, can

nave its reference locality characterized by the two-by-two

matrix:
TEMPORAL
S Low High
P
A Low 1 2
T
I dign 3 4
A
L

Laadrant 1, low-temporal and low-spatial locality, 1is

Storige Hierarchy Systems 124

lafinitely undesirable for operation in a multilevel storage
system, There have b22n numerous algorithms and programmer
training techniques developed, as mentioned above, to
minimize the number of programs with these poor locality
characteristics., Quadrant 4, high-temporal and high-spatial
i>cality, has traditionaly been the regicn of Dbest
pertormance and is usually the objective of good program
d2siga. Unfortunately, it 1is not always possiklie or
convenient to design programs which attain both high
t2mporal and high spatial 1locality; thus, we find many

projrims operating in quadrants 2 or 3.

Storage management techniques are needed which prcevide
tar more flexibility and robustness for balancing the
systea's sensitivity to temporal and spatial locality. These
algorithms must explicitly consider the spatial localiity of
i program. The tupla?coupling apprcach, described in the
n2xt chapter, is one such technique, It takes advantaye ot
the tamporal 1locality and compactness possible with small
pages characterized by quadrant 2 behavior, yet it adjusts
t> tae spatial locality and clustering characterized by
Juadrant 3 Dbehavior by simulating the removal [policies

associated with large pages.

Storage liierarchy Systeas 125

6.6 Comment on the Paje Size Ancmaly

With this insight, we can now see that the page size
anomaly is not really =ven a function strictly of page size!
Iastead, 1t 1s an 1issue of 1locality, temporal versus

spatial.

Storaje Hierarchy Systeas 126

CHAPTER 7.

SPATIAL REMOVAL STORAGE MANAGEMENT ALGORITHMS

7.0 Iatroduction

As stated earlier in this thesis and noted by Hatfield,
a r=aoval algorithm that would limit the page fetch
frequancy ratio, r, to 2 would be very desirable, 1In this
section a technigue, called the “tuple-coupling approach",
is jescribed which, when used in conjunction with
convantional reaoval algorithms, such as LRU or FIFO,

juarantees that r will not exceed 2,

I'ae basic concept behind the tuple-coupling approach is
extremely simple. First, the two pcrtions, p* and p—, of
2ach original larger page, p, Bbust be identifiable (i.e.,
the set of pages of S' are viewed as a collection of
Z-tuples). Second, the removal ordering policies must be
applied to both elema2nts of a tuple (i.e., the tuples are
couplad in reyard to ordering decisions) such that a page p+
or p- of 5' is never ramoved unless the corresponding page p

of 5 would also have been removed from M', The particular

Storige Hierarchy Systeas 127

implementation of this approach may vary slightly depending
upon the removal algorithm, e.g., LRU, FIFO, etc., that is
to be used, Any removai algeocritam to which the
tuple-coupling approach can be incorporated is said to be

"tuple-couple-ablen,
7.1.1 An Example of LRU Tuple—Coupling

Figure 13 illustrates the application or the
tuple-coupling approich to the LRU removal example
previously shown 1in Figure 9. It shculd be noted that, in
this case, r has indeed been limited to 2 although it had a
vilue of 2.2 when normal LRU removal was used, The reader
shouli carefully compire Figures 7 and 11 to understand how
the tuple-coupling approach affects the removal algoritham,
The M! contents are identical, of course, for S in both
examples, but there are subtle differences in M! contents
for S', Each state of M! contents is marked, 1 to 11, in
Figure 13 for referance purposes, Notice that in this
implementation of tuple-coupling whenever both halves of a
paye, p* and p~, are in M!, they are always adjacent in the

M! oriering; compare this with Figure 9.

At page trace step 3 we can see the first difterence
batse2n Pigures 7 and 11, Page a— is reterenced and must be

tatchad in Pigure 9, it is then placed at the top of the Mt

Storage Hierarchy Systems

Parameters

As sean by S:

. P = a, b, a, b, ¢, ¢, b, a, a, ¢, C
* (Pt = 11
. Q = { a, b, ¢}
i 1Q =3
. 'Mll = 2
» LRU Removal
As se=2n by S':
. P = a*, b+, a-, b-, c*, ¢c—, bt, at,
e P} =11
. ¥ = { a%t, a-, b*, b-, ct, c }
. 121 = o
. iﬂll = 4§
* LRU Removal with Tuple—Ccupling
Simulation
T 2 3 &4 S 6 T 8 e 10 11
Pige Trace: a* bt a— b~ c* ¢~ b+ at a~ c+ c-
Fatch: * % * * *
ML Contents: a b a b ¢ ¢ b a a ¢ c
a b a b b ¢ b b a a
Sl
Fatch: e I T N S X % * %
Ml Contents: at b+t a=— b- ¢+ ¢c— b+ a+t a- c+ c-
a* a+ bt b— c* b~ bt at a— c+t
b+t a- bt b— ¢c- b—- b+ at a—
at a— b+ ct+ c— b~ bt a+
Results
F =5
e« P! = 10
¢« r = 10/5 = 2,90

Figure 13,

128

(£11)

Example of LRU Removal with Tuple—Coupling

(see Figjure 9 for comparison)

Storage Hierarchy Systeas 129

ordering waich becom2s a—-,b*,at*., On the other nand, in
Figure 13 at step 3, it is noticed that at was already in
M1, Thus, when a~ is placed at the top of the M! ordering,
a* 1s coupled to it resulting in the ordering a—,at,bt, At
page trace step 7 of Figure 13 we see another interesting
example of tae tuple-coupliny approach, At the previous step
the ordering was

c— c* b~ bt
when the reference to bt%* is made, there 1s nc need to
initiate a fetch since b+ is already in M!, The M! ordering
then becomes

b+ b— ¢~ ct
since LRU requires tnit the most recent rererence move to
tae top, Under this tuple-coupling scheme, b— is also moved
taowvard the top of the ordering tc continue to be adjacent to

bt,

7.1.2 Implementation of the Tuple-Coupling Approach

It is important to note that there are often various
Wwiys to implement tuple~-coupling. In particular, in the LRU
tuple-coupling alyorithm described above, the 2-tuples,
waenever Dboth portions were in M!, sere arranged to be
aljacent in the M! reamoval ordering, The requirement that

n2ithar portion, p* or p—, of a tugle in S' be removed

Storaje Hierarchy Systeas 130

unless the corresponding page of S would have been removed
can be accomplished in other ways. For example, the LRU
ramoval stack can be left in its normal ordering, as in
figur2 9. 1In this case, when 1t 1is necessary to remove a
page from S' the bottom page 1is not necessarily the correct
choics to satisfy tuple-coupling., There 1is an algorithm
which can scan the LRU stack and select the correct payge for
ramoval (in fact, 1t will select, of ccurse, the same paye

s2lected by the algorithm illustrated in Figure 13).,

7.1.3 An Example of FIFO Tuple-Coupling

It i3 1interesting to consider the effect of
taple-coupling upon FIFO removal, Fiqure 14 illustrates the
application of the tuple-coupling approach to the FIFQ
ramoval example previously shown in PFigure 6, Once again,
the page fetch freqguency ratio, r, which originally was 2.75
has indeed been limit2d to 2, The example of Figure 14 does
no>t fully illustrat2 all the interesting aspects of
taple-coupling upon FIFO removal, In particular, if page pt,
t>r axample, 1is refer2nced in a page trace and it was anot
already in M®, it must be fetched, The M! contents are
reordared as follows:

1. If p— is not currently Mt, * is placed at the top

of the FIFO ordering.

2. If p— is currently in M, p+ is placed immediately

Storage Hierarchy Systeams 131

(£12)

As seen by S:

» P = a, b, a, b, ¢, ¢, b, a, a, ¢, ¢
e | P = 11

i 9 = {a, b, c}

* {Qf =3

) ‘MII:Z

s FIFO Removal

As seen by 5¢':

] P = a*, b+, a-, b, c*, ¢c—, b*, at, a-, ct, c~
e |P} = 11

. = { a%¥, a-, b¥, b-, c+, c™ }

* Q) =6

. |42 = 4

o FIFO Removal with Tuple—Coupling

Simalation

Page Prace: at* b+ a- b- ct+ ¢~ bt at a— ct c—

Fatch: x % % *
Mt Contents: a

o
o
(=2
Q
Q
Q
Y
o
oY
[+

b* a—= b- c* ¢~ ¢~ at a— a- a-
at at bt b— ct ct+ ¢c— at at at
b+t a— b* b~ b—- c* ¢c- ¢~ c—

at a— bt bt b~ ct ct+ ct

[+ Y]
+

41 Contents:

Results
[} F = 4
F* = 8
s T = 8/4 = 2,3

Figure 14,
Example of FIFJ Removal with Tuple—Coupling
(see Figure 8 for comparison)

Storage Hierarchy Systems 132

pbefore p- in the logical FIFO crdering
p—'s relative ordering remsains unchanged.
lne reason for the second part of this rule can be seen from
the normal FIFO ordering rule which places a page p at the
top only if it were not already in M!, If it were imn HM!, it
ramains at its previous ordering position. Under
tuple-coupling, this rule applies jointly to the (p*,p~7)
tiple as stated above., The reader is encouraged to work
taroujh the example of Figure 10 using the tuple-ccupling
approach to illustrate this FIFO ordering phenomenon., The
2ffect of the tupla-coupling approach is summarized in

Theorem 5.

(th5)
THEOREM 5:

For any two demind-fetch two-level storage systems, S
and S', with pagz2 sizes N and N'=N/2, respectively, the
use of the "tuple-coupling®™ approach ftor S* in
conjunction with a remcval algorithm that is
mtyple-couple-abla" is sufficient to guarantee that the
page fetch frequsancy ratio, r, cannot exceed the value
2 for all possible page traces, P.

Proof:

{S5ee below) .

- . e S v . T - - e M W S MR W AR R A S R G S W G e e D D WS S P W W T e G S e e M T e e o

Storije dierarchy Systeas 133

7. 1.4 Proof of Theorem 5

As described earlier, when an adress trace, A, 1s
applisd to storaye systems S (with page size N) and S' (with
page size N'=N/2), it can be represented as page traces P
and P', respectively. At time t!, let us consider a specific
aldress reference, a, whose correspcnding page references
are p (in S) and p* (im S'), In processing this reference
there are four possible fetch actions in S and $' depending
upon the current content state of primary store, M1:

State} page p (S) page p+ (S') F F* F'-F effect

1 in Mt in M1 ¢ 0) r =>1
2 in M1 not in M1t ¢ 1 1 r => >1
3 not in M1 in Mt 1 0 -1 r => <1
4 not in #1? not in M1 1 1 0 r =>1

Recall that the page fetch frequency ratio, r, equals
F'/F. In states 1 and 4 the same action (i.e., no page fetch
ia 1 and a page fetch in 4) occurs in both S and S', the
occurrence of these states cause r to tend towards 1. In
state 3, a page fetch is required in S but not in S', this
situation, if frequent, will cause r to decrease toward
zero. This is wusually the intended result of reducing page
size. Only state 2, in which S' alome requires a page tetch,
contributes to an increase in r. Thus, we will concentrate

our aanalysis on this particular situation.

Storije Hierarchy Systeas 134

Since state 2 rejuires that page p be in ¥! at time t1,
1f we scan the address trace backwards, there mwmust be some
previous reference time t2 that caused page p (in S) to be
tetchad into M! (this may have been the only previous
r2ferance to p or the page p may have been fetched and
removad many times), At time t2, there nmust also be a
corresponding reference to either p— and p* of S'. These two

Cases will be considered separately:

Casa 13 _P_ T ese P seee P
2' = ese PT e p"
t = * e tz LN BN] tl

'his <case merely 1illustrates the fact that it «can
r2guire two page fetches (for pt and p—) in S?' to itfetch the
same imount of storage as page p in S, If this were the only
case for state 2, r vould never exceed 2,

Case 2: P = sse P sss P

o
i}

LI IR p* 40 p+

o+
[}

see tZ2 ,,, t1?

In this <case we see that subsequent to reference t?
page p of S and page p* on S' must be in M!, Yet at time t?
page p of S 1s still in M! but page p* of S' is not. OUnder
tnese circumstances r can certainly exceed 2, merely makingy
p- the next reference will account for 3 fetches in S?
compared to 1 fetch in S. Furthermore, it is possible that

the retferences betw2en t2 and tt could be repeated to

Storage Hierarchy Systems 135

continually cause fetches for p*t in &S! Wwithout any
corcespondinyg fetches raquired in S. Thus, we see that this

is precisely the situatioan that allows r to exceed 2.

Under closer analysis, We see that this situation
raquires that in S' p* be removed frcm M?! between t2 and t!
wher=2as in S p remains in M!, In other words, this general
Situation can only occur if at some time t, p* or p- of S
is selectad for removal from M! and the corresponding page p
of S 1s not also removed from MY, But, the tuple-coupling
algorithm (see page 125) is "such that a page p* or p— of S?
15 naver removed unless the correspondingy page p of S would
also have been reamovad from ¥!"™, Thus, the tuple-coupling
2liminates the possibility of case 2 and therefore
guarantees that r cannot exceed 2.

QeEe Do

7.2 Effectivngss of Tuple

Coupling

Clearly, the tuple-coupling approach has an influence
upon tne overali e2ffectiveness of the basic removal
algorithm being wused and the benefits of the smaller page
siz2, It 1is obvious that there are <certain reference
patterns (with r less than 2) for which tuple-coupling
iacreises the value ot r. On the other hand, it can be

shown, as a simple exercise for the reader, that the example

Storage Hierarchy Systems 136

of Fijure o retains its low page fetch frequency ratio of
Je5 even when tuple-coupling is used, in tfact,
tupla-coupling may oftan result in the "best of both worlds"
by placing a bound on the page fetch frequency ratio, r, for
high r regions without interfering with the performance of

orijinally low r regions.

A prograa's reference behavior imn S*', during a short
int2rval of its operation, may be <characterized by three
ragyions based upon ths value of the page fetch freguency
ratio, r, when tuple-coupling is not used:

1, Sparse reference - small r (e.,g., less than 1).

2. Moderate refarence - moderate r (e.g., between 1
and 2) .

3. Dense reference — high r 2.9., greater than 2).

In th2 sparse reference region, it 1is unlikely that both
portions, p* and p-, of a page, p, will be in M1
simultaneously; thus, the tuple-coupling will have minimal
2f fect upon performanc2. In the dense reference regqion, we
nave already sesn that tuple-coupling preveants extreme
vilues of r. Based upon some recent, though limited,
m2asurements, 1t appsars that in the moderate reference
region tuple-coupling performs about as wvell as the

non-tuple-coupled algorithas,

Storaje Hierarchy Systems 137

CHAPTER 8,

DISCUSSION AND CONCLUSICNS

8.0 Introduction

Efficient and effective storage management is important
to the development of future computer systems. Lt has been
2stimited that the storage subsystems account for over 70k
of the cost of most contemporary installations and, based
apon present trends, this . percentage 1is expected to

increase.

Much more research will ke needed before all the
problems of automatic storage management are understood aad
the obstacles to effective operation eliminated. This
thesis has solved several open problems and has provided
insight that should lead to the =solution of many more

problens,

A detailed discussion of the many tacets of stcrage
management 1s present2d in Chapter 2. It also contains a

ganaral discussion of the requirements which a system must

Storiage Hierarchy Systems 138

satisty to be etffective for the user.

In <Chapters 3 and 4 a wmodel for storaye hierarchy
systemss is formalized and an implementation is proposeada. The
syst2a's design 1s based upon an crderly and uniform
treatment of the storage levels. Specific techniques to
iaprove performance, such as continuous hierarchy, shadow
storaje, direct trdnsfer, read through, store behind, and
attomatic management, are explained.

In Chapter 5 the "pagye size ancrmraly" is presented (see
also Hatfield [48]):

"Ir'he assumption about virtual memcry systems that as
overhead (time for access and sottware page
management) decreises page size should be reduced is
not always a yood one. Recent experiments indicate
that larger sizes can provide better performance for
programs that mak2 highly 1localized use of memory
space, "
I'nis phenomenonm is formalized and a bound on the perfcrmance

is proven,

In Chapters 6 ani 7 the concept of spatial locality is
introduced and serves as the basis for a new storage removal
algorithm called "tuple-coupling®™, These concepts are used
t> explain the occurrence of the "page size anomaly" 1in
actual systenas, It 1s provem that the tuple-couplinyg

approach is 1 sufficiznt strategy to avoid the occurrence of

Storage Hierarchy Systeas 139

the "page size anomaly" and it cifers potential perfcrmance

improvements for the storage hierarchy system.

l'he technigques aind theorems presented in this thesis
proviie a much more scientifically sound basis for examininy

and designinj storaje nierarchy systems than wmost current ad

1=

2C approaches, Althouyh there is still a lomg way to go,
development of these formalisms 1is essential to the

1ivancing of the "science" in Computer Scieuce,

2P i oL

There are many areas touched on by this worx in which
questions remain, One of the most signiticant 13 1u the
development and study of other fpossible ‘"spatial localityn
ramoval algorithnms in additicn tc the tuple-coupling
approach studied in this thesis., This is an entirely wide

open irea.

Although tuple-coupling is studied extensively in this
thesis, there are still many unanswered questions, Hcw does
tuple-coupling compdare with the class of "stack" algorithms
studisd by Mattson 2t al [13], in particular under what
circumstances, if any, is tuple-coupling a stack algorithna?
Likawise, how does tuple-coupling compare with the

theoretically optimal replacement algorithm, called OPT [63]

Storage Hierarchy Systenms 140

> MIN (12]? On a mor2 practical side, how etficiently can a
tuple-coupling algorithm, or other spatial repoval

algyorithms, be implemanted?

In ord=ar to ascertain specific procf of the utility and
afficiency of generil storage hierarchies, it will be
n2cessary to actually coastruct and measure the performance
of such a system or, at least, perform more extensive
simulation analysis., Purthermore, we must develop overall
projramming technijues and execution environments that are
sven more amenable to efficient operation in a storage

hierarchy systen.

Many ot these questions are currently under
investigation, the results will be published later in a RIT

Project MAC Technical Report.

Storije Hierarchy Systenms 141

REFZRENCES AND BIBLICGRAPHY

Abbreviations used in the references:

CACH Communications of the ACHM

FICC Fall Joint Computer Conference

IEEE~IC IEEE Tramsactions on Ccmputers

IEEE-TEC IEEE Traunsactions on Electronic Computers
JACH Journal of the ACH

sJc:Z Spring Joint Computer Conference

t1] Ahearn, G, R,, Y. Dishon, and.R. N. Snively, "“Design
Innovations of the IBM 3830 and 2835 Storage Ccntrol
Units", IBM Journal of Research and Development 16, |
(January 1972), 11-18,

An interestiny article illustrating the use of
BiCroprocessors to produce sophisticated and
flexible mass storage control units.,

{2] Aho, Alfred V., Poter J. Denning, and Jeffrey Ullman,
"Principles of Optimal Page Replacement", JACHM 18, 1
(January 1971), 80-93,

Presents a model of program behavior based upon
l-order non-stationary Markov processes where
P(x,u,t) is the probability that a reterence to
page x 1is gJepnerated at time t given that P is
currently in stdate u and JUj=1¢1, They are only
able to carrcy throuyh the analysis for "Malmost"
stationary O-order Markov models. They dc note
that althougs "we are able to give only approximate
extensions to the general 0O-order case ... we
believe that the simplest program model is. a good

131

L4

(61

7]

(3]

(31

Storage Hierarchy Systems 142

starting point for the formal investigation ot
pajing algorithm behavior." Unfortunately, they do
not provide any justification or empirical evidence
to even substantiate this choice of a model.,

Amdahl, 5. M#4., and L. D. Amdahl, "Fourth-Genmeratioa"
Hardware", Datamation, (January 1967).,

Anacker, W. and 2, P, Wong, "Performance Evaluation of
Computer Systeas With Memory Hierarchies", IEEE-IEC
EC-16, b (December 1967), 765-773.

Arora, S. R. ahd A, Gallo, "Optimal Sizing, Loading and
Re-loading in a Multi-level Memory Hierarchy System",
SJcc 38, (197Yy, 337-344,

dAustin, B. J., "A Dynamic Disc Allocation Algorithm
Designed to Reduce Fragmentation During File

Reloading”, Ths British Copputer Jourmal 14, 4

(1971), 378-381
Presents an liateresting file allocation technique
that minimizes the need fcr "page maps" (file maps)
by periodically dumping and reloading all files, in
general daily. The statistics on file usage are
quite relevant., Of the 5000 files on the systen,
almost 534 of the files were 1 page or less in
length (1 paye = 512 3€-bit wcrds = 2K bytes). Un
the other hand, these 1 page files consumed only
10% of the space used., In tact, file allocation was
rather evenly distributed amongst files from 1 to
10)0 pages in length (i.e., files of page sizes =
1, 2-3, 4-7, 8-15, e2ey 511-1023, consumed about
10» in each range).

Ayling, J. K., "Monolithic Main Memory is Taking Ort",
1971 rEge "International Convention Digest, (march
1971), 70-71.,

3ard, Y., "Performance Criteria and Measurement for a
Time-Shariny S3System", IBM Systems Jourmal 18, 3
(1971), 193-216.

Batsou, Alan, Shy-ming Ju, and David C. Wood,

(19]

S

[(12]

(131

L14]

c151]

(16]

7]

(18]

Storije Hierarchy Systems 143

13, 3 (March

"Measurements of Segment Size", CACHN
19706) , 155-159,

Belady, L. A., R, A, Nelscn, and G. S. Shedler, "“An
Anomaly 1in Space-Time Characteristics of Certain
Programs Running in a Paging Machime®™, CAcCH 12, o
(June 1969), 349-353,

Belady, L. A. and C, J. Kuehner, "Dynamic Space-Shariug

Belady, L. A., "A Study of Replacement Algorithms tor a
virtual Storage <Computer™, IBM Systems Journal 5, <
(1966), 78-101.

gell, Gorden T, and David Casasent, "Implementation of
a Buffer Memory in Miniccmputers", Computer Design,
(November 1971), 83-89.

8ensoussan, A., C. T. Clingen, and R, C. Daley, "The
Multics Virtual Memory", Proceedings of the ACM
Second Symposium on Operating System Principles,

Princeton University, (October 20-22, 1969), 30-u2.

dest, Donald T., "“The Present and Future of Moviug
Media Memories", 1971 IEEE International Convention

— s - o - i e e

Digest, (March 15%71), 270-271.

Bobeck, Andrew H. and H. E. D. Scovil, "Magnetic
Bubbles®, 3Scieatific Americap 224, 6 (June 1971),
78-90.

camras, Marvin, YInformation Storage Density", IEEE
Spectrua, (July 1965), 98-105.

-ashman, 4. W., "Technology: 1971" (editorial wuote),
Datamation, (January 1972), 47.

Brief review of significant technical developments

of 1971, Items mwmentioned include the Texas

Instruments 960A @minicomputer priced at $2850

{$1350 for processor plus $1500 for 4K memory) and

(191

. 20]

1 21]

.22]

(23]

Leu]

125]

.26]

(27]

L 28]

Storige Hierarchy Systems 144

the Intel MCS5-4 "cpu on a chip" priced at $66 (in
quantities of 100 - 999).

cotffman, Be. 6., and L. C. Varian, "Further Experimental
Data on the Behavior «cf Prcgraes 1imn a Paging
Enviconment", CZACM 11, 5 (July 1968), 471-474,

considine, James P, and Allan H, Weis, “Establishment
and Maintenanc2 of a Storage Hierarchy for an On-line
Data Base Under TS5/360", FJCC 35, (1969), 433-440,

conti, C, J., D. H. Gibson, and S. H. Pitkowsky,
"Structural Aspects of the System/360 Model 85: 1.
General Organization", IBM Systems Journal 17, 1
(1968), 2-14,

conti, C,
Computer G

J., "Concepts for Buffer Storage", IEEE
roup News, (March 1969), 6-13,

Zook, sobert . and Michael J. Flynn, "System Design ot
a Dynamic HMicroprocessor%“, I1EEE-TC C-19, 3 (March
19790), 213-222.

bell, darold R., "Design of a High Density Optical Mass
Memory System", Computer Design, (August 1971),
“9"53'

Denniny, Peter J., "The Working Set Model for Progranm
Behavior™, CACN 11, 5 (May 1968), 323-333.

Denninyg, Peter J., "Virtual HMemory", Computing Surveys
2, 3 (September 1970), 153-189,

Jenning, Peter J., "Third Generation Computer Systeas",
Computing Surveys 3, 4 (December 1971), 175-216.

Denninyg, Peter J., "Thrashing: Its Causes and
Prevention", PJCC 33, (1968), 915-922,

Discusses thrashing and points out interdependency

betveen processor scheduling and memory management.

Storije Hierarchy Systems 145

Of particular interest, he discusses the affect of
page traverse time T on the efficiency (busyness)
of the proca2ssor. He notes that "reducing T vy a
factor of 10 could reduce the memory requiremeunt by
as much as 10, the number cf busy processors beiny
held constant ... or increase by 10 the number or
busy processars, the amount o¢f memory being held
constant." He states that the 30/67 at
Carnegie-fdellon University rercrted by Fikes et al
[30] confiras these prcjections., [Unfortunately,
the situations are not really analaygous, in ract,
tor the simple case implied by Denning, Fikes
comments thit strictly replacing the drum by a
smaller but faster LCS (large core storage)
"yielded only a modest improvement"., Major changes
to the system were required to improve performaace,
these changes may even have improved the drum
version; thus, a scientific comparison can not be
established]. At the end, Denning briefly
speculates on reducing T by wusing a three-level
memory system and possibly using small page sizes
(since access delay is assumed to be wminimal for
the 2nd level store), He does not pursue this point
very far in tais paper,

Denning, Peter J,, "Resource Allocation in Multiprocess
Conmputer Systems", MIT Project MAC KReport MAC-TR-50,
Massachusetts Institute of Technology, Cambridge,
Mass., (May 1963).

dickinson, R. V, and W, K. Orr, "System Ten - A New
Approach to Multiprogrammiang", FJCcc 31, (1$70),
181-186.

Durae, Melvian J., Jr., "Pinding Happipess in Extended
Core", Datamation, (August 15, 1971), 32-34.

Farr, William W. and William E., Peisel, "An Optimum
Disc Organization for a Virtual Memory Systea",
Computer Design, (June 1971), 49-54,

Femlingy, Don, “Rubber-band Memory", Electronic Desigan
13, (June 24, 14971), o64-68,

Fetch, G« C., "Memory Organization and Hierarchies of

(351

(36]

[37]

[38]

[39]

40

L41]

(%2]

Storage Hierarchy Systems 146

Storage Workshop', Computer Group News, (January
1969) , 24-25,

Fields, Stephen, "Silicon Disk Memories Beat Druas",
Electromics, (May 24, 1971), 85-86.

Fikes, Richard EB., Hugh C. Lauer, and Albin L. Yareha,
Jr., "Steps Toward a General-Purpose Time~Sharing
System Using Large Capacity Core Storage and

TSS/360", Prozzedings of the 23rd ACH National

(1968), 7-18.,

Finch, Tudor R., "Semiconductcr demory", 19 1 LEEE
Intecrnrational Convention Digest, (March 1971,

Fotheringham, John, "Dynamic Storage Allocation in the
Atlas Computer Including an Automatic Use of a
Backing Store", CACM 4, 10 (October 1961, 435-436.

An early papar that briefly describes the Atlas
system., Thoujh short, it presents the basic 1deas
rather clearly. See the paper by Kilburn et al [57]
for a more extensive presentation.

sardner, W, David, "Debate Gives Peek at IBM's
pDirectioan", Datamation 18, 1 (January 1972, 58-60.

e e - —

sentile, Richard B., and Jcseph R. Lucas, Jr., "The
TABLON Mass Storage Network”, sJcc 38, (1971,
345-356,

3entile, Richard B. and Robert W. Grove, "Mass Storage
Utility: Considerations for Shared Storage
Applications®, LEEE Transactions oun Magnetics MAGZJ,
4 (Deceaber 1971), 848-852,

sertz, Jeffrey Lees, "“Hierarchical Associative Memories
for Parallel Computation®™, MIT Project MAC Report
MAC-TR-69, Massachusetts Institute of Technology,
Cambridge, Mass., (June 1970).

(43]

L44]

[45]

[46]

[47]

[u8]

Storige Hierarchy Systeas 147

soldbery, Robert P., "Virtual Machine Systems", MIT
Lincoln Laboritory <Technical Memorandum Number
28L-0036, (August 1969),.

sreenes, R. A., A. N, Pappalardo, C. W. Marble, G. Q.
Barnett, "A System for Clinical Data Managemeat",
FJCC 35, {1969), 297-305.

Suertin, R. L., "Programming in a Paging Environment",
Datamation 18, 2 (February 1972), 48-55,
Discusses projramming technigues “which reduce the
working set of a progyram or reduce the probability
of reguiriny page swaps", Primarily discusses
techniques rzlated to array processing in FPORTKAN,

Hatca, Theodora F., Jr., and James 8, Geyer,
"Hardware/Software Interaction on the Honeywell Model
8200", FJCC 33, (1963), 891-9C1.

Describes tas HB82)0 which incorporates hardware
controlled multiprogramming of up 8 job piccesses
plus an axecutive process, The hardware
multiprogramming is accomplished by 1interleaved
instruction execution of the (up to 9) active
processes; there is a separate set of processor
registers for each of the 9 processes. It is
claimed that the "horizontal multiprogramming",
besides eliminating conventional multiprogramming

software ovarhead, also prcvides greater I1/0
throughput., Referenca ([30] should be examined for
an implemantation of hardware "verticai

multiprogramming",

datfield, D. J. and J. Gerald, "Program Restructuring
for Virtual Memory", IBM Systems Journal 10, 3
(1971), 168-192.

Hatfield, D. J., "Some Experiments on the Relationship
Between Page Size and Program Access Pattern", IHM
Journal of Research and Development le, 1 (Jauwuary

——— e - e . e e, S e

Presents the results of many experiments with page
size and access patterns. Provides much ot the
empirical evidence behind tne "page size" ancmaly

(49]

Storage Hierarchy Systems 148

(i.e., decreising page size by halt can result in a
drastically increased fpaging I/0 rate - sometimes
more than double). These results were based upon
instruction traces of real IBM System/360 programs.

Hobbs, L. C., "Present and Future State-of-the-Art in
Computer Memories"™, IEEE-TIEC EC-15, 4 (August 1966),
534-550.

Howard, Hdarry, "M2mories: Mcdern Day 'Musical Chairs' ",
EDN/EEE, (August 15, 1971), 23-31,

IBM, “"IBM System/360 Time Sharing System, System Logic
Summary, Projram Logic Manual, Forn Number
5Y28-2009-2, (June 1970), 17-22.

IBM, "A Guide t> the IBM System/370 Model 165", Form
Nuaber GC20-173)3, (June 1970), 19-25.

Jensen, J., P. Hdondrup, and P. Naur, "A Storage
Allocation Scheme for Algcl 60", CACM 4, 10 (October
1961) , 4u41-445,

Presents a design whereby the compiler, wita its
run-time support, handle multilevel nmanagement ot
the backiny store with the aid of "hints" from the
programmer. Ihis is an example of one of the many
semi-automatic techniques for storage management
that have bea2n used.

Johnson, R. Re., "Needed: A Measure for Measure",
Datamation, {D2cember 15, 1970), 22-30.

-

Katzan, Harry, Jr., "Operatingy Systems Architecture",
SJCC 358, (1970), 109-118.

—e—— e

Katzan, darry Jc., "Storage Hierarchy Systems", 35JtC
38, (1971), 325-330.

£ilburn, T., D. Be G. Edwards, M. J. Lanigan, and F. H.
Suaman2r, "One-level Storage Systems", IEEE-TEC Ecz11,
2 (April 1302), 223-235.

(61]

. 03]

[64]

Storage Hierarchy Systeas 149

Lehman, Meir 4, and Jack L. Rosenfeld, "Perfcrmance of
a Simulated Multiprogramming Systen", FJgcc 33,
(1968), 1431-1u442,

Lew, Art, "On Optimal Pagination of Prcygrams"®,
University of Hawaii Information Sciences Report,
Honolulu, Hawaii, {(May 1970C).

Lewis, P, A. W, and P. C., Yue, "Statistical Analysis of
Program Reference Patterns in a Paging Enviroument",
Proceedings of the 1971 1EEE International Computer
Socigty Conference, (September 1971), 133-134,

Liptay, J. S., "Structural Aspects ot the Systeun/300
Model 85: II. The Cache", IBM Systems Journal 7, 1
(1968), 15-21,

Martinson, J. R., "Utilization of Virtual Memcry in
Time Sharing System/360", IBM TR53.0001, IBM Systeas
Development Division, Yorktown Heights, Ne Y.,
(October 28, 1968).

Mattson, R. Ls, J. Gecsei, D. R, Slutz, and I. L.
Traiger, "Evaluation Techniques for Storage
Hierarchies", 1IBM Systems Journal 9, 2 (1970),
78-117,

Mattson, Richard L., ™"Evaluation of Multilevel
Memories", Memorandum, IBM Research Laboratory, San
Jose, California, 1971.

Presents adiress trace analysis technigues for
two-level @m2mory hierarchies (which wuse "stack"
replacem=nt alqgorithms, e.g., LRU) that are up to
1000 times faster than conventional simulation (see
also reference [63]). He considers multiple classes
(i.e., set-associative constraint), various primary
memory sizes and page sizes, and other factors,
such as cost and speed of technologies. A sample
analysis is illustrated, Although it is a powerful
technigue, Mattson's analysis described in this
paper and reference (63] is not immediately
applicable to muitiple level memories (i.e.,

(65]

[5¢6]

Storije Hierarchy Systems 150

three-levels or more) if the page size varies and
is subsettad between the levels or if an
“"pnon-stack" replacement algorithm is used, such as
"tuple-coupling®,

Yeade, Robert M., "On Memory Systea Design"™, FJCC 37,
(1979), 33-43. ,

This 1is a very extensive survey of storage
hierarchy systems. Meade presents varicus diagraas
indicating trade-offs between block size, butfer
store size, transfer rates, processor utilization,
etc, His data also illustrates the '"page size
anomaly" although he doespn't explicitly cosmaent
upon 1it., H2 1investigated three level stcrage
hierarchies based upon extending cache systems and
stated that: "By anmalysis 1like that above, the
block size for a third-level should be from one to
eight second-level blocks., Preliminary results
indicate that a 4:1 ratio (256 bytes at the third
level) is best,®

Meade, Robert M4,, "How a Cache Memory Enhances a
Computer's Performance", Electronics, {(January 17,
1972), 58-63,

Yeyer, K. A, anl L. H, Seawright, "A Virtual MNachine
Time-Sharing System", IEM Systeds Jdournal 9, 3
(1970), 199-213.

Morenotf, Edward and John B. Mclean, "Applicatioan of
Level Changing to a Multilevel Storage Orgamization®,
CACM 10, 3 (#arch 1967), 149-154,

Myers, Edith, "de Dreams the Impossible Dream ... OC
Does He?", patamation, (July 1, 1971), 52-53,

O'Neill, Robert W, and Burnett H, Sams, "Preplanned vs.
Dynamic Storaga Allocation Technigques"™, CACM 4, 10
(October 1961), 416-413,

An early discussion that compares and contrasts the
techniques of preplanned and dynamic storage
allocation., Preplanned techniques are based upon
information 2ither provided by the programmer or

(71]

£72]

1713

-

[74]

(75]

L76]

(77]

(78]

Storije dierarchy Systems 151

the compiler. Dynamic techniques assume that the
Storage allocation is handled primarily at run-tiae
by the operiting system. More recent debates on
this subject can be found in Denning {26] and Sayre
[(771.

Penny, Samuel J., Robert Fink, and Margaret
Alston-Garnjost, ™"Design of a Very Large Storage
System", PFJCC 37, (1970), 45-51.

Ramamoorthy, C., V. and K. M. Chandy, "Optimizaticn of
Memory Hierarchies in Multiprogrammed Systems", JACM
17, 3 (July 1970), 426-u445,

Randell, B, ani C,. J. Kuehner, "“Dynamic Stcrage

Rector, Robert W. and C,., J,. kalter, ®"The Fcurth -
Another Generation Gap?", Modern Data, (March 1969),
42‘“80

Presents the problems of designing the next
generation of machines, Briefly discusses the
importance of a memory hierarchy and speculates on
the technolojies that will be available.

Bice, Rex and William R. Smith, ®SYMBOL - A major
Departure From Classic Software Dcminated vcn Neumann
Computing Systams", SJCC 33, (1971), 575-587.

Rosin, Robert F., “Ccntempcrary Ccncegts of
Microprogramming and Emulation", Computing Surveys 1,
4 (December 1969), 197-212.

Sayre, D., "Is Automatic 'Folding*' of
Efficient Enoujh to Displace Manual?", CACH
(December 1969), 656-6060,

Programs
12, 12

Seligman, Lawrencz, "Experimental Pata for the Working
Set Model", MIT Project MAC Ccomputaticn Structures
Group Memo Number 39, Massachusetts Institute of
Technology, Cambriige, Mass., (March 1968).

Storage Hierarchy Systenms 152

~79] Shahbender, R., "Magnetic Memories - Present Status and
Future Trends"™, 1971 IEEE International <Convention
Digest, (March 1971), 274-275.

—~md oo o

{30} Shooman, Martin L., "Notes on Computer Hardware,
Software, and 3ystems Keliability%, MIT IAP Seminar:
Computer Architecture, Department of Electrical
Engineering, Cambridge, Mass.,, (January 7, 1972).

These are ndtes on various aspects of reliability
that were used as part of an MIT seminar ou
computer architecture. In particular, there is a
section on software reliability and the "“nature of
bugs™, A few storage system related fprcblems are
mentioned,

{31] smith, Johmn L., "Multiprogramming Under a Page on
Demand Strategy", CACM 192, 10 (Octocber 1967),
636-b4b6,

[32] 5mith, William R. et al, "SYMBOL - A Large Experimental
System Exploring Major Hardware Replacement of
Software", S5J4C2 38, (1971), 601-616.,

.83} s5olomon, Martin B., Jr., "Economics of Scale and the
IBM System/360", CACM 9, 6 (June 1966), U435-44C,

{84] sumner, F. H,, "dperand Accessing in the MU5 Computer",
Proceedings of the 1971 International Computer
Society Confersnce, (September 1971), 119-120.

[35] I'hompson, Steve, Jack A. Morton, and Andrew Bokeck,
"Memories: Future Storage Techniques™, The Electronic
Engineer, (August 1971), 33-39,.

.86} Varian, L. C. ani E. G. Coffman, "An Empirical Study of
the Behavior of Programs in a Paging Environment",

[37] dalter, Cloy J., Arline Bohl Walter, and Marilyan Jean
Bohl, "Impact of Fourth Generation Software on
Hardware Desiyn", IEEE Computer Group News, (July
1968), 1-12,

Storage Hierarchy Systeas 153

[38] Wilkes, M, V., °

' ve Memories and Dynamic Storage
Allocation", IEE

Sla

E-TEC 14, 2 (April 1965), 270-271.

:39] dilliams, John G., "Large-Core Storage in Perspective",
Computer Desiga 11, 1 (January 1972), 45-49.

{33] Woolf, Ashby Morefield, "Analysis and Optimizaticn of
Multiprohrammeid Computer Systenas Using Storage
Hierarchies™, JUniversity of Michigan, Ann Arbor,
Michigan, Systenas Engineering Laboratory, SEL
Technical Report Number 53, (April 1971).

Storije Hierarchy Systeams 154

BIOGRAPHICAL NOTE

Stuart Elliot Madnick was born in Worcester,
Missachusetts, on July 10, 1944, He attended public schools
there, graduating from Classical High School in HMay, 1962,
H2 2ntered the Massichusetts Institute of Technology in
September, 1962, where he studied Electrical Engineering,
r2cz2iving the degrese of S.B. {June, 1966), In Decesmber,
1364, he married the former Elthel J., Westerman of Malden,
diss, They have two children, Howard Jon and Michael
Andrew,

In Sapteaber, 1967, he entered the MN,I.T. Alfred P.
3lo0an School of Manajement, where he studied Management
Sciences and Computer Science in conjunction with the M.I.T.
D2partment of Electrical Engineering, receiving the degrees
of S.M., Management, and S.M., Electrical Engineering (June,
1963) .,

Mr. Madnick join2d the staff of the MN.I.T. Electrical
Bagin2ering department in September, 1966, as a teaching
issistant; in July, 1371 he became an Instructor, He has
tauyght several computer science courses in addition to
M,1,T.'s principal systems programming course (6.251). In
13639 he was a recipient of the Carlton E, Tucker Award for
Exc2llence in Teachiny,

At M.I.T., Mr. Madnick has been engaged in various
computer-related projacts for the Student Aid Center, Civil
Znginzering Department, Mechanical Engineering Department,
and the Computation Center., In June, 1968, he becanme
associated with M.I.T., Project MAC, where his research in
operating system design, computer architecture, programming
lanjuages, and software engineering formed the basis of his
doctoral dissertation.

Mr, Madnick his been a coasultant to the 1BM
Corporation since 1956, He assisted in the development of
the IBM 360/40 and 360/67 CP/CHMS Virtual Machine
Time-Sharing projects, During the summer of 1967, he was an
Associate Engineer it the Lockheed Palo Alto Research
Laboratory, where ne designed and implemented the control
@odul2s for the Lockheed/NASA DIALOG information retrieval
systean,

Storaje Hierarchy Systeas 155

ir. Madnick has consulted to the IBM Cambridge
Scientific Center, the Lock heed Palo Alto Research
Laboratory, the Honeywell Programming Systems Division and
Honeywell Advanced Systems and Technology Organization,
Martin-Marietta Co., Naval Underwater Systems Center, and
INTERCOMP, Inc., on the design of multi-terminal multi-access
computing systeas,

Mr. Madnick is 1 member of Sigma Xi, the Institute of
Electrical and Electronics Engineers (1EEE), and the
Association for Computing Machinery (ACM)., He has been a
raviavwer for the ACM Computing Reviews since 1969.

Publications

. "String Processing Techniygues",
of the ACH, Vol. 10, No. 7, July 1967,

Madnick, S.E., and Moulton, G.A., M"SCEKIPT, An GOnline
Manuscript Processiag System®, 1EEE Transactions on

Engingering Writing and Speech, Vol. EWS-11, No. 2, August
1968,

Madaick, S.E., "Multi-Processor Software Lockout",
Proceadings of the 1968 ACM |Natiomal Conference, August

1968,

Madnick, S.E., "Time-Sharing Systems: Virtual Machines
Concept vs., Conventional Approach", Modern Data Systeas,
vol. Z’ No. 3' HaCCh 1969.

Madnick, S.E., and Alsop, J.W,, "A Modular Apprcach to File
System Design", Progceedings of the 1969 3Spring Joint
computer Conference, Vol. 34, May 1969.

Madnick, S.5., "“MIS - Problems Plus A Solution", Computer
Eorum Report, Vol, 1, No. 4, July 1969.

Madnick, S.E., "Design Strategies fcr File Systems: A
Working Model", File Organization - Selected Papers Fronm

FILE-68, IFIP Administrative Data Processing Groug (14G),
Pablization No. 3, 1Y989Y.

Madnick, S.E., and Alsop, J.W., "A Modular Approach to File
System Design", IAG Quarterly, IFIP Amsterdam, Vol., ¢, No,.
3, 1969,

Madnick, S.£., "What is Microprcgramming?", Proceedings of
the IEEE Computer Conference, September 1971,

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

CS-TR Scanning Project . _
Document Control Form Date: A/ 185 1 9€

Report# L<5-TR-{07

Each of the following should be identified by a checkmark:
Originating Department:

L1 Artificial Intellegence Laboratory (Al)
X Laboratory for Computer Science (LCS)

Document Type:

)Z(Technical Report (TR) [Technical Memo (TM)
O Other:

Document Information Number of pages: [S6(163-imncEs)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
(J Single-sided or [0 Single-sided or
X Double-sided)2[Double-sided
Print type:

[J Typewriter [] offsetPress [] Laser Print
[inkJet Printer KUnknovm (1 other:

Check each if included with document:

R[DOD Form (JQ [J Funding Agent Form (] Cover Page
O spine (] Printers Notes (] Photo negatives
0 other:

Page Data:

Blank Pages ey page numben:

Photographs/Tonal Material pypage numben:

Other (note description/page number) .
Description : Page Number:

IMmAGE AR (1156) unst’so TiTLE PhGE 3~ |55,
UNE'ED BLanik, PAGE .
657)63) S<arsco TR L‘) Do (J\)jT’RG‘T‘)S[B)

Scanning Agent Signoff: '
Date Received: o{.//5 1 G¢ Date Scanned: J 1 // 196 Date Returned: 517 1 %

Scanning Agent Signature: %‘/\ P/'/</M /]/%/ xéﬂ“/A‘ Rev 8194 DSALCS Document Control Form cstrform. ved

R U AN 6 DML

L1 1 IIIHEWNI HLL T |||||Hi|01 L
e il

” R — -
_

\\\\\\\\\\\Q\\\i’l/};/ll// //é 1

= e 2

\

iz

S e

-

7
0

.
%%/

|
)

I

.

¢
1\

—_—

i
)

W

I

////////mn\\\\\\\\\\%‘ flee

// \\ e
I\

NMA MICROFONT QJUKLPYZ
6BSI2GHSDUYXT7U3WBVIE

PQRYSDESGUVET7OFGESTHIJUNOWXABYZ
BKLM I 2C tkaniiensr compancoes srvmncmvap, v

i

7

\\

ABCDEFGHIJKLMNOPQRSTUVW
" XYZabcdefghijklmnopgrst
uvwxyz0123456789 O0OCR-B

ABCDEFGHIJKLMNOPQRSTUV 7°
WXYZabcdefghijklmmopqr -
stuvwxyzl1234567890PICA s-

ABCDEFGHIJKLMNOPQRSTUVWXY?Z
abcdefghijklmnopgrstuvwxyz -
1234567890 Elite

aaaaaaaaaaaaaaaaaaaaaaaaaa
abedefghifklmnopgrstuvwxyz

ABCDEFGHUKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
1234567890 Spartan Medium 8 pt

ABCDEFGHIKLMNOPQRSTUVWXYZ IEEE Std 167A-1987

abcdefghijkimnopgrstuvwxyz //\\ /é»\\\\\\%
1234567890 Spartan Medium 10 pt FACSIMILE TEST CHART /5\\ (“//%%\\ j\//x
e and i N\ A\
ABCDEFGHIKLMNOPQRSTUVWXYZ [Silinsh tin om0
Gbcdefghiiklmnopq rstuvwxyz 1966, Test Procedure for P’acsimilc. Copyright 1987, Institute of //«\\

\,' 234567890 Sporfcn Mediom 12 ot Electrical and Electronics Engineers. G)

BN n R |

0123456

[LIETNAINEN

4PT
6 PT

8 PT
10 PT

4P

8 PT
10 PT

4 PT
6 PT
8 PT

10 PT

123456

MESH

65

85

100

110

133

150

HALFTONE WEDGES
I Lo

PUBWN—O

AlIM SCANNER TEST CHART #2
Spectra

ABCDEFGHIJKLMNOPCHSTUVWXY Zabcdefghijkimnoparstuvwsyz::". /780123456789
ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijkimnopgrstuvwxyz;:,. /280123456789

ABCDEFGHIJKLMNOPORSTUVWXYZadeefghijklmnopqrstuvwxyz;:",./?$O1 23456789
ABCDEFGHIJ KLMNOPQRSTUVWXY Zabcdefghijkimnopgrstuvwxyz::”*,./?$0123456789

Times Roman

ABCDEFGHIKLMNOPQRSTUVW XY Zabedefghipkimnopgrstuswxyz:: ™. /50123456789
AHCDEFGHIJKLMNOPQRSTUVWXYZabcdefgthk]mnopqrstuvwxyz;:“,./?S0123456789
ABCDEFGH IJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$O 123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:", ./7%0123456789
Century Schoolbook Bold

ABCDEFGHIJKLMNOPQRSTUVWXYZahcdefghijkimnopgrstuywxyz:",./ 260123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",. /780123456789

ABCDEFGHIJ KLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./ 760123456789
ABCDEFGHIJ KLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",. /280123456789

News Gothic Bold Reversed
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnopqrstuvwxyz;:™,./?2$01234567 89
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkImnopqrstuvwxyz;:“,./?$0123456789

Bodoni Italic

PRCDEFCHIIR S MNOPQRNT{ W Y)/uh(rfvj/_'hv/ (RSN DI RS SR T
ABCDEFGHIJKLMNOPQRSTU fabedefghifhlmnopgrsturieyz:: ™. /780123456789
ABCDEFCHIJKLMNOPQRSTUVW X Y7a bedefghijkim nopgrstuvwxyz;:”,. /280123456789

ABCDEFGH[JKLMNOPQR STUVWX YZabcde/g/lijklmnopqrstuvwxyz;: "./2801£3456789
Greek and Math Symbols

ABFAEEBHIKAMNOINPPETYOXWZafybetbnuhuvomdporyeydi ™ = D A
ABFAF,EGHIKAMNOl[<1>PETYQXWZaﬁy&eﬁOnLk)\pvmrd)po'TUaJX\IA{;?”,. /= £ b gre=
ABIAEEOHIKAMNOITOPETY QXWZaBySetnuhpvordparvoxbl=F",. | S4 AL+ <bd o=

ABLAEZEOHIKAMNON®PITY QXVZaBySetdnukhpvomrdparybxbl=T", | = | =+ > < p> <=

White

Isolated Characters

e m 1 2 3
4 5 6 7 [}
8 9 o] h I

8543211

A4 Page 6543210

3456

[SENNIRINTY. ¥

Ad Page 6543210

6543210

[EENNIRENTTY

