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SYNOPSIS

This report develops a theory of packet communication; it
analyées uses of cbmputers in digital éommunication’systems
and examines structures for organizing computers in highly
communicative environments. Various examples from existing
computer networks, including the ARPA Computer Network ahd
the ALOHA System, are used to motivate and substantiate
analysis of (1) store-and-forward packet communication,

(2) broadcast packet communication, and (3) distributed

interprocess communication.

In a taxonomy of computer communication techniques, we first
distinguish the two basic modes: circuit-switching and |
packet-switching. Next, we take packet switching techniques
and distinguish those nbst applicable to pcint-to-point |
media (e.g., telephone circuits in the ARPANET) from those
most applicable to broadcast media (e;g., radio in the

ARPANET Satellite System and the ALOHA Systenm).

In 1964, Paul Baran and others, then at the RAND
Corporation, published an eleven volume series of technical
reports titledr“On Distributed Communications® which marks
for us the beginning of modein history for the analysis of
so-called "store-and-forward" computer communications
networks <B;ran>. Later, when ARPA began planning what was

to become the ARPANET, three major areas of store-and-
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forward network theory were identified: (1) topological
design, led by Howard Frank at Network Analysis Corporation,
(2) system modeling and performance measurement, Leonard
Kleinrock, UCLA, and (3) store-and-forwaxd switching node
design, Frank E. Heart and Robert E. Kahn, Bolt Beranek and
Newman, Inc. Our work in the analysis of store-and-forward
packet communication is mest CIOéely related to that of
Rahn,.Crowther. and McQuillan at Bolt Beranek and Newman,
who, with their intimate knowledge of the IMP and the
ability to quide IMP development with theory, have made
considerable sense out of IMP operating statistics <Kahn3,

Kahn4, McQuillan>.

In our anélysis of store-and-forward packet communication,
we specify a representative "feedback-correction protocol"®
for achieving reliable communication over a noisy channel
(between store-and-forward packet-gswitching nodes). We
calculate the ®"total effective capacityﬁ of communications
using the feedback-correction preotocol. We use severxal
simple error models to derive expressions for the capacity-
maximizing packet size. A plot of theoretical effective
capacity versus packet size shows that ARPANET effective
capacity is insensitive to variations of packet size aboée
1000 bits. We show that what we call ®*hop-by-hop"
acknowledging feedback-correction offers lower packet
transfer times than “end-by-end®" acknowledging in a store-

and-forward network with non-negligible retransmission
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probabilities., wWe deriwe én expression for optimal node
spacing in a store-and-forward network. And, we show how a
store-and-forward node cqnﬁerts,limited éapacity (i.e., bit
rate) into delay and hoﬁ this store-and-forward delay

supports the use of message disassembly in the ARPANET.

Radio, on the other hand, is a broadcast medium; a rédio

transmitter generates signals which can be detected over a
wide area by any number of radio receivers. As one might
expect, the application of packet commﬁnication techniques

to radio has led to novel system organizations of a kind

different from those of point-to-point transmission media.

with his first, simple model of the "classical ALOHA
system", Abramson derived the "ALOHA Result® linking channel
throughput énd traffic in an asynchronous time-division
multiplexing (ATDM) radio system: his.analyéis assumes
infinite-source Poisson packet arrivals and omits the
details of randomized retransmission <Abramsoni>. Our
reconsideratioh of Abramson's model (1) introduces a finite~
source model of packet arrivals'(user blocking) to better
account for‘tpe behavio: pf interactive terminal users in a
loaded system, (2) considérs £he éffect of exponentiélly
distributing refransmission intervals, ahd (3) extends the
analysis ﬁo obfain the distribution of user klock times

(i.e., transmission delays).
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In recent work by Hayes and sherman, the delay
characteristics of the ALOHA system are compared with those
of two other‘AmDM‘techniques,.namely the Pglling and Loop
systems <Hayes>. But, again, they model packet arrivals
with an infinité—source Pcocisson process; the same is true of
Pack's consideration of ATDM using general results from his

analysis of an M/D/1 queueing system <Pack>.

Roberts discovered that a "slotted® ALOHA channel could
support twice the throughput of an unslotted channel
<Raberts3>; in further analysis of ALOHA systems, we develop
a discrete-time model of a slotted ALOHA system, once again
bringing into account user blocking and randomized
retransmission, deriving the block tiﬁe mean and variance,
and then, additionally, discoverihg, “retransmission control"
as a technique for achieving acceptable performance and
stability over a wide range of system 103&8. even well into
saturation <Metcalfe9>. Wuhere our anaiysis considers
exponentially and geometrxcally distributed xetzansmzsslon
intervals, ander, in subsequent analysia, derives results
fo: the uniform distribution <Binder>. Where our}ana1181s
studies an ALOHA system in stegdy state, very recent work by
Lu uses first order homogeneous linear difference equations

to get a dynamic,description of ALOHA system state <Lu>.

Computer communication is both communication ugjing computers

and cdmmunication ampopg computers. In the first sections of
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the report we analyze certain techniques for the application
of .computing in communication; in the final chaptér, wé turn
to consider a philosophy of communication in computing -- we
turn to consider structuxes for organizing computers in

highly communicative environments.

A recurring problem in the development of the ARPANET has
been the coordination of remote processes. Any one of a
number of existing schemes for interprocess commhniéation
might have been expected to offer itself as a ready
solution, but, the fact is, the basic organization of
ARPANET interprocess communication -- a general HOST-HOST
ptotocol -- was long in coming and troublesome when it
V-airived. At the time of ihe Network Working Group's
decision to adopt the current "official" HOST-HOST protbcol,
two specific broposals were considered: one based on
connections <Crocker1> and the other on messages <Walden>.
The earlier proposal, based on connections, was chosen, we
believe, because connections, much more than messages,
‘resemble structures in familiar, centralized computer

operating systems.

We believe, in retrospect, that Walden's proposal would have
been the better choice -- that the undetlying structures of
ARPANET interrrocess communication should be modeled, not
after the centralized computing systems they join, but after

the distributed packet-switching system they use. ARPANET
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experience leads us to suggest that there are valuable
distinctions to be made between (1) g@utxaliged interxprocess
communication techniques as often employed within computer
operating systems and (2) nggxingggg-intérprocess
communication techniques as required if computer networks.
These distinctions bring us to propose that even the latest
plans to develop a message-baséd distributed interprocess
communication system for the ARPANET, especially plans for
floating "ports® and generalized "rendezvous® <Bressler1>,
are not extreme enough in their departuzre from techniques

used in centralized computing systems.

we propose that so-called "thin-wire® strategies for
interprocess communication Be uged more generally within and
among computer systems because thinawife*intérprocess
communication (1) has a clarifying effect on the management
of multiprocess activity and (2) generalizes well as
computer systems become more distributed. We further
propose that so-called "best-efforts" strategies be used
more generally because best-efforts interprocess
communication (1) takes fullest advantage of the potential
for error recovery found in highly erxoxr-prone distributed
environments and (2) encourages thg‘econonic distribution of

reliability mechanisms in large systems.

The thrust of our proposél is in oppogition to that most

often offered by those studying organizations of distributed
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computing systems:

All elements of a distributed system
-should ke accessible as if local to one
another.

By arguing that best-efforts thin-wire interprocess
communication should be more generally applied, we propose:
All elements of a distributed system

should be accessible as if remote from
one another. ‘ )
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INTRODUCT ION

"Electronic communications technolegy has
developed historically almost completely
within what might be called the circuit
switching domain. Not until the last
decade has the other basic mode of
communication, packet switching, Lbecome
competitive. ... most of the experiments
with packet communications have been
undertaken by computer scientists, and it
is not even generally recognized yet in
the communications field that a
revolution is taking place. ... it is
generally written off as a possibly useful
new twist in communications utilization,
and not recognized as a very different
technology requiring a whole new body of
theory."

-- Dr. Lawrence G. Roberts

This report develops a theory of what we, as computer
scientists, call "packet communication". Current
understanding of computer communication justifies only the
simplest of theories, and ours, while’fragmented and
tentative, is appropriately comprehensible and ieadily

applicable.

What Is _Packet Communjcation?

To begin with, a packet is not a circuit. Circuits are the
units of allocation predominant in traditional electronic
communication systems. When you make a telerhone cali, for
example, the telephone system establishes an electrical path
between you and the perscn you're calling by joining

available telephone cables -- circuits -- end-to-end. To




Page 1l-2 Introduction

complete your *"connection®", the telephone system's exchanges
- switching nodes -- allocate cable-miles in the form of
circuits and maintain this'alloe&tian £dr the duration of
your call. Thus, in circuit-swieehing, wé,say, circuits are

allocated to carry connections.

Packets, like circuits, are units of allocation in
communication systems; unlike circuits, packets have only
recently become appropriate £er'elhctxcaic-ccmmunicétion.
When you mail a letter, for instance, the mail system moves
it from post office to post office»in Various bags and
bundles ~-- packets -- through successive way stations,
repeatedly using the addreés~?ou spacified-to route the
letter toward its destination. 'Tb-&eliﬁer your *“message™,
post offices -- ®"gwitching nodes® in telephone terminology
-~ allocate man-hours and mailbag-miles to the various
packets in which your letter is contained enroute to its
intended receiver. Of course, depending on the sizes of the
messages being carried, a packét may contain many messages,
or only parts of a message, oOr posaihty.man& parts of many
messages. Thus, in packet-switching, we say, packets are

allocated to carry messages.

- In this report we are concerned with the application of
packet-suitchiag in digital electronic communication and
with the impact of this application on the organization of

computing systems_4 We are concerned with computers in two
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ways: first, as components in building electronic packet-
switching systems,‘and, second, as the benefactors of the
communication provided. When we say "computer
communication", we indeed mean both (1) communication using
computers and (2) communication among computers. Whereas
"packet communication" was first intended to refer to the
use of computers in certain novel organizations of
communication systems, we have come to apply the phrase more
generally, namely to include computing techniques peculiarly
appropriaté to the highly communicative environments

provided by these ndvel organizations.

The_advantages of Packet Switching

- e i R s i -t S

In pure circuit-switching, the making of a connection
requires a number of distant switching nodes to piece
together a continuous path from end to end; and, for the
life of the connection, its constituent circuits are
dedicated to carrying a conversation. For a very short
conversation, the effort required to set up its connection
is large in contrast to the number of bits transmitted; for
a conversation with a substantial fraction of inactive
periods, the number of useful bits transmitted is small in
constrast to the number that might have been transmitted
were the constituent circuits fully utilized. Circuit-

switching makes poor use of communication facilities when



Page 1l=-4 Introduction

the conversations being carried are either short or very

"bursty*.

In pure packet-switching, on the other hand, the
communication system does not dedicate citcuits to set up
connections; rather, the messages which form a conversation
are injected individually at the exact moment of their
readiness. Because there is no connection setup to amortize
over a conversation, short conversations are not seriously
disadvantaged relative to long ones; because a packet-
switching system allocates its resourceé to messages rather
than conversations, the inactive periods in one conversation
can be used to support other conversations. Packet-
switching makes good use of communications facilities when
the conversations being carried are either short or very

bursty.

The principal disadvantage of packet-switching is, of
course, that each packet -- each message in a conversation
-- is transmitted with a complete specification of the
communication desired (e.g., destination, source, size,
sequence number, priotity). -For long and continuous
conversations, the repetition of these specifications in
éach packet can be costly; it would be better to use the
specifications once to set up a connection and to send

streamlined‘messages throuqh‘dedicated circuits.
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"Pure" circuit-switching and “pure" packet-switching are T
only the extreme ends of a spectrum of system:ozqanizations.
From one end, with high-speed electronics, circuit-switching
can become much more flexible than our description above
might suggest: circuit switching is often done very quickly
by electronic (rather than human or mechanical) switching
systems, and the multiplexing of circuits among  many
conversations is certainly a highly refined science <ESS>.
From the other end of the spectrum, to get some of the
efficiencies of circuit-switching, packet—switching systems
can be comp:omised to dedicate various resources to -
connections: connection-like.structures are often bui;ﬁ into
or on top 6f pPacket-switching systems so that they can
economically carry either connection or message traffic.

<McKenziel>.

Distributed'computing‘systems have generated growing
pPressure for packet-switching. Cdmputer “conversations"
have become shorter and burstier, especiallj with the spread
of so-called "interactive" computing. circuit-switching
systems have been greatly improved towaid providing the
responsive communicatioh required by distributed interactive
computing networks, but this communication is pxobably‘best
provided by packet-switching systems. While computersvhave
been demanding electronic packet-sﬁitching, they have also

been making it possiktle.
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In the following chapters we draw uéon existing packet-
switching computer communications netwcrks‘—— most notably
the ARPA computer'Netﬁork -~ to substantiate our theory of
packet communication. For those who are somewhat familiar
with the history of interactiwve computer time-sharing, our
use of the ARPA Network in discussing packet communication
may evoke strong associations; the role of the ARPA Net&ork
in packet communication is reminiscent of the role of early
time-sharing systems, CTSS .for example, in interactivwe
computing <Roberts, Roberts2, Samuel>. In both cases we
find a strong commitment to dynamic iesource allocation; to
computing resources in CTSS and to communication resources
in the ARPAHET. And just as the apparent exgense of time-
sharing has long been attacked by the advocates of batch
processing, s0 too has the apparent expense of fpacket-
switching been attacked by the advocates of circuit-
switching; in'both eases, again, it is the continued decline
of the cost of comput;ng which has made it possible to
utilize other resources more effectively, to squander

computer cycles and baud miles for some greater good.
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How to Read the Report

One can, of course, read this report directly from front to
back, but a prior knowledge of its tree-like branching
structure is helpful. We have already distinguished two
fundamental modes of electronic communication, its two major
branches: circuit and packet. The report deals only with‘
the packet communication branch. Under packet
communication, we distinguish communication using computers
from communication among computers. Chagpters 2, 3, 4, and 5
are devoted to, roughly, the use of computers in
communication, while chapter 6 examines communicatién among
computers. Under communication usjing combuters, we
distinguish bgtween techniques based on point-to-point and
broadcast communication media, studied in chapters 2 and 3
and‘in chapters 4 and 5, respectively. For each of the two
media considered, we devote a chaptef to existing techniques
and a chapter to analysis. If the preceding linear
description of our bifurcate chapter organization is
confusing, one can, of course, read this report directly

from front to back.

Those who are already familiar with "packet communication®
should read chapters 3, 5, and 6, three chapters in which
our original contributions are concentrated. For those who
wish to gO-beyond a full reading of the report and its

instructive appendices, a sizable bibliography has been
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provided. The literature surrounding various subjects to be
discussed, particularly in the more analytical sections, is
summarized immediately before the relevant text and then

referenced where appropriate.
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opened Questions

A number of important questions are opened in the following
chapters, both in packet communication theory and in the
closely related theory of distributed computing. Many of
6ur own answers suggest new questions; they await actual
operating environments and careful measurements of loaded

systems <Cole> for validation.

For instance, our examination of the behavior of individual
store-and-forward nodes fails to consider difficult
questions concerning their interconnection. Some work has
been done in this direction using queueing theory
<Kleinrock, Kleinrock1, Zeigler> and network flow tﬁeory
<Frank>, but we remain dissatisfied (1) with the simplifying
assumptions often used to obtain clean analytical results
and (2) Qith the shqrt-cuts often employed to escape
prohibitive combinatorics. What is needed, we are
convinced, is a readily applicable calculus of
communications elements (e.g., circuits, memory, processors)
like that of the network theory of resistors, capacitors,

and inductors.

The report touches on the question of fundamentaily
different organizations of cbmmunication, i.e., circuit
versus packet; sequential versus random-access, and
centralized versus distributed. Satellites, ground radio,

and cable television are only three of the unusual computer
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communications media with which subsequent theories of the
oxganization of communications must deal inohertsz>. what
is needed is a theory much like that missing also from the
.field of tranoportation. We‘will need tc have theories for
mode selection, mixture, and, possibly, hierarchies of
modes. We might imagine having an understanding of when a
person should take a moving sidewalk, to a car, from a bus;
to a train, throuoh an airport, to o spnoo shuttle.
Similarly we will need to know whether a packet should go
over a VLF channel, to a telephone, thxough a UHF channel,
to a satellite, over a microwave lxnk, through a laser, to a
TV station. Of paxtlcular 1nterest w111 be a theory that
organzzes the use of connection-oxiented and message—
oriented sthchlng techn1ques at apgropt;ate levels in

computer connunication systems.

Missing from much of the work in computer communication is a
consideration of user utility functioms and demand
distributions. A critical input%to;pachetﬁsizé-selection,
-for‘ekample, is a distribution ot'user'oonhnnication-
requirements, i.e., message sizes. Who knows what the sizes
of people-people.‘compuﬁer_computer, Oor process-process
communications would be were they not constrained somewhat
arbitrarily by the communicationS'syateos which carry‘them?
It is likely that each application ﬁili have its own
performance requirements; a most important(problem.to be

solved is that of building general-purpose communications
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systems which benefit from the complementary requirements of
the various applications to be supported. It will be
important that careful consideration be given to assessment

of inputs to design, as well as to design itself.

The open questions in distributed compﬁting are numerous.
How should one organize accounting and acceés control in a
distributed computer utiiity <Gruenbérger, Saltzer, Kahni,
PCI>? In the ARPA Computer Netﬁork, acéoﬁhting and access
conﬁrol are handled (if at all) locally, each service
camputer having to assume the responaibility for protecting’
its resources from intrusion over the network. It is
uncertain whether distributed accounting and access control
systems will require new Crganizationsrof computing activity
<Kahn1>. It may be that (1} the ihhereht separaténess of
actors in a distributed environmeht and (2) the required
explicitness of their ccoperation will make accounting and

access control a natural part of distributed computing.

We need to consider "naming"™ in widely distributed computing
systems. It was first suggested to us by D. Austin
Henderson (MIT) that carefully chosen naming conventions --
a theory of hames -~ would be needed in dealing with
program-manipulable name spaces of the size réquired in
world-wide computing environments. Even in the reiatively
small and sparse ARPA Network, name manipulation has already

become a problem <Bhushan4, Bressler, Postell>.
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To utilize the potential of distributed computing systems we
will need to develop techniques for mamaging cooperating
concurrent processes. Control stxuctuteS‘fdr programming
lanquages <Fisher, Thomas, Preaner)> have been advanced, but
it appears that many basic questions are still unanswered.
In practice, the development 6f protocbls for remote,
asynchronous gprocesses. has been info:mal, despite the fact
that race conditions and.deadloeﬁs abound. The result is
that existing protocols are a patchwork of seemingly
arbitrary sequencing rules <Postelt». Jonathan B. Postel
(UCLA) has suggested, and we‘aqrée; that sdme sort of graph
theoretic (e.g., Petri Net) formalization of ARPAN@T
protocols will prové fruitful <Pa§te12>. Awgeneralization
of abpromches ﬁo ﬁrogiam céitectness wi;l be requiredwfor
use in‘distrihuted and highly pata1191.gobtexts}(ﬁabermann>.

The ARPA Network has developed the need for fbrmezly
isolated systems to interface to the outside world. The
obstacles to this interface have often been of the kind
where a simple standard wculdfhavefmaée things easy.
Computer communication will éontinne to provide pressure for
standards in computing as the inpﬁftanée of cooperation and
compatibility grows relative to that”o£ éompetition‘and
caontrariety. In particular, it is essemntial thét standards
be developed for terminals;'data representation, and file
organizatioh éo that many of the néedlesa incompatibilities

that artificially partition the population of conputer‘usérs
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can be removed <Anderson, Postel, Michener, Crocker3,

Harslem1, Bhushan, Bhushani>.
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THE ARPANET

The Advanced Research Projects Agency (ARPA) Computer
Network (ARPANET) has been an important vehicle for studying
the efficacy of packet communication techniques, both in the
utilization of digital data communications facilities and in
the closely related development of distributed computing
systems. To support the analysis of the next chapter, we
will briefly explain what we mean when we say: The ARPANET
is a geographically distributed, message-switching, store-
and-forﬁard, high data rate, highly connected, modular,
computer communications network. Rather ﬁhan discussing the
ARPANET in its full generality, we focus only on store-and-
forward packet-switching using computers and point-to-point

communication media.

Recent years have witnessed an accelerating demand for
computer communications <Brown, Gruenberger, Kittner,
Parkhill>. Through communications, the organizers of
computing systems have found new wéys-of structuring
resources and distributing services. Through computers, the
organizérs of communications systems have found new ways for

croviding information flow in an increasingly interconnected

world.
Consider how communication influences computing.

For example: ARPA research in the development of computing
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resources has led to the construction of the ILLIAC-IV and
the UNICON Laser Meuory These devices are representative
of a class of large scale computing facilit:.es which cannot
easily be Justified wit:hout a workable plan for prov:.dmg

access to large, d:.str:.buted userx popuhtions.

For another example: Basic reseaxrch in the application of
computing resources has led to undertakings requiring a
broadly based integration of previously separate people and
technologies. For example, ARPA'S success in Automatic |
Programming <Balzer1, Cheathaml, MAC>, Climate Dynamics, and .
Speech-Understanding Qiewell> will depend on its success in
providing for ccﬁputebem:idm& cooperat ive interaction
<z.iek1mar>* among distributed resesrch teams. |

Now consider how computing influences communication.

Investigatioﬁs cf. computer cmmicaticns: sjrstems have
progres sed slouly for over a daca@e <Bu'an, Kleinrock1,
Mar111>. The tectmo.'mqies vmich support cmputing and
communications have only recently advanced to provide
performance characteristics near those reqm.red for |
effective, mteractive computer conmmication. Sub-
| microsecond processors, memories, and comuni&tzon
ci-rcuxts, at costs far below those five years ago, make it
possible to consider wide use of computers in communication:
aiding human operators in routzne f\mcts.cns- replacing

slower and less reliable mechamical awitchmg systems. and
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extending services in novel applications never before
» P

possible <ESS, RobertsZ).

In moving toward a design for a computer communications
system for the ARPA computer researéh commﬁnity, three
characteristics of the community were influential. First,
the ARPA community spaps the pation. Second, the emphasis
in the ARPA ccmmunity is on interactive comruting. And,
third, the computing resources in the ARPA community are
diverse apd autopomous. Emphasis on these characteristics
is essential to any understanding of why or how the ARPANET
differs from other computer communications networks <Farber,
Abramson, Rutledge, Raoberts2>. The basic structure and
design parameters of the ARPANET are derived from these.

characteristics.
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ARPANET Descriptors and Parameters

The ARPANET is a geographically distributed computer
communication network with, currently, about 6000 miles
between its most distant nodes. (See Figuré 2—-1 above.)
That it is nationally (if not globally) distributed is
significant in fixing the parameters of its communication
circuits and in organizing its installation and maintenance

subsystems.

The ARPANET is a message-switching network permitting up to
8095 bits per message <Heart>. It transacts, not with
circuits as in the case of telephones, but with messages

(i.e., packets) as in the case of mail <Roberts2>.

Communicating computers do not dial each other up through

the switching system and have cgnversations, digital or
otherwise; they send each other packets of digital data,
like letters through the mail. That the ARPA community
emphasizes interactive computing is reflected in the
ARPANET *s optimized handling of interaction-sized messages

of up to 1000 characters <Roberts)>.

The ARPANET is a store-and-forward computer communications

network with on the order of 100,000 bits of packet storage
per switching node. Its communications computers store
messages until assured of their safe arrival at the next
node enroute to a destination. These communications

computers are either (1) Interface Message Processors (IMPSs)
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<BBN1822, Heart> or (2) Terminal IMPs (TIPs) <Ornstein>.
That the ARPANET'sS switching nodes (IMP8) have between
100,000 and 200,000 bits of memory ‘{xrather than 1,000,000 or
'100,000,000) is evidence that ‘the ARPANET places a premium
on responsiveness -- short messige queuss for low delay
rather than dong queues fozvhigh-c&xcﬁtt'utiiization.
Switching nodes of previous steremind~forﬁara networks
{e.g., DOD's AUTODIN) were often equipped with mass memories
(e.g., disks) where messages were qgueued for minutes, hours,
and even days. Long-term message storage is provided in the
ARPANET, but not by the switéhing:no&es.themselves;_such
message stbrage and ferwardingrisiproviﬂad'throuqh‘protocols
and progxﬁHS-xesiding‘in the “HOST" computers joined by the

IMP Subnet.

The ARPANET is -a relatively bigh §ata rate network with

circuits carrying, typically, 50 kilabits per second (Kbps).
In cornitrast 'to ‘earlier networks whieh*afteh'uéed dial-up
2400 bps ox maﬂothpa“telaphaneﬁcifeuﬁﬁs.'the:ﬁk@tﬁET uses
dedicated 9.6, 50, and 230.% ‘Kbps telephone ‘cixrcuits for the
responsiveness and thrbﬁghput-reQﬁtrea*of'@&Yective

interactive use.

The ARPANET is a jow delay network guaranteeing less than .5
seconds delay coast-to-coast <Frank1tl, Heart, Roberts).
Human interactions of the variety normally supported by the

interactive ‘time<sharing systems in the ARPA community would
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be impractical via a communications network with
transmission delays on the order of minuteé, hours, or days.’
This low delay characteristic of the ARPANET is the result |
of (1) the use of relatively small messages, (2) high data4

rate circuits, and (3) restricted IMP message storage.

The ARPANET is a highly cocnnected network with,‘typically, 2
or 3 independent paths between nodes. This minimum fwo~path
redundancy offers reliability of access and increased
throughpﬁt <Frank>. Though "highly" connected (most
networks are 1-connected), the ARPANET is not completely
connected, i.e., not all IMP pairs are directly connected by
a circuit. (See Figures 2-~1 above and 2-4 below;} Rather
the ARPANET is connected so as to provide én économic level
of communication under loads varying widely in space ana‘
time. 1In contrast to the more familiar loop and star
network topologies, the ARPANET's arbitrarily connected,
store-andeorward communications subnet cffers measured

reliability and ease of growth over a wide rangé of network

sizes <Frank>.

Finally, the ARPANET is a highly modular computer
communications network. Modularity is a necessity for
ARPANET reliabilitf and manageability. The ARPANET is
modular in that the IMP Subnet operates independently of the
connected computers at ARPA sites <Heart>. The ARPANET is

modular in that each of the IMPs and their programs are
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identical; haxdware maintenance and v.softwar’e development are
both thereby simplified <McKenzie>. The ARPANET is modular
in that itsinbamunicatiOnsvpratacoisfate sirictly layered.
(sée Figures 2«2 and 2-3 below.) The ‘strict layering
permité*sepﬁnﬂte taams'to:immkiinzparutlnl'atuuanyﬂlevels of
.development and supports cleanily defined interfaces among

levels of varied purpose <Crockerd.
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At the lowest level, the IMP-IMP protocol <Heart> handles
transmission error control, message (i.e., packet) traffic
congestion control, and packet routing. IMPs detect
tranémission erro;é with a 2u'bit‘checksum4for each 1000 bit
packet and correct errors using an acknowledgmeﬁt-
_retransmiséion'scheme <3eart>. The IMP Subnet regulates the
entry of messages from HOSTs to écntrol‘packet traffic
congestion and transmission delays <BBN1822, Heart,
McQuillan>. ‘Packets are routed through the IMP Subnet uéing
an algorithm which locally minimiaes transit time <Frank,
Frank1>. IMP~IMP protocol is implemented in software within
the DDP-516/316 IMPs. |

At the ﬁext level up, a widely'ﬁsed "officiai"‘HOST—HOST
‘brotocol <Carr, McKenzie1> provides a geherxal purpose
virtual communications system among procgsSeé on remote
computer systems. :The‘"officialﬂ'HOST-HOST protoco1 is
implemented in Network COntrol Prcgrams (ucys) <Newkirk>

within HOST computers.

And, at a higher level still, nuﬁetoaa'fuhction—oriented
| process‘praeésa.pxotacols <Crocker> sapportfﬁpacific ARPANET
applications. For example, the widely used
TELecommnnicgtiona‘NETwork (TELNE?)'subays:em provides
console access io the many interactive,cempﬁter gystems on

the ARPANET <Postel>.




4

Page 2«11

The ARPANET

€L6T AVW “d¥W TYII901

AYOMLIN YddY -- LINENS dWI 3IHL ¥-2 F¥n9I4

dil diL dWi —OI-dad
VF) WY ISt
g ‘ . =8N
diL —Gt-dad [awi .
. g
oY, aNY e
diL
JYLIN
16/09€)—] ol | LYWOIS
@J bt I e L5 awi H0r-dad
son] vas | lowosnvis
A o dwi | \§£/0%)— ! é
NIIOY I8V &4/10A778 asan
. Jrdad o O1-dad)dwi B diL
-dad ) dmi I@ ) b09)— diL
,,... asn SINY  1IUMVH
QY VAYVH dAl 0l-dad
, O—.&Qn_ JI9TFNY VI i
diL 8500
Ot-dad A
e/ IM9 diL
dWi —{dIL dWi —0i-dad IMN
-dad Yvga] \ w~es |diL| 3572 L .le
(or-dad oavy S
w1oomi | dwi —( dsL
di|
Qt-ddd)}—1dil} .nunnv. ols ‘
I3 @ 2X1) a Xo83x Oldad
@/az._ dWI W S dWI @ |
Ol-dad Liw  (Ordad S/IONITT HVLN 787 148
Brada (dad)  @rdad Ol-dad




Page 2-12 | The ARPANET

The ARPANET Present and Futuze

As of this writing the ARPANET has grown to over 30 sites
and is well on its way tbwazd‘beéoaihg something Qf a
natianai utility. There are mpow over 35 HOST computers and
13 TIPS (i.e., Terminal IMPs) joined by the ARPANET to each

other and to a growing community of users <Oxnsteind>.

The ARPANET began when the IMP-IMP and IMP-~HOST protocols of
the cdmmunications subnet were delivered by Bolt Beranek and
Newman, Inc. <BBN1822, Heart, McQuillan> in early 1970. The
ARPA Network Working Grour (NWG), an assembly of
representatives of ARPA sites, has designed and implemenﬁed
{1) a general-purpose Hosmoansw protocol <Carr, czbcker,
McKenziel>», (2) a "TELNET" protocol <O‘Sullivan.
O'sullivant, Postel> to allow ARPANET users to log into the
various cooperating interactive computers on the ARPANET,
(3) an ARPANET file transfer protocol <Bhushan6>,'and (4) a
remote job éexviée protocal <Bresslarzq White>. Work is
continuing on (1) a graphics protocol <Michemer>, (2) a data
computer protoco; <Datalanguage>, and (3) a data

reconfiguration protocol <Anaetson>, among others.

ARPANET development has passed through its initial
experimentation/construction phases and is now entering a
critical new period in which the facilitation of substantive
use must be the dominant activity. There aré many problems

to be solved. Mechanisms for assuring privacy and'security
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are as yet unknown, especially in the distrikuted
communications environment. The interconnection of widely
differing computing systems will generate new fressure for
standards. Techniques for charging and accounting in a
distributed environment will need considerable study,
particularly to make it possible for a non-research
management organization to make the ARPANET a self-
supporting operation. There are many more problems in the
distributed computing environment and its effect on the

organization cf computer operating systems <Kahn>.

An important part of the ARPANET's future relates to its
smooth transfer to an operational agency for lqng-term cost-~
recovery management. Steps are currently being taken tb
find a suitable management environment for the
communications facilities as they now stand. At the same
time, private companies are seeking to provide commercial
ARPANET-1ike service and have»already filed with the FCC for

clarification of their regulatory status <PCI>.

Studies are now in progress toward introducing new
communication media at the lowest levels of the ARPANET.

The University of Hawaii is already connected into the
ARPANET using a point-to-point channel through a
synchronous, earth-orbiting satellite; work continues toward
building ARPANET Satellite IMPs (called SIMPs) whichluse

that same channel, in a broadcast mode, to provide ARPANET
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service to stations around the Pacific, from California to
Alaska, to Hawaii, and possibly £0-Japan <Abramson3,
Crowther>. It is expected that higher bandwidth terrestrial
circuitry will be introduced throughout the ARPANET to

continue responsive service at increasing levels of use.

The integration of other networks is also an important part
of ARPANET development. Effort is going iﬁmo:the planning
of national networks fqr the United Kingdom, Canada |
<Mannihg>,~and France, using the ARPANET both as an input to
design and as a component in a future wogldéwide computer
cbmmunications network. Just aS’inportjnt'will be the
development of “smaller® networks to complement ARPANET-like
facilities in‘the delivery of computer communications

<Abramson, Farber, Roberts2>.

In the next chapter, we focus on the IMP Suhnet to analyse
store-and-forward packet communication. The reader who is
not already faﬁiliar with ARPANET IMPs and HOSTs, can find
additional background material in Appendices A and B.
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ANALYSIS OF STORE-AND-FORWARD PACKET COMMUNICATION

In a taxonomy of computer communication techniques, we might
first distinguish the two basic médes: circuit-switching
and packet-switching. Next, we might take packet switching
techniques and distinguish those most apgplicable to point-
to-point media (e.g., telephone circuits in the ARPANET)
from those‘most applicable'to broadcast media (e.g., radio,
to be discussed in the next chapter). With this taxonomy as
a context, we now look under point-to-point rpacket-switching

to examine store-and-forward techniques.

So-called "store-and-forward" packet-switching networks, as
exemplified by the ARPANET, are growing in popularity.- The
‘theories behind such networks are still vague and poorly
understood. 1In this chapter we present a collection of
first-order theories of store-and-forward packet .
communiication and extract several rules of thumb which may

prove useful in network design.

In 1964, Paul Baran and others, then at the RAND
Corporation, published an eleven volume series of technical
reports titled "On Distributed Communications" which marks
the beginning of modern history for the analysis of store-
and-forward computer communications networks <Baran>.
Later, when ARPA began planning what was to become the
ARPANET, three major areas of store-and-forward network

theory were identified: (1) topological design, led by
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Howard Frank at Network Analysis Corporation, (2) system
modelling and performance measurement, Leonard Kleinrock,
Ucla, and (33 store-and-forward éwitching node design, Frank
E. Heart and Robert E. Kahn, Bolt Beranek and Newman, Inc.;
the development of various theories conttibuting to the
ARPANET is summarized by Frank, Kléinrock, and Kahn in
*"Computer Communication Netwqu Design ~- Experience with
Theory and Practice® <Frank1>. Our work in the analysis of
store-and-forward packet cammunication is most closely
related to that of Crowther, xahn,.and McQuillan at Bolt
Beranek and ﬂewm#n; who, with their intimate>know1edge of
the IMP and the ability to guide IMP develcopment with
theory, hawve produead several papers which make considerable
sense out of IMP ogerating statistics <Kahn3d, Kahnd,
McQuillan>.
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sSummary

A representative “feedback-correction protocol" for
achieving reliable communication over a noisy channel
(between store-and-forward packet switching nodes) is
specified. The "total effective capacity" of communications
using the feedback-correction protocol is calculated.
Several simple error models are used to derive expressions
for the capacity-maximizing packet size. A fplot of
theoretical effective capacity versus packet size shows that
ARPANET effective capacity is insensitive to variations of
packet size above 1000 bits. It is shown that *hop-by-hop"
acknowledging feedback-correction offers lower packet
transfer times than “end-by-end" acknowledging in a store-
and-forward network with non-negligible retransmission
'probabilities. An expression for optimal node spacing in a
store-and-forward network is derived. It is shown how a
store-ahd-forward node converts limited capacity into delay
and how this store-and-forward delay supports the use of
message disassemkly in the ARPANEf. And, finally, distance-
independence is challenged in its role as an overriding

objective of ARPANET design.
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Feedback-Correct ion

Consider the traditional digital cammunications model: a
‘noisy channel connects the sender and receiver of a
potentially infinite bit stream; how can the sender and

receiver organize to achieve dependable communication?

In the literature on communications érror control we find
many»methods of introducing redundancy_into transmitted data
so that errors can be detected through cbserved
inconsistency and corrected by using redundancy in damaged
transmissions <Berger, Gorog, Lin, Peterson, Sussman>. The
effectiveness of various coding techniques for error control
depend on the error characteristics of the noisy channel to
which they are to be applied. It has bcen’found, in
particular, that because %burst® errors are typical of
commonly used communication media (e.g. ., télephone
circuits), the redundancy required to detect transmission
errors is significantly lesc than tha£ required to correct
damaged data <Lin, Mitchell, Peterson, Smith>. The
computations required to decide if c transmission is in
error are typically mach less complicatcd than those

required to reconstruct it <Smith>.

When it happens that thexe is a unidirectional channel from
' sender to receiver, there is little choice but to use "open-
loop" error control techniques requiring high data

redundancy and elaborate correction procedures. When the
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channel connecting sender and receiver is bi-directional, it
is possible to use "closed-loop" error control techniques,
using per-packet redundancy for error detection only and
relying on receiver-controlled retransmission for error
correction <Kalin, Lin, Smith>. By making data
reconstruction unnecessary, "closed-loop" or "feedback"
correction allows transmitted data to be much less redundant

and simplifies the computations required fcr error control.

A particularly simple family of feedback~correction
communication protocols has found application in
contemporary computer communications systems <Abramson,
Farber, Heart, McQuillan, Roberts2>. This family of
protocols is based on error-checked packet transmissions,
acknowledgments (ACKs), time-outs, and retransmissions: a
sender generates a packet of data with sufficient redundancy
to reduce the probability of undetected error to an
acceptably small number (e.g., one undetected incorrect bit
every ten to the twelfth transmitted data bits); the packet
is transmitted and stored until an error-checked
acknowledgment of its safe arrival is returned from the
error-checking receiver; if an error-free acknowledgment
fails to arrive within a given time-out periéd, the sender
assumes that the transmitted packet has been lost and
retransmits it; and so on forever; the receiver, upon
getting a packet, checks to see if it is damaged and, if

not, generates an error-checked acknowledgment packet to be
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returned to the data sender. To guird_igainst‘packet
duplication, a typically trivial sdqnepéi&gﬁmechanism is
used <McQuillamn>. There are a nuubdr7&?¥§ifi&tions-on this

protocol which éonpose the family under‘stuéy.

A simple feedback-co:rection;cumnnndniﬁ$chﬁpmotocolvistoze
formally and succintly specified in-thegaénoqpanying
flowcharts. Our consideration of\a'pgitibui;xlf simple,
representative feedback-correction protocol began during
informal discussions with Steve czockertmm , Jon Postel
83 ard Kalin

e

(Lincoln Lab, now at ADR) <Kalin> and Ale¥ McKenzie (BBN)

<cerf 1>.

For simplicity, the start of t:ananission is assumed to be
synchronized .and a single-bit aequnncing achame is used for
duplicate suppression. Erxxox chscking of data packets and
ACK packets is assumed to offer a aatiafactery level of
protection from undetected error. It uiil be instructive to
step through a few scenarios of the coope:ation ‘between a
sender/receiver pair under this sinp&e pxptgcol. Study the

flowcharts, Figures 3~1 and 3-2.
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Feedback=-Correction Scenarios

i At e e e S A i ek

First, let us look at a case where everything goes well.

The sender (in start state "zero") generates a packet with
appropriate sfate "zero" sequence bit and error-check bits.
The packet is transmitted and the sender goes into state
"zero" time-out wait. The packet arrives at the receiver
where the error-check procedure declares the packet to be
correct (i.e., consistent); it is immediately acknowledged
with an error-checked state "zero" ACK packet from receiver
to sender. The receiver notes that he is in state "zero"
and that the newly received racket is a "zero" packet (i.e.,
in sequence); he includes the new data bits as part of the
received data stream. The receiver then puts himself into
state "one" to await a state "one" packet. The sender,
meanwhile, has received an error-free ACK marked with state
"zero" and is assured that the pending, state “zero" packet
has been received without error. The sender then moves into
state "one" and restarts the cycle by generating a state

"one" packet -from the data awaiting transmission.

Next, consider what happens when the state "one" packet is
found by the receiver to be damaged (i.e., inconsistent, in
error). The algorithms for sender and receiver both require
that all damaged packets ke discarded and ignored. The
damaged packet (probably, but not in general necessarily, a

damaged state "one" packet) takes, the receiver out of data




Page 3-10 Store-and-Forward Communication

wait and is discarded. The receiver immediately re-enters
data wait’looking once again for a staté “onet paéket. The
sender, in time-out wait looking for a state Mone" ACK, (1)
finally times out, (2) retransmits the pending, state "one"
packet, and (3) falls back into state "one" time-out wait.
Eventually, (i) a retransmission of this S£éte “one" packet
gets to the receiver undamaged, (2) the rpacket is
acknowledged with a state %one®™ ACK, (3) the receiver enters
state Y“zero" in preparation for the next message in
sequence, and (4) the newly axrived'data is accepted by the

receiver as part of the transmitted bit stream.

Next, consider what happens when the state "one" ACK is lost
or damaged. If damaged, an ACK will be diécarded and
.thereby lost. If the state "one" ACK is.lost, the sender in
state "one" will fail to receive the ACK before timing out
and thus the pending state "“one" data packet will be
retransmitted. The receiver, having sent the lost state
"one" ACK and.now in state "zero", ‘'gets the retransmitted
state "one" packet successfully (say) and-éends a state
"one®" ACK. The receiver notices, however, that the packet
is out of sequence (i.e., a "one" and not a "zerxo" packet);
the duplicate packet is discarded. The ACK generated by
this duplicate data packet serves to satiéfy the waiting

sender and to advance the transmission sequence.

If a state "one" retransmission were to somehow pass its
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delinquent state "“one" ACK on the wires,.the protocol would
cause the retransmitted state "one" packet arriving at the
state "zero" receiver (1) to be acknowledged, (2) to be
declared a duplicate (i.e., out of sequence), and (3) to be
discarded. The second state %one" ACK, in turn, would
arrive at a state "zero" sender and would also be discarded

as a duplicate.

This simple piotocol is intended to exhibit the basic
properties of a family of error control protocols. There

" are variations on this basic protocol. By adding a negative
acknowledgment (NAK) to the protocol in cases where ACK
times are very uncertain (a time-out is still requiredj, the
transmission of data can be speeded by reducing the time
taken by the sender to decide to retransmit a damaged
packet. By adding more sequence bits in cases where ACK
times are very large, more packets can be pending (i.e., on
the line) and the potential utilization of the channel
thereby improved. Packet reconstruction schemes (i.e.,
error correction) can be superimposed on the feedback-
correction mechanism to reduce retransmission frequency.
some of these variations are a matter of detail and others
are important. For our initial analysis of the properties
of the family of protocols, the above mentiohed simple

representative will be used.




Page 3-12 Store-and-Forward Communication

Effective Capacity and Delay

The channel connecting sender and receiver has a given
nominal capacity (bit-rate) of C bits per second and a given
transmission delay of 4 seconds. How will the error
characteristics of the channel and our siﬁple'feedback-
correction protocol combine to provide an‘ﬂerror—free"
connec tion between sender and receiver? what will the
"effective capacity" (bits per second) and the "effective
delay" (seconds) of our virtual conneétioh,be,.under the

proposed organization of channel use?

The error properties of a channel are difficult to
characterize and the probability of a transmitted packet
arriving in erxror is undoubtedly a complicated function of
time anq.packet length. Real channels are often subject to
a mixture of both random and burst errors <Bérger,'xahn2,
Lin, Sussman>. For the simpie calculationé at hand, we (1)
fix the independent error probability of a data packet at
Lp, (2) fix the indépendent‘erxor probability of an
acknowledgment packet at La, and (3) define 1 ("L" for
"Loss") as the prebability that an acknowledged. packet

transmission will fail (i.e., will time out), wheré:
(Eg. 3=1) L =1 - (1-Lp)*(1-La) (0<L<1)

A successful, acknowledged transmission requires a

success ful data packet transmission with probability 1~Lp
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and a successful ACK packet transmission with probability
1-La. L, then, is the probability that something will go
wrong with either the data packet or the ACK. L is the
probability that a retransmission will be required given

that a transmission is attempted.

Let k (a random variable) be the number of retransmissions
required for a successful, acknowledged transmission of a
data packet under our simple protocol. The event
corresponding to k=0 is that in which the first transmission
of a data packet leads to its successful receipt and timely
acknowledgment (i.e., without need for retransmissions).
The probability of the k=0 event is 1-L, by our definition
of L. We write Prob(k=0)=(1-L). The event corresponding to
k=1 retransmission involves an unsuccessful attempt at an
acknowledged data packet transmission, with probability L,
followed by a successful attempt, with probakility 1-L. The
event corresponding to k=1 (i.e, one retransmission) has
probability L#*(1-L). We write Prob(k=1)=L*(1-L). For k
retransmissions, we recognize the geometric distribution:

i
(Eq. 3-2) _ Prob(k=i) = L * (1-L) (kz0)
The mean number of retransmissions per successful
transmission is calculated in a straightforward manner

leading to Equation 3-3:
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(Eq. 3-3) Mean k = __L__ (0<L<1)
(1-1)

In summary, if the probability of an unsuccessful,

acknowledged packet transmission is L, independent of

previous attempts, then the mean number of attempted

transmissions Fper successful transmission is 1+ (L/ (1-L)).

How long will it take to successfully transmit an
acknowledged packet through the channel using our simple
feedback-éorrection protocol? For our calculations, let P
be the number of bits per data packet and let A be the

number of bits per acknowledgement packet.

The mean time for a successful transmission is now
calculated in a straightforward manner leading to Equation

3—7.

First, we consider the time required for an acknowledged
packet transfer without retransmissions. Time zero is taken
to be thé time at which the sender starts transmission of
the data packet. The time taken by the sender to transmit a
data packet is P/C seconds -- P bits being‘transmitted at
thé nominal channel kit-rate of C bits perbsecond. The
sender ends data packet transmission and enters time-out
wait at time P/C. Because of the channel transmission delay
of 4 seconds, the receiver begins getting the data packet at
time d and has finished receiving it by time (P/C)+d. The

receiver takes, say, zero time to error check the packet.
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(This assumption is not as restrictive as it looké? d can be
adjusted to include checksum computation and modem delay
<Crocker2>.) Therefore, the receiver begins sending the ACK
packet of length A bits at time (P/C)+d and finishes
transmission at time (P/C)+d+ (A/C). The sender begins
getting the ACK 4 seconds later and has it in hand and error
checked by time (P/C)+d+ (A/C)+d. Thus ends a successful

acknowledged transmission cycle, so that:
(Eg. 3-4) Time (k=0) = ((P/C)+ (2d)+ (A/C))

But how long would an acknowledged packet transfer take if
there were errors and retransmissions? If eithér a data
packet or ACK were to be damaged and lost, the sender would
be forced to time out and retransmit, thereby delaying

successful transfer completion.

A key quantity is the amount of time that the sender will
wait before retransmitting -- the time-out, T seconds. We
will assume that the sender is what we call an "optimistic"
sender, i.e. a sender who is willing to wait (before
retransmitting) at least as long as it wculd take for an ACK
to return if all went well. A "pessimistic" sender might
retransmit an unacknowledged (i.e., pending) data packet
even before an acknowledgment could be expected to arrive.
Retransmission pessimism might be motivated by a very high
retransmission probability (e.g., L>(1/2)) and/or by a

desire to utilize an otherwise idle channel <McQuillan>.
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Assuming that the time-out parameter T is greater than the
acknowledgment time ((2d) ¢+(A/C)) seconds, then, we get that
the time required for an error cycle -- the time by which an
error delays eventual successful transmission -- is (P/QC) +T

seconds, so that:

(Eq. 3-5) Time (k=i+1) = ((P/C)+T) + Time (k=1i) (120)
Combining with our expression for Time (k=0), we get:

(Eq. 3-6) Time(k=i) = ((P/C)+(2d) +(A/C)) + i* ((P/C) +T)

Now by knowing the mean number of retransmissions (error
cyéles) required for a successful acknowledged transmission,
we can calculate the mean time required:
(Eq. 3-7) Mean Time = ((P/C)+(2d)+(A/C)) + ?L_*((P/C)+T)
-L
This mean transmission time can be used as a measure of the
neffective delay" across the sender/receiver connection; it
is also important in calculating the effective capacity of
the "error-free" connection supported by our simple
protocol. By "effective capacity"® we mean the average
sustained rate of error-free bit transfer achievable through
a channel. Effective capacity is calculated by taking the
ratio of (1) the number of good data bits transmitted per
packet, to (2) the mean time of successful, acknowledged

packet transmission.
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We have defined P as the number of bits per packet, but not
all the bits in a packet are data bits. Some packet bits
are error control bits (e.g., checksums), others are
sequence bits (e.g., our state sequence kit), and still
others may be required in more complex communications
contexts (e.g., an ARPANET-like switching network) for

routing and flow control.

For our purposes, we say that there are S data bits per P
packet bits and, more specifically, P=B* (H+S). H (for
"Header Overhead" in bits per packet (20)) is taken as a
constant, per packet overhead, and B (for "Rit Overhead" in
bits per bit (21)) is taken to be a constant, per bit
overhead factor. B is usually 1, but we carry it along as a
variable because it extends the model without complicating
our calculations. We can now write an exgression (using Eq.
3-7) for the effective capacity (in bits per second) of our
sender/receiver connection:

(Eq. 3-8) EFFCAP = S

((F/C) +(2d) +(A/C)) + _L_*((P/C)+T)
1-1L

Before moving on to simplify this expression, let us examine
its structure., The numerator is S alone and we will say
that, if data bits are a small fraction of those in a packet
(i.e., if S is relatively small, S<<P), then the effective
capacity of our connection is overhead limited. Looking at

the denominator, we see that a number of terms may dominate
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in the limitation of effective capacity. If the nominal
channel capacity, C bits per second, is so small as to make
the P/C and A/C terms large in the denominator, we say that
our connection bit-rate is channel capacity limited. If the
2d term dominates, then we say that effective capacity is
delay limited. Similarly, a high L causes the
retransmission term to grow large making transmission
capacity error limited. Improper choice of T in a high
error environment could make effective capacity time-out

1imited.

To achieve maximum effective capacity as calculated above,
the sender must have as much data as he wants; If the
sender has only finite storage available to him, then he
must get additional data frcom some remote source.

Therefore, the sendert's ability to push bits through a
channel may be limited (further) by his inability to supply
them. He may have to wait for bits from ancther sender,
over another feedback-corrected channel, which in turn has a
limited effective capacity. 1In a situation where the sender
is limited by his inability to store gueued data, we say
that the effective capacity of the channel is gueue storage

limited. We do not consider this effect.

The receiver may not be able to dispense with bits quickly
enough to suit the sender and may have to discard (for later

retransmission) some correctly received packets for want of
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buffer storage. We do not consider such effectsv<2éigler>.
Neither do we consider the effect of variable length
packets. These ignored effects should be included in a more

comprehensive theory.

When the variance of acknowledgment return times is small
relative tb thé mean, the sender can set his time-out time T
at the expected return time (or just above) with little
penalty. In that case, the time required fqr an error cycle
(i.e., for a transmission and time-out) is the same as that
for a successful data-ACK packet exchange,

((B/C) +T) = ( (B/C) + (2d) + (A/C)) seconds.

If the acknowledgment return time has a high variance, then
a tight time-out would be less effective, due to the
resulting, frequently premature retransﬁission of correctly
received and acknowledged packets. Fof the following
calculations, we assume that the variance is small relatiwve

to the mean.
Using the equality T=((2d)+¢ (A/C)) seconds, we simplify our

expression for effective capacity to:

(Eq. 3-9) EFFCAP = S*(1-L) = _S*(1-1)
((B/C) ¢ (2d) +(A/C)) - ((P/C)+T)

By collecting terms with an eye toward structure, we get:
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(Eq. 3—-10) EFFCAP = § * 1 * (1-1) * C
' P (1+(C*T/P))

We now see that our calculation of effective capacity for
the simple feedback-correction protocol reduces to the
product of four factors: (1) an gverhead factox (S/P), (2) a
pultiplexing factor (1¢(C*I/P)), (3) an errer factor (1-I),
and, of course, (4) a pure capacity factoxr (C).

Having an expression for the effective capacity of a simple
feedback-correction retransmission protocol (Equation 3-10),
we now examine two ways of improving the total effective
capacity (TEC) of communications over the raw channel.
First, we sketch how the multigplexing factor (M=(1¢ (C*T/P)))
leads to a simple revision of the protocol.and to a iower
"bound on the number of packet buffers reduired for high
total effective capacity. Secona, we inttoduce three very
simple transmission-error models to study the dependence of
total effective capacity on packet size. We,démonstrate how
total effective capacity might be maximized by»some

judicious choice of packet size.
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Round-Trip Delay and Buffering

Of the factors determining effective capacity (Equation
3-10) , the so-called multiplexing. factor (M= (1+ (C*T/P)))
exhibits the highest potential for structure-dependent
improvement. Examining the factor more closely, we see that
the multiplexing factor corresponds to the number of
different packets which might usefully be "on the wires"
(pending) at once, due to a non-zero acknowledgment time.
C*T is the number of bits which could be transmitted over
the raw channel while waiting for an acknowledgment to a
previous P bits. M is the number of different packets which
could be pending at once and is a function only of the ratio
of the number of bits which can be transmitted during an
acknowledgment time (C*T) to the number of bits in a packet
(P). our expression for effective capacity, above, is
reduced by 1/M because the simple protocol described

requires that there be but one pending packet.

A basic revision of the simple protocol, then, would be to
use at least M copies of it on a single raw channel. Such a
parallel use of separate instances of the simple protocol
would require (1) instance identification bits in packet
headers and (2) sufficient buffer space at the sender to
hold at least M different packets. For the current
examination we ignore the details of instance

identification. (BBN uses this multiple-instance approach
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in the ARPANET IMP Subnet <Cerf1l, McQuillan>.)

We assume, for a given raw channel with specified nominal

bit-rate C, acknowledgment time T, and packet size P, that
at least M = (1¢ (C*T/P)) parallel retransmission seguences
are maintained. The total gjfgg;;gngggggigg_(TEcy of the
raw channel undexr this organization is then given by

Equation 3—-10 with the multiplexing factor removed:
(Eg. 3-11) TEC = (S/P) * (1-1) * C (0<1.<1)

Notice that the expression for total effective capacity
comprises what we call an g;figiéngx‘25939;, (s/P)*(1-1),
namely the ratio of good data bits (S) to’the mean total
number of bits transmitted pertsuccessfulctransmission;

(E/ (1-L)) .

There is a trade-off between packet overhead,and
multiplexing. It takes extra bitsfinﬂpackét headers to
maintain parallel instances of our féedback-COrrection
protocol. The: number of ext:aabits-needeﬁifat>instadce
identification is the rounded up,-logarithﬁ base 2, of M.
The number of multiplexing bits (i.e., instance identifier
bits) is usually very small Jre»lative- to the v‘to,ta]‘. number of
header bits, but not always (e.g., in high speed and high

delay satellite‘communication,<Crocker2>).
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Qngnngl,E::9£§_§nd.2§sk§s_§ia§

Intuitively, we see that if our packet size P is large, then
(1) the probability of packet transmission error is large,
(2) L is near 1, and (3) the total effective capacity of
transmission is reduced significantly.by the (1-L) error
.factor. The channel spends most of its time carrying

damaged packets to the receiver.

Recalling that P=B* (H¢S), we see that if P is small, then
(1) 8 is near 0, and (2) most of the bits transmitted are
header bits which do not contribute to effective capacity.

The channel spends most of its time carrying header bits.

It must be, then, that there is some packet size P which

maximizes total effective capacity. We now inﬁroduce three
simple models of the error behavior of a raw communications
channel to study the dependence of total effective capacity

on packet size,

Lineg;_;;;g;_ugde;, We first assume that our channel is a
binary symmetric channel <Lin> with transition probability
E; the probability of a transmitted bit beingbreceived in
error is E, independent of all other bits. The probability
of a packet of length P bits being ip error (Lp) is

therefore:

(Eq. 3-12) Lp = 1-(1-E)
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| By assuming (1) that the approximated probability of a

' packet error (E*P) is much less than 1 and (2} that
acknowledgments (A bits) are much smaller than data packets
(P bits), we use Equation 3-12 and the Binogial Theorem to
get a linear approximation of the retransmiésion probability

(L=1-(1-La)*(1-Lp)) :
(Eg. 3-13) L = E*P (0<E*P<<1,A<<P)

Substituting in Equation 3-11 for P=B# (H+S5) and for L=E*P,
we get:
(Eg. 3-14)  TEC(S) = ____§___*(1-E¥a*(a+sn*c (0<E*P<< 1)
B* (H¢S) o
Taking the ‘dex:ivativé of TEC(S) with respect to S, setting
it equal to zero, and substituting for S with P (P=B*(H+S)),
we get P', i.e., the packet size which mﬁximizes total
efective capacity:
(Eq. 3-15) P' = SQRT (B*B) = (0<E#*P'<<1)
(E) (P'=B* (H¢S'))
P' is supported from below: if P were to be smaller than P?',
a larger fraction of the bits transmitted wéuld be overhead
bits. P' is supported from abbve: if P were to be larger
than P', a larger fraction of the bits transmitted would be
those of retransmissions of moxe—likely-té-be damaged
packets. This result is intuitively appealing. .As per
packet overhead (H) goes to zero, so too does the packet

size which maximizes effective capacity (P!'). As the error
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rate (E) goes to zerxro, P' grows without bound.

Exponential Error Model. If we begin by assuming that the

length of errorless Lit sequences on the channel are
exponentially distributed with mean 1/E Lkits (i.e., if we
again assume a binary symmetric channel), then we get the
exponential Qersion of Equation 3-13:
; -E*P
(Eg. 3-16) L=1-¢e (0SE<<1, A<<P)
By substituting our expression for the prokability of packetb
error (L) due to exponentially distributed error
interarrival times (Equation 3-16) into our expression for
total effective éapacity (Equation 3-11) and by maximizing
on packet size (P), we get:
2 2
(Eq. 3-17) P' = H*E + SQRT (H_*B_ ¢+ (BH*B)) (0<E<K1)
2 4 E (A<<P)
Note that for relatively low error rates (i.e., H*B*E<<1)
this result does agree with that of the linear approximation

(Eg. 3-15), as expected.

We have just'derived‘two closed-form expressions giving a
packet size which maximizes total effective capacity for
feedback correction with two simple error models. These
expressions may prove useful as rules of thumb in
determining packet size, Lkut more importantly, a general

method for considering errors has been demonstrated.
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Pareto Exrror Model., Measurements have shown that a

truncated Pareto distrikution for’"inter-etrér intervals" is
more descriptive of actual telephone circuits than
distributions describing a binary symmetric. channel <Berger,
Sussman>; The truncated Parete distribution reflects the
clustering of errors (i.e., "burst errors") on telephone
circuits. The distribution leads to a function for the
probability of packet transmission error (L) which has two
parameters'taking into account, roughly, the mean
transmission error rate and the clustering of errors. The.
first we call X and corresponds to a packet length above
which the probability of packet error is assumed to be 1.
The second we call Y and corresponds roughly to a measure of
error'clpstering. The probability of retransmission, taken
as the probability of packet erxor as a function of packet .
length, is giwven by: | |
Y
(Eq. 3-18) L = (P/X) (0£Y<1,0<PLX,A<<P)
As with the two previous error models, it is a simple matter
to substitute our ex-pressionvfor, L into Equation 3—-11 to’get
the dependence of total effective capacity on packet size.
With the Pareto model, the closed-form solutidn for the
capacity-maximizing packet size is too complex to be useful
here, and we therefore fall back on some numerical

comparisons using ARPANET parameters.
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The expressions for L in the linear and exponential models
have one free parxameter, E, the error rate expressed in
error bits per transmitted bit. For the ARPANET, E is
reported to be on the,ofaer>of 00001 <Ornstein>.% In the
Pareto model, the expressionvfo: L hhs tw& free parametérs:
X, the maximum length of an error-free packet in bits, and
Y, the indicétor of erroi clustering. For our very rough
calculations, we take Y from some early measurements of
telephone circuits <Berger, Sussman> to ke .7 and choose X
so that the mean error rate is E, above. (Note that our Y

corresponds to Sussman's one minus alpha.)

From Equaﬁion 3-18 we dexrive the truncated Pareto
distribution®s probability density function and calculate‘
the mean length of an inter-error intexval; this mean is
equated to 1/E. ' |

(Eq. 3-19) _Y *x = ] (0SY<1)
Y¢1 E

Substituting .7 for Y and .00001 for E we get an X which

fits our distribution to the approximated characteriétics of

ARPANET 50 Kbﬁs circuits; the maximum 1ehgth of a error-free

packet is taken to be X=243,000 bits.

It should be understood that the error properties of
telephone circuits are véry difficult to characterize, due
especially to their dependence on length of circuit and time

of day <Kahn2, Frankli>. The parameters chosen for our
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examination are representative of those found in the
literature <Berger, Kahn2, Ornstein, Sussman>; they serve
mainly to establish the shape of our curves. The formulas
are simple enough so that their applicability can be easily
judged for many media.

We now plot the theoretical total effective capacity of
ARPANéT circuits as a function of packet size, using each of
our three error models (i.e., Equations 3-13, 3-16, 3-18).
Additional parameter values required for the evaluation of
Equation 3-11 are B, H, and C as defined immediately before
Equation 3-8, above. For the ARPANET, the fixed per bit
overhead factor B is 1 (i.e., no per bit overhead). The
fixed per packet overhead H (i.e., header) is approximately
136 bits (i.e., 6 8-bit circuit control characters, 24 bits
of cyclic checksum provided by hardware, and approximately 4

16-bit words of software control information). The nominal

bit rate C is 50,000 bits rer second (50 Kbps) .

Note that both Equation 3-15 and Equation 3-17 indicate that
we can expect total effective capacity to reach its maximum

at packet sizes near about 3700 bits. See Figure 3-3.




Page 3-29

Store-and-Forward Communication

3ZIS 13X0Vd SNSH3IA ALIOVAVD 3A1423443 VIOl ¢€-¢ 3¥N9Id

(s41g (S+H) %8 = 3ZIS 1LINJvd) S ‘43)0Vd ¥3d S118 Viva 30 ¥3aNNN

silq 0008 0002 0009 000s ooot 000¢ 0002 000l

_ T _ _ _ _ _

$1q 10d S§)|q 10420 |OO00 = 3 8401 10443 O
puoses 1ad s41q 0000SG = I 84D §iq N3 O

$11q 9€1 = H ppeyieAao je)and sed O
Ol =g 4012D) ppDOYI2A0 jIGqied O

:SH3ILINVYHVd 13INVAHVY ONISN
ST300N 013¥vd ANV ‘TVILNINOdX3 ‘HV3NIT ¥O4 MOIAVHIE SILVNIXONddY

_— $41 OO.E =S $N0GD D PaAaIYID
S

\

K})50dpo 3|qoidesdp 40 ,Ploysaiyy aipbwixosddy

1

00001

—00002¢

—10000¢

—10000¢

——

AN %4

pa
£190dDd wWnwiXDw |DI148400Y]

— 00006S

(puodes sed si1q) D231 ALIDWVD 3AILD3443 IViQL




Page 3-30 Store-and-Forward Communication

We have shown how a simple feedback-correction protocol
works to provide reliable communication and how bit rate,
propagation delay, packet overhead, and transmissiou errors
combine to determine the effective capacity of a channel
under the protoccl. We have shown that there is an
important choice to be made in seleeting a packet size and
have demonstrated how to calculate the capacity-maximizing

packet size for three simple error models.

In an evaluation of our formulas using parameters
approximating those of the ARPANET, we have discovered that
the total effective capacity c¢f circuits is;insensitive to
choices of packet size over a wide range. It is interesting
that the actual ARPANET packet size of 1000 bits is at the
bottom of the acceptable range. We now tﬁrn to consider
other factors in the design of a store-and-forward packet

communications system.
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Hop-By-Hop versus End-By-End_Acknowledging

Let D be some large distance between a primary sender and a
primary réceiver, where D is expiessed in_the number of
seconds reﬁuired for a bit to propagate between the sender:
and receiver through an uninterrupted circuit. D is so
large that we are to consider placing some number of
intermediate, store-and-forward, feedback-correction nodes
between the primary sender and receiver. Let d, as before,
be the distance between intermediate nodes so that the

number of circuit hops used is Dr/d.

A packet oriéinating at the primary sender (i.e., the source
node) will need to travel over D/4d circuit hops passing
through (D/d)-1 intermediate store-and-forward nodes before
arriving at the primary receiver (i.e., the destination

node) .

The question is whether it would be better to propagate a
packet by acknowledging its successful tranSfer hop~-by-hop
or end-by-end: should intermediate store-and-forward nodes
use a feedback-correction protocol across each cixcuii hop
or should they simply forward packets for end—to~end

- feedback correction?

Using Equation 3-7 with T=((2d)+ (a/C)), we get that the mean
time for an acknowledged one-hop packet transfer is

((P/C) +2d+ (AsC)) 7 (1-L) seconds. There are D/d hops so that
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the mean time for a successful end-to-end hop-by-hop

acknowledged racket transfer is: -

(Bq. 3-20) Mean Time (0<L< 1)

The time reguwired for a packet-ACK end-to-end round trip is
(Dv3) * ((P/C)+2d+ (A7C)) seconds. BAssuming, as before, that
La<<Lp and that the probability of a successful end-to-end
packet transfer is 1-L to the D/d power, and therefore that
L=Lp, the mean time for a sucvessful end-by-end acknowledged
packet transfer is:

(Egq. 3—-21) Mean Time =
(0<1L<1)

Comparing Eguations 20 and 21, we see that hop~by-hop
acknowledging is superior to end-by-end acknowledging;

(1-L) ** {D/d) is generxally smaller than (1-1). Hop—-by-hop
acknowledging is the obvious choice when the retransmission
probability L is large or ‘when many hops are required wi th

any non-negligible L.

The ARPANET uses hop-by-hop acknowledging. "i‘a’king .00001 as
the probability of an ARPANET circuit bit errvox <Ornsteiﬁ>
and 1000 as the number of bits per packet, we arrive at a
pessimistic value for L (ignoring error clustering) of 1%.
If we also make the rather pessimistic \asémption that a
packet typically makes 10 hops from so.urce» to destination

(the number is closer to 5), then Equations 20 and 21 tell
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us that the use of hop-by-hop acknowledging kuys only a 9%
reductionlof mean end-to-end transfer time. Measurements
have been made which do show that, on a 1000 mile 50 Kbps
circuit, L can go as high as .1 for long periods <Franki>.
Taking this L and the pessimistic 10-hop assumption, we
calculate from Equations 20 and 21 that the use of hop-by-
hop acknowledging buys a 57% reduction of meén end-to-end
transfer time. Experience with the ARPANET has shown that,
when a circuit is working at all, its error rates put L well
below 1% andvmake our 9% an upper bound on the savings due

to hop—by—hop acknowledging.

Consider what using end-by-end acknowledging might mean to
our use of memory in a store-and-forward network. Because
intermediate nodes would not have to store packets after
forwarding, their memory requirements might be reduced.
Because the primary senders would have to store pending
packets for at least one roundtrip time through the network,
their memory requirements might be increased. It can be
strongly argued that memory at the "ends" of a network, in
its HOSTs, ié much cheaper than that scattered among its
switching nodes. Similarly, it can be argued that
retransmission in the special-purpose switching nodes of a
network, in its IMPs, is much cheaper than that which can be

provided in its general-purpose HOSTs. A question remains.

Another question which this analysis raises is whether the
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complication brought to the store-and-forward subnet with
hop-by-hop acknowledging is justified by the resulting
performance improvement. AS indicated, this guestion is
hard to answer for the ARPANET, especially without the
relevant data, but cne could imagine networks in which the
choice between hop-by-hop and end-by-end acknowledging is
clearer: we note that work done, guite independently, by the
Network Analysis Corporation raises similar question for the
ARPA Packet Radio Network to be discussed in the next

chapter <NAC1>.
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Store-and-Forwaxd Node Spacing

It has been found that the error properties of ARPANET
telephone circuits vary with cirxcuit length. Long-haul
circuits have measureably higher error rates than do short-
haul circuits <Frankl, Kahn2>. We ask the general question
of whether there exists some spacing of store-and-forward
feedback-correction nodes which optimizes the flow of
packets ovér noisy communication paths. For a simple
distance-dependent exponential error model, we show that an
optimal inter-node distance does exist. Applying our result
ﬁo the ARPANET, we find that factors other than circuit
error properties (e.g., cost, delay) must dominate in IMP

placement.

Assuming the use of a hop-by~hop acknowledgment scheme in a
presumably error prone and/or very large store-and-forward
network, we have Equation 3-20 for mean packét transfer
time, where L is the probability of a packét error in one
hop. For reasons of tractability, we adopt a simple
exponential error model involving a constant per hop term U
and a distance-dependent term 4x*F:

- - (U+ (d*F))

(Eq. 3-22) L = 1-e
U and F might be functions of, say, packet size and time of
day <Frank1>; 4 is taken to be the distance in seconds

between store-and-forward nodes. Substituting for L in
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Equation 3-20 according to Eguation 3-22, differentiating
with respect to d, setting equal to zero, and solving for d
(all using MACSYMA via the ARPANET <Metcalfe8, Wang>), we
get an expression for the internode distance (in seconds)
which minimizes the mean transfer time across an arbitrary
number of store-and-forward nodes:
(Eg. 3-23) d* = SQRT (_P__) (A<<P)

(2C*F) . ((F* (P/C) ) <<1)
Using very crude data on the performance of ARPANET 50 Kbps
circuits <Frank1>, we obtain a fit to the exponential error
model in Equation 3-22 with a U of .033 and an F of .004,
while believing the data to be inaccurate (on the
pessimistic side <Ormstein>) and the model to be overly
simplistic, we evalﬁate Equation 3-23 for the ARPANET to
discover that the inter-node distance which minimizes the
effect of transmission errors on transmission delay is
almost 300,000 miles. This result supports the belief that
distance-dependent error properties of ARPA circuits can be
neglected and leads us to agree that other factors must be
dominant in IMP placement <Frank1>. One could imagine
networks in which this (or‘perhaps same more’exact)

formulation would be dseful.
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Store-and-Forward Delay and_ Packet Size

It is important in communications among interactive
compﬁters (e.g., in the ARPANET) that transmission delay be
low. The maximization of effective capacity does not always
lead to a minimization of transfer delay. Choices of packet
size in a store-and-forward network, in particular, trade-

off effective capacity against delay.

In a raw circuit, propagation delay and kit rate are
independent; delay is a function of circuit length, and bit
rate is a function of transmission bandwidth. when a store-
and- forward node interrupts a circuit between a sender and
receiver, the transmission of bits from sender to receiver
is then subject to a packet time's worth of delay, P/C
seconds, which we term "store-and-forward delay". Store-
and-forward delay is caused by a node's requirement that it
completely receive and store a packet before forwarding it.
Note that store-and-forward delay is introduced even when a
node's packet handling time (e.g., for error checking and

routing) is zero.

When packet size approaches one bit, store-and-forward delay
becomes negligible, approaching one bit time. When packet
size grows very large, store-and-forward delay grows
linearly with it. Because packet time (P/C) is related

inversely to the raw channel's bit rate, we say that a
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store-and-forward node converts limited capacity (i.e., bit

rate) into delay.

As seen in Equation 3-20, if there is more than one store-
and-forward node between a sender and receiﬁer; then each of
them contributes at least a packet timet*s delay, P/C

seconds, to the total packet transfer time.

As packet length increases from zero, the effective capacity
and delay increase together. In this region of low packet
size, we buy increases in effective capacity with increases
in delay. The more delay we are willing to tolerate, the
higher the effective capacity available. After a certain
point (e.g., that given in Equation 3-15), increases in
packet length increase delay and decrease effective

capacity.

In an interactive network, the requirement of low delay
restricts the length of packets carrying interactive
traffic. In the ARPANET, the packet gize of 1000 bits is at
the low end of the range of packet sizes which produce

acceptable effective capacity (see Figure 3-3).

As an aside, we note that the interdependence of capacity
and delay is fundamental to packet communication. Here, we
find that intermediate store-and-forward packet-switching
nodes convert limited capacity into delay; in Appendices A

and B we find that the flcw control required in'networks of
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computers converts delay into limited capacity.
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Message Disasgembly

Based on the preceding, it is reasonable to expect that
packet communications systems of different characteristics
and applications.will require different packet sizes. We
ask whether it is also reasonable to expect data passing
across an interface between different systems to be
repackaged, i.e., to be repacketted, so that their passage
through both systems will be efficient. W®With message
disassembly in the ARPANET as an example and with tools
developed in rpreceding sections, we briefly develop some of
the issues in impedance matching at communications system

interfaces.

As discussed earlier, ARPANET HOSTs deal with (ap to) 8095
bit messages across their error-free, 100 Kbps IMP-HOST
interfaces. These messages are disassembled producing up to
8 packets of about 1000 bits each, by the IMPs, for
transmission over noisy, 50 Kbps telephone circuits.

Packets of a single HOST message are reassembled at their
destination IMP for transmision out of the IMP system into

the destination HOST.

We find it useful to view the IMP Subnet as one packet
communication system comprising IMPs and telephone circuits,
and each of the HOSTs as another packet communication system
comprising processes and HOST-specific communication paths.

The IMP-HOST hardware interface, with associated IMP-HOST
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protocol at each end, is yet another packet communication
system with parameters all its own. The introduction of

Satellite IMPs into the ARPANET with their very long delay
mcircuits® (250 milliseconds) <Abramson4> constitutes yet

another packet communication system.

We now ask why the IMPs do message disassembly. Why
disassemble an 8095 bit HOST message into 8 IMP packets of

about 1000 bits each?

Store-and-forward delay. The most compelling reason for
disassembly in the ARPANET is the dependence of store-and-
forward delay on packet size. A P=8000 kit packet, moving
over C=50 Kbps circuit, would be delayed a minimum of
(P/7C)=. 16 seconds per store-and-forward node.' A packet
goingycross-country through the ARPANET will typically
encounter more than 5 IMPs, giving a minimum cross-copntry
transit delay for an 8000 bit packet of about .8 seconds.
Even this minimum transit delay would exceed that required
for console interaction across th; country <Roberts>. And
this minimum transit delay would not take into account (1)
the time reqpired for packet queueing inside IMPs, (2) the
effect of refransmission, or (3) the like;ihobd of 10-hop

transit times.

A 1000 bit packet is delayed a minimum of .02 seconds per
IMP, giving a minimum cross-country transit delay (for 5

IMPs again) of .1 second. With the 1000 bit packets, the .5
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second cross-country transit time specification <Roberts> is
met; actual measurements put the typical transit time under

.2 seconds <Frankl>.

Looking at Figure 3-3, we see that 8000 bit packets are well
beyond the size which maximizes theoretical total effective
capacity (i.e., 3760 bits) and that 1000 bit packets support
less than, but only slightly less than, maximum total

effective capacity.

Therefore, dne concludes, message disassembly is essential

for supporting interactive communication.

This conclusion ignores the fact, as does our preceding
analysis, that the ARPANET's interactive traffic is
characterized by packets of well under 1000 bits. The
proposition that interactive traffic should encounter low
delays and that sustained volume traffic‘can,tolerate higher
delays may undermine reasoning for ARPANET message
disassembly <McQuillan>. Having a 4000 bit maximum size for
packets, say, and no disassehbly, would improve the
throughput‘characteristics of volume traffic while only

slightly increasing the delay of interactiﬁe traffic.

parallel packet propagation. There are multiple paths
between nodes in the ARPANET. Disassembly makes it possible
for an 8000 bit message to use these multiple paths in

parallel. Packets from a single message can propagate
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through different paths. The effective caracity of the
ARPANET between various nodes often exceeds that over any

one circuit.

If HOSTs were willing to assume more responsibility for
their communications, however, they could use 4000 bit (or
1000 bit) messages and their own sequencing schemes to

derive any benefits from parallel packet progagation.

Fixed-length buffer allocation. For reasons of speed and
efficiency, the IMPs maintain fixed length packet buffers.
Because HOST messages may vary in size between 32 and 8095 -
bits, a packet size of 8095 bits would require a fixed
buffer size of 8095 bits. A high frequency of small packets
would result in very poor utilization of IMP storage.
Assuming that HOST message sizes are ﬁniformly distributed
between 1 and N=8095 bits and assuming that a packet header
is of fixed length B=136 Lbits, then, it can be shown
<Franki1> that the fixed packet buffér size which makes best

use of IMP memory is about P'=1000 bits, according to:
(Eq. 3-24) P' = SQRT (H¥N)

The distribution of HéST message sizes is ndt known,
especially since ARPANET use has been low and limited
artificially to interactive traffic. Neithér is it known
whether 8095 bits is a suitable message size for HOSTs

<Roberts>. Still, IMP buffer storage is scarce and its
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utilization is an important consideration; but then 1000-bit

(and not 4000-bit) message-packets might be preferred.

Packet size apd gueueing delay. It is tempting to suggest
that the IMP packet size be larger than 1000 bits (say 4000
bits) to improve effective capacity and to eliminate
disassembly by reducing waximum HOST message size to that of
an IMP packet. The rationale might be that small packets
typical of interactive traffic will experience small store-
and-forward delays and that large packets will experience
large store-and-forward delays, by virtue cf'their size
(P/C) . However, the gueueing of packets in IMPs results in
long packets interfering K with short ones. - Even if short
packets were given priority in modem gueues, a short packet
would still have to wait for a long packet already in
transmission. A scheme'whereby short packets pre-empt long
packets might promise to eliminate even completion delays,
but then the effective capacity of circuits would be reduced
by the presence of pre-empted, incomplete, and therefore

discarded long packets.

Reasgembly_logcl
campelling arguments against IMP message disassembly relate
to the additional complexity regquired in the IMP program to
deal with difficulties of message teassembly; The most
famous bug in the initial implementation of the IMP Subnet
is the ‘reassembly lock-up problem® <Prank1, McQuillanb>.
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The deadlock-prone activity of collecting undiscardable
packets in a finite pool of buffers for reassembly has been
reorganized in more recent version of the IMP program

<McQuillan>.

The general strategy adopted in recent versions of the IMP
calls for the pre-allocation of 8 buffers in a destination
IMP for a multi-packet message. When a multi-packet message
begins to arrive at an IMP from one of its HOSTs, the IMP-
HOST interface involved is hung until it can be confirmed
that 8 buffers have been allocated at the destination IMP.
The confirmation is obtained via a control packet exchange
between the source and destination IMPs. If two multi-

- packet messages between the same pair of IMPs follow closely
enough together, the allocation confirmation is skipped
because the destination IMP automatically reallocates the
same 8 buffers to the same source IMP for a certain short
period of time. This strategy may indeed prevent reassembly

lock-up as claimed, but at a cost.

While a multi-packet message waits for its kuffer allocation
to be confirmed, the IMP-HOST interface at the sending HOST
is blocked and all outgoing traffic (including interactive
traffic) is delayed accordingly. Wwhile a multi-packet
message is winding its way through the IMP Suﬁnet, 8 packet

buffers sit idle at the destination IMP.
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it is premature to conclude that the new strategy used to
make message reassembly work is less effective than a

strateqgy without message disassembly at all; as IMPs and
circuits become faster and store-and-forward delay lower,

the conclusion will kecome more attractive.
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Distance_Independence

The ARPANET is built so that, to its users, distance doesn't
matter. Accounting is performed on the number of packets
transmitted by a HOST, independent of destination, and, as
we have just seen, lLasic parameters of the communications
subnet are derived from the principle that even the most
distant interactions should experience negligible delay.
After all, the very purpose of communication is to make
distance iess of an obstacle. But, from what we've learned,
distance-independence as an inviolate principle has serious

implications on design.

To make the distance-dependent component of delay negligikly
small in a store~and-forward network,'throughput, or what we
call "capacity", must be sacrificed and, to minimize this
sacrifice,-the complexity of the subnét significantly

increased; evidence, message disassembly.

A certain qréater degree of distance-dependence seems
inescapable. Packets winding their way from one end to
another offa'hational utility network will, in their travels
from IMP to IMP, use much more of the network's resources
than packets going only a hop or two. It wiil prove
economically unsound to bill out the aggregate use of
processor cycles, kuffer seconds, and baud miles on a simple
rer-packet basis whén the use of these resources is so

directly dependent on packet miles.
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Although this is not the place to extol the virtues of
marginal-cost pricing, we must quickly point out that an
anomalous distance-dependence, in the form of seconds delay
(rather tham dollars), has already started the ARPANET
toward more economical use of its resources. The University
of Hawaii is 250 milliseconds from its nearest neighbor on
the ARPANET (via satellite) which puts it well over a half
second from its most distant neighbors. The delay between
Hawaii and california is still down in the range where the
use of interactive computers through the ARPANET's TELNET is
tolerable; the delay to Boston computers, hohever, is just
large enough to make TELNET use intolerable. Hawaii is
working (with others) to design and build a TELNET~<like
system which does a better job of managing echoing so as to
minimize the effects of transmission delay on conversational
computing; this system, at the same time, éromises to reduce
the amouht'of packet traffic necessary to surport a computer

terminal user <Davidsory.

Distance—in&ependence is more a characteristic of broadcast
communication; if, for example, we can send a.packet up to a
satellite repeater,‘then the cost of delivering that packet
back down to a ground station is independent of where that

station is over a range of many thousands of miles.

We now turn our attention, in the following two chapters, to

the organization of communication systems based on broadcast
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media. We find that broadcast systems complement point-to-
point systems in at least two important ways: broadcast
networks provide us with more economical organizations of
very long distance transmission, using satellite radio, and
of very short distance mokile transmissicn, using ground

radio.
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PACKET RADIO NETWORKS

Radio is a broadcast medium; a radic transmitter generates
signals which can be detected over a wide area ky any number
of radio receivers. As one might expect, the application of
packet communication techniques to radio has led to novel
system organizations of a kind different from those of
point-to-point transmission medif. 1Indeed, racket
communication opens up a spectrum of broadcast system

organizations.

Summary

In this chapter we briefly described three related packet
radio systems: one that works, one being built, and one
being planned. The purpose of our description is to
summarize a recent history of developments in packet radio
and to motivate interest in solutions to packet radio
problems. In the next chapter, we move frcm this

description to theories akout system behavior.

The ALOHA Network is a terminal-computer packet radio system
in operation at the University of Hawaii. Many so-called
"ALLOHA techniques" in packet communication have come from
the experience of Hawaiit's historically important packet

radio network <Abramson, Kuo>.

The ARPANET Satellite System will soon expand the ARPANET's

store-and-forward IMP system to include the utilization of
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the broadcast capabilities of earth-orbiting satellite radio
repeaters. Work on the satellite system has contributed
significantly to the development of so-called *"advanced
ALOHA technigques" in packet communication <Abramsoné6,

Binder1, Crowther, Metcalfe9, Roberts3, Robertsi4>.

The ARPA Pécket Radio Network is based on hand-held personal
terminals whose communications evolved from the ALOHA
concept; planning is now in progress toward building a
prdtotype system <NAC, Roberts2>. The very large numbers of
inexpensive and highly mobile terminals envisioned for such
a system offer an advance in our ability to deliver

computing.
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The ALOHA Network

The ALOHA Network <Abramson, Abramsoni, Kuo> is a packet
radiq terminal-computer communications system in operation
at the University of Hawaii. The ALOHA Network is important
in that aspects of its design will find aprlications in the
utilization of satellite links, cable TV, multi-drop

broadcast cable <Mason>, and other communications media.

The ALOHA System has been assigned two 100 KHz radio
channels in the UHF band, each of which now operates at 24
kilcbits per second (Kbps). The channels are used for
communication between an IBM 360/65 énd a number of
terminals scattered among the Hawaiiap Islands. A
communications computer (a HP 2115A) at the 360/65 receives
data packets from the population of terminals over one UHF
channel; it transmits acknowledgments ana data packets back
out to those terminals over the second UHF channel. Each of
the terminals is equipped with a UHF transceiver and
assorted logic for (1) preparing terminal-input packets for
radio transmission, (2) receiving acknowledgments of
success ful packet transmission, (3) retransmitting data
packets if need be, and (4) receiving data for presentation

as terminal output (see Figure 4-1).

The transmission of data from the central computer facility
outward to the computer terminals is a relatively simple

first-come first-served, sequential process. Messages
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marked for transmission are gueued by the central computer
and are transmitted cne after the other. Each terminal
receives all tmmfsaima. but s cmmmea 90 as to
discard messages not addressed to it. ' Outward going
messages reqnm retranswmisston Inf: nt1ly, only when they
are damaged by randbnfuaiat“ﬁwiﬂhrxzﬂ&n'cﬁannel.
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The coordination of the transmissions of data from the

- widely distrikuted terminals in toward the central facility
is the "random-access" or broadcast communications problem.
The traditional solutions tc this problem call for some sort
of Y“orthogonal" multiplexing technique {(i.e., in time or
frequency) whereby each terminal is assigned a dedicated
slice of the channel going from it to the central facility.
When transmitting, a terminal is limited acdczding to that
fraction of the channel assigned to it, and, when not
transmitting, a terminal wastes that fraction. Thus, in
cases where the peak bandwidth reguirement of a terminal is
large relative to the mean, either the terminal‘'s
performance is significantly reduced by its small share of
the channel or a large fraction of the channel is wasted

between terminal bursts.

The multiplexing scheme adopted for the ALOBA System is
intended to overcome the deficiencies of orthégonal
multiplexing under burst usage. The original_unembellished
ALOHA multiplexing scheme is a kiand of "asynchronous time-
division multiplexing® (ATDM) <Chu, Pack> which we call the
nclassical ALOHA system”. The ALOHA or "random access"
system compares faverébly with other ATDM systems, namely

the Polling and Loop systems <Hayes>.

Under the ALOHA system, terminals prepare input data packets

and transmit them at will for reception Ly the central
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station. A given data packet may fail to arrive safely at
the central station due to transmission errors caused (1) by
random noise errors ands/or (2) by interference with packets
transmitted simultaneously from other terminals. A 32 bit
cyclic checksum is used by the central facility to detect
transmissibn errors of eithér kind so that damaged packets
can be discarded. If a terminal fails to receive an
acknowledgment for a pending data packet within some time-
out period, the terminal retransmits the packet to try again
for successful transmission. Note that the retransmission
time-out period must be different from terminal to terminal
or time to time so that interfering transmissions will not
repeat their collisions ad infinitum. The ALOHA Network

uses randomized retransmission intervals <Hayes»>.

Under the classical ALOHA system, terminal transmissions are
completely unsynchronized and occupy no fixed portion of the
channel. When a terminal requires a burst of the channel
during its peak activity, it takes it, at the risk of some
small delay due to packet collision and retransmission.

Wwhen a terminal is idle, it uses none of the channel,
leaving the full channel bandwidth for other terminals. The
extent to which this ALOHA scheme is effective goes directly
with the "burstiness" of terminal transmissions. As the
ALOHA channel gets full, i.e., as the mean aggregate bit-
rate reaches 1/2 channel capacity, interference among

packets in the ALOHA channel causes total throughput to
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approach its maximam value of 18X channel capacity
<Abramson, Abramsoni1>. In various studies of the ALOHA
system, detailed models have led to more accurate analyses
of performance and to practical techniques for improving the

behavior of ALOBA-based systems.

Slotting, A simple technique, slotting, leads to a system
known as "slotted ALOHAY wherein packet transmissions are
made to fall into slots defined by the ticking of some
global clock. Under such a scheﬁe, packets still collide,
but less often due to the fact that slotting tends to
isolate packets across slot boundaries. Slotting has the
effect of doubling the maximum possihle throughput of an
ALOHA channel <Roberts3>. Slotting is achieved simply by
having terminals hold off the start of packet transmission
until the end of a packet from the central transmitter. The
problem of getting effective slot synchronization grows with
_the range of the transceivers involved, i.e., with the
rropagation delays which can lead to slots much larger than

the packets they contain.

Single_Frequency. Considerations of freguency conservation
and terminal simplicity have generated inierest in single-

frequency ALOHA systems. In such a system, packets to and

from the central rgceiver are interleaved‘or; possibly, the
central receiver disappears yielding a terminal-terminal

communication system. In the case of multiple central
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receivers, the single frequency system has the advantage
that a mobile terminal can wander in and out of the range of
various transceivers without changing its transmission
frequency and possibly benefitting from multiple paths to

its destination <NAC>.

Capture. A feature of radio receivers is that they can get
multiple transmissions at their antenna and still capture
only one if its power is sufficiently stronger than those of
the interfering transmissions. This capture effect can
benefit the performance of an ALOHA system in that packet
collisions need not be fatal to all of the packets
concerned. The capture effect has been studied in trying to
determine to what extent modulation techniques which exhibit
“good capture" should be favored over modulation techniques

with, for example, high bit rates or long range <Roberts3>.

carrier Sense. If a terminal could determine whether some

other terminal (presumably farther from the central
receiver) has committed to send a packet in the very next
slot, then that terminal could abstain from transmitting so
as to avoid collision. Such a determination would help
everyone. It turns out that a radio receiver can detect the
presence of a transmission within a few bits and therefore
it appears possible to use this "carrier sense" technique to
further reduce the collision rate in an ALOHA channel

<Abramson6>. We notice that carrier sense techniques give
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priority to distant terminals while m&?ing everyone better
off; carrier sense might also be used to compensate for the

priority given nearer terminals by the capture effect.

Retransmission Control. Wwhen two or more packets collide in
an ALOHA channel, the terminals involwed must determine when
to retransmit. The retransmission interval must be randomly
determined to avoid repeated packet collisions ad infinitum.
As studied in the following chapter, the choice of a
retransmission mechanism is critical in determining the
performance of the ALOHA channel under varying load. It has
been shown that performance under light loads trades off
against performance under heavy loads in a system with a
simple, fixed retransmission interval generator. By
controlling the retransmission interval generator as a
function of channel utilization, an ALOHA system can be made
to perform well over a wide range of system loads (even into

saturation) <Metcalfe9>.
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With recent growth of the ARPANET has come an interest in
earth-orbiting satellite radio repeaters for economy of
long-range digital communication, especially for crossing
the Pacific and Atlantic Oceans. It is already a routine
matter to acquire a "voice circuit" from Hawaii to
Ccalifornia which, while kehaving like a normal telephone
circuit in all other ways, is provided via COMSAT satellite
and imposes a propagation delay on the order of 250
milliseconds <Abramson#>. However, a satellite radio
repeater is a broadcast device whose potential is far from
realized in a point-to-point mode of operation. The
satellite link between Hawaii and California could be used
by any number of ground stations in China, Jaran, Alaska,
Hawaii, California and moving points in the Pacific

<Abramson3, Abramson#, Abramson5, Abramson7>.

Toward making full use of broadcast satellite
communications, ARPA is well into a project to build
satellite IMPs (SIMPs) for the ARPANET, using communication
techniques derived from those of the ALOHA System <Binder1,
Crowther, Robertsd4>. Considerable progress has been made in
developing and analyzing ALOHA-based schemes for multiple
qround station coordination of broadcast satellite

communication (see Figure 4-2) <Kleinrock3>.
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The ALOHA techniques being studied for application by
satellite ground stations depart from the "classical ALOHA
system" because (1) there is no central receiver to
coordinate terminal behavior, (2) all ground stations
transmit on one frequency and receive on ancther, (3) the
delay from packet transmission to packet receipt is on the
order of many packet times rather than negligikly small
fractions of a packet time, (4) the numbex of ground
stations (corresponding to terminals in the classical ALOHA
system) is to be in the tens rather than hundreds or
thousands, and (5) each of the ground stations will generate
traffic for the satellite system at a rate considerably more

uniform than that of a terminal with a single human user.

At present, there are at least three proposals Leing
considered for use by SIMPs. It is likely that many more
such proposals will pe generated before implementation
begins and that the scheme chosen will draw on many of those
offered. The three current proposals emphasize the need to
reduce thé number of packet collisions in the satellite
channel as éhannel traffic becomes heavy and therefore more

uniform on a per-ground-station basis.

Reservation-ALQHA, The Reservation-ALOHA scheme proposed by
the future implementers of the SIMP at BBN, introduces the
notion of a "frame" containing a satellite round-trip time's

worth of packet slots. Any given ground station determines
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the "reservation" of slots in the current frame based on
observations of the previous frame. Slots which a
particular ground station successfully used in the previous
frame are reserved for it to use again. Slot3~used by other
ground stations in the previous frame are off limits. Slots
in which no successful transmissions occurred in the
previous frame are up for grabs, are ALOHA slots. The
Reservation-ALOHA scheme promises nearly full channel
utilization under heavy loads and is simple. The scheme
does very well with the component of constant traffic from
any given ground station while suffering somewhat under

varying, bursty loads <Crowther>.

Interleaved Reservation-aLOHA, The Interleaved Reservation-
ALOHA scheme, proposed by Roberts of ARPA, introduces a

controlled partitioning of the satellite channel into an
ALOHA portion and a reservation portion. .Asra ground
statidn accumulates packets due to arrivals, collisions, and
random noise, it announces through the channel its.
requirement for a reservation of an appropriate number of
slots (up to a limit) and, based on a knowledge of previous
announcements by other ground stations, it determines
unambiguously which future slots are thereby reserved for
its transmission®s. As traffic increases, the fraction of
ALOHA slots decreases allowing nearly full channel
utilization. Bécause reservationsvare blocked, overhead due

to a ground station's need to turn its transmitter on and
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off can be amortized over a number of packets. The scheme
is only slightly more complex than the Reservation-ALOHA
scheme in that it requires ground stations to keep an
accounting of reservations across many slots and to maintain
the dynamically changing partition between ALOHA and

reserved slots <Roberts4>.

Priority Reservation-ALOHA. The most recent scheme for
coordinating éatellite ground stations, from Binder at the
University of Hawaii, adds a priority scheme to the frame
mechanism so that slot conflicts can be resolved within two
frame times, requiring at most one retransmission per
packet. Some slots are said to be owned and a slot's owner
is guaranteed access within two frames by requiring that
conflicts in an owned slot be resolved in the next frame by

requiring non-owning ground stations to desist.

Beyond ownership, slots are assigned, as in the Reservation-
ALOHA systém, according to recent traffic levels, but with a
globally known priority. The priority assignment permits
ground stations to straightforwardly resolve conflicts in
one frame for the next frame. This ownership-priority
scheme requires considerably more bookkeeping than either of
the previous schemes. We await analysis of its perfbrmance

<Binder1>.
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The Hand-Beld Personal Terwminal

At the 1972 S3CC, Roberts proposed a design for a hand-held
personal terminal which combined recent advances of our
underst anding of ALOHA packet commumication and electronics
miniaturization to deliver a long-awaited and slightly
updated Dick Tracy wiist radio. Since then, ARPA has
organized a packet radio*project’to4advancetthat design
toward an operational system. While it ié difficult to
estimate the impact of such an advance in .computer
communication, we believe that of all ‘the packet radio
networks, this has the highest potential for revolutionizing

both communication and computing <Roberts2>.

Applications, Current thinking on the subject places a wide
variety of ™terminals* (possibly) moving through grids of
radio repeatexr/transceivers spread around the world. One
such terminal might be a wrist-mounted computer-transceiver
offering a wide variety of inguiry and communication
services to its wandering owner; another*teﬁminal might be a
weather or seismic monitor parachuted into a dense forest;
yet another might be a hand-held"vnice‘transceiver like a
walkie-talkie;;another might be an onboard air traffic
control computer exchanging packets with an FAA control
center about its position; still another ‘might bé a lap-held
computer used by children in their homes as a super-toy

<Papert>, able to access lesson materials, libraries, and
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teachers as desired; and so on.

Design_considerations. Little is known about how to
organize such a packet radio system. So far only the
broadest of system organization questions have been

considered <NAC>.

Transceiver Size and Range. Careful consideration must be
given to the trade-offs on transceiver size and range.
Pocket-held, hand~-held, lap-held, table-~held, and truck-held
packet radio terminals each will place different constraints
on transceiver range and therefore on grid spacing. The
variance in terminal characteristics may be such as to
require multiple, overlapring packet radio systems based on
area cover and application, but the hope is, as in the case
of the ARPANET, that a fairly general purpose network can be
built to fill needs over a wide range. There are, of
course, many economies in having multiple applications share

the same packet communications facilities.

Stations. In moving toward a design for such a general
purpose system, thought must be given to the placement of
packet radio stations (corresponding roughly to the central
receiver in the classical ALOHA system). Stations will
control the interfacing of the packet radic terminal system
to service facilities. Such facilities might include
systems fo; private terminal-terminal communication, for

data base inquiry and updating, for direct access to general
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purpose computing systems, or, as envisioned for the ARPA

~ prototype, for interconnection with another communication

system like the ARPANET.

Repeaters. Stations will need to be sized according to the
anticipated terminal population to be serviced. Due to
variations in population density, the geogra:hical area to
be serviced by a station will vary. To compensate for such
traffic density induced range variatiomns, something called a
vpacket radio repeater™ may be reguired in relatively sparse
areas. The need for such repeaters adds a new kind of
complexity to considerations of system organization <Franke,

NAC1>.

Single Frequency. For transceiver simplicity, mobility,
multipath reliability, and frequency utilization, it seems
desirable to have a single frequency system. A single
frequency transceiver could move freely amidst a repeater
grid, constantly in the range of several repeaters or
stations. Neighboring stations, which might otherwise offer
disjoint service to an area on different frequencies, could
cooperate to pool their traffic in utilizaticn of the same

frequency while improving reliability through redundancy.

Routing and Multipath. With multiple'repeaters and
stations, the routing of packets to their intended
destinations becomes non-trivial. That packets may reach a

destination by several paths makes it necessary to provide
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for duplicate suppression. With a forest of repeaters with
overlapping ranges, it becomes necessary to prevent unstable

regenerative packet duplication (see Figure 4-3).
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conclusion

The general impact of computers on communication (as
embodied in what we call packet communication) is the
introduction of a high degree of variability. This impact
is clearly seen in the manner in which ALOHA techniques have
reduced the synchronization required to make multiplexing
systems work. Now that low-synchrony communication is
possible, many communication applications which are
basically asjnchronous can‘be better supported. As
suggested in the preceding survey of packet radio networks,
a synchrony spectrum in channel multiplexing is now

available (see Figure 4-4).

This breakthrough in our organization of communications ﬂeed
not be restricted to radio, hor even to broadcast media. In
the past, broadcast media have been used for point-to-point’
communication with considerable success, e.g., COMSAT voice
channels. It is not too far-fetched to suggest that, for
certain applications, point-to-point media might be
effedtively used under an essentially broadcast organization

(see Figure 4-5) <Masono.

In the next chapter, we turn to detailed analysis of
techniques coming directly from the “classical ALOHA
system". These techniques promise to find broad application

in broadcast packet communication.
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ANALYSIS CF BROADCAST PACKET COMMUNICATION

The following analysis begins with a careful reconsideration
of Abramson's early model of the classical ALOHA system
<Abramson> and leads to the discovery of the importance of
ALOHA retransmission control in maintaining stable
performance under varying system load. The analysis is
intended to apply to broadcast communicatipn systems in
general, not only to ALOHA backet radio. The presentation
is somewhat descriptive of the history of‘oﬁr thinking about
ALOHA systems and attempts to retell the sorting out of

issues and refinement of analysis.

With his first, simple model of the "classical ALOHA
system", Abramson derived the "ALOHA Result" linking channel
throughput and traffic; his analysis, repfoduced in the
first part of this chapter, assumes Poisson packet arrivals
and omits the details of.randomized retransmission
<Abramson1>. Our reconsideration of Abramson's model, in
the second part of this chapter, (1) introduces a finite-
source model of packet arrivals to better account for the
behavior 6f_interactive terminal users in a loaded system,
(2) considers the effect of exponentially distributing
retransmission intervals, and (3) extends the analysis to
oktain the distribution of user block times (i.e.,

transmission delays), particularly the mean and variance.
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In recent work by Hayes and Sherman, the delay
characteristics of the ALOHA system are compared with those
of two other ATDM techniques, namely ﬁhe éolling and Loop
systems <Hayes>. But, again, they mo&el packet arrivals
with a Poisson process; the same is true.of Pack's
consideration of ATDM using general regults from his

analysis of an M/D/1 gueueing system <Pack>.

Roberts discovered that a “slotted® ALOHA channel could
support twice the throughput of an unsletted channel
<Roberts3>; in the latter half*af*this“ch&pter we develop a
discrete-time model of a slotted ALOHA system, once again
bringing into account user blocking and randcmized
retransmission, deriving the block time mean and variance,
and then, additionally, discovering "retransmission control"
as a technigque for achieving acceptable performance and
stability over a wide range of system loads, even well into
saturatxon <Metcalfe9>. where our analysis con31ders
exponentially and geometr1ca11y distxzbuted retransmissxon
intervals, Binder, in subseqnentranalysls, derives results
for the uniform distribution <Binder>. Whefe our analysis
studies an ALOHA system in steadyrstate; very recent work by
Lu uses first ordér homogeneous liaéar’difference equations

to get a dynamic description of ALOHA system state <Lu>.
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The_ ALOHA_Result Revisited

We present a sketch of Akramson's analysis <Abramson,
Abramson1> of the ALOHA ATDM multiplexing scheme described

in the previous chapter.

Assume the packets sent by terminals are all P bits in
length and let the nominal bit-rate of the radioc channel be
C bits per second. The duration of a packet on the channel
is therefore P/C seconds (Abramson's "tau"). Each of the N
active users generates new packets of data independently at
Poisson rate 1/T packets per second (Abramson's "lambda").
The channel sees an aggregate, new packet arrival process
with Poisson rate N/T packets per second. Each packet
requires P/C channel seconds; therefore, we compute the
channel throughput, analogous to the utilization (rho) of
the Erlang queuing model <Drake, Saaty>, as (N¥P)/ (C*T)
channel seconds per second. The total number of packets
being transmitted per second is some unknown channel
traffic, R. R is greater than N/T because each packet gives

rise to some uncertain number of retransmissions.

Assuming that the aggregate process of packet transmissions
is Poisson with rate R packets per second, we calculate the
probability L that a transmitted packet will be lost dve to
a packet collision, i.e., that a (re)transmitted packet will
require retransmission. A given packet, beginning its

transmission at time t, will not be interfered with if and
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only if no other packet transmissions begin in the interval
from t—fP/C) to t+(P/C). Because the artival process is
Poisson, the probability that a packet will not experienge a
collision is therefore equal to the probability of no packet
transmission starts for a period of 2p/C seconds. For a
Poisson afrival process with mean rate R, the probability of
no arrivals in 2P/C seconds (integrating the density
function for t from 2P/C to infinity) is givem by
exp (-2R*P7C). Thus L, the probability of.a'collision. is
given by: |

-2R¢P/C
{Eg. 5-1) L = 1-e (0<1<1)
With R, the channel traffic, as the steady-state mean number
of transmissions per second, R*L is the numbei of
retransmissions per secohd. In Abramsont's basic steady-
‘state equation, R is given as the sum of‘the,ﬂumber of
retransmiséions per second (RiL)'and the number of new

transmissions per second:
(Eq. 5-2) R = N/T + RAL (0SL<1)

Multiplying by P/C, substituting for L, and simplifying, we
get an expression linking normalized channel throughput
((N*P) 7/ (C*T)) and normalized channel traffic (R*P/C), the

ALOHA Result:
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~-2R*P/C
(Eq. 5-3) N*#P = R¥P * e
' C*T C

The ALOHA Result indicates that the maximum normalized
throughput ((N*P)/ ((C*T)) supported by the ALOHA channel is
1/2e channel seconds per second, corresponding to a traffic
R equal to C/2P transmissions per second, a resulting
probability of successful transmission 1-L equal to /e, and

a number of users N (max):

(Eq. 5-4) N(max) = C*T

.y

2e*p

No steady-state exists for N above N(max). In physical
terms, the ALCHA Result suggests that a surplus of users,
above N (max), will cause the system to become unstable in a

regenerative burst of retransmissions.

It is now straightforward, using paraﬁeters given us by
Abramson for the ALOHA System in operation at the University
of Hawaii, to evaluaté N (max). C is 24 Kbps. T, the mean
user "think" time, is 60 seconds. P, the packet size in
bits, is the sum of (1) the number of bits required for
receiver synchronization, 112 bits (or 4.67 milliseconds),
(2) 32 header bits for identification and control, (3) 16
bits for header checksum, (4) 640 bits of data, and (5) 16
bits for data checksum, a total of 816 bits, corresponding -
to a P/C, a "tau", of 34 milliseconds. N{max) works out to

be about 324 user terminals <Abramson>.
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The ALOHA Result. Reconsidered

We now examine Abramson's analysis of the ALOHA system, not
to quibble over the various simplifying assumptions of
Poissonness and independence, but rather to make what we
consider necessary structural changes. We introduce
questionable simplifying assumptions of our own, kut hope
that the development thereby expedited will ke worth the

possible damage to our credibility.

We contend that one would not want an ALOHA system to
function as implied by the preceding mathematical model.
The arrival of the 325th user to his ALOHA terminal should
somehow not become the straw that breaks the camel's back.
It would not be desirable that 324 previously happy ALCHA
users be caused to lose service in an uncontrolled
regenerative burst of retransmissions touched off either by

the 325th user or, equivalently, a number of fast typists.

We also contend that one would not expect an ALOHA system to
function as implied by the preceding mathematical model.
ALOHA users are presumably involved in an interaction and
would not continue typing blindly ahead (generating new
packets) without some results coming back. It can probably
be assumed that an ALOHA terminal contains buffer space for
only one or two outgoing packets. If a packet has
difficulty getting successfully received at the central

facility, the terminal will soon have its kuffers filled and
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be required to "lock" its kéyboard. We guestion the notion
of modeling a user as an unquenchable Poisson source of
service requests (e.g., packets) and suggest that this
pcrtion of Abramson's model be reconsidered first as we
attempt to advance the analysis. Such an "infinite
population® model is only appropriate for systems with
subsaturation loads in which service delays have little

effect on packet generation.

Time-sharing systems, and ALOHA systems alike, will continue
to eiperience extreme peak loads; we must therefore require
them to degrade smoothly when saturated. ‘We claim that it
is important to consider the behavior of an ALOHA system
when it is loaded heavily, therefore to consider a "finite
population® model of user behavior, and, furthermore, to

look closely at system stability in saturation.

Recall that in the preceding analysis no distinction is made
between the rate of a user's transmission requests and the
rate of packet retransmission by him tern£na1. No mention
is made of the terminal retransmission rate in any of the

preceding calculations.

Let 1/T be the user's rate of new packet generation in his
own virtual time (time unblocked) and let 1/G be the
terminal's rate of packét retransmission while blocked; a
"blocked® terminal or user is wéiting for an acknowledgement

of successful receipt of his current, pending input packet.




Broadcast Communication Page 5-9

Assume that the amount of time a user stays unblocked is

exponentially distributed with mean T.

While a user is blocked, his terminal retransmits packets at
mean rate 1/G transmissions per second. Recall that the
retransmission time should be random so as to avoid repeated
retransmission collisions. Assume that retransmission
intervals are exponentially distributed with mean G. Keep N
as the total number of active users (unblocked or blocked)
and let Q be the average number of blocked users. The
aggregate transmission process is then approximately Poisson

with mean rate R=Q/G transmissions per second.

Note that our taking the channel traffic R'to be Q/G
involves what we call the "no immediate transmissions"
assumption. We assume that when a packet'is generated at a
terminal, the terminal simply joins the retransmission
process as if it has just failed to transmit its newly
readied packet; the terminal does not attempt an immediate
transmission as one might expect, but waits one randomly
selected retransmission ihterval. This assumption
dramatically reduces the complexity of the anmalysis required
to revise Abramson's results. Were we to assume that a
terminal attempts an immediate transmission with the
generation of a new packet, then, in the following analysis,
we would have to carry R as (Q/G)+ ((N-Q) /T), to account for

retransmissions and new transmissions separately. We have
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found that as long as T is much greater than G, the
‘assumption we make leads to answers which approximate those
of the more complex analysis. 1In cases where one might like
to accommodate very large numbers of users, pushing the load
well into saturation, G must be large, as we shall soon see.
In such cases, the difference between a "no immediate
transmissions" model and an vimmediate transmissions" system

will be significant; the followirg analysis'will not apply.

Abramson's calculation of the probability of unsuccessful
transmission, L, needs only a slight correction for our
model. Given that one of the hleocked terminals attempts a
transmission, the rate of possibly interfering packet
arrivals is not R=Q/G as Abramson's result would indicate,
but rather (Q-1)/G, because there are now only Q-1 terminals
in a position to transmit. With this correction to
Abramson's result given in Equation 5-1, we get

L=1—exp (—2* ( (0-1) #G) *PsC) , for Q greater or equal to 1.

The sﬁeady~state equation which produces our revision of the
ALOHA Result is based on the assumption that, in steady
state, the rate at which unblocked users become blocked,
i.e., the rate at which new packets are génerated ((N=-Q)/T),

is equal to the rate at which blocked users become
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unblocked, f&é., the rate at which packets are successfully
transmitted (R*(1-L)):

=25 Q=N *P

G C
(Eg. 5-5) N-Q =0 * e (1=Q<N)
T G

As in the original ALOHA model, the traffic, R=Q/G, which
supports maximum throughput is C/2P transmissions per
second; we derive this result by maximizing the right side
of Equation 5-5 with respect to Q. Noticing that our model
assumes Q is not less than 1, we find the maximum normalized
throughput of the ALOHA channel, (R*C/P)*(1-1), to be a
gently decreasing function of Q, (172) *exp((1/7Q)-1),
starting at 172 and approaching 1/2e channel seconds per
second. As one might have expected, the maximum throughput
predicted by our model is slightly higher than that
predicted by Abramson’s model; we do take a slightly more
optimistic view of a packet's chances in the channel by
subtracting its terminal from those which threaten to
interfere with it. As the number of blocked terminals gets
large, our relative optimism and the difference between the
two results goes away, evidence the asymptotic maximum
throughput of 1/2e. The probability of successful
transmission at maximum throughput, (1-L)=exp((1/Q)-1).,
starts at 1 with Q at 1 and asymptotically approaches

Abramson's result of 1/e.
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Our number of users corresponding to the maximum throughput
of the ALOHA channel is always larger than that calculated

by Abramson (Equation 5-4):

(Eg. 5-6) N(max) = C*T_ * (G*e + e )

2e¥*p (T )
If we fix the mean retransmission interval, G, at 1 second,
then our new N(max) for the current ALOHA system (see the
discussion immediately following Equation 5-4) evaluates to
362 users, an increase .of about 11% over Abramson's. But,
the new N(max) means something quite apart from the old.
When the number of users exceeds N (max), the system we have
modeled will function smoothly. Instead of a system
collapse caused by a regenerative burst of retransmissions,
users of our version of an over-loaded system will

experience gradually reduced throughput and longer delays.

Note that we might well have chosen G to be, saf, 10 seconds
and found N (max) to be 472 users. Given any G (at leést as
large as 2P/C), we can calculate an N(max) -- the number of
users required to achieve maximum throughput with terminals
of the given G. Why not just make G large So the systém can
support a huge number of users at maximum throughput? The
answer to this guestion is to be found in the following
analysis of user block times. The fact is that as G grows,

so too does the delay which users experience.
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ALOHA Block Times

After a packet is generated by an ALOHA uéer, his terminal
remains blocked until the packet is successfullly
transmitted, i.e., until it is acknowledged. After some
period, the acknowledgment arrives (with probability 1-1) or
the packet is retransmitted (with probability L). L is a
function of the traffic. The retransmission time-out period
must be randomly chosen from a range of values to avoid

repeated packet transmission collisions.

From the standpoint of mathematical tractability, a very
good retransmission rule for an ALOHA terminal is that the.
time-out period be exponentially distributed, with mean G.
The exponential distribution is desirable because (1) it
supports the assumption that the aggregate retransmission
process is Poisson and (2) it leads to a clean waiting time
distribution. The exponential distribution is undesirable
because (1) it fails to bound rétransmission times from
below by some positive constant to account for minimum -
acknowledgment time and (2) it fails to kound retransmission
times from above to guarantee speedy service to a terminal

user.

Recall that a packet can be (re)transmitted in P/C seconds.
If we assume that packet acknowledgement time is comparable
to packet transmission time and that the mean retransmission

interval is much larger than either, then it is reasonable
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to assume that retransmission intervals are exponentially
distributed. Block times are then the sum of a
geometrically distributed (with mean 1/(1-L)) number of
terms, each of which is exponentially distributed (with mean
G much larger than P/C). The distribution of block times
(b) is therefore a combound distribution <Feller> which we

denote as f(b).

The Laplace transform of an expgnential distribution with
mean G is: | |
-b*(1/G6) -
(Eq. 5-7) : LAPLACE ((1/G) *e ) = _(1/G) (b20)
: (1(G)+s
The Laplace transform of the probability density function of
the sum of k identically distributed random variables is the
Laplace transform of the k-fold convolution 6{ their
density, which in turn is the kth power of the Laplace
transform of their density. The Laplace i:ansfarm, F(s), of
the probability denéity function of ALOHA block times, f(b),
is formed from the sum of retransmission térms, each weighed

by the probability of there being k retransmissions:

k k¢ 1
(Eq. 5-8) F(s) = SUM (k20; L *(1-L)*{ (1/G) ) ) (0sL<Y)
((1/G) +s)

Note that we continue making the "no immediate
transmissions® assumption about the operation of our ALOHA

system; a newly generated packet waits one random
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retransmission interval, even before its first transmission.
This assumption accounts for the k+1 exponent in Equation

5-8; were we accounting for immediate initial transmissions,
the exponent would be k, not k+1, and the following analysis

would go through in much the same way.

Summing and rearranging terms we get:

(Eq. 5--9) F(s) = _((1-1L) /G) (0=1<1)
((1-1) /G) +s

We recognize from its Laplace transform that the probability

density function of ALOHA block times is a negative

exponential with parameter (1-L)/G. Differentiating F(s)

with respect to s and evaluating at s equals zero, we get

the mean ALCHA block time:

[ ]
(Eq. 5-10) Mean b = -F(0) = _G_ (0s1<1)
1-L
Differentiating F(s) twice and evaluating at s equals zero,
we get the second moment of ALOHA waiting times from which
we subtract the square of the mean to get the variance:
2
G (0<L<1)

2
(1-L)

(Eq. 5-11) var b

0

As we might expect, the exrpressions fo: the mean and
variance of ALOHA block times with immediate transmissions
are very similar to the akove results for block times

without immediate transmissions. The mean ALOHA block time
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with immediate transmission, for example, is simply

LxG/ (1-1) .

we can éxamine the trade-off between N (max) and user block
times. Using Equation 5-6, we calculated that with a G of 1
second Abramson's ALOHA system could support 362 users at
maximum system throughput and that with a G of 10 seconds
the systém‘could support 472 useré. Equation 5-10 tells us
that a G of 1 second results in a mean user klock time of
2.54 seconds at the N(max) of 362 while, with a G of 10
seconds, a user of an N(max) =472 system would suffer a mean

block time of 27 seconds.
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Roberts pointed out that ALOHA terminals cculd be
conveniently constrained to transmit packets in synchronous
slots only slightly larger than a packet time (P/C) in
duration and that the maximum throughput of the ALOHA system

could thereby be increased by a factor of 2 <Roberts3>.

The effect of Roberts's suggestion can be observed in either
of the two preceding formulations using a revision of
Abramson's result for L (Equation 5-1) . We again assume
that the aggregate process of packet arrivals is Poisson
with rate R packets per second. A given packet which comes
ready for transmission in a slot will actually enter the
channel in the following slot. The given packet will escape
collision only if no other packet came ready with it in the
previous slot. A slot is taken to be P/C seconds long and
the probability of no collision is taken to be the
probability of no other arrivals in P/C seconds,
approximately exp (-R*P/C). Thus, L, the prokability of a
collision given that a terminal sends a packet, is now:

‘ ~R*P/C
(Egq. 5-12) L = 1-e (0<L<1)
We note thaf L for the slotted ALOHA system differs from
Abramson's by a factor of 2 in the exponent. By introducing
the new L intoc the previous models, the maximum throughput

increases from 1/2e to 1/e channel seconds per second -- the
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asymptote in our model -- corresponding to a traffic R equal
to C/P packets per second, and a resulting probability of

successful transmission 1-L (again) egual to 1/e.

The convenient method suggested by Roberts for achieving
slot synchronization calls for terminals to Legin packet
transmissions only immediately after the éndbof a packet
from the central transmitter. We observe that this simple
method for slot synchronization will yield something near
the factor of 2 throughput increase promised only if the
propagation time to the farthest terminal (d) is negligible
relative to the packet duration (P/C). To avoid collisions
among packets belonging in adjacent slots, the slot time
must be longer than the packet duratien by at least twice
the maximum propagation time, i.e., greater than (P/C)+24.
If not, then some packets from far terminals will arr;ve at
the central receiver late enough to collide with packets
from near terminals in the following slot. The throughput
degradation due to the simple synchronization method will be
felt, either in a higher collision rate th&n anticipated

(above) , or in longer slots and thus fewer packets per

. second.

It is conjectured that an ortimal slot size for such a
system would fall between P/C and P/C+2d seconds as a
function of the distribution of propagation delays to the

terminals.
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A _Discrete-Time Model of Slotted ALOHA

Let N be the "number" of users of an ALOHA system. Each of
these users has a mean "think" time T; T is the mean time
between the successful transmission of one packet and the
user's generation of a next. T accounts for (1) central
system service delays, (2) return transmission delays, (3)
type-out time, (4) real user think time, and (5) type-in
time. Each terminal sees a sequence of ALOHA slots of fixed
"duration" D. When a terminal has a packet ready for
transmission, it transmits that packet into the next slot
with probability X (for "xmit"™). (Re)transmissions repeat,
in slots selected by successive Bernoulli trials each with
probability X, until a packet is successfully transmitted

and received.

It is (reluctantly) assumed that a sender will know of the
success of a-transmission before the start of the next slot.
This "immediate acknowledgements" assumption, though common
in ALOHA models in some form or another <Abramsoni,
Metcalfe9, Binder, Kleinrock2>, is somewhat damaging to the
accuracy of the model. The effect of acknowledgement delay
is studied briefly by Hayes and Sherman and should be given
some furthei attention in the future <Hayes>. For our
present analysis, however, we arqgue, as in the discussion
before Equation 5-7, that the effect is negligible when the

mean retransmission interval is large relative to the
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propagation delay between the terminals and the central

system.
Summarizing:

wnumber® of users at ALOHA terminals;

N =

T = mean "think" time of an ALOHA user;

D = slot ®"duration", period of glqbal clock; and

X = probability of "xmission® given a ready packet.

For the moment, X is a given constant. User terminals
attempt an unbounded number of (re)ytransmissions until
success. X must be less than 1 if transmission collisions
are to avoid indefinite regetition. X must be greater than

0 if any packets are to be sent at all.

Steady State. Take ¢ to be the steady-state time-average of
the number of terminals with packets ready, i.e., f“queued"
for transmission and therefore in transmigssion wait. The Q
users associated with these Q terminals are blocked; the

passage of their virtual time is suspended.

Take W to be the steady-state time—average~probability that
any given slot will have exactly one packet transmission in
it. W is thé fraction of slots for which the central

receiver will get a good packet, i.e!, "win". Random noise

transmission errors are ignored.

W can be calculated from Q and X in the following
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intuitively appealing approximate way. W is the probability
that exactly 1 of the Q waiting terminals decides to
transmit in a slot. A waiting terminal will attempt a
(re) transmission of its ready packet in a slot with
probability X and will continue waiting with probability
1-X. W corresponds to the event that 1 terminal decides to
transmit (with probability X) and that Q-1 terminals
continue waiting (with probability (1-X)*#(Q-1)), This
event can happen in Q ways, so that:

: o-1
(Eq. 5-13) W=0Q*X * (1-X) (0<X<1,0<Q<N)
while this and some of the following formulations are rather
simple and appealing, they are, as first pointed out to us
in subsequent studies by Kleinrock and Lam <Kleinrock2>,
only approximations. W should, in fact, be computed by
summing, over all values of the number of queued users g,
the product of the probability of finding the system with g
blocked users, P(q), and the probability of exactly one
transmission given q: sum(0<gsSN; P(q)*g*X* ((1-X)**(g-1))) .
For small X and large Q, in the range of interest, Equation
5-13 is a good approximation. The use of this approximation
gives us a concise development whose results are verified

later.

The "utilization" U of the channel is the fraction of slots

which carry at least 1 packet. The probability of there
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being no packets in a slot is (1-X)**Q. Therefore:

Q
1~ (1-X) (0<X<1,0<Q%2<N)

(Eq. 5—14) ) U
Summarizing:

Q = steady-state number of fqueued" packets;
W = "win" probakility, exactly 1 packet; and

U = "yse" probability, at least 1 packet.

Slots are of duration D and the fraction of slots carrying
single, and therefore successful, transmissions is W. The
throughput of the channel is therefore W/D packets per
second. The steady-state rate at which terminals leave
transmission-wait state (i.e., leave Q) is W/D rackets per
second. A terminal enters user-think state with the

successful transmission of a packet.

While there are Q terminals in transmission-wait (blocked)
state, there are N-Q users in think state. Users leave
think state by generating a new packet on the average of one
every T seconds. The steady-state rate at which users enter
transmission-wait state (i.e., enter Q and become blocked)

by generating a packet is (N-Q) /T packets fper second.
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In steady-state, the rate at which terminals enter
transmission-wait state equals the rate at which terminals
leave transmission-wait state:

(Eq. 5—15) N-Q = W (0<W<1, 0SQ<N)
T D

This basic steady-state equation gives us the relation

between N and Q:

-1
(Eq. 5-16) N = Q + T#Q*X*(1-X) (0<X<1)

D (0=Q=<N)
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The distribution of slotted ALOHA block times is of interest
because it can provide some measure of system performance as
seen by a user. Approximations of the mean and variance of
the block time distributicn are now calculated. Recall that
block time is that time from when a packet is first
generated by a user at his terminal (by hitting a carriage
return key, say) until that packet is acknowledged to be

successfully received at the central receiver.

Block time is computed here as the sum of (1) the time from
packet generation to the start of the first slot and (2) the
time through the slot containing the first successful
packet. The two components of block time are assumed to ke
independent. It is natural to expect that the first

component will be negligible relative to the second.

We assume that the times from packet generaticn to first
slot are uniformly distributed between 0 and D seconds.
This gives us a mean and variance of D/2 and (D**2)/12,

respectively.

Considering the time from the start of the first slot
through the slot containing the first successful packet as a
function of the number of slots S required for successful
transmission, we observe that S is geometrically

distributed. The probability that a given terminal will
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both attempt and be successful with a packef transmission in
any slot is X*((1-X)** (Q-1))=(W/Q) (see Equation 5-13) . The
probability that the S-th slot aftet packet generation
contains the successful transmission is therefore

(WQ) * ((1-(W/Q)) **(5-1)) , for S greater than or equal to 1.
It is assumed that collision probabilities are independent
of S and, in particular, that a packet's probability of
collision is not higher given that it has already

experienced a collision.

By adding the means and variances of the (uniformly
distributed) first-slot times and the (geometrically
distributed) subsequent-slot times, we get the mean and
variance of slotted ALOHA block times:

(Eq. 5-17) Mean B = D + D#Q  (0<QsN)
2 W (0<H<1)

2 2
(Eq. 5-18) Var B = D * ((Q/W) - (/W) + 1/12)
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Our careful choice of the exponential distribution for think
times and of the geometric distribution for retransmission
intervals gives a system model in which the number of users
instantaneously "queued", g, completely characterizes the
past. If we know q at a given time, then knowledge of past
g's gives us no new information about future g's. We call g
"the instantaneous state" of the system. The instantaneous
state q is a random variable with a time-varying
distribution whose steady-state mean, Q, in ﬁarticular, is a
function of the number of system~users N. We call Q "the
state" of the system in that its value is a kasic indicator
of how the system is behaving. 1In the absence of an exact
solution of the Markov chain based on g, we reason with what

we already know about Q.

Imagine that we are observing an actual slotted ALOHA system
in operation. We would like to know how many terminals, on
the average, are blocked waiting for a successful
transmission through the AILOHA channel; we would like to
know Q. We choose to estimate Q by averaging over a number,
say k, of our most recent observations of g. Because users
are constantly joining and leaving the system, our estimate
of 9, Q(k), is a moving average, moving with N. For small
enough k, in fact, Q(k) is observed to drift due to the

randomness in user think times and in retransmission
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intervals; in the extreme, Q(1) is g. As k gets very large,
Q(k) approaches the Q corresponding to the current N; in the
extreme, again, Q(infinity) is Q. Let us sugpress k and
hereafter use Q to denote our moving estimate with some k

small enough to exhibit the dynamics we now consider.

For some values of Q, the average rate of terminal blocking
exceeds the average rate of successful packet transmission
causing Q to increase in time as the surrlus of thinking
users become blocked. Similarly, for some values of Q, the
rate of successful transmissions exceeds the rate of
terminal blocking causing Q to decrease in time as the
surplus of blocked terminals transmit their packets and
become unblocked. This variability in what we might call
our "short term" Q is loocsely formalized in an exrression
giving its derivative with respect to time:
(Eq. 5-19) _ DERIV (Q,t) = N=Q - W (0<Q<N)

T D (0<W<1)
Our formulation of Q's time derivative comes from allowing a
disparity between the blocking rate ((N-Q)/T) and the
channel throughput (W/D) formerly equated in steady-state
Equation 5-15., Eguation 5-19 is useful to us only insofar
as it provides the sign of the time derivative of Q (as a

function of Q) for our examination of stability.

Figure 5—-1 is a map of an ALOHA system's state space. Using

Abramson's parameter values (for T and D) we have evaluated
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Equation 5-19 for varying N-Q, Q, and X. The curves drawn
connect the loci of so-called "steady states®, i.e., those
N-Q and Q pairs for which DERIV(Q,t) is zerc for a given
fixed X. The vertical axis gives the.N-Q of a system state
and is proportional to the rate of user klocking. The
horizontal axis gives the Q of a system state. ALOHA
systems with a given number of users N are ccnstrained to
move along lires of constant N, nearly horizontally in
Figure 5-1. An intersection point of a.line,of constant N
and a "steady—state" curve for a given fixed X corresponds
to a "steady-state® Q for a system of N users with fixed
xmission probability X. We are about to find that some of
these “steady-state" operating points are stable and some

are not.
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e D=.037 seconds is slot Duration
e T=60.0 seconds is mean Think time
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We note in Fiqure 5-1 the expected behavioxr of steady-state
throughput as a function Qf the number of terminals actively
competing for the ALOHA channel. Starting from zero, as
more terminals vie for the channel, the throughput
(proportional to N-Q in steady-state) increases as the
channel becomes less empty. After some Q which depends
directly on the system's fixed "xmission" prcbability X, the
steady-state throughput drops off éS~channcl contention

begins to generate excessive retransmission traffic.

choosing a number of users, N, and a terminal "xmission"
probability, X, we cbserve that the corresponding line of
constant N and the corresponding cuxve,of?"steady-states"
might intersect in one, twag, or three places. (In Figure
5—-1 we see only two of the possible three intersections,
goints A and B, for the N=400 and X=.05 system. The third
intersection is to be found far off to the right and down
near (N-Q)=0; not shown.) Each of these intersections
defines an operating pbint for the given system, a point
around which we might expect Q (k) to osci;late, a point
corresponding to what we call a "steady-state" Q. Because
system performance is sc strongly dh@eﬁdnﬁt on Q (see
Equations 5-17 and 5-~18), we are immediatelj interested in

the stability of the various steady states.

The stability of the various steady states is determined by

considering the time derivative of Q in surrounding regions.
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Our choice of axes for the graphical presentation of steady-
state loci (Fiqure 5-1) makes it possible to determine the
ﬁime-derivatiVe at a given state point by its position
relative to the appropriate steady-state curve. If the
point ¢orresponding to the state in queétion falls above the
steady-state_curve, then (1) there are more thinking users
than the Sysﬁem can support, (2) the rate of user blocking
exceeds the rate of successful packet transmission, and so
(3) Q can be expected to increase, moving the system state
along the line of constant N out toward where that line next
intercepts the curve of steady-state points. If the point
falls below the steady-state curve, then (1) there are less
thinking users then the system can support, (2) the rate of
user blocking is less than the rate of successful packet
transmission, énd 80 (3) Q can be'expected to decrease along
the line of constant N in toward where that line next

intercepts the curve of steady-state points.

Looking atlthe states for the N=400 and X=.05 system in
Figure 5-1, we see that its low-Q steady state (A) is
stable. The time derxrivative calculations for surrounding‘
states show that the system will tend to drift back to it
after small deviations due to randomness in think times and
retransmissions. The next steady-state point (B) out along
the line of N=400 users, is not stable. The surrounding
states are found to have Q time-derivatives which would

bring the system farther away from it after any small
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deviation. The high-Q steady-state (not shown in Figure

5-1) is also found to be stable.

We conclude that a fixed-X slotted ALOHA system may hawve two
stable steady states. Of these, the low-Q stable steady
state is desirakle because the mean and variance of the
block time distribution are smaller. As ihe number of users
of a given ALOHA system increases, i.e., as the line of
constant N is moved up, the possibility cof falling into the
undesirable high-Q stable, steady state increases. As the
line of constant N is moved up, the low~-( stable state is
moved closer to the mid-Q unstable state and, therefore, the
probability that Q(k) will drift out past&the mid-Q state
increases; once past the mid-Q state, Q(k) will tend to

continue drifting out toward the high-Q stable steady state.




Broadcast Communication Page 5-33

Fixed-X ALOHA_Systems Compared

It is evident from Figure 5-1 that the performance of a
slotted ALOHA system is strongly dependent on X, the
probability that a terminal (re)tranSmits into a slot given
it has a ready packet. This dependence is not cbservable in
Abramson's simpler ALOHA model; we have, however, seen a
similar dependence in the discussion surrounding Equation
5-10. The mean retransmission interval, G, given in our
earlier analysis, played a role similar to that played by
the mean retransmission interval calculaktle in this

analysis, (D/X)-D.

We hint at a subsequent development of our model ty calling

the systems studied in Fiqure 5-1 "fixed-X" ALOHA systems.

The dependence of system performance on X is}characterized
by a trade-off between light loading performance and heavy
loading performance. For large X (near 1), a lightly loaded
system operates at very low Q with correspondingly low block
times. But, as N increases, the relative stability of the
low-Q stable, steady state drops off quickly and the
probability of the system's falling into the low performance
high-Q stable steady state increases -- the system bogs down
in retranSmissiohs. In short, the system behaves much like
a system conforming to Abramson's model. But, for small X,
a lightly loaded system operates at a much higher Q and

offers accordingly higher block times; as N increases,
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.

however, the system resists falling into its high-Q stable

steady state and degrades performance smoothly.

The Steady-state throughput, W/D packets per second, is a
function of the slot duration D, the steady-state meah
number of (rejtransmitting terminals ¢, and the “xmission
probability®* X (see Egquation 5~13). Differentiating W/D
with respect to X, setting equal to zero, and solving for X,

we get that value of X which maximizes throughput for a

given Q:

(Eq. 5-20) X' = (0<X<1)

- (1<Q<N)
Looking back at Figure 5-1 we see that the steady-state
(throughput) curves peak out at. the Q equal to the
reciprocal of their resgective Xts. From this we can infer
that an ALOHA system opeiating at some Q would ke best off
if its X were equal to t/Q. And frcm.this:we’might conclude
that some consideration ke given to changing X as a function

of Q.

With the beginnings of a slotted ALOHA system control

strategy in hand, we are now obliged to go back to the model
for a more rigorous investigation; in particular, we need to
show that our approximate Q-based reasoning can be supported

by exact reasoning on the instantaneous system state q.

If the slotted ALOHA system has q blocked terminals at the
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end of a slot, then what is the distribution of g+, the
number of blocked terminals at the‘end of the next slot?
There are two independent g-controlled random processes
which combine to determine g+. These are the terminal
blocking process of Poisson rate (N-q) /T and the packet
transmission process, an ALOHA aggregate of_q’Bernoulli

trials.

The number of terminals that become blocked in a slot of D
seconds is Pcisson distributed with expectation (N-q)* (D/T);
the number that become unblocked in a slot is either 0 or 1,
the latter with probability g*X* ((1-X)**(g—-1)), as found for
Q in the straightforw&rd arguments leading to Equation 5-13.
The expectation of g+ is therefore:

a-1
(Eq. 5-21) E(g¢) = q + (N-q) *g - g*X*(1-X)
From our Q-based arguments leading to Equ;tion 5-20, we note
at once that taking X as the reciprocal of q minimizes the
expectation of gq¢+. If it were possible to maintain X at
1/7q, then the probability of successful transmission would
be maximized, the throughput maximized, and the expectation

of g minimized, in each slot.

It is possible to construct a slotted ALOHA system in which
X is controlled as function of system state. Two basic
problems must be solved. First, it must be determined

whether X should be contrclled by the central transceiver or
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by each of the terminals independently. Second, g must be

estimated.

If the central transceiver is to control X, then a ‘control
field in outgoing messages or a control message must be
defined‘with'wﬁich the central transceiver can notify
terminals of the optimal “xmission" probability. If the
terminals are to compute X themselves, then they must be
slightly more complex than either thg currently operational

AIOHA terminals or Roberts's hand-held personal terminal.

To dete:mine the optimal "xmission" probability X, either
the central transceiver or each of the terminals must
maintain an estimate of q. Cne practical solhtion is to
maintain a moving estimate of channel utilization U (the
fraction of slots in which at least one packet is
transmitted) which, with a knowledge of the current setting
of X, gives Q using Equation 5-18. An estimate of W might
be easier to keep; W and the current X give Q using Equation
5-13. In either case, Q's reciprocal, as argued up to

Equation 5-20, will serve as the throughput maximizing X.

As the number of terminals contending for the ALOHA channel
increases, the terminals should lower their retransmission
rate to share the channel optimally. In an ALOHA system,
straightforward local»optimization would lead to globkal
catastrophe: if terminals increased their retransmission

rate in the face of decreasing success prokakilities, the
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terminals would collapse communications totally. By
cooperating, "“optimal" sharing of the channel can be
achieved. It is reasonable to expect terminals to cooperate
in traffic-based retransmission control kecause it is
already assumed that terminals will not jam the channel and,

in fact, will observe slot boundaries.

We have not determined how often X must ke updatedito keep a
controlled-X slotted ALOHA system near maximal throughput.
Neither have we determined whether controlling X will lead

to stable system pexformance.
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Controlled-X ALOHA System Stability

Now assume that the terminals in a slotted ALOHA system are
able to adjust their “xmission® probability X and assume
that X is‘thereby continuously egqual to 1/q. We ignore the
fact that terminals must estimate Q over some interval and
that there may be some dynamics in.the system's response to
inaccurate X adjustments. Replacing X by 1/¢ in Equation
5-16 and rearranging, we get:

. v Q-1
(Eq. 5-22) N-Q = T * (1-1) (1=Q<N)

D Q

Superimposing the curve defined by Equation 5-22 over those
shown in Figure 5-1, we get Figure 5-2 showing the dominance
of the controlled-X system over the various fixed-X systems.
Rather than reaching a maximum at some Q above 1 as for the
fixed-X systems, the controlled-X system's steady-state
throughput, (N-Q)/T, begins at 1/D packets.per second with
Q=1 and decreases monotonically to 1/ (D*e) as Q goes to

infinity.
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e D=,037 seconds is slot Duration
e T=60.0 seconds is mean Think time
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Our formulation fails to inform us about steady-state
throughput for Q below 1, but we must presume that it peaks
below 1 and goes to 0 with Q. Then, we cbserve that the
controlled-X slotted ALOHA system has one, very low-Q,
stable steady state for a wide range of N*s. As the number
of users, N, grows past T/ (D*e) and moves the system into
what might be called *"saturation®, the line of constant N
finally intersects with the controlled-X systém's steady-
state curve out where Q is much larger than 1; a high-Q
stable steady state does develqp, but at a much lower Q than

any fixed-I system.

Recall (from Equation 5-14) our expressicn fcr steady-state
slotted ALOHA utilization, U. Assuming X controlled to be
continuously equal to 1/Q, we see that U aprroaches a limit

of 1-(1/e) or about 63% as Q goes (with N) to.infinity.

Similarly, we see (from Equation 5-13) that W, the
probability of a successful transmission in a slot,
approaches a limit of 1/e or about 37% as Q goes (with N) to

infinity.

As rules of thumb ﬁe propose that in a heavily loaded,
slotted, and controlled ALOHA system, 63% of the slots will ,
contain at least one packet, 37% will contain exactly one
packet, and, therefore, 26% will contain multigle,

intexfering packets.
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The controlled-X system has the feature that, as new users
become active, the steady-state throughput, (N-Q)/T,
approaches a non-zero limit. As more and more users push
the system into saturation, the aggregate rate of "thinking"
((N—Q) , say) stays constant as the active terminals take
less of the channel and remain blocked a larger fraction of
the time. In fjixed-X systems, however, new users joining
the system in saturation reduce the aggregate rate of

thinking; they have a negative marginal product.

Up to this point in the report, we have étudied various
techniques relating to the use of computing in packet
communication systems. In the next and final chapter, we
turn briefly to look at the impact of packet communication

on the organization of computing systems.
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BEST- EFFORTS THIN-WIRE INTERPROCESS COMMUNICAT ION

Computer éommunication is, again, both communication using
computers and communication among computers. Thus far in
the report, we have analyzed cexrtain techniques for the
application of computing in communication; in this final
chapter, we turn to consider communicaﬁion in computing -~
structures for organizing computers in highly communicative

environments.

Let there be no doubt that we consider this chapter to be
speculative, i.e., the kind of material one needs before
setting out to prove something; while our experience in
computihg and packet communication leaves us enthusiastic
about some of the notions to be presented, we recognize them
as little more than feelings and invite the reader to

examine them in this light.
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Summary

A recurring problem in the development of the ARPANET has
been the coordination of remote processes. Any one of a
number of existing schemes for interprocess communication
might have been expected to offer itself as a ready
solution, but, the fact is, the basic organization of
ARPANET interprocess communicatiqn -- a general-purpose
HOST-HOST protocol -- was long in coming and troublesome
when it arrived. At the time of the Network Working Group's
decision to adopt the current "official" HOST-HOST protocol,
two specific proposals were considered: one based on
connections <Crocker1> and the other on messages <Walden>
(see Appendix B). The earlier proposal, based on
connections, was chosen, we believe, because connections,
much more than messages, resemble structures in familiar,

centralized computer operating systems.

We believe, in retrospect, that Walden's early proposal
would have been the ketter choice -- that the underlying
structures of ARPANET interprocess communication should be
modeled, not after the centralized computing systems they
join, bﬁt after the distributed packet-switching system they
use. ARPANET experience leads us to suggest that there are
valuable distinctions to ke made between (1) centralized
interprocess communication techniques as often employed

within computer operating systems <Eastlake, Lampson,




Interprocess Communication Page 6-3

Poupon, Saltzer, Schroeder> and (2) distributed interprocess
communication techniques as required in computer networks
<Akkoyunlu, Bressler, Bresslerl, Farber, Kalin1, Rutledge,
Schaffner, Thomas1, Walden>. These distinctions bring us to
propose that even the latesf plans to develop a message-
based distributed interprocess communication system for the
ARPANET, especially floating "ports"'and generalized
"rendezvous" <Bressler1>, are not extreme enough in their
departure from techniques used in centralized computing

systems.

We propose that so-called "thin-wire" strategies for
interprocess communication be used more generally within and
among computer systems because thin-wire interprocess
communicaiion (1) has a clarifying effect on the management
of multiprocess activity and (2) generalizes well as
computer systems become more distributed. We further
propose that so-called "best-efforts" strategies be used
more generally because best-efforts interprocess
communication (1) takes fullest advantage of the potential
for error recovery found in highly error-prone distributed
environments and (2) encourages the economic distribution of

reliability mechanisms in large systems.




Page 6-4 Interprocess Communication

The thrust of our proposal is in opposition to that most
often offered by those studying organizaticns of distributed
computing systems:

All elements of a distributed system:

should be accessible as if local

to one another.
By arguing that best-efforts thin-wire interprocess
communication should be mcre generally applied, we propose:

All elements of a distributed system

should be accessible as if remote

from one another.
We begin with a short statement of what role "processes"
play in computing and attempt to show that it is no lopger
necessary to compromise on the formal notion of process in
the actual kuilding of computer systems, especially now that
processing itself is so inexpensive. Then, we characterize
the basic problems one solves in developing protocols for
interprocess communication and try to underscore the
differences between techniques used in centralized and.
distributed computing environments. We develop some of the
features of using "thin-wire" communication in the
management of multiprocess activity and, finally, we point
out some of the virtues of a "best-efforts" philosophy in

the building of distributed systems.
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Processes

The word Yprocess" is used widely and has vatying technical
meaning <Fisher, Lampson, Saltzer, Thomas, Vyssotsky>. For
our purposes, a process is a program in execution on a
virtual machine: a processor, some procedure, data, and
(now) communication ports <Akkoyunlu, Balzer, Schaffner>. A
process is a formal object <Fisher, Habermann, Thomas> which
is appropriate for personification and, therefore, useful as

an aid to thinking about computer systems.

One can think about the process handling the management of
an operating systems's disk hardware -- i.é., the disk
process. One can think about the process managing the
execution of a certain user program -- i.e., a JOB. The
disk process and a JOB must cooperate to carry data between
the JOB's address space (e.g., mapped central memory) and
the disk process's address space (e.g., physical disk
blocks). It is often useful to view a JOB and the disk
manager as distinct processes simply because disks (or tapes
or terminals or printers) run asynchronously with respect to
other system devices and need to be managed (at some level)

in an asynchronously evolving context <Walden>.

Orerating systems seldom handle processes in a clean and
uniform way. Many designs have internal system processes
(e.g., disk processes) "embedded" in a monolithic supervisor

and scheduled by special priority interrupt hafdware, while
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JOBs (i.e., user processes) are scheduled through an

entirely different mechanism in software <Metcalfel>.

Embedded system processes typically run in "supervisor mode"
and share wide access to central memory, while JOBs run in
"yser mode" and are carefully cénfined in their memory
accesses by address mapping and validation hardware.
Embedded system processes themselves often have no
particular uniformity, each being carefully'tailored to a

specific high=priority task.

Such non-uniform organizations of process management are
cften justified with compelling arguments relating to the
efficient multiplexing of processing units: grocesses which
must run in frequent, short bursts cannot bé subject to the
scheduling overhead normally associated with JOBs,‘i.e.,
with formally manipulakble processes. But, we contend, these
short-cuts around scheduling overhead, besides prohibiting
the transfer of system functions to other nodes in some
computef network, spoil otherwise intuitivély structured
designs and, therefore, obstruct system development and
maintenance. Informal and non-uniform treatment of
processes leads to a proliferation of confused interproceés
communication techniques and to résulting elusive

malfunctions.

In current computer systems, the quantity of processor state

information (dynamic context) associated with formally
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manipulable processes is high, especially in systems with
non-trivial memory mapping (e.g., Multics, Tenex, TSS)
<Deutsch>. The most convincing arguments against more
systematic handling of processes are founded on the high
costs of context switching in the multiplexing of a central
processor among many processes <{Lampson>. 'Improved hardware
(e.g., faster processors, faster»memory, context-switching
devices) is reducing these costs. Now, the contortions
required to multiplex a few large "processes" over many
unrelated functions}and across access-control boundaries
(i.e., domains <Lampson>) are becoming relatively

significant <Schroeder>.

In short, recent advances in processor technology,
especially in cost reduction, make it possible to avoid the
burden of multiplexing a large central processor among a
large population of processes; many formally managed
processes, some even with their own dedicated processors,
can now be used liberally in moie intuitively appealing

organizations of cémputing activity.
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Protocols for Interprocess cCompunjication

The ways in. which processeS‘otganizE“their"(local or remote)
cooperation are called "protocols®. We use the word to
refer to a set of agreements among,communibating;processeS<
relating to (1) rendezvous. (who and’ where), (2) format (what
and how), and (3) timing (when) of data and control

exchanges..

We see at least four problem areas in which protocol
agreements must be made: (1) routing, (2) flow, (3)

congestion, and (4) security.

Routing. Interdependent processes must ke akle to find one
another (rendezvous) in anvinterprocess (centralized or
distributed) communication system and their data exchanges
appropriately routed. Routing may involve something as
simple as a publicized memory address, or a rendezvous
protocol <Postell>, or perhaps even considerations of a
dynamic topology in a packet switching network: <Heart>; in
the latter case, routing has implications for flow and

congestion <Fultz, Zeigler>.

Flow. Once communicating, processes must ke able to control
the flow of data among them. Processing—power mismatches
and varying load make it probable that some processes will
fall behind in their handling of data exchanges; this

falling behind must be managed. Queues and kuffers are
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often used to cushion flow mismatches <Habermann).
Allocation schemes, by coordinating communication and
computing, are helpful in keeping data from clogging a
communication system when a receiver of data lags behind its

sender <McKenzie1l>.

. S i e e

Congestion, The multiplexing of a communications facility
over a population of communicating processes requires
methods for assuring equitable access. W®hile communicating
processes may be handling their own flow control problems
via some private protocol, the communications substrate must
assume the responsibility of balancing the use of
communication resources among various ongoing interactions.
Congestion in the communication system must be controlled so
that heavy flow among certain processes does not block |

effective interaction among others <Kahnd4>.

Security. In the sense we use it, the word "security"
carries with it our concern for both reliability and
privacy. Large systems should not be built with the
assumption that all components will functicn smoothly all of
the time <Kalin2>. If increasingly distrikuted systems are
to be increasingly effective, they must ke built to respond
robustly to errors. Interrrocess communicaticon protocols
must provide for maximally resilient error recovery. Table
redundancy, ccnsistency checking, retransmissions,

acknowledgments, and time-outs are familiar techniques for
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gentralizgd‘nggo ols

In a centralized'computing environment, cocogperating
Frocesses are near to one another (in time and space) and to
a shared central memory. A protocol for interprocess
communicatioh in a centralized environment often takes the
form of a set of rules governing the addressing of shared
memory (e.g., core, disk), the layout of tables and queuves
therein, and the coordination of data access and

modification <Habermann, Walden>.

In the centralized environment, embedded system processes
often have wide access to system data bases, including many
unrelated to their separate functions. Such processes,
often organized in an ad hoc manner for high efficiency, are
somewhat prone to malfunction; and, because their access to
shared data is largely unconstrained in central memory,
intermittent interactions among unrelated processes are
common, making computer operating system development and

maintenance a recurring nightmare.

It will continue to be important to look for ways to
intelligently constrain various components of computing
systems toward reducing the probability of subtle,
unintentional interactions in shared memory; we look to the
developers of system implementation languages for such help
(e.g., <Wegbreit>). As we will soon argue, an additional

aid to controlling the reliable operation of large computer
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systems is to ke found in the strict isolation of their
component processes through the exclusive use of highly

constrained, thin-wire, interprocess communication.
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Distributed Protocols

In one sense all processes are remote from one another; it
is just that some rrocesses are morerremote than others. We
begin to have distributed computing environments when the
distance in space or time ketween components becomes a
factor in basic organization. If two processes share a
central memory, but the central memory requires a million
instruction times to access, then we can say that, despite
the central memory, the processes are remote; indeed, we
might usefully view the central memory as yet a third

process and references to it as message exchanges over a

communication channel.

Protocols for distributed interprocess communication do not
déal with tables and queues in a shared central memory, but
rather with explicit data exchange. Messages are sent and
acknowledgments (ACKs) received, inquiries received and data
returned, probes launched and responses recorded or timed-
out. In short, the essence of distributed interprocess
communication is dealing with a high degrée of isolation and

uncertainty.

Protocols for distributed interprocess commuﬁication are
influenced most by the requirement for concise
communication. Conciseness is achieved (1) by careful
partitioning of data among processes so as tc minimize data

exchanges and (2) by mechanisms for high selectivity. A
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premium must be placed on keeping data where it is to be
most often accessed, and communication must be organized

around to-the~-point data exchanges.

Communicating processes in a distributed environment must
coordinate themselves using data exchanges sgueezed through
relatively long and narrow data paths -- as if joined only
by thin wires. Therefore, we refer to techﬂi_ques that show
the effects of optimization for the use of such data paths
as "thin-wiie" techniques for interprocess communication.
Suéh techniques tend to be based on explicit, sequential,

low bandwidth, and high delay data exchanges.

Patterns in human communication parallel those of processes.
When in the same room, people communicatezvia protocols with
high redundancy using a large repertoire of sounds, faces,
and gesticulations. By mail or over a telephone, people
have more constrained, serial protocols (i.e., thin-wire
protocols) which, though painful on occasion, give
considerably increased access to large and Qisttibuted
audiences. People keep lists of commoni&‘uéé& telephone
numbers on their person or by their phone; anlexample of
everyday data partitioning. People seldom have the entire
telephone directory read to them by the information

operator; an example of everyday data selectivity.
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Centralized versus Distributed

Centralized and distributed communications environments can
be contrasted on (1) transmission rate, (2) transmission
delay, (3) reliability, and (4) explicitness of data

exchange.

Transmission Rate, In a centralized environment, data rates
(in bits per second) are limited only by the speed of
central memory and are often high in the Mbps (megabits per
second) range. As processes become separated by long thin
wires and intermediate processing points, data rates drop

orders of magnitude into the Kbps range and lower.

For the small packets often exchanged by cooperating
processes, the redﬁced transmission rates in distributing
environments can be ignored, but for repeated bulk
transfers, local communication is desirakle. Careful data
partitioning and high selectivity can reduce the need for
bulk transfers. Data transmission rates can be expected to
increase dramatically with emerging communication

technology.

Transmission Delay. Transmission delay is a critical

parameter of interprocess ccmmunication in that delays cause
Frocesses to be idle. Superficially, the delays in central
systems are in the nanosecond range and contrast

significantly with the millisecond and seccnd delays in the
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ARPANET, for example, not to mention the second, minute, and
hour delays of more conventional computer communication

systems.

The transmission delays of computer commuhication networks
will continue to fall. In accessing shared data in the
central environment, the significant transmission delays are
those imposed by multiprocess locking of shared data
<Madnick> and by scheduling delays of processes in a

multiplexed processor environment.

In addition to geographical separation, relatively low
transfer rates and high delays make distributed systems

distributed.

Reliability., A most importanﬁ contrast to be d:awn between
centralized and distributed cpﬁputing is that of
reliability. When a disk controllet‘sends a buffer to a
user JOB, it is assumed that the transfer will complete
successfully. When the transfer fails, the operating system
typically initiates some drastic procedure (e.g., halt)
until the difficulty is found and fixed. The malfunction of
even a single bit in a single word of a computer system's

central memory may lead to a total collapée.

In a distributed computing system, errors are the rule.
Because distributed systems are constructed by many

different people at many different times, the potential for
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malfunction is considerably higher than that of centralized
systems; the potential for error recovery in distributed
systems is, fortunately, also very high. Because remote
processes have only their communications in common (and not
their memory and processor) the malfunction of one does not
necessarily lead to the death of some other. Remote
Erocesses can detect malfunctions in each other and attempt
to recover gracefully. It is not hard tc imagine situations
in which a malfunction might cause communicating processes
to seek alternative processing while initiating action for

test and repair.

Explicitness, When communicating processes exchange data
through a shared central memory, one process usually
discovers that its data base has been updated ky another.

If the update is properly timed and of the appropriate
format, the communication results in cooperation; in the all
too frequent case that the.update comes intermittently out
of sequence or from a completely unexpected source as

garbage, the communication results in chaos.

When a data exchange is made over a thin wire, the sender
must consciously (explicitly) select the data and transmit
it. The receiver must consciously (explicitly) receive the
data and dispense with it. There is no cpportunity for one
process to clcbber another's domain without its explicit

consent and active cooperation. Processes can be
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arbitrarily scrutinizing of explicitly communicated data and
can thereby defend themselves against either malfunction or

malice.
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Thin-Wire Intexrprocess_ communication

In the ARPANET, IMPs connected by 50 Kbbs telephone circuit
(i.e., thin wires) use an IMP-IMP protocol in cooperating to
pexform transmission error control, congestion control, and
packet routing. The IMP Subnet provides communication links
(thin wires) among HOST computers. The "official" general-
purpose HOST-HOST protocol organizes the cobperation of HOST
computers through links, creating a system of virtual JOB-
JOB connections (thin wires again). Each of these levels
(i.e., IMP-IMF, HOST-HOST, and JOB-JOB) involves the
cooperation of processes (i.e., IMPs, HOSTs, and JOBs) using

data exchanges through thin wires (i.e., circuits, 1links,

and connections).

In trying to understand thin-wire inte;process'
communication, we first recognize that communication systems
(e.g., the ARPANET, above) can have levels of organization,
some connection-oriented or circuit-oriented, and some
message-oriented or packet-oriented, forming a system of
hierarchically arranged virtual levels sharing a common

hardware base.

For the momenf, we choose the word conpecticn to identify a
path carrying a sequence of data exchanges between
processes. Some connections correspond to physical
communication channels (circuits), while others are simply

sequences of table transactions: ARPANET communication
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computers (IMPs) are connected by 50 Kbps telephone
circuits, while ARPANET user JOBs can be joined via the
virtual connection system created by ARPANET Network Control

Programs (NCPs)} <Carr>.

The methodé hy which processes become cbnnected vary. IMPs
become connected when their aﬁtached circuits are observed
to be functioning. ARPANET user JOBs establish connections
through acknowledged requests on the ARPANET's NCP-supported
virtual connection system. Connection systéms typically
handlé flow, congestion, and error control internally and

seldom bother communicating processes with the details.

A packet is a self-contained data exchange. When a packet
first enters a communication system, its size, source,
destination, and priority, for example, enter with it; when
it leaves that communication system, so do they and other
traces specific to it. A communication system that deals in
packets is not required to dedicate resources to a certain
packet until the actual moment of its arrival; the

aliocation of resources is (almost) purely on demand.

A packet is a virtual object. Some packets are actual bit
sequences through a communication channel}and‘others are
formal objects, either constructed in a centralized
environment simulating a channel, or subdivided into

physical units (like segments into pages) <Saltzer>.
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Because each packet contains the full specification of an
exchange between sender and receiver, large exchanges
requiring multiple packets to carry them will have that full
specificaﬁion repeated in each of the packets. 1In cases
where data flows are voluminous, the per-packet overhead
will make for poor utilization of communication facilities.
A connection, on the other hand, is begun with the setting
up of state information in a communication system so that
transmissions via the connection need not contain
repetitions of, say, the rendezvous specifications éxchanged
at connect time. 1In cases where data flow is voluminous, a
connection is a very effective way of utilizing
communications resources because the setup costs are
amortized over a large number of streamlined transmissions.
If the traffic among processes is predominantly light and
bursty, however, then the relatively high connection setup
costs will dominate and efficiency will be low. The
creation of a connection corresponds to the dedication of
some resources to an interprocess communication. To the
extent that the communication over a connection is sporadic,

the dedicated resources are wasted.

Thin-wire interprocess communication techniques, be they
through a circuit or packet switching system, are a
significant'departure from those techniques for centralized
computer system communication with which we are all more

familiar. For detajled examples of various thin-wire
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techniques, refer to the abundant documentation of ARPANET
protocols <McKenziel, Postel, Postel1l, Bhushan, Bhushané,
Michener, Kalin1, Bressler1>. To highlight some of the more
fundamental characteristics of such technidues requires only
a few words: (1) format standards, (2y’sequencing, (3) flow
control, (4) access control, and (5) best-efforts

reliability.

Because processes which cooperate viaAthin wires tend to be
running in different machines or are dééigned to do‘so,
thin-wire techniques exhibit the effects of considerable
care in the selection of data formats and representations.
Knowing that a process at the far end of a thin wire need
only have its communication facilities in\common with the
process at the near end ~- not its processor, memory sizes,
or manufacturer -- the designers of thin-wire protocol find
it incumbent upon them to choose formats for data exchanges
which are somewhat general and natural to their purpose

<Bhushan>.

Because processes joined only by thin wires tend to run by
different clocks and suffer from variable delay between
them, thin-wire techniques show recurrent concern for»‘
synchronization and sequencing. Data exchanges are often
specified in inquiry/respcnse rpairs and, especially at start
up, these pairs serve to bring distant communicators into

phase with one another. One common characteristic of such
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pairs is that the inquiry and response are identical so as
to suppress the relative timing of their transmissions in
symmetric cooperation <Postell1, McKenzie1l, Burchfiel,
Kalin1>. When, for reliability, data exchanges are marked
with sequence numbers, as they often are, it is usual that
an inquiry/response pair will be defined to allow the
processes to get back into sequence in the event of a lost'

exchange <Bhushan6, EBN1822>.

Because distant processes differ in their ability to
generate and process data, flow control mechanisms are
common in thin-wire protocols. Often, a certain message
from one process to another is taken as an indication of
newly allocated message buffer space, i.e., a permission to
send data to a process which has indicated its ability to
accept them. There are examples of interprocess messages
which signify the reduction of a previous allocation by a
specified amount, but those deallocation messages that have
proven most useful ask a sending process to send no more
data until a new allocation is received <McKenzieftl,

Burchfiel, Kalin1i>.

Because thin-wire techniques usually require the explicit
generation, transmission, reception, and discard of
communicated data, interprocess access control is an almost
automatic feature of distributed interprocess communication.

Processes can, indeed, be arbitrarily scrutinizing of
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explicitly transmitted data and can thereby defend
themselves against either malfunction or malice.
Communication over a thin wire is something a secretive
process can do freely, in much the same way that people
freely use their telephones in varying stages of undress.
Thin wires can provide a medium for cooperation among
embittered, mutually susgpicious subsystems <lampson>. While
the appropriate primitive is provided in the ARPANET -- the
IMP Subnet guarantees the correct identification of a
message's source HOST -- little use has been made of thin-

wire interprocess access control <BBN1822, Postelil>.
And now, finally, best-efforts thin-wire reliability.

Large and, especially, distributed systems are a reliability
problem <Kalin2>. Unfortunately, the most effective way to
achieve reliability these days is through stability --
inertia in development. But isn't distributed computing

supposed to help reliability?

As we have previously indicated, processes at the far ends
of a thin wire both are hurt by and benefit from their
relative isolation. They are hurt because the thin wire
limits the rate at which they can exchange bits; they
benefit because the thin wire limits the extent to which a
malfunction at one end need result in a malfunction at the

other.
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A system which depends jointly on a large numker of its
components to sustain operation will have poor reliability
for the simple reason that the unreliability of the
components will accumulate multiplicatively in the
unreliability of the system. Whereas thin wires provide the
potential for component isolation in distributed systems and
thereby the potential for continued system operation in the
face of component failure, only intercomponent protocols
which are both sensitive and responsive to component failure
can hopé to realize the potential of thin-wire isolation;
such failure-responsive protocols are the essence of what we
call the "best-efforts" philosophy of intergrocess

communication.

Imagine that we are a component process in the midst of some
large system. There are two extreme attitudes we might have
toward the system and toward the several component processes
upon which we depend. We might believe the processes around
us to be so reliable, irreplaceable, and interdependent
that, if one should fail, there would be little point in
trying to carry on. Or, we might believe the processes
around us to ke so unreliakle, expendable, and independent
that, if some should fail, there would be considerable
potential in our being able to patch things up to struggle
on, weakened, but doing our job. This second attitude is
characteristic of what we call the "best-efforts" philosophy

of interprocess communication; it is based on our desire to
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give the system our best efforts and, to do so, on our
expecting only as much frcm the prbcesses upon which we

depend.

ARPANET IMPs, for example, treat telephone circuits as
unreliable, expendaktle, independent components of the
packet-switching system. Telephone circuits are
individually asked to give their best efforts to the
transmission of digital data. Realizing that a telephone
circﬁit's best is not perfect, the IMPs take steps to
menitor circuit performance and, detecting a malfunction, to
retry, and, failing some number of retrys, to take
alternative action, namely to use alternate paths to get
packets closer to their destination. Beyond this, the IMPs
are suspicious of one another and can recover in various

ways to provide partial service in the face of IMP failures.

You will note that the ability to recover from partial
malfunction doesn't always require what might be called
Ypure rédundancy"; a reliable system doesn't necessarily
require duplicate components sitting idly by, waiting for
failure. The ARPANET's telephone}circuits are a good
example. When they are all working propérly,‘the circuits
combine to provide a high total tranémissionkcapacity,
perhaps slightly higher than the network might otherwise
require. When some circuits go down, those remaining

continue transmission service, but at a reduced total
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Of course, best-efforts techniques have been around for some
time; for example, take the familiar retry procedures used
in reading magnetic tape. But now, with computers, the
best-efforts philosophy can ke applied pervasively in large
systems. Computers contribute by providing component
isolation through computer communication and by providing
"distributed intelligence" with which to implement non-
trivial error-detection and recovery mechanisms wherever

appropriate <Chen>.

But why make an issue out of something as simple as this
"best-efforts" idea? Why call it a philosophy? Why give it
a name at all? For the simple reason that, without a
conscious effort to do otherwise, computer fpeorle
(especially) find it easy to neglect the potential offered
by thin-wire isolation -- they've worked in centralized

environments for so long.

As evidence to support this proposition, take experience
with the ARPANET again (see Appendices A and B). With a few
minor exceptions (e.g., the lack of error-detection in IMP
memories and the IMP-HOST interface), the IMP Subnet shows
the failure-tolerance to ke derived from the best-efforts
philosophy conscientiously applied by people working close
to communications hardware they know to be faulty. The

history of the "official" HOST-HOST protoccl, on the other
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hand, shows the consistent fragility of techniques invented
for distributed interprocess communication by people working

with the delicate innards of computer operating systems.

If we can develop and use thin-wire techniques for
interprocess communication, then as computing environments
become more distributed, our systems will generalize. 1In
the meantime, a formal organization of process management
and interprocess communication will aid in making systems
work. If we can develop and use strategies for best-efforts
interprocess communication, then we can take fullest
advantage of the potential for error-recovery found in
highly error-prone distributed environments and encourage
the economic distribution of reliability mechanisms in large

systems.
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APPENDIX A

THE ARPANET COMMUNICATIONS SUBNET

The workings of the ARPANET are, as will become apparent in
the following two appendices, startlingly simple. Were it
not that the ARPANET already links over 30 centers of
computing activity across the UsSa, it would ke very hard to
believe that its simple packet communication techniques
could work at all. But the ARPANET does work; and to such
an extent that a commercial version on a grand scale is
imminent <PCI>. While we might already ke curious akout why
the ARPANET works as well as it does, thinking about an
impending world-wide digital communications utility makes us
feel a certain urgency to understand what is essential in
the techniques and, as is the purpose of this report, to fit

the essentials into a theory of packet communication.

The simplicity of the packet communication techniques used
in the ARPANET makes it easy to describe them in some detail
and, thereby, to sukstantiate the theories to which they
give rise. We hope that the following pages of tutorial
description will prove helpful, but keep in mind that much
of the material appears elsewhere, if not more clearly, at

least at greater length.

This first of two tutorial appendices gets into the internal
mechanisms of the ARPANET's subnetwork of racket-switching

communications computers (i.e., IMPs), develcged and
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maintained by Bolt Beranek and Newman Inc., Cambridge,
Massachusetts (BBN) . BBN has produced a numker of documents
which must be studied for a thorough understanding of the
packet communication techniques surveyed here <BBN1822,

Heart, McKenzie, Mimno, Ornstein>.
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The IMP-HOST Interface

The ARPANET, as we often emphasize, involves both
communication amopg computers and communication using
computers; among things called “HOSTsﬁ using things called
wIMPs®, The subnetwork of IMPs provides a core of
communications functions; without the IMPs, these functions
would need costly replication in each of the various HOSTs.
A HOST communicates with other HOSTs, not directly, but
rather through a local IMP which acté on its behalf in the

realm of IMPs to get messages transmitted (see Figure 7-1).

For reasons of maintainability and reliakility, IMPs are
essentially identical -- it would be better if they were
exactly identical. HOSTs, however, are not all the same;.in
fact, as a result of their prior isolation, they are bashful
of one another and often seemingly hostile. From our
standpoint, it is the similarities among HOSTs which would
be important in coming to grips with the mechanisms of
packet communication, but it is the differences which one

first sees.

Therefore, we begin by looking into the IMP subnet as if one
were a HOST, rather than the opposite. 1In this appendix we
venture into the IMP Subnet; later, in the next appendix, we
look at the structures which evolve inside HOSTs to deal

with the IMPs and through them with distant HOSTs.
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That which physically joins a HOST computer (e.q., a PDP-10,
a 360/91, a Sigma-7) to its IMP (Interface Message
Processor) is, at its narrowest part, a 12 wire cable
sustaining bi-directional, bit-serial, asynchronous message
communication. At one end of this cable is the IMP's
"general" IMP-HOST interface and at the cther end is the
HOST's "special" IMP-HOST interface <BBN1822>. Traffic
across the IMP-HOST interface is limited‘to messages of at
most 8095 bits at a maximum rate of 100 kilobits per second
(Kbps) each way. IMP-HOST message exchanges are presumed to

be error-free.

The "standard" IMP-HOST interface requires that the IMP-HOST
cable be shorter than 30 feet. There is a "distant" IMP-
HOST interface which permits cable lengths up to 2000 feet.
The limitations on cable length are due (1) to the
requirement that IMP-HOST transmissions be error-free and
(2) to the fact that long cables cause delays which
significantly degrade maximum IMP-HOST bit-rate, under the
bit-by-bit, asynchronous hand-shake transmission scheme
used. For IMP-HOST connections longer than 2000 feet, BBN
offers a "very distant"™ IMP-HOST interface providing
retransmission-based, IMP-IMP-like, error-checked, telephone

circuit communication <BBN1822>.

The 12-wire IMP-HOST cable carries two 6-wire signal sets,

one for IMP-to-HOST data and one for HOST-to-IMP data. The
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two 6—wire sets are symmetrical so that by agpropriately
cross connecting (i.e., by looping or cross-patching),
either the IMP or the HOST can independently test its
transmission hardware and the cable. The interfaces that we
(i.e., the author) constructed for the MIT Project MAC DMCG
PDP-10 and the Xerox PARC MAXC HOST computers allow the HOST
to disconnect from the IMP, to cross-patch its end of the
IMP cable, and to perform lodp-back transmission tests, all

under program control.

Because of the symmetry in IMP-HOST interface design, we can
describe the 6 wire transmission scheme from "sender" to
"receiver", ignoring which is the IMP and which is the HOST
<BBN1822>. The six signals are (1) receiver ready test, (2)
receiver master ready, (3) sender data, (4) sender last bit,

(5) sender bit ready, and (6) receiver ready for next bit.

Two of the 6 wires are used by the sender tc determine
whether the receiver is operational. The sender puts a
signal (e.g., signal ground) on one of the pair ("receiver
ready test") and interprets the return of that signal on the
second of the pair ("receiver master ready") to mean that
the receiver is in good health. The receiver'confirms his
good health by looping "receiver ready test" back through
"receiver master ready" with a switch (e.g., a relay or
transistor). When the receiver malfunctions, it is expected

that some mechanism (e.g., a watch-dog timer) soon turns off
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the "master ready" loopback switch and thereby notifies the
sender of the_receiver's demise <Ornstein>. The latest
specifications do not demand a HOST watch-dog timer, but
rather ask that some discipline be adopted to insure that
the HOST ready line is dropped when a HOST is to discontinue

HOST-IMP message exchanges.

The remaining 4 of the 6 wires are used for bit-serial
message transfer. 1In addition to a wire through which
actual data bits flow, there are (1) two hand-shake wires
for controlling asynchronous bit transfer and (2) a "last
bit" indicator to mark the ends of bit-serial messages. The

hand-shake works as follows.

Upon placing a data bit on the data line, the sender enters
the "bit ready" state (the "bit ready" signal stays down for
a moment) and walts for the receiver's "ready for next bitw

signal to be high.

The receiver indicates his willingness to accept a data bit
by raising the "ready for next bit" signal. He then waits

for the returning "bit ready" signal to be high.

When the sender (in the "bit ready" state) sees that the
receiver's "ready for next bit" signal is high, he raises
his "bit ready" signal and waits for the "ready for next

bit" signal to drop.




Page 7-8 Communications Subnet

when the receiver sees the "bit ready" go high in response
to his "“ready for next Lkit%, he takes the data bit from the
"data® line and drops his "ready for next Lbit% signal (for

some minimum time) as a "got it® indication.

when the sender sees the "ready for next bitw» signal drop,
he interprets that as a "got it" indication, and leawves "“bit
ready" state until a new data bit can be placed on the

#data®" line. And soO on.

When placing the last bit of a message on the data line, the
sender raises the "last bit" signal iorVéépréptiate

interpretation by the receiver.

See BBN's IMP-BOST interface manual <BBN1822> for a more
detailed description of the hand-shake mechanism and of the

schematic in Figure 7-2.
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Using this simple hand-shake protocol, it is possible for
either the sender or receiver to suspend iransmission
indefinitely, bit by bit, without losing data. Transfers
can thereby proceed at the maximum rate allowed by the

slower end (as a function of time).

As of this writing, the IMPs are set to limit data transfers
to a maximum of 100 Kbops (10 microseconds per bit) so as to
conserve on total IMP bandwidth (available processor cycles
per second). While hardware interfaces,cén ocperate into the
Mbps (megabits per second) range, HOSTs often limit data
transfer themselves from time to time uhde: varying system

load.

At various times during their connection,‘é HOST and an IMP
will each have occasion to slow the flow of data from the
other; a HOST may find itself busy with some device when
some IMP data becomes available and, similarly, an IMP may
find its buffers momentarily full when some HOST data
becomes available. The asynchronous bitﬁhyégit IMP-HOST
handshake provides a very fine-grained mechanism by which a
receiver can control the flow of data so as to meet its
processing requirements. This is our first example of a so-
called "flow control" mechanism; the problem of flow control
appears often in communication and_pAfticu;arly in our
consideration of packet techniques in computer

communication.
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The scheme used in the IMP-HOST interface generalizes to a
54P wire system (P=1 in the IMP-HOST system) in which there
are P data lines (P for “Packet") operated under the same

hand-shake mechanism.

Assume we are given that the signal propagation delay
bétween sender and receiver is D seconds (D is calculated
from cable length in feet divided by signal speed in feet
per second). It takes a minimum, say, of Ws seconds and Wr
seconds for the sender and receiver to generate and dispense
with P data bits, respectively. We now calculate the
maximum data-rate C (for "Capacity" in bits per second) of
the hand-shake proéedure by looking at the minimum time

between rising edges of "sender bit ready" at the sender.

"Sender bit ready" can only go high if both (1) the sender
is in the "bit ready state" and (2) the "receiver ready for
next bit" is high at the sender end. It takes D seconds for
the rising edge of the "sender bit ready" signal to
propagate to the receiver, during which nothing else
happens. Assuming that the receiver drops his "“ready for
next bit® line'instantly after he sees the "sender bit
ready" signal go high, we observe that two partially
overlapped periods must pass before the "sender bit ready"
signal comes high again. The first of these is the period
required (1) for the sender to see the "ready for next bit"

signal drop as a "got‘it" indicator (D seconds) and (2) for
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him to produce a new data bit (Ws seconds), totaling D+Ws
seconds. The second period is that required (1) for the
receiver to dispense with the newly received data bit (Wr
seconds) and (2) for his new "ready for next bit" signal to
be seen high at the sende£ (D seconds), totaling Wr+D
seconds. The "sender bit ready" signal goes high again only
after both periods have passed, only‘after'a number of

seconds equal to the maximum of the two. So that:

(Eq. 7-1) C = ) ,
2D + max (Ws,Wr)

For an ARPANET IMP-HOST interface with P=1 data wire, D=60
nanoseconds (30 feet at, say, 2 nanoseconds per_foot), and
with Wr<ws=10 microseconds, we get that the maximum bit-rate
is about 100 Kbps. At 2000 feet the maximum bit-rate is
about 55 Kbps. 1If this scheme were used at a mile, the

maximum effective bit-rate would be down to about 33 Kbps.

Be sure to note that the hand-shake used for flow control
between a HOST and its IMP makes channel capacity depend on
delay; this dependence is found again and again in the
ARPANET. As we see in our.analysis of store-and-forward
packet communication in the report proper, the
interdependence of capacity and delay résulting from flow

control is fundamental to computer communication.

To increase the maximum IMP-HOST bit-rate, the IMP delay of
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10 microseconds (i.e., Ws or Wr) can be adjusted down
<BBN1822>. At long distances and/or much higher data-rates,
the required errorlessness of transmission is easily

challenged.

Another approéch one might use to improve the kit-rate would
be to add data wires (P>1) for "byte-serial" asynchronous
transmission. The above bit-serial scheme is used between
IMP and HOST because (1) the data-rates acceptakle to an IMP
are not much higher than that possible via the serial
exchange, (2) it is not anticipated that HOSTs be far from
IMPs, (3) HOST processing power and transmission rates vary
widely from HOST to HOST and from time to time, and (4) the
bit stream approach avoids any word-length biases in an
environment with many different computers and word lengths
(e.g., 16, 24, 32, 36, 60, and 128 bits per word). While
the ARPANET currently uses the bit as its atomic unit of
transfer, it has keen found that the resulting generality is
too much of a burden and that the 8-bit byte (say) might be

a better choice (i.e., P=8) <McKenzie2>.
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IMP-HOST Protocol

with IMP-HOST interface hardware between them, an IMP and a
HOST become capable of exchanging messages of an arbitrary
length (in bits). IMP-HOST Protocol <BBN1822> establishes
the convention that all legal messages between a HOST and
its IMP include a 32 bit header and be of maximum length
8095 bits. There are a number of message types which can go
between a HOST and its IMP. The two most important kinds of
message are the "reqular" data message and the "ready for

next message" (RFNM) message.

A regular IMP-HOST message has an 8-bit BOST identifier and
an 8-bit LINK identifier. WwWhen going from HOST to IMP, a
regular message is a request on the IMP Subnet to deliver
the contained bits to the specified HOST with the specified
LINK identifier. When going from IMP to HOST, a regular
message contains bits sent by the specified HOST with the

specified LINK identifier.

A RFNM is a 32 bit control message which comes to a HOST
from its IMP as an acknowledgment of the arrival of a
previously sent reqular message, at the specified remote
HOST, with the specified IINK identifier. Each HOST sees a
set of 256 communication LINKs to each of 256 possible
HOSTs. For each regular message sent to a specified HOST on
a specified LINK, a HOST can expect to receive a RFNM

containing that HOST/LINK identification after the remote
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destination IMP has begun transferring the message to the

remote HOST.

If one thinks of LINKS as wires, a RFNM acknowledges the
arrival of a message at the other end of a HOST-HOST wire.
It is quaranteed by the IMP Subnet that messages sent to a

HOST on a given LINK will arrive in the crder4sent.

A basic problem for the IMP Subnet is to control the
generation of messages so as to match the capacity of the
IMPs and the computing power of communicating HOST
processes. We distinguish between ;;g!,gggggg; and
congestion control. Flow control mechanisms are those which
prevent a sender from swamping a receiver with more data
than it can process or store. cCongestion control mechanisms
are those which insure equitable access to communications |

facilities among populaticns of senders and receivers.

A RFNM is a message generated by a "destination" IMP. The
RFNM was originally used as a congestion control mechanism
in that (as of <BBN1822$, April 1972) it was a detectable
violation of IMP-HOST Protocol to send a message to a given
HOST on a given LINK until that given HOST/LINK "wire" had
been unblocked by the receipt of a RFNM for fhe previous
message. LINK blocking via RFNM control was intended to
keep HOSTs from clogging the IMP Subnet Ly choking them off
from further transmission until previous messages have left

the Subnet.
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A simple calculation reveals that the LINK meéhanism for IMP
Subnet congestion control is not sufficient. An IMP is a
Honeywell DDP-516 or DDP-316 with 12,000 16-bit core memory
words of which more than half are used tc hold the IMP
program. An IMP has room for on the orde: of 100,000 bits
of buffered data. The virtual storage capacity of the IMP
Subnet between two specified HOSTs (implied by the LINK
mechanism) is on the order of 2,000,000 bits (i.e., 8095
bits per message, times 256 LINKs per HOST, times 1
outstanding message per LINK). If a destination HOST were
to be accepting data at a rate less than that of a sending
HOST and if the sending HOST were to uselall the LINKs
available to it, then the total number of Lbits in the Subnet
in support of this one HOST-HOST communication could grow to

be enough to £ill more than 20 IMPs.

This obvious calculation has been performed on countless
occasions and its validity supported by actual ARPANET lock-
ups <Frank1>. A new congestion control scheme has already
been invented by BBN. The number of "effective LINKs" is
reduced to 4. While RFNM's are still returned as before,
they have significance only in that they are required to
keep compatibility with existing HOST-HOST software.
congestion due to slow destination HOSTs is limited by
blocking the communications of over-ambitious sending HOSTs.
Under the new scheme, long messages (i.e., those over a 1000

bits) are delayed at their source until a verified
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allocation of space is made for them at the destination IMP.
The overriding okjective of such IMP-HOST congestion ceontrol
mechanisms is to keep the Communications Subnet empty so
that small messages from carefully managed sending HOSTs can
move quickly to highly recerptive receiving HOSTs

<McQuillan>.
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We now follow the movement of a particular message from a
"sending® HOST to a "receiving" HOST through the IMP Subnet
to sketch the workings of IMP-IMP Protocol. We start with a
cold "sending" HOST. The IMP connected to this cold
"sgnding" HOST believes that the HOST is disconnected from
the ARPANET because the "HCST ready test" signal through the
IMP-HOST interface is not being returned through the "HOST
master ready" line of the 12 wire cable. Knowledge of the
disconnectedness of the Ysending" HOST proéagatgs with cther
status data among the IMPs every 1/2 second and so all IMPs
know that the "sendihg" HOST is down with respect to the
ARPANET. Any messages marked for routing to our "sending"
HOST (1) are intercepted at their point of Subnet entry, (2)

are discarded, and (3) are reported so to their source HOST.

Suddenly, the IMP attached to our "sending" BOST notices
that our "sending®" HOST's "HOST maSte:_#eady"'signal has
come on and prepares itself for a possible message exchange.
This start up event is not expected to happen often,
certainly not for each message, and so the IMP-HOST protocol
for handling it is allowed to be relatively elakorate to

serve a number of purposes.

In preparation for senaing the one 8095 bit data message we
are following through the IMP Subnet, the "sending" HOST

must bring itself from the starting cold state into a state
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of ongoing communication with its IMP; a state,
incidentally, in which it would like to remain for hours,
days, or even weeks, if possible. It does so (1) by turning
on its "HOST ready indicator®" thereby looping back the IMP'§
"HOST ready test" signal and (2) by sending a few IMP-HOST
no-op messages to its IMP as proof of its willingness go

communicate.

The IMP responds to these new signs of life Ly sending a few
gratuitous IMP—HOSTvno—op messages of its own té the
"sending" HOST tc establish the viability of the IMP-to-HOST
connection. The IMP then suspends communication for some
number of tens of seconds to allow informaticn about the
"sending® HOST's availability to propagate via the 1/2
second IMP-IMP status exchanges to the far reaches of the
IMP Subnet. When all IMPs have had time tc learn of our
"sending"® HOST's change in status, the IMP connected-to the
"sending® HOST is then prepared to route messages to and
from it. This start-up message exchange and delay is
experienced only when a HOST first comes up on the ARPANET
(e.g., daily). Thereafter, the IMP Subnet remains aware of
the HOST's availability and the tens of seconds delay is not

encountered.

In our scenario it is the "sending" HOST's desire to
transmit data to a specified "receiving" HOST which leads to

the next event of note. Having collected (1) up to 8063
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bits of data, (2) an 8 bit HOST identifier, and (3) an 8 kit
LINK identifier, all from sources outside this discussion
(according to some HOST-HOST protocol), the "sending" HOST
initiates a transfer as a regular HOST-to-IMP data message
through the IMP-HOST interface. Note that thexe are 16
additional bits in a HOST-to-IMP leader which bring the
maximum total up to 8095 bits <BBN1822>. At the hardware
level, the transfer proceeds a bit at a time according to
the previously discussed asynchronous hand-shake hardware
protocol and message bits find their way into the IMP core

memory.

After the 1000th bit of the at most 8095 bit message enters
the IMP's core, the IMP picks up the 1000 bits with its
destination HOST/LINK pair and, noting (say) that the
specified HOST is actively communicating, creates a packet
which it immediately turns over to its store-and-forward
module for routing to the specified destination. With the
n"sending" HOST's message only rartially ;eeeived, its IMP
has already started the initial packet‘towérd its
destination from IMP to IMP over appropriate,felephone
circuits. Note that (as indicated) the wérds "message" and
"packet" have particular technical meanings in Subnet
terminology: messages are up to about 8095 kits long and
are exchanged by HOSTs, while packets are up to about 1000

bits long and are exchanged by IMPs.
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At this point, the IMP has forwarded the first packet of our
(up to)l8095 kit message and waits for a resgonse from the
destination IMP telling it that there is space for message
reassembly. Then, as the message continues to flow into IMP
core from the "sending" HOST (at about 100 Kkps maximum,
depending on HOST processing) subsequent 1000 bit packets
are collected, labelled, and turned over for routing.
Finally, the last message bit (as indicated ky the IMP-HOST
interface "HOST last bit" signal) leaves the "sending" HOST,
enters IMP core, is placed in the last (<8th) IMP packet,
and begins its journey through the IMP system toward the

"receiving" HCST.

The "sending" HOST, having transferred the last bit of the
message in question, notes that it should expect to get a
RFNM message for the specified "receiving™ HOST/LINK pair at
some.late; time. According to the old IMP-HOST protocol and
to standard practice among HOSTs even today, the HOST/LINK
pair is "blocked" until the corresponding RFNM is returned.
The "sending" HOST goes on either to send messages on other,
unblocked LINKs or to compute in some other context. In our
scenario, the next interesting event to involve the

"sending® HOST will be the arrival of said RFNM.

The message we are following from "sending" HOST to
“receiving®" HOST is now in the Communications Subnet in the

form of some number of 1000 bit packets each marked with its
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destination HOST/LINK pair and its position in the HOST-HOST
message. Note again that messages flow (virtually) among
HOSTs and packets (really) among IMPs. The IMP Subnet has
accepted responsibility for the successful error-free
transmission of our message to the “receiving® HOST. This
responsibility now rides with each of the up to 8 packets as

they wind their way separately from IMP to IMP.

The first decision an IMP must make aboqt a packet which it
‘holds is where to send it, i.e., how to advénce its routing
toward the specified destination. If the packet is
desighated for receipt by a HOST connected to the current
IMP, the packet is handed by the IMP's store-and-forward
module to its message preparation module. If the packet is
to be routed to some HOST connected to a remote IMP, then
the holding IMP must decide through which telephone circuit
(which 1legq) to put the packet so as to optimize its path

toward the destination. This is the routing decision.

To provide inputs for routing decisions, an IMP maintains a
dynamically updated table of destination‘&elays which
indicates which next leg will minimize the transit time of a
packet to its destination. The table is updated via the 1/2
second IMP-IMP status exchanges. Routing data is generated
by a local exchange of data, i.e., an exchange amohg '
immediate neighbors. Each IMP maintains a table of transit

times (by destination) which it updates cn the basis of its
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own modem queues and the times received from its neighbors

<Heart>.

The maintenance of the set of routing tables across the
Subnet constitutes an asynchronously iterated distributed
computation. IMPs have no prior knowledge of global ARPANET
topology, but rather maintain an evolving data base to help

in a local optimization of packet routing.

IMP's direct fpackets through the Subnet so as to minimize
transit time. It is likely that the optimal next leg toward
a given destination will change with traffic and circuit
availability. 1In particular, packets of the same message
will often take different paths to a destination, due
especially to their own collisions. Each IMP routes packets
sO as to minimize transit time; it would not be unusual for
packets qoing to some singlg destination to leave an IMP
through different circuits -- over circuits other than those
with long queues of earlier arriving packets to the same

destination.

Having been placed on a queue for a given circuit, a packet
gets transmitted through some modem interface. As it goes
out on the line, the modem hardware generates
synchronization characters (SYNCHs), data, and a 24 bit
cyclic checksum. The receiving IMP's modem interface moves
the data into IMP memory while computing its checksum and

notifies the receiving IMP whether the packet has been
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damage& in transmission. If the packet has been damaged, it
is immediately discarded. If there are no bﬁffers available
for subsequent packets, the newly arrived packet is
discarded <zZeigler>. If the packet is error-free and
additional buffers are available, the packet is formally
accepted by the new (receiving) IMP and an acknowledgement
is returned to the sending IMP. 1If either the packet or its
acknowledgment are damaged or lost ih traﬁsmission or if the
packet is rejected due to insufficient storage, the sending
IMP will fail to get a successful acknowledgment and will

retransmit the packet after some time-out period.

During all of this, the IMP is paying strict attention to
the perfo;mance characteristics of its circuits so that if a
circuit starts damaging too many packet transmiésions, the
routing module will direct packets down alternative legs. A
message exchange routine is constantly maintained between
IMPs joined by a circuit so that each of the IMPs can assess
the quality of the circuit. This exchange continues even
after a circuit has been declared dead so that when a

circuit recovers, it is automatically put back into service.

An interesting sidelight of continuing IMP surveillance of
telephone circuit performance is that it would not Le
difficult for the IMP system to produce a trouble report for
the telephone company something like: "On May 31, 1972, at

12:01: 32.768 hours, circuit number *'NW-123-456' went 'down’
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for 100 milliseconds. Please see to it that this doesn't

happen again.®

After an appropriate number of routings and retransmissions,
the packets of oﬁr message begin to -arrive at the
destination IMP where they are handed over to the message
preparation module. The rackets arrive at the destination
IMP in no particular order, since each has percolated
through the IMP Subnet independently of the others, subject
to varying routing decisions and error-correcting
retransmissions. As the packets arrive they are reassembled
into a HOST message and, when all have been accounted for,
the message is queued up for transmission via a IMP-HOST

interface into the "receiving" HOST.

As the first packet of the message enters the HOST, the
destination IMP constructs a RFNM message (i.e., a "ready
for next message" message) which is then routed back as a
single packet message to the "sending" HOST. The RFNM
propagates in exactly the same way as a single packet data
message, ekcept that a RFNM does not generate a RFNM at its

destination IMP.

As the last packet of our data message enters the
"receiving" HOST, the "IMP last bit" signal is raised. The
"receiving" HOST examines the newly completed message's IMP-
HOST header to discover that it has received data from the

HOST on the LINK therein specified. Concurrently the
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"sending" HOST receives a RFNM as an acknowledgment of
message receirt and unblocks the given HOST/LINK pair for

subsequent transmission.
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IMP-IMP Protocol: _Cbservations

We make three observations about IMP-HOST and IMP-IMP
Frotocol as just sketched: (1) that the time required for
all of these machinations by HOSTs and IMPs is well within
the tolerances of interactive computer networking, (2) that
the transmission error control supplied by the Subnet is of
sufficiently high quality that other sources of error must
now be confronted, and (3) that an interesting deadlock may
exist between the technique of message disassembly and

possibilities in the development of follow-on IMPs.

g;mg_;gggired. Early specifications for the ARPANET called
for a maximum propagation delay time between any two nodes
of under .5 seconds <Roberts>. That specification has been
met and with such success that the time-sharing systems
being used over the ARPANET are themselves the limiting
factors in their own interactive use. The DDP-516's and
DDP-316's being used as IMPs have already Lkeen far surpassed
in speed and low cost by many newer products in the mini-
computer market (e.g., PDP-11 and NOVA). Communications
circuits of significantly higher bandwidths (e.g., much
greater than 230.4 Kbps) at lower cost are imminent.
Therefore, the potential for economic application of ARPANET
techniques is even greater than that demonstrated in the IMP

Subnet.
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E;;g;_gggggglg Experience with the ARPANET has shown that
the error rates in telephcne circuits (quoted>as 1 bit in
error out of 100,000 bits) have not been a significant
factor in limiting ARPANET performance <Kahn2, Ornstein>.
The IMP modem interfaces generate a 24 bit'cyclic'checksum
per (up to) 1000 bit packet to reduce the undetected
transmission error rate to one bit in ten to the twelfth
bits or about one undetected ARPANET transmission bit error
per year <Roberts>. The fact that there have been enough
bits in error in the ARPANET to fill this quota for
centuries, leads us to look at the newly dominant error

sources.

In the IMP Subnet itself, there are two ma joxr trouble spots
for error control. The first, and most obvious, is that
there is no error checking done across the IMP-HOST
interface. It is a fact that these interfaces have been
generating errors and it is interesting to noﬁe that no
higher level protocols (e.g., HOST-HOST, File Transfer) have
been developed which check for end—to~end‘integrity of
transmitted data. A more dangerdus source of errors in the
ARPANET are the core memories of the IMP's themselves. IMP
core memories (1) are not parity checked, (2) are prone to
failure (to wit, a DDP-516 "jump to self" instruction
reputedly overheats core memorf causing kits to be dropped),
and (3) are not rigorously error-checked by the IMP program

(i.e., packet checksums exist only "on the wires"). 1If a




communications Subnet Page 7-29

bit in some buffer of some IMP somewhere were to malfunction
{(even solidly) the error would be intermittent to the extent
that packet routing is load dependent and that packets will
fall in various buffers on repeated passage through the same
IMP. It is reassuring to note that recent versions of the
IMP program have included core-to-core, software, packet
checksums, especially on routing information, to detect,

correct, and even report many IMP core failures.

Because error detection has been missing in HOST-HOST
communication prctocols, there are few (if any) real
statistics on the magnitude of the error proklem. Because
the IMP Subnet is advertised as being error-free
(transmission error-free), protocol designers (e.g., we)
have thus far avoided higher level error control and left

themselves exposed.

Message_disassembly. The most famous and well-understood

bug in the initial iwmplementation of the ARPANET
communications Subnet is the "reassembly lock-up problem"
<Frank1>. This bug is "fixed" in the current implementation
by the previously mentioned use of IMP-IMP allocation

protocol for multi-packet messages <McQuillan>.

Under the initial implementation, two HOSTs kegin a massive
data transfer utilizing full 8095 bit multi-packet messages
and multiple LINKs for high data-rates. As the number of

LINKs is increased past some small number like 3 or 4, the
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total throughput not only stops increasing, but suddenly
drops off until at some slightly larger number of LINKs the
entire ARPANET locks ug, i.e., requires manual intervention

to get data flowing again.

The cause of reassemkly lock-up, with benefit of
considerable hindsight, is easy to identify. By using
multiple LINKs, a sending HOST can get mcre than 1 or 2
multi-packet messages in the IMP Subnet at once. Say that
the sender is so successful that he gets at least one more
message into the Subnet than there is room tc hold in
reassembly buffers at the destination IMP. Also say that
due to vagaries in routing and retransmission, at least one
packet of each of these messages gets into the reassembly
buffers at the destination IMP just as the reassembly buffer
pool is exhausted. ILock-up is then achieved. There is no
room for the additional packets required to complete the
partially assembled messages in the destination IMP and so
all packets sent to that IMP are discarded. Because the IMP
Subnet takes its responsibility for message integrity very
seriously, thoughts of automatically junking packets in this
lock-up situation are inadmissable. The sending HOST
continues to flood the Subnet until IMP kuffers are full
throughout the ARPANET, IMPs are transmitting in many

. directions at full speed, and most transmissions are being

discarded due to insufficient storage <Zeigler>.
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The situation is remarkably like the deadlock which arises
when there are two magnetic tape drives available on an
operating system and two two-drive programs are each

assigned only one.

The new IMP system has been installed with a relatively
complex ailocation scheme whereby multi-packet messages are
only permitted into the Subnet after an acknowledged
allocation of space has been made at the destination IMP. A
less sophisticated okserver (e.g., we) would suggest that
the problem of reassembly could be solved by eliminating
disassembly, i.e., by eliminating multi-packet messages. It
can be argued that the simplicity resulting from removing
disassembly and reassembly would more than repay the alleged
loss of performance. But the argument is more subtle and

more interesting than one might expect.

The IMPs do disassemkly fox a number of reasons. The
original ARPANET specifications called for 8095 bit
messages. Transmission efficiency under burst-errors and
the utilization of IMP memory for fixed-length klocks are
both thought to be optimized by packet sizes on the order of
1000 bits. By using 1000 bit packets, large multi-packet
mességes can be pipe-lined through the Subnet, the first
packet being sent on its way before the second has ewven
entered the source IMP. Ey using 1000 bit packets, a

message can be propagated in parallel through the ARPANET's
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redundant telephone circuits to achieve bit-rates in excess
of that of any one circuit. Finally, if the message size
were smaller, say equal to that of a packet, then the
overhead incurred by HOST computers in handling messages

would be increased.

But now the interesting deadlock. Because the IMPs are
constructed with general rurpose computers, processor
bandwidth limitations are such that the rpipe-lining effect
of disassembly significantly reduces delay and improves
throughput for multi-packet messages. Because the IMP
program is becoming increasingly complex owing to the
inherent difficulties of disassembly and the allocation
schemes which deal with them, the IMP can only be (as it 1is)
effectively implemented in software on a general purpose

computer.

By simplifying IMP operations (e.g., by removing
disassembly), follow-on IMPs can be built for high
performance nearly all in "hardware", whereugron the overall
performance will be so improved as to swamp any gains

attributable to disassemkly.

We look with great excitement to BBN's recent work on a
high-speed modular IMP which promises to answer the question

we raise and many others <Heartl1>.
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APPENDIX B

ARPANET HOST-HOST PROTOCOL

A typical HOST has an existence apart frcm the ARPANET; many
HOSTs even predate the IMP Subnet, some by as much as five
years. The Subnet does nothing more than bring to the
HOSTs, as described in the preceding appendix, a way to
qguickly and inexpensively send messages to each other. Like
the League of Nations before it, the ARPANET brings to its
members an opportunity to escape isolation, to cooperate

toward common ends.

Before HOSTs can cooperate via the IMP Subnet, they need to
agree on the rendezvous, format, and timing of messages to
be exchanged -- they must have a protocol. Any such setlof
agreements between or among HOSTs is called "a HOST-HOST
protocol". There have been many HOST~HOST protocols in the
short history of the ARPANET: one tOo connect a computer
terminal on a certain HOST to a certain "JOB" on another
certain HOST, one to send an ASCII file from a certain disk
in Salt Lake City to a disk in Menlo Park, and one to copy
records from a magnetic tape in Oklahoma tc another in
California, for example. But, as you might infer from these
examples, the various HCST-HOST protocols led to a great
deal of duplicated effort and inconvenience as each
application required the specific HOSTs involved to come to

new agreements and new implementations. And so one HOST-
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HOST protocol, called "the official HOST-HOST Protocol", was
developed to provide a set of general communication

procedures for use by various HOSTs in various applications.

In the preceding appendix we looked out into the IMP Subnet;
we now turn to look kack, inside the HOSTS;-to survey the
structures which evolved within thesé'prefexisting computing
systems to deal with the problems*bf ?rotocol in a packet
communication network. We discuss se@eral special-purpose
HOST~HOST protocols, mainly to give sﬁme histrical context,
and then move on to sketch the operation of thé “official"®
general-purpose HOST-HOST protocol. With some observations
about protocol design, we leave you to our-theories of
interprocess communication in the report proper and to the
detailed literature <Carr, Crockerl, Newkirk, McKenzie1l,

Bhushan4, Bhushan$, Bressler,chKenzieZ; Burchfiel, Kalinit>.
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Prior to the invention of the "official" ARPANET HOST-HOST
protocol, a number of protocols were invented either (1) to
develop confidence in basic ARPANET hardware and software,
or (2) to fill an immediate need for intercomgputer

communication.

Our experiences with special-purpose HOST-HOST protocols
were purely experimental. Three protocols were developed in
early 1970 involving the MIT Project MAC DMCG PDP-10 in
cooperation with, respectively, (1) MIT Multics, (2) the
Harvard PDP-10, and (3) a combination of the Harvard PDP-10,
the Harvard PDP-1, and the Project MAC Evans and Sutherland

LDS-1 (picture processor) .

The first protocol effort made it possible, under special
arrangement, to make one IMLAC console on a dedicated PDP-10
behave something like a Multics terminal via the ARPANET
<Padlipsky>.. The second protocol made it possible to make
that same IMLAC into a‘terminal on Harvard's PDP-10. Both
of these experiments were well worth the effort, not in
their end product, but rather in their use as tools in
developing ARPANET expertise and in exposing problems in

terminal interfacing <Metcalfe>.

Our (with Barker and Cohen at Harvard) third experimental

HOST-HOST protocol was more ambitious in that it involwed
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four major processors, three of which were joined only by
the ARPANET. A PDP-10/LDS-1 display program of considerable
complexity (i.e., Cohen's Aircraft Carrier Landing Program)
was edited and assembled on Harvardt's PDP-10; it was
transmitted to MIT's PDP-10/LDS-1; and the dynamically
changing picture it generated was then transmitted via the
ARPANET back tc Harvard's PDP-1 to be displayed. The
results of this experiment expose some additional lessons in
the coordination of remote processes and vérification of the
fact that the ARPANET supglies insufficient kandwidth for

brute-force dynamic graphics <Metcalfe>.

In parallel, at least two other HOST-HOST communication
efforts were performed. Between the Stanford Research
Institute (SRI) and the University of Utah, a protocol was
established to permit SRI people to do program development
on Utah's PDP-10 in preraration for their ﬁoVe from an SDS-

940 to a PDP-10.

Taft, Barker, and Sundberg developed a protocol at Harvard
by which their PDP-1 with its four DEC scopes becomes a very
fancy terminal for the Harvard PDP-10 over the ARPANET.

This experiment was an early attempt at terminal support
through the ARPANET, later followed by Conrad's PDP-1
Monitor at Harvard, BBN's TIP <Ornstein, Mimno> and the

University of Illinois's ARPANET terminal-support system.
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Two HOSTs, namely Tinker and McClellan Air Force Bases's
UNIVAC 418's, were used strictly for magnetic tape file
transfer. Their HOST-HOST protocol ignored all other HOSTs
and was optimized for efficient use in routine tape

transfer.

while most of these protocols (ana the programs written to
support them) have fallen into disuse, some ad hoc HOST-HOST
protocols persist and others will follow. The option to
invent special HOST-HOST rrotocols, despite the existence of
a general-purpose HOST-HOST protocol, remains in the ARPANET
to allow experimentation with new ideas in HOST-HOST
communication and to support special applications requiring
very high efficiency; this option is preserved in planning

for a commercial version of the ARPANET <PCI>.
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General Purpose NCP Protocols

The ARPANET IMP Subnet provides communication paths among
HOSTs; the basic unit of activity in the ARPANET is not the
HOST, however, but rather the user process or JOB. There
are typically a large numker of Joés running concurrently on
any given HOST at any given time. It was clear to early
ARPANET designers that a HOST-HOST protocol would be
required to multiplex the ARPANET's communications
facilities among user processes on HOSTs,’or rather, to
create a virtual process-process (i.e., JOE-JOB)

comminications network <Roberts>.

After a long period of controversy, two general-purpose
HOST-HOST protocols were forwarded. The first to be
formally presented <Crocker1> (and later adopted by the
ARPANET Network Working Group) is oriented around a system
of "connections®; we call it "the NCP protocol" from
"Network Control Program". The second to be formally
presented <Walden> (and the one currently being studied as a
sideline in ARPANET develcpment <Bresslert1>) is oriented
around a system of process-process "messages"; we call it

“the MSP protocol" from "Message Switching Protocol",

The connection-oriented NCP protocol adopted by the ARPANET
Network Working Group is an extension of the LINK mechanism
of the IMP Subnet. Establishing a process-process (i.e.,

JOB-JOB) connection is essentially the assignment of a HOST-
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HOST LINK to a process port (SOCKET) pair <Bhushan3,

McKenzie1>, The kasic transactions among so-called "Network

ccntrol‘Programs" (NCPs) obeying the HOST-HOST protocol are

simply those of (1) requesting that a LINK be allocated to a

- certain process-process (i.e., SOCKET-SOCKET) simplex data

path, (2) routing a byte stream from a connection's send
SOCKET to its receiwve SOCKET, (3) controlling the flow of
data through a LINK so as to avoid swamping a receiving
process, (4) interrupting communication cver a connection
for the handling of abnormal conditions, and (5) closing a

connection and freeing its LINK.

The message-oriented MSP‘protocol currently being studiea'by
Bressler and Walden preservés_the message exchange‘texture
of-the IMP Subnet for the virtual, uSer-levél interprocess
cbmmunication system. Because an NCP for such a HOST-HOST
protocol would do little more than multiplexing the use of
the IMP-HOST ihterface, it could be simple énd efficient.
Because “connections" will no doubt be useful objects at
some higher level of data exchénge, the message-~oriented NCP
protocol passes more communications-oriented functions to
higher level protocols and programs. _Whether a "connection-
oriented" NCP is more or less effective than a "message-

oriented" NCP remains an open question <Bressler1>.
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A_Scenario_for The NCP_Prctocol

The transmlssion of a byte-stream from one ARPANET user’
pxocess to ancther goes something like the following. One
of the processes (either the sending process or the
redeiving process) indicates to his local supérvisor (his
NCP therein) that he wishes to be receptive to requests for
connection to a specified socket. His use of a specific_32-
bit SOCKET number may be access-controlled to any extent
desired by the local system <Bhushan3>; Whether his request
to be receptive is at all selective is another option which
might be exercised. In this case the supervisor registers
the process's receptivity by making an entry in a local
"SOCKET table". The process is said to ke "listehing" for a

request for connection on the specified SOCKET.

Elsewhere in the network, the other process (called the
"initiating" process) indicates to his superxvisor that he
wishes to request a (simplex) connectionlbetweén~his
specified local SOCKET and a specified renoté SOCKET at a
remote HOST. On his behalf, the NCP senés.a HOST-HOST
control message (i.e., a “"Regquest For Connection" (RFC)) to
the specified HOST and registers this fact by:making an
entry in its local SOCKET table. The initiating process is

said to have a SOQCKET in "RFC sent" state.

At this point we have (1) a listening SOCKET, (2) an
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initiating SOCKET, and (3) a "request for connection" HOST-

HOST control message in transit between them.

At some later time (wiﬁhin .5 seconds) the RFC arrives at
its destination where the NCP notices that the target SOCKET
specified in the RFC matches an active entry in its SOCKET
table and that fhe connection can be completed. The
listening process is notified of the RFC's arrival and an
answering RFC message is sent back to the initiating HOST.
With the arrival of the answering RFC, the initiating NCP
marks the connection "open®" and notifiés the initiating

process.

In the RFC exchange leading to a successful connection, a
HOST-HOST LINK is specified. The LINK is allocated to the
new connection by whichever is to be the "receiving" NCP.
Note that a SOCKET can be either on the "listening" or
"jnitiating" end of a process-process simplex connection
and, independently, can be either "receiving" or "sending"

data through it.

At this point one would expect data to begin flowing from
sender to receiver, but one additibnal kind of message
exchange is required. The flow of data through a cbnnection
is controlled by the receiver via HOST-HOST allocation
control messages. Before any data can flow, a sender must
have received a permission (i.e., an allocation) to send a

specified number of bytes in a specified number of messages.
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This limiting of data flow by a receiver is intended to
handle buffering and processing mismatches between computer

systems of varying capability.

The receiving NCP with the now "open" connection next sends
an allocation message (also a HOST-HOST contrcl message) to
the specified sending NCP. An accounting is maintained of
outstanding allocations. The size of allocations is a
function of the size of buffers between the receiving HOST's
NCP and the receiving process. As data flows from sender to
receiver, the sender's allocation is depleted and, as new

allocation messages arrive, it is augmented <McKenziel).

Data is handed to the sending NCP by the sending process in
some HOST-specific manner (a JOB-NCP protocol) with a
specified local SOCKET. Using the specified SOCKET, (1) a
destination HOST and LINK are retrieved from the local
SOCKET table, (2) the allocation is checked and
appropriatély decremented and (3) the data is sent. Data
messages arriving at the receiving HOST are identified as to
sending HOST and LINK and are routed to the appropriate
receiving process with information retrieved from the

locally maintained SOCKET table.

A connection can be closed from either end. The closing
process indicates (e.g., by a system call) to his local NCP
that he wishes to terminate a connection. The local NCP

sends an aprropriately tagged "close" HOST-HOST control
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message to the NCP at the other end of the connection. Upon
recéiving an echoing "close" from the remoie NCP, the local
NCP deletes any knowledge of the connection from its SOCKET
table. An NCP receiving a "close" from the remote end of
one of its open connections, notifies the owning process of
connection termination and sends an echoing "close" as
confirmation of the connection's removal from the SOCKET

table.

Note that the above message exchanges support simplex (i.e.,
unidirectioual) data flow only. If data is to flow in both
directions between two user processes, two connections must
be established and the above control transmissions

duplicated for the reverse data flow.
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HOST-HOST Protocol; Observations

We make four observations about the current connection-
oriented HOST-HOST (NCP) protocol just sketched: (1) that
it has been successful in providing a general purpose
interprocess communication system for the ARPANET, (2) that
the size and complexity of the required NCPs has been a
significant factor in delaying ARPANET development, (3) that
effectiée error control mechanisms are ccnspicuously absent,
and (4) that there is evidence to suggest that ARPANET
traffic will have a sufficiently large message-oriented
component to justify message-oriented primitives at the NCP

protocol level.

success. Using the connection-oriented HOST-HOST protocol
as a base, the ARPA community has successfully developed a
(small) number of process-process protocols making '
substantive use of the AREANET. LINK, SOCKET, connection,
and allocation have found acceptance as cbjects convenient
for program manipulation in a wide variety of operating

contexts (e.g., from PDP-10's to 360's).

Size_and _complexity, In establishing a connection, two
remote processes (i.e.,, two NCP's) exchange messages toward
the coordinated manipulation of remote data kases (i.e.,
SOCKET tables). For the connectiOn'system to function

smoothly, care must be taken to maintain consistency in the

various tables interlocked across the population of




HOST-HOST Protocol Page 8-13

communicating HOSTs and user grocesses (i.e., JOBs). Each
of the NCP's runs asynchronously with respect to the others
and with respect to user processes in its own local system.
The mechanisms required to manage the distrikuted body of
state information supporting connections throughout the
ARPANET are non-trivial, and connection-oriented NCPs are

large and comglex.

The size of NCP implementations alone (program, SOCKET
tables, and system kuffers) has been a significant deterrent
to speedy implementation. Implementations with which we are
familiar require on the order of 3000 words of supervisor
space, not including tables and buffers; we recomﬁend that
you exercise care when making detailed prokes in this

delicate matter.

NCP complexity and concomitant difficulties cf coding and
debugging have been named as the principal cause of a six
month schedule slip for ARPANET development. It is not that
the complexity in managing connection-oriented communication
can be avoided in any simple way, but that the assignment of
this complexity to central supervisor level is a mistake.
The relative scarcity of stand-alone time for supervisor
debugging and the unmanageability of the internal supervisor

environment are koth significant.

Error control. We have already indicated that there is a

potential error control problem in the IMP Subnet due to the
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fact that neither IMP core memories nor IMP-HOST interfaces
are error-checked. It is also a fact that our complex
connection-oriented NCP's drop bits, bytes, and even whole
messages on occasion. Unfortunately, the NCP protocol, in
all of itS'efforts to afford user processeé a clean byte-
stream communication system, has failed to treat error
control. We have taken the IMP Subnet's guarantee of
(transmission) error-free communication too much to heart
(sic) and left ourselves exposed to the dangers of
intermittent undetected error. There are some who claim
that error control can and should be handled by higher level
protocols <Bhushah1>. We agree, but hasten to add that our
connectionforiented interface to these higher level
protocols precludes any reasonable error recovery
strategies. Indeed, this preclusion is manifest in the
repeated avoidance of error control provisions in all higher
level protocbls to date, e.g., TELNET <O'Sullivan,

Oo'sullivanl, Postel>, and File Transfer <Bhushané>.

The NCP protocol does not explicitly treat situations in
which a HOST malfunction leads to a specific protocol
violation or to a lack of response. HOST-HOST control
messages which arrive in an improper context are often
discarded and only occasiocnally logged. Many
implementations treat a lack of response after some
arbitrary time-out as a'prot$c61 violation and take punitive

action against all the users on an offending HOST. Actions
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taken (1) usually lose information and/or cause catastrophic
HosT-wide communications failures, (2) are non-standard, and
(3) offer little potential for successful recovery

<{Burchfiel>.

M§§§ggg;gg;ggggg_$£g§£;g; Experience with the ARPANET has
exposed several areas where critical interprocess
communications are essentially message-oriented and
therefore burdened significantly by the connection
orientation of the current HOST-HOST protocol. The most
notable of these is the Initial Connection Protocol (ICP)
<Postel 1> through which processes requiring a standard
service find their way to an appropriate server. The ICP
was the first "official" JOB-JOB protocol. The essence of
an ICP is a meséage exchange whereby a using process submits
a request for service to a standard address (published
SOCKET number) and gets back a new address indicating where
there is a process prepared to service that request. Thié
simple exchange, which could be handled in two messages with
a total of about 64 HOST-HOST data bits, requires, under the
current HOST-HOST protocol, no fewer than 6 HOST-HOST
messages (i.e., RFC, RFC, ALLOCATE, DATA, CLOSE, CLOSE) each
with a minimum of 40 HOST-HOST header bifs, not to mention
the control information carefully entered and removed from

two NCP SOCKET takles.

While the ICP is admittedly intended to be a relatively
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seldom~used communication function, the connection overhead
for the simple message exchange is staggering and probably a
forewarning of future difficulty. The constfuction of a
connection-oriented NCP protocol is based‘on the assumptioq
that, as a rule, most data exchanges will have extended
duration. One should always be suspicious when one's first

application of a rule generates an anomaly.

A second example of a mismatch between proceés-process
message exchange and the connection-orientation of the
current HOST-HCST protocol is found in the TELNET protocol.
Whereas the HOST-HOST protocol goes to great lengths to
allow NCP's to automate the buffering of data between sender
and receiver, cne of the more controversial facets of the
TELNET protocol is that of providing a mechanism for
draining NCP buffers which are, in general, an obstacle to

interactive terminal use <Crocker>.
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