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ABSTRACT

This research discusses a program which alds the
user of an automatic programming system (APS) In the
“debugging™ of hls model of his problem situation. In
essence, the user must make sure that he and  the APS mean.
the same thing by the description of the problem which the
APS Is to solve. The problem domain comsidered In this
thesis Is that of "business games" (l.e., the management
simutation games which are used as a Tearning tool iIn the
study of management). A language for descrlibing models of
these games |s presented. The paper then describes the
program's methods of simulating and finding bugs In models
written in this Yanguage. Important aspects of the program's
problem-solving approach to debuggling are I(ts  Internal
knowledge of "bugs" and of user Intentlon within the model,
This Internal knowledge stresses the [Impeortance of bugs
arising from the Interaction of submodels within the model.
Some detalls of the program's Implementation (In the
Conniver language) are  dlscussed, The necessity of
“"model-~debugging' In automatic programming Is emphasized.
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1 lIntroduction

The purpose of thls research Is to
explore a methodology for debugging certain models of real
world situatlons, The models considered here consist of
groups of well-defined submodels. The submodels themselves
are falrly structured; the Interactlon between submodels is
not. In this paper | will discuss a program which uses the
techniques of goal-programming to explore the Interactive
behavior of a given model. The basic idea is that a bug in
the model will give rise to a "problem". The program then
tries to solve this problem in an environment defined and
constrained by the model. Those steps at which the
program's problem-solving process encounters constraints
caused by unintended Interaction of submodels suggest
possible locations of bugs within the model.

To a large extent, the problems of this
research are "artificlal Intelligence" problems. That Is,
the research broblems Involve representation of knowledge in
a form which is useful to the problem-solver, and
representation of the problem-solving process as a computer
program, The remalnder of this paper will deal with one
solution of these problems for a program which debugs models

of management sltuations. This section will pnresent a more
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complete explanation of the area of model-debugging as | see
it. The next section provides an overview of the whole
debugging process in the context of a detalled example,
Later sections develop some ideas about bugs,

problem=-solving, goal-programming, and the program Itself,

1.1 pefine "define"

1.1.1 What Is a model?

Marvin Minsky describes the concept of a
"model" as follows:

If a creature can answer a question
about a hypothetical experiment without actually
performing 1it, then It has demonstrated some
knowledge about the world. For his answer to the
question must be an encoded description of the
behavior (Insltde the creature) of a sub-machine or
"model" responding to an encoded descriptlion of
the world situation described by the question,

We use the term "model" iIn the following
sense: to an observer B, an object A% [s a model
of an object A to the extent that B can use A* to
answer questions that interest him about A, [12]

For the purpose of this research, the term "model" will be
used In a much less general and more concrete way.
Specliflically, the program discussed here requlres that the
"encoded description'" be of a particular pre~defined type,
that the kinds of world-objects "A" to be modelled belong to

a very limited class of things, and that "B"'s questions of
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Interest be sharply restricted.

After this section, the term "model"
will be used to refer to a user-defined collection of
constructs in a mode specification language (MSL)
(presented In section 4,1) which describes a "real-world"
management system, (1) For now, suffice It to say that a
"model" 1Is a user's description of his system of Interest.
That is, the wuser thinks that the model describes his

system~=actually, the model contalins bugs.

1.1.2 What is debugeging?

When a model's performance is not what
the user expects, we say that the model has a "bug" (see
section 3), The process of findineg what causes the
discrepancy between performance and expectation 1Is called
"debugging". It Is the nature of complex processes that the
cause of a discrepancy may be related to the manifestation
of the discrepancy only through a seemingly Intricate chaln
of reasonling. The purpose of this research is to write a
program which knows the necessary kind of reasoning to go

from the manifestation to the cause of a bug.

(1)
Actually, a real-world business game.
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In order to Incorporate this reasoning
process, the program must have knowledge about MSL models
(see 4.1), the kinds of bugs that occur In MSL models (see
3.3), how these bugs manifest themselves (see b.4,2), and
how the causes are related to the manffestatlons (see
k,4.3)., Of course, this Is In some sense the “whole story";
before launching Into it, It might be a good idea to examine

our reasons for worrylng about model-debugg!ng in the flrst

place.

_1.2 Ihe importance of model-debugging

1.2.1 Model-deburgging as a unlversal concept

The process of gaining knowledge about
the world Is é process of model formation and debugging.
Thé progress of all organized thought, especlally sclehée,
has often been described in this way. More recently, work
by psychologists such as Plaget and artificlal intelligence
researchers such as Seymour Papert has broﬁght_ this model
formation/debugging vliew to bear on the entire learning
process. Certainly, no one can doubt the Importance of
studyling so fundamental a process. |

of course, in this research, the

viewpoint must be strictly limited, The following sections
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will describe a process which seems only barely related to
the grandiose exaltatlons of the previous paragraph, For
one thing, the extremely close Interaction between model
debugging and formatlon will be greatly restricted to allow
examination of the debugging process Itself. Also, the
restrictlions inherent (1) In the "“"show a working program"
approach of this research make the class of problems seem
trivial when compared to the overall problem of
model-debugging.

Although | could now clalm that the
validity of this research effort 1Is that 1[It provides an
initial Investigation into a very hairy area (the usual
Inductlion step in artificial intelligence theses), | will
move in more practical directions, (Of course, | hope for
the higher parallels all along.) Specifically, | consldef
the Importance of the kind of model~debugging actually

presented here for the new field of automatic programming.

1.2.2 Model-debuggineg In automatic programming

(1) These restrictions are "inherent" at this stage of our
knowledge, at this stage of my knowledge, and in the
exigenclies of churning out a Master's thecis. Certainly,
there are no Inherent restrictions 1In the capability of
computers to Incorporate the process.
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Automatic programming is the art of
providing a computer program (an "automatlc programming
system" (APS)) which takes as Input some user-amenable
description of a task and produces as output computer
programs to accompllsh that task. The user's description of
his task Is his "model" iIn the sense described In 1.1.1.
This 1Is the “model™ which the program described In this
thesls must debug.

But why worry about model-debugging?
Why not 1let the user speclify something, let the system
generate a solution program, and simply leave It to the user
to respecify the problem If he doesn't 11ke the results?
There are several answers to thls question, some obvlous,
others not so obvious. Baslically, the reasons for providing
sophisticated model-debuggling alds fevolve around
considerations of efficlent use of the APS, ease of use of
the APS, ease of constructlon of the APS, and "safety" In
the use of the APS.

The most obvious  reason for
model-debugging is that since code-generation (i.e.,
actually writing the solution program after the task
description Is in) 1Is a rather arduous process, It s
worthwhlile making sure that the user and the APS agree on

what the problem is before the APS actually writes programs
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to solve the problem, This idea of pre-code-generation
debugging is as old as compllers, and 1is falirly well

understood. (1)

A related but not quite so obvious
reason for providing model=-debugging alds In an APS 1s to
make the system easfier to use. This Is especlally necessary
in an APS 1like Protosystem | [8| which attempts to provide
problem=solving expertise to ald the user. The point Is
that the APS is designed to provide problem=solving
knowledge for a user who Is not at all adept In computer
problem=solving. To help him design a description of his
task and then not to ald him in debugging that description
seems like providing not much help at all: descriptions of
complex problems "always'" have bugs, and finding them is
usually as sophisticated a task as writing the description
In the first place. (2) Thus, | beleve that an APS that
does not provide model-debugging ald would be difficult, If
not impossible, to use.

Supposing, then, that some kind of

(1) The actual debugging of models may be quite different
from the debugging of source code, but the reason for doing
so Is the same in thls case.

(2) Statistics have shown that about 50% of the time In
large system development Is spent In debugging |2].
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debugging ald Is necessary, how should It be Interfaced with
the user and with the APS? The answer, | think, 1is that
debugging should occur when the system's knowledge of the
user's problem 1Is still at a high 1level of symbolic
description. That 1Is, prior to code generatlion, This
leaves the debugging effort in the  realm of
model-debugglng. The reason that It Is Important to keep
debugging at a high symbolic level Is to keep the deslign of
the APS as simple as possible, It Is quite difficult to
maintain the links between mistakes which occur at low
levels of description (e.g., programs) and their high-level
causes, Certainly .the user cannot bg - responsible for
maintaining these 1links. If the APS tells him that “an
i1legal reference was generated from location 11437, we
cannot expect him to have-any notlon of what went wrong with
his model description. In fact, the construction of an APS
which could make this connectlon betweén the bug's
manifestatlon and Its cause would be extremeiy difficult,
It seems much more reasonable to carry on debugging at a
high level of‘symbollc description which both the user and
the APS can understand in terms of the user's model,
Finally, there is a very speclial problem
which arises 1In connection with the use of the APS, The

user begins to develop a dependency on the APS and to trust
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the results of the solutlon programs. When the system is
more expert then the user (as Is the case In Protosystem 1),
the user may even trust results which "common sense" (l.e.,
previous experience, educated guesses, etc.) tells him are
wrong. In these circumstances, It Is of paramount
importance that the user be sure that the APS has a correct
understanding of his model, Other than the model-debugging
subsystem within the APS, there may be no source of feedback
which enables the user to find out that there is anything
wrong at all ., (1)

The model=-debugging facility has sole
responsibility for helping the user to understand what fis
wrong with hls model In terms of the model=--i,e., In the
only terms the user understands. An APS which does not
provide a facility for Interactive discussion of the model's
assumptions and thelr ramifications 1Is a dangerous tool
Indeed. Thus, the user must always have some means of
observing the effects of the assumptions In the model and
for making sure that the APS "knows what he means", The
model-debuggling subsystem of the APS provides the necessary
mechanism,

Therefore, for reasons of efficlency,

(1) The output code and, In many cases, the assumptions
underlying its generatlon will be Incomprehensible to the
average user.
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usabllity, and safety, a model=-debugging faclility 1Is a
necessary part of an automatic programming system. still,
the general problem of model~-debugging in automatic
programming Is much too large to be considered here. In
the next section, 1 will explain the particular subdomain of
automatic programming | will attack, and my reasons for

choosing (t.

1.3 Detalls, detalls

1.3.1 Restriction fo the WOEG

The program described In this theslis Is
speclalized to work on models chosen from the “world of
business games" (WOBG). By this | mean an environment in
which the concepts common to business games are the stock
knowledge. There are several reasons for choosing this
domain of interest: (1) the models are sufficlently
structured to be formally expressible, but are not so
structured that they are susceptible to mathematical
analysls; (2) the Interactlion of subhodels is the most
interesting and complex aspect of the model; (3) thils Is one
of the few domains which [Is both reasbnable-slzed and
Wreal-world" (in the sense that there is a great deal of

interest In It Independent of this research); (&) 1t 1{is a
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natural subdomain of the "world of business" (WOB) of
Protosystem | |9].

Models In various domains differ greatly
In the amount of “structure" present in the description of
the model, By "structure' | mean clearly defined rules of
construction and constralints on elements. The methods used
in this research require well-defined models. However, If
the model 1Is "too well~-defined", debugging becomes
uninteresting, or Is more easily accomplished by
mathematical tools, The WOBG seems to have just the right
level of structure, Since the idea of modelling business
systems Is well established, there exlst a varlety of
formallsms for expressing business models, These modelling
formalisms are even more clearly defined for business games.
The very ldea of a game Is to have a precise set of elements
and rules for manipulating them. Nonetheless, understanding
and debugging models of business games {s by no means
trivial, There 1Is good evidence that users of even the
simplest of business games have very poor and "buggy" models
of what is going on 131,161,118}, The main reason for this
s the complexity of the interaction between submodels In
business games.

| am particularly interested In

debugging models In which Interaction of subparts is a major
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factor In model complexity, Most model-worlids which have
been Investigated In artificial Intellligence research (e.g.,
the "blocks world" |21}|) have few complex interdependencies.
Existing Interaction problems tend to be downplayed in order
to emphaslize other aspects of the models, (For example,
see Wlnograd's 'solution" to the "“findspace problem" in
f21); cf, 1171.) | wish to explore the other end of the
interdependency scale; 1,e., highly Interactive models., (1)
The kind of models which the program described In tﬁls
research Is designed to debug are those In whlch the user
has a good understanding of the various parts of the model,
but does not understand how these parts (which | will call
"submodels") Interact with each other. (2)

In fact, gall of the bugs which the
program 1is designed to find arlse from IiInteraction of

submodels (see section 3.3), Business games have very

(1) Real world situations presumably fall somewhere Iin
between these two extremes. However, | wll1l devote a
considerable amount of space (all of section 3) to an
examination of how Interaction of submodels Is the major
complexity factor In real world situations (In particular,
in large busliness organizations), and how these real world
Iinterdependency problems form the Msemantlc roots'" of
similar problems in the toy-world used In this research. |
am hoping to motivate an Interest In the "interaction bugs"
which wlll preoccupy the remalnder of the thesis.

(2) | belleve that this Is a large and Iimportant c¢lass of
models, including models of '"systems" with well-understood
elements (see |31]).
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precisely defined elements (see the example game in Appendix
A). However, these elements interact with each other to
the extent that understanding how the "whole system" (l.e.,
all of the Interacting parts) works is a major challenge to
the players. Thus, since poorly understood interaction of
submodels 1Is the major source of bugs In this domain, the
WOBG forms an excellent testing ground for my program.

Busliness games also have the Important
property of belng interesting in thelr own right. Playfng
and understanding business games is considered to be an
important activity at many schools of management throughout
the world. There 1Is therefore 1little danger of being
accused of designing a program which works only in an ad hoc
problem domain. Furthermore, since people are used to
trying to model business games for themselves, they can
appreclfate the efforts of a program which aids in the
debugging of such models. This "real world" flavor of
business games Is one of their most important properties for
this research.

Finally, the VOBG is a natural subdomain
of the WOB of Protosystem I. This is useful, first of all,
because it allows a certaln inheritance of philosophy and
technlque from the larger project. More Importantly,

though, It enables the model~-debusger presented here to be
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seen In the context of a large automatic programming system.
Since the ralson d'etre of my program Is use in an APS, this
connection with Protosystem | is an Important aspect of the
research.

Therefore, the basic philosophy of
model-debuggling presented here will be applied to models
chosen from the world of business games. In order to show
that my basic ideas about debugging are Indeed "working
Ideas"™, | have written a program which uses these concepts

to debug actual models of business games.

1.3.2 The role of the program In the thesis

The program presented 1in thls thesis
serves several purposes: Illustration of important methods,
demonstration of the workability of the techniques, and
discussion of design Issues for model-debugging programs.
Certalnly, the major use of the program in the thesis Is to
provide examples for the debugging theory developed in the
research, A1l the major debugging ideas are I1llustrated by
a scenario from the werking program., As for the second use
of the program, a little care Is necessary in explaining the
"proof" value of the program in the thesis. It s often

contended that working programs prove the utility of the
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theories that they represent. This is true, so long as the
reader Is ;areful not to use some sort of false Induction
princliple to Infer too much from what the program actually
does. As Is almost always the case, the prog}am in this
thesis can actually do only a subset of what Is talked
about. | will always make it clear what the program - can
and cannot do, how the program can be extended to do more,
etc.A The reader should draw any general
conclusions--carefully--from this informatlion,

Using thlis Yprogram-as-illustrator"
philosophy of presentation, | will now launch Iinto a
detalled example of program operation on a simple model.
This will hopefully give the reader a good basic 1Ildea of
what the rest of the thesis has to say. The issues raised
Iin the example and the example itself will be discussed at
length In the rest of the thesls, each aspect of the problem

appearing In its logical section (see table of contents).
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2 Jyst to zive vou an Idea...

The Important thing to keep In mind
about this program Is that It finds the causes of bugs in
much the same way that people (or Sussman's HACKER |18]) do:
by trying to solve problems=-~and falling. In thils section |
will present the complete works of my program in connectlon
with a very simple example, A lot of new. notation s
presented here; please don't get bogged down in it. l
present it here only to avold vagueness in showing what ‘the
program actually works with, More complete explanations of
all the notation (and Indeed, the entire example) appear In
the appropriate sections later on. This discussion focuses
on what the program means by a "bug" and on some of the
procedures used to go from the manifestation to the cause of
a bug. Neither the procedures nor the descriptive
mechanisms used by the program are discussed In detall here,.
Philosophical 1Issues about representation of knowledge In
the program and goal-programming are eschewed completely,
This Is a qulick "introduction by doing" to the methodology
of the program.

Suppose the user presents the program

with the following (tiny) model:
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Consider the following model
of sales. A sale Is a probabilistic occurence
which depends only on the amount of advertising
done, Advertising costs $3000 per page and is

good for one quarter,. I buy three pages of
advertising per quarter, If the money to do so Is
avallable, Sales take place during sales calls.

There Is one call per salesman per quarter,. A
customer never buys more than one unlit. If a unit
Is sold, the company records $5000 in accounts
recelvable (A-R), which 1Is not collectable for
another two quarters, At any time, a salesman has
a 5% chance of qulitting. If a salesman quits, a
new man Is hired. After three months of
tralning, thls man becomes a salesman and may
start maklng calls. Both salesmen and tralinees
are pald $1000 per quarter. Tralnees also have a
5% chance of quitting at any time.

The user would Input thls model into the program with the
model speciflcatlion language presented In section L.1. In
these MSL terms, the model looks 1like:

(*ACTIVITY HIRING
(*PREREQUISITES (*PRESENT (1000 CASH)))
(*SCHEDULE ON QUIT)
(*PRIORITY 2)
(*QUTPUT (SOME TRAINEE))
, (*TAKES 0)

(*ACTIVITY ADVERTISING
(*PREREQUISITES (*PRESENT (3000 CASH)))
{*SCHEDULE 3)
(*TAKES 1)
(*PRIORITY 3)
, (*OUTPUT (1 PAGE~OF-ADVERTISING))

(*ACTIVITY TRAINING
(*PREREQUISITES
(AND
(*PRESENT (1000 CASH))
(*PRESENT (SOME TRAINEE))
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)

(*TAKES 3)

(*OUTPUT (SOME SALESMAN))
) : .

(#ACTIVITY SALES-CALL
(+PREREQUISITES
(AND |
(*PRESENT (1000 CASH))
(+PRESENT (1 UNIT))
(*PRESENT (SOME SALESMAN))
)

)
; (*TAKES 1)

(*ACTIVITY COLLECTION '
(#PREREQUISITES (+PRESENT (5000 A-R)))
(*TAKES 2)
(«OUTPUT (5000 CASH))

)

(«EVENT SALE
(*CONDITIONS SALES-PROBABILITY)
(*ACTIVITIES (SALES-CALL)
(«OUTPUT (5000 A-R))
) ,

)

(*EVENT QUITTING .
(*CONDITIONS QUITTING-PROBABILITY)
(+ACTIVITIES (SALES-CALL)

(*CANCEL)
(*REMOVE (THAT SALESMAN))

) :
(*ACTIVITIES (TRAINING)
(*CANCEL)
(*REMOVE (THAT TRAINEE))
)
)

(*FUNCTION SALES-PROBABILITY :
(*ARGUMENTS (PAGE-OFfADVERTISING))
(#RETURN ad-functlion))

(1 will not show the exact nature of
“ad-function®, as It Is a #TABLE construct (see U4,1)--
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just a bunch of numbers that we shouldn't worry about
here (see Appendix B).)

Now suppose the user gives the program
the following:
(*SIMULATE 4 1

((30000 CASH)

(50 UNIT)

(DON SALESMAN)

(MARK SALESMAN)

(STEVE SALESMAN)

(BILL SALESMAN)

(.05 QUITTING-PROBABILITY)) )
or, In words, simulate the model for & quarters, showing a
time-slice every quarter, and with the glven Inftial values.
Before consldering the actlions of the program, It 1is
worthwhile to note a few thlngs.

First, observe that the the user has

given the model (50 UNIT) as an Initial resource, This Is a
typical example of a model~testing technlque: adding slack
to decouple submodels, Presumably, UNIT s something
created by another submodel which the user does not wish to
conslider at tnis time. The user effectively removes this
"other submodel™ by making sure that the submodel 1is never
limited by the amount of UNIT avallable. (The PRODUCTION
submodel which creates UNIT's Is shown in Appendix B.))

Second, note that we are making an

implicit assumption about what the user will do with the
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simulation after It Is presented by the program. We are
assuming that he will be elther satlsfléd,or dissatisfied
with the result (1) . If he is dissatisfied, he will express
his expectatlion to the system In the form of a goal, This
initiates the debugging process. At this time, let us
rejoin our example, In progress.

The flrst actlon of the program Is to
simulate the model as the user requests, |f the user's
expectation Is fulfllled, no further action will be taken
until the wuser's next vrequest for simulation, If his
expectation Is not met, the program will help him find the
bug in the model, |

The requested simulation Is shown below.
The representation used here (and throughout the thesis)
should be seen as a graphical descrtptloé 6f the complex of
1ist structure which the program uses to descflbe simulation
histories. Every part of the dlagram ha$ an analog in the
Conniver |20] representation of the Drogréh* (see sectlion

b.2),

(1) We are also assuming that the user Is a good judge of
the overall performance of the system he Is trying to model.
This 1is of course not Inconsistent with our baslc premise
that the user does not fully understand the workings of the
system (and therefore has bugs In his model). Rather, we
are saying that the user knows pretty well what the model
s:ou:d do, but Is having trouble making the model do what It
should.
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SIMULATION-HISTORY

*TIME-SLICE 0=

.SALESMEN: DON, STEVE,MARK, BILL
CASH: 30000
UNITS: 50

*TIME-SLICE 1»

RESOURCES:
SALESMEN: DON, STEVE, MARK, BILL
CASH: 17000
UNITS: 48
A-R: 10000
SCHEDULED 's:

*AC” :
. SALES-CALL (DON)

SALES-CALL (STEVE)

SALES~CALL (MARK)

SALES=-CALL (BILL)

ADVERTISING

ADVERTISING

ADVERTISING

COLLECTION (TIME-LEFT = 2)
COLLECTION (TIME-LEFT = 2)

SALE (BILL)
SALE (DON)

*TIME-SLICE 2+

.SALESMEN: DON,MARK,BILL

CASH: 5000
UNITS: L7
A-R: 15000
TRAINEE: GO0001
*ACTIVITY's:

SALES=CALL (DON)
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SALES~CALL (MARK)
SALES-CALL (BILL)
ADVERT IS ENG

ADVERTISING

ADVERTISING

COLLECTION (TIME-LEFT = X}
COLLECTION (TIME-LEFT = 1)
COLLECTION (TIME-LEFT = 2}
HIRING

TRAINING (TIME-LEFT = 3}

SALE (MARK)
QUITTING (STEVE)

*TIME-SLICE 3w

RRESOURCES :
SALESMEN: DON, MARK, BILL
CASH: 2000
UNLTS: L8]
A-R: 16006
TRAINEE: GO0001 :

SALES-CALL (DON)
SALES-CALL (MARK)
SALES-CALE (BILL)
ADVERT I SING

ADVERT IS ING

ADVERT IS ING

COLLECTION (TIME-LEFT = 2)
COLLECTION (TIME-LEFT = 1)
TRAINING (TIME-LEFT = 2)

*EV e
" SALE €BYLL)

*TIME~SLICE 4w

RESQURCES :
SALESMEN: DON, MARK, BILL
CASH: 1000
UNITS: &S
A-R: 10000
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TRAINEE: G0001

SCHEDULED ~ACTIV|TY's:

- SALES-CALL (DON)
SALES-CALL (MARK)
SALES-CALL (BILL)
ADVERTISING
COLLECTON (TIME-LEFT = 2)
COLLECTION (TIME-LEFT = 1)

- TRAINING (TIME-LEFT = 1)

*EVENT's

SALE (MARK)

The simulation has resulted in 5 SALE's.
Suppose that the wuser expected 6. ‘There Is a bug In the
model=~--but where? Note that the model! runs out of CASH In
the last quarter (and therefore cannot schedule all three
ADVERTISING #ACTIVITY's). However, the bug Is not "NOT
ENOUGH CASH", Rather, this effect Is symptomatic of the
bug. Most of the effort of the program Is to point out
bugs, not thelr symptoms. But this requires problem~solving
in the context of the simulation history. Back to the
actual action of the program...

The user notes that there were only 5
SALE's rather than the expected 6. In order to try to
rectify things, the user glves the system

(*GOAL (INCREASE SALE 1))

The program Is now in the debuggling business., It must try
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to solve the problem of Increasing the number of SALE's in
the context of the gliven simulation history. The places at
which It encounters dublous constraints In the simulation
environment are its possible locatlons for bugs.

The program uses the; model and the
simulation history to perform the requisite problem-solving
activity fér each goal as It 1Is presented. This may be
thought of as asking two questlions of the model and the
simulation:

(1) Why didn't you do this before?
and, If there Is no good reason,

(2) : How could we do this?

The method of asking and reteiving anSwefs to these
questions Is best explained by continuation of the example.
The first goal (glven by the user) Is
(«GOAL (INCREASE SALE 1))

Since this goal was given by the user, the first questlion Is
not asked. However, the second question fs asked. How can
we Increase the number of SALE's? By examining the model
and using the 1loglc of [INCREASE (explained In section
b.4.1), we see that one way to Increase SALE's Is to‘

Increase the probablility of a SALE occurfng. Thus, the

system generates a new goal
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(*GOAL (INCREASE SALES=-PROBABILITY))

Now the program asks question number one: why wasn't
SALES-PROBABILITY higher 1In the first place? The program
looks at the simulation history and notes that the
SALES-PROBABIL!TY was at a low In time-slice 4. Why Is it
so low? There was not enough ADVERTISING, the program
determines. This Is a BAD REASON: the model was
RESOURCE-LIMITED, Okay, how can we get the necessary
ADVERTISING? In order to Investigate this question, the
program generates a new goal

(*GOAL (SCHEDULE 2 ADVERTISING 4))

which means "try to schedule 2 ADVERTISING =*ACTIVITY's in
tlme—é]lce B", (The fact that we need 2 ADVERTISING
*ACTIVITY's s presumably due to the exact nature of
"ad-function”, and will not be discussed here.) Again, the
program asks why the ADVERTISING =*ACTIVITY's were not
scheduled In the flrst place. The answer Is that there was
not enough CASH; stil1 RESOURCE-LIMITED, so we pursue thls
line with:

(*GOAL (INCREASE CASH 6000 4))

By agaln asking the questions and forming new goals, the
program forms the followlng *GOAL line:

(*GOAL (INCREASE CASH 6000 4))
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(*GOAL (SCHEDULE 2 COLLECTION &))
(*GOAL (ALLOW 2 SALE 2))
(*GOAL (SCHEDULE 3 ADVERTISING 2))

("ALLOW" rather than “SCHEDULE" because SALE Is an +*EVENT.)
Note that we are back to SCHEDULIng ADVERTISING. Are we In
some kind of 1loop? No, we are moving back In time.
Furthermore, this time, when we ask why we didn't schedule

three more ADVERTISING *ACTIVITY's In time-siice 2, we find
that the reason Is that the user told us not to (via his
*SCHEDULE specificatlion in the ADVERTISING #ACTIVITY (see
page 17)).  Thus, ADVERTISING Is SCHEDULE-LIMITED In
time-sllce 2. This 1Is a GOOD REASON, and the program
terminates aétlon on this line of thought. Nonetheless, It
saves information about the terminated llné.- If no more
“likely" bug Is found, the program will tell the user that
his *#SCHEDULE specificatlion for ADVERTISING Is Insufficient
to allow the model to meet his expectétlons. In the
meantime, however, the program explores the model for more

1ikely bugs. The program does this by "backing up" (1) some

(1) This Is pot automatic backup In the PLANNER sense. The
program backs up only In certaln cases, and only under
program control. More Importantlya the effects of the
“"hacked-over" *GOAL's are '"undone® only 1ln the context of
the si : . The terminated llnes must be saved
for later examination by the program. Thls Is essential for
handling the +=GROUP constructs dlscussed later in the
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and trying a different 1ine of attack.

In this case, the program checks to see

if there Is another way to accompllsh

(*GOAL (ALLOW 2 SALE 2))

Using Its usual questlon-asking procedure, the program finds

the alternate 1lne
(*GOAL (ALLOW 2 SALE 2))
(*GOAL (INCREASE SALES-CALL 2 2))
(*GOAL (INCREASE SALESMAN 2 2))
(*GOAL (SCHEDULE 2 TRAINING -1)) ???

(Note that CASH does not have to be INCREASEd In this 1lne

because there Is already a sufficlent amount to support
new INCREASEs.) The program immedlately ndtes that it
trying to schedule In negative time, and terminates
line,
This finishes off the entire
(*GOAL (INCREASE SALES-PROBABILITY))

ldea. But there Is still another way for the program to
to get that extra SALE it 1is 1looklng for: by trying
increase the number of SALES-CALL's, Thus,

(#«GOAL (INCREASE SALE 1))

the
Is

the

try

to

thesis, and for makling final debugging recommendations
section &4.4),

(see
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(*GOAL (INCREASE SALES-CALL 2 &))
(*GOAL (INCREASE SALESMAN 2 4))
(*GOAL (SCHEDULE 2 TRAINING 1))
(*GOAL (INCREASE TRAINING 2 1))

(*GOAL (INCREASE HIRING 2 1))

(The cholce of time-slice 4 for INCREASIng SALES~CALL was ’
not arbitrary: the program chooses a sllcé where It thinks
It can do the most good.) But the program cannot accompf!sh
this lastvgoél.‘why not? The user speclf{cally said not to
hire untll someone quits. The program then checks to see
If HIRING did in fact occur. Yes--one time-slice later.
This parttcﬁlaf set of clrcumstances suggests a common
timing bug in the manager's "fire-fightlng" approach to
problem solving--no action was taken until it was too late
for it to do any good (the solution Is to anticipate
problems; more detalls about managers' bugs In section 3),
Since this bug arlses from so specific a group of events,
the program thinks I't is a rather probable bug and gets
ready to suggest It first. It then checks to see [f there
are any other ways of INCREASing the number of SALE's.
Since there are not, It is finished 1oo0king for bugs, and Is
now ready to suggest the bugs It knows. , |

As advertised, the flrst bug suggested

to the user fs:
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--BAD *SCHEDULE FOR HIRING: DEPENDENT ON QUIT; HIRING
TOO LATE
The wuser may agree that this is the bug (I think it 1s),
or ask the program to try again. The next bug suggested
is

-=BAD SENSE OF PRIORITIES: HIRING AND ADVERTISING

Essentlally, the program suggests that [t could have
gotten more ADVERTISING if HIRING did not have higher
priorlty. If the wuser doesn't buy this, the program
suggests that he sImply blew the *SCHEDULE specification
on ADVERTISING:

==BAD *SCHEDULE FOR ADVERTISING: NOT ENOUGH

If the user still doesn't 1ike what's happening (and
sfince thé program has suggested all of the bugs it
found), the program declides to see If the user might have
mis-specified or completely omitted a relevant part of
his model (this happens more often than you might think)
It then uses its access to WOBG knowledge to suggest

=-MISSING *ACTIVITY: FACTORING

(the user may factor accounts-recelvable to provide
Instant cash) and

-~MISSING *ACTIVITY: RESEARCH AND DEVELOPMENT
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(the user may Increase the probabllity of a sale by
improving hls product).

The program goes out of the debugging
business whenever the user takes a suggestion, or, of
course, when its bag of tricks is exhausted. The user
can now flx his model or change hlé.expectatlons and
re~-simulate. Eventually, this process of simulatlion and
debugging will converge to a model that the user Is
confldent that he and ~the APS both understand
sufficlently.

in this sectlon | have tried to show
a complete example of what thils thesls Is about., | will
now go  into an examination of the foundatlons’of this
approach, and = the technlques that allow its
implementation.. | begin with a philosophical discussion

of bugs (yech).
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3 Bugs

A bug Is something that prevents
something from behaving the way someone expects it to.
This sectlon particularizes the notion of "bug" to a
concept which Is useful for this research. As usual, the
program only knows about a narrowed-down version of
"bug“;

We will be Interested here only in
"understanding-bugs"--1.e., bugs that exist only in the
user's understanding df the system he wishes to model
(cf. Goldsteln's "semantic bugs" |5]). This immediately
removes from consideration "parenthesis errors" and other
"syntactic bugs" (of course, -trivlal syntax  bugs
sometimes arise from a basic misunderstanding). Thus,
there will be no Interest whatsoevgr in finding bugs due
to MSL errors. In fact, no attention is given to bugs of
any kind that arise from careless expression of the
user's knowledge In the modelling formallsm,

| The kinds of bugs with which the
program Is concerned are those that seem to be "Inherent"
In the way people understand (or misunderstand) systems.
The rest of this section will be devoted to an

examination of bugs that occur In the modelling process




Page 36

and the features of the problem domain that cause them to

occur,.
3.1 Bugs In models

5.1.1 What did 1 do wrong?

What happens when people try to model
systems? They usually do some mumbling and
head-scratching and come out with some sort of expression
of thelr Ildeas. In this research, the "expression" Is
required to be rather formal, but this doesn't matter
much. Next, the modeller somehow tests his model to see
how 1t pérforms under various conditions (just as my
system uses simulation, see section 4.2). Most of the
time, the model does nbt perform as the mpdeller expects
it to--Ysomething goes wrong",

Actually, "“somethling went wrong" at
define-time: there Is something In the def{nltlon of the
mode whléh Is causing the unexpected behavior. | have
already mentioned the hypothesls that thé_user has a good
understanding of each submodel. (1) Thus, the part of

the model definition which 1Is In error must be a

(1) The notion of "submodel" will become much more preclise
when | discuss MSL in section 4.1.
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speclification of submodel Interaction. The
manifestation of such a bug varles widely with the
particular bug Involved, and tends to be a detailed
matter (l.e., highly dependent on the actual
representation formallsm), Therefore, 1| wlll postpone
(th discussion of this problem until after | have
described the formalism (4.4.2), and go on to an
examination of the "semantic roots" of these "interaction

bugs".

3.1.2 Interaction bugs

In order to understand the Idea of
Interaction between submodels, it Is helpful to view the
model as a process which defines the action of the
modelled system. Thus, the models we will examine here
all “do something". The model can be seen as a system
which converts some sort of Input resources into some
predefined outputs. (This is, In fact, a very popular
view of management systems,) For the model to "do"
anything, Ifs submodels must Interact with each other.
That Is, the Inputs to the entlre model are actually
Inputs to certaln submodels which convert them Into

Intermedlate quantitles which are in turn inputs to other
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submodels~--and so on untll the desired outputs are
obtained.

Via this interactlion, varlous
dependencies between submodels arise., The most common
Is that one submodel must walt for the completion of
another before It can begin action, (See section hk.4 for
a detalled account of different kinds of Interaction
between MSL submodels.) Also, submodels often share
basic resources, giving rise to conflicts between
submodels,

These dependencles and conflicts
between submodels provide the environment for the
followlng baslic ")nteracttdh bugs®:

(1) Unexpected confllict arising from competition for
shared resources

(2) Weak performance due to poor perception of
time-phased occurences ,

(3) Speclal complexity problems arising. from the
concentration of (1) and (2) In "tight systems" bound
by higher-order constraints :
Although | belleve that these bugs have conslderable
generallity, 1| willl not discuss them In the abstract.

Instead, | willl move Immediately Into the domain of

management systems to provide a framework for discussion.
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3.2 Interaction In manasement systems

The bugs catalogued in the above
subsectlion arise from poor understanding of complexity.
This "complexity" |Is directly inherited by the models from
the modelled domain. As an introduction to the Interaction
complexity of organizations in the world of business (which
form the basis for business games, the "modelled domain" of
this thesis), | will quote In full an illustrative passage
from Ga]bra!th'lhl:

There is considerable variation 1in the
amount of Interdependence in organizations. The
kinds of varlatlion can be il1lustrated by
considering a large research and development
laboratory employing some 500 scientists who are
pursuing the state-of-the-art. Thus we have a
large number of elements and high task
uncertalinty, However, there 1Is little need for
communication. All the projects are small and not
directly connected to other projects. Therefore a
schedule delay or a design change does not
directly affect other design groups. The only
source of Interdependence 1is that the design
groups share the same pool of resources--men,
facilitles, 1ideas, and money. But once the
Inftial resource allocatlons are made, the only
necessary communication between design groups |Is
to pass on new ideas (Allen, 1969). This type of
interdependence has been termed as pooled
(Thompson, 1966, Pp. 54=5).

If the nature of the projects
is changed from 250 small independent ones to two -
large ones, a different pattern of Interdependence
arises. The large projects will require
sequential desligns. That Is, a device 1is first
designed to determine how much power It will
require, After It Is complete, then the design of
the power source can take place. Under these
conditions, a problem encountered in the design of
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the device will directly affect the group working
on the power souce. The greater the number of
problems, the greater the amount of comunication
that must take place to jointly resolve problems.

The second example describes a
situation which 1Is more complex and requires
greater amounts of information processing., The
second example has all the problems that were
described 1In the first example. There must be
budget and facilities allocations made under
conditions of uncertalinty. There must be a flow
of new Iideas among the technical speclalties.
But, in addition, the second example requires
information processing and decision making to
regulate the schedule of sequential actlivitlies.
This is because there Is greater Interdependence
in the second example.

The interdependence or
interrelatedness of the design groups can be
increased above what Is described In the second
example by the degree to which “design
optimization" is pursued. Optimlzation means that
a highly efficient device 1Is desired and any
change in the deslgn of one of the components
requires redesign of some others.

This can be 1llustrated by an
automoblile engine and body. The handling
qualities of a car depend on the welght of
the engine., The engine compartment can hold
only a certain size of englne with Iits
accessories, The drive shaft and
differential c¢can handle only a 1imited
amount of torque. Changes In the welght,
size, or output of the engine may
necesslitate changes 1in the body of the
automobile, These interrelations and many
others must be taken 1{into account In the
design of an automoblle.

Actually, in the case of a
passenger automobile there is a good deal of
flexibility with regard to body-englne
match. The englne compartment 1is wusually
large, the parts of the suspension are
easily changed, and the drive shaft probably
has plenty of excess torque=-carrying
capabilty. Engines of a varliety of shapes
and sizes are frequently placed in the same
bcdy. But this need not be the case. In
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high-performance automobiles, the size of
the englne compartment Is frequently sharply
constralned by aerodynamlcs considerations.
There may be efforts to lighten the whole
automoblile by making parts of the drive
system and body as light as possible; gliven
the requlred strengths, In such a
sftuation, the flexibillty 1in the slize,
shape and performance of the engline placed
in the body Is sharply reduced or
eliminated. (Glennan, 1967)

Thus the high performance auto Is a highly
interrelated system while the passenger car is a
flexible, loosely coupled system. The same is
true of organizational subunits which must design
these systems. Any change in the engline deslign
for the high performance car must be communicated
to the group designing the body so that an optimal
fit is stl1l achieved after the change. This Is
less true for a passenger car. Therefore, the
organization desligning the high performance car
must be capable of handling the information flows
described in examples one and two for budgets,
Ideas, and schedules and also those for all
design-redesign decisions deriving from the
interrelated design. The amount of information
that must be processed increases as the amount of
interdependence Increases.

Each of Galbraith's examples illustrates
a kind of interdependency between subunits of an
organlzation, The first kind, pooled linterdependency ,
gives rise to interaction bug (1) of the previous
subsection. That Is, when resource sharing is present, there
is 1lable to be unexpected conflict between subunits trying
to use the same resources (These are the PRIORITY bugs of

the example in section 2), Galbraith next cites an example

of sequential interdependency, l.e., interaction over time
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as well as resources,. Again, thls second kind of
interdependency provides an environment for the second kind
of Interaction bug: when subunits Interact over time, the
modeller Is 1lable to mis-estimate tlime-effects, thus
causling degraded performance (these are the SCHEDULE bugs of
the example In sectlon 2), Finally, Gaibraith mentions
higher-order constraint Interdependency. (1) Essentially,
this means that a higher-order objectlive, shared by a group
of subunits, has forced a need for greater interdependency
among the subunits of the group. What has happened is that
in the new "tighter" system, the pooled and sequential
interdependency has been spread to more (sometimes all)
members of the Interactive group. This kind of
Interdependency has a direct interpretatlon In the WOBG
which will be discussed in the next subsection. The third
kind of Interaction bug from sectlon 3.1.2 of course arises
from the higher-order constralnt environment. (There are no
examples of this kind of bug In the example of section 2;

higher-order constralints were del iberately kept out for the

(1)

I think that the introduction of the "design
optimization" term here Is very unfortunate. The point is
that the subunits have become more interactive due to the
presence of a higher-order constraint. In this case, the
constraint happens to be that the units must Interact in
order to achlieve an optimal design. However, in the next
subsection | will discuss other higher-order constraints
which cause the same increase in interaction.
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sake of simplicity, There will be examples of this kind of
bug later in the thesis.)

| These three 'types of Interdependency
form the semantic roots of the bugs considered by my
program, In .the following subsection we will examine the
way these real world organizational dependencles are

modelled In the world of busines games.

5.3 Bugs In WOBG models

Business games provide a laboratory for
teaching managerial decislon-making. Since nmost Iimportant
management declsions Involve resolving conflicts (or
possible confllcts, In the case of planning) arising from
subunit 'lnterdependency, the three kinds of
Interdependenclies discussed In  the ~previous sectlion are
emphasized In many business games., And, of course, with the
three Interdependencles come the three Interaction bugs.

Pooled Interdependency arlses from a

natural sharing of resources by different parts of the

game-player's "business". The business game contains a
- very well-defined set of "resources" (cash, salesmen,
production-lines, etc.) which the player must manipulate

accord ng to certaln specified rules of play. (1) The basic
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Idea Is to accumulate certaln resources which are deslignated
as "assets", There are a varlety of strategles for
accumulating assets (e.g., use research, do some
advertlising, 1learn about market trends, etc.). The
important point for us 1Is that the implementation of any
strategy requlres maniputation of various subunits of the
player's "business". These subunits share the pooled
resource of cash. Slince cash Is In 1limited supply, an
lnterdependéncy is set up, and confllcts arise. Poor
understanding of this pooled interdependency glves rise to
sectfon 3.1.,2's bug type (1): "unexpected conflict arising
from competition for shared resources."

A much more interestlng‘ aspect of the
particular game I have selected 1Is the sequential
interdependency among subunits. Flrst of all, note that
some of the activities of the subunlts are "long~-term"
(research and development, tralning sales personnel,
constructing additional production capacity, etc.), while
others are "short-term" (advertising, factoring accounts
recelvable, hiring, etc.). Second, there Is considerable

linkage between the requirements of some activities and the

(1) This discussion is based on the actual business game
presented In Appendix A--it might be a good ldea to glance
over the description of the .game to give yourself the flavor
of what's going on.
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"outputs" of others (productlon’ provides units to sell;
hiring provides employees to train, etc.). Finally, the
game contalns a rather rich "possibillity space" for any
glven strategy If the time-scale Is long enough. That s,
there are avvarlety of non-Independent ways of golng about
achleving a given task over time. A1l of this (plus the
additlon of probabilistic occurences over time) adds up to a
complex pattern of sequential dependecies, which in turn
glives rilse ‘to"bug (2), "weak performance due to poor
perception of time-phased occurences".

It s characteristic of the game used
here (and of-most'other business games) that the pooled and
sequential interdependencies are frequently made more
Intense by "higher-order constralnts". These constraints
arlse from:.the activity structure of the game. The key
factor Is that various actlivities and funétlons of the
organfzation depend on the outputs of more than one prior
activity (note that this was not the case in the example of
section 2, and thus thls problem was avolded). | can
present a detalled account of these mutual Interdependency
relatlonships only after | discuss the way the game is
modelled in MSL ( | will do this In 4.4). For now, It will
suffice to say that two kinds of higher-order constraints

are distinguished: the kind In which several activitles (or,
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more usually, chains of activitlies) must combine to provide
resources for another activity, and the kind In which a
number of activities can combine In various unstructured
ways to achieve a functionally-determined goal.

This section has been devoted to filling
in rather general background Information aboﬁt the kind of
bugs the program knows about and how these arise naturally'
in real world systems. We now go on to an examination of
how the program Incorporates some knowledge about theée
bugs, and how it goes about using thls knowledge to debug

models.
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4 How the program works

In this section | will present a program
which flnds the kind of Interaction bugs discussed above.
An example of program operation has already been shown In
section 2, From this example, the following pattern of
program operation Is evident: the program starts with a
model represented in a speclal formal language; it takes
this model! and produces a simulation of it; |If the user
finds a dIscrépancy between hls expectations of model
performance and the results of the simulation, he presents
the program with the goal of ellminating the discrepancy.
The program then attempts, using both the model as
originally stated by the user and the results of the model's
simulation, to achieve that goal; in the cburse of falling
to achieve that goal (1) , the program finds features of the
model which It considers to be unintended causes of the
fallure--hyg;. It then suggests these bugsb (in order of
"1ikelthood") -to the user, leaving him to take the next step
(and perhaps re-lnltiaté the process). |

This sectlon considers each aspect of

(1) The program §h9Hld fall to achlieve almost all user
goals! (The almost" is due to probabillistic
considerations,) Otherwise, there was not a bug and the
simulation would have achleved the goal In the first place.
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this process in turn. It begins (4.1) with an examination
of the model specification language, providing a firm basis
for understanding what the program does and does not know
about the wuser's model. Next (4.2), It describes the
simulation of the model and the way the results of the
simulation are presented to the debugger. Continulng along
the debugging process, section 4.3 deals with the way user
goals are formed and the way In which the system handles
goals, Section 4.4 can then talk about how thé program's
deductlive mechanisms pursue goals andvlocate bugs-~the real
guts of the debugging problem. Finally, there Is a short
section (4.5) on the way the program vusés real-world
knowledge in the debugging process,

Into the heart of darkness...

4.1 The mode] speciflication language

‘ In order for the progfém ~to use the
simulate-and-investigate method for debugging models, the
models must be represented in a form'thét Is execuytable (by
the simulator) and a form -that Is examinable (by the
problem-solving routines). The model  specification .
tanguage (MSL) is an attempt to combine these two necessary

forms In a single Ianguage (which also purports to be falrly
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user-oriented!),

MSL Ts a set of simple primitives which
can be used to describe models--especially business game
models (1) .  An MSL speciflcation consists of an
(unordered) collection of the three basic primitives
*ACTIVITY, +*EVENT, and *FUNCTION, The basic primitives are
further described by modifying constructs. The model
manipulates user-defined value/term pairs called "resource
variables" (e.g. (1000 CASH), (SAM SALESMAN), etc.). An
example of MSL specifications appear on pages 17-18, and in
Appendlix B. This section contalns a brief description of
the syntax and semantics of these MSL primitives,

The basic MSL construct Is the
*ACTIVITY. The concept of "actlvity" used here is precisely
similar to the wusual business sense of the word: a
well~defined organizational task which processes some
commodities or Information that is used by the organization
(see section 3.1.2; see also the WOB 191 for its information
on actlivities). An *ACTIVITY also corresponds to a submodel

(2) --that thing that the user Is supposed to have a good

(1) No claim is made for any "completeness" or "sufficiency"
of this set of primitives,. These are simply constructs
which can be used to express my game models.

(2) We will see In a few minutes that *EVENT's and
*FUNCTION's are also submodels.
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grasp of (see 3.1.1).The *ACTIVITY specification looks 1ike

(*ACTIVITY <*ACTIVITY-name> <modifliers>)
(1)

As Is wusually the case, the modlifiers are the most
Interesting part of the specificatlon.

One modifier which 1Is almost always
present Is the *PREREQUISITES specliflcation, This
construct expresses the necessary Inputs of an *ACTIVITY.

The +PREREQUISITES  speciflication

contalns an arbitrary number of
(#*PRESENT <resource varlable))

forms grouped (implicitly) by OR or (expliclitly) by AND.
The baslc Interpretation 1Is that the named <resource
variable> must be present (2) for the  *ACTIVITY to be
Initiated, If there is an AND specification, then (as one
would exbect) all of the "AND'ed" resource variables must be

*PRESENT. Thus, In

(1) 1 will use the following notation: "™¢" and ™" are
metalinguistic brackets which surround metallingulstic
statements, Everything else belongs there.

(2) Clearly, there are the obvious extensions
"«MAY-BE-PRESENT", "MUST-BE-PRESENT", etc. 1 have not found
these concepts necessary to express the models | have used.
Therefore, they are not Included In the MSL, even though
thelr introduction would be stralghtforward.
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(=ACTIVITY SALES-CALL
(«PREREQUISITES
(AND
(*PRESENT (1000 CASH))
(*PRESENT (1 UNIT))
(*PRESENT (SOME SALESMAN))
)

) )

there must be (1000 CASH), (1 UNIT), and (SOME SALESMAN) for
SALES~CALL to be Initiated.

Some further comment is necessary on the
quantification mechanism of *PRESENT. The "SOME" In (SOME
SALESMAN) represents any name of a SALESMAN in the

model.That Is,
(*PRESENT (SOME SALESMAN))
will be satisfied w!th
(MARK SALESMAN) or
‘(DON SALESMAN) or
(STEVE SALESMAN)

Numerical quantifications carry an Implicit "at 1least"

modifier., That is,

(*PRESENT (1000 CASH))
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will be satisfied with
(10000 CASH) or
(1000 CASH)
but not (999 CASH)

The "at least" modifler may be explicitly stated, or may be

changed to AT-MOST, as In
(*PRESENT (1000 CASH) AT-LEAST)

(*PRESENT (5 ERRORS) AT-MOST)
The  "“outputs™ of an *ACTIVITY are

expressed by the *QUTPUT and *REMOVE constructs:
(«OUTPUT <resource variable))
(*REMOVE <resource variable))

which add or delete the named resource varlable from the
model's resources.

An  *ACTIVITY construct may be further

described by:
(*TAKES <number>)

to Indicate that If the *ACTIVITY Is Initlated In tlme-sllce

n, Its outputs do not become avallable ﬁntll time-slice
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n+<{pumber> . The purpose of this Is, of course, to allow
the modelllng’.of *ACTIVITY's which take an apprecliable
amount of time to be completed. Another important

modifier,
(«PRIORITY <number))

allows the user to Indicate preference In allocatlion of
resources to *ACTIVITY's, Thus, If several *ACTIVITY's are
vying for the same resource, the one with the lowest
*PRICRITY <number> has flrst crack at It (1) .

*SCHEDULE specliflications allow the user
to glve expliclt schedullng Information to the simulator in
order to 1Imit the use of an *ACTIVITY. The speclifications

that have been found useful so far are
(*SCHEDULE <number))

to 1Imit the number of times an *ACTIVITY can be scheduled

In any time-slice,
(*SCHEDULE (ON <*EVENT-name)))

to allow the scheduling of an #ACTIVITY only in the same

(1) Again, obviously, thlis simple mechanism could be greatly
expanded. More complex models would require time~varying
and other computed *PRIORITY speciflcations, These have not
been Included in MSL,
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time-slice as the occurence of the named *EVENT, and
(*SCHEDULE (EVERY <number)))

to 1imit the scheduling of the =*ACTIVITY to time-slice
<{number>, 2x<number>,3x<number),etc.

The above modiflers, along with the
user's abllity to create resource varlables and provide
arbltrary #*ACTIVITY structures, allow enough flexiblillity to
express all of the *ACTIVITY's necessary to model the game
in Appendix A (see the model In Appendix B). There are,
however, other kinds of submodels to be considered.

Another basic construct (i.e.,
submodel-specifler) available to the modeller is the *EVENT.
This is wused to express parts of the model which are
"outside of the system"--beyond the organization's direct
control, These outside Influences are often modelled as
probabilistic occurences, so that *EVENTfs are wusually
assoclated with the probablilistic parts of the model.

*EVENT is very similar to *ACTIVITY In basic syntax:
(*EVENT <*EVENT-named> <modi{flers>)

but the modifiers are somewhat different,
Instead of the *PREREQUISITES
speciflicatlion, a *CONDITIONS 1lst is stated:
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(*CONDITIONS <boolean expression>)

That 1Is, the slmulator expects the body of a *CONDITIONS
11st to evaluate to "true" or "false". Usually, the body
contains some comblination (pérhaps related by AND or OR) of
*FUNCTION names (1) (see below). The intent is that the
*EVENT may not be iInitliated unless the <boolean expression>
evaluates to "true",

Usually +EVENT's affect particular
*ACTIVITY's.The suscteptible *ACTIVITY's and the actions to
be taken by the *EVENT are expressed within the +*EVENT by
the *ACTIVITIES modiflier:

" (#ACTIVITIES (<1ist of *ACTIVITY-names)>) <actions>)

If an +*EVENT 'contalns an *ACTIVITIES construct, It can be
inttlated only in a time-slice In which at least one of the
named *ACTIVITY's Is scheduled. |

| One rather unusual <action> which can be

taken by an #*EVENT Is

(1) These *FUNCTION's usually express a probability with
which the «EVENT occurs 1in a glven time-slice. The
sImulator sets up a probabllistic event (no confusion,
please!) on the related sample space to express the
*FUNCTION. It then calls a random number generator. I|f the
value returned by the RNG falls within the defined event,the
simulator assligns "true" to the value of that *FUNCTION,
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(*CANCEL)

This  means that the Interrupted +ACTIVITY has been
permanently disrupted, and 1Is to be unscheduled, (Of
course, it can be rescheduled 1later.) . In all other
respects, *EVENT's are treated just like *ACTIVITY's.

The final basic construct In MSL Is
*FUNCTION, It expresses a functional relationship between
variables In the model, and, In general, accounts for’
Information flow wlithin the model, It fs thus slightly
different In spirit from the resource-handlfng *ACTIVITY's
and *EVENT's. Nonetheless, It shares submodel ‘status (1) ,

and Is similar In syntax to the other two basic constructs:
(«FUNCTION <*FUNCTION-name> <modifliers>)

*FUNCTION's are not "scheduled"; rather, they are Invoked by
being mentioned In other constructs (just as In programming
language function calls). Thus, whenever SALES-PROBABILITY
(see section 2) appears in the model (except 1In the

*FUNCTION definition, of course), ‘the *FUNCTION

(1) It is important to recognize that information-handling
activities are submodels at the same level as other
organizational actlvities. Forrester stresses this point
In |3}, and seems to use the homogenelty of baslic submodels
successfully, Of course, the uniform submodel constructs
also lead to a gain in modelling efficlency and a lessening
of the cognitive load of the MSL user.
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- SALES~PROBABILITY will be Invoked.
The anajiogous construct to

*PREREQUISITES and *CONDITIONS In *FUNCTION Is
(*ARGUMENTS;<argument1> {argument2> ...)

whlch behaves 1lke the usual argument-list 1In programming
language functlons. Missing arguments cause an "error"
whlch stops the simulation (1) .

The analogy to *QUTPUT Is
(*RETURN <expression))

where <expresslion) can be a combination of *FUNCTION names -

and the speclal function-representing constructs

(*TABLE (<*ARGUMENT-name)> <*RESULT-name))

{argument/result pairs))
(*SUM=UP (<variable range>) <{linear factors))

This 1Is about all there Is to the MSL.
The semantics of *ACTIVITY's and *EVENT's are developed a
bit further in the next section. #*FUNCTION's are dealt with
in 4.4,2.1. However, no really detailed descriptlions are

presented anywhere, There is little point In it. The only

(1) This Is, of course, the kind of bug we're pot Interested
In here.
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purpose of presenting MSL 1Is to allow the reader to
understand the examples and judge what the program does and
does not know about a particular model,

Almost all of what »the program knows
about any given model is in the MSL speciflicatlon, (It
knows a few other things discussed In 4,5,) MSL can be
simple because the models considered are quite simple. As
the models become more complex we expect (by conservatlon of
complexity) that MSL will become more complex. The hope Is
that MSL contalins something general enough to handle some
kinds of additional model complexity without_addltlonal
language complexity. This "“something® Is the baslic
philosophy of submodel structuring which is reflected in the
MSL. Thus, | have tried to emphasize this basic structure
rather the detalls. In the next sectlon we' follow the
course of the program's debugging process’ahd examine the

simulation of MSL models.

k.2 Simulation as a wav of doing things

Simulation Is a technique for observing
the behavior of models. |In the absence of analytical and
other "high-level” tools (1ike educated guesses), simulation

Is the only way to find out wha a model "“does" in any gilven
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situation, In the model~-debugging system presented in this
thesls, the simulator sets up the basic feedback mechanism
between user and APS,

At the very least, any APS should
provide a facllity for checking out model behavior with
simulatlon. That Is, the user formulates hls model, tests
It via simulation, changes it if he doesn't 1ike what he
sees, and resimulates, For reasons dliscussed in the
Introductory section, It Is necessary to go a step further,
The program described here attempts to aid the user in
discovering why the model does not perform as he expects it
to .

Therefore, this section will concentrate
on simulation as a way of Initiating the debugging process.
This emphasls 1Ignores very important issues of presenting
simulation results to the wuser, In fact, [t completely
downplays the Importance of the simulator Itself,
concentrating only on the Interaction of the simulator and
the deductive mechanisms of the debugging program. Thus,
In this section | wlll proceed to flnesse the simulator and
move on to the more relevant problems of representing the
knowledge gained by the simulation in such a way that it can

be used by the debugger.
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4.2.1 The simulator finessed

In this section | willl very briefly
describe the simulation scheme used in the program, The
whole simulation philosophy' presented here Is kind of
strange as viewed from the standpoint of "normal® simulation
programs, This 1Is due to the presence of two major design
criteria not wusually found 1In the areé’ of simulation

programming:

(1) Adherence to the "user only knowsilocal submodel
Information" canon ennunclated earlier (sections 1.3.1

and 3.1.1)

(2) The goal of representing knowledge'found\by the
simulation In such a way that 1t can be  uSed by the

debugger

The first criterlon.glves rise to those funny MSL constructs
which mysteriously appeared In the pfevfous discussion,
It also motivates the style of slmulation described 1In the
rest of this section. The second crlterfon determines the
actual implementation of the algorithm, and is dealt with iIn
the following subsection,

In MSL, the Informatlon'pertatnlng to a
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particular submodel 1Is found only In that submodel. The
kind of "Information" varies from submodel to submodel (as
described In 4.1), but basically, the folloW!ng

specificatlons are necessary:

==resources needed by the submodel

~-resources produced by the submodel, and the length of

time necessary to produce them

--expliclt_bollcy for the conditlions under which the

submodel should be actlvated

The baslic operation of the simulator is
then straightforward.Each submode! 1s activated when its
(user-specifled) explicit pre-conditions are sat!sffed,
provided that all of its necessary resources are avallable.
If the user does not specify pre-conditions (via *SCHEDULE
and *CONDITIONS--see 4.1), the submodel Is activated
whenever Its necessary resources are avallable (subject to
*PRIORITY restrictions, of course), When the time
(specified by *TAKES) for submodel activity has elapsed, the
output resources of the submodel (if any) become avallable
to the whole model. This process of cycling through

submodels activating "ready" ones, continuing "“running"
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ones, cleaning up flinished ones, and augmenting and
depleting resources all along continues for the duration of
the user-speciflied run-length.

Now anyone who has ever glanced at the
guts of a simulator knows that | have ~just finessed
Inumerable details (as well as a few Important Polnts). The
algorithm used In the program 1is actualiy a bit more
sophlsticated and a great deal hairier than the one
"described" above. For example, | have not even mentlioned
the rather tilcklish problem of handling probabllistic
occurences in this context, nor the deslgn decisions for
priority-scheduling of already~running submodels. I am
deliberately sluffing the detalls here because the simulator
Itself is not very important to the theﬁls as a whole. It
Is its output, the SIMULATION~-H{STORY context, that | wish

to emphasize here.

4.2.2 Simulation history and SIMULATION~HISTORY

The form of the output of a simulation
program |Is always a key factor In its usefulness, |In the
debugging system presented here, it Is an essentlal 1ink

between the model and the deductive mechanisms of the
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debugger, As discussed above, much of the task of the
simulator 1Is to present the knowledge gained by simulating
the model In a form that can be used by the rest of the
program, This Is of course the old artificial intellligence
task of representing knowledge In a form that can be used by
procedural deductive mechanisms.

The style of representation | have
chosen for the simulation knowledge 1Is the simulation
history. Now this Is hardly startling--simulation
histories are frequently used to describe the behavior of
‘systems. But here | wish to extend the cdncept somewhat.
In my program,‘the simulator constructs a simulatlion history
(called SIMULATION-HISTORY) which then becomes the
nxghlgm-sglxlng enyironment of the debugger. By this !
mean that frém ihe point of view of the deductive mechanisms
in the debugger, the "“"world" is a simulatlon history; i.e.,
a sequence of facts about the model which are true at
varlous times determined by the simulation. . The debugger
lives Inside this simulation history. The things that It
knows about the "world"--the kinds of knowledge found, the
way events are related, etc.-- are the facts and rules of

the simulation history world (1) ., 1In thinking about the

(1) Except for, as we shall see later, the facts It knows
about the "real world" of business games.
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debugger, It Is well to keep in mind that If Is a cltizen of
the simulation history world.

Well then, let's go slumming and 1look
around the simulation history world ourselves for a few
rollicking moments. Consider some set of observational
variables on a simulation model. Then a simulation history
can be thought of as a recording of the “values™ of these
variables at varfous Instants of slmdlatton-tlme. The
Interesting questlons are what observatlohal ‘varlables
should be used and how the record should be organized. We
will see that these questions are Important with respect to
the usefulness of the simulator to the debugger.

For the simulation to progress from one
time instant to the next, the simulator must have a record
of the state of the simulation. The simulation state of
these simple MSL models consists of four main pleces of

information:

(1) the value of each "resource variable" (see 4.1) at

the end of each time=-slice (1)

(2) a record of the *ACTIVITY's whlch were initliated In

the time-slice

(1) A time-slice Is one ker-chunk of the simulator,
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(3) a record of the *EVENT's which occur and the

*ACTIVITY's they affect

(4) an indication of the stage of completion of each
"running" (l.e., previously Initiated and not vyet

complete) *ACTIVITY and *EVENT

Therefore, the simulator needs these four pleces of
Information at the end of each time-slice in order to go on

to the next time~sllice.

But what does this have to do with the
"observatlional varlables" for the simulatlion history? First,
remember that the "“observer" In this case 1Is the deductive
mechanism of the debugger. Now, harking back to all that
was said 1In sections 1 and 2 about debugging by
problem-solving, we can see that the debugger is usually in
the position of trying to change the course of the
simulation 1In some way (to cause some desired outcome which
causes another desired outcome, etc... which eventually
causes the wuser's deslired outcome), In order to decide

whether It can make the change (1) It must know something

(1) Of course, It must also decide whether the user wants
the change to be made. This part of the problem Is
discussed In 4.4,2,
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about the simulation. Speclifically, it must know the state
of the simulation and ways to change that state (1) . The
ways to change the state are encoded in procedural deductive
mechanisms to be described later (4.4,1), The state of the
simulation cén be provided by the slmulétlon history.
Therefore, the observational varlables for the simulation
history are just the state varfables discussed above (2) ,

Well, since the simulator needs the
values of the state varlables at the end of éach time-slice,
the program need only keep track of these values in some
useful fashlon, The problem now becomes one of organizing
the simulation history. In order ot think about such an
organization, we can look back to sectlon 2 and remember a
bit more about what the deductive mechanisms do with the
simulation history.

The deductive mechanisms usually find
themselves playing around In thelr little simulation history

world In two ways:

(1) examining a single time-slice to see whether a

change can be made at that time

(1) This Is Its “"world knowledge"” of the simulation history
world, ' '

(2) A schematic representation of these state varlables as
they appear In the simulation history is found on pp. 21-23.
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(2) examining a 1large segment of the simulation to
choose a llkely time-slice for scheduling something
new, to follow the course of an *ACTIVITY or *EVENT, to
pursue the consequences of a proposed change, or (as we
shall see later In this section) to handle higher-order

constraints

What we need Is a good representation for faclile handling of
time-slices and (usually contiguous) groups of time-slices.
The representation should also allow ease in the building-up
and manipulation of the whole history.

Such a representation 1is the Conniver
context [20]. The simulation history is implemented as a
Conniver context with the unlikely ‘moniker of
SIMULATION-HISTORY. Each time-slice is a 1 120] of the
context. This Conniver Imp]ementatlon Implles the following
relation between time-slices: the simulator "grows"
SIMULATION-HISTORY by adding on new time-slices; changes
made to the data in a new time-slice are iInvisible to
earlier time-slices, however, the status of any datum can be
determined In any time-slice. This certainly gives us the
record of the simulation history that we want. Conniver
also allows any part of the context to be regarded as a
separate context. The Importance of this 1Is that the

context can then be wused as the database, or, more
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preclsely, as the working environment, for some set of
programs. That Is, the programs Iin a glven g¢ontext work
only with that gcontext as a knowledge base. Thus, we can
see that the deductive mechanisms of the debugger can "live
Inside" the simulation history by  simply  using
SIMULATION~-HISTORY as thelr gcontext. Fufthermore, the
deductive mechanisms can 1live Inside any part of the
simulation history which they must examine. Thelir world can
be a single time-slice or a large, program-edited plece of
the history, ‘ _

We will see that this abllity to live
inside arbitrary pleces of SIMULATION-HISTORY 1Is a key
requistite for the deductive mechanisms of the debugger.
For the deductive mechanisms to work, they must apply theilr
procedurally-embedded knowledge of how to change the course
of the simulation to carefully chosen parts of the
simulation. This s why. the simulation hlstory and Its
implementation as SIMULATION=-HISTORY form such an Iimportant
part of the program. In the next section, we ﬁill find that
the SIMULATION-HISTORY representation gains further
importance when the debugger generates ,hypothétical states

of the slimulation,

4.3 Goals and environments
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Throughout the thesis | have been using
the word "goal" to describe a variety of phenomena. | have
spoken of user goals, system goals, and submodel goals. In
section 2 | Introduced another construct containing the word

"goal":
(*GOAL <strange words> <numbers) {lots of parentheses))

which purported to represent the various other kinds of
goals to the program. In this section | will discuss what
these parenthetical thingees mean to the program. In the
next section 1 will talk about how they are created and
manipulated. Here | describe only goais gua *GOAL's--i.e.,
the common structural aspects of *GOAL's.

A goal expresses a desired state. In a
debugging context thls desired state is almost always
inconsistent with the actual state. This Is because the
user has found a discrepancy between reallty and expectation
and has thought of a desired state In which the discrepancy
is resolved. Thus, the desired state, reflecting the fixed
discrepancy, Is inconsistent with the actual state. In the
program presented here, the user can ask the program to
produce thfs desired state (glven the model and the

simulation history--see section 2). (1) The request is made

(1) As discussed elsewhere, the program falls In Its attempt
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via a *GOAL statement:
(*GOAL <achfieve desired state))

What does It mean to "achieve the
desired state™? The user Is asking the program to change
the course of the simulation. The program'goes‘about this
by flrst creating a hypothetical simulation state
(time-slice) which includes the desired state. Then It
attempts to make the rest of the simulation hlstory (i.e.,
the previous time-slices) consistent with the new
hypothetical time-slice. (1) This Is done by the creation

of a new *GOAL
(*GOAL <make previous time-slice consistent with new one))
This new *GOAL Is clearly of the form
(*GOAL <achieve desired state>)

and can thus be handled exactly 1lke the user goal. The
program can thus recurse merrily along until It cannot
achleve a desired state--i.e., untll it falls.

Now then, let's take a closer look at

to produce the desired state, but this Is not Important to
the discusslton of this section.

(1) This "work backwards" methodology Is due to the
debugging philosophy of tracing a bug from its manlfestation
back to Its cause.
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thls process. Each *GOAL requests a specific change to a
specific local environment (the time-slice). Thus, each
*GOAL is attempted 1In the context of a local constraint
environment represented by a single time-slice of the
simulation history, (1) If the *GOAL Is achieved, [t will
defline a new environment which is inconsistent with the old
time-slice (because of the changes wrought by achleving the
*GOAL). Thls new environment is thén consistent with the
user's deslred state, but Inconsistent with the old
slmulation history. The program will then use this new
local environment as a basis for defining the next desired
state along the 1lne toward making the whole simulation
history consistent with the user's desired state. The
program 1Is, in effect, constructing a new hypothetical
simulation history which results in the user's desired
state, (2)

Thus, environments are intimately
related to the semantics of =*GOAL's, Each *GOAL is

constralned by a pre-specified part of the simulation

(1) Not quite., As we shall see In a second, multiple goals
are achlieved with respect to a local constraint environment
consisting of several time-slices,

(2) The next sectlon deals with the problem of how the
program constructs thls simulation without destroying the
original intent of the model. Speciflically, section 4.4.2.1
glves a better plcture of what |is "constraining" about a
"local constraint environment".
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environment-~that part which It is supposed to change. The
achlevement of a *GOAL can therefore be seen as a

transformation:

initia environment new envivonmert

This transformation Is a 1local phenomenon, However the
effects of the transformation are non-local. The *GOAL has
perturbed the local environment and made It inconsistent
with the global environment. Since the eventual goal of the
problem solver Is to create a conslistent simulation history
which results 1In the user's deslired state, the global
environment must be made consistent wfth this new

Inconsistent plece:
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In order to make the global environment
consistent, the program must trace down the effects of
changing that local piece. In other words, It must examine
the way that local plece Iinteracts with other pieces of the

global environment:

environment o lter one *6OAL  evivonmett s for el desied
'S 1n ofle |ne state,

But this Is exactly what we want. The user is incapable of
following the interactions of the model. |If the program is
to help the user find the "interaction bugs'" thus created,
It must have some mechanism for tracing Interactions. This
mechanism is the problem-solver,

The problem-solver wuses a *GOAL to
express a global environment perturbation. It then uses the
deductive mechanisms described in the next section to follow
that perturbation throughout the 1local environment, the

local change at each point belng determined by a *GOAL.
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When the program comes to a point where the perturbation
cannot be continued (f.e., where a *GOAL fails), it has, in
effect, discovered a part of the environment which cannot be
made to conform to the user's desired environment. |t has
traced the Interaction path to Its roots--it has bracketed
the bug location between the user's desired simulatlion state
and the user's desired constraint which gave rise to the
Interaction (see 4.4,3),

Thus, *GOAL's are the vehicle for
exploring the Interactive behavior of the model. As we have
seen above, the use of *GOAL's in thls .way requlres
sophisticated manipulations of local environments, In
order to tie down some of the concepts discussed In the
previous paragraphs, | will now discuss some of the problems
the program faces with respect to this environment-handling.

First, each *GOAL must be achleved with
respect to a local environment. That Is, the =*GOAL must
only "see" the constraints of a local environment (not the
whole thing) (1) , and must directly affect only that local
environment. Otherwise, the distinction between 1local and

Interactive behavior Is lost-~there Is no such thing as a

(1) This iIs due first to the nature of the problem-solving
process--"'set up a local environment and then make the next
local environment up the line consistent with [t"--and
second to the debuggling philosophy espoused |n h.4,2,.1,
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"perturbation",

Fortunately, the environment to be
examined is the SIMULATION-HISTORY context. We will see in
4.4.2.1 that the required local environment is (usually)
just a TIME-SLICE of the SIMULATION-HISTORY. The #*GOAL can
thus be made to "see" only a local environment by making the
required TIME-SLICE Its working environment (as In 4.2) (1)
. The context structure makes the relation between
TIME-SLICE's evident (l.e., because each Is a Conniver
layer), so that the distinctlon between . 1local and
interactive constraints Is explicit in the bullt-in
(Connlver) semantics of SIMULATION-HISTORY.

Now the *GOAL must also be made to
affect only a local environment If the semantics discussed
earlier are to be preserved. It would seem that this is
just as easy: simply keep the TIME-SLICE in questlon as the
*GOAL's working environment, and all changes will explicitly
have the requlred locality, However, there is a
complicating factor found in all searching problem-solvers:
the problem-solver must make provisions for discarding an
old line of attack and beginning a new one. This is the old

problem of backup which has been discussed extensively in

(1) This isn't quite so simple for multiple *GOAL's, as
we'll see in a second.
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171 and |19].

The backup problem 1Is germane to the
debugging process because the debugger usually attempts to
find all possible causes of a partlcular dIscfepancy (in the
hope that one of them Is the actual bug). Thus, 1t will
follow down one 1ine of attack, fall, and try another. It
must therefore be ready to erase the consequences of the
llne to be discarded, But this Is a particularly hard
problem for the debugger. Here, the tracks leading to
fallures are the key to the rest of the process. They
cannot be simple "erased", but must be preserved In some
form which the program can use to suggest bugs and to
explain Its actlons to the user see &4.,4.3),

Furthermore, while ;he effects of each
*GOAL must be resticted to a local environmet, the effects
of all the *GOAL's must create a new consistent environment
(1) . Thus, the program must maintaln some new envlronment
which localizes the effects of the +GOAL's, allows a
controlled backup with preservation of the backed-over
Information, and which forces conslistency of _allb affected
environments, Certalnly, SIMULATION=-HISTORY will not do.

But something 1ike it will, The program

agaln uses a Jlayered-context structure. In each laver it

(1) They must, in fact, create a new simulation history.
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records the changes made by a *=GOAL to the particular
TIME-SLICE Involved. It then appends thls new layer to
SIMULATION-HISTORY and uses this new augmented context as
the working environment of the debugger. Now, remembering
the 1ittle discussion of gontext semantics In 4.2 (or,
referring to [20]), we see that this causes the following

effects:

(1) The effects of a *GOAL are certainly 1localized
since they occur only 1in a single Jlayer which

corresponds to a single TIME-SLICE.

(2) The debugger can always see a consistent
environment by looking up the augmented
SIMULATION-HISTORY as far as the last affected
TIME-SLICE; the semantics of context then say that
the data seen by the debugger 1is just what was in
SIMULATION-HISTORY before (which is consistent via the
simulator) except where contradicted by the parts that
were changed by =*GOAL's (which are consistent (up to

that point) via the deductive mechanisms).

Perhaps It is well to Interrupt here with an explanatory

diagram...
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which is, due to the semantics of gontext, equivalent to:

SIMULATION-HISTORY

@){- consxsbrf nlJ
envivonment
(un SlH\)MﬂO\)—
HLST._..YI _
sef - congistent
M.w el\\m’m-

o g . - —— TSI waSme  ——— ——— cmmt—

Ve ous

(\{Wmod’l'ofl in
TIME -SLICE)

which 1Is certalnly an easlier conceptualization of what has

gone on so far.

explain

However, the flrst plcture is necessary to
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(3) The layers which record the changes made by a *GOAL
(the dashed parts of the first picture) can be peeled
off and saved at any time, thus restorlng. the context
to its origlnal condition and saving the effects of the

*GOAL (the track toward falure) for further use

This methodology fl1ls the bill so far. Unfortunately,
there Is one final problem which complicates this little
picture (you just knew there would be),

This complication comes from an as yet
unseen aspect of the problem-solver: 'multlb1e goals, !
mentioned earlier (section 3) the exlstence of "higher-order
constraint Interdependencies" In the mode 1. (This
welrd-sounding effect was conveniently képt out of the
example 1In sectlion 2.) We will see In section 4.4.2.3 that
higher-order interdependency leads to multiple goals. That
is, Instead of simple goals, the program must deal with

constructs 1ike:

(*GOAL (*AND
(*GOAL ...)
(*GOAL ...)
(*GOAL ...)))

and
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(*GOAL (*GROUP
(*GOAL ...)
(#GOAL ...)
(*GOAL ...)))

We'll see more about multiple goals later. For now we need
only examlne one aspect of thelir behavior.

The raison d'etre of *AND and *GROUP is
the expression of the fact that thelr component *GOAL's are
not Independenf. That Is, the *GOAL's they contain share
common resources and cannot be achieved at each other's
expense. (This is how they model Interdependency.) Thus,
the notlon of a "local constraint environment" varies from
the one bandlied about earlier. Here we must have several
*GOAL's sharing a single local environment. Furthermore,
because of the Interdependence of the *GOAL's, a component
*GOAL that has not yet been completed must ''see" the
constralnts posed by the completion of other component
*GOAL's, Thus, the 1local constraint environment might
cover several TIME-SLICE's,

Clearly this halrs things up a blit.
Nonetheless, the program must preserve the semantics of
these constructs because they are Important effects of the
model which give rise to thelr own special bugs (see

L.4,2.3), Actually, given the flexibility of contexts, the



implementation Is rather straightforward.

schematlic of envlronments now looks 1lke:
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In terms of the previous discussion of
perturbations, 1local and global environments, etc., nothing
has changed except that the "local" environments now may

have a halry microstructure of local environments:

alr

‘aroc,e(sseé
h(a\f\er—wde}f
enVi oMt

Uninterested readers may squint at the above picture (and
concept), leaving everything as before. v

Thus, a *GOAL Indicates a local
perturbation, The deductlive mechanisms of the
problem-solver follow through the Interactions defined by
the mode to carry the perturbation throughout the
simulation history in order to produce a consistent
environment, The next section considers these deductive
mechanisms and thelr interaction (via fallure) with the

bug-finders.

L.4 Debugging by problem=-solving
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The baslc task of the program Is to
trace a bug from its manifestation to Its source,. This s
done by taking In the manlfestaflon‘ as a *GOAL to be
achleved (as dlscussed earlier), The process of achleving
such a *GOAL 1s usually called "problem-solving". But this
Is a rather speclial use of problgm-solvlng: the program
expects to fall in the attempt. In fact, It Is not until
after a 1line of attack .has failed that it becomes
interesting to thé debugger. In this section we see how
lines of attack are formed, hbw they fall, and how they are
used after they fall. |

The most Important '.part of any
problem-solving process is the formation of subgoals (1) .,
Section 4.4.1 considers the methods (those deductive
mechanisms we've heard so much about) for devising new
subgoals 1in order to achieve a goal. Thls corresponds to
asking the "how could we do this ?" question of section 2,
But in thils program, the object of the problem-solver is not
this direct attack on the problem.} Instead, the
problem-solver must make certain It does not change the
intent of thé-user's model In trying to debug it.

Thus, the process of attacking the

(1) Especially in this problem-solver. Since subgoals are
rarely achlieved, the whole process turns Into
subgoal-formation.
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user's goal leads directly into the problem of separating
the constralnts which are In the simulation history because
of user Intent from those which are artifacts of unintended
model operatlon. At certain key points in the deduction
process, the program determines whether or not It should (in
terms of user Intentlons) make the changes required by the
deductlon. This process of assigning GOOD and BAD REASON's
to model action corresponds to asking the "why didn't you do
this before?" question of section 2. In 4.4.2 we examine
this REASONing process in terms of the philosophy of bug§
presented In section 3,

The REASONing process leaves the program
with a falled line of attack., Thls appears as a stream of
*GOAL's, annotated at each point with the BAD REASON that
triggered further program action. The brogram must then
examine the record of the problem-solver to attach blame to
the proper offending model part; 1l.e., to find the bug.
This task of post-mortem recrimination 1Is the subject of

!‘.l’.B.

b.4.1 The attack

Here we examine the problem-solving

phase of the debugging process. The key problem-solving
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task of the program is to find the proper local changes
throughout the global environment which will lead to the
deslred change. Since each deslired change Is represented by
a *GOAL, the problem-solver proceeds by subgoal formation.

The subgoal-formation parts of the
program (the "deductive mechanisms" mentioned earller) are
responsible for flguring out how one locél change can be
brought about by another. As an example of the way this
cause-effect knowledge |Is procedurally répresented in the
problem-solver, the INCREASE function Is presented here.
The explanation of how INCREASE works will lead us directly
into the REASONing methods of 4.4.2. _

The program's maln vehicle for asking

the "how?" question Is the INCREASE *GOAL:

(*GOAL (INCREASE <resource variable or submodel)

{amount> <{time-slice> (1) ))

That is, "goal: Increase the resource variable or submode 1
by the specified amount in the specified time-slice." The
user's Initial #*GOAL 1Is usually of the INCREASE type (see
section 2). This just means that the userfs dlscrebancy Is

usually a defflicliency of'some resource varliable (or lack of

(1) If a <time-slice) Is not glven; the program
heuristicaliy chooses one.
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the appearance of some submcdel) which he 1is asking the
program to fix up.

As we saw in section 4.3, the program
Immediately sets up a hypothetical 1local environment In
which the defficlency has been rectified. Then It trles to
deduce an earlier environment which would cause the new
desired simulation state, It does this deduction via the
"loglic of INCREASE" mentioned in section 2. The "logic",

briefly stated, runs as follows:
(1) Constant quantities cannot be INCREASE'd

(2) In order to INCREASE a quantity that Is a resource
variable which Is *OUTPUT (*REMOVE'd) by an *ACTIVITY
or *EVENT, set up a new *GOAL to INCREASE (DECREASE)

the number of occurences of that *ACTIVITY or *EVENT

(3) In order to INCREASE a quantity that Is *RETURN'ed
by a *FUNCTION, set up a new INCREASE-FUNCTION *GOAL (1)

(4) In order to INCREASE the number of occurences of an

*ACTlVITY,. set up (If necessary (2) ) a new *GOAL to

(1) INCREASE-FUNCTION's major clalm to fame is that it sets
up *GROUP *GOAL's. | will therefore discuss it when | talk
about *GROUP In 4.,4.,2.3 rather than here. For now it's okay
to view INCREASE-FUNCTION as analogous to INCREASE applied
to *ACTIVITY's.
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INCREASE the resources needed by that *ACTIVITY

(5) In order to INCREASE the number of occurences of an
*EVENT, set up a new *GOAL to INCREASE the frequency
with which 1its +CONDITIONS are valid (which might
Include a *GOAL to INCREASE the number of occurences of

the *ACTIVITY's which the *EVENT affects)

Clearly, the Intent of thls 1lst Is to cover anything which
the user or another part of the program (1) might ask to
INCREASE, However, the rules In the list are by no means of
uniform character; they differ greatly In their 1loglcal
bases. 4

The flirst rule can be viewed as a
“"fact", or, if you will, a property of the concept
"Increase," That 1Is, the first rule depends only on the
concept of "increase"--not on MSL, models, etc. The second
rule expresses a definite property of MSLvrooted in the
semantlcs of *OUTPUT., It therefore depends not only on
"increase", but also on the definition of MSL. The third
rule, which will be discussed later, depends on "“increase",

the definition of MSL, and the rules of mathematics (since

(2) Some necessary resources may already be present In
sufficlent quantlity.

(1) Since INCREASE is defined recursively, the "other part
of the program" might be INCREASE itself,.
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mathematical functions are being Increased). Again, It s
valld for any MSL model. The fourth and fifth rules are
different In a very Important way., They depend not only on
the deflinition of MSL and other "givens", but also on the
particular model deflned by the user,

The reason for this is that the
occurence  of  *ACTIVITY's (and thus =*EVENT's via the
*ACTIVITIES construct (see 4.1)) can be directly determined
by wuser Intentions. These intentions are expressed by the
*SCHEDULE modifier (see 4,1). *SCHEDULE s used whenever
the modeller wishes to override the "always schedule when
possible" default of the simulator, It therefore determines
the pattern of *ACTIVITY and +EVENT activation throughout
the simulation. =*SCHEDULE is thus the primary expression of
the user's policy for directing the dynamics of his model.,

The fact that the "loglc of INCREASE™
must take Into account user Intention provides the key 1ink
between the "how?" and "why not?" questions, In the case
of the first three rules of INCREASE, the '"how?" question is
perfectly well-formed. The program need only look at what
is to be IMNCREASE'd without worrying about reasons why It
shouldn't be done. There 4are no reasons, because the rules
are valld for any case the program can encounter. Thus,

the program can always go ahead and try the |INCREASE, It
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can elther fatl (1) (as 1In the case of [INCREASIng a
constant, for example) or It can set up the next subgoal
(usually another INCREASE *GOAL)--all without worrying about
"should" and "shouldn't",

On the other hand, rules (4) and (5)
must worry about "should" and "shouldn't" before setting wup
the next subgoal. Perhaps the user does not intend for the
INCREASE to take place. Thus, INCREASE must ask the "why

not?" question before It proceeds.

L.4.2 The voice of REASON

We saw in the previous section that the
‘use of INCREASE to ask the "how?" question leads dlrectly
to the need for the "why not?" question. As usual, the
program frames thls question as a *GOAL. That Is, glven the
*GOAL of INCREASing an *ACTIVITY A" by "m" occurences in
TIME=-SLICE "n":

(*GOAL (INCREASE A m n))

(1) A falluie of this kind 1Is automatically for a "GOOD
REASON"-~see sections 2 and &4.4.,2.1,
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the program immediately forms the *GOAL

(*GOAL (SCHEDULE m A n))
to ascertaln whether or not INCREASE should proceed.

SCHEDULE's job Is to examine
SIMULATION-HISTORY and the user's model to determine why the
change suggested by INCREASE was not originally part of
SIMULATION-HISTORY, After all, since it presumably leads to
the desired state, why didn't the wuser cause the state
suggested by INCREASE In the first place?

There are two kinds of reasons for the
user's not causing the suggested state to occur initially.
A GOOD REASON is that he deliberately intends (for reasons
best known to himself) the model not to allow that state.
A BAD REASON is that the interactlon of the submodels has
caused a constraint which disallows the state. A BAD REASON
Is not a bug. It simply implies that a constraint is due to
submodel interaction and not user intention. However, given
the bug phllosophy of section 3, the program treats a BAD
REASON as "suspicious'"--a cause for further investigation.

| In this sectlon we examine the way the
program distinguishes GOOD REASON's from BAD REASON's (and
the way It classifies BAD REASON's), The next subsection

discusses the program's model of user intent--i.,e., its
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method for discerning GOOD REASON's. After thls, we
classify BAD REASON's along the 1llines of the three

“"Interaction bugs" presented In section 3,

4.4,2.1 GOOD REASON's

At each stage of the debugging process,
the program Is trying to change an environment,..by using a
resource, Inserting a new submodel,etc. In order to do
this, the program must face the question of whether or not
the change shgulg (in terms of user Intentions) be made.
Of course, It Is unreasonable to expect the user to have to
tell the program at each step what should and should not be
changed. In fact, given the phllosophy of section 3, It |is
very unlfkely that the user could pfovlde thls Information
If he wanted to. Thus, the program neeqs ‘some sort of
theory of which of the constraints found In
SIMULATION-HISTORY are user-intended and which are there
because of a possible bug In the model.

Golng back to sections 1.3.1 and 3, we
recall the previous assumptions about user intentions: the
user has a good understanding of each submodel, but only a
very weak understanding of how submodels Interact to achleve

an overall goal, Thus, the program can assume, at least
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temporarily, that all Information In the simulation history
which Is derived directly from user statements about an
Indlvidual submodel Is user-intended. All other Information
Is necessarily the result of submodel interaction and is
therefore suspect. The programming task 1Is to Interpret
this simple theory (1) of user Intention In terms of the
deductlive mechanisms and SIMULATION-HISTORY.

Everything In an MSL speciflcation
pertalns only to a speclific submodel; this, In fact, was a
design criterion (see 4.1), Thus, everything so far s
user-intended, by our principle of locality. But this Is
only static iInformation, Once the model Is simulated, some
of this static local Information gives rise to interaction
between submodels. The question then becomes one of
determing how locality Is preserved in the dynamic behavior
of the model. That is, what's local about

SIMULATION=HISTORY?

According to 4,3, the answer seems to be

that the TIME-SLICE s wused by the program as a "“local

(1) This theory Is of course quite liberal in its suggestion
of "suspect" constraints. At this stage, this seems to be
the best strategy. The deductive mechanisms are capable of
eliminating non-bugs rather easily so that things don't blow
up (see section 2). However, If really large models were
used, a better theory would be necessary to avoid smothering
the program with possible leads (see section 4.5).
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environment",., .but why? The TIME-SLICE preserves locality
because direct user pollcy 1Is at the TIME-SLICE level.
Scheduling declisions set certain *ACTIVITY's to occur In
certain TIME=-SLICE's (see description of *SCHEDULE in 4.,1).
*PREREQUISITES are checked at the TIME-SLICE level, *QUTPUT
occurs at the TIME-SLICE 1level, +*FUNCTION's are called,
*EVENT's triggered,etc.~--all at the TIME-SLICE level, All
of the direct user decisions, as specifled by the static
Informatlon 1In the MSL, affect the simulation at the
TIME-SLICE level. Therefore, the program takes a constraint
to be local (and thus user-intended) iIf it depends only on
what happens in a single TIME-SLICE.

Now | mentioned In 1,3.1 that the models
used In this thesis are especlally Iinteractive.
Furthermore, as | sald above, the criteria for suggesting
unintended constralnts can afford to be 1llberal--we would
rather suggest wrong bugs than miss a possible bug. Thus,
we would expect there to be few 1local ‘"user-Intended"
constraints and many non-local "suspect" constraints. This
Is indeed the case. The resources present in any TIME-SLICE
are dependent on the actlon of the model over many
TIME-SLICE's and are thus non-local. Similarly, the timing
of *ACTIVITY's which do not contain *SCHEDULE specifications

becomes resource-dependent and thus non-local. *EVENT
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occurences are speclfied by probabilistic functions of
resources and are thus non-local, Flnally, higher-order
constralnts llike coincident presence of several resources
span several TIME-SLICE's (see 4.3) and are, almost by
definition, non-local, These non-local constraints glve
rise to the BAD~-REASON's dliscussed in the next two
subsectlons. For now, let's mention the few GOOD REASON's
that exlst.

Most GOOD REASOM's concern constraints
that arlse from #SCHEDULE constructs. If the change
requested by = INCREASE would vliolate the =*ACTIVITY's
*SCHEDULE for that TIME-SLICE, SCHEDULE denies the request
for GOOD-REASON (1) , Thus, If, as in section 2, there'are
three ADVERTISING *ACTIVITY's already In a TIME-SLICE and
ADVERTISING contains the modifier

(*SCHEDULE 3)

SCHEDULE wll1l deny any request to up the amount of
ADVERTISING In that TIME~SLICE. Simllarly, SCHEDULE views
the other avatars of  *SCHEDULE (see &4.1) as
GOOD~REASON-generators,

Thé other kinds of GOOD REASON's are

(1) There Is one exception to this which will be dlscussed
in the next subsection,
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those that are based on "fact" or are "true by definition"
(see the first three rules of INCREASE in 4.4.1), Thus,
SCHEDULE will deny attempts to schedule in negative time,
increase constants, etc. for GOOD REASON, ‘Actually, these
REASON's can be viewed as being based on the "common sense
knowledge" the user has In addition to his knowledge /about
submodels, That is, the user directly Intends his model to
be "sensible" as well as to be In accordance with known
submodel constralints.

Thus, GOOD REASON's apply to constraints
which depend only on single TIME-SLICE information, i.e.,
which reflect the locality which Is charactérlstlc of user
intention. We now go on to lnvestlgate»the way in whlch the

program deals with non-local constralnts.

b.4.2.2 Basic BAD REASON's

If the program cannot find a GOOD REASON
for a constraint, [t must attribute its existence to a BAD
REASON. From the "interactlion bug" philosophy of section 3
we see that the user's understanding of his model falters in
the three critical areas mentloﬁed at the beginning of this

section:
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(1) the effects of resource competition among submodels
(2) timing effects of submodels

(3) the effects of higher-order constralints

If a constralnt Is there for no GOOD REASON, the program
consliders the possibility that the constraint arbsé
unintentionally from one of these three misunderstandings.
It will therefore try to come up wifh a BAD REASON for the
constraint's existence so that it can !nfbrm‘the debugger of
the possible anomaly (see section 4.4.3),  Thls section
will consider the BAD REASON's related to the first two
kinds of Interaction. These BAD REASON's form the basis for
BAD REASON's arising from higher-order interdepéndencles--as
discussed In 4,.4,2,3, Now, to continue with our favorite
process, the SCHEDULE *GOAL was just seelng why the desired
*ACTIVITY wasn't scheduled In that TIME-SLICE in the first
place...

Since the wuser didn't specifically ask
for the *ACTIVITY not to be scheduled, there can be only two

reasons why the *ACTIVITY wasn't there:

(1) some of Iits prerequisite resources weren't present
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(2) 1t 1s dependent on an *EVENT that didn't occur

Thus, the program first checks out the resource situation in
the TIME-SLICE, |If the resources are not' sufficlient to

support the *ACTIVITY,-there can be two reasons why:

(1) the resources yere avallable In the TIME-SLICE but
were used-up by higher-priority *ACTIVITY's before the

*ACTIVITY In question got a chance at them
(2) the resources just ain't there

To check out the first pOSSlblllty,vthe program looks at the
status of the higher-priority *ACTIVITY's in the TIME-SLICE.
If any of these *ACTIVITY's Indeed "stole" resources which
would have allowed schedullng of the desired - #ACTIVITY,

their names are collected and the BAD REASON

| (PRlORITY-RESOURCE-BOUND»(<names of offending *ACTIVITY's>))
Is fecorded.

If no higher-priority *ACTIVITY's stole
the resources, then the resources must just have been absent
from the TIME-SLICE In the first place. The ubiquitous

two possible reasons:
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(1) The *ACTIVITY's which *OUTPUT the desired resources
weren't scheduled until it was too late for the

resources to be avalilable in the TIME-SLICE

(2) The *ACTIVITY's which #0QUTPUT the desired resources
were scheduled too early and the resources were
gobbled up by higher-priority =*ACTIVITY's in the

intervening TIME-SLICE's

Of course, In elther Instance, the user may have JIntended
this to be the case (well we know how to check that out...).
On the other hand, the *OUTPUT *ACfIVlTY's may have ended up
in the wrong place because of the user's poor understanding
of timing effects (1) --a BAD REASON. To determine which is
the case, the program proceeds as follows. It first finds
out what +*ACTIVITY's #*OUTPUT the desired resources and
checks to see [f they were scheduled too late to do the
desired *ACTIVITY any good. Then, It sees whether the
*OQUTPUT *ACTIVITY's were "late" for GOOD REASON. If not, it
notes a BAD’REASON:

(1) Note that the "interactlon Information" about timing |s
Impliclit 1In the resources. That is, there are no explicit
timer-alarms to say when something Is too late or too early.
The only evidence of a timing error in the model will be
found in the levels of particular resources over time.
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(RESOURCE-BOUND (TOO LATE (<names
of offending *ACTIVITY's>)))

If there are no "“late" *ACTIVITY's, or If the *ACTIVITY's
were late for GOOD REASON, the program looks back up the
SIMULATION-HISTORY for two things: *ACTIVITY's which #OUTPUT
the needed resources scheduled "too earl&” for no GOOD
REASON and "interloping" +*ACTIVITY's of higher prlority
which stole the needed resources., |f both of these things

exist, the program notes:

(RESOURCE-BOUND (TOO-EARLY (<names of offending =ACTIVITY's)
(<names of interloping *ACTIVITY's>)))

- Thus, the PRIORITY-RESOURCE~-BOUND and
RESOURCE-BOUND BAD REASON's take care of the case In which
the *ACTIVITY cannot be scheduled because of a lack of
prerequisite resources (1) . This leaves the other case in

which the *ACTIVITY could not be scheduled because It is

(1) As discussed previously, the program would try to
alleviate this defficlency with an appropriate INCREASE
*GOAL. The reason for this is to make sure that the program
traces through the entire interaction path: after all, this
resource defflciency could just be the result of an earlier
declslon which reflects the actual bug. More on this In
b.4.3,
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dependent on. an *EVENT that didn't occur.
The program can easlly recognize this

second case because it can only arise from the
(*SCHEDULE (ON <+*EVENT-name)))

speciflcation (see &.1). If the specified *EVENT did not
occur in the TIME-SLICE, the desired *ACTIVITY could not be
scheduled. Now, if the program were acting like it did
before, it would try to find out "“why" the +*EVENT didn't
take place In the TIME-SLICE. However, this s
inappropriate for «EVENT's, which, after all, mode 1
occurences which are beyond the modeller's direct control.
Of course, this raises the question of why a modeller would
make an *ACTIVITY dependent on an *EVENT in the first place.
Indeed, the program becomes suspiclious: it [s possible tﬁat
because of the user's poor understanding of timing effects,
the *EVENT dependency (plus the time needed by the
*ACTIVITY) will cause the *ACTIVITY to take effect at the

wrong time--usually too late (1) . The program checks out

(1) The most common cause of thls *EVENT-dependency 1is the
"fire-flighting" approach to solving problems: when the event
occurs, start doing something about it, (This is, in fact,
the problem Iin the example of section 2: HIRING Is dependent
on QUITTING.) Note that this BAD REASON is the exception
to the "If *SCHEDULE says 1It's okay, It's okay" dictum
referred to earller,
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this possiblility by looking up and down SIMULATION-H!STORY
to see If the *ACTIVITY was scheduled "toco late" or "too
early". |If either of these is the case, the program notes a

BAD REASON:

(*EVENT-TRIGGERED-SCHEDULE <offending *ACTIVITY>
<"TOO LATE"™ or “TOO EARLY'™)

If nelther of these 1Is the case, the program simply

terminates its 1ine of attack (1) on
(*EVENT-TRIGGERED~SCHEDULE)

and goes away mumbling to itself (actually, this would be
the first ™GOOD REASON" It 1looks at after all the BAD
REASON's were checked by the debugger).

Well, this wraps up the. “basic BAD
REASON's" arising from poor wunderstanding of resource
conflict and timing effects. Now we go on to see how
misunderstanding of higher-order constraints leads to the

use of these same BAD REASON's in an expanded context.

(1) Note that unlike the other BAD REASON's, this one causes
the 1lne of attack to terminate--no further investigation Is
possible (see 4.4.3),
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.4.2.3 Higher-order BAD REASON's

Up until now (except for part of 4.3), |
have over-simplified the interactive behavior of submodels
for the purposes of dlscussion, Specifically, | have
pretended that a submodel can depend on only one other
submodel for 1its sources of input. Thus, my *ACTIVITY's
have had only one unflilled *PREREQUIS[TE, my *FUNCTION's
only one *ARGUMENT, This is of course quite unrealistic,
and not a real restriction of MSL. In this section | remove
this artificial restriction.

The introduction of multiple dependency
brings up the issue of higher-order constraints. As we saw
in 4.3, when squodels depend on several other submodels for
input, the problem-solver must take Iinto account the
Interrelationship of the [Input =*ACTIVITY's, The input
*ACTIVITY's are In fact operating under a "higher-order
constraint” (see section 3,2)--they must combine to provide
resources for a single *ACTIVITY (or *FUMCTION) at a certaln
time . This higher-order constraint iIs modelled by forcing
the input  *ACTIVITY's to share a local constraint
environment (see 4.3), That is, all *ACTIVITY's sharing a
higher-order constraint must be scheduled not only in

accordance with thelr own needs, but also with the needs of
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the *ACTIVITY or *FUNCTION that depends on them. There are
two types of environment-sharing, reflected by two types of
*GOAL's to handle the higher-order dependencies., The filrst
of these Is *AND, the expression of the way *ACTIVITY's
depend on each other when their higher-order constraint Is
another «ACTIVITY, The second is *GROUP, which models the
*ACTIVITY-*FUNCTION dependency.

*AND dependency arises from *ACTIVITY's
that look like |
(*ACTIVITY SALES-CALL

' («PREREQUISITES

(*AND :

(*PRESENT (1000 CASH))
(*PRESENT (1 UNIT))

(*PRESENT (SOME
SALESMAN))))

*

. )

That is, SALES-CALL depends on the submodels which *QUTPUT
CASH,UNIT, and SALESMAN. All of these #*OUTPUT's must be
present at once (i.e., In the same TIME-SLICE), Thus, any
*GOAL which tries to schedule a new SALES~-CALL *ACTIVITY
must take this into account. Specifically, If the resources
are not avallable, all of the *QUTPUT ¥ACTIVITY's Involved

must be scheduled. That Is, given the *GOAL

(*GOAL (INCREASE SALES-CALL m n))
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and assuming none of the necessary resources are on hand (1)

. the program must generate the subgoal

(*GOAL
(*=AND
(*GOAL (INCREASE CASH j n))
(*GOAL (INCREASE UNIT k n))
(*GOAL (INCREASE SALESMAN 1 n))
))

Now, just as before, the program must be
careful not to INCREASE things contrary to the intentions of
the user. Agailn, it uses the SCHEDULE *GOAL to find out the
REASON for constraints. However, the SCHEDULE *GOAL cannot
simply check out each |INCREASE #*GOAL Independently as
before. The INCREASE #GOAL's are now interdependent and
must be treated as such, So now, finding GOOD and BAD
REASON's is a whole new game.

Not really, Fortunately, the process
Isn't very different, especlally In the case of *AND. First
of all, examination of the whole GOOD REASON-finding
philosophy and implementation will show that it s
completely unaffected by higher-order Interdependencles.
This 1Is almost by definition: GOOD REASON's pertaln to
Individual submodels and TIME-SLICE's, while higher-order

(1) In section 2 | kept higher-order constraints out of the
picture by buffering away dependencies. Thus, In the case
of SALES-CALL, all resources except SALESMAN were avallable
already (see section 2).
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interdependencies transcend these boundarjes of locality.
Thus, SCHEDULE's GOOD REASONIng processes are still the
same. Certalnly, however, the BAD REASbNIng is different.
But most of the differences have been taken care of already
by the environment-sharing discussed in k.3, That Is, the
effects of higher-order constralints on resource conflicts
and time dependencies are already reflected In the way *AND
*GOAL's are set up and processed--the higher-order
interdependency Is already modelled. For. example, if
satisfying one component *GOAL steals resources from another
or disturbs the timing of another, the shared environment
will make this interaction explicit: the resources needed by
each *GOAL are recorded separately so that the effects of
everything done in the *AND environment can be traced to the
proper source,

A1l this Is saying that all SCHEDULE has
to do about *AND's is to realize that it is 1In a shared
environment and attribute BAD REASON's to the effects of
sharing. Thus, the searches for higher-priority *ACTIVITY's
and timing problems which were previously carried out only
In a single TIME-SLICE are now carried out In the whole *AND
environment. The "new" BAD REASON's they generate look 1ike

(PRIORITY-RESOURCE-BOUND (<names of offending
*ACTIVITY's>) *AND-MODE)

(RESOURCE-BOUND (TOO-EARLY (<names
of offending *ACTIVITY's>)
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*AND-MODE (<names of Interloping *ACTIVITY's
In the *AND environment>) (<names of other
interloping *ACTIVITY's>))

etc.

The theme here is that most of the work
for finding higher-order BAD-REASON's in the *AND case was
done by setting up the *AND environment in the first place.
That Is, the Interdependency Is already explicitly modelled
by the way *AND *GOAL's work, and need only be checked
through by SCHEDULE to find the appropriate BAD REASON's.
This theme Is elaborated for the *GROUP case.

| In 4,4,1 I postponed the 1Issue of
INCREASIng *FUNCTION's by attributing this task to a
separate INCREASE-FUNCTION *GOAL-type. The job of
INCREASE~-FUNCTION Is to figure out a way to Increase the
value +*RETURN'ed by a *FUNCTION by changling the values of
fts +*ARGUMENTS (thus, It 1is completely analogous to
INCREASE). Obviously, this problem is extremely difficult
for a large class of functions, Fortunately, the functions
needed In business games, and, indeed, in most of business

processing, are of a very simple nature (1) . MSL currently

(1) The mathematics of management science--1.e., mathematics
meant to model systems and decislons-=-can be quite
sophlsticated, but thls Is not busliness processing., Indeed,
even in a business game, the probablllty~handling can get
tricky. But all of this Is bullt Into MSL--the user can



Page 108

allows the representation of only two kinds of functional
dependencies: tables - and 1lnear functions of a few
varfables. The mathematical techniques for Iincreasing these
*FUNCTION's are simple and are not of interest here. The
Interesting part of *FUNCTION's for this discussion Is they
are responsible for the second kind. of higher-order
Interdependency,

We Jjust saw how the relation between
*PREREQUISITES and *OUTPUT's causes *AND Interdependency.
Similarly, the relation between *ARGUMENTS and *RETURN'ed
value causes *GROUP Interdepency. In the *AND case, the
interdependency was that a]] *PREREQUISITES must be present
In the proper quantitlies Iin a single TIME-SLICE for the
*ACTIVITY to be iInitiated. *GROUP Interdependency is
weaker, We know only that some combination of changes to
the components will bring about the desjred change to the
higher-order constraint. That 1Is, each subgoal can
contribute an unspecified amount to the success of the
overall *GOAL, Perhaps the Increase of oﬁly one of the
*ARGUMENT resources will suffice to Increase the *RETURN'ed
value., Or, all may be necessary--making the *GROUP an *AND
at the extreme.

Now the program must model this kind of

only deflne simple functions which use the probability
machinery.
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interdependency when it tries to INCREASE *FUNCTION's.
Furthermore, in trylng to solve the INCREASE~-FUNCTION
problem, it must go about the task pretty much the same way
organizations do 1In order to run Into the same kind of
Interactive behavior. That Is, the interactlion involved in
a kind of breadth-flrst approach to the problem (increase
each *ARGUMENT resource a little 1In turn until the
*RETURN'ed value has been IMCREASE'd the deslred amount)
causes very different subgoal interaction than, say, a
depth-first approach (increase each *ARGUMENT as much as
possible separately to see how much it helps to INCREASE the
*FUNCTION). The dIfferences are 1in which subgoals are
allowed to be achieved at the expense of others (1) ,» the
range of subgoals tried, and the extent to which each
subgoal Is exerclised (2) . Clearly, different
Interdependencies are tapped by different subgoal attack
methods.

So the program must try to overcome the

(1) Unlike *AND, this is allowed because not all *GROUP'ed
subgoals must be achleved. The only requlrement iIs that all
of the subgoals which eventually succeed must share the same
local constraint environment (otherwise the construct
doesn't model hligher-order interdependency).

(2) Note that this need to model the organization's
problem-solving method was not present in the *AND case.
Since all subgoals must be achieved as stated, no
"resource-stealing”" 1Is allowed among them and all of them
must be fully tried and executed.
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higher-order constraint of Increasing a
functlonally-determined value the same way organlzations do.
Obviously, this is a tall order. First of all, functional
relationships are usually Implicit In organizations, not
explicit as in MSL--so it's hard to see what organlizations
do about them. Second, It Is reasonable to assume that
different organizatlions attack different funct]bnal problems
in different ways at different times. Finally, 1t s
possible that the actual process s not pre-defined at all
in many cases, but Is Instead made-up andb modified during
the course of each probiem's solution. What | am trying to
say by all of this Is that I'm not about to solve the whole
problem or even a very big part of it...

What | have done is to prbgram a single,
slightly sophisticated method of attacking higher-order
functlonal constraints which attempts to model one way in
which an organization might do it. 1t should be seen as an
experiment for demonstrating the approach of the program In
dealing with this kind of constraint, not a fully developed
plece of the system. This part of the program, Iincorporated
in INCREASE-FUNCTION, works as follows: gl?en a *GOAL of the
form

(*GOAL
(*GROUP

(*GOAL (INCREASE argumentl timel))
(*GOAL (INCREASE argument2 time2))
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))
the program takes the flrst *GOAL
(*GOAL (INCREASE argumentl timel))

and tries to INCREASE argumentl the minimum possible amount
as a "feasfblllty study”. It carrles the *GOAL all the way
to completion, if It can, If the =*GOAL 1is wunsuccessful
(for GOOD REASON), 1t is withdrwan from the *GROUP and the
program does a "feasiblility study" on theknext *GOAL in the
*GROUP, If no "feasibility study" Is successful, the whole
*GROUP naturally falls. Now, If any of the "studies" are
succes;ful, the program will keep attacking the studied line
untll it fails, When this happens, l,e., when the
particular +*ARGUMENT has been [INCREASE'd as much as
possible, the program considers itself to have a "partial
success". That Is, the effect of the INCREASE'd *ARGUMENT

Is now calculated into the overall *GROUP *GOAL, so that a

new *GROUP *GOAL is formed such that

(1) The fully INCREASE'd *GOAL 1is no longer in the
*GROUP

(2) The overall =*GOAL 1is reduced by the amount

contributed by the successfully INCREASE'd *GOAL
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In this new *GROUP environment, the other *GOAL's are

similarly processed until success (or failure)voccurs.

A1l of this hopefully goes toward
modelling the way an organization attacks this kind of
problem: by checking out and eliminating poSSlbllltles one
by one, and pushing winning lines as far as possible to
achleve the ovgrali *GOAL. As Intimated In 4.3, the process
is modelled (like *AND) by the proper sharing of
environments.  Obviously, the environmént-hackery for
*GROUP's is a bit more complicated thah for «AND (for
example, It must Incorporate the notlon of "paftlal success"
and the fact that all the eventually successful *GOAL's and
only the eventually successful *GOAL's shafé{the same local
constraint environment). The question for us ihere Is how
this affects the GOOD and BAD REASONiIng proéess.

Again, the answer Is '"not all that
much"., As with the *AND case, the only dlfference Is that
the BAD REASONFS differentiate between constralnts caused by
higher-order interaction and those caused by other kinds of
interactlion. This Is agaln just a matter of tracing through
the explicit relationships set up in the *GOAL's environment
structure, As far as actual BAD REASON's for constraints
go, *GROUP only adds two (minor) new wrinkles. First of

all, It will make a special notation If the constraint comes
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up during a feaslbility trial. Second, it carefully notes
which *GROUP *GOAL's have already succeeded when the
constraint comes up. These are just convenience factors
which the bug-flnder uses when suggesting *GROUP bugs to the
user; It wants to make clear exactly what the program was
doing when it ran Into the constraint. This Is Important,
because, as mentioned above, different interaction occurs
depending on exactly what the program does.
| This brings up a final important point,
*GROUP BAD REASON's are perhaps the weakeét in the REASON
repertolre because they depend directly on the actual
exploration methods used. That 1Is, the program might
suggest a BAD REASON which the user may never really
encounter because of the way his organization handles
functional dependencies, Thus, the debugger saves
*GROUP~-type bugs for last. Nonetheless, | think that it is
very Important to Include this kind of REASONing in the
debugger: +*GROUP-style dependenciles are pervasive in
organizations, Furthermore, they point the way toward
modelling more sophisticated kinds of submodel-submodel
Interactlions . The weakness of the *GROUP method In this
program Is Its Incompleteness, not Its baslc concept.
This section has catalogued all of the

BAD REASON's generated by the program. Now we finally get
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around to finlshing the bug story by showing how the BAD

REASON's are used to suggest the actual model bugs.

b.4.3 The post-mortem recriminations

So far, the debugger has been left with
a bunch of GOOD and BAD REASON'svfor constraints, It Is now
time to turn these into bug suggestions. So, let's see what
the REASON's mean to the debugger. |f the problem-solver is
faced with a BAD REASON for a constralnt, It knows that the
constraint Is based on submodel interaction., Its job Is to
explore that interaction. Therefore, when SCHEDULE returns
a BAD REASON, the problem-solver considers it a cause for
further Investigation, In this way, It carries the
perturbation as far as It can--traclng the Interaction
patterns to their roots.

GOOD REASON's are the "roots'" that stop
this search through the interaction path. They imply that
the constralint blocking the path Is not due to Interaction,
but rather to direct user intent, The program should not
disturb user Intent, since Its only purpose In changing the
envlironment Is to debug the existing model. It now has a

GOOD REASON to stop changing the environment, so it stops.




Page 115

Its current line of attack Is sald to "fail" (in its attempt
to bring about the deslred change). Thus, the
problem-solver's activities leave a line of *GOAL's attached
to BAD REASON's ending In a *GOAL attached to a GOOD REASON
(1) . Now what does all of this have to do with debugging?
Simply this: the program has now tried to overcome every
interaction-based constraint In the way of producing the
user's desired state. It has reached a user-desired
constraint which 1Is the root cause of all of the
interaction-based constraints, Therefore, 1t has reached
the end of the line and cannot produce the wuser's desjred
state. There can be three reasons for this state of
affairs:

(1) The user's deslred state is off-base: he has set
the model an Impossible task

(2) One of the user's original Intentions Is wrong;
{.e., one of the root constraints [s the bug

(3) One or more of the Interaction-based constraints
between the root constralnts and the desired state are
incorrect: the model has an Interaction bug
It is obvious from what has been said before that the
program thinks that possibility (3) is the most likely, It

therefore suggests that one or more of the 1interactive

constraints (noted by BAD REASON's) are caused by the bug.

(1) Except for the *EVENT-TRIGGERED-SCHEDULE case discussed
in L.4,2,3.
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That is, given that the interaction constraints are wrongly
causing the dlscrepancy, the debugger's job is to find the
part of the model which gives rise to the faulty
constraints. This 1is then suggested as the "bug" in the
user's model. |If the user doesn't agree with any of the
program's suggestions based on possibility (3), the program
falls back on (2), and finally (1), Anyway, let's pick up
the process agalin at the possiblity (3) suggestion phase.
The program now has the location of the
bug bracketed between the beginning and end of a "line of
attack". Furthermore, the submodels which could have caused
the bug have been narrowed down to a relatively smalll
"interaction group” (the union of all submodels mentioned in

the bracket) (1) . The program must now pick out the

(1) The size of the "bracket" and "“interaction group" of
course depends on the model. However, in the experience |
have had, the relevant groups have been small: .a few BAD
REASON's and thus slightly more possible submodels. In the
case of higher-order stuff, the group gets somewhat larger.
There 1s no reason to expect brackets or interaction groups
to get much larger for larger models: the key factor |In
determining thelr size 1Is the amount of control the user
exercises over his model (in MSL, the extent to which things
are determined by *«SCHEDULE's). Control means GOOD REASON's
and thus short paths between Initlial manlfestations of a
discrepancy and GOOD REASON's to close the bracket. Control
also means smaller groups of submodels which can affect the
timing and resource~allocation of other submodels. Since
managers (and modellers) exert consliderable control over
thelr systems, the amount of uncontrolled Interaction
possible in any realistic model 1Is probably quite
reasonable-clized. This In turn means that brackets and
interactlon groups should also stay reasonable-slzed.
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submodels in the "group" which cauysed the BAD constraints in
the "bracket",

Sometimes this is quite easy: all of the
BAD REASON's are traceable to a single submodel interaction.
Examples of this are the *EVENT which triggers an *ACTIVITY
at the wrong time, the =*ACTIVITY which constantly steals
resources from other necessary *ACTIVITY's, and the
*ACTIVITY which Is always too late (too early) to allow
another *ACTIVITY to be Initiated on time. The program
looks for these single-cause Interactions by scanning the
BAD REASON's In the bracket, looking for "eive-away" BAD
REASON's 1lke *EVENT-DEPENDENT-SCHEDULE or consistencies In
the "offendling =*ACTIVITY's" and “interloping *ACTIVITY's"
listings. If, In the process of examining the bracket, the
debugger finds a single such cause for the BAD REASON's of
the bracket, it immediately labels the faulty interaction
(l.e., the submodels involved in the interaction) as the bug
for that bracket, and files it away. Often, however, in
looking at the BAD REASON's of a bracket, the program finds
that a partlcular BAD REASON could have been caused by any
of several interactlions. For example, *ACTIVITY A couldn't
be scheduled because B stole lts resources, or because C
caused D to be late so that D couldn't provide the necessary

resources for A. The program handles this by noting each
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cause separately as a bug.

Sometimes this straightforward process
breaks down: the program Is unable to pick out the cause for
the BAD constralints of a bracket (this happeﬁs mostly In
*AND's and (especlally) *GROUP's), Currently, the program
simply presents the troublesome bracket to the user telling
him that "there's something wrong In there". I consider
this an incomplete part 6f the program (see k.5).

When the program has found the bug (or
the few bugs) for each bracket, it presents them to the user
in order of "likellhood". The debugger's model of the
likellhood that a suggested bug Is actually a bug in the

model 1is

(1) The more specliflc the suggested bug, the more
1ikely it 1Is that it 1s genulne; thus, bugs 1lke
*EVENT-DEPENDENT-SCHEDULE which correspond to a single

BAD Interactlion are suggested first.

(2) The more deflinite a suggested bug, the more llkely
it Is; f.e., brackets which contaln a single possible
bug are suggested before those with multiple bugs,
which are In turn before those which are just brackets

with the "something's wrong"! tag.
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(3) The more interactions encompassed by a single bug,
the more 1ikely it 1is; this Is just a recursive
application of Murphy's law...the more interaction
decislons a user has to make, thé more he'll blow--thus
*AND bugs (1) and long timing chaln bugs (A was late

for B was late for C was...) come early,

(4) Timing bugs are more 1ikely than resource-confllict
bugs; PRIORITY determinations are much closer to local
specifications, and are thus more 1likely to be
user-intended than the multi-TIME-SLICE machinations of

a timing bug,
(5) *GROUP bugs are saved for last.

(6) After all of the bugs due to Interaction are gone,
the program works on the second possibility stated
above--t.e., it starts suggesting that the GOOD
constraints. are faulty (i.e., wrong *SCHEDULE
specification, etc.); it starts with the
*EVENT-DEPENDENT~*SCHEDULE GOOD  REASON if It's

around--it's suspliclious.

(1) *GROUP bugs would be here too, except, as | mentioned in
L.4.2.3, for the fact the mechanism for handling them 1Is
rather dublous.
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(7) The program suggests mlissing submodels (see 4.5).

Thus, the program goes through Its suggestion repertoire bug
by bug, providing the user with an ordérly statement of what
the program thinks might be wrong with the model! (see
section 2 for the format of the suggestlions). The user can
always ask to see the Interactlion path leadlng to a bug, the
bracket of a bug, and any other bugs which pertain to a
particular bracket.

If the user does not agree with any of
the bugs suggested, the program will suggest ‘possibillty
(1): that his original *GOAL was wrong. |If the user is
st111 unsatisfied after all this work, the program Informs

him as to the location of hls head and logs him out.

4.5 Don't confuse me with the facts

Most of the program's knowledge about
models Is contained In Its conceptions of MSL (including,
for example, Its 1ideas of how to INCREASE MSL quantities)
and its notions of user intentlon--as discussed In k.4,
However, as | mentioned in section 2, It Is useful from a
debugging point of view to Include actual "world" knowledge
of business games. Clearly, this knowledge can be used to

suggest bugs which transcend the MSL specification,
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This Is, 1In fact, the only use the
current program has for WOBG knowledge. As shown In sectlon
2, the program has a facllity for suggesting "missing" parts
of an MSL specification. This comes from a (very simple)
model of what an MSL model of a business game (1) could
contaln, The program simply checks at varlous points to
see whether the additlion of an *ACTIVITY could solve some
problem (usually alleviate some defficlency) in the user's
model. Thus, when there Is a lack of CASH In the sample run
In sectlon 2, the program notes that the addition of a
FACTORING +ACTIVITY (see description 1in Appendix A and
specification In Appendix B) could solve the problem.

While this sort of thing s certalnly
useful, It Is only a "“zeroeth order" attempt at using world
knowledge In debuggling. A more Important use of WOBG
knowledge would be to ald in finding bugs within the MSL
specification (i.e., the same kind of bugs the program now
finds). As | mentioned In 4.4, a major determiner of the
efficacy of the debugging program is the number and size of
the "brackets" which enclose possible bugs. In the current
program, brackets are determined by the amount of
uncontrolled interaction--i.e., a bpurely MSL-level

criterion. In a more thorough-going approach, WOBG

(1) In fact, it Is based entirely on the game in Appendix A.
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knowledge could be used to determine which interactions are
really natural and which are possible bugs (1) =-thus
limiting or even eliminating brackets, Also; WOBG knowledge
could be used to suggest suspiciously specifled *ACTIVITY's,
etc.

The main reason that | have not
exploited WOBG knowledge in these more sophistlicated ways Is
that 1[It has not been necessary for the models ! have
investigated so far. Furthermore, It is interesting to see
how far a "domain-independent" (2) debugger can go toward
finding bugs in MSL models. Thus, WOBG knowledge does not
enter 1Into the maln bug-finding process at all. |Its sole
use is In suggesting the addition of *ACTIVITY's to the

current model (3) .

(1) This sort of thing Is actually found to some degree in
the programs of Sussman 18] and Goldstein |5].

(2) See Sussman's discussion of the domain-independence of
HACKER |18},

(3) It operates off a WOBG database which will not be
described here. It works a 1ot 11ke MAPL {10], and was in
fact designed to be compatible with the larger MAPL database
of Protosystem | (the WOB ]9]).
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5 Concluslons

| would 1ike to wuse thls concluding
section to fit my model-debugging system Into the "big
plcture", viewing it first as a debugging tool, and second
as part of an automatic programming system.

The approach of my debugglng system
should be seen as one method of the several which can be
used by the human or machine problem-solver.  The
simulate-and-investigate technique shown here is'usefui for
debugging poorly dnderstood but easily modelled systems. It
requires the modeller's knowledge and lack of knowledge to
be of a certaln character, as outlined earlier. It Is also
most useful for handling highly interactive systems. |If the
problem domain iIs very well understood, or If actions in It
are baslcally independent, other technlques are simpler and
much better,

Furhtermore, 1t should be stressed that
the debugging methods of the program are qulté nalve In the
context of a real (l.e., non-game) Interactive system. It
Is almost certain that all of the techniques described here
would have to be shored up with procedures based on

knowledge of the problem domain (see 4,5). Remember that
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the basic "smarts" of my system is in the exploration of the
simulation history. In real 1ife, this exploration phase is
usually preceded by some knowldgable guess work on the part
of the debugger: almost all expert human debuggers
(programmers, consultants,etc.) start thelr exploration for
a bug with a good preconcelved notion of the nature of the
bug. This "notlon" comes from the wutlilization of long
experience about what kind of bugs are attached to what kind
of problems; most debuggers know that only one or two things
could possibly cause a bug at any given time in their
exploration. No one vyet knows how to encode this key
experliential knowledge into a computer program. Certainly,
no attempt has been made In this thesis.

Thus, the program presented here, when
viewed only as a general debugging technique, should be seen
as part of a larger system: it fits 1in after an Initial
"guesswork"™ phase (as one of several possibly applicable
techniques) and just before a ‘'weeding out" phase which
makes thorough use of knowledge in the problem domain to
narrow down the cholce of possible bugs.,

The model-debugging needs of an
automatic programming system are somewhat different. Here
the user Is Interested In expressing a model of his problem

to the machine in such a way that he can be sure that the
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machine understands It properly., Thus, after a phase of
mode 1 specliflication aid at deflne~time (1) ’ a
model-debugging system 1llke the one here can come in and
demonstrate the APS's ldea of the model to the user's
satlsfactlon (and help the user overcome any dicrepancys).
The simulate-and-Investigate and domain-Iindependence
philosophies of my system are well-adapted to this purpose:
the system can afford to be an expert in Its own modelling
language and do a great deal of exploration work in finding
bugs. Furthermore, the user can tolerate a reasonable
number of program-generated cholées of bugs In his model If
he can be certaln of eventual understanding by the APS.
Therefore, | think that the techniques used here might find
direct application In automatic programming.

Nonetheless, for a debugger to be truly
useful, whether 1in an automatlc programming or general
artificlial intelligence envlironment, It must Incorporate the
same kind of experlential debugging knowledge found In the
human expert. This kind of stuff will surely be the basis
of the next generation of debuggers which are now on the

horizon.

(1) See |9]| for Protosystem I's "actlivity expert modules".
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Appendix A

The following 1Is excerpted from the
article "Business Games--Play One!" by G.R. Andlinger In the
Harvard Business Review for March=-April, 1958 ( () The
Presldent and Fellows of Harvard University)-=it Is
reprinted by permission.

It serves as an example of the kind of
business games at which the program (and MSL) are directed.
An MSL model of the game described here appears In Appendix
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Business Games=--Play One!
Basic Objectives

Games are as old as man. Usually, thelr
basic objective |s entertainment. The Buslness Management
Game, however, alms not at entertalnment, but at learning.
Other dIfferences between It and a game 1ike Monopoly, for
example, are:

- ==The degree to which it approaches reallty.

--The degree to which the players'
experience, judgment, and skill--as opposed to luck--
Influence the outcome. '

If any business game Is to serve a purpose beyond
that of a fascinating toy . there must be some transfer of
learning from the game slituation to reality. While there
probably Is some such transfer from playing a generalized
business game that mirrors "any company" and not a
particular firm, an executlve could derive infinitely
greater benefit from a game that permits him to practice
gulding the destiny of his own company or one In his own
Industry--whilch unfortunately, Is unavallable at this early
stage of buslness gaming, The success of specific war
games, which the milftary has been wusing for vyears to
simulate combat situatlons for training offlicers, however,
holds great promlise for similar applications In business in
due course.

The Buslness Management Game is a case
In point. We started It In 1956 with the tdea of applying
war-gaming technliques to business., In the course of the
year we tested, modified, and retested the game many times
to develop a fine balance between reallsm and playability.
The more closely a game resembles reality, the more
cumbersome it becomes=-until It s no longer playable.
Hence, there 1Is a need to compromise. Also, we designed
the game to be relatively stable. No extreme strategy can
result in sudden Success; yet players can galn outstanding
success If they are good enough--or bankruptcy if they are
not careful.

The game 1is partly deterministic and
partly probabilistic. Some results are determined directly
by the actlon of the players; others are, to varying
degrees, subject to chance or probability. The weight of
the elements of the game |Is such that the longer the game,
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the smalller the influence of luqk;
Rules of Play

In thls section | shall give a brief
general description of each game element and the specific
values, rules and probabilities that define each element In
quantitative terms. Instructions for the umpires are
Included at each polint; but remember that they should not be
given to the players,

The Market

The market 1Is made up of 24 customers. Each
customer's potential is different; In any one tlime period, a
few customers are not buyling any units, while others may buy
four or five units (at $10,000 per unit) If a salesman is
able to make a sale,

The market 1is dynamic, so the customer
potentials change. |If the market is growing, they change
upward; should the market be hit by a recession, however,
they may drop drastically. The 1long-term trend of the
market Is announced to the players; short term fluctuations
are not, |If a company Is Interested in finding out what the
total market potential 1Is In any time perlod, a $2000
expenditure for market research will buy this Information
from the umpires.

The 24 customers divide geographlcally
Iinto four regions on the game board, each reglon contalning
six accounts, This geographlcal division allows the company
to do local advertising (see the section on "Advertising the
Product") and conduct market research in only one region at
a time. Such market research, which tells a company the
potential of each customer in the region and permits the
pinpointing of the direct selling effort (see the section on
"Marketing the Product"), may be obtalned by paying the
umpires $30,000 for "staff work."

In addition to the separation Into
geographical regions, the market breaks down into one rural
and two urban markets. The significance of this distinction
Is that In an urban market, where a salesman can make more
calls per day, he has two chances of making a sale during
each time period, while in the rural market he has only one
chance,

If at the end of a year a company
desires to find out what portion of the total market It has
been able to capture, It may but a share-of-market
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Information from the umpires for $2000.
The umpire should:
(1) Keep a 1ist of all current account potentials.
(2) Distribute a total customer potential, which

comes to $360,000 at the beginning of the game, at random to
the 24 customers as follows:

1 account ‘ $40,000
3 accounts 30,000
5 accounts 20,000
13 accounts 10,000
2 accounts 0

(3) Depending on the economic climate determined
in advance, change these starting potentlals as the game
progresses as follows:

-=-For slow growth, chane one account each quarter
at random. Move ahead on the random number table
until a number between 01 and 24 appears, then add
$10,000 to the potentlal of that account number.

--For faster market growth, change two or three
accounts In the same mannner as above for each
quarter.

--For a depression, change half or all of the
accounts to zero for one or more quarters.

(4) If a company decldes to buy market Information
(total potentlal, market research, or share of market),
write the Information on a slip of paper and pass It to the
company,

Marketing the Product

Units are sold by salesmen, who call on
the 24 accounts In the market, In an urban market a
salesman may make two calls per quarter; and In a rural
market, only one.

In the presence of an umpire, the sales
manager of a company polnts to the accounts he wants to call

~on. The umplire will tell him, after examining the random

number table, whether a sale Is made or not. How many
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units are sold to a customer wlll depend on competitive
action. The completed decision form, returned to the
company at the end of the partlicular perlod, contains the
actual sales results by accounts.

Whenever a salesman has two calls, he
must make the second call on a any of the three to eight
accounts adjacent to the flrst square called on; that Is, he
may not jump accross territories. |f no sale Is made on the
first call, he may, of course, call on the same account
agaln during the same quarter. Furthermore, there 1[s no
1imit to the number of salesmen who may call on the same
account In one time period. Between quarters, salesmen may
be moved to any accounts that the company wishes to cover
during the next quarter,

Each time a salesman makes a call, he
has a certain fixed probability of making a sale. This
chance of making a sale may be Increased In one of three
ways or a combination thereof:

-=-A company may Intensify Its direct selling
effort by having more than one salesman cover one
account as described above. In such a case, if
the first salesman makes a sale, the second one
may move to any adjolning account for his calls.

--A company may support the salesman's effort by
advertising (see '"Advertising the Product").

--A company may attempt to Improve its product by
spending more money for a research and development
effort (see "Research and Development'").

Every salesman costs $10,000 to hlire and
then $1000 per quarter In slary. (Since the product he will
be selllng 1Is a hlgh-price, compllicated unit, it takes one
year to traln a salesman before he can be sent out into the
fleld.) There 1Is a possibility that a salesman will
resign, In which case the umpire informs the company of this
loss. :

The umpire should have the following
Instructions for marketing:

(1) Each period there Is a 5% chance of loss for
each salesman. Move ahead on the random number table as
many numbers as the company has salesmen; If one or more of
these numbers is .05 or less, the company loses one or more
salesmen.

(2) In an urban market, allow two calls per
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quarter; in a rural market, only one call,

(3) A salesman always has a 25% chance of makling a
sale. For each call, examine the next number on the random
number table. [f the number is 25 or less, then a sale has
been made; if it Is 26 or more, no sale is made.

Advertlising the Product

Product advertising 1In any quarter
Increases the salesmen's chances of amking a sale. It
covers only the reglon or regions (i,I11,11l, and IV on the
game board) that the company designates, and Is effective In
the current quarter only, Advertislng costs $3000 per
page, and a company may buy up to five pages of advertising
In any reglon In any quarter.

Here are the umplre's Instructions:

For each sales call within the reglon(s) In which
the company has advertlised, go to the next number in the
random number table and determine whether or not there Is a
sale according to the probabllities In the following table.
If the number 1Is the same or below the probability
percentage, a sale Is made.

Pages Amount Probability of a sale
0 0 - 25%

1 $3,000 29

2 6,000 35

3 9,000 42

b 12,000 L8

5 15,000 52

Research and Development

If a company can develop a superior
product, 1[It galns a competitive advantage, Usually,
research and development have to be fairly contlinuous to
achleve a product Improvement, but a "crash program" may
yield results In a relatively short time. The minimum
research effort per quarter costs $10,000, but a company may
invest more than that In multiples of $10,000.

The umpire notifles the company
Immediately when 1Its research and development program has
produced results, and all unlts scheduled for production In
that quarter are considered to be equipped with the
Improvement. To find out the extent to which customers wll
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prefer an Improved product, $5,000 of market research
(obtalned from the umplres) Is needed.

: Of course, these ground rules can be
altered to fit a company's situation more closely--just as
the ground rules for other aspects of the Business
Management Game can. A company manufacturing equipment for
rallroads may well want to use different units of research
expendlture than would a company making dies for plastic
products. The length of time necessary to get results from
research also varles greatly from company to company, as
does the cost of research to measure customer reactions to
new products,  These and other rules can--and in many cases
should--be tallored to the realitles of the Industry.

The umpires will tell a company as soon
as a competing team Introduces an Improved product In the
market. The players can then counter with a stepped-up
marketing effort or a crash research and development
program.

If a company Is Interested In finding
out the total Industry research and development expendltures
for the past year, such Informatlon Is avallable from the
umplres for $1,000. ,
' In additlon, the umplres should:

(1) Maintalin a cumulatlive ‘account of each
company's expenses, After each break In continuity (a
quarter without any R & D expenditures) and after each
product Improvement, start the accumulation over agaln.

(2) Make appropriate revisions of the probabllity
of Improvement. The cumulative dollar amount spent on
research and development determines the gchances a company
has for obtalning a product Innovation. Examine the random
number table; if the next number Is the same as or below the
probability percentage, an Improvement Is achleved.

Cumulatlive amount Probability Of lmprovement

$10,000 0%
20,000 0
30,000 0
10,000 2
50,000 "
60,000 7
70,000 11
80,000 15
90,000 18
100,000 and over 20
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(3) Whenever a company achlieves an improved
product, Increase all its sales probablility percentages by
10. For example, If Company A has an Improved product, thls
Is the result:

Probabllity of sale

01d product 25%
Improved product +10
359

If Company A spends $6000 on advertising In one
region apd has an improved product, this Is the result In
that reglon:

Probablility of sale
01d product wlith

two pages of advertising 35%
Improved product ’ +10
5%

(4) As soon as all three companlies have Improved
products on the market, cancel the premium of 10 for all
three, :
(5) 1If one company achleves two product
Improvements before one or both of its competitors have
achleved any, Increase all its sales probablility percentages
by 20.

Increasing Production

The Iniftial plant which each company
must bulld costs $150,000, and hds a maximum throughput of
5 unlts each quarter. From then on a company may add other
productlon 1lines for $30,000 each., But each such $30,000
Increment will Increase the maxIimum throughput by 5 .

A company must pay for increased
capaclty as 'soon as It decides to start construction.
Constructlon time Is nine months (three time perlods), and
only after completion may the first unlt be put Into "work
In progress" for the new production 1lne. The companies
are not allowed to sell or otherwise dispose of excess
capaclty,

The total lead time In producing units
In a company's plant Is six months. First, production is
scheduled, and thils Involves no financlial outlay. Then 1in
the next quarter units are put Into "work In progress" and
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must be pald for. In the subsequent quarter these wunits
come off the production line , are added to Inventory, and
may be sold,

Total productlon cost contains a flxed
cost and a varlable element, The flxed cost Is Incurred
each quarter, regardless of how many units are produced., At
a maximum capaclty of five units per quarter, the flxed cost
Is $6000, and the variable cost per unit 1Is $3000. As
capaclty Is increased by additional production lines, flxed
costs rise and the varlable cost per unit decreases, If a
company, prior to adding a line, wants to know the exact
costs It will Incur at the next level! of capacity, It can
get that Informatlion from the umplres for $2000, but
otherwise the umplires will Inform the company what
production costs are when the new line goes into production.

Units are added to inventory at actual
cost. When a unit Is sold, however, It 1Is deducted from
Inventory at the average cost ( total inventory investment
divided by number of units In Inventory).

The umplres should calculate the
productlion costs at varlous capaclty levels as follows:

Max. capaclity Total unit cost Flixed cost Variable cost

per quarter per unit
5 $4,200 $6,000 $3,000
10 3,600 14,400 2,200
15 ' 3,000 22,500 1,500
20 2,400 28,800 ’ | 1,000
25 1,800 31,500 600

Financlial Management

The management of a company's avallable
capltal 1Is of critlical Iimportance. Each company starts
with $400,000 capitall and grow only through relnvested
earnings. Profitabllity will be In direct relation to the
ski11 with which the varlous parts of the business are kept
In harmony with each other to achlieve sound growth,

The price per unit of p?oduct Is flxed
at $10,000., When a sale Is made, accounts recelvable are
increased by the total amount of the sale, and on the game

board an accounts recelivable symbol Is placed on the flIfth

space In the "accounts recelvable® column, Every quarter
this symbol Is moved up one space untll after four quarters
It reaches the top space and becomes cash. Competitive
pressure In the Industry forces the extension of credit;
hence the one year collectlion lag.

If a company Is short of cash, accounts
recelvable may be factored to get cash Immediately. The
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cost of doing this is 20% of the amount factored.
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Appendix B

The following 1Is an MSL model of parts
of the game (for gne "reglion") described In Appendix A--as
seen from the point of view of a player wishing to
Investigate the game and see the effects of varlous
strategles, It Is presented here as an [llustration of the

use of MSL,

(*ACTIVITY HIRING
(*PREREQUISTITES (#PRESENT (1000 CASH)))
(*SCHEDULE ON CALL)
(#PRIORITY 2)
(*OUTPUT (SOME TRAINEE))
(*TAKES 0)
)

(=ACTIVITY TRAINING
(*PREREQUISITES
(AND («PRESENT (1000 CASH))

(#PRESENT (SOME TRAINEE))))

(*TAKES 3)
(*OUTPUT (SOME SALESMAN))

(*ACTIVITY URBAN-CALL
(*PREREQUISITES
(AND (+PRESENT (ASSIGNED
(SOME SALESMAN)

(SOME URBAN-CUSTOMER))

, («PRESENT (500 CASH))))
' (*TAKES .5)
)
(*ACTIVITY RURAL-CALL
(*PREREQUISITES

(AND (*PRESENT (ASSIGNED
(SOME SALESMAN)
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(SOME RURAL-CUSTOMER)))
(*PRESENT (1000 CASH))))
(*TAKES 1)
)

(*EVENT QUITTING :
(*CONDITIONS QUITTING-PROBABILITY)
(*ACTIVITIES (SALES-CALL)
(*CANCEL)
(*REMOVE (THAT SALESMAN)))
(*ACTIVITIES (TRAINING)
(*CANCEL)
(*REMOVE (THAT TRAINEE)))
)

(*ACTIVITY ADVERTISING
(*PREREQUISITES (*PRESENT (3000 CASH)))
(#*SCHEDULE ON CALL)
(*QUTPUT (1 PAGE-OF-ADVERTISING))
(*PRIORITY 3)

) (*TAKES 1)

(*ACTIVITY R&D
(*PREREQUISITES (*PRESENT (10000 CASH)))
(*TAKES 0)
(*SCHEDULE ON CALL)
(*QUTPUT (10000 R&D))

(*EVENT PRODUCT-IMPROVEMENT
(*CONDITIONS P-1-PROBABILITY)
(*ACTIVITIES (R&D)
, (*OUTPUT (1 PRODUCT-IMPROVEMENT)))

(*ACTIVITY PRODUCT-INITIATION
(*PREREQUISITES (*PRESENT
(1 PRODUCTION=-LINE)))
(*TAKES 1)
, (*OUTPUT (5 UNITS-IN-PROGRESS))

(*ACTIVITY PRODUCTION-COMPLETION
(*PREREQUISITES (*PRESENT
(5 UNITS-IN=-PROGRESS)))
(*TAKES 1)
(*OQUTPUT (5 UNITS))
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)

(*ACTIVITY PRODUCTION-LINE-CONSTRUCTION
(*PREREQUISITES (*PRESENT (30000 CASH)))
(*TAKES 3) '
(*OUTPUT. (1 PRODUCTION-LINE))

)

(«ACTIVITY FACTOR
(*PREREQUISITES (*PRESENT (5000 A-R)))
(*TAKES 0)
(+=QUTPUT (4900 CASH))

, (*SCHEDULE ON CALL)

(=EVENT SALE
(*CONDITIONS SALES-PROBABILITY)
(*ACTIVITIES (SALES-CALL)

: (=«OUTPUT (10000 A-R)))

(*FUNCTION SALES-PROBABILITY
(*ARGUMENTS (PAGE~OF-ADVERTISING))
(PRODUCT-IMPROVEMENT))

(*RETURN
(*SUM-UP
.25
(AD-FUNCTION
PAGE-OF-ADVERTISING)
(TIMES .10
) PRODUCT~ IMPROVEMENT)

)

(*FUNCTION AD-FUNCTION
(*ARGUMENTS (PAGE-OF-ADVERTISING))
(*RETURN '
(*TABLE (PAGE-OF-ADVERTISING
*RESULT)
(0 0) (1 .08) (2 .,10) (3 .17)
: (u .23) (5 .27)))

(#*FUNCTION P-1 PROBABILITY
(*ARGUMENTS (R&D))
(*RETURN (*TABLE (R&D #RESULT).
((LESSP R&D 40000) 0) (40000 ,02)
(50000 .04) (60000 .07) (70000 .11)
(80000 .15) (90000 .18) (100000 .20)
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