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ABSTRACT

Each programming language that handles data structures
has its own set of rules for working with them. Notions
such as assignment and construction of structured values
appear in a huge number of different and complicated ver~
sions. This thesis presents a methodolegy which provides a
common basis for describing ways in which programming lan-
guages deal with data structures and references to them.
Specific concern is paid to issues of sharing.

The methodology presented here consists of two parts.
The base language model, a formal semantic model introduced
by Dennis, is used to give the work here a precise founda-
tion. A series of "mini-lanquages" are defined to make it
simpler and more convenient to express and describe the
semantics for a variety of constructs found in contemporary
programming languages.
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Chapter 1

INTRODUCTION

1.1. General Goals

Students of computer sclence are confronted at a very

early stage with a great varlety of general—purpose pro-

gramming languages Descrlptlons of these 1anguages place

Lo s A

heavy empha51s on common features such as aSSLgnment pro-
cedures, condltlonals, aaput/output and olock structure;mx“
Aside from variations in notation, there are Aﬁﬁéiéﬁg rﬁles,
exceptions and special cases whieh’make fo;fdiffefeaoes be-
tween'compatablé constructs in:diffeteot ian;;ages. tFofve;-

ample, the body of a Do-ioop in‘FORTRANﬁﬁGst be executed at

rormaN | e
N =1 N = 1;
DO 50 I = 2,N . 'DOI =2 10 N:
[body] [body]
50 CONTINUE .| END:
_body executed once = | body not: exécuted
Fig. 1.1-1. Looping feature in two languages
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least once, while in PL/1 it is to be skipped if the index-

is out of range (figure 1. 1-1) Such differences can be

studied by examining the semantice of different programming

'languages. The semantics of a programming 1anguage is the!

_,

L3V

% 20 ‘L *
etudy of the meanzng of its constructs, or in other words

e ,%{'
the effect of executing programs in the language.‘ The par—

| r-!' ;:~~;,\,-» k4 SPTARCITREL LT

w

ticular concern of thle theeis ia the nction of deta struc-

'turen and the aemantics pertaining to them as they appeer

in progrxmming languages.

50

N Tﬁeie | ﬂre many areas of application ip, which the use of
strnctured ?etedre both helpful end Eonvenient in problem .
solving Seme example areas are symbol manipulnticn. arti-
ficial intelliqance. computer grephiés. and simulation stu-
dleegf*éeneralliilgeaking. a data ntruqxnxsziﬁ an eg@regate
data 6bject’ conEaIning other data objecte as components.
Typxcal ine;enpe@.pﬁ deta etructureevine&udeiarreys, sequen-
ces, vectorl, tuples and lists. We will not dwell on the
charecterintics peculiar to each of theae different vari-
eties of data structurg; our emphaula miil hé on%more gener-
al prapertiﬂanﬁﬂiatiag £0 deta etrnzmnrhm tnd>th€&f compon-

/
ents..

e g pe . I FEE
OSSN 353 L

Typically, a pregremming lenguage provides two basic
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operations for handling data structures: component objects
of a data structure can be 1nd1v1dually accessed and manip-
ulatedl and data structures can be constructed from de31g-e
nated objects as components. These'operatlons 1nteract with
the assignment operation of a programmlng-languagelln per;
formlng several other tasks; such as a531gn1ng structured
values to identifiers, or upcatlng components)of a struc-
ture. There is a great 51m11ar1ty in appearance among con-
structs for performing such tasks in varxous‘programmlng
languages. On the surface,‘fr0m~a‘casualyegamination‘ofw'

language descriptions, distinctions between analogous con-—-

structs in dlfferent languages appear to be mostly notatlon—'

al. But we shall see 1mportant semantlc dlstxnctlons, par-
ticularly in the area of data being shared between dlfferent

structures

Since each programming language has 1ts own set of
rules for dealing with data structures and sharlng, it 1s,
desirable to seek a rlgorousvmethod for describing what
happens. Our goal, then,,is’to”gain‘a:more‘precise under-
standing of the semantics of data structuraes. This will
provide a unified and coherent viewpoint‘for aescrlbing the

different approaches to data structures as they are found in
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progremming languages. We w111 gay specxflc attention to

the dlfficult and 1mportant Lssue of propertles of sharlng.

R

These issues depend uitimately on the concepta of cells

g

(which model computer memory locations) and references to

cells References are also commonly known aa_ggxnters We
will first dlscuss general questionn of programming language
semantlcs, and then move towards a more epec1f1c treatment

of data structures and references.

. A ptogrenninq language providee a notatien xn which the
programmer can model conputatlonal processes and the 1nfor-
matlon on which they operate. Programming language seman- “
tzce deala with the relatlonship betwnen programs and the
objects they represent. A formal s semantics for a programm-
ing lenguage is afﬁrecise dé-cfipéiaﬁ“éé"édéh°£h£eisti¢n-

ship. There Thas beer: mudh study of formal aemantlcs of pro-

m gramming languages.: Wegner nWeg 72a] distinguiahe- three

classes of ﬁormal semantic models:

¥ Ce

(1) Abatract semantlc models. In this epgroach the

objects being modeled are treated aa mathematical entltles

TR

1ndependent of any particular repressntatlon. Models of
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this class aim towards. prov1d1ng a formal mathematlcal de-
scrlptlon of the computational notlons belng studled | One“ o
well—known example of thlS appfoaoh to semantlcs has beén“
the use of the lambda:calculus as a semont;ovmodol for pro;.
gramming languages. The’léﬁbda-ea{eulﬁsffﬁﬁich5i8 described
in [Der 74, Morr 68, Weg 68], is Basically & mathematical
formalism for the definition and application of functions.
It is ideally suited for describing aoioaiiédiéééfioaﬁivo%sg
features of programming Ianguagéé,'suCh as'o;élﬁofioh'of'ex~
pressions, use of procedures, éﬁH;BlookléffGZEﬁiigéryuLahéin
demonstrated its usefulness ih‘thoseVoreagﬁtngﬁi64] ;ndipré_
sented a scheme:for'ektendihgotﬁé‘;aﬁbda z3ioﬁ3o;\formoiismr
to model the language ALGOL 60 [Laﬁrééjf" ﬁofeyi;céﬁtly}u
different extensions of the lambda.caloﬁiﬁs?ﬁaVéioeéhlde4ﬁ# 
vised for aescribing'da%a types [Reyn 73]. | -

A second major éxample of the absﬁroct”approach to so—
mantlcs is found in the work of Scott [Scot 70 Scot 71]
Scott makes use of the mathematlcakﬁﬁﬁeorg*dfﬂfnﬁticoé
[San 73] to construct sets ﬁhiéh=éfefthé'doﬁoigéogf func-
tions that represent the‘boﬁavfor'5fr§io§fém§:"The Scoﬁt‘:
formalism has been uSed'fécéhﬁiy:toz&ééégfﬁg Eﬁéﬁsemaﬁtiosd 

of ALGOL 60 [Mos 74].
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We can brlefly summarize abstract semantic models by saying
"that ﬁhey charactorize the actlon of programs as functlons

P

over various domaxna.

(2) gt—Qut VFYEQQSLQ;;,ﬁédGlQuOf ;g;g,ciggs use

statements of mathematical logic as agsextione.about.the

state of a computer system at varigus points during the ex-
ecutlcn of programs on it. The. semantics dt‘a Rrogram. is

viewud as the relation betwaen input ggqqxtions (the state'
of the system before execution) and outpyt assertions (the’

state a{tgrrﬁhe;pxbgramxis\xpn). ‘gh;qhqurqggh.tphseuan;igs.

mora frequontly‘callzd the g;igggggguggprpggh&ayua,desﬁ_,M‘

been muuh turther‘wcrk on it. Axiomatic, samgntics is”montr
usaful in provinq correctness of programs, i,g. egtablmahing
that the afﬂhct of executing a proqram fulfills mathematzcal

_ conditlcnz ﬁhe program is supposed tq satisfy

concerns itself specifically with modeldng the changing . .

:@ach. tq, gemantics

states of a computer system performing computations. Such a
. | i 4 : : ‘ 5 ) . ) ) ‘ § i

task is usually accomplished by means.of a state-fransition

system, in which a state of the model represents the infor-

nation in the computer system at a given time. The effect
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of a program on its input'data is reflected in the sequence
of transitions of the model. It 1s 1mportant to observe

“

that glven a state-tran31tlon system correspondlng to some
program, the sequence of states that models\the executlon of
this program defines the'action of an interpreter for the

program. For this reason, the approach to formal semantlcs

using operatlonal models is called 1nterg_et1ve semantlcs.

We can describe the way in which an interpretive seman-

tic model gives the semantics for a program written in some

source language. A translator transforms the program into

an equivalent program in another language which we call an

abstract language. Progra@s in an ahstract language are{
actec upon by an interpreter; this action resultsin a.
secuence of state transitions of-the modei: ‘fhe semantics
of the original source-language prcgram is given hysgchva
sequence of transiticns.‘ One reason’wevmake use cf>trahs—
lators is that scurce programs are uscally’represented as‘
character strings rather than”as data ohjects suitable for

g

processing by the interpreter.

Although the use of}interpreters,tQ,imp;egent pro-
gramming languages was (and still is) ccmmcgplace, %ccarthx‘

[McC 62] was the first to use an interpreter to define a
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lenguage‘(LISP). The semantics of LISP is glven formally by
an interpreter written in LISP. Landin [Lan 64 Lan 66b] |
uses an 1nterpreter called the SECD mechine to define the
lambda calculus, even though the}lambda calculus is a mathe-
matical formalism with a rigoroua definition of its own. A

4

more recent diacuasion of definitional interpreters is found
in [Reyn 721.

Of these three approaches to formal semantics of pro-
gramming languages, the 1nterpretive approach is best suited
for our goals of understanding the oemnntic- of data struc-
tures and referehces. In order to properly explain the se-~
mantics of a program that handles deta structures, we w111
need to know hew the data structurea are formed their com-
position. the relationehips between the structures and their
components, eharing properties, and ather items of infor- |
mation. The best way to get a handle on this kind of infor-
. mation is to conaider the state of the syatem at various
moments during the qxecution of the proqnam The 1nterpret-
ive approach is the only one‘Which lends itself directly to
‘working w&thjst&tes of the system. ' Both of the other
‘apbfbicheh‘até betteay suited“for'prdving ad!éftfbﬁsvabout

programié andl’ establishing their correctriess; but these
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issues are outside our main concern here. A treatment of
 data structures from the v1ewp01nt of axiomatlc semeutlce‘
may be found in [Lav 741. We w111 wurk towards develop1n§
an interpretive model to be usedvas a seﬁautlc‘foundntlon
for dealing with the 1mportant 1ssues of‘data structures‘and

references.

The most preminent ihterpretive model for sementics ie
the VDL model. VDL, the Vienna DefinltlonjLanguage;_ls a |
metalanguage for wrltlng 1nterpretere of programmlngulan— _
guages.‘ VDL 1nterpreters have been\written for lengueées .
such as ALGOL 60 [Lau 68], PL/l [Walk 69, Luc 69], BASIC,/and
PDP-8 machine language [L.ee 72] E An elementary 1ntroductlon
to VDL may be found in [Weg 72b] | Just as. LISP works w1th
llStS, VDL works with tree-like data objects (whlch we call
labeled trees). The basxc operatlon of the VDL model is as
follows: for each source language whose semantlcs‘ue wish
to describe, we deflne a translator and an 1uterpreter;’ ?he
translator transforms a source language program iuto en gé;

stract program, which is a form of labeled tree suitable for

manipulation by the interpreteriffbr;eaeﬁ'eourceuiénguaée
the corresponding abstract language will be some set of

labeled trees; the structure cf an abStract"program varies
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from language to language) The interpreter, which consiats
of VDL code, accepts a labeled tree as input and interprets

B3 2

the effect of the program on ite input data. For different

languages, different interpreters are defined

The fact that VDL uses treelike data objects reduces

its desirability as a semantic model for our work on data

PR b S

atructures.. We will be studying data etructuree in which
components may be ehered between different objecte- VDL 's
labeled trees do not directly admit sﬁering of any kind

Thus in order to model in VDL structurea euch as we w1ll

iy Rpeys

Aﬁstudy, it would be necessary to go through the 1nconvenience

*fv.l

of aimnlating the memory of a computer. Since the study of

ehering ie fundeﬂental to our work, 1t is desireble to work

/

-with ohjecte in Whidh sharing is represented directly. We‘

PRI S Y

therefore prefer for our goels a semanticsmodel that

manipulatea dete objects of 2 more general nature than VDL's

labeled trees.

In [Denn 71], Dennis outlines an ipterpretive.qpmantlc
model called the ,—£~ anguage Eﬁgﬂﬂw Thg data chjests man~
ipulated by this mode] are varisnts of directed graghe and
can directly model sharing. As with VDL, for each language

whosevseﬁahtics'We wish tp describe, we must specify a
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translator which transforms,programs*in‘the:languagevinto
data objects suitable for consumption by the model. These
objecté are called ggggggnggeQEQEQEQSEEKENLthe‘bane language
model. Procedure structures, like VDL's abttraet prbgrams.
are acted upon by the interpreter: to- pxoduce atate tran-
31tlons.’ But the base languagelmodelﬁdiffétb*fram*VDﬁ‘in*"
that the composition of a—procéduzefsbtﬂdﬁﬁté‘geﬁéraﬁed by
the translator from some source. program does not depend on
the language in which the pProgram waSawritten;* As a result,
there is no need to define‘a sega;ateﬁintenp?eter,foi:each
programning language. There is a sxngle, nge—aupplied in=.,
terpreter for the base 1anguage model whxch accepts arbxt-
rary procedure structures and 1ntgggtetg%th§m7aawprqggems,a
Thus we see that the translators for .the base lapguage medel
translate programs from thelr respect;ve aource languages
into a single, common language. We cal;athis language the
base langg ge. A procedure structure répresen;s a program
in the base 1anguage, whlch consists of a sequence of in-
structions The 1nd1v1dua1 base 1anguage'inatructions?SPan

!

ify the fundamental state transltlons of the model. /

In order to achleve the 1anguage-indgppndcnce of the .

1nterpreter in the base language model, the«txanalatorg mu&t;
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do more work than their VDL counterparts. A VDL traﬁélator
simply converts a program from character string to labeled
tree, while a translator for the base lhn@uage~moael'ﬁust’
,Pgtfoxm;fuaétioaaasimilar;tO'th§sé'of & compiler. Thus,
‘once we specify .the semantics of the base language, i.e.
decide on a formal specification of the-actions performed by
the intexpreter in the baserlanguageﬁmadel;~thé~semantics of

a partieular @fﬁgfimm#nqwl&nguag‘*isiaétdﬁmined by its

X
1

translation into the ‘base language.

' The base lahgudde model is extremely well suited for
our work. ' The primitive instructions o£¥th3‘h$§e’lé;;£ag§
are particularly convenient f&f miﬁipuiééing‘ééructuréd.65-
jects and dealxng with aharing. We can vmaw\the base lan—
guage ag” the machine language for a computer with heap— |
structured memory and symbolic address apace. in‘this‘re;
spéct, ‘programs in the base 1anguaqe wlll be simllar to con=-
vetitional assembly ‘language programs. 'This”similarity'is a
source df‘fﬁ;thgrlgonVenience in uéing,thé'géééblanguage as.
a programming tool. B o

AmeraSingbe [Amérv72] described the translation of a
block~structured language BLKSTRUC into the base language.

In.BLKSYRUC, procedures are "first-class objects” [Stra 67]
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which can be used in contexts as general as objects of other
types. 'BLKSTRUC's treatment of procedures is more general
than ALGOL 60's. The action of a translator‘fqr a language
with ndﬁ—local goto's ié described in [Ame; 73]f‘ Trans-
lators for tﬁe 1anguégesWSNOBbL4 and’Simﬁla 67 are‘discussed
in [Dra’73] and [Cou 73];wahes; works.ghow the uéekofythe
basé language model in déécfibing the’éemanﬁigs qf various
powerful programming laﬂguages. We wilivgé‘ﬁsing a vergion
of the base language model as the semahtic foundaﬁion fér

our study of data structures.

1.3. Plan for the Thesis

We outline here the topics_co&ered in thé’rgst ;f Fﬁis
thesis. Chapter 2 describes the bésellaﬁguagevmédel’as we
will be using it. 'The actioh ;f thé.intefpretér is given by
describing the efféct of the inst?ﬁcﬁioné éf the base4_
language. The appfoacﬁ in Chapter 2 ié ihformal; a more‘
rigorous treatment is found ih thé‘Appenéi#. ‘Once thg be-
havior of the base language interﬁretéris‘kndwﬁ,»wé have a
handle on the semantics of the prbgrammihgilﬁnguage con-
structs that interest us. All that will then need édkbe

done to supply a formal semantic definition is Simply to
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rdescrihe ‘the action of a translator which produces base lan-

~guaqe code,

In the remainder of thia thesis we w111 be uszng the
base 1anQuage model as a semantlc foundatlon for descrlbxng
 the dlfferent ways various programmzng languages deal with
data structures. We want to make clear distxnctlons between
kcomparable conutructs in different languages.. Although the
‘semantics of data structurlng constructs can be prec18ely
qexpressed by using the base lanquage model, there is a cer~.
tain respect in which the model ia 1ess than ideal as a de-
scriptive vehicle. Data structungqﬁnslﬁbmy‘are_found‘inr-
'programming languages are tied up with the notlons of var-
‘iables and values. e would like to make use of these
notxons in talking about the semantlcs of data structures.
But the deacriptlve level of the base language is only
_equipped for talking about prlmltlve transformatlons on the
objeats wh;ch comprlse the 1nterpreter states. In this
sense the base 1anguage is too "law-level" for descrlblng

data structures in a manner suitable for our purposes.

¢

To provide a better descriptive mechanism, we will
follow the approach taken by Ledgard [Led 71] in defining a

series .of "mini-languages." Mini-languages provide de-




scriptive levels appropriate<to our ngeds,,xgg_§t¥the same
time évoid.the syntactic a#d/semantig éomp;exi;y_pg_fg;;fw
scale programming 1anguages, The primagy‘adyﬁggggg_pfﬂ;yg
mini~language approggh is thgtﬁﬁgvcan:isq;atgztbe popcgg;g
we wish to describe by eliminating all the conceptually ex-
traneous notions that are”needeé_;nva fpllfsigg ;gngugggfw
Accordingly; infa mini—langgggg’fqrﬁdegg:ipiQQ;ggtgiggggg;
tures, there are no procedures, Epnditgcng}:§§?r§§§ipp§,j;
loops, goto's or operators. Miniflangugggsﬁgggwpgp meant to
be viable 1apggages(fo;_acgua}hggoggggm;ng;,ghegka;e¥?§gd_
féf descriptive purposes only. The,SYQF§§,§9gu§e@§?Figszﬁf
a mini-language are simple enough to be read?ly undexrstood
on an iﬁformal basiQ% éhe se;QQtiés’c;gﬁﬁhen bé?férﬁalized

RO

anéﬁage. In this

&35

by specifying translation into the base 1
manner, the semantics of data-structuring constructs in full-
scale programming languages can be given by describing how

to express these notions in a suitable mini~language.

Chapter 3 presents mini-languages for describing the
notions related to assignment, daté structures, pointers and
sharing. These mini-languages are then used.to describe the
data strﬁcturing semantics of éeveral full;scale programming

languages.
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In Cliapter 4, we treat the additional notion of static
typechecking, which has a direct bearing on the semantics of
éatd3atrﬁcﬁurei in many important prbgfamhingfianguageé.
This notion of static typechecking differs from Ledgard's in
that it deals with structured types, whnre Ledgard [Led 71]
duals with functional typet ‘and tha types of arguments and
returned values. As in Chnpter 3, we treat the'data struc-
turing facilities of three fu114hizo'ian§uagesé‘:in o
these languiéat the concept of sfaeid'typeéheckingvis di-
rectly tied in with the semantics of data structures (spe-

¢cifically assignment).

Chapter 5 presants a summary of What we cover in th;s

" thesis and suggocts extensions for furthar study.
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Chapter 2

THE 'BASE LANGUAGE MODEL

2.1. Overview of the Model

We have chosen as the semantic foundation for our work
a version of the base language modelvset;fprwaré_in,{peppCZJ]
and [Amer 72]. The base language model. centers around a
base language interpreter, which is essentially a state-
transition system that we shall use to gg?resg the meaning

of computations. The interpreter specifigs the behavior of

an entire computer system. We reprggggtfgﬂcn“;gtét;oajby a.
sequence of interpreter etates. A state of the ictegpgete;
will be a certain kind of mathematical object embodylng the
information contained in the computer system at a partlc-
ular point in time. We shall define a base 1anguage called BL
each of whose programs consists of a sequence of instructzons
Each instruction specifies a functional transformation be;H:

tween 1nterpreter states, The 1anguage BL is adapted from

the rudimentary language described by Dennis in [Denn 71]

We represent Lnterpreter states by mathematical ob-

jects known as BL-graphs. Suppose we are given a set ELEM

0
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" of elementary objects and a set SEL of gselectors. (For our
purposes, ELEM consists of integer#, reéal numbers and

strings; SEL consists of integers and strlngs ) Then a
BL~-graph is a variant form of dlracted graph; it consists of

nodes and arcs. E&¢h arc connects two hodes in a specified

direction and is labeled with a selector. ‘We may associate an

elementary obje¢t with each node from Which no arcs lead

out.  There must also be a distingquished Bubbet 6F the

nodes (called the root noaeé)"ffbmrﬁhieﬁ”'eeéﬁfﬁbde of
the graph can be féaehed'along;some‘diréééed éﬁtﬁ‘of'éféé.
We give a formal mathematical definition of BLigraphs in the
Appendix. o
A BL-graph w1th a szngle root node is called a BL—obJect
We ldentlfy a BL—object by its root node.h Spec1f1ca11y,‘
for any node a in a BL—graph G, we assocxate with o the sut—
graph of G whoae nodes arid arcs are accessible from a. Thls
subgraph 1s.a BL-graph W1th o as 1ta noot“node; ‘we call lt

the ob]ect 2_.a.' |

If there is a directed path from one node of a BL—graph

to another node, then the second node is called a descendant

of the first node All nodes in a. BL»graph are descendants

of some root node. A node from which no arcs emerdge is
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called a leaf node, An elementary object attached to a leaf
node is called the xglgg of that node, lf‘there is an arc.
from a node o to another node B, then B is called a com-
Eonen of a, and the object of B is called a component of
the object of a. Components are named by the selectors on
the arcs leading into them. If an\object rs a comoonent of
two distinct objects, it is said to be shared betveen them.
Nodes in a BL-object are denoted by pathnames. A pathname*
for a node is a sequence of selectors labeling a dlrected
pPath to that node from the root node; If the object of a
node is ehared, then the node will have dlatinct yathnages.

The property of sharing is of major s;gnlflcancey we. w111

have much to say about it,

We will be making heavy use of plctorlal representa—
tions of BL-objects. An elementary object is drawn as an

encircled value (flgure 2.1~1) .,

For a general BL-object, the @ . .
nodes are drawn as heavy dots. s f

The root node is at the top. i Flg. 2 l~1 Sample
\ ' - elementary objectsl

Arcs emerglng from a node are 7’*f

drawn downwards from a horlzontal llne attnched to the nodef

Selectors are written across the arcs that they label. If a




‘selector is a strxng, we do not enclose 1t in quotes.

' them.»
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Elem~

entary objects attached to root nodes hang downwards from

“Thus our pictorial conventlons for BL—obJects dlffer

slightly from those used in [Denn 71]

Sample BL—ObjectS are plctured An gigures 2.1-2 and o

L S TR T

2 1-30

[ BT ‘ ﬁ aF:

J-_I |

‘nqmedvk.pg and a,

ent is empty,

BL-obJect

Fig. 2.1-2, A sample

The object in flgure 2 1-2 has threo components,

+The c~compon-

The k-component

has two coppanents, both of .

which are leaf npodes. The leaf

. hode with value, 9. hag pathname

k.c. The.lggﬁqnqde,with_value

'hi' is shared between nodes k

ST

and a snd has path-

names,k u and a 6 In
=';‘~:',~~ rrl PR
.flgure 2 1-3 the ob-

-

‘ject with value l 6 1s
ety
shared between the ob-

B i

jects 8, b and 8 and

ey Liv'k

.has pathnames 8.b.5

e

A ﬁﬂ ipTe ‘BI :b”je;c,es ’ K eh

dnd 7&[‘4 The fobjeotl

| Pig, 2.1-3.

te 913 szOYDs gedlls

node c 1s shared
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between the object of the root node and. the ngect c.y.
Since the node ¢ is a descendant of itself, it has infin-..
itely many pathnames c, c.yfz, c.y.2.y.2, €.Y¥.2.y.2.y.2, and
so on. The path joining this node to itgelfxis a directed

cycle.

A basic difference between out: BL-graphs and the graphs
of [Denn 71] is that Dennis does not allow directed cycles
in his objects. Cyeles seem to impair the management of .
storage and the handling_of;parallelihm'inscomputation}
However, cycles occur in many of the structures we shall be
modeling. Moreover, they are difficult to detect and re-
move (see [Amer 72]rﬁor.more~detailsfonwthe;p$Qb1§mﬁaof**

cycles). We .shall therefore not rule:out cycles here.

' We follow [Denn 71] in giving the structure of é BL~
object which represents a state of the interpretef. An |
interpreter state is a BL-object having three'components as
follows:

(1) The universe-component m;dels system-resident in-
formation, both data and procedures. Generally speaking,
this informatién is independent of which computations are
currently active‘or_how far various computations have pro-

gressed,




(2) The 10cé1-structure—component?oftaﬁ”interpreﬁer
state has as components a series of activation records for
the VariOus‘prgcedurei being iﬁterﬁreteé‘iﬁ:ihe sysfem}l
Thise«oamppnehts‘aré called ;gggl’atigétggei;'éhere is one
local structure for each activation of éach base language
.procedure. A laealfstructure'reprdadﬁhifﬁheﬁenviteﬁment for
its activatign.-primarily.identiziczn«aﬂ&wfhéirrassociated
values. Thus the»kocalﬁatructuﬁnﬁ&oﬂp&ﬂ&ﬁt of an inter-~
breter;stntg_mecorda,@he progress of coemputations by model-
ing their changing environments. .

(3) The comtrgl-component ‘has .as COMpOnENnts a number of
sites of aguivity, which indicate for each current compu-
tation the next instruction to bevﬁsaeuted,fﬁke approgriate

environment (local structure) for the cqmput

giggi.and other
information. |

‘We shall not go into the details here of repress&nting
the universe- and control~ components of interpreter states.
The interested .reader can consult the agbcnﬁix“far»that kind
information. We will be dealing almost exelusively with'
local structures in the remainder of this chapter. In the
next section, we describe the action -~ 0f a nimber of

primitive BL instructions,




2.2. Base Language Ingtructions

- We introduce the primitive instructions of BL, théﬁyi
define state transitions of the interprétef in 0ur model.
Bach 'BL instruction executed by the interpreter belongs to
some procedure written.inﬁanzanﬂvisifﬁteﬁ§¥h&¢dﬁauringyeﬁ{w

activation of the proceduxe.. We call. the loceal structure

correspondlng to this actlvat%on the current 1oca1 stgucture

%

(c. 1. S.) for the instruction. . .

‘A BL - instruction - cohsists - of an: “oper~ o

ation - code  and © up “to’ three opefinds., ;i Tbeff

&

operation. code . is underlinéd. Most nﬁ the operaqép of
the various lnstructaent*are selectort' whxch are frequentl?
- used to denote names of eomponbnts of the root nodevof the :
c.l.s. We reserve the katters ‘N, v, and z for selector

names used in this :fashion. -

We shall give 1nformal descriptzons of the effects of
} S
BL instructions, accompanled by sample "bafore" and "after"7

diagrams of the c. 1 8. A more formal dofinitlon of these
mlver Crewlues avima ey

instructions may be found in the Appandlx. |
. ) . e ."z;.;é;}:tll‘“i ERREREURE 6 3 S

Each 1nstruction 1s dSSL ed to rfo a 8 c;fic L
gn Pe r}m P§ [ BV

functlon in changmng the c. l s Thls is called the rima‘;
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role (or, more simply, the ra;a)waﬁaﬁha:iﬁstiﬁééion;‘aﬁd‘dé;

pends .pn' certain mnditz,om being fulfilled (e:.g. the pres-

en¢e.qruabsengg,aﬁa%aacifxc-~¢wwMg»ngn,inathe~c.L.a.J.,'Thef
effect of an instraction ‘when such. conditkons do not hold is

called a spbaidisry .

' The greste instruction is used to ‘create a new com-

that the ¢.l.8. Was no x-component,

- the primmey role of the instruce

[l

tion.gcrephe x is to add one’

(Eigwos:2.2¢1) . The new x=

"'f‘-ig;.:;zl;z‘\“'l' role of
create x. .. - . |- = node. If:the-c;l.s. already has

~an.X~componant; -then:the in-
;truction create x has a subsidianyQuffaetaofwehanginq the
:‘irc-with ialﬁéfﬁr‘x_from<the #aat node to ﬁoint to a newly .
allocated ncée. Por this subeffect the fcrmer x—component
nade w111 remaxﬁ as part of tha c: 1 s.,anly if it was. shared
w;th some ahhsr nade. Figurea 2. 2»2 through 2 2~4 111us—’,

trata suhefﬁncts of th@ lnstructien

ite x and its in—
terplay with the shar&ng praparty. Partimna of a dlaqram

' onﬁlﬂﬂad~in dntted lines are no lnngez pnrt of the c. 1 8.
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and can be thought of as garbage-collected.

E I

AT

Fig. 2.2-2. A subeffect
of  create x

| Flg. 2.2-3. A subeffect |

Cof create x

of create X

Fig. 2.2-4. A subeffect

A it e

Fig. 2.2~6, Role of
clear x

s S @S

>;?;;¢ 
b
¢

"Pig. 2.2-7. A subeffect
_of  slearx

btiindnchum
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The clear instruction is“uséd'to méké a ﬁbde émpty;
c;éarvx detaches whataver hangs éounward from the node Xy

: 1eav1ng x with an empty value. The old value ofrx is lost.

: even. if it was ahaxad w1th some other néda. Fiéures 2.2-5

§~aad 2 2-6 111ustﬁate the role of glhar X. If there is no

“xeccmponent in.the c.l.s., gclear x - acts-like ' create x°

E and-genératdg_gngg(fig. 2.2-7).

-

The delete instruction removes arce from the c.1l.s.

The arc from the root node to the na&e x is removed by.the

;J.nst:ructién delete x  (figs. ;2.2?-8 and 2&6&:} The' arc |

Figs 2.2-8. Role of | pig. 2.2-9. " Role of
gelete x |_gstete x .

‘with selector m from the node x is removed-by the two-
‘operand form delete x,m (figs. 2, 2~10 and 2 2~ 11) If
}an arc to be removed dees not exist. then the~suba£fect of

1tho.de gg znatruution it that no action- be taken.
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: ,‘ — | 2 v :
iﬁ#er

éa 5 ééé

Fig. 2.2-10. Role of
~ delete x,m |

Role of

' The const 1nstructlon is used to attachrelementary ob—
jects to nodes. If v is ahy elementary object then i
ggggg‘v,x causes the value v to be attached to the node x.r
The old value of x, if any, is lost. h Flgure 2 2-12 lllus—
trates the role of the instruction ggagt 5,% (where X 15'
a leaf node), and figure 2.2~13 shows a subeffect of the

same instruction (for the case when x {8 not a leaf node)

— | T
ST é\h

b SN $ - 1
Fig. 2.2-12. Role of | Fig. 2.2-13. Subeffect of
const 5,x ~ const 5,x ‘
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Arithmntic instructions such.aswggg,~sg§trwvmult~and
divy are used to manmpulate elemantary values. Por example.

the instructﬁﬁﬁ g X y,

adds thn uuluis at;achcd tol

nodes x»&nd Y and places the sum

_in node z~(ftgure~z.2-14). ft{

Fig. 2.2-14. Role Of|

244 x.y.8 is an error to attempt to ex-
a g . ’ ’

ecute an arithmatic 1nstruction
,if one of the farst two operand nodosyfails to ex18t or con-
tains an 1mproper value (not a leaf noda or empty or wrong
type of element&ry object) We 1eavo the effect of 3uch an

attempt undefined.

-

The link instruction is used to initiate sharing be-
tween nodes. The instruction link x,n,y .cauvees the node

Yy té beqome‘the n-component of x (so that y will be shared

Fig. 2.2- 15 Role of | . Fig. 2.2-16. Role of -
. Mgk x.n,y | | Hmk xmiy ,




node x has an n-component, then ‘the instructzen
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between the node X and the root node) This is doperbxwadd-

1ng an arc w1th selector n from node x to node Y- Figures

[ _;a..‘}. Lt ik

2. 2 15 and 2 2-16 1llustrate the role of the 1natruqtion

11nk X,n,y. If X already has an x-component or 13 a leaf

DT

node with some elementary value, then the subeffect of the

R AR TAE B e

same instructlon causes the old value of - x tc be lost (flgs.,
TS N L‘ SR

2.2-17 and 2.2- 18) | The nodes for X and y must be preaent

Sy DM '§ N1 TR TR

R

or else the lnatruction is illegal.

i 2 N - N ; % 3 ~.‘_ S ; # e
Fig. z 2-17. Subeffect B afz—la ‘Subeffect o
of - l;gk X, a,y ek ! zﬁlgég*xfﬁ.y '

L4

The select instructlon satisfies a dual purpose.u If a

sei ct x,n,y
P sl ety SRy S T i ieanasieie

“makes the n-component of x the y-component of the root node

WETILS A SR
(so that it can now be naddregsedu by f“rther BL instruc- i
£ .‘« = Tﬁ) (o v

tlons) In thls manner a BL procedure may gain access to<
. e f”g“fﬂfk? PR I o

arbltrary nedes of a c. 1 8. If x has no n—component, then

AN e RN IS S AN

M O e



the instfuction

‘makes it the y-component of the root node.
prlncipal way to construct BL~objects,

select 1nstructlon to add on components.

select X,n,y

B o A

generates one

first, then

This is the
i.e. by using the

These two roles of

the select 1nstruction are depicted in figures 2.2-19 and

2. 2—20 respectlvely

y~component prior to the executxon of

does,

select x,n,y

Fig. 2 2~19 1st role of

The apply instruction providea

procedures.

EL code”for

Then the instruction
in the following manner-

ture is created.

mlzp.

select x,n,y.

The root node may or may not have a

- If it

then the value is lost unless it was shared.

?f

b
Lo

T -

‘Bslegt x.n,y

Fig. 2 2-20. .2nd role of

Let the p-component of the c. 1 s,

for Ehe actlvatlon of BL

represent the

some procedure (1 e, be a procedure structure)

actlvates thls procedure

Flrst, a new. empty local struc—

The x-component of the c.l.s. is then made
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the $par-component‘ (parameter'llnkaqelﬁfor‘the new local

structure (we refer to the BL-object x as an argument struc-

ture) . Finally, control is paseed)to{avneygeite‘qf,ectiv—

ity. This means that the newly-creatod local atructure ‘be-
comes the c.l.s. and the old s;te_of.ectiyltyAigimage,gor;
mant. The interpreter_will‘nowuexecpteH;ngtrngtloneﬁ;rgm)

the procedure p until it is told to return.

The return instruction provides ggr‘germ%gaﬁlgn:of the
execution of,a BL”P?°CQ§#?9?ndAf9: return to the galling
procedure. Upon execution of a return instrgctign,,thg o
c.l.s. is deleted. All its componenta vanish. The pargmeter

linkage, since it shares wlth the argument structure of

TN

the 1nvok1ng procedure 8 local structure. remalns. Control

is returned to the dormant site of act1v1ty for the 1nvoking

procedure, and its local structk!évbecoﬁes’the“hew‘c.l.s.

The invoking procedure resumes’ from where it left off,
In order to invoke a procedure, it must be represented
as a component of the c. l s.v The gg inatructxon makes
data in the universe availabléﬁieééinvoéetion’Eﬁ“a BL pro-
cedure. We will not have oecasifon tb’use this instruction

here; further details are found in the Aﬁﬁenéixl

The instructions of a BL protedure are labeled with
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natural numbers; execution of”a‘BL'procédurs\oonsists,of}the
o succéSSive exécution of its instfﬁetions in sséuence scoord~
ing tokthe<numbéfs labeliné theﬁ. The remalnlng BL lnstruc-
tions prov1de for ohanges in the control sqquence. Each of
them has as one of its opérands a lahei f) which must be a
natural number labeling some instfﬁction of the proceduré
currently being executed. |

‘:The instruction goto { transfers contféi to the

instruction in the current'érocédﬁfo whose lanel is the nat-

ural number . o

The“instruction elem? X, z‘ tests whether the x-coms
ponent in the c.l.8. is a leaf node (e;emcntary object) If

not control passes to 1nstruct10n number z.

fhe instruction _empty? x,4 checks whether the x-
component of the c.l.s. is an empty leaf node (i.e. no com-
ponents and no elementary value). If not empty, control |
ésonsfé;s to instfnction number .

The.instruotion nonempty? x,4 performs the same
test as the corresponding eggtg? _inatrpction, but control

passes to £ if the x-component is empty.

The instruction eq? X,Y.,4 looks at the x- and y-
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componentsvpf thelc.l.s._ gpth must bgt}gaf 304?5{10: e1§e
the gffeqt ofkthis instructioh is uédéfiggq, %Egse npdqs_
érg Checkéd,t° see if they havgwﬁhgﬁgamgAelementary va1u§;
If the test fails (i.e. their values are not equal), the§ 

control passes to §.

The instruction hag? x,m,4 checks whether the x-
component object of the c.l.s. has an m~component. If not,

control passes to g.

The instructioﬁ same? x,y,{ checks whether ' the x-
and y-components of the c.l.s. share the same node. If not,
i.e. they are distinct nodes, control passes to .

In all the ahove‘conditional instruétions} if the
c.l.s. fails to have a component ihdiéated by éome opefand}
then the effect is undefined.

~ Other conditional instructions analogous to the above
ones can be defined (e.g. testing whether one elementary
value is less than another). We will have neo nead~he;e~£or
such additional instructions.

Finally, we discuSs one more instruction that will be
needed. Given a BL object, we wili want to beiable to

access each of its components, without knowing beforehand
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the names of the selectors. The getc instruction serves
this purpose. Successive executions of the same instruction
gete x,1i,4 extract successive components of the X-compon -~
ent of the ¢.1.s. by causing the i~component of the c.l.s.
.to assume as its successive values the selectors on the arcs
leading from the node x. No component will be extracted
more than once, and control passes to 4 when no more com-

ponents of x remain to be accessed.

2.3. Programming Conventions for BL

In this section we introduce a few programming conven-
tions which will make BL procedures easier to write and un-
derstand. We can view BL as the machine language for a
hypothetical computer. Our con&entions are then similar to

the programming features provided by a macro-assembler.

Although individual instructions in a BL procedure are

labeled by natural numbers,

X,y,no we shall use symbolic labels.

const 'yes',ans

For example, suppose that x

goto skip
no: const 'no’',ans and y denote leaf nodes in
skip: .... the c¢.l.s. Then the BL code

Fig. 2.3-1. Use of

symbolic labels in BL of figure 2.3-1 places the
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string value "yes" in the node .ans if .the vg;ueg;of x and y

are equal, "no" if they aren't.

The nodes addressed by operands.in the BL instructions
must be direct components of the, root node of the c.l.s,
With the select instruction, we can access nodes further.

down. in the c.l.§..  For instance, sup-

YT |  pose ve wish to change ¢he vale 3 in
.3..., éé) . figure 2.3-2 into the value 4, This is
é:) 5—-, | done by the gonst instmiction, but in
(;: . order to. accéas -the proper node, we
-— , ;
,e f -} must use the gg&ect 1nstxuctibn three
times. In the BL codq hhatqperﬁorms
Fig.g2,3—2,‘ our task (f;gu;e 2. 3;3¥y$the reaerved

. selecter $teﬁp acts as a temp-

v T S orary varlabke., 5y usmng a
select x,b,S$temp
select $temp,d,$temp dotted pathname conventlon
select §$temp,e,Stemp | to’ rafer to approprlate nodes,

¢onst ‘ '4fl $temp we can abbrev;,?te t.hls BL code

Fig. 2.3~3. BL code
tO“aC¢8987& nOﬂef

.asfthe—smng&e inatructlon

const 4,x.b.d.e.. This can be
viewed as a macro-instruction whosewaupansigaLéivesmthé're-

quired select instructions., Alterpatively, we cap. look at




this convention as extending "addressability" to arbitrary :

nodes in the c.l.s.

We will make frequent use of a macrowsubttitution cap-
ability, which:iw prdvimd by a “en cmmtion. If z is a
 leaf node ‘contaiiting some elementary valite, then *z denotes
this eleéementary value. ¥or example, in the c.l.s. of figure
2.3-2, %z denotes the value 6. 'm*hbbx&iat‘iéh* const *z,y
- specifies the ssme transition as the inntruc;tion ggggg_g 6,y
when the' ¢,1.8. is in this stats. ‘Tn the c.l.s. vafzgute‘

2.3-4, theé lesf node with valﬁe 2 can

- ‘be’‘addressss by any o! the !o:m x.a,
-x..*z, *y.a, or *y, m. whi\le the

value 2 xtulg ‘can be : dmp;ad by any of

Ty

t’ha fﬁm * (x.a) ’ * ‘(Xo*Z) ’ * (*‘Yp a)n

or ~*‘(*y.*z)i As a th;l.xd example, the

B BL cmof figure: 2.3~5, set:s
loop:  xieut - _all; tha Weﬁta of the ab-
met O,x.*i | jecb-ae«towme. : Noee tahat the
, - geke - deep - .1eqf nodo, si. contm as -ue-
Out: . oo @ .
‘L et o | ceuivo values the names of
ettt - tha;cei.‘kétdr‘-‘_‘jirotn %. Thus

the dotted pathname x.*i refers to the siccessive com-

TR M A A S MR MR S S RS et 3 i i T A
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Ponent nodes of x.

We nou define eeveral macros for BL to denote commonly
performed functions. The .setl macro (set up L0cal -
structure) is used to set up riew components 1n the G l q
Flgure 2. 3-6 shows the deflnlt;on«pf the - .setl macro, and

flgure 2 3= 7 glves an example of its effect.

- setl . (Xl, . ‘- ey xn) i __Tl__- SRt o ' N ?’i '

create x1 . 7 ¢ é b b
create xn | S T (A b
Fig. 2.3-6. Expan- , Fig. 2.3-7, Effect of
sion of .setl macro .} . -setl (x,y) RERER

The remalnlng macros. we w111 use deal with llnkage be-
tween BL procedures. we first defxne a Erocgdure closure toe
be a.BL—object with two-eomponents " The $text—¢pmponent
contalns BL text of a procedura, and the- $env-component con~
tains references to the»global variabléﬁ”named in the pro-

cedure. (Note that ngn 1s a legal dhixactervln BL.)
The .call macro expands into BL'code‘to‘iﬁuoke a pro-
cedure. In the definltlon in flgure 2 3-&, the node R must

be a procedure closure,'and al, ... , an are selectors
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leadlng to the arguments,vwhlch may be arbxtrary BL-objects.

wvrigure 2. 3-9 givel an ex-

Imedeery g

.Cd1T ﬁ,fil,...,an) ] ,ample of the invocation of'

K]

;éféiﬁé'”$arg ST & Cag proeedure p huving a
IO T " wle o d
faxy, $gd P“$énv linglc global refcrence w3

link $arg,1,al

the proc.dnre'p s called

link  $arg,n,an with- arguments xandy.

2ply  pedarg o khéé"oldweu&v-. it"the
.| delete Sarg 3 '
N " - s _;ocal ntructure of the in-
Fig. 2.3-8. Expshaion of |
the .call macro L vahinq proa.durg;aanﬂ the

' | 'm a,&.a. LR thq L.l:ocal

vstructure of the. aalladﬁpracedure ’w 3556 e . “ﬁpictwré

shows both the old c. 1 s. and the naw e 1 s. ymgn control is

.”ffiq;“2;3?§; Effect of .call p,(x,y)
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The .getp macro (get Earameters) serves to blnd the

formal paxameters of a procedure tawthe actual arguments

,.,w..s., i v o
r

w1th whlch 4t was invdked Tﬁé getg %gcrc (g globals)
B

makes the global variablas named inﬂa ppdecdﬁﬁh hcae551bge

in its body. These twnAmaqsos are defiued=1n figures

2. 3—10 and 2.3-11.

.getp  (x1,...,xn) “.gatg o £ R g e R

select ’§pa¥,;ﬂ§1i‘: wﬁ‘$pa;'$g1§h xA xl

o’ . : S . et e
* .
.

select Spar,n,xn | selegt $par.$glob,xn,xn
Fig. 2.3-10. Expansion Fig. 2.3-11. Expansion
of the .getp macro of the .getg macro

The first actions a procedure normally performs when
given control are the retriavél of parameters and global
variables (using the .getp and .getg macros respective-
ly). Figure 2.3-12 is a "continuation" of figure 2.3-9,
showing both ¢.l.8.'s after the invoked pfooedure p executes

the two macros .getp (u,v) and .getg (w).

With the BL programming conventions that have been de~-
fined here, we are now ready to use BL as the language of

our semantic model.
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Fig. 2.3-12. State of the two cls.'s after procedure

P executes the macres .getp (m,v) and’ .getg (w)
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Chapter 3

STRUCTURES, POINTERS AND SHARING

3.1. Mini-Languages

In this chapter we present a serigs’of qini—languages
which treat the issues of structures, ppinté;sMand‘shaxing;
The progression of mini-languages is’hie;arﬁhipa;,in ﬁhat it
starts from a few basic concepts and proggeds‘outward by
extension. Mini—Lénguageko is the "kernel" laquqge, iso~
lating the notions of variables, va1ues an§}a§Signment-
These basic concepts form the gOrg for‘ou? domain of‘§i$— 
course. Mini-Language‘l is a‘direct'extgnSiop;of Mini—
Language O, adding"to it stru;tured values and the notioﬁs
of éonstruétionfof s;ructuredvébjécts and'sélécﬁidn 6f;com—
ponents from structures. Mini—Lanéuége'é ekﬁendQuMihi%
Language 1 by including pointers and the £Q046éera£i§ns of
building and following pointers. fihally, Mihi—Langﬁége 3
treats the idea of sharing of-componen;gwhggggga objects.

By revising the concept of struétured vaiﬁérfoﬁnd in Mini~-
Language 1, the notiohs relating to poiﬁféfétaré4sﬁbéumed in

Mini-Language 3 by notions relating to“sharing;

Each mini-language is treated in a separate section of




this chapter. 1In each section, ;;»first discuss in general
terms thé coﬁcéﬁté addreéséd by thé miﬁi?iahguage under con-
sideration. New terminology is introduced. and we describe
the relation to previous and/or succee&ing mini-languages,
We then‘suppliua BNF-style syﬂﬁak-ﬁogathér.vith a descrip~-
tiongdf'tﬁa's&nﬁactic classes and whaﬁfﬁhey'répresént.' The
8emantics 6f ﬁﬁé mini—language is stited ihfofmally. a 1&
ALGOL 60; }Wé'théh'formalize the agmjhtics hy giving sﬁmples
of rulQB for ﬁranslation from‘thezﬁiniflhnéuige into thé‘~
base iéhguagg BL. EQCH section iﬁ‘cokciﬁédarb;'éu"movie"_'
iiiuit#ating the inte:pretaﬁios of the g#?prdéiém produced
by‘the-tfhhslator from a samp;é prbgf&ﬁ‘iﬁf;hé'miniéléngdége.
The final'sqction of this chapter agpliésjthese mini-
1angua§éa t§ the task Qf dedciibingfthe data stﬁucturing |
sem#ﬁtics of "rea1~wbrld4 programmiﬁé 1§ggﬁages. The lan-

guages PAL, QUEST and SNOBOL4 are used as examples.

3.2. Mini-Lanquage O -- Basics

Mini-Language 0 (ML-0) is the foundation upon whicthe
build our mini-language setup. In introducing the concepts,
of value, location and assignment, ML-0 serves as a kernel

for our set of mini-languages. The notléhe'of,structures,
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pointers and sharing will emerge as extensions to ML~0 in

succeeding mini—languages.

All our mini-lgngngqes,.stgrting~with}ubt0,agperate 32
within the conceptual world of values.stored in chigians=‘
which we call cells. The relationship between a cell and
the value stored in it is called the contents mnpplng. VAN
cell with no value stored in it is said to be empty and has
no contents. We are concerned here w1th the fundamental op~-
eration of asslgnment which is uaed to change the contents
,mapplng. In fact the entire purpose in creatlng ML-O was
to isolate the concept of assignment by placlnékltlmn as)}
minimal and austere a set of surroundxngs aa poss;ble.¥ Thls
notlon of assignment will remaan‘unohanged in the remaining
mini-languages of this chapter~ - Phe ‘assignment 5tatements
of these languages will be "consistent" extensions of what

we define in this section.

Another important contept we deal with heye is the
notion of binding. Each identifiér'in an’ MES0 ‘Progrim is
associated with a unique and distinct béil?“"Tﬁi§§5656éféﬁ*
tion is -called the biﬁding'offan’idiﬁtiffﬁ%?*«ﬁéﬁ?@ﬁggg'bf”
an identifier will be the contents7of‘the*ce{1 to which it

is bound. (An identifier bound to an empty tell has no
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vaiue,)' Unlike the contents mappiaé, the bihding'relatioh
remains invariant throughout the éﬁégaéion of'an ML-0 pro-
gram. This' invagiance is & property: nbt only of ML<0, but

of ‘&ll the mini<languages in this thHesis.

suitax o HL-0

We give “BN?—style syntax for ML-OV Informal use is.
‘made of the ellipsis ("...") to inﬁicatc repetitlon. Twp_
ksyntactic elasses are primitlve' (Lnteger) denotes Lnteger
eon-tants. and (1denti£ier) denotes a;ﬁhanumeric strings
starting with a letter. |

(program) £:=  (assignment) ; ..., (assxgnment)
"(assignment) ::" (destinatxon) - (expression)

(expreseioh) ;i%  (déStinution) t {gétierator) | il

(déstination) ::= (idemtifier),

(generatogk” i ‘(integer}_

Description

To understand assignment, we explain the syntactic
clasqes :§i§ﬁing;to valugqaapdscqlléyggaw(ggnggagar}‘i&Haa—
p’iece. 'of program tht denoting a. %ra;;ga.«fv All: valuee in. MI:—O-
are intage;;@, swm mma-lanqm Lno;luda other types
of valnes as well. A (destination) is a pisge of program.

textgréfhtfihg,tc a cell; (d@‘tin‘tiﬂﬂgﬁw*ﬂLnL*97aﬂﬂ:fimply
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(identifier)s, i.e. variable names. The reserved word nil
will be used to signify empty céils; An'(é¥§féggion5 is a
piece of program text which "yields" a vai;é.% fhé ééﬁéntic
descriptionv£e16w diécuéses:eﬁ#iuaﬁiénJﬁfT(éxpfession)s in
vi-o0. _ 2 RERTRTR
An ML-0 (progfam) is:simpl§‘$_s§gq¢§é§ ;f (assignment)s.
each of which consists of‘a.(aestihatibﬂyfand an (expression).
The basic meaning of an (assignment) is’td~caﬁ5é'the value
vielded by the (expression) to 5eﬁstbfeéiihﬁo fﬁédéeil re-

ferred to by the (destination).

Sémantics of ML~0 (informal)

The notions we have just introduced will now be made
more precise. We give the semantics associated with each .
significant syntactic class of ML-0 (now as a description in

English, later more formally via translation into BL).

(1)V(program)s: The‘execﬁtion of an ﬁL~O~(p:ogram)
coﬁsis;s of two steps; First bind‘eadh (ideﬂtifiéf).ocw
curring in the (program) to a distiné£;v;mpty ceil. Then
execute all of the (assignment)s sequentially, left to
right. This rule giving semantics of (program)s will remain

intact for all the subsequent mihi~1angua§eé'ih thia(chapter.
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(2) {aaslggmagt)s- The executlon of an (assignment)

[

cons;sts of thtee steps -

(1) Identify the cell referred to by the
(destination) on-the :beft+hand side of the
(assignment) (see rule (3) below).

(ii) Obtain the value yielded by the (expression) '
on the right-hand side (see rule (4) below).

(iii) Make the value from step (ii) ‘the new contents
‘of the cell from step (i).

Thue the effect of executing an (assignment) is a change in
the contents mapping. This rule, like rule (1), will govern

the semantics of the femaining‘n@ni~1qngﬁt§gg..

A (destination)

in ML—O is always some (identifier), and refers to the cell
bound to thls (identifier) This bind&nq is detormlned at
the beglnning of program execution; as w& hava already Sald

it remains constant throuqhout exocution.

(4) geggression)s- There are three:varieties of
(expression) in ML-O We descrlbe the;r ‘semantics in rules

(5), (6) and (7) below.

(5). nil: The apggiallaymbolgniLgindicatea;ghe,qbéence
~of a Qalue{, Any time we are dirgcted to store in some cell
the value yielded by an (expressign)iwhich‘is nil, this

means to make the cell empty. All of our mini-languages




treat nil in precisely this manner.

(6)

(destination) occurs as an instance of an {expression) (in
ML-0, this means on the right~hand side of an (assignment)),
it yields the value contained in the cell to which it refers
(see rule'(3) above). If this cell is~emptj, the
{(expression) is treated like nil (see rulerS) above) . This
semantic rule (known elsewhere as "dereferencing") will hedd

verbatim for all our mini-~languages.

(7) (generator)s: A (generator) in ML=0 is an
(integer), which is the decimal representation of some
integer value. It is this value which is yielded by the
{generator).

The above seven rules constitute‘dur informal descrip-

tion of the semantics of ML-O0.

BL Representation

The semantic rules we just gave aygwa bit long-winded
and imprecise. A rigorous descr;ptégyigf ;he‘gemgntics of
ML-0 can be obtained by “translgtiﬁgf ;hgse rg;gé into BL.
instruction sequencesf Before doing this, we ?isguss our

basic conventions fox representingfmip;-lgngpaggvpngramscin
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" the base language model. To e&éh_ptogfem 1n oneé of. our
mini-languages, tﬁgrewisfa»singie’loaa&.ﬁ%?ucture. The
- cells used by the program asre represented by nodes in the
local structure. For each identifier octurring in the prOQ
gram, there is a~cbrresp6ndihgly~naﬁaawdﬁmponent~of the
local structure which gives its binding. - In other words,
-the cell bound to an identifier x’ will be the x-component
-gode of the local structure. “The- contents of this cell is
the object of its node. Thus th-~3nitrdatle£$oh of any '
program in one of our minifleggngggs}wil}ﬁhgggﬁge?pEQIQQUB"
to bin?,ﬁheiiéﬁntif§ﬁti of the program. For example, the
prologue for an ML-C (program) whose (identifier)s are x, y
afid z will be the BL macro-instruction .setl (x,y,2), which
expands into the sequence crggﬁe x, eag y: creage z,
.creating nodes for the cells bound to/theae (identxfzer)s._
Integer values are represented in the base language model by
elemente;y objects of type integer, | |

' 'As for the translation rules éhemeeive;fwwekgive'sample
ML-0 statements " ((aeslgnment)s) and the BL code they are‘~‘
translated into. Each example is illultrated by one or two
"befbre and after" ﬁictures‘showingﬁtheecﬂéhge‘the statement

makes' in the local structure. Aléﬁbugh‘ou:dexamples are
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meant to be indicative rather than exhaystive, they should
be more than sufficient to give the reader a complete pic-
ture of the rules for translation from ML-0 into BL.

There are essentially three kinds of (assignment)s

in ML-0O:

(1) (identifier) « nil

e.g. x « nil is translated

into the BL code

| , | Fig.-3.2-1. Effect of
clear x (fig. 3.2=1). 4 theuMLmo (assxgnmeat)
) : ‘ x F nll

(2) (identiﬂier) - (integer)
e.g. y & 2 is- translated into the BL code’km,

const 2,y (figs. 3 2-2 and 3. 2-3)

R S i B I 1Y

o | ¢ ol éé
Fig. 3.2-2, Effect of | ‘ Fig. 3.2-3. Effect of
y #2 inML-0 . = | R 3 g‘+ 2, An ML=0.

(3) (1dent1fler) - (1dent1f1er)
e.g. y ¢ x is translated lnto the BL code

.calluassigno,(x,y). This code 1nvoke§ a,BL'prgcédureunamed
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-assxgno whlch performs the operation apec;fxed by the ML~0

4

(asslgnment} The deflnltlon of the proeodure assigno is

shown in figure 3. 2—4, and two examples of Ehe

ML-O

(assignment) y » x ‘sfe pictured-if figuré 3.2-5.

‘aosian: getp "(u v)
o 'ggx u.mov
clear v
mov: g const L o*u,v
Figure 3.2-4.

procedure asaign0 . | . g KM X

Definition of the BL. | = [ Figs. 3.2-5.

'Effect of
in ML~0

The three translation rules here givefus a precise formul-

ation ‘for the semantlcs of ML-0 in teraa of the aamantlcs ‘of

o
At

the base 1anguage model.

‘ &éze;ﬂgxis e

 We conclude this section by giving a sample ML-0

(program) together with its BL translation.. Our example 13

O .ﬁ.v.gﬂi.

acoom@an;ed by a sequence of pictures formlng a "movze" to

illustrate the dhanglng state of tha local structure as the

wi

program is znterpreted, statement by stntemcnt.

Sl
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(x,y.2) -

3,x'

.- assign0,; (X, y)
5 a88iaR0. (2,X)
4z

Y

Mini-Language 1 (ML-1) adds the notion of data struc-

tures to the foundation provi#éd by ML+-0 " As we have said

before, a structure is a 6aewoﬁ§mﬁwhidh consists of indiv-

AN e BT e




idually accessible componént objects. There are two funda-
mental operations relating directly~£o’this.conce§£’of
structures: (1) construction of a structured object whose
components will be objects thh given values, and . (2) selec¢-
tlon of component objects ‘from a structure. Mﬁ—l‘provides
for these operations while retaxninQ'intact the concepts and
mechanisms of ML-0. 1In partlcular, tha nctlons of cells,
values, contents, blnd;ng and aseignment are exactly ‘as

'before.’:%/ :

*In addltlon to the 1ncegef vakues fqund in ML-O, ML-l
prov1désva new class of structuﬁes. ‘A suructureawvaiue qon~
‘sists of a sequence of component values (which may be int—
_egers or structures). To atcre auny a structured value, -we
require one cell fdr the structure, and aiso qeparate cells
to hold the Valuesﬂof 1%8 eomponenta. This r;quxrement 1s a
'departure frdm ML-G, in which all’ calls xn use are bound to
~identifiers.  Component cells muat now be handled by some
kind of free-storage management . technique.or-gell ailor. .
cator. .

'In ML-1, a cell may ﬁ‘aiﬁ‘%me -successive values of diff-

erent types (an integer one moment and a.strueture the next,

or vice versa). There are no restrictions on what values
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may be stored in which cells. There is a need, however, to
detect references to nonexistent components of a structure.
Such error-checking will have to be performed by the defin-

ing interpreter.

Syntax of ML-1

There is a new primitive syntactic class here, namely
(selector), which denotes alphanumeric strings together with
integers.

{program) 1= (assignmeﬁt} P e ;’(aédiéﬁﬁent)“vv
(assignment)  ::= (destlnatlon) - (expre881on)
(expression) ::= (destination) l (generator) | n11

(destination) :f='(1dent1fier) 1 (selectlon)

(selection) s= (selector) of (expr9581on>

{generator) ::= (integer) | (constructlon)

(construction) ::= [ (field) ; ... ; {(field) ]

(field) - ::1= (selector) :t(exprnssion>
Description

Structures in ML-1 are sequences of componeut values
Each component in a structure has assoc;ated w1th rt a |
{selector). The selectlon operatronré;ves 1nd1v1dua1 access
to the components of a structure by using the (selector)s to
indicate the appropriate components. -Thus; for example, the
(selection) a of x refers to the component of the struc-

ture x having the (selector) named "a".
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‘The notion of (destination) §s extended in ML-1 to in-
clude selections of component objects from structures. In
particular, (selection)s may appear on both sides of
(assignment)s. This allows for selective updating of com-
ponents of a structure. A (selection) occurs as an instance
. of a (destination) and refers to a component cell for a
structure. In this way, ML-1 preserVes'the ML-0 association

between (destination)s and cells.

Also as in ML-0, distinect {destination)s refer to dis-

tinct cells. There is no sharlng Qf data.

All values in ML-1 are created by instances of
(generator)s._ A (construction) is a special kznd of
{generator) provided*by-ML*I’for“buildingxstructured values.
In a (construction), we simply supply (ékpression)s{yicld-
1ng values for the components with the assoc1ated (selectors).
Each c0mponent name/value palr is called a (fleld) Thus
the two kinds of (generator)s, namely (1nteger)s and

(construction)s, produce the two kinds of values in ML-1.

Semantics o ~1_(info

- A8 with ML-0, in‘order to lend precision to the notions

we have introduced, we give an informal deseription of the

A
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semantics associated with each significant syntactic class

(1) (program)s: The semantic rule for an ML-1l (program)

is identical to rule (1) in the previous section for ML-0

{program)s.

(2) (assignment)s: ML-1 (assignment)s work by the same

principles as in ML-0, but there is. a new factor here. Sup-
pose the value yielded by the {expression) on the right-hand
side of an (assignment) is some structure. Then new cells
must be allocated to store the component values of this
structure. The component cells are said té‘be subordinate
to the cell for the structure ‘they belqng to-(ife. to the
cell referred to by the (destination) 6h the 1eft~hand side
of the (assignment)).- Mofeover, if a cell containing a
structured value is assigned some néw value, then the com-
ponent cells subordinate to this cell are detached and left
for the cell allocator to garbage-collect. Structured val-
ues are copied on assignment, component‘hY”éomponent (and

recursively for structure-valued cbmponehts).

(3) (destination)s: There are two kinds of

(destination)s in ML-1l. (identifier)s are handled exactly
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as in rule (3) for ML-0. We now discuss (selection)s.

(4) (selectiond)s: A (selection) consists of a

{selector) and an (expression). The value yielded by the
({expression) (see rule (5) below) is determined. This
value must be a structure, or the effect of the
{selection) is undefined. Furthermore, this structure must

have some component with the given (selector). Finally,

‘this component must be stored in some component cell (which

was allocated when the structured value was constructed).
Then this component cell is the cell referred to

by the (selection}).

(5) (expression)s: With respect to the three kinds of

(expression)s in ML-1, the occurrence of the indicator nil
or of a (destination) is treated exactly as in ML~-0. As for
(generator)s, the only aspect we need to explain here is the

semantic rule for (construction)s.

(6) (construction)s: A (construction) consists of a

sequence of (field)s, each with a (selector) and an
(expression). Each (field) represents a component with the
indicated (selector) and with value yielded by the

(expression). The rule for interpretation of a (field)




Thg semantlc rule for a (constru ki
‘(f;eld?s sequentlally, Jeft tg ri
This results in a series. of (

ponent cells and acgesgible by, (selech
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_con31sts of three steps -

Gy e peEiens s, a0 e Teaeg Been DGR tisses omet g

(1) Evaluate 1ts (expre381on)

S AnerRs

_ (ii) Allocate a new cellwand store the value from
" step (1) ip it (&he fey qg,ub remains empty if
e step (1) vields no valué

) (iii) Associate the yiéwly aATlosared component cell
ﬁ (and the value it now contains) with the ‘

(selectpr) Qf the (fie

Lk Vﬁluﬁﬁ ;srowd,; in, com-

)80 0F 1, B8 W8 betler
Know 1t a structure, .There, is ope additipnal.restyictios
on (construction)s: the (selector)s of its (fig@@&?xmgﬂﬁxbe
dlStlnct, or else such a (constructlon) is 111ega1 and has

Lz R U gm0 L e 8 < M Lw v

undeflned effect

BL Representation

-We: representisteuctures inisfL+]l by BLS6b3e&¢R fR which

the -xroot nodefeornaspondSﬁtoythiﬁ&ll&&wuﬁntéréﬁtﬁéHytfﬁctﬁre

in, and in which the-ares-are:iabeled wﬁtﬁ“ﬁké (sélectorys
of the structure and lead into nodes rquggqq@;ng the corr-
eepondlng component cells,vﬁé@fgﬁgmg;qﬂggabgggaﬁgreqdy sgen
3 ‘Z;Aahnau@ge«:
program, which is a structured valuagwhggpaﬁgﬁhag;q

is the environment ( local @tmcsumx -EQK A

[ R o e ame o e S
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v

the variables used in the program. Another example is the

structure generated by the (constructlon)

[ asl; b:[ c:2; denil ) ] “whoae BL rep- o '...1_._1

a b

‘resentataon is plctured in flg. 3. 3~l. R ¢ !
A valid ML-1 (destination) corres- (%) b

ponds to a‘noda’aadreésable by a com-

. . . ) . o Figo 343""1.
pound pathname. Por instance, if the - |BL-object for
|2 structure

“Btructured value of figure 3.3-1 im
assigned to the' (identifier) x, then the cell referred to by
the (destination) c of b of x will be represented by the
" node x.b.c.

As w1th ML-0, a ML-1 (program) whose (1dent1fier)svare
‘xl, .+« , Xxn has in its BL translation the prologue
«8etl (x1,...,xn). We now treat translatiﬁﬁ*bijarioué ML—}
{assignment)s into BL, illustraking~genefai<traﬁsiation
techniques that can be readily applied to any Ml-1 state-

ment. The following cases are representative:

(1) (identifier) « nil
and (2) (identifier) & (integer)
are both handled exactly as in ML-0 by the fespeetive BL
primitives clear and const. Note that the action of these °

BL instructions disconnects any subordinate component cells




that need to be detached.

(3) (identifier) ; (identifier)
€e.g. y « X. This kind of ML-1 {agéignmehfopbées a problem
in translation whenvthe source (éxéression) X h@s a struc-
tured value. In that case,.thevbtructUred‘valﬁe for x must
be copied component by component into Y. creatlng new cells
as required to hold new componenta Qf y. This klnd of

action is illustrated

‘T'*-—T ’ T hd Y ) in fiéute’3.2~2. We
N b & «a b o b _ .~ shall translate the

: : 19, g i s
é}] é &"1"‘ & ¢ gl : R (aaslgngtgf;t) Yy & X

‘ ' & ‘ NS . .
] as a call on a BL pro-

Fig. 3.3-2, Sample effect of . cédﬁféinahed éssignl,
the ML-1 (assignment) y « x - S
when x has structured value. | ~ so the BL. code for the

statement y + x will
be .call assignl, (x,y). The code for the‘BL_procedﬁre.
assignl is shown in figure 3.3-3. If x is empty or has an
integer valﬁe, then assignl worké like the assign0 procedure
which translatés the corresponding,ﬁLﬂO;(&taignment).» If x

has a structured value, then for each component of x, we

generate a corresponding component for‘yaiallogating a new

cell) and call assignl recursively to give this. component
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of y the proper value. Here, the parameter u corresponds

\assighl: .getp (u,v)
clear v
‘honempty? ﬁ.out
elem? u, &truc
const  *u,v
return
‘struc: = .getg (assignl)
loop: getc - u,i,out
- .call- assignl}(ug*i,y.*é)
goto loop T
out: retuﬁn ‘
Figure 3.3-3. Definition of the
BL procedure assignl.

to x, and the parameter v corresponds to y.

(4) (identifier) +« (selection)

e.g. y &b of x.

»
“

:

The pitfall here is that we
mast check to verify that x

indeed has a b-componént.

‘:] ,;
(o]
_ 3

The following BL: code takes i«f&éé*
care of thdis test: Fig'ﬂ;?3’4' Effect: of
y b of x in ML-1.

has? x,b,error

.call assigni.(x.b,y)’
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The label "error" refers to some unspecified place we branch

to if x has no b-component.

(5) (selection) « {(identifier)
€.9. cof aofy ¢ x is translated into the BL code

has? vy,a,error

has? vy.a,c,error

.call assignl, (x,y.a.c) (figure 3.3-5).

- (6) (identifier) e (construction)

€.9. y « [ a:3; b:nil; c:x ] translates into

clear y
const 3,vy.a

clear yv.b
.call assignl, (x,y.c) (figure 3.3-6).

}
J
t

LPE
¢ d g é) ‘é)é) A_"_L,
56 | 96 "o

@~
]-«
Jl,]l«
@-e-x
-
J. <

o
Wt ” AV

o0
J*
o
P

-

Fig. 3.3-5, Effect of Fig. 3.3-6. Effect of
c of a of y « x Y + [ a:3; b:nil; c:x ]

There is a subtle pitfall in these translations, Spec~-
ial care must be taken in translating (assignment)s in which

the left-hand side and the right-hand side both refer to




—66=

cells in the same structure. Suppose, for example,vthat y
has the structured value depicted in figure 3.3-7. Trans-—
lating the (assignment) b of y ¢y into the BL code

- has? ¥,b,error & s IREIINTIE ,

: ' will not yield the correct re-
.call assignl, (y,y.b) - »
sults of figure 3.3-8. Instead, there would be a nontermin- .

ating sequence of recursive calls of the procedure assignl

(figure 3.3-9). We must therefore transtate the

'""3‘"' | '—“g"‘ . | *§—~1——- L
‘_L | {____q_' g QA—' |
e ; | | |
B I Ve S - T

Fig: 3.3=7 | | Fig. 3.3-8 |} é '

@
a oAc‘- -

<as§ighment} bofyey into

has? y,b,error | | | ';  Fig. 3.3-9
.call assignl, (y,$temp) ' ~
.callwaséigﬂl,($£emp,y;b)
With this translation, the recursion terminates because we
areﬁnot,updatingathe structure. $tempiduring the process of

recursively going through its comporients.

' For other cases of "overlapping" assignment, we adopt
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similar translatiqgs. For example, we trans;agg-the
(assignment) vy «‘[ a:l; b:y ] into the BL code

.call assigni,(y,stemp)

clear y |

const 1,y.a

.callkassignl,{$temp,y.b);

and we translate y « [ c:a of y ] into

has? vy,a,error
clear Stemp

link $temp,q.y.a
clear y

-call assignl, ($temp.g,y.c).
Note that in ML=-1, the translator can detect any
occurrences of these "overlapping" assignments and make the

according adjustments.

ML-1 Movie
‘As.in the pkevious.sectigqikwg“;oncluggrwith‘a_moyig ;
of a sample ML-1 (progrém) a£af§ts tiansla%ion iﬁté:ELg
ML-1 B, |

.;etl (é.y)

e - ‘ . comst a4yx . |

const 2,y.a
.call assignl, (x,y.Db)

clear y.c




ML-1
+ a of y;
of v « 3;
Y3
« [ 1:a of x:
2:[ r
of 2 of vy ¢« ao

c of X « x
r L
\
R ]
X y
¢ ¢
Hprolpgue

r:nil; s:4 1 ];
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" y,a,error -

~assignl, (y.a,x)

y{a,error
3,v.a
assignl, (y,x)

ciear y

X ¢« 4

- x,a,error

assignl, (x.a,y.1) .

‘ y.2

¥.2.r

> 4,y.2.8
wy,2;error

'Y-2,8,error

X, a,error

“assignl, (x.a,y.2.s)
. X;C,error

assignl, (x, $temp)
assignl, ($temp,x.c)

],.r,

i

b

o c
é;é‘
Y - [ a:2 1X;
- e:nil }
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X +aofvy aofye«3 X ¢y

9 A4 ?

y ¢ [l:a of x; s of 2 of y c of X « x
2:[r:nil; + a of x
s:4]]

3.4. Mini-Language 2 -- Pointers

Mini-Language 2 (ML-2) extends the concepts we have de-
veloped and treats the notion of pointers (references). A
pointer is a means by which one can indirectly access a cell
and its contents. As with structures, there are two basic
operations inherent in ﬁhe concept of pointers: (1) crea-
tion of a pointer value which refers to a given cell, and

(2) accessing the cell a pointer "points" to. We wish to




- provide’ for these operatxons«while Qreserving the eoncapts
and mechanxsm' that have already been devoloped in this

chapter.

| In,ML—2,fthera:is a new.clasavdf pointer values. As
with ME-1, cells can accommodate successive values of diff-
erent classes. We will not, however, allow indirect refer-

ences ”Ehroixt;h values which are not pointers.

o One rcspdct 1n‘wh1ch the notinn of paintar difﬁens £rom
previous cancqpts is tbat a poinhnr vulue contains infor-
fation aﬁout ‘the ggl; it refers to. Pravﬂous concepts of
| value had'nnﬁhxng to do with cerlc. We shnll ‘se some of

the difficultiea caused by this cxtun-ien.

In this section, we treat ML-2 as an oxtension of ML~1.
However, it is not necessary to 1nclude structures in order
to hundle the new notion of psinters. One could alterna-
tively omit structures from ML~2 and view it as a direet

extension to ML-O.
:nt'1, ’L";2

The “hoxud" portion of ‘the ML—2 ayntax is that part of

]

ML~-2 that &4&1: with structured valne! and the basic oper-

ations on ﬁhem
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{program}) ::= (assignment) ; ... ; (asslgnment)
{assignment) z:= (destlnatlon) - (expression)

(expression) ::= (destination) j (genﬁrgtqr),l nil

<destinatibn) ::= (identifier) | (ind;rep;)‘ ]f(selgction)
{indirect) ::= val (expressxon}

(selection) s2= (selector) of (expressxon)

{generator) = (1nteger) | (p01nter) ] {construction)
(pointer) ::= ptr (destination) '
{(construction) ::= [ (field) 3 ... r (field) ]

(field) ~ ::= (selector) : (e

ression)

Description

Theré are two new syntactlc classes in ML 2. A
<p01nter), con81st1ng of the symbol Eﬂg’and a (destlnatlon)
specifies the creatlon‘of a po;nter vaiue whlch w111 refer
to the same cell as the (destination). The only way to
build pointer values in ML-2 is by means of’?boihter)é; wév
therefore classify the (pointer) syntaetically ‘as ‘an ‘in-
stance of a (generator). - An (indirect), donsisting of the
symbol val and a (pointer-valued) (eéxpression), is ML~2's
way of accessing the-cell referred to by ‘a pointer value.

As such, an (indirect)giswaukindbbf>(ﬂé8ﬁiﬁafibﬁ).

We have already seen all the bthet;ML¥§‘syntax éiasses.
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Semantics of M;-é (informal)

All we need to give here are informal semantic rules
corra5ponding to the two new syntactic claases.“ All the
other semantic ruleas for ML~2 azehsdon&maal to- the~eerres-

ponding rules for~ML—0 or ML~1.

(1) (pozntex)s Th:s kxnd of (awpresslon§ contains a

(destination) and yields a poinﬁec‘uaiue»whzeh refers to the

same cell as the (destimation?.

(2) (indggnct)s: An (indirect) contains an (expression).

The value yielded by the <exprntnion) is datermined If it
isn't a pcinter, the (indirect) haa undafined value. Other—
wise the (indlreut) specifies tha cell referred to by this

poznter value.

BL Regresentapion

vpegidﬁnguon(a way to represent pointer values in BL
presents difficulties. In moat conventions®l systems, point-
er values;are-s;mgly«theanqmaridwaﬂﬂm%’!%ﬁ of eéils;. How~
ever, in the. base langquage model;, rdﬁurduaing~o£*éulls is
symbolic. Thevmostwatraightfarwatd;appta%#ﬂhto thiSWprobléh
is to view a cell's pathname (i.e. sequenae of selectors

from the root node of the current local structure) as 1ts
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address.

A pointer value would then be represented in the

base language model by an elementary string value encoding

the pathname of the cell pointed to.
after executing the ML-2 instructions
X+ 3; vy «ptr x; z ¢ y; w e val y
the environment would appear as in figure
3.4-1. After the further instructions
Z « X; val v « ptr =z
are executed, the environment would then
appear as in figure 3.4-2., Under ;uch a
scheme, translation into BL would not be
difficult.

However, this approach breaks

down in the presence of structures. For

Under such a scheme,

example, execution of the sequence of ML-2 instructions

X « [ a:2 ]; y « ptr a Q; X
would result in y having as value the
pathname "x.a" (figure 3.4-3). If we
then execute the (assignment) x « 3,

X would no longer have an a-component;

the cell containing the value 2 would

therefore no longer have the pathname x.a and would hence

be inaccessible through y.

In other words, under this
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scheme there is no way to providé for retentidnrbf cells k
referred to by pointers. The main“coﬁceptual weaknésé of
this scheme is that the address of a cell depénAS'on a par;
”ticula:_pathlbf access to it. \Sﬁch'avdepéndéﬁce is to be
avoided.

A second way to refer t§ a cell‘is by direétly linking
to it, that is, sharing it. It is i‘m;:e.gative that the
‘pointer have a separate cell for itaei;Fas well as the cell
‘it points to. Otherﬁise; afterexeeuting ;he_ML-Z iﬁstrﬁCf‘

_tiqhs; X # 3; y « ptr x we would have a

siﬁuazidﬁ.as pictured in figure 3.4-4 in ‘T—ijg-
. , !
which the (assigmment) y « 2 would err- <f§—j
oneously affect x (we want to access x
‘ : : : Fig. 3.4-4

through y only by use of the (indirect) -
‘val y}. To insure separate cells, we will make a pointer
value an: ingtance of a structure, where the cell pointed to

will.be‘the;sole component cell. Thus

E ‘i
4 &
@  svol
&

further instruction x « 3, we see that ' Fig. 3.4-5

the result of executing the instructions
x « [a:2 ]; y « ptr a of x

will be as in figure 3.4-5, and after the

the cell containing the value 2 is proper-
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ly retained (figufe 3.4-6). Note that we

have adopted the reserved name "$val" as X

J
¢ &
the selector for the single component of <:) $ved

an ML~2 pointer value under our repre-

sentation scheme (to avoid clashes with

the (selector)s of ML-2 structures) .

Now that we have settled on a BL representation for
pointer values, translation of ML~2 ‘into BL is straightfor-

ward. We only need consider four new cases of {(assignment)s:

(1) (identifier) + (pointer)
€.9. y « ptr x is translated into the BL cbde
clear y |
link vy,$val,x

(2) (identifier) {identifier)
€.9g. Yy « x 1is translated inﬁd tﬁeiiniécition
.call assignz,(#,y), wheré,fﬁg dﬁgindt;;n?of the BL pro-
cedure assign2 is'shown_in figufe 3,4-7. ‘The difference
between assignl and‘assignZ.i§ £hét‘as;ig§2 has additional
code to handle assignmeht of poiﬁter‘vaiugs,’preventing us
from attempting to copy the conténts'df aicell referred to
by some pointer. An example of the assigning of a pointer

value is depicted in figure 3.4-8. . 3 ,
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assign2: .getp = (u,v)
glear - v
- none t ? u.out
elem?  u,comp
const © *u,v
comp: has? u,$val,struc
link v,§val,u.$val
: - . Xeturns
strug: ~ .getg . (;ssigpz)_
loop: v‘gégg N u;i,out
.call - .axiignz;fhu*i;V{*i)
deto. loop |

e'g.

out: return

Figure 3.4-~7. Definitx@n of the
BL procedure assign2. :

the ML-2 (assignment)
£ Y e X when x has: s
- pointer value.

I TR O

(3) (identifier) o (indirect)

- val y is tranélited:into*the BL dode
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has? vy,$val,error
.call assign2, (y.$val,z)
(4) (indirect) ¢ (expression)
e.g. val x « 3 ieitrené;ated into thetaL:cgée

EEEZ X,Sval,error
const 3,x.Sval

Using these traﬁslﬁrién echem@s. it is easy tb ﬁrad;ce :
BL code corresponding teeépy ML-2 (program). However, the
presence of - "overlapping»rassignments can no longer dlvways
be detected by the translator. For example, in the state ;
Vdeplcted in figure 3. 4—9, we want the (assignment)”

b of y « val x to result in the state shown in figure

3.4-10. The BL code

has? x,§val,errexr - .
.call assignZ (X $Valo TR
$temp)

.call a981gn2 ($temp,
y.b)

works properly, In

other words, the trans- ¢ B4 E E

*,

lator,must ptoduce BL code to paribru extra copying whenever

there is a posaxbilley of’ overiap. ﬂ?h;s i# uMmajar souréé of

1neff1c1ency. since everlqg,$gﬁpxgg;uly an infrequant event
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B

.setl (x,y,2)

.E—]-'-m;"z

_x,b,erro:
v ,
Cyi$val,x.b

.'¥e$val,error

5.y.$ga1’ o

2. §»$Qai.;;rofjuw )
assfgn?, {y.$val, $temp)

assign2, (v,z.c)
"ai;ignﬁ,(§£émp,z.d)'
z.e,$vil,z
x, b, error

~ const -6,x.b

.call iséidﬂzf(z.x)

p 3 R
a L $wd |

| SR E B

X

of

‘
Ly «ptr
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-

b of x:¢ 6.

3.5. Mini-Language 3 ~~ Sharing *

So far in this chapter, we have progressed through

three mlnl—languages in developlng our semantlc model for

data structures and p01nters. Although ML-Z handles all of

these concepts, there are some respects.ln which the de31gn
we SO carefully built up becomes cumbersome and 1nelegant
In thls section we shall look at some of the weaknesses of

ML-2 and see how they reflect a conceptual shortcomlng in
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our design. The mini-language ML-3 is devised to remedy
these deficiencies. By revising the notion of structures,
ML-3 becomes not only more powerful and efficient than ML-2,
but conceptually simpler as well. In fact, the entire ap-
paratus of pointers that was developed in the previous sec-
tion is subsumed within the re-definition of structured

value.

The main difficulty with ML-2 emerges when we consider
the way pointer values are represented in the base language
model. This is admittedly a rathervstrange way to examine
the merits of a language, namely in terms of a representa-—
tion decision with respect to a particular semantic model.
But the base language model is special in that it was spe-
cifically designed for the purpose of describing the con-
cepts of sharing which we are studying. So it is perfectly
valid to use insights provided by this model to aid in de-
signing mini-languages which deal with data structures and

sharing.

In the last section, we chose to represent a pointer
value in the base language model as a one-component struc-
ture whose component cell is precisely the cell pointed to.

In other words, pointer values are instances of structures
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whose components share with other data objects. Itvis this
much more general cOncent of’shared»date_ohjects that con-
cerns us in this section. The only klnd of sharing provided
in ML;2’is the pointer, whlch is a structure hav1ng exactly
one component cell, -8shared with some object. 1In the course of
trylng to model aspects of real-world programmlng languages
in ML-2, this llmltatlon becomes a stumbllng block. For
example, the notion of _gglg in languages 11ke BASEL is that
of a vector of addresses, i.e. a structure w1th an erbltrarz
number of components sharlng with"” other objects. In ML-2T
this can be modeled only as a structure whose components

are pointers. These components, when represented in the

base language model, take up an extra level of ‘indireetion,

which becomes a bit clumsy.

ToO glve a better treatment to thlS generalized notlon
of sharing, we reurse our concept of structure. 1In ML-2, as
in ML-~1l, the notlon of structured values as belng composed
of components with (selector)s and values. does not dixectly
utilize the concépt of cells. Cells are part of only
pointer values. What‘we've done‘in ML-2 is represent;‘»
pointers like structures but‘use,efdifferent seteofarules to

manipulate them. This conceptual distinction puts the two
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notions -- structured values and.pointer'values>~- almost at
odds with each 6ther in ML-2. We‘ihclude cells in our re-
visedlconcept of structured values in’MLF3; as a result of
this, the needvfor’a separéte class ofk§Ointer values van-

ishes.

A structured value in ML-1 and in ML-2 was a collection
of components,»each consisting of a‘value and~an‘assqciated
(selector). In ML~-3, we dgfine a component of g structure
ﬁo now be a (selector)—ggl& pair, ra;hexwphan a (selector)-
value pair. fhe value of a sﬁructurgd object is still the

set of its components.

(program) ::= (assignment) ; ... ; (assignment)
{assignment) = (destination) - <QXP?).
{expr). ga= (destinatiOn)'l (geherator)

| (modification) { nil
(destination) ::= (identifier) ] (sglectidn)

{(selection) -::= (selector) of (expr)

{generator)  ::= (integer) | (construction) -
(construction) ::= [ (field) ; ... ; {field) ] ‘
{field) ::= (selector) : (cell expr) )
(cell expr)  ::= share (destinatibn) ] {expr)

(modification) ::= (construction) (expr)
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Description

The syntactic classes of ML-3 are identical to those of
ML-1, with two additibns. First, there are now two kinds of
e#pressioss‘in ML~3-. an (expr) yields ; value, and a
{cell expr) yields a cell The only occurrence of |
‘(cell expr)s is within the (fleld)s of a (constructlon)
(where there used to be (expr)s in ML 1 and ML 2) The N

-

rules for evaluatlng both klnds of expressions are glven
below. The second addltlon 1s a new klnd of (expr), namely
the (modlflcatlon) whlch ylelds structured objects bUllt

from other structures. All other‘syntactic classes are

exactly as they were in ML-1.

Semantics of ML-3 (ipformal).

The semantic rules for (progréﬁ)s;"(adsighment3s,
{(destination)s, (identifier)s_and-(selectiqp)g are identical
to the rules given for ML-1l. The: remaining elements -warrant

some discussion.

(1) (expr)s: The ocourrence .of .nil or of a
(destination) as an (expr) iswhaqggpd just -as in ML~0 and -
ML-1. (generatox)s are either (inﬁgge;)s,{wh;ch_are.handled

as before, or (construction)s, which are described in
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rule (2) below. (modification)s are discussed in rule (6)

below.

(2) (construction)s: The semantics of (constructions)

and (field)s follows directly from the new ML-3 notion of
structures. A (construction) denotes the value of a struc-
ture which is generated on the spot. A (construction) con-
sists of a series of (field)s, each with a (selector) and a
{(cell expr). Each (field) represents a component consiSting
of this (selector) and the cell yielded by the (cell expr)
(see rule (3) below). Finally, the structured value yielded
by the (construction) is the set of components given 5y its
(field)s. We make one restriction on (construction)s: the
{selector)s of its (field)s must be distinct, or else the

(construction) is invalid and has undefined effect.

(3) (cell expr)s: The two kinds of (cell expr) are

discussed in rules (4) and (5) below.

(4) shared (destination)s: A (cell expr) of the form

share (destination) yields the cell referred to by the
(destination). This is the basic source of sharing in ML-3;
shared (destination)s are used to build structures having
components whose cells are already in use. It is this

facility which subsumes the ML-2 notion of pointers.
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(5) {expr)s as (cell expr)s: The cell yielded by an

(expr) occurring as a (cell expr) is a newly-allocated cell
distinct from all cells in use and containing the value
yielded by the (expr). Evaluation of a (cell expr) of form

(expr) is the only way to allocate new cells in ML-3.

(6) (modification)s: A (modification) consists of a

(construction) and an (expr). The value of the (expr)

(which we call the modificand) must be a structure or the

indicator nil, or else the effect of the (modificatién) is
undefined. The value yielded by the (modification) will be
a newly-generated structure whose components are obtained as
follows:
(i) Each component of the modificand whose
(selector) belongs to no (field) of the

{construction) will be a component of the
new structure.

(ii) For each (field) of the {construction) there
will be in the new structure a component with
the same (selector) and as its cell the cell
yielded by the (cell expr) of the (field).

Alternatively, we can view each (field) of the (construction)
as either replacing or appending a component to the modifi-
cand depending on whether or not its (selector) belongs to

some component of the modificand. Note that evaluation of a

(modification) may cause allocation of new cells, but it
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the presence of the same? X, y,out test which makes sure
the (a581gnment) is nontr1v1a1 (otherw1se tue gLéé£H1n—
‘struction would destroy the value we wantvto keep) .‘If X
has a structured value, then y w1ll get the same strucuured
value, Tuis means, by the new"&efinitieh‘e%ﬁeééuctured

value, that the components ofui'uiii'now share with the com-

ponents of x (figure 3.5-2). 1In executing en§ (assignment),

assign3: .getp (u,vy) oo Qe_JL;WLU""
3y
same?' u,v,out | ‘°*f}'i R I |

clear v s )
nonempty? wu,out ééé}&

elem? u,struc

const *u,v o Pig.s 3 E=2y 0 Effect of
the ML-3 (assignment)
return : 1 | y + x when x has a
struc: getc u,i,out structured value

link v,*%i,u.*i

goto ' struc the contents of exactly

out: ' return |
~ - one cell will be copied.

Flg. 3.5-1. "Definitioh CL S

of the BL procedure ' k S Component cells are now

assign3 T :

_shared, not copied. Note
that this is a vast gain in efficiency for ML-3 over ML-1l
and ML-2. The "meaning" of the (assignment) y ¢ x, then,

differs between ML-1 aﬁd ML~3. For example; after executing




3 P B

the‘lnétfﬁétioﬁé X & [ a: 3 b 4 ], y +Xx; a ;; y - 5

=~ st Coyfr T T E e ‘.: i

then the expression a g‘ x wxll‘ileld the value 3 in ML l

(and ML—Z); but will evaluate to 5 in ML-3

. <4)_.,<i*?‘e"!§ifi,9rk~»t,.§§?199t3~9*?2 et e e
€.9. y» bof x is translated into the BL code ..

has? x.b error

' .call asszgn3 (x.b y)

- (9) (selecticm) . {J.clentifier) o
e. g. a g£~y"* ? s xrgnslated imo thc:ah cnde
M y’i“v errgr I |
.éa“n '&ss‘fmiu(%yw)

(6} ( &enhiﬁian) * (consﬁruetionb

e.q. y - [ awx° a: b Qg x; e: dhare z ] 1al%§§§slated into

has? x b error o

.call assign3 (x.b,
; + SX onp)

clear Yy - ) N
.call aBSLgn3 (x y c)v:w
.cali &ssiq’n T$€%mp,

ling y,e,z 1 v e {c‘x- d b of x- e: share z]

Note that overlapping (assignment)s pose no problem at all
e PRSI e B LR f-}ff::ﬁ?: Sds e Foen PR T e S0 TIAR Wi R B T

for statements of types (4) and (5). This is due to the




fact that component cells of a structure are néqunger‘
cqpied on assignment;«>nowever, we do need:ﬁhekuéé of temp-
oraries in (assignment)s involving (constructionys, for
instance, to'také céfé of the case when y shares with

b of x before executing the (assignmeﬁt) in example (6)

above.

Finally, we note that pointers in MLmZ:have»been sub~-
sumed in ML-3. In place of the ML-Z ptr (destlnatlon)

we can write the ML-3 (constructzon) [val share (destlnatlon)],
and wherever ML-2 uses val (expr), ML-3 substitutes

val of (expr).

ML-3 Movie

ML-3 ' u - = BL

‘ ., 8etl (K,y;z)
x « [ e:3; d:nil J; . clear x

_const 3,x.c
clear k.d
, xrc,arror

assxgnB (x c,$temp)

clear
has?
.call
.SLEEEA .
const 4,z.a

clear z.b ‘ ‘

.call assign3, ($temp,z.b.q)
clear

z.b.r
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ML-3 BL
y +« [ p:share x }: clear y

link vy.P,X
pofy«yvy; has? y,p,error

.call assign3, (y,y.P)
y + b of z; has? z,b,error

.call assign3, (z.Db,y)
X « [ b:5 1 2z; .call assign3, (z,x)

const b5,x.b

z ¢« [ c:share q of y ] z: has? y.d,error

link z,c,y.qd

y ¢« [ a:b of z; c:share z ] x; has? z,b,error

.call assign3, (z.b,$temp)
.call assign3, (x,y)

.call assign3, (Stemp,y.a)
link y.c,z

— S —1
% y 2 X y = LS R §
b 6 b 6 b 9
-y &ty
: TR &
ORI
1
é&
prologue 4 X ¢ [c:3; z « [a:4;
d:nil] b: [gq:c @f x;
r:nill]




a4
x % 3
Lo WL ML
cdlp a b

6"V bk

¢ 4
[0

-9]1-

y ¢ [p:share x]

- Z « [crshare

q of yl=z

3.6. Discussion and Examples

¥y v [a:b Of z;

c:share z]x

o 2

In this chapter we have built up a hierarchy of mini-

languages, culminating in ML-3. We now reiate this develop-

ment to the main issues that were:raised in Chapter 1. A:

major. concern with respect to a given “"real-worla" program=

ming language is the effect of its assignment operation on

an environment containing structured data iobjects. We know
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that executlnq an asslgnment statement of. tha form X :=,e
Wlll result in the identrfidr X hQVing the vaﬂue a!sbdiated
w1th the exprtssxon e. What is ﬁnc‘rtamn is whé effect’ bf
sueh an asslgnment upon ‘the sharing relationahips among the
various cells in the envizonmantmN&Vaxxatiopsrinulhaxmngw

properties can in general induce differences in the effect-

_of,suhﬁequent;assigﬁmentb.

| We g;ve an exaﬁple ad;pted ﬂrqn [Bur 68] The only

data atrndtﬁres in ﬁha awv#rdnmaat;will be Lxﬁaéxike lists
W1ﬁh two compqnents seleeted b& the renpactive selectors
hand ind ___L Burstali mwmparei aﬁnlogous pﬂégrami in two
ilanguageb:” ‘List-Algol, whidh'caﬁﬁinas'ALGOL'GO assignment
with structures essentially equivnlcnt to LISP lists, and
ISWIM ("1f you See What I Mean"), which is hased on the same
functional lamhda—calculus notmons as LISP In both lan-
guages, thestwoaargunegt-fﬁnctionﬁgggg,rbturnc a list whose
‘head is the first argument and uwliose taixﬁtlﬁtha set¢ond: argu-
ment; the.functions head and tail ‘select-the. components from
a list. Burstall's two programs are shown in figure 3;6*15
Program A, we anestold,@péintS»B‘whila program-B-prints 1
"since it does mot.cater for the side~effect on y of the

assignment to x." This explanation gives little insight
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into why there should be such a difference in the first
place. The obvious distinction hetween the two.programs .-

E

Program.A: List-Algol]  Program B: ?§E§§,; R
1| begin 1list x,y; EEEQE let x=undef and y=undef; '
2 X = CONS (1,nil) ; ’ let*x = ¢O (l,g&;Q
3| y := CONS(2,x); . lety-= gggg(z,x)

4 | HWEAD(x) := 3; ¢ 8t X = cons(3,tail(x);
5| Print(HEAD(TAIL(Y)))| ‘regult _gg_(tall(Y))
{ end :

"Fig. 3.6-1. Two sample programs w1th difgerent effects.

lies in 1ine"4. ISWIM, beinéﬁaéfunq;ibnal aopiicative_lanF
guage, has no direct counterpart to the List-Algol component
update statement HEAD(x) £= 3. Bct’this is not the root of
the semantlc difference between the two programs.’ Burstall

neglects to say that even 1f we change 11ne 4 1n Program A

to x := CONS(3,TAIL(x)), Program A wxll atill prlnt 3.

The source of the trouble lies in a subtle difference
between the cons functions. in the'two 1angnagen. we can
pinpoint the dastlnctlon by translating both programs 1nto
ML-3. Line 2 in both programs can be tranglnted 1nto
X ¢ [ head:1; ta11 :nil ], with the resulting environmentlas

in figure 3.6-2. Line 3 in Programxk;iawnquivalent<toﬂthe




ML-3 statement y « { head:2; tail:share ¥ J. while line 3

in Program B is equivalent to 'y'* [ héadzg; tail:x ]. The

i‘urespective resuits are shown in £%§ﬁ¥53?5*5;3’“§§13‘6"4‘

Fig. 3.6~2.

State after |
B 1 i ;, & . ..

‘Fig. 3.6-3.
After line 3,
.. Program A,

"Fig. 3.6-4.
After line 3,
. Program B..

b

X

Finally. the ;avi-eg llne 4 for Program A, whlch reads

1= cousw TAIL(X)) , is aquwalent t:o the M‘L-3 statemant

X & [ head 3- tail ggage taxl “g x }, whzle line 4 of Pro—

gram B is aqu;valent to x - [ head 3- tall taml of x ]

The respectlve results are shown in flgures 3 6 5 and 3.6+«6.

E ig e ..43 .Leﬂ"si :
line 4, Program A.

~After new:

e

ﬁ_,

. haé'hi

AE’. b
line 4, Program B.
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We can see that the ML-3 expression head of tail of y

yields 3 in figure 3.6-5 and 1 in figure 3.6-6.

The differeﬁce between the two ggggifgncgipnéién_guyf
stall's two languages should now be cié;f;ﬂ‘If anf;rgﬁﬁeﬁﬁ
to cons is a constant or nll, both languages specxfy allo-
cation of a new cell to contaxn the argument value. But if
an argument is some 1dent1fier. the LlSpaAlgol CONS ylelds
for the corresponding component the argument‘s location,
while the ISWIM gons yields the aggument's yvajue. This
property of the ISWIM cons function is not explicitly: stated
in Landin's descriptions of ISWIM.[Lan.64, Lan 65, Lan 66a).
In fact, the only place from which this property could be
readily ascertained was in,Bu;sgg;}fgbggﬁgg@en;:th;t,?rggxam
B prints the value 1. The ML-3 code into which we. trans-~
lated the statements of.thg two p:ggrams,wqa,ﬁptggmined only
from the stated fesulps of those programs. What is to be
concluded from this is not that Landin was sloppy or vague
in his language,desigh and defiqit;gh.ubut rather that the
language definition methods which are so widely used make it
extremely dxff;cult to extract- agme of the. properties of
significant practical importance.” In other words, a lan-

guage which features data structuges will be better under-
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stood and better specified if it defines these facilities in
some manner which makes clear the specific sharing relation-

ships ambng locations.

In the remainder of this section we shall use our mini-
languages to talk about the data structuring facilities and

mechanisms of several additional programming languages.
PAL

The language PAL ([Ev 70] supports only one kind of data
structure: the tuple. A tuple is a structure whose selec-
tors are consecutive integers starting with 1. As with
ML-3, the cell in which a component of a tuple is stored is
" considered ah integral part of the value of the tuple. The
PAL expression 4,5,6 specifies the construction of a tuple
'~ whose components have the respective values 4,5, and 6; as
such, it is equivalent to the ML~3 (construction)

[ 1:4; 2:5; 3:6 ]. Selection in PAL is expressed by juxta-
position; if the tuple value 4,5,6 is assigned to the var-
iable x, then the PAL expression x 2 evaluates to 5 (it
selects the second component). This expression corresponds
to the ML-3 (selectioﬁ) 2 of x. The correspondences we

have established are summarized in figure 3.6-7.




case, as flgure 3. 6—8 confirms.
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lar a891gnments to behave 91m11ar1y.

.
éé%

!

—t— [x :=4,5,6; [parn]
x J y :=x 2

Xe[1l:4;2:5;3: 6]
y - Q of‘x o

Fig.-3.6-1
and selection in PAL.

Construation‘_ i

i
|
|

X e [1:5; 2:6];
y + [l:share x;
287 e

Fig. 3.6~9.
PAL tuple

construction.

'

T
EFlvel g

The concepts of value of a tuple in PAL and value of a

structure in ML-3 are very close, and we mlght expect 51mi-

Thls 1s 1ndeed the

Y «X

ML-3
x¢[1:7:2:8];

F;gg 3 6-8.

iy a\xqpla in

Value of
PAL

Figure 3 6-10 gives an. example of thxs.n"

PAL has a semantic rule that compongnts of a tuple
share with the items inithé7iiﬁtéea§we;;ich that constructs
it; an example of this rule is shown in figure 3. 6-9. This

sharing can be blocked us1ng the PAL ggghare operator ("s").

T % o= 5,67 {PAL |
I A
ff‘ J- - {ML-3

b 4

¢ [1:5;2:6];
- [;i¥72:7]‘

wig j‘ﬁ—lﬁss
sharing in PAL.

Blocking of




We discuss one more feature of PAL:

If t is an n-tuple (i.e. tuple with selectors 1,2,...,n) and
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€ is any expression, then the PAL expression t aug e

denotes an (n+1l)~-tuple whose first n components share with

the components of t, and whose (n+l)-st component shares

with e.

Examples are shown in figures 3.6.11 and 3.6.12.

,'1—2-—r-x

:= nil aug 3; | PAL
Y := nil aug x :
ML -3

i
1 U4 Ix e [1:3] nid;

’_é y + [l:share x] nil

Pig. 3.6-11.

use of the PAL function augq

—

Example of the

* 2
’ .l_'ll¢v1
20U &

P - ol

i 1

X := (7,8),9;
zZ := 5,6;
Y := X aug z

the aug function.

X ¢ [1:[1:7;2:8];2:9];
z ¢« [1:5;2:6]);
y +« [3:8hare y] x

example of aug in PAL

The above features illustrate'nearly all of PAL's data
structuring capabilities, and they are easily expressed in ML-3
Even though the data-structure facilities of PAL bear a

strong resemblance to ML-3, we have given a demonstration of

Fig. 3.6-12. mknother




~99.

a full-scale, real-world programming lgﬂgggge whose data

structuring mechanisms have been successfully treated within

our model. We 9isguss two more

languages.

The language QUEST [Fenn 73) prévides’ data structures

called lists that appear very much like PAL's tuples (see

figure 3.6~13), However, the definitiom of assignment in

x 3 oly e x(2)y

T |x ¢ 3,4; QUEST

e b

20 (1]

3,4: PAL{

y « 2 of x

| é X + [1‘:3‘;2:”4];" ML-31

Fig. 3.6-13.f§;§ts in QUEST.

- QUEST treats lists as

- specipl cases for which
3999!:11 rules apply.-
This reduces, essen—
‘tiallyvﬁte»autxeatmant

_ of lists in the way .

ML-1 treats structures. COmpongat;valuég are copied on

assignment rather than shared.

Figure 3,6-14 prcsentsvan

example. Note that componentwise copying is coded in ML-3

: B X ¢ 6,7; QUEST fx « [1:6;2:7]; [ ML-3
‘: ¥ :'; Y+ X3 cores Dy esdlingl:2:nill
A~ A e | zes.x 1 of y.« 1 of x;

<=3 p———

Ty 1 |20fip e 2. 0F X7
[-g—L-—Lz._[ln -

by bt & [mmean
©éééé(§—é Zq—?i?;s}z)’:x]
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by repeatéd,66m@onentvupdateé, réfieétiﬁéﬁé ldck of effi-
’ciéncy;"QUESTtaééighménts,xaniiké>tﬁéittédﬁﬁtetparts in PAL,
cannot beﬂdirectf§ traﬁéiated intafﬁﬁlgﬁaﬁthéut knbwihé‘tﬁn-
time values (i.e. exactly what ctmpunents a structured value
possesses at arix\siveﬁ-.timev 80, thww be. individually up-

dated) .

‘Like ML-2, QUESBT hah@les sharifg entirely by means of

pointers (¢alled references).

- 37‘]QUEST‘
ref x;

+ at'y
35 pML-2|

v!‘ x.

;o e val Y

ff Fig» 3&@“15. References

- in QUEST. :

Their use d& illustrated in

figure 3.6-15. There is no

apprééiabiéiéifietéﬁce be-

tweeén. the: behavior 6f these

pointers and those in ML~2.

Translation-into ML-3 would - = - o \
be trivially easy.

For the iﬁterested reader, the paper on QUEST [Fenn 73]
specxfles a way to express general ML-B-izkewstructures in -
QUEST us;ng 1ista and referencea \ QUBST functions cons, car
their LISP~caunterparts. The simnlat;on requires an extra
level of xnditagtinn throughout. a maaer &neffieiency (£ig.’

3.6-16) . Thus we see that using our mini-languages, we have
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not only able to 111ustrate the data structurlng semantlcs

: ';a Lk

of QUEST but we have also percelved a shortcomlng in the
design of QUEST: 1like ML-2, QUEST fails to retognize the

fundamental significance of’the,concegt of sharing.

-3

b4 *{C°n$(4;nii); . ktk , UEST
y cOnscsix)e 79““—f
templ ‘_ nj 1' ¥ R T —

temp2 '« [1:4; 523 g_~ templ],
X « ptr temp2;

temp3 - [1 5 2.2__ val x]
xe[val: [1:4;2: [val ,x,;_;_u]-hg__,_;

ye[val i 5'

. 2:lval:shage val of x]]]
Flg. 3 6- 16 QUEST s;mulation of LISP cons .

T ARTANWY I kbid "c PR RIS

In the language SNOBOL4 [@ris 71], one, finds data

structures called "programmer;defingqfdagaitypee,f(_An in-

vocation of the function DATA causes gelector and construc-

tor functions to be defined. Forﬂexwu_;g, the invccatiop

DATA( COMPLEX(R I) ) deflnes the constructor functlon

G B E
,if?x" EE Y

COMPLEX and the associated selector functions R and I,

settlng up the correspondence depicted in fiqure 3 6 17

Beyond thls aspect, in whlch thele SNOBOL structures behave
exactly as do all the structurea we have aeen 1n other
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1anguages, the sharing relationnths need to be considered
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But semantic rules whidh'wdu¥Q;9¥¢UQ?m;

gpﬁ*in¢§}§roperties

are notwééihe¢féuﬁéf‘iﬁa§a§d giivﬁh¢tkpan bé‘seen are a few
examplgs. _Aa:riﬁh_fﬁﬁiﬁcharsfnl‘.xininatian o£~the exam-—

T %o sreridslumie CTREUS ,@L TSI B

ples is requirad to prodide a consistent and‘unambiguous

ML-3 representation for the data structuring f50111ties of

SNOBOL4 Soms detective work is needed horo as well-' each

of the two’ bbbks {eris 71, Grlﬁ‘73f prdﬁi&‘“’inauffic;ent

Informatic 6 make sudh ““Heterminatibn, §3é$h§?§§ﬁ£8Eﬁ;

2
SRS N =

“together,’ eﬁaﬁgh ‘clues Cah be gnthered to resolve possible

»wn an ad of anolinouy ol

ambiguitie-.“*in “esanple 1a shown in figure 3.6-18.

7

o wogmaradanon add esoaileln o {0 ‘wkziu‘fi‘

The translation into ML~3 may be straightforward but a

- ;' o~

Pos #Hoanoidonol yornelez badsisgwes wofdd hias P
number of other poasible translations which would result in
Cooanuplit oal beadoigeb soasbhoogasyion il quoponldtdes
dlfferent sharing properties were ruled out only after
srupdngids JOA0UE seedd doirhe ol (doeoges eidd boaoyoon s

palnst&kmng éxamination of the examplos in both books.

te g pmme oved ew rasudourxds oifi Lie ob as viinars

'1:;1.,; gb e

Surely a discussion of sharing in these bocks could have
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shed much-needed ln.ght on the semantlcs of data structures

[ e
ER S

in SNOBOL4

¥ [ATA ("NODE (VALUE, LINK)")
P= NODE(Sc)
—— r y Q = NODE(6,)
velue  lak  Vvalue \'l\k LINK(Q) = P

évg{uh.gg peT “value:5: 1ink= i:ll ]
o Jel 9.5 [ value:6; link:ni 1 ]
Tk 6 g« p

Fig. 3.6-18.  Sharing propeptidmdin SNOBOL: ... - . |

T
¢

e

&. -~y

gompjecteness. - - T E AR A T ) 0 Seic s B I B

In this chapter, we defilied a se¥feh’ 6 mini-Tanghages
and used theri to mé@el data structixrx facilitie“s‘ 4n E‘hree
repfbéeﬁtaﬁiﬁe ‘programming Ifaﬁéii"hg‘*ésiﬁ An important 'question

to ask is how cdmplete our’ méaélir"i‘é*fis‘ “In other wordﬁ, how

thoroughly have we covered the' ‘approaches to data struc’&ures
found in these three’ langhaged¥ “KE Eivet glance our treat-
ment semz»‘réther mamplm because of: the!limited express-~
ive power of the: mini~languagas we-defined..:But most-of the
features not included in our: mimlu@m AT i‘indepéndent
of the notions of data: s&rucmiulada::tﬁmehhmfthu théf.v}ay
such features are defined im:an m:mm::g langudage
has no bearing on how the.language approaches conespts of '

A RSN A RS B O I € O OUETE S A S o

R P
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daﬁa structufes. The faét;that our mini~-languages lack
character strings and conditional expressions, for inétance.
does not reflect on ﬁheir;cdmpl&tﬁngﬁs‘fﬁr'déscribing'data
structﬁres. |

In PAL, there are only“tﬁo notions we haVEnoglgovered
which haVefa¥diréct héaring,on d§ta§st£n¢turea. Fiist, ar5~
itrafy ihteq%zvvaiﬁed:expmaxniuﬁmfaihfheiuéeduto gelect com=—
- ponents from a tuple. For example, the selection x n re~
fers to the component of the tuple x whose selector is the
zé;gg“of the;variable'n. Thiﬁgdannatthﬁ&t;ahalated-into our
mini—languages, which allow only;gggg&aﬁg (sg;egtor)s (the
- ML-3 (selectiqn) ‘n of x would. look for a compénent_with
selector "n"). The second uncovered feature in PAL is the
‘built-in functioanrde:,rwhich,when agplied to a tuple

‘yields the number of components in‘the_tuplq,

Neither of these two notions can be expressed in our
mini-lamguaiges, but it was not our goal to: be able to do
so.  For these two data structuring features, the semantic,
issues are well understood; we don't really nﬁéd:ﬁo treat
them in our mini-languages. Extendingzthéséiai»aanguaqes to
handle extra notions like these would only serve to ruin the

syntactic and semantic simplicity of the mini-language
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~approach.

In QUEST, the only data;structuring features we did not
treat are the use’of‘expressions to selééﬁ components from a
list, and several built-in funqtionaathat;uperate on lists.
As with PAL, we feel thatlthe %gﬁpggl;a;gggﬁhe;g ar¢voutside

the area of our main concern.

With SNOBOL4, we completely neglected the area of
arrays. -‘Although arrays are%high&yprulumhntutouthefiSSuéé
we are interested in, they present some difficult problems
for whose solutions additiocnal mechanisms are needed. : We
discuss some of théSe problems’ in Chapter. 5.

The three languages covered in this section are all
"typeless" languages in the éehsa‘that there are no dec—
larations associatihg-idehtifiéréjﬁith”pﬁfticﬁlér data
types. 1In the next chapter, Qe'deai\withf"tfﬁed"”lﬁnéﬁages

and some new semantic issues they introdnce.
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Chapter 4

DATA TYPES AND TYPECHECKING

In this chapter we will add i*ﬁdw“féeéﬁ'ﬁb'iﬁéf&ésign}
of our previous mini-languages. tonsidér the ML-3 o
(assignment) y ¢ %, which directs that thecontents of the
cell for:x be placed into the celkd for yzagWuwhrans%ated-]
this (assigmoent) into an invacation of the Bl procedure
aseignd (defined back in fig. 3.5~%). Bvery time this pro-
cedure is called, there is a separate set: Gf tests per—
,formed,to check whether the cell gggﬁghgﬂggrgt;?agggpter,
(whic.h corresponds to x) contains an integer or a structure.
The set of BL instructions chosen o perfor the assignment
operation depends on the result of thess tests. In prac-
tice, however, a prqg;ammer}yil}{g?ng;;y kgggﬁigzadygpcg
whether the identifier x will take on integer»oi structured
values. This knowledge makes these runtime type tests in
assign3 superfluous. We would like some way Of telling the

translator not to make such tests where they are not needed.

The technique of static typechecking achieves these

goals. Its basic idea is to partition the set of values
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into convenient subsets called types. The translator can be
informed of the programmer 8 1ntentlons of keeplng valuesw,
only of a certaln type in some glven cell | Wlth this knowe
ledge, redundant runtime type tests’can be ellmlnated ‘ But
it is still necessary to prevent type errorsr for‘emample;
suppose we tell the translator that the varlable X w111 take‘
on only structured values. Each tlme we access the value of
x, the BL code produced by the translator will fetch the
components of x. If we somehow place an 1nteger value 1n
the cell bound to x, then durlng execution the 1nterpreter
would attempt to extract components where there ‘are none,
yleldlng undeflned probably erroneous results.‘ To prevent
such type errors from occurring, we would 11ke to have the
translator test each (a931gnment) to make sure 1t couldn't
specify the placlng of a value of one type into a cell in-
tended to hold values of another type. Any {program) con-
taining (assignment)s which fail thiswtqst is invalid; the
translator will notjify the.user,ofrsuch~sns9ﬁrer in the same

way that it flags syntactically;erroneous‘<pn9gpan)s;f

In testing (assignment)s for vafldity. it will be use-
ful for the translator to know for each (destination) the

type of values intended to be stored in the’ associated cell.

e
N
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“This cfiferion can help ﬁs decidé’hoﬁ tg.bartitipn the ML-3
values inioitypes. If we divide valués into just two types,
‘integers énd struetures; then the’abo;e‘crite:ion is not al-~
ways saiisfieﬁ; éudeae thé (identifier}vx is specified as
assuﬁinéfoﬁly structuredvvalueﬁ.b Then]tﬁgyvalues yiel@ed{by
uﬁotﬁ ofrthe (éxpreésibn)s [>a:3: b=4-] apd

‘[ a:3} b;[‘casf d:6 ] ]- can ﬁe atored-inrpheicell bound to
%, but Qé cannot say‘anytﬁing about?thetty;; ofrthe
(deétinétiaﬁ§ b of x. kIﬁ one‘éagévi;_h§s anqinteger va;ué;
iﬁ the.other case, é strﬁcture. Th#ﬁy'afina: “pré |
classifiéatioﬁs'are’callé&ﬂfbt. We will yant~t$};5certain
ffbmithe'type‘of a strucﬁured~valﬁe‘whAt\gompgnénts it hasv

and the type of each component. Such a type system is the

basis for our next mini-language.

Mini<Language 4 (ML-4) adds the notions of data types
and static typschecking to the concepts we developed in the
previous chapter. Specifically, itis an extension to ML-3,
associating to every (expression) and to every cell a par-
ticular data type. For our purposes; we consider data types

as sets qﬁ vaiucs.u/The set of integers is.an Mi-4 data

type. Further, the set of all structured values with a




-109~

given set of component <sg1ector)s such that the type of the
component associated to each specific (sealector) is-given
also is an ML-4 type. With this collection of data types,
if we associatg a type to each (identifier) mentioned in a
{program), then we shall be ablg to determine the type asso-
ciated with each cell referred to invthe (program). More-
over, for any particular data type, one can determine whether

the value yielded by a given {expression) belongs to this type.

svyntax of ML~-4

The rules here govern the syntax of that parﬁ of ML—4
which is not found in ML-3 (namely the type system). We in-
troduce the new primitive synfacfié”éiaféiftypenahe5mt6 de-
note the set of underlined alphﬁhﬁﬁeric’éé?iﬁéékbeéinhihg.
with a letter. The distinguished‘k%&pehaﬁé§"igg has partic- )

ular significance, which will be dlscussed Below.

H

{prelude) ; (assignment) ;...; (assignment)
{prelude) 3:= (defn) ;..,; (defm) ;  (decl) ;...:; {(decl)
(defn) {typename) = (structype) .

{structype) ::= [ (comp decl) Toeess (comp decl) ]

{program) 1

{comp decl) ::= (typename) (selector)
(decl) 2 s

Rl

{typenamne) <ldeatafier) R (xdentifler)
The remainder of the ML-4 syntax is iﬂantiaal to»the syntax

presented for ML-3, with two exceptiéns;'ffirstﬁiML—4 has no
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‘(modific&tiaﬁ¥ﬂJ¢WE£ch:ﬁﬁxsim§1yfﬁanﬁ have -oecasion to make
use Of), and second, (constiuction}# appear slightly differ-
ent: |

“{constructiony yi=' (typername) [ (field)y ;... (field) ]}

(The (selector)s that no longer expligitly . appear in. the
(field)s of a (comstruction) may be found: in tha (defn) for

the (typename) of the (construction).)

Description

N .
. nE L

We need to interpret the new syptagtic,slasaes. A
(program) in ML-4 is essentially a (prpgram) in ML-3. pre-
ceded by a (prelude). The (prelude) im a seguence of type
definitions ((defn)s) followed by a sequenge of declarations

ey, and a list.

((declys). A (decl), congisting of a (!

et LA

of (identifier)s, specifies that these«(i@entifier>a'are?to
assume’ values only:  of the type given By’ the (typename).
‘Types in ME~4 are denoted by members of fwo syntactlc‘

classes as follows-

(1) A {typename) is either the symdol int (which de-
notes the type consisting of integar values) or the
 natherassoclated withr&eﬁ%~typd”b? ‘a (defn) '

(2) A (structype) denotes a strugtqred type. (i.e. a
type consisting 6f structured values). The ‘
(selector)s and types of the associated components
of a value of such a type are specified by the

R S
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{comp decl)s (component declaratlons) in a
(structype)

Observe that if we/know the type of a structured velue, then
Pl b s

we know the type of each of 1ts components. There are two

basic purposes for using (typename)s.. first. to prov1de for

multilevel structures (i.e. strudtures with components which

are structures), and second, t& alléw for recursion-in type

T

definitions. We discuss recuréﬁ@e*typea later.

- Semantics of,g;_ﬂ (lnformal)

ML~4. Elements of the classes. (tswvgg;w,c

deflne data types according to three tulﬁs.,

(i) The {typename) int denoteg thg class of all
1ntéger values.

(ii) Suppose 817s---.8, are (sglector)s: -and
€yree.0ty “are-syntactic items denoting data
types.- Then the (structype)’ [t 8 #..i;tksk]

- dg¢nqtes the class of all structure% with
exactly k components with {selactogls. -
T ‘such that for each i = 1,...,k the
value gx% any) contained: in-the: compoﬁént -cell
selected~by s belongs to the type t

(iii) If t-is the‘<typename) OoF a Zdefn}, then t
denotas the . type specified by the (structype)
of that (defn).. 1In this case we say that the
{(defn) defines the <typenamel t. A

These rules give the semantics for type dgfrnit@qgg%invug-4.
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Note that according to rule (ii), if x is a value belonging
to a structured type t, then the types of all the compon-

ent cells of x are determined.

As examples, the objects of figure 4.2-1 belong to the

type int. In the presence of the (defn)s

Pt = [int p ] and t = [ int a; pt b ], @@@

the objects depicted in figure 4.2-~2 Fig. 4.2-1.
Objects of

belong to the type t (which is the class type int

of all two-component structures with

a-component of type int and with b-component a one-component
structure whose p-component is of type int). Note partic-
ularly that a cell constrained by our type mechanism to hold
values of a given type can be empty. A value may belong to

more than one type (par-

ticularly if it is a ) riﬂ - rlj —
: j; [ f Q ?
structure some of whose ";;’ é’%” é
component cells are emp- é é
Fig. 4.2-2. Six objects of

ty). But given any value type t = [int a; pt b]

(where pt = [int p])

v and any type t, one can

always tell whether or

not v belongs to t.

A (typename) does not have to be defined textually be-
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fore it is used in a (prelude). For 1nstance, the (defn)

sequence tl = [t2 c],.g_ = [int d; int e] is perfectly

St

legal. A nontr1v1al appllcatlon is the deflnltlon of recur-
sive data types, which arise in ML~-4 when a (typena;e)%;e
used as part of the {structypel in its definition. Con-
/sider, for example, the (defn) x = [int a; g“b].; Thig '
defines a type named r consisting of twoneompbnent struc-
tures for which the a-component ceII‘canyhbld"oﬁiy integer
values and the b~component cell can hold values only of
type r. Although it sounds circular,: it is peﬁfectly»well

~ defined, Values of a recursively definedﬂtype‘can have sub-
structures nested to an- arb&trary depth, ana 5@#Objects

representing such values frequently centaxn directed cycles.

We make three restrictions On'{defg)s in ﬁL—4. First,
the (selector)s occurring in a‘(sﬁt@éty§e§ @ﬁet be distinct.
Second, a (typename) can be_defineqfonly once in a (program).
Third, the (typename) int must not be redeflned Any
(program) not obeylng ‘these restrlctaons 45*synteet1cally
invalid (i.e. is to be rejected by the translator). - The

meaning of an invalid (program) is undefinhed. -

(2) Declarations: As with (defn)e, the semantics for a

(decl) does not specify anyﬁparticularﬁactiohé'tekbe per;‘
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| glven by ﬁrn‘eiaely one . (typenpme)

1y once in the (program)'s. (dscl)s.
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formed at runtzm. The effect of a (decl) J.s to cause the

(identifier)l J.n it tc be acmum with tha type named in

: the (decls. :

. In ordex for.a (programy. to h‘

(identifier) occurri,ng in some (ASsignmenty. met appear exact-

once in the (defn)s.

- Prow the above semmitic' rules Soir rawinds and (deciys, it
is-posmibi e 9 uhiguely determin m Ty “%?any {exprésmion)

in & eyntectdon ‘xi'],?asma“" a4 (Progra; m is ' Sone as’ follows:

- 4d)- Suppoe: tm {oxpression): ig: ac{dutinutiony. “1£ it
is an (i&mtifier), then this (iduziﬁcr) cacurs in
sl enemtly ons:¢deel) amm itaceyhe’ Lo glvan- By tHe
(typerndme) of the (aeél). If it is a (selection),

 then it consiste of a (selegtor). 8% ;a5 - (expression) .
Thé type of the ( exgr«aiou), whiah can be determined

reeurﬂw;y, ygul . type .designated
By & (itricty rﬁe tyﬁt of the (aelaction), then,

is given ‘the, Qt (aonp \decl) of :the
{ st%é&y;g that contains hﬁ ;m (solwtor)

(i) I£f the (enpre#sion) ie a {gen 3 ', ‘thére are two
cases: (intogor)s are of &- (constructlon)s
- ane of tlie typd givew by - s 2 W ’
Thus ‘we cah detemwine from i - {pseludey o a fyntactic!any

valid (prog#am) the Hype of aﬁy 4&@:“@}&% Eh:&t type is t

presenae ot the (preluda) ma Im a; m hJ, e
Ytype = {int e: int d]; Xtype xy m Y the type corres-
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pondences shown in figure 4.2-3 are valid.

(3) Assanments. the seman- :Tygew

et LNty HE “uﬁﬁlﬂii

ties of an ML-4 (assxgnment) 5pe-x a of x int i

c1f1es the same runtime actlons as b of x ytype
its ML-3 counterpart- in addltion, e Qﬁ‘y ; int
"~ the translator is dlrected to per- 3 int

form certaln addltlonal tests. An x_xgg[3 4] ytype

' g i {5.,-' ‘ |

(ass;gnment), as before. consrsts | ;j;%ﬁgéls nll]]' xt,Eg

of a (destlnatlon) and an ‘ N Fig. 4.2-3. Types of
: %amaeef&e;areeaeqn)

{(expression). The ML—4 type sys—
tem forces the cell referred to by the (destlnatlon) to hold

values only of a certaln type. Thus the translator must ver-

ify that the value of this (express1on) matches thls type.
A (construction) in Which the?components:failtto match
the types of the corresponding fields in;theA<defn)_o£ its

(typename) is an invalid_(expreasion) andwpequndefined tgpe.

P.

For example, if we defineAﬂ,5,=WL£gg%eg‘mg_lbl,_ then the
(construotion) 2[1-2-3] 718 invalid baeause of its extra
component: the (constructlon) gjl'vz[2 3]] ;re»a;eo ;nveiid
because its b—cqmponent:ls;ogmtygewg gether_tpan,;gg(ae}rer
quired. We also oell af(oonetrnctéon)v;ntalidﬂif its

(typename) is not defined in the (prelude).
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An‘Mn~4:tpmngram) is invalid if in any of 1ts

AT md :w? st

{aaaignmant)- theftype of tha (oxpre-sion) is un-

'»u-'c‘l"

' défined or fnils to match tha typa of ﬁhe,<dest1natlon)

| Each of these: tun tﬁpea 1: givln by praeitely one
(typenané); thﬂﬁg‘Qypea are detiaad to match 1f and

anly if thdir (typenlmn)s aro idnaticul. The mechan~-

=3 Lo, o~
SRS SRR S Il 4

isms we shall dgztga for the translueoédin-ure that 1t can‘
TR ERACT cavotad B
‘*aIW&yh dﬂtermint whother or not a givun ML-4 (program) is
»Jg. S '
valid %ﬁuWe xﬂaﬁ& need for runtin- gypowgeuts. noxr are
there any runtlme type errors;:wnnu-v;¥.Jihruhtimejerror |
swxll occur if tho;; is an atte¥§£.to th£¥;ta;$mpoﬁents from

an empty call of a structurad type \ For instagce, t@g.u;-4

(program) ll = [ nt a; s2 b]; 32 = [’g c] sl X1

X ¢ _l{s ;l] g;.b ‘of x « 4 f wiil £ail on interpretatlon
of zts laut (assignment) (sxnce thc Lnterpreter W111 look

 fbr a nonexistent c—component in tha amgty cell for b of x)

even thouqh Ebe type of’thn (dastinabion) ‘e of B of x (lnt)

matches the type 6f the (expressiony 4. “ s “we ‘require

' runtlme tedts ﬁo dﬁeck ﬁhe (aelecﬁion)l in HL~4 T"}(:';"éir\é"x"'?af;1ly}
spe&kin@?‘ﬁéiﬁiné“f&f‘ém@%?‘céiié*isiukﬁﬁiiy\mhéﬁLeiéief'

than testing the type of the conteénts of a cell at runtime.
' TR LR RN S ST T i St S SR

If we strip off the (prelude) from a valid ML-4
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{(program), then we will have in essence an ML-3 (program) in
AWhichvéach cell takes on values 6f dh1y bné”typé:>'Mdré6Ver,
the effect of executing this ML-4 (pqufam) is idénﬁicgivto

the effect of executing ité;MLf3 equivalent,

Translation into BL

To give a precise formulation for thgksqmantics of

ML-4, we describe the translation of ML-4 (program)s into BL.

With the previous mini~-languages, it sufficed to show the BL

code corresponding to_various program constructs, namely the

different kinds of assignment statements. This is no longer

sufficient in the case of ML-4, since the semantics now con-
tains rules for typechecking by the trans]ator. We must
therefore also describe the typechegki@gﬁp:oge@ures per-

formed by. the ML-4 translator.

In &iscussing how the translator performs typecheécking
of ML-4 (program)s to determine their validity, we begin by
describing the information supplied to thé translator by the
(prelude) of a (program). We shall treat the translator as
a BL procedure. As it proé&atos,tho%%prdludy)frthe trans-
lator builds two component objects in its loeal structure:
one component named $aefns which fepxegepts the type defin-

itions, and one named $decls which corresponds to the
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S

i At”he declé:gtionq . $defns is astmcturge which @?‘~;°n° com-
Ponent for each (typename) found in the (prelude). Each
cofnponent of $defns is a stmctnm with information on the
type associated wiﬁh the (typename). For each (typename)
defined in a (dean), the eorre;mdmg:;é@heﬁt'bf's&éfn's

hasan *i" fleld wi€h the Hukbéer of “esfgonents in a value

"' of ‘that type, numbsred fieldé giving the (selectorys of the

components in Ehe Propér order, and a "val" fleld giving the

' types of the coliponents (by means of lifks to the proper

-

froo

" ‘entries in $défnsf. The int-Sokp

&it of §defns has only a
" pal-conpenent dontaining the elemantity value 'IAEF) sdecls
is s*sﬁfuceﬁé%ﬂﬁffﬁféné‘éoﬂﬁoﬁéﬁ%*fﬁé*@&éh {identifiery de-
clared in the (preivday. 'Tf, say, tne {fdeRbiriéey x’fs

int ot 'sascls

declared to have type t, thenéﬁd

A4i2=4 4u2~5 and 432-&m give & (predude) and ;exhibit the
. objects §defns amd Sdecla ‘constructed by the traaslater from

- the (prelnde)s. . The tyge with (typsmawe) @ in:figere 4.2-5
128 recupsively defined: ﬁm:m&zﬁms fh'l‘»h dix Wtﬁd‘ '

cycle in thie dase. SR e T T m el
\ « 3

Once these objects have been comstricted By the trans-

lator; all the information requived £6i typec
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available. Each type to be associated with some cell re-
ferred to inlthe (program) is represented by a component

node of $defns. Two types match iff they have the same

Qﬁ X SvZ
vol

: Figo 402’-4-

Fig. 4i2-5, $defns and $decls |
{prelude) structures for the‘(pre;ude)
L_int x.y,z |- = [Ep: dot vl £ x,y:;.dat m

Fig. 4.2-6. $defns ‘and $decls for
the (preludc) t]l = t a;. bl;
= lnt c}; t‘I‘xl, i%" 35,__

{typename). To dgécribe;th,thé%tranglitor performs the

actual typechecking, all that needs to be shown is how to

access the node for the type of any ML-4 (expression); once
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we can do this, the tyPedhéckiﬁg'is straidhtforward: an
(absignﬁént§’hés'a‘€§§; erfor ifffﬁﬁé:ﬁsae; for the type;
of its (destination) and iés (e#ﬁfehhién) afé distinctQ
The type of an (identifier) x is given by $decls.x.

The translator_will mark a {progxam) inv&;fd<if any of its

<identifier)s'ang,unaéclared,»‘lﬂ B is the node -for the type

of a (destination) D,Lthen‘thé“tjpe cfgthew(selection)

s of D is giVén*by~the node*ﬁ val.s. The tranalator veri-

fxes~an»purt ef'its typechecking that values of the type of

D do indeed have s-cowmponents. Thus we can,lsnantain the

node for the type of any (destination) in an ML-4 (program).

Figure 4;2—7.iliustrateo teme»ﬁnnple ML-4 (asgignment)s in-

volving only (aaétination)s and;gtvcignh’tYPechecking code

ML—4 code TABLrtypquecking ccﬂe.mhtla

has o oo - E——

Yy &£ x gzggz $decls y.$de¢1; x,qo S

'$decIs X. val.a no

z + aof x
’ .’.Q$doc1sgz.$daclg‘x.wal Q.no

bofy+rz I ‘$decls.y.va}.Bfio
| ? $decis.y.va Jhliﬂnnln@a,no
b g; y + jhas? S$decls.y.val,b,no
c g_ ._g x |has? $decls.x. val.a.no

‘gaaéls %, val. a.val, ¢, no

$decls.y val b.sdﬂclq.x.val a. val c,no

_—

Fié. 4.2-7. Examples of BL typedbockinq.
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to determine their valldity. A branch to the label "no“

e hiE:

1nd1cates that the (assignment) has a type error.

If an (exprobsion) is- an*(&nteger). then itu type i$

given by the node $de£ns lnt Théwtype of a (construct1¢n)

whose (typenam@) s t is given-by ﬁhﬁ*node $defna t. pro-

vided the (donstructlon) is valld To check this, the types
of the componenta in the (cah!trﬁﬁtiun) must match the
(typename)s in the (structype) that defines t; moreover,

there must he the ‘game nuﬁber of "’”L ents in both places.

Thus the translator can accasﬂ by w,,__ue'fé;i:\eiiie'‘::’E"’ifife“’“'ziii}:@"de.f"oJ.*

the type of any\(generator) As‘arxaault. we now see how

the tranalator accesses thn nonQ‘xﬁkrthe types of . arbltrary

ML—4H(expresslon)s, Figure 4.2eakgitas some examples of.
ML~4 (ass1gnment)s containang arhiuggry kinds of |

{(expression)s; alang thhreach (aa;ffl

‘nt) we show BL code
which tests its validlty. This caqplates our plcture of
how the translator perﬁorﬁs statiGVQgpechecklng, the mech-
anisms should be claar frum Ehe extug&es in flgures 4,2-7

and 4.2-8-

The actual BL code generated by the translator (i.e.
the BL code to be 1nterpreted at runt:me during the execu-_

tion of an ML—4 (program)) is similar to what we presented

P RO T S I PR
;
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in the section on ML-3. There Fyax:'e two differences reflect-

Sl

| & typem&mg‘m-

rMLACQéQ
h} - 2 , “% $decln x,gsdqfns xnt no ‘
z ¢ t[2] same? $decis.z, Sxiefns t no
o {gomet. Lestamp /% vilues of type &
‘ mast have exactly
R - cme-component.  */
eqg? $defns t n.$tan@ no
23&@&&f$d@£nsqﬁhif§tqmp;%* name of let
component
1 : gm_ $defas.t.wak. ,sdeﬁnmfmg no

e? $decls .w. $dem
£ ¥, S

.ﬂz $dnfm £.n¢$tempxno -

éﬂt $“mt ft 1

 *‘§§§§§§ $dafnl~ .vai *stemp sdscls W, RO

ST $eeip

uﬂgggei $deﬁnx§g¢va1 *stamg $decls.x,no

y + 5[&[55 9_2711

Fig. 4&2"8# MQre

sm? $decls.y,$defna 8, no

<l afptmeng.

g_g?_ $defns.a.n.$temp,no |
- {askact $afngim,d iftop

same? $d&£ns.s.val *$temp,$defns t.,no

foonat  1.8temp

eq? $defns.t. n.stemp.no
has? $dechs ol , bino

’select $defns.t,l,$temp
m $8e frmt . wmll* $reup,

$decls.w.val.b,no

DIV AU

examples of BL typedheckxng

lng the sw;tch of typechecklng from runtxme to translate~'

time. Fmrﬂt, occurrences of (aelection)s in ML—B yleld run—

time type tests, such as the BL code gg Xx,b,error for
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the ML-3 (selection) b of x. VIn-MLf4 gh}glfuntime»type_
test is replaced by the simpler and faster test .
nqnemptg? x;error,k‘which makes sure theré‘isino‘erroneous
attéﬁﬁt té aécess‘component cells of an ewmpty'cell.

The second change is ﬁh#t éhé éomplicated procedure
assign3 with all itsrtype tests is not needed at all. The
BL, code genératg@ from thez(agsigpmeqt)"y>+’x dgpénés on
the type of thé (destinatidn} Y. If-ité*type is,igg,ithen
by virtue of the translator;skétatié typeeheckiag we'know
that x can hdld;only integer values. In this case the BL.

. -¢ode in- figure 4.2-9 is; gen-

clear D 4

noneggﬁx? x,skipﬂ

const *X,y

..erated. I1f-y is of a struc-

tured type, then the trans-

skip: ... " lator knows that its
Fig. 4.2-9. BL code for
the ML~4 (assignment)
y + x when y is int

(Selectox)ﬂ slo csw 1 sk

_are given by

s, = *($decls.y.l) , ... , s

. = *{$decls.y.*($decls.y.n)).

k
In this case the BL code in figure 4.2-10-is generated. The
translator can always tell which case applies by testing
whether the pathnames $decls.y ‘and Q&tfﬁé:ihé lead to:the

same cell. The BL instruction same? $decls.y, §defng.int,go

performs this test. A branch to thg_;abe;“?gé"cindiqgtes
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that y hag a structured value aﬁﬁ'ﬁhut tba second case

' Lgapplies Thus, by sub-

IS p"ﬂ)u AT

SR

P o7 Cudee 4029 ana 402510

sk.xp; e
spﬂ——m

" Fig.. "8.2-10. BL eanuﬂzai‘&hﬁ'ﬂ
| MLcs (apad s oy ex |
1 when y :Ll -tmmw

yiie Idedt byfth%mﬂm~4:truuniuﬁbt% :

- Most nwoqtaﬂnwnq I&nﬁﬁmann ptndaasaﬁéisngttxugnuxng
have a typ- syﬁﬁmuiimlir to that u?"ﬂ!:wt* m W wt'

| Sheir semambbcse. . . -

' utituting the"ﬂ“;ggg ty?

mt r‘ﬂcr ﬁhe __gg__ tese
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treatment of data structures The structures are called

records, and the ALGOL W analog to an ML-4 structured type

is called a record class. An ALGOL W record class declar—
atlon can be’represented hy an ML-4 (defn) Flgure 4 3 l
shows how the two languages deflne classes of structured
objects; the ML-4 type w1th {typename) 2955 corresponds to
the ALGOL W record class named palr. Structursd objects: are
built in ALGOL L through the ‘use of record'desxggators,,’
which are analogous to ML-4 (construct;on)s.; Expressions in
| both . languages whlch build structurss from the "pair“‘class

are also shown in figure 4. 3~l

language | type definition @~ [object construction

ALGOL W .| record pair (intsger a,b) | pair (3,4)

ML-4 glrs[lnta,_ggb,] - Pajrl3:4]

Flg. 4.3-1. a parallel betwesn ALGOL W and ML-4

There is a major difference between ALGOL W and ML-4
with respect to these elements. 7Aithough‘a record desig-
nator builds a structured object ifi’ ALGOE ‘W, it does not
yield as its vajue the object it constructs. ‘In fact, rec-
ords are not‘eveusvalues in ALGOL W. ‘A-récord class is not
a legitimate type in ALGOL W;frecbrﬂhbaroﬁiccésﬁéd'tthugh

values of reference types. For instance, the ALGOL W record
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designator pair(3,4) in figure 4.3-1 yields a value of type

reference (pair) .

ML-4 will treat reference expressions in

ALGOL W similarly to the way ML-3 treats pointers in ML-2.

The correspondence is depicted in figure 4.3<2. Note that

in dealing with

ALGOL W

record pair (integer a,b);
reference (pair) vy, z;

ly := pair(3,4); z :=y

1

ML—4\
pair [ int a; int b ];
refpair = [ pair ptr ];
refpair vy,z;

y + refpair[ pair([3:;4] ];
zZ ey

ﬂ—!fI- ALGOL W records,
¢ 3

ri, JL we need an extra
ph‘ ftr :

&(_J level of indir-
a &

ection (the "ptr"

component) . This

Fig. 4.3-2,
in ALGOL W.

Reference expressions

(at least with

respect to our

scheme of rep-

resentation) is the same kind of inefficiency we encountered

with ML-2. It is worse here, though, since ML-2 made use of

the indirection only when sharing was needed.

Components of a record can be accessed by selector fun-

ctions in ALGOL W.

shows the correspondence between

selections in ALGOL W and ML-4

(z is of type

in ALGOL W, refpair in ML=-4).

reference(pair)

FPiqure 4.3-3

language selection
;ALGOL Wl a(z)

MIL-4 _a gg ptr of =z
Fig. 4.3-3. Selection.
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Once these dlfferences concernlng the constructlon and

selection operatlons have been taken 1nto account. we flnd

that assignment, sharlng and typechecklng in ALGOL W are

almost 1dentica1 to the "obv10us“ ML-4 counterparts (e g

replace ":=" with "e") In thls respect ALGOL W is 51m11ar

to the language SNOBOL4 descrlbed in sectlon 3 6

PL/1

PL/1 was one of the earliest languages to have compile-

time typechecking and to treat both data structures and

pointers. Most PL/1 constructs handling these notions look

markedly different from the

PL/1|
 DECLARE 1 X, .
2 I PIXED BIN,
2 8,
3 'J FIXED BIN,
3 K FIXED BIN:
DECLARE Y LIKE X:
DECLARE Z LIKE X.S
5; X.8.J =6

-
I
.
’

conastructs we have seen in

i

trip = {int i; pair s];
pair int j; dnt k];

l:

2]

[

X i
S

§.i X X & il . ]
Y.S.K = X.I; Yy « trip[nil; pair(nil;nil]];
Z = Y.S; z « pair[nilinil):
- iof X« 57 3 of 8 of x « 6;
T 1 T lefyeiofx . .
4 " Jof sofyejof s of x;
Mo | kefroviisisEi
riﬂ ‘ 4 } kof sof y « i of x:
(£>s k é?§_1:85 é) J of z + J of s of y;
It r({) k gg 2 +k of s of v
(‘S é |Fig. 4.3-4, Strqctures in PL/1.
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:yother languagu. Figura 4 3—4 nhows hou PL/l handlea a

'sample stmctufe and givu an m.-ut mivulmt. We mke two
observatiom. First, all comomt «113 p; the PL/l struc-
t,ures s.n this exwle are allocntod u&um tha declarations
':are :mterpretaé Wlth ML-4 cmmt cells are allocated
when the struct':x;.i:ad vnlue i.s actua;]:yr;;mtmcted Second,
a PL/1 stracture assignuent lﬁw Y =X in fig. 4.3-4 ;,iiié#-

- 5t coppiing  (reeex#ively for

Btyuetused cenponentcs) as. with Lol sm QUEST.

tures uﬂtﬁ.t ‘we irt-tx’o&uae pointmmm attxihuum |
<4 i’ i ®PL/L variable daclnm m bc - po:lm’l:«
claring a structured variabln twit.h tho attmﬁamue BASED(P)

7’“' mm 'ﬂhi&l variable no -
‘ ‘ éb*jwt‘s my ‘be

'”%aa-

introduces a vast cope

K hstead, ; t‘he role of a strueturad gm
quure 4. 3-'-5 m& @*gat of PL/1 d‘claratlons 1n‘vo1ving
BASB& atrmmMMQd giﬁi a ebrmming RL-4 (yreluder} _

; | {;‘ f 28 ——
Altbom t:ho Wl dial:rationn of Etgqre 4,3~4 spec;fy

. (r’s :1‘,:
rage fé M&WW w«:no-

;ﬂmeafei@ o it

cation of component cells as well), the declaration of LIST
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in figure 4.3-5 does no such thing. BASED structure values
in PL/1 are constructed through the use of an ALLOCATE

statement. Under the dec-

PL/1

DECLARE (P,H,T) POINTER;

DECLARE 1 LIST BASED(P),
2 BACK POINTER,
2 FWD POINTER,
2 NUM FIXED BIN;

larations in figure 4.3-5,
the PL/l statement

ALLOCATE LIST may be rep-

ML -4 resented in ML-4 by the
ptrlist = [list ptr];
list = [ptrlist back:; (assignment) P ¢« ptrlist]
ptrlist fwd; '
int num]; - list[nil;nil;:;nil]].
ptrlist p,h,t ‘
ALGOL W Since LIST is declared to
record list = be BASED on the pointer P,

(reference(list) back:;

reference (list) fwd;

integer num) ;
reference(list) p,h,t;

Fig. 4.3-5. PL/1 BASED
structures as types. point to the newly-built

the allocation causes the

value of P to be set to

structure. The result of

,____;~,__ this allocation is shown in fig. 4.3-6.
P
*}7 BASED structures in PL/1 are ac-
ptr
r_ﬁﬁ__ﬂ cessed through pointers. In our LIST
br\: k hcd A
example, a use of the name LIST refers to
Fig. 4.3-6.
Value of p. whatever the pointer P is currently

pointing to (which will be the most re-

cently constructed structure BASED on P, unless P has been




-130-

subsequently updated). To refer to a prtvim allocation,
one must use a gualified referencé‘ snch“a;s T -> LIST (wh’ich.f
i;sdiseat“ whatever the *poihter; T is currem:l_y‘ pginting_ to).
Figure #4.3«7 draws t‘ha'-«cenne’ctiohvtdefhtﬁe;en PL/I. 'ALGOL W and
ML-4 in accessing fields of structures (,_.;t ;Ls éssunxed that

the declarations in fig. 4.3-5 are stili in force).

P»L/l - | arcor w [ m-a

Trer | »° ptr of p

> LIST t | ptr of ¢
CLIST.NGM - p".num; ~ num of ptr of p

| T > isT.wom| t.nem 1 num- of per _g £
Fig. 4.3-7. Accessing fialés

N

The meaning of assignment in PL/sl is ‘éim;;.«lva“ri ‘éov’AmQL W
vexc-ep’rt for its handling of structured values (which ALGOL W
does not choose to handle). - In au-gam, a,a we have 'éaid,»
PL/1l copies rather than .:i,,.nﬁuce‘ il?fg.ring; “ All? ,shArix;g of ditia
in PL/1 is dcm,e through poin‘te,x;s.‘A -

TYM&M in PL/l d:ifim firzom ML-4 and; ALGOL W in

one major area, that of pointers. m ALGOL Kz, tnmla,tor

insures that a -reifuenmf value mmiat to reaord,s only

from one record class; if cl and o2 -ave il t record

classes, then any attempt to make a value of type
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reference(cl) point to a record from class c2 will be caught
by the translator and marked as illegal. The type system
for ML-4 imposes essentially the same restrictions. How-
ever, a variable of type POINTER in PL/1 can be set to point
to values of any type at any time (including nonstructured
values). This causes difficulties of the same kind that
static typechecking is supposed to eliminate. For example,
in the PL/1 program segment of figqure 4.3-8, the assignment

P = Q is legal, even though P points to a strugture of type

| DECLARE (P,Q) POINTER; |pL/1 [Mr,—4]
DECLARE 1 M1 BASED(P), ml = [int j; int k]:
2 J FIXED BIN, ptrml = [ml ptr]:;
2 K FIXED BIN; ptrm2 = [int ptr];
DECLARE M2 FIXED BIN BASED (Q): ptrml p; ptrm2 q;
ALLOCATE M1; P « ptrml[ml[nil;nil]];
ALLOCATE M2; q + ptrm2[nil];
P = Q; P + q;
M1.K = 5; k of ptr of p ¢« 5
Fig. 4.3-8. Lack of type restrictions on PL/1 pointers.

P — e e

M1l and Q points to the integer M2. The reference to M1 in
the following line (M1.K = 5) designates whatever P will be
pointing to (which is the integer M2 since P has just been
assigned the value of Q). Thus there will be'(depending on
the implementation) a runtime error or at least an erroneous

result as an outcome of the attempt to update a component of
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' the integer value M2. ' The ML-4 translatlon of this program,
also shown in‘figure 4.3-8, is 1nva11d since in the
(assignment) p ¢ g the types fa11 to match (;L____vs
gggmgjf If in the PL/l program we had declared M2 to be
BASED on P, then the corresponding ML-4 (program) would have
two confllctlng declarations for P, which would also render
it invalid. Thus WE see thatrthébtypechééiisé sYsteﬁ in
PL/1l fails to catch a whole class of programs which mmght

have runtlme type errors.
ALGOL 68

.Tﬁe t:§§tﬁentvof‘data structqggg Qég;po;nters in
ALGOL 68 i,;linkeg‘gégan inéfiéata‘syé%eﬁ*éffyipeéyéﬁd:tyée-
cheCkinggJ Aﬁéﬁ£ é8 is a difficult language éé“ieifp and
understand; the defining documentQQion tVW;j 69; VWij 73]
presents an intzmldatxng formalzsm to the uniniﬁiated
gpwaver,:thgre are'wo;ks (e.g. [Lind 71]) which are immense-
ly helpful.

Tyﬁas in ALGOL 68 are called modes. Thé modes of rele-
vance to us are the mode int (integer values) and the modes
built from the mode-constructors struct and ref (structured
and reference values, respectively). We ‘describe a corres-

pondence which assigns ML-4 types to ALGOL 68 modes:
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(1) To the ALGOL 68 mode 1nt we assmgn the ML-4
type int.

(2) If£EM.,.00.. are modes and S.,...,S, are tags
(the equlvalent of (selector)% then to the mode
struct(M PR <) o We asegggﬁtheumggg.type;
[T1 S ,...,} S. 1, where the T, are the ML-4 types
corresponding to the Mi‘ : : SR

(3) If M is a mode then to the mode ref M we assign
the type [T ptr], where T is the bﬁr-‘lr ‘type ‘corres-
ponding to M.

Mode—declaratlons in ALGOL 68 are just llke type deflnltions

in ML~4 for example the mode~dec1aratlon

mode pair = struct(int a, int b) is equivalent to the ML-4

{(defn) pair = [int a; int b].

A declaration in ALGOL 68, be81des aseoceatlng an 1den—
tifier w1th a mode and 1mp081ng type restrlctxons on the;ﬁ
rest of the program, has a two-folo r;ntlme effect cOn--
51der a declaratlon‘of form M X = E, for ;nsteoce int x = 3,
where M is a mode, X ao identifiet,ﬁanquAan_exp:essioqe
yielding a value of modevM; Thie“declaration first binds X
to a newly-allocated cell. Second, it places the mode M
value yielded by E 1nto this cell. What 1s”pecu11ar about
ALGOL 68 declaratiohevis'that'this%veiue'oen neQer.be |
changed. It may,.however,'be aArefEtggoe velﬁe”(i;e;ithe‘
mode M. is ref N for some otﬁer ;Séeg§)§'inrtﬂieﬁcase it

refers to (points toi'a cell holding vaiueé of‘;ode'N. This
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latter cell (and not the former”éell) Can.yé ﬁpdatéd by the
a331gnment operation in ALGOL 68 :Thna the'meanlng of
assignment in ALAOL 68 difﬁeﬂs f%anﬂaq'ignnsnt in the other
Vlanguages we have discussed, amtﬁ<thit -n identifler whose
,daclmd sode is not a :rafwmm mﬂ. mm Mntlally as
a constant. An identifier of mode ggg N in ALGOL 68 plays
| Athe same role as a variable of type n in another programmlng |
language. | R |

The specific definition of ALGOL 66 #g;iénMent is as
follows: 1let E be an expression y;elding a value of mode M
(M can be arbitrary) and D an exprelsion of mmde ref M.
The value of D is a reference to a cell wbich can hold val-
ues of mode M. Thén D := E is a valid atsignment and
specifles that the mode-M value of E is to be stored in the

mode~M cell referred to by (the value of) D.

A particﬁl#r_kind of ALGOL Gsmfo?f??EQnrranWP as a
local 399355325 specifies g;lncntian §£ﬂa 5§v{c¢11 when it
is evaluated If M is a mode,yghep eyg;ugg;on of the local
generato;‘;gg,g cau?gq_anaw‘cnll‘{uh;gh can on1y hp1¢ val-
ues of moée M) to be élioented.: whe _value yiclded by loc M
is a reference to this new cell and th.gcfore belongs to the

mode ref M.
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To obtain a varieble ih ALGOLkGS,whlehlwill teke"on
valges‘of“a queﬂMg we must‘deelere:ehiidehtifle: x‘of‘hpde
ref M so that assignment can change the mode-M valuee,

This may be accompllshed by means of an ALGOL 68 declaratlon
of form M X, whlch is really an abbreviatlon for the dec—
1arat10n’ ref M X = loc M.tACOn51der, for‘example; the |
ALGOthé deelafetion 1ntvx (eduiveleht torthe declaratloh
ref 1nt X = loc 1nt), whosebeffect is deplcted in flgure

g

4,.3-9, The 1dentif1er X, whlch is declared here to be of

“Mmode ref igg, is

EEH 3| Ty | e s e e
refint x=locdnt) | b | cell; the lower cell
..MIJ-—A-J : B Lo Ptl“ VAR R wn i
refint = [int ptr]: ¢ 1s allocated (by
refint x;. . S TERR S .
S reflnt[nll] | . evaluatlng 1oc 1nt
'Fig. 4.3-9. Semantics of the .
ALGOL 68 declaration int x. in ALGOL 68, and by

;'evaluatlng the

{cell expr) ‘nil ‘in the (consttuctieﬁ} reflnt[nll] in

ML-4);‘and the upper cell receives'as (permanent) value'al
pointer to the lower cell.’ Subsequentheiecutlon of the
ALGOL 68 assignhent ’x‘:— 3 would place the value 3 in the
loﬁer.cell: therefore its ML—4 equlvalent is the (a531gnment>

ptr g§ X « 3. bThe”static typechecklng rules for ALGOL 68

T
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insure that any assignment attemptlng to plaee a non-xnteger
’value in the lower cell is detected and indicated to be
invalid. |

| There 1s one aspeet of the ALGOL Gautype system Which
is more lenlent than the ML~4 system.' Uniike!PL/l, no type
errors can arise from thls loosening:” Consider the ass1gn—
ment yl;= X, where both ldantiflers x end y have been de~
clared to.be of mode ref 1nt. This aaszgnment speczfies the
updating of the mode int cell pointod to by Ve But the
rzght~hand side, which must then eupply‘an integeg value,'ls
'Fof mode ref &g? according to ML-4 nule:, the as:ignhént is
dto be rejected hy the translator as’ invalld.{ However,ﬂ
ALGOL 68 recognlzes that the ggﬁ_&g&,value of E3 peints to an
int value, 80 all that needs .to. he done tgnobta;n the re~
quired 1nteger velne is followfthevpointen x.U Thls process
is called dgrefexgnclng.‘ In general, the procedure for ob—
talnlng a value of a desired mode from a value of some other

EoYs

mode ls known as coeroion or conve;aign. Thus. in the

[R5 S

ALGOL 68 type system, if the left-hand side of an asslgnment
is of mode ref M, then the assignment is valid provided the
rlght-hand slde iI of mode M or can be coorced to y131d a

‘474

mode M value. In our case, the procedure whlch translates
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from ALGOL 68 into ML-4 must recognlze that dereferencxng is’

EE

called for, mark the a551gnment y 1= X as legal and gen-
erate ML—4 code whlch takes the coerc10n 1nto account Of
the three assignments in the example shown ln,flg.y4 3 10

coercion takes place only in the §éé6hd{dﬁé“}hhéré y is -

dereferenced). -The y onxthé‘rfgﬁféﬁaddﬁé§§%f%@?é;is trans-
lated into the ML-4 (expression) ptr of y;;yieiﬂing a valid

ML-~4 (assignment);

Note that the mode of ALGOL - ﬁa;s
, o int x a:3". ‘
x is int, and the mode int y, 27 oo
B IR < SRR
of y and z is xef int. . gz':— b 4 IR 'T““%‘“‘T
Y 3= 4y R RS * ¥ 4
b BT (
The concept of oo MEsg ) é :'" "1"
. : refxntf Iint ptr], Ptr prr
structured values in  ['int x: ~ ' é é
}reflnt Yi2;
ALGOL 68 is essen- - X & 35 o
Sy e reflnt[nillz
tially the same con- |z e xggigg[g 1]
B | ptr of v « x;:
cept when taken by ptr_gg z + ptr of y;
‘ ' " | ptrof y A

U S
|Fig.. 4.3=10.- An example of
coercion in ALGOL 68.

itself as in ML-lvand

ML-2 (as well as PL/l
and QUEST) . Sharingv
arises only tﬁrough_the csa cfﬂgefa;ggcc;moées;;aasiqgmgnpvof
structured values i§,d°éé by‘compongacﬁﬁﬁgtcgpyigg,-w?igure

4.3-11 gives an example. The mode of z is pair; the mpdeapf
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“ x is ref pair. The expre331on. (5 6) in the declaratlon
for z is called a structure dlsg; X and 81mply glves values

for the components of z.

' ArdoL 68|
"mode pair = struct(int a,b);
2 ir 2 = (5 61‘)1
pair x;
X 1= Zy
ML~4 |
Rair = [ipt a: igt bl
refpair = [pair Ptr},
&11’ 23 regw : Jﬁf ‘
2 « pair[5:;6}; 4.
X« £2£E§££[Bé&*L.£~.B£L1]'
a of ptr of x-» a gf z; R
b of ptr of x « b of 'z

Fig. 4.3-11. Stxuctuwe aasxgnmant
in ALGOL 68.

The selection of cdﬁp§nénts from a structure ih‘AtGOﬁ:GS
is synta¢ticaliy iaeﬁticﬁ1;tp ML-4. 1In fig. 4.3-11, the éel-
ection b of z, which refers to the b—coﬂponenéﬂcell of z,
is of modezint. There is a major compilcation concernlng
selection in ALGOL 68. We can 1egally form the selectlon
b of x, where x is of reference;to~str&d££fe modé;w:The mode
of the selection b of x is ref g._:_m_;_ not ‘int j‘éx}éﬁ"tho‘&'gh "
the b-component cell for the structure pointed to by x in

figure 4.3-11 is of mode int. We say in this case that the
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pointer is dis

1 butev_over the components (1n ALGOL 68
term1nology, x 1t "endowed with suhnma") frl}};s. for ex-
ample, the asa:.gnmefnt‘ b of x t= a of z jig. ildggayl’; "Jf.nthe_
ALGOL 68 vprogra.lm of fié; 43-111twouldplace the va’,lurei 5

into the b-component cell of the structure pointed to by X.

Unfbrtu;ia.t@;y, the "obvious” tr&ml@ti@n mto ML-4. -
fails. The ML-4 type refint, defined as [int ptr], corres-
ponds to the mode gaf ink, but in £ig. 4.3~11 there is no
cell of this type to associate, to. the (destination) that.
correspends to the ALGOL 68 selection B f %. Thus, in
translating, from ALGOL. 68 into. ML, ;.suph cella. 'muat be
added to the picture (these cells w111 hold poxnters to the
1nd:.v1dual components of t‘he structure referred to by x)

The corrected translatlon mechanism is shown in flg. 4. 3-12-

i[m.-4

[:Lgt a; int bl;

[in ptr]
eEint airefint b);

u' x$aub7

2 4"47 ptr of a of x$sub - 3;

& bigtr e | Pty af‘ ‘B tf” x$sab & *pf&r ﬁ i of xssﬁb / “
&@l) Fig. 4. 3712, Distributed, go;kntgrs .in ALGOL 68.

A
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for each referenceéfo-séructufe identifiér'x wenédd to. the
local structure a reserved identifier xssu‘b to hold the °
subnames (dlstrlhuted component pointe:s).‘ By looklng at
the local structure piéturéd inﬁié;’4.3f12, we see that
there are two ways to access component cells of ﬁhe struc-
ture pointed to w x: through x"(vi‘ﬂéh‘ {dewtination)

b of ptr of x) as when updating the structure itself by com-
ponentwise copying; or tﬁroughx$¢ﬁbfﬁﬁ1&h<taes£inatibn$

ptr of b of x$sub) as when explicftly selécting from x using
subnames. theﬁthat'our't:tnsl&tibﬁ*ébﬁi&%ﬁﬁ t& the stip-

ny system.

ulations set by the ML~4 ‘static

We glve a final ALGOL 68 example, illustratlng a re-
cursive structured mode. The example is ahown in flgure
4,3-13. box is a structured mode, recurnively deflned and
a and b are of mode ref box. Note that the modqwf the. sel-
ection n of a _15.52£ £g§ §g§. ‘Thé:dni&eégehéiaﬁiinTgﬁg
program occurs in thé-l£§t>assignment, where A»is derefe
erenced. A recursive modé'definitionmagéh asf”
mode badbox = stryckiint v. gadbox n) would bo illegal the
"ref" inside the definition of tha modezhgg,ﬁs nbcusaary

since there is no implicit nil in ALGOL 68‘- modes as Ehera

is with ML-4.
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Thus we see that even with a language as complex as
ALGOL 68, we can use ML-4 to make clear its approaches to

the semantics of data structures.

ALGOL 68 | : 2 _
S0k a b b
mode box = struct(int v, 0380k K3 4 -bﬁ
ref box n); | 3 MK et v on
box a,b; ' N Pie ' ' 'ﬁ
Dy oL 2. gﬁ,-, -7

v of a := 8; | per ﬂtjfx;jg‘ v oA pu ptr
n of a := b; ; JL .

—— - ‘ \/_) Pt’_ 0 rr
b := a; .

| mMr-al

box = [int v; refbox n]; refbox = [box ptrl:
subbox = [refint v; refrefbox n];
refint = [int ptr]; refrefbox = [refbox ptrl:

refbox a,b; subbox a$sub,b$sub;

a + refbox([box[nil;nilll; b « refbox{box[nil;nil]]:

a$sub « subbox[refint [share v of ptr of a];
refrefbox[share n of ptr of all;

y b$sub « subbox[refint[share v of ptr of b];

; refrefbox[share n of ptr of bll;

§ ptr of v of a$sub « 8;

| ptr of n of a$sub « b; Fig. 4.3-13. Final
i v of ptr of b « v of ptr of a; ALGOL 68 example.
| 0 Of ptr of b « n of ptr of a

Completeness

In this chapter, we defined the mini-language ML-4 and
used it to model data structuring facilities of the lan-

guages ALGOL W, PL/1, and ALGOL 68. As in the last chapter,
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we close w1th a few remarks on the completeness of our cov-

erage of the approaches to data structures found in these

three languages.

With ALGOL W, as w1th SNOBOL4 in the pravmous chapter,

ring Pacilities thor-

“oughly, Witk th& ‘exceptien of arrays. ‘We comment on arrays

‘andisomé af thgir;:pecial issuesfin_Chnptgr 5.

Far PL/lpand ALGOL 68, our treatmant is far from com—‘

plete. This is to be expocted becausq aﬂ the ahecr bulk and

complexity of these two lan Yhew‘m numems

we have ﬁdt'de~

features deallng with datw structwres ,WQ”;”
scribed. Yet we claim that those ‘featdres which we did de-
scribe in PL/1 and_ALGbL 63*cbﬁstiﬁﬁﬁﬁfthi,ﬂheantﬂ of their

data structuring facilitxes* thus onr’deiéription of these

featunea shouLd make clear the undani'dxf aumnntme approaches

to data struetures in these 1angutgnstal<wuli.
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Chapter 5

CONCLUSIONS AND EXTENSIONS

5.1,  What We Have Done

~There are a 1arge number of programmlng languages ut;ch
work with data structures, Because waﬁh?,Y??*etY‘Qf ap~
, proaches fOuuq'in tﬁesevlanguages, gaex’subt;e but important
semantic distinctions crop up. With most laquaaeép;#hﬁwp
semantice (including iuﬂpartic%%arjtue:gggaptrcaﬁfcr theﬂ
data structurépg:faci%itieg)“are Qegcripeqﬂigﬁpgmal;xyin ]
English. We ccusider suchfqeegriptiyeggetRQQgﬂipagegugte
for_our goals, since in‘many,cases,tgey“fai;,tq‘make clear
some of the 1mportant semantic principles such as sharlng.

,.1.@w;

As we have seen, a mlsunderstandlng of the 1nteractlon be—

tween- notlons such as asslgnment and sharlng can lead the
programmer into erroneous conclusxons about the effects of

programs.

We have therefore developed in fhis thesis a method-
ology for describing the semantics of data structures in
programmiug languages. Inrorder tc precise}quesqr;pe,mech—
anisms found in programmlnc languages whlch handle data

structures, we made use of the base 1anguage model, whlch 1s

e
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an interpretive model for "Farmal semantics. The base lan-
guage model is esdentiafly‘a‘mifﬁéﬁitfdﬁl formalism for
modeling the changing states of a ggggnt§ng system on which
various computations are performed; ‘A‘;afhématical t£eat-’
ment of ﬁhe”basé'lahgﬁAge modei"ié'fbuﬁ& in ‘the Appendix;
our approach émﬁhasizedvthé’use of the bdse language as a
*pgog‘fming tool similar té many conventional assembler lan-
guages. A major advantage of tie basse larguige model over
 other formal semantic models is ‘Chat it manipulates data
objects of a sufficiently general nature that we can make
direct use of its data representations in our work withciit
neea'fbf”apécfﬁi‘enébding'mééhiﬁibmd.:&u‘

The ma;n éorﬁlon‘of th1§ thetis wﬁs concerﬁed with the
fpresentatiun and use of a series of m¢n1~languages. With
these minl-lﬁnguages, we 1solated the relevantkconceptual .
abstractlons such as assignment value, constructlon,‘éelec-
tion, sharing and typechecking. The mini-languages prov1ded
a “ﬁi@ﬁ&Iév*i*“ﬁ%iﬁffptive“ﬂﬁﬁiﬁiﬁ'ﬁﬁf&ﬁ*ﬁﬁdéfi%;siﬁpler'and
mofe convenient to talk about eemantic issues relating to
data structures Z |

The basic structure of our mathodoiégy was to flrst

make clanr the semantlcs of our mini-languagea by speclfylng
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their translation into the base language. Once this was
done, we no longer needed to think in terms of the primi-
tive operations of the base language. We were then able to
describe the semantics of data structuring features in some
programming language by simply using the appropriate mini-

language to describe how the relevant mechanisms worked.

In treating the data structuring semantics of several
programming languages, we gave mini-language code into which
constructs of these languages are translated. Determination
of this mini-language code presents difficulties when the
semantics of the source language is incompletely or ambigu-
ously specified, reflecting the inadequacy of the descrip-
tive methods in use. Of course, once we have obtained a
consistent translation into the right mini~language, we have
an unambiguous semantic specification of the relevant con-

structs.

Using the techniques we developed, we described the
data structuring semantics of a number of representative
programming languages. With the simpler languages, we were
able to give a nearly complete treatment of the data struc-
turing facilities. As to the more complex languages, we

were able to cover most of the fundamental approaches to
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data structures without getting caﬁqhtsﬁp'in the intricacies
of features of felatively little semantic relevance to the
issues we are concerned with. In the next séction, we talk

about some of the[arias that were left uncovered.
5.2. .  Further Wor

There are a number of semantic areas that we have not

treated. In order to cover these arveas, we would need to

this section, we give brief mention to two such areas and

what kinds of new mechanisms are required to treat them.

‘The first uncovered area is:Uniéna.?lwiEﬁ the pre sys—
tem of ML-4, every cell is constrained to hold values of
oniy'dne type. In many programming laﬁguaééé,-this restric—
tion is weakened somewhat by defining ﬁhithtypes. If type
t is the union of types tl and t2, then a cell of type t can
hold values of type tl as well as values of type t2. For
example, suppose we declare z to be of type t in some 1&n~
guage that admits union types, and suppose:tHat the express-
ions el and &2 yield valueﬁ of types tl &ﬁa*té,;respective—
ly. Then both the assignments z := el and 2z := e2 would

be legal. This capability is not within the reach of the
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type mechanlsms we developed for ML-4. Suppose we declare x
: R R TR R

‘ to be of type tl. Then the assignmentfmr 5;'2 ‘cau 5e'e£élk
cuted without type error preci#ély ‘hén' the’ valud of 7 is of
type tl rather than of type t2. ~§6'if orfler £6 &dd to oir

mini-languages a tapability to Hﬁﬁﬂﬁe”ugfﬁﬁﬁi‘ﬂﬁmé*kiﬁﬁ”df?x

additional runtime type testing mechanistfimEt He intro= o

duced into the design of Eﬂé‘laﬁﬁﬁaéé:r” e
[N - W e UL . \,1&1& g y g r)
The ‘second uncovered area 1s arrays. The type System

L

of ML—4 is 51mply not equlpped to deal w1th arrays whose
FRE s &
subscrlpt bounds are flexible. The type of such an array

e o : A T Ry

would contaln structures havzng dlffering numbers of com—
ponents. A structured type in ML-4 requires a set of selec-

tors Wthh is known to the tranalator and cannot change.

P

TN .E.w

Even w1th unlons, we are no better off For instance, the
type conslstlng of all PAL tuples could not even be expressed

vy !“!

as a flnlte union of ML—4 types,A81nce a tuple can have anyk
one of an 1nf1n1te number of selector setsi({l} {1 2}
{1,2,3}, ..., {1,2,....n}, ...). '

There are many other complicated issues concerning
arrays, such as different 'array type COﬁccptS,~ change-
ability of bounds, and assignments between fixed and flex-

ible arrays. All of these issues introduce new complexity
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into tlie language, requiring the development,pf more techniques.

To sum up, Qur methadglqu_ for describing data struc-
tures has special advantages from each of its two portions.
The use of the hase language model provides for a precise,
formal characterization of the semantic rules of the lan-
guages under studf, while our mini~languages provide the
convenienge of high—level descriptions of the actipna~being
modeled. In order to deacribe ahy proéramming language
feature, all that needs to be done is construct an appro-
priate mlnlulanguage which handles only the concepts dlrect-
ly relating to that feature. The syntax and semantlcs of
such a mlnxmlanguage are naturally easy to wurk with and |
understand. By speclfylng translations from source lan-
guages into the mini-language and f;ém the mini-language
into tﬁe base language, we gain a p?ecisé but Qonceptuallf
clearncharacterization of the semantic§ of the features -

we wish to study.




{Amer 72]

[Amer 73]

[Bur

[Cou

681

73]

[Denn 71]

[Denn 74]

[Der

[Dra

741

73]

[Earl 71]

[Ev

70]

-149-
Bibliography

Amerasinghe, S.N. The Handling of Procedure Var-
iables in a Base Language. S.M. thesis, M.I.T.
Department of Electrical Engineering, Sept. 1972.

. Translation of a Block Structured Lan-
gquage With Non-Local Go To Statements and Label
variables to the Base Lanquage. M.I.T. Project
MAC Computation Structures Group Memo 84, June
1973.

Burstall, R.M. Semantics of Assignment. Machine
Intelligence 2, ed. E. Dale and D. Michie.
Oliver and Boyd, Edinburgh, 1968, 3-20.

Ccoueignoux, P. and Janson, P. Translation of
Simula 67 into the Common Base Language. M.I.T.
Project MAC Computation Structures Group Memo 87,
June 1973.

Dennis, J.B. On the Design and Specification of
a Common Base Lanquage. M.I.T. Project MAC Com-
putation Structures Group Memo 60, July 1971.

. Private communication.

Dertouzos, M.L. Computer Languages: Structure
and Interpretation. Class notes for subject
6.031, M.I.T. Department of Electrical Engin-
eering, Feb. 1974.

Drake, C. The Semantic Specification of SNOBOL
in the Common Base Langquage. M.I.T. Computation
Structures Group Memo 85, June 1973.

Earley, J. Towards an Understanding of Data
Structures. CACM 14, 10, Oct. 1971, 617-627.

Evans, A. PAL Reference Manual and Primer.
M.I.T. Department of Electrical Engineering,
Feb. 1970.




T T T, o RIS e W

[Fenn

[Floy

[Gris

[Gris

[Hoar

" [Hoat
[Hoar

[Hoar
[Lan
[Lan
[Lan_

[Lan

73]

73]

6&1

59*]

711

721

64)

65]

66a]

66b]

67) if'loyd. R.W.
67), ¥ o

:*”:t' ‘ Proof of<a Pro
Farienn, 39+45.

~150~

Fenner,’T.I. et. al. QUEST: The Design of a
Very High Level Pedagogic Programming Language.

ACM smggg ggtlgg fab. 1973, 3-27,

&ssigﬁing'°'
uﬁ s

1967, 19-3‘2

@ﬂmlﬁo R, E. et. al. 'The SHPOLA

Griswold, R.E., and Griswold, M,T. SNOBOL4 Pri-

: mer, Frentlce~H&11. RnglA;_,ﬁ;

1973.

Hoare. C.A. R

3

";‘ Ah’AXibﬁiEié’ﬁﬁhi ,£§§ ofiputer Programm-
fng.” GACM 12. 10, oct. 1969, ’578-530 583.

. cacM 14, 1,

R
B & PN

~ Notes on Data stgug;urlng. St ture
Programmlng;'ed B.W. Dijkstra; - ﬁcademic Press,
1972. o |

Lingin, P. The Mff“ﬂ"@” ‘Beatuntids of Express-
ions. COgggter J..1§Q7”¢;3§64.£?ﬂ8-320 ‘

.. A Carrespondence Between Algol 60 and
“Gharch's tambde Not m«;mﬁ*?s ‘Peb. and

Max, 1965/ #9~10%, FS8-EE5
.. The Next 7Q0 Prqgramminq La aggs.‘
CACM 9, 3, ‘max 196@ &3“7-166._. !%G“

BN




[Lau

[Lav

[Led

[Lee

[Lind

[Luc

[Luac

[McC

[Moxrr

[Mos

68]
74]
71]

72]

711}

68]

69]

62]

68]

74}

-151~

Lauer, P. Formal Definition of ALGOL 60. Tech-
nical report TR25. 0887 IBM Laboratory, Vienna,
1968. -

Laventhal, M. Veriflcation of Programs Operating
: 407 . MCILT.. Pro;ect MAC Tech-
nical Report TR~124 March 1974,

Ledgard, H.F. Ten Mini-Languages: A Study of
Topigal Issues in Programming Languages. ACM
. Computing Surveys 3, 3, Sept. 1971.

Lee, J.A.N. Computer Semantics. Van Nostrand
Relnhald, New York, 1972 ‘

Lindsey, C.W, and van der Meulen, S.G. Informal
. Introduction to ALGOL 68. Mathematisch Centrum,
Amsterdam, 1971. ‘ : '

Lucas, P., Lauer, P. and Sthleztner, H. Method
- Fo) efinition of Pro-

Ages. "'zeeimiea& ‘Report TR25.087,

IBM Laboratory, VLenna, June 1968

“Lucas, P, and Walk, K. -On. the Formal Description

of PL/I. Annual Revxew of Automatic Programming
6. 3, 1969.

Mccarthy, J. et. al. LISP 1.5 Programmer's
Manual. The Computation Center and Research
Laboratory of Electronics, M.I.T. M.I.T. Press,
Cambridge, Mass., 139682, E

Morris, J.H., Jr. Lambda Calculug Models of Pro-
gramming Languages.: M.I.T. Project MAC Tech-
nical Report TR-57," 1968..v<kA,,

Mosses, P. The Mgﬁﬁgmg&idal Semantics of Algol
60. Technical Mohograph PRG=12, Oxford Univer-
sity Computation Lal, Programmifig Research Group,
Jan. 1974.




[Reyn

{Reyn

[Scot

[Scot

[Stra

[Stra

{VWij:

fvwij

{walk .

69]

723 R

73]

73]

70]

71]

66]

67]

73]

69}

68]

H;ghar-Order Prbgramming ﬁangqups ~ Broc. 25th

_Reflexive Domsins. Mﬁt notes, Ox~
turd Ha#yanliuy : uinyg: iameatory, Programming
Research Group, 1973.

Scott, D. ‘Outline of & Mathematical Theory of
00nputat10n. Proc, & yi Princeton Co
n Scignces and Svetems, 1970, 169-

——» and Strachey, C. Towards a Mathematical
Samuntins;fur cbmpu$0x¢Languuguu~ ﬂggghh_ggmg_

me&w w

Strachey. C. Towards a Formal Sanntlcs. Formal
, G iption Langs gg«.tlbﬁihhﬂbliﬁnd

. Fundgggntal gcagagts in Programmlng
; namo Gﬂr!hhuyun X967,

‘Van wxangaazden, A. (edg} -aann&t on the Algo-

rithmic Language ALGOL 68..:Jamerische Mathema-
tik, ‘]_._é.' 2 F} 1969, 79“'218. ' .

Wegner, P. EE2SEE£EEﬁELL&BEBQSEEL;E_JREQEﬁéﬂa

Structures and Machine




[Weg

[Weg

[Weg -

- [Weg

[Wir

[Woz

70]

71]

72a]

72Db)

66]

69] -

-153-

. Three Computer Cultures: Computer Tech-
nology, Computer:Mathematics and Computer Sci-
ence. Advgces 1n g_muters 10, 1970.

. Data Structure Models for Programming
Symp sium on. Data Struc-—

Notices, Feb. 1971.

R Progmmm; Language Semantics, Formal
‘Semantics of Proqraming I__’&x_qg_agas. ed. R.

- Rustin. - Prentice~Hall, fsnglm Cliffs, N.J.,

1972.
. The Vienna Definition I;angﬁage. ACM
‘computing Surveys 4., L, March 1972, 5—63.

“Wirth, ‘N., and Hoare, C.A.R: k ‘Contribution to

the Development of ALGOL. CACM 9, 9, Sept,
19686. : g v g i Fepdo TRY e e

Wozencraft, J.M., and -Bvans,: A, mtqs on Pro-~
gramming Linguistics. M.I.T. Department of

- Electrical Engineering, 1969..




~154~

Appébdixﬂ

A MORE FORMAL TREATMENT OF BL

at a ngen time in-tha couputerwsyutnm Haunna-modellng. in
this section we describe in detail tha structure of BL~-
graphs reprasnnt;ng interpnetar .#!tqa An'tmg baae language
model. The trcatmant ‘here ﬂ:iﬁtau ms Mm {penn: 71]
and [Amer 72], hut is easentlally squivalgnt, In the next
section we iformalize BL~graphs and the AL instructions.

We assume that the reader is fawiliirﬁﬁiﬁh the concept
of process as a locus of control. A:proce:s,is~regrasen£ed
in an interpreter state by a BL~object which we call a site
of activity, or_g;ﬁ. The BL-graph for an intérpreter state
is,essentiilly a collection of SOA's. Thé root nodes of
such a BL~graph are the root nodes of its SOA's. Thus an

interpreter state is represented

T oets '—'L'Y

SoA #n

by a‘BL-graph whose skeletal

form is shown in fig. A.l-1l. *Fig.va;l—i.'43keleta1

. structure of BL-graph
We now describe the struc~- for interpreter state

ture of the individual SOA's of
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an interpreter state. A SOA is a BL-object with four com-

ponents:

(1) The ep-component is a local structure, a BL-object

representing the environment in which the SOA's computation
takes place. (The name "ep" is an abbreviation for environ-
ment pointer.) Components of a local structure represent
variables and temporaries used by the computation. Nearly
all the BL instructions executed as part of the computation
affect its local structure. We allow for the possibility of
different SOA's sharing the same local structure, but usu-
ally the local structures of the different SOA's are dis-

tinct.

One distinguished SOA has as its ep—-component a BL~-
object known as the universe. The universe represents the
system~resident information present in the computer when no
computations are in progress. Generally speaking, this in-~
formation is independent of which computations are currently
active or how far individual computations have progressed.
This special SOA stands, so to speak, at the head of the
system call chain, so that every process can trace its an-
cestry back to it. Access to the data in the universe is

passed from caller to callee, so whatever access a partic-~
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ular SOA has to the universe is determined by the call chain
leading back to the one distinguished SOA.

Two kands of objects are found as components in the

universe: data strgcgures -and 3;~_ggg;g atrggggges. Eadh

kind of object can have objects of elther klnd as oompo—

nents. A data structure in the modal can be any arbltrary
BL—Ob]ect' a procedure structure 13 a 3pec1al kind of BL-
;object representxng a procedure expreased in the base lan-
guage. a BL instructlon is easily repreaented as a BL~
Object' for example. the 1nstructzon ggggg 3 x is depict-

ed in f;gure A.l1-2. The components

with selectors 1,2,... of a procedure

——
, ) o 1
structure are-simply representations of o ‘_ ‘

its instructions in order. A procedire

tPig. A.1=2, A

‘sample BL in-
gtruection as

a BL-object.

structure may also have components

which are procedure structures for nest-

ed procedures. Figure A.1-3 illus-
trates a"skeleton’procedure'structure;for‘a procedure p
with one procedure £ nested inside.

(2) The ip-component of a SOA gives the.instruction
currently bexng executed by the SOA's oomputatlon, as well

as the procedure contalnlng thls 1nstruction ("lp" stands
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for instruction pointer). The ip-component is a two-
component structure, whose proc-component gives the current

procedure structure from which

instructions are being executed, *qqfﬁuu_ﬁfwhxa
, . i, ¢
and whose instr-component gives ¢ d procedune
‘I&b 8(_' 'n‘“‘ SC Strohute
, . st sty [ dar £
the number of the instruction o r fF M
1., "
currently being executed in r t - ] \
iﬂ‘g‘_ m-fl-_eL
1 sty INGtr,
this procedure (fig. A.l-4). we g
. . Fié. A.1-3. A sample
Thus the instruction currently procedure structure.

being executed within a. SOA s
is given by the dotted pathname ip.proc.*(ip.inst), taken

relative to the root node of s.

2 SOA

(3) The stat-component of a o pora

SoA, which gives its status, is an Proc. ingt
mm:\ s*r\x. ?
elementary object with the value 1 %
when the SOA is active (i.e. curr-~- BL\V\%L*GV\
Lm‘l\‘\‘li NJ
ently processing instructions), 0 ! execot

i
L

! Fig. A.1-4. ip-

if the SOA is dormant. component of a SOA

(4) The ret-component of a
SOA s shares with the SOA that invoked (created) s. When
5 executes a return instruction, the SOA given by the ret-

component of s is activated; the current SOA is put to sleep.
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With the structure of an mterpreter state glven above,
~ we can procead to-the next section. which descrxbes how the :

BL instruetions transform interpreter states. -

We give a formal mathematical cie.finiﬁion"of 'BI'.-gvraphs.

Suppose .the seta ELEM (elmntnry object:n) . SEL (selectors)

and NODES (nadas) are given. . For our purposea, ELEM shall

e EOR R

consist of. abed r&, truth veluel, ml nmberl and stringa;

: SEL thall cmsiut of integers md atrinqn ann mnm thall
he nn athitrary count.ahly infinite ut St.ri.nga are taken
‘»ovex Bome :utfm:rln alphnhet chh incmdu the nlphmmic

o o YL “ ke

chmct.exl togathar with some’ epecfﬁ

e

érs. A

BL-g; 'mz,e;: these thr« setd is a 4-mh g- (U.R,A, V)
: ,7.:‘""”"1’"@6&0: in use) is a ﬁnitc m«: ‘of ‘WopEs:
R cnm mdu) LE B sl e

U L A taed o $) & Ux .

We interpret (a..b B) €A to m there doi p
‘with um&m ¢ lesding fmné& a &n%& ﬁ
(& 8) E v o man & ‘is - x«fwm@xmary vaxuo

g

A Bl-graph ¢ -mt-nﬂuty ‘the “foilowing fome conditions:
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(1) If a € U, ¢ € SEL, then there is at most one P € U
for which (a,0,B) € A.

- (2) If o € U, then there is at most one & € ELEM for
which (a,8) € V.

(3) prl(A) N prl(V) = ¢, where pr, is the first-

component projection mapping. Equivalently,
¥ o € U: ~[%8 € ELEM: ((a,8) € V)
& 7(c,B) € SEL x U: (a,c.P) € A].

* *
(4) D (R) = U, where D is the reflexive transitive

closure of the immediate-descendant mapping

D: ZU - 2U defined by

D(S) = {p € Uz mwa €8S, g € SEL s.t. (a,5.,B) € Al.
Property (1) insures unique selection, i.e. that the selec~
tors on the arcs emerging from a node are distinct. Prop-
erty (2) asserts that no node may have more than one elem-
entary value. Property (3) says that no node may have both
components and an elementary value, i.e. that elementary
values can be attached only to leaf nodes. Property (4)
states that every node of a BL-graph is accessible along

some directed path of arcs starting with a root node.

We now give a formalism for defining transformations on
BL-graphs. The formalism is based on [Denn 74]; it makes
use of a set ID of identifiers and a mapping

v: ID U ELEM U NODES -+ ELEM U NODES which assigns values
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to identifiers and acts as the identity function.on elem-

entary values and nodea. A bhasic txansformat

BL~-graph g = (U,R,A,V) into a new gmup‘h g* = R LA V')

and updareas “he ‘valuation- mappd.ng v ‘dmto -a new ‘mapping v'

The notat::on vla/x] means xy (yax - a, .ESES - v(y)), i.e.

mapping equiwalant to vaxe;ept that ,;.xt.m;ps x into a.
e fullwing ‘basic transformations tn& mxilxary

functlons are def:.ned for arhxtmzy Blwg'.‘apha-‘ o

. [defined provided é‘%ﬁ, & € ‘BUEM,
- where o = y(a), & = v(d)] .
V¢ 2V U T, 8)Y, U= R SR A WA, o= .

‘DeleteElem{a, d): ‘[défined provided o €U, § € ‘BLEM and -
(oc,a) €v, where a = v(a). 8 = v(d)]

V' =V - {(a.8)}, U' = U, R' = R, A" = A, "v' = v.

AddArc(a,s;b)~: [defined pQrdiiided a.B € U. o € SEL,
, ‘ where o =.y(a), o, 7 n8), ﬁ*-‘v«(b)]

A' AU {(avGoB)] U' =U0 R"SR' V' =V: \J' =\)-
-DeleteArc(a.s b) [def:.ned provided a.B E U, o € SEL and

aseBY € R, Whete o & v(%), o = vis),
B = (b)]

A' A — {(a,a‘ B)} U' 2 U, R' = R' V' = AV' \J = Ve

-Delatecompc(a) ,f&eﬁ:n‘od :prov:b&d&*a&-i U, ‘Where'd = y(a)]
A=A N -~ {@)) x SBL x U), 8" = s Blw= R, B
V' =V, ' = y.
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Prune:
U' =D (R), R’ =RNU, A =ADN (U x SEL % U'),
v = v a (U’ x ELﬁM) .. \a =u o

HaSCOEl_‘E];a‘S!ﬂ: [défihéd provideda € U, o € SEL,

where a = v(a), o = v(8)] . e e
if %P € U: (a,0,P) € A  them true elge fah;l.se.w:_
ComB(aLS) -+ 3}2 [defined provided a € U; ¢ € SEL -and

Hasconnga. 8) = grqe i.e, 3B € U: (a,0,B) € A,
- wherea = v(a), ¢ = v(s)]

let pevU such that (a,0,B) € A; _
v'o= viﬁ/b]' U' =U, R' =R, A' =A, V! =V,

, HasElem(g) : [def:.ned prov:n.ded a € U, w"nerc a =yl{ay)
| if 95 € ELEM: (a,8) € V then truecelse -false.
Elem(a) = d: [defined provided a € U)andﬁasElsm(a) = true’
i.e. 38 € ELEM# {o,§) € 'V, g a = y(a)]
let & € ELEM such that (a,8) € Wy sl
v' o= vt6/d]; U' = U, R' =R, A =X, X" =V,

NewNode - a:

let o € NODES -~ U;
: v o= “{a/a]' u' =0 U {a}' ‘R' = Rq A'»-"“ A-, v = V'

~ MakeRoot(a) : [defJ.ned provided a € U - R, where o = y(a)]
R' —Ru{a} U’ U. A A. V' '=\l. v' = v

RemoveRoot(a) [defined provided 4 6 R < U. where a = y(a)]
= U - fa}, R" = R = {a}, A-‘" BV, v =y,

The following transformations are composites of basic

transformations:
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New€omgga,‘sz. -+ 2:

NewNode =+ Db; [n. b. the semig‘ol,qn ind,;.ca,tes com-
AddArc(a,s,b) position &f tran#formations, with
2R application in the order shown]
peleteCcomp(a,s): - FRREN .
if HasComp(a,s) - [thé composite transforma-
3 e ,  tion in the set hraces is
then {Comp(ais} + Bi  *ypyifed iff the node de-
Deletalfc(a s h) : ¢ a has a component
witﬁ Tﬁ ector denoted by 8]
Prune}. . s
‘MakeEmpty (a,8) + bs T [ﬁakes b déhote an empty

if HasComp(a,s) - < e ent of the node
then {compta.®)} - br ok d.nqtadym a}
Af HasElem(v)
hen [Elem(b). -+ ar:
| Deletqmclnﬁbmﬂ?};,; IR
'else [DeleteComps(b):
Prune} } |
else NewComp(a,s) - b.

We now have the 'mak:hine’fy ‘to describe thedi"ct:i‘.'on of the BL
interpreter. ‘The basic action is to FAcK a root node, which
will be some SOA, t‘hen to execute t:he next instruct:.on
(g:.ven by t;he ip—coq:onent of th; SOA) with reagpct to the
current 1oca1 structure (given by the ep-component of this
SOA):. Fxgure A.2-1 i1Tustratés the skeletal stiicture of a
sample SOA. In the procedure we will give to ‘d&Finé the

action of the interpreter, special names are usédl tb des-
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ignate nodes in the current SOA. These names appear as

labels for the nodes in fig. A.2-1,

Yoot nodl of
nxnnksdktxsb"”+

e ot re
‘“":5 ot ruc ‘e'd.s o **lp g shet . " o

- Fig. A.2-1. Structure of a SOA
dhrinq &nterpratitﬁdﬁf o ok i

Before giving a procedure which specifies the action of

the BL 1nterpreter, we define several auxillary transforma-

tions. Thege yse .the .special.names shoun%iﬂ fig A 2 l.“

ok 4
LY 4

PlckActiveRoot 2 Root-'

let a € R g that EB E U: (a, stat',B) € A & (5 1) E v;
\). = v[d./root], U' = U' R. = R' A.= A' V. = V- o

Suee <+ agxt: : . SE e w
v' = vin+l/pext], U' = U, R' =R, A' = A, V' =V,

where x = y(k).-

PR T
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GetNextInstr:
DeleteElem(inum,k) ;
AddElem(inum, next) .
Jump(i) -+ next: [defined for . € {0,1,2,...} < ELEM,
where ¢ = y(i)]
' = y[u/next], U' =U, R* =R, A' = A, V' =V,

Empty(a): [defined for o € U, where a = y(a)]
if HasElem(a) '

then false
else if %3¢ € SEL, B € U: (a,0,B) €A
then false

else true.

The action of the BL interpreter is specified by the repe-
titive application of the transformation given by the follow-

ing procedure:

PickA¢tiveRoot~+'root; /* pick ah‘activé root node */
COmp'(rocst,»"'ep"”)i'-; cls; VA aece‘éa-ﬁhef-’e-‘l.-s.~via ep */
comp (root, 'ip') = ip: |

comp(ip,'proc‘)la proced; /* accegd §f¢cedﬁfé structure */
COmp(ip,'inSt') -+ inum; /* nﬁmber 6f:cuf§ént instr. */

Elem(inum) -+ k:

Comp{proced,k) -« inst; /* fetch current instruction */
Succ + next; /* set fo¥ mext instruction */
ExecuteBLInstruction (inst); /* execute the instruction */

GetNextInstr. ~ /* reset ip for new instr. */
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Finally, we define the operation of all the BL instruc-

tions by giving the transformation ExecuteBLInstruction.

ExecuteBLInstruction (inst):

Comp (inst,0) - operation;

case operation of /* choose the action.that matchés the
operation code of the instruction */
'create’:

Comp(inst,l) -+ x; - /* éreate X */
DeleteComp(cls,x);
NewComp (cls,x) = a.
'clear’: ,
Comp(inst,1) -+ x; - /* glgar x */
MakeEmpty (cls,x) =+ a.
'delete’:
Comp(inst,lf - b &
if jHaSCOmp(inst,Z) 7 B o
then DeleteComp(cls,x) /*. delete x */

else {Comp(inst,2) -+ m; /* delete x,m */

if HasComp(cls,x)
then {Comp(cls,x) -+ a;
DeleteComp(a,m)} 1}.

‘const':

Comﬁ(inst,l) -+ v;

Comp(inst,2) -+ x; . .. /* const v,x */

MakeEmpty(cls,x) = a;

AddElem(a,v).
'add':

Comp(inst,l) - x;

Comp(inst,2) -+ y;:
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cOmp(inst 3) - z3 ' /* add x,y,z
COmp(clu,x) + a; Comp(cls,y) + b; S
Elem(a) < d; l!.’lem(b) - @3

MakeEmpty(cla,z‘)‘ -+ c;

AdaELem(c, y(d)+yle)).

/* other arithmetic instructions are similar

'link*:
Comp(inst,l) = x;
Comp(inst,2) - n; _
Comp{inst,3) -+ y: /% Iimk %,n,y
camp(clu;x) <+ a; Comp(cls,y) = by e
if HasElem(a)

then {Elem(a) -+ d; mlemlm(a,d)}

else DeleteComp(a,n); SRR
Ad@xtcfm n,db).

‘'select's

Comp(inst,1l) -+ x;
" Comp(inst,2) - n;

e B e T T NI N n Rt s i 0 7 N e D

“/

*/

*/‘

Comp (inst,3) - y; ‘ /* select x,n,y */

Comp(cls,x) + a;
if ~HasComp(a,n)
- then fif HasElem(a)
‘ then {Elem(a) -+ 4&;
- DeleteElem(a,d)};
NewComp(a,n) + b}
else Comp(a,n) -+ b.

‘apply’':

Comp(inst,l) - p;
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Comp(inst,2) -+ x; /* apply p,x */
Comp(cls,p) - proc; Comp(cls,x) -+ arg;
comp (proc, '$text') -+ t; &
NewNode - newsoa;
NewComp (newsoa, 'ep') - newcls;
AddArc (newcls, '$par',arg) ;
NewComp(newsba,'ip') < newips;
AddArc(newip, 'proc’,t):
NewComp (newip, 'inst') - newinum;’
AddElem(newinum, 1) ;
NewComp (newsoa, 'stat') -+ newstat; -
AddElem(newstat, 1) ;
AddArc (newsoa, 'ret',root);
MakeRoot (newsoa) ;
Comp (root, 'stat') -+ stat:;
' DeleteElem(stat,l); AddElem(stat,0). -
'‘return’:
Comp (root, 'ret') - oldsoa;
Comp (oldsoa, 'stat') - oldstat;
DeleteElem(oldstat,0); AddrRlem(oldstat,l);
RemoveRoot (root); Prune.
'‘move' ;
Comp(inst,1l) - £;
Comp(inst,2) =+ x; - o % move f,x */
comp (proced, f) -+ a; R
DeleteComp(cls,x); AddArc(cls,x,a).
'goto':
Comp(inst,l) =+ £: ' /* goto 4 */

Jump(g) - next.
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'elem?': ,
comp(inst,1) = .x; v : |
Comp(inst,2) =+ £4; ~ Lo/t alep? x.L | */
Comp(cls,x) = a; ' )
if —HasElem(a)

then Juﬁp(z) -+ next.
'empty?': '
Comp(inst,l) - x; _ S :
Comp (inst,2) =+ 4; /% aERbyR XL */
Comp{cls,x) -+ a; ' RN ’
if -Empty(a)
" then Jump(s) -+ next.

'nonempty?’':

Comp(inst,l) - x; v C L D e
Comp(inst,2) +4; = . /* 2oDemDEND X.L */
Comp{els,x) - a; RS
if Empty(a)

then Jump(f) -+ next.

‘eg?': e o
Comp(inst,l) = x; S
Comp (inst,2) -+ y; . | \
Comp (inst,3) -+ £; R /% egR X, ¥.d i/
Elem{x) + d; Elem(y) =+ e; ’

Af v(d) # v(e)
then Jump(4) + next.

"has?': o .,

Comp (imst,1) < x;

Comp(inst,2) -+ m;

P
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Comp(inst,3) - £; /* has? x,m, ¢

£

*/

if —HasComp(x,m) = oo el

then Jump(¢) - next.
'same?’':
Comp(inst,l) -+ x; T L
Comp(iqst,Z) +yi ' ?w. L N
if v(x) # v(y)
 then Jump(f) + next. - . o

/* other comparlson 1nst§uctlons are szmllar

w3 .
252 SRR I T TS 2 5 H

‘gete’:

Comp(inst,l) - x:

_\.*/

Comp(in@t,2) =+ i3 .- .o oia s ymn oo

Comp(inst,3) -+ ¢; : /* gete Xk, 4
- Comp(cls,x) + a; MakeEmpty(cls i) -+ b- |
if HasUnmarkedComps(a) ) o
.ﬁhen,fceﬁuﬁm‘fﬁédcunpfﬁyngz%gp' i S T O SR
Mark(a,s) :
AddElem(b s)} .
- alse [UnmarkCompsOfia): = .o = . Tzl
cJump(g) 4 next}. . .

¥ n a3 I RO )
s Q.L}:? B I

5

endcase

This completes the definition of the transformation

ExecuteBLInstruction. The getc instruction, however,

requires some special additional mechanisms, thch we now

show.
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HasU: rkedComps (a) : [defined providad,a € U, where.a = v(é)]
if 90 € SEL: (a,0,B) € A for sope . €.U
- and o £ MARKSET (a)

then true else false.

GetUnmarkedcComp(a) -+ 8: [defined provided a € U and
v o HasUnmarkedevmpn(a) ='trie, where

= y(a)] ,
let o € SEL be as in the HasUnmarkedCowps predicate; .

v' = vlo/s].

Markga,s)ék[definedkprOVided a €U éhd'a € SEL, where
a=y(a), o = v(s)] ,

MARKSET (0) ¢ MARKSET(a) U {o}.

UnmarkCompsOf(a) : [defined provided o € U, where o = via)]
MARKSET(&)} « ¢. R

We observe that each node o € U has a set MARKSET(a) asso-

ciated with it. All such marksetﬂ are Lngtlally ampty.

‘There is one final remark to be mgdq.,‘Aithough our
definitions of the BL instructions contain many composite
transformations, the interpreter i# to regard the effect of

a BL instruction as an indivisible unit.




