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FUNCTIONAL DOMAINS OF APPLICATIVE LANGUAGES

Abstract

The expressive power of a particular applicative language
may be characterized by the set of abstract functions di-
rectly representable in that language. The common FUNARG
and applicative order problems are scrutinized in this

way, and the effects of these weaknesses are related to the
inexpressibility of classes of functions.

Certain computable functions which are jnexpressible in the
lambda calculus are identified, and it is established that
the interpretation of these functions requires a mechanism
fundamentally equivalent to multiprocessing. The EITHER
construct is proposed as an extension to the lambda calculus,
and several theories including this mechanism are presented
and proved consistent (in the sense that they introduce no
new equivalences into the lambda calculus).

A syntactic analog to the Scott construction, *_conversion,

is developed in conjunction with these theories; this adjunct
allows reduction of expressions having no normal forms in

the usual lambda calculus to finite normal form approximations
of the expressions. This leads naturally to a technique for
proving the extensional equivalence of lambda calculus

expressions which are not interconvertible. :

*This report reproduces a thesis of the same title submitted
to the Department of Electrical Engineering, Massachusetts
Institute of Technology, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, June 1974.
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Chapter 1:
Introduction

1.1: Programming ;anguageVSemantics

The semantics of a programming 1anguage may be viewed as a theory which
accounts for the behavior of programs written in tbat langqgge. An ..
interpreter for a language L is a model for the semantics Jof L. and a language
whose semantics is incamplete (in the sense of an incomplete theory) may have
many "correct" interpreters which behave differently Just as an incopplehe
theory may have disparate models. We find that the usual more specific
definitions of semantics (e.g. "the relation between expressions and the
objects which they denote") make assumptions about tne structure of a universe
of "meanings" which are difficult to Justify in the:éen:;al case, where side
effects, assignment, and. tranafers of control:must’ decsésdunted for
semantically., Such. considerations. motivate the restefetion of the present

work to applicative languages. , Coe

Serious concern for fbrual semantics is not usually an important consideration
in the architecture of practieal languages.‘ Typieally a language is designed

largely by pragmatic considerations and the fornal ststenent of its semantics
is either abandohed entirely ‘or postponed‘until the uore inportant

implementation issues are sorted out., The subsequent seuantic fbrualization
of the lahguage inevitably becomés a uejor task, and the conplexity, volume,
and inscrutability of the result may constrain’ its‘usefniness.> A classic
example of such an undertaking is the description of PL/1 in tne Vienna
Definition Language[24], ’ ‘

An alternative technique of language design, exenpliried to some extent in
LISP[26] and its recent derivatives, involves the specitication of the
pragmatics of a 1anguage after decisions on some perticular concise semantics
have been made. Unfortunately languages so desi;ned tend to have serious

defects from a practical point of view and ar'e abandoned or complicated by the
addition of ad hoc mechanisms to make them more useful.
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The designer of a language is thus confronted with a choice between concise
semantics and practical usability, and he Justifiably tends to opt for the
latter alternative. The extent to which semantic considerations may be
reconciled with practical issues remains an important open question, and the
development of practical languages with concise, elegant semantics is the long
term goal of much of Computer Science research. The p'r‘obleu] is being attacked
from two discernible directions: (i) semantic formalisms which deal with the
mechanisms of extant practical languages, such as the analysis of
uninterpreted schematal[9,8,13,17,25]; and (11) the adaptation of existing
formalisms to very simple mdel 1anguages such as the lambda ‘
calculus[2,3,5,15,22). The work reported here falls natur'ally into the

second category.

1.2: Applicative Languages

Familiar concepta of mathematics provide an informal semantics for many
aspects of camputer languages. Manuals for most programming languages relate
various program constructs to such notions as real mmbers, arithmetic, and
funct ions, with which the reader is presumed to be acquai.nted. Often
terminology and notation are bor-rowed from mathematics, implying some informal
relation between, say, a FORTRAN "function" and the gpmlgpn mathematical notion
of function. This relation is only abproa‘tima‘te, _stinc‘_,e,‘ for example no
mathematical analog has been established for the FORTRAN function which prints
its argument on the t.eietype. In order to formalize the relationship between

program constructs and mathematical notions, then, we focus our attention on
the highly restricted class of applicative languages.

The semantic bases of applicative languages are the theories of mathematical
functions, and the constructs of these languages are restricted to simple

analogs of the related mathematical notions. an.h applicative language
provides a syntactice f‘omalism for the representation of t‘unctions and their
application to arguments, and the semantics of an applicgtivg language is in
general a rule for the association of expressions, _yc,ons‘t'mjc_,tied according to
this formalism, with values from an abstract semantic dbmain containing

funct ions and constants. Formalizing a consistent semantics for an
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applicative language appears to be an easy first step in pursuing the general
problem of programming language semantics, since set theory provides
satisfactory semantic domains, all that remains 1is the seemingly simple

association of expressions with set theoretic functions and constants.

Yet even .this simple problem is plagued with complications, -amd it is only in
recent years that progress has been made in this area  largely due to
techniques developed by Dana Scott[5,6,22]. In fact, "the’ usual set theoretic
characterization of functions is not so well adapted to tue semantics of
applicative languages as one might suspect' type restrictions, placed on set
theoretic functions in order to avoid Russel s Parad:)f{, are dif‘ficult to
reconcile with the natural proolivity ot‘ applicative langu(ages t‘or the
self-application of functions. The work of Scott justifies our optimism that
such problems: are tractable, and that the semantics of:-spplicative langhages
may be based on the mathematics of functions. = The extehsien of the reBulting
semantics to non-applicative mechanisms suohr%as assi§nment and side eff‘ects
however, remains an area of‘ grave uncertainty, and it seems likely that ‘
theories of t‘mctions will ultimately prove to‘be% inadequate bases f‘or the
semantics of programming languages in general. In the meantime, however,
applicative .languages and their functional sesantic-domains.are probably the
closest we have .came to a successful prograsming languags semantics, and we
feel that there is much insight to be gained from further exploration of this

area.

The semantics of an.applicative language L, then, may ‘bevievwed as a mapping
between the set of walid expressions in:ch {the demakn -df diseourse of k) and-
and a semantic domain of abstract functions and ocfistants.. & ‘consequence of
the Turing Universality of L is that this mepping must be many to one; each -
abstract semantic element has, in general, infinitely many representations in
the language L. The semantic mapping thus leads naturally to a notion of

semantic equivalence between expressions in L, partitféming the domain of

discourse of L into equivalence classes each of‘ uhich corresponds to a single

abstract semantic element
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1.3: The Thesis: Statement of the Problem

The problem which this thesis addresses is the charjacter'iziation of the

expressive power of an applicative language in terms of the structure qf‘ its
abstract semantic domain., This process generally involves relating spécif‘ic
applicative language features to the expressibility of particular classes of
functions, e.g. the solution of the FUNARG problem to the expressibility of
funct ions mapping integers onto an infinite .range :of semantically distinct

funct ions, :

This work focuses on a very f‘ew specific language mechanisms, with particular
attention given to an applicative analog of multiprocessing. Partial answers

are provided to such questions as:

1) Are there functions whose computability depends fundamentally on a notion
analogous to multiprocessing? :

2) What applicative mec:hanisms are necessary for the expression of sueh
functions, amd is the impact of these mechanisns on the structure of' the

semantic doma 1n?

3) What is such relationship between such multiprocessing constructs and.
other issues: of applicative language evaluation, such as evaluation

order?

The work presented here might be characterized as a search for an applicative

langusge L which is.funotiowally ¢omplete in:the.sense¢ that every computable
function definable on the semantic domain of L is expresisible in-L -+ our
reluctance.to cite this as the prineipal goal of ‘the thesis is probably due to

our fallure to find such a language.

t.4: Outline of the Thesis
The organization of the remaining chapters is as fidiiows: ;

Chapter 2 develops the basic framework through the presentation of three
interpreters for applicative languages, designated S (stack environment),

T (tree environment), and N (normal order). Each interpreter exemplifies
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a typical language limitation and each is--used to relate a specific
language characteristic to the expressibility of a particular class of

functions.

Chapter 3 demonstrates a particular computable. function which is
inexpressible both in' N and in the lambda calculus, and relates this
inexpressibility to the semantic requirement that an expression-in these
languages have at most a single value. Two altérnative language
extensions. are discussed, each of which solves this:specific
expressibility problem. The solutions involve, respectively, primitives
for coding the representation of functions as integers and a
multiprocessing primitive called EITHER. Each of these extensions
requires modification of the structure of the semantic domain with the
use of coding leading to drastic and undesirable consequences. For this
and related reasons, EITHER is chosen.é To account for the semantics of
EITHER, the semantic domain of N is expanded into a power set and each
expression X is assoclated semantically with-an enumerable set containing
the admissible values of X.

The formalization of EITHER-augmented languages may procede in several ways,
differing in the restrictions placed on evaluation order. Chapters M 5, b,
and 7 deal with certain formal theories, based on the 1ambda calculus, for the
reduction of expressions involving the -EI’HER construet:

Chapter U4 provides basic definitions and presents the Either-R Theory, in
which lambda conversion is allowed only in expressions Hhose arguments
are in normal form. This restriction is motivated by the intuitive
desire to maintain the distributivity of functions over terms of an
EITHER clause, but it limits the power of languages based on this theory.

Chapter 5 develops a theory of #-conversion, designed to mitigate the
limitations imposed by the restricted lambda conversion of the Either-R
Theory.> The element ®is introduced as a canonical representation of
every nonterminating computation, ard a syntactic mechanism is provided
-for the reduction of expressions to approximations which are in normal
form. The use of *-conversion provides techniques for proving certain

relationships in the conventional lambda calculus. UThis chapter presents
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results which are of interest independently of their relation to the
development of the Either theories.

Chapter 6 presents the Either-R-#* theory, combining the EITHER mechanism
with #*-conversion, and establishes its consistency. While this system
retains the restriction on lambda conversion, it has the power of the

lambda calculus augmented by the EITHER primitive. Thus, languages based
on Either-R-# solve the specific expressibility problem raised in Chapter
3. Interpreters and semantics for such'languages~are‘dfscussed

Chapter 7 presents the Either-K theory, which combines the EITHER construct
with unrestricted lambda conversion. Significant semant ic differences
between the Either-R end Either-K theories are noted and it is
informally observed that the removal of the restriction on lambda
conversion leads to the expressibility of certain functions which are
inexpressible in the Either-R-* langusges.

The last chapter summarizes the results of this work and proposes avenues for

future research.

1.5: Functional Domains

An underlying assumption of this research is that the: fundamental semantic
intent of applicative languages is to provide computational models of
mathematical functions. As a consequence of this assumption, we are inclined
to view functions in an applicative language asyapproximations or models of
abstract mathematical fmcticns, and to treat sny disparity“ hetween the
behavior of the computational model and the corresponding_mathematical
function as a "bug" or idiosyncrasy in the language. |

The thrust of this research is aimed at the limitations of particular
applicative languages as models of systems of mathematical functions. We
begin by specifying, in the next section, criteria uhich must be obeyed by
applicative functions to be intuitively satisfactory as models of mathematical
functions, and then distinguish for each applicative languape L that subset of
the domain of L containing only such intuitively satisfying functions. We

call such a subdomain of L a functional domain of L.
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1.5.1: Intuitive Criteria for Funct ions

Rostricting. our attention for the moment to unary (single argument) functions,

we note that

1) A function L_is a gapping from a domain D “to a range Rf The
set-theoretic model of £ is a set of or'der'ed pairs, {...(D Ri>"'}’ such

that _Q[D ] =R, if end anly if <D1,Ri> is an element of f.

2) A function f may be partial over domin D i. e., ther'e may be elements D
in D such that’ L[D ] is undet‘ined' this corresponds to the practical
situation of a nonterminating computation or a ccmput.ation which results
in an error condition. We shall refer to such a computation as

divergent.

3) If £ and g provide the same mapping, théri they are the sa_me function.

4) g is a subset of £ (in the set-theoretic sense) if and only if for every
Di in the domain of g, g[D ]-R implies f_[D ]=R -

Given a language L and a function £, a printipal intuitive requirement is the
distinction between the funation f and the various algorithms (or expressions
in L) which may be used to compute f. A major complication in the semantics
of applicative languages arises from this many-to-one correspondance between
algorithms and functions, particularly in light of the well known
undecidability of equivalences between algor'ithms.

1.5.2: Functional Domain: Definition

The intuitive considerations of the previous:seetion motivate the f‘ollouing
definition: o0 '

Defn 1.1: A functiopal domain F is a set containing the set N of natural
numbers and computable t‘unci:j.ona,1 along with an equivalence relation ~

such that:

! Unless specif‘icall¥ stated, we shall use the term f\mg;_m with no implied
type restrictions. hus mnctions include functionals o arbitrary order,

gonsistent with the typeless character of the applicative languages considered
ere
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1) if x is in N or y is in N, then x“y if and only if x=y.

2) if neither x nor y is in N, then x"y if and only if for every z in
F, x[{z]1"y[z] or both diverge together.

3) if x"y, then for every z in F, zix]~z[y] or both diverge together.

Clause (1) simply asserts that different numbers, eg 2 and 3, are semantically
di fferent objects. Clause (2) asserts that any object in F that is not a

. number is a function, and moreover that functions &e.seﬁnﬁically equivalent
if and only if they perf‘ém equivalent computa,t;,ionaﬁf‘or:" every set of
arguments. Clause (3) insists that the application of a function to
semantically equivalent aiﬂguments yield séﬁlantically equivélent values.

An expression z is said to be m_qw over the q,omain F if, for every
choice of x and y in F, x"y implies that z[x]~zly] or both computations
diverge together. Thus (3) is the requirement that every function in a
functional domain F be functional over F. g

We note that the equivalence relation = is not, in general, computable.
Furthermore, there may be elements x and y in F such that x"y is not defined,
that 18, such that neither X~y nor “(x"y) is derivadle from the above
definition. ‘

This definition is rather more specific than necessary. The choice of natural
numbers as a basis of semantically distinet constants, rather than, say,
character strings or floating point numbers, is arbitrary. In dealing with

the lambda calculus we could make the apparently stronger requirement that
pormal form expressions be semantically distinct, rather than just the
particular normal form expressicns which are numeric constants; however it
happens that the two alternatives are entirely equivalent in the context of
our model languages, and our present definition is the less dependent on
particular syntactic considerations.
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Chapter 2: N
Interpreter Structure and Expressive Poﬁer

In this chapter several illustrative interpreters for applicative languages
are presented, and compromises in their impleme'ntation abé pelated to the
inexpressibility of certain f‘unctions. The ‘model interpreters are taken from
Dertouzos[3] where they are discussed and motivated in greater detail.

2.1: Syntax of Models

The essential camponents of an applicative language syntax are conventions for
the representation and application of functions. * Typical applicative
languages provide for the representation of f‘unctions by either of both of the
following means:

1) A set of reserved symbols designating mmn functions whose semantics
are basic to the language;

2) A convention for mng_u_q_nn ﬁb-ﬁmm or the definition of new

functions by means of expressions containing variables.

The pure lambda calculus of Church[1] is illustrative of languages using only
the abstraction mechanism; the combinatory calculus of Curry[12] éxemplifies
the use of primitives without abstraction. Curry[12] has demonstrated the
equivalence of these mechanisms, with minor qualit‘ications, and the choice
between them for our purposes is largely a matter of .conveniende; we provide
here syntactic constructs for both. i ’ '

Beyond these constraints, the syntactic details ot‘ the languages discussed
here are not important A LISP-like syntax. has been chosen for the
development of the models and to provide a det‘inite basis t‘or examples and
illustrations, although the results and’ examrﬂés"h’y be translated to conform
to other syntactic conventions which are consistent with these constraints.
Syntactic characteristics of our mdel languages include:

1) A finite alphabet including the alpbanumeric characters and the special

characters "(" and ")"; § o
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2) A countably infinite set of iden;;f;grg, each a finite string of
alphanumeric characters of which the first is alphabetic;

3) A set of numeric constants, each represented in the language by a finite
string of digits. "

The elements of the model applicative languagesiarebphg applicative
expressions (AE’s) whose syntax is given by:

AE> {= <identifier> | <number> | <combination> ! <lambda
expression>

<identifier> iz <letter> | <identifier><digitd> !<identifier)
{letter> ‘

<combination> = ( <AE list> )

<AE list>

<AE> | <AE> <space> <AE list>

<lambda expression> := ( LAMBDA (<bvl>) <AB>)

<null> | <identifier> <space> <bvl>

<bvl> =
<number> i= <digit> | (digit}/fnguber)
<letter> i=A B} ...} 2

<digit> ;210210 .10

We assume of these model languages that data is .eitier numeric or funet ional,
that is, that the value computed for any applicative expression must be either
a natural number or a function.' An expression X is atomic if X is an
identifier or a number; in addition the foIiBwinQ»gjh;actic fbrms have special
meaning in our mo de 1 langudées: ' o i

1) The syntactic form of a_ lambda expression is

‘(LAMBDA(a1 a, ... an) b)

1 Our decision to ignore for the present other common data types (floating
point numbers, arrays, character strings, lists) is justified by their
codabilit% as numbers, s0 that our results concerning processing of numeric
data may be extended to the processing of these other data as well.
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where LAMBDA is a reserved identifier in the language, the a, are

identifiers on the bound variable list of the lambda expressions, and the
expression b-is the body of the lambda expression.

The syntactic form of the application of the procedure (function) f to

arguments x. ... xn is'

1

(f Xy oeen xn)

Here f is presumed to be the representation bf a funcﬁional datum, and

i

the x, are representations of arbitrary data which aré supplied to the
function f as arguments. '

There is in each language a small finite set of reserved identifiers used to
denote primitive functions. Our initial models will include the following
primitive function identifiers:

1)

2)

3)

The logic values T and F, primitive functions defined such that the value
of the application

(T ab)

is the value of the expression g, regardless of whether the value of the
expression b is defined. _Similan;y,_ghgxyalugiof ;

(F ab)
is the value of the expression b whether or not g_haa a value,

The function PLUS of 2 arguments, defimed such that the value of the

expression
(PLUS a b)

is the sum of the values of the expressions g and b. The value of the
application of PLUS is undéfined if either of the values of g or b is

nonnumeric.

The function GREATER of 2 arguments, defined such that the value of the

expression

(GREATER a b)




18- 2.1

is the primitive function T if a has a higher numeric value than the
expression b, and F if the value of a is less than or equal to the value

of b.

We shall often refer to an identifier which is not a primitive function symbol

as a yarjable. An occurrence of the variéﬁiehx_in the expression X will be
termed a free occurrence if one of the following applies:

1) X is identically the variable y; or

2) X is of the form (A, e An) and the occurrence of y is free in one of

the A or

i;
3) X is of the form (LANBDA(a1 e aJ)M), y does not occur in the bound

variable list (a1 ... a,), and the occurrence of y is free in M.

J
An occurrence of the variable y which is not free is bound.

2.2: Curried Functions

The syntactic provision made here for functions of multiple arguments requires
certain further elaboration. We may reasonably demahd,'for exatiple, the
ability to express the function MPLUS defined such that the value of (MPLUS m)
is the m-ary function which returns the sum of its m arguments. Such
functions are, in general, unrepresentable unless some primitive mechanism is
provided within the language for the abstraction of multiple argument
functions. We might consider the abstractiqn_primitive ALPHA, defined such

that the value (ALPHA F G m) is the m-ary lambda expression

(LAMBDA (X Xm)(G Xm (F X

foes ))

ERY xm_1
where F and G are presumed to represent (m-1)-ary .and binary functions,
respectively. We might then define MPLUS so that (MPLUS 2) returns PLUS, and
(MPLUS n) returns (ALPHA (MPLUS n-1) PLUS n) fof n>2. | |

Such a primitive is, however, unnecessary in most languages. The technique of

Curried t‘unctions1 may be used to couch multiple-argument functions in terms

1
named in honor of H.B. Curry who developed this technique; see [12]
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of unary functions, whence the application of F to arguments A A2 ...An

becomes
| ( ... ((F A Azz cee AL)
and the n-ary lambda expression (L.MHBDA(-A,r Az...AH)H} becomes

(LAMBDA(A1)
(LAMBDA(AZ)

(LAMBDA(An)M) cee ))

The convention of Curried fupctions simplifigs . the presentation of proofs ‘and
interpreters, as only single argument ﬂ@not#onafnesd;hgﬂgonsiderad; we
therefore hastily adopt it for our present purposes. The conventional .
multiple argument syntax is slightly less complicated, however, and tends to
greater clarity than the use of Curried functiona. We qonsequently allow
ourselves the informality of switching freely betueen the, two conventions at
our convenience. We may then consider 1nstgncea of. npg multiple argument
syntax as an abbreviation for the corresponding Curried ayntax, which we take

as basie.

An exception must be made in the first model language presented, however, as
the FUNARG problem does not interact gracefully witpicurried functions; hence
in this case the assumption of single argument functions is not made.

2.3: The FUNARG Problem

We are now in a position to give an example of a. furctionally incomplete
language, which we call S. S is an abstraction of the applicative subset of
LISP and similar stack-oriented languages; it serves to introduce the notion
of environment, and demonstrates that certain minimal structural constraints
on enviromment handling mechanisms are necessary for the expressibility of a
particular class of functions.
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2.3.1: The S model

An environment is a linear sequence of ordered pairs (or bindings) (x,v),
where x is an identifier and v is a value. Environments are thus a mechanism
for the use of 1dentifier5 as variables, serving to record the values
assoclated with each variable. We represent the environment which binds the

variable X1 to the value VI, X, to V2, and so on, as

2
(X, V) (,,0,) ol )

The enviromment structure of the interpreter for S may be viewed as a stack,
bindings being pushed onto the environment from the left at the start of the
application of a lambda expression, and subséquently béing"popped from the
environment at the completion of that application. The S interpreter finds
the current value for a variable X by looking, in turn, at each binding
starting with the leftmost; when a binding whose firat element is X is
encountered, the associated value (the second element of the binding) is taken
as the value of X. We may deéscribe this operation by defining a primitive
funct ion lookup of two arguments, correspohdfrg_fesbectively to the identifier
to be evaluated and the environment in which its value is tohbe found:

-lookup[x;((X1,V1)(X2,V2)...(Xn,Vn))]=
if x=X  then V_; :
else 100kup[x;((X2,V2)...(Xn,Vn))]

We now describe the interpreter for S as a function defined recursively as

follows:

S[x;el =
if x is a number, then x;

if x is a member of {T,F,GREATER,PLUS} then x;
if x is an identifier then lookup(x,el;

if x 1s a lambda expression then x;

if x is of the form (T y z) then S[y;e];

if x is of the form (F y z) then S[z;e];

if x is of the form (GREATER y z) then:

if Sly;el>S[z;e] then T;

else F;
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if x is of the form (PLUS y z) then S[y;el+S[z;el;

if x is of the form ((LAMBDA(31...sn) b) y1...yn,) where the
Sy are identifiers,, then
S[b; (s S[y1,e])...(s S[y ,e])e].

if x is of the form (y z, z2 .« z,) where y is not a lambda
expression, then S((S(y;e] z, ... z )jel;

else undeflined

Thus S{x;e] camputes the value of thé éitprésbion X in the enViroﬁment €.
S[x;8] (where @ is the empty enviromment) computes ‘the value of x on an-.S
evaluator in its initial "bare" state; ~ we may refer to this simpley as the S
value of X- '

2.3.2: Arithmetic Completeness of S

We refer to a hr)guage as mmmm g_g.p,lm if every canputable first
om:!er1 rmction is r@resentable as a procedure of that hnguage. We show

that S 1s arittnetically complete by ahowing ‘that for every ‘first order
partial recursive (hence canputable5 f‘motion tﬁere 13 a corresponding
function in S. The constructions of this section are adaptations 6f those
appearing in Dertouzos[3] and are included hepe: primanily for sake-of
1llustration; while each subsequent -sodel language is also arithmetically
complete, similar copstructions applywi;n\each case and will not be repeated.

As a prgliminlry step, we consider the S function given by:

(LAMBDA(X ¥) o
((LAMBDA(X Y D)(D X Y)) X ¥
(LAMBDA(X Y)((GREATER X Y)
(PLUS 1 (D-X {RLUS: 1 1)) . -
0)) )

which camputes the "recursive difference" function

L . . . o

1 ‘ R
Following the terminolo of. logic &:_”. ettm contains o ly
numbers igsit.s range and g’ : on&?' 3 may contalin {( ?n
addition to numbers) t'mctions ot‘ order 1ess an J.




e s A

22~ 2.3.2

Dix;y]

"

if x>y then x-y else 0;
by the algorithm

Dix;y]

if x>y then 1+DIx;y+1];
else 0;

Note that the extra two layers. of LAMBDA binding serve only to bind the free
occurrence of the identifier D within its owm definition, and thus to make the
recursive function operate properly on S.1

‘We may déf‘ine-» the predecesspr funchion
P'[x] = 1f x<1 then 0 else x-1;
in S by the expression: |
(LAMBDA(X)(D X 1))

where D is the recursive difference function defined above.

Now we shall demonstrate that every parthl recuraive mnction of‘ first order
is repr'eaentable as a t‘unction 1n S. In the following, lower ease 1etters
repr'esent partial recursgve functiona while upper case letters denote t.heir

20 @

correspondina S f'met 1ons :

1) For every pair of ﬁaﬁril mmbers n anéd m, . the margument mm
function of value n is expressud in S8z

(I.Jmmm(x‘1 .o xm) n)

2) For every pair of numbers n and m, the m-;ry mm_;m function which
returns the value of its nth argumont is expre#skd ia S by:

(LAHBDA(X1 ..,l‘) Xn)
3) The syccessor function is éxpressed in:8: by:

(LAMBDA (X) (PLUS 1 X))

! This is one of several "tricks" which may be used to rform recursion on S.

The necessity of such tricks stems from the express Ve & nade uacy of of S the

’3?53&9§2§%L " ﬁgggft 2 La rnzzJ fbr* S ren al di 1
. ‘agener scuss on
of * 'sion- én S‘f&i Dﬂ’tw ’ﬂjx tl ge , :
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y) (composition) For every choice of numbers n and m, m-ary partial

5)

6)

recursive functions gy ... &,» and n-ary function f, the m-ary functior h
defined by o

h[x1;x2;...;xm] = f[g1[x1...xm], “ee ,gh[x1...xm]]
is expressed in S as

(LAMBDA(X, ... X )(F
G, X, ... X)) ‘(
SANCAE SR S

ﬁhere F, G1 cee Gn are the S expressions corresponding to f and 8q.--8
respect ively.

n’

(erimitive recursion) If the n-ary partial recursive function g and the
(n+2)-ary primitive recursive function f are expressible in S as Gand F,
respectively, then the (n+1)-ary function h defined by:

h[x1,...xn,0] = g[x1,...xn]
h[x1,...,xn,y+1] = f[x1,...,xn,y,h(x1,...,xn;y]]

may be expressed in S by

(,LAMBDA(X1 cee X Y)
(LAMEDACX, ... X YHY® X, .0X 1) X, X ¥
(LAMBDA(X1 cee Xn Y) ((GREATER Yo)
(F X1 cee X (P Y) (H X; ... Xn (P Y)))
(G X, ... X)) ))

where P is the representation of the predecessor function‘éiven earlier,

(mu=recursion) If the (n+1)-ary total recursive function h is expressible
in 5 by H, then the partial recursive function g defined by

g[x1;...;xn] = the least y for whieh
h[x1;...xn;y] =0

is represented in S by
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(LAMBDA(X, ... X_)
((LAMBDA(R) (R 0))
(LAMBDA(Y) ((GREATER (H Xy «..X Y) 0)
(R (PLUS 1Y))
Y)) ))

Finally, we note that the class of recursive functions is by definition
exactly that class of functions obtainable through finitely many applications
of the above six rules; hence the S repreeentatiéns given in the rules
constitute a technique for constructing an S expression which represents any

function which can be shown to be partial recursive.

2.3.3: Functional Incompleteness of S

Recall that the functional completeness of a language L requires that every
computable function defined on the semantic domain of L be expressible in L.
Since the natural numbers and (by the preceding section) first order functions
are included in the semantic domain of S, every second order function is
definable on the domain of S. The functional ipcoqp;etenesa of S may then be
demonstrated by showing that a simple second ord’e‘rwf':u'lctioh ’is not expressible
as an S function. We begin by observing that agme higher order functions are

expressible in S, e.g. the function g (the "twice" funétion) given by
glf;x] = rlrlx]]

is expressible in S as
(LAMBDA(F X)(F (F X))) \

hence it cannot be argued that only first order functions are expressible in
S. The weakness in S which we will demonstrate.dinvoives the inexpressibility
of certain second orqer functions, notably fupctioms which contain free
variables and which appeai as arguments or values (i.e., bodies) of lambda
expressions: the so called FUNARG pr,oblcm.“‘ K

R

! General awareness of the FUNARG gr'oblen (as well 'as ‘"if.sl n ) arose f‘r<]'>m
S:ﬁ%a%gfﬁence with LISP. For discussion see Haizenbaum[g?ﬁ, Moses[10] or




2.3.3 -25-

Consider the unary function f, whose domain contains only integers and whose

range contains only first order functions, defined by.

f{x] = that function g defined by
Bly) = xey

The funetion f is computable; it may in t‘aet be expr'essed 1n the lambda
calculus by

(LAMBDA (X) (LAMBDA (Y) (PLUS x‘r)))'

To show that { is mw in the Language ot‘ s the f‘ollowing
definition is useful:

Defn 2.1: We say that the expression a3 appears as a ;nh_gxp_:gum o;‘ the
expression b if any of the Pollowing 'ste trie: '

1) The expressions 4 and b are identical;

2) b is of the form e -
(b, b2 see By)

where a appears as a subexpress.ion of one or more of the bi
3) b is of the form

(LAMBDA(X, .,.x )B)
where g appears as a subexpresaion ot‘ B

We say informally that b contains a if g_ appears as a subexpression of b.

The basis of the inexprésaibilit.y of' f_ in S is esﬁahli.,sh;c& by t«hc proof of

Lemma 2.2: Let A be any applicative a:pre;aion and leh B bs a lambda
expression appearing ncither as 3 sn}bexprusiorg ef -A-nor in the
enviroment e. Then B does not’ appear as a. mxpresaion of S[Aje].

proof is by induction on the recursion depth of‘ Sfl;éj‘i.:

Dbasls For the following syntactic classes ‘of A, the computation of S[A;e]

involves no recursion:

Case 1: A is a number, a Brimitive function identifier, or a lambda
expression. Then S[A;elzA, and the lemma is trivially satisfied as
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B is not a subexpression of A.

Case 2: A is an identifier other than a primitive function symbol. Then
S[A;e] is lookup[A;e] which cannot contain B since by assumption the

environment e does not contain B.

induction: The remaining cases of the syntax of A follow; for these we
assume that the Lemma holds for recursive calls to S.

Case 3: A is an application of GREATER or PLUS; then the value of S[A;e]
is a mumber or logic value and does not contain B.

Case 4: A is the application of a logic value T or F to arguments A1 and
A2. Neither A1 nor A2 can contain B since A does not contain B;
hence the inductive hypothesis applies tg either of the computations
S[A,;e] and S[Az;e] and B cannot appear in S{Aje] which is one of
these values.

Case 5: A is the application of a lambda expression (LAMBDA(X1...Xn)M) to
the arguments A1”'An' By the inductive hypothesis,ﬂB does not
appear in any of the values S[Al;e]...S[An;e], hence the new
environment e'sﬁxl,S[A1;e])...(Xn,§[An;e])e does not contain B, As
a subexpression of A, M cannot céntain B; thus the inductive
hypothesis applies to the value S[H}e']’returned és éhe vélue of
S[Asel.

Case 6: A is the application of Y to the arguments A1"'An’ where Y is
"neither a lambda expression nor a primitive function symbol. Y is a
subexpression of A and by assumption does not contain B as a
subexpression. Then the inductive hypothest'apblieQ to the
computation of S[Y;el=Y", and Y° does not éoﬁfaih B; a second
application of the induc¢tive hypothesis reveals that B cannot>appear

as a subexpression of S[(Y’ 51...An);e]g§[a;e].

These cases are exhaustive, completing the proof.

We can now characterize a major weakness of the language S by
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Thm 2.3: Every function expressible in S whose domain contains only numbers

may have at most finitely many functions in its range.

Proof: Functional values in S must be either primitive function identifiers
or lambda expressions. As there are finitely many primitive functions,
we need only show that each function of numbers in S 'has finitely many
lambda expressions in its range. Implieit in this argument is the fact
that the number of functions expresséd by a set of lambda expressions is
no greater than the number of lambda expressions in the set. Each lambda
expression which contains no nontrivial occurrénées of free variables
represents (though not necessarily uniquely) a single function; lambda
expressions with nontrivial occurrences of ‘free variables (i.e., which
campute di fferent functions in differing contexts) do not correspond
semantically to functions.

By lemun 2.2, a function of integers can have lambda expressions in its
range only if they appear as subexpressions ot‘ the t‘unct.ion, since for
any integer n and expression f the expression (f_ n) can contain the
lambda expreasion £ as a subexpression only if g is a ;ubexpression of f.
As the fmction must be represented by a f'inite expression in the
language S, it may contain only f‘initely many iiﬁbde expressions as
subexpressions and hence has finitely many lambda expressions in its
range. |

Clearly, the function £ defined at the beginning of this section is a f‘unction
of integers having infinitely many funoctions in ite-#ange; we conclude that
is not expressible in 8. . The problem»may be characterized as inadeguate
handling by S of lambda expressions containing free variadbles, It is apparent
that free variables are evaluated in the environmernt in which a funection is
applied, rather than the environment in which it:is evaluated. Thus lambda
expressions with free variables have. the property that the computation which
they perform depends on values in the environment of their caller;""th;s
dependency constitutes an implicit input and justifies our exclusion of such
lambda expressions from the class of functions. Yet proper S functions may
include such lambda expressions as subexpressions; ’ﬁ:,l_i:t_gness the S’,f‘unctio'n

R
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(LAMBDA (X) ( (LAMBDA(Y) (PLUS X Y)) 3))

=11ch contains no free variables and hence no"implicit inputs. The variable

however, appears free in the lambda expression in its body; this innermost
lzmbda expression is not a»function. The question of the contribution of free
vairiables to the functional richness of S naturally arises at this point: Are
vanere functions which are expressible in S only through :the use of free
variables? Our suspicions lead to the conjecture that évery .function f
zipressible in S may be represented by an expression F in which no lambda
<xpression appearing as a subexpression contains free occurrences of
variables. This conjecture does not completely deny -the usefulness of free
variables on the S machine. . Indeed,.lambdavexpmes@iona°with free variables
are moderately well behaved when passed downward, i.e., as arguments to
Tunctions; under these circumstances, the principal danger is due to possible
conflicts with variables bound by the functions to whicp the 1ambda»
¢Xxpressions are paésgd; They hay, however,ige conéi¢e;éd to be "limited
“unctions" with the qualification that they be applied within the scope of the
‘ree variables in their originmal envirbnﬁ;ﬁﬁlahﬁ>that fhey4ﬁay noﬁ be passed
tc functions whose bound variable list 1néiﬁde§?§ny of the fbée Qériables.
Luch qualifications’ééiiousiy'1mpair the‘Semantic clarity of the language
imposing them. ' ’ | - o

2.4: Evaluation Order

The functional incompletepess of S was shown to be related to the specific way '
tn which S associates values with variables in an interppeted program: i.e.,
cne enviromnment structure of S: The remaining ssetions of this chapter

.resent model interpreters with alternative environmert structures, and which
tolve the specific problem-demonstrated in S;- however, they demonstrate
¢imilar inadequacies in the organization of gcontrel structurés, i.e. the data
structure specifying which computations are to:.be performed and their relative
sequence.1

" The notion of §¥ngsgl fﬁ?ﬁg;gfi has never, to the author’s knoéledge been
sdequately formalized. nformally it is the bookkeeping mechanism necéssary
20 resolve algorithms into se?uences of operations -- e.g., the use of a stack
‘o record the return points of calls to a recursive subroutine.
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The first model to be presented is T, similar to S except that its environment
is structurally a tree rather than a stack. It is argtiéd that T and S share a
deficiency which stems from their evaluation order, in particular, from their
uniform evaluation of arguments regar’d‘l‘eé‘s of ‘wtiether the resulting values are
essential to the computation. T is thus fundtionally incomplete due to

evaluation order.

The N model, discussed in section 2.5, is closely reiated to the normal order
evaluation of the lambda calculus. It is superjor to T in that every
expression having a T value has an equ;y,a~;ent;,ll,value, while certain

expressions have N values but not T values. . ,

2.4.1: The T Model

The traditional solution of the enviromment p-oblem of S involves a new
"internal™ representation of a function, calléd-a ¢lodure. A closure
includes, in addition to t.he 1nt‘omtion in 2 lambda . exprea,s%on. ,
specification. of the enviromnt in which. its. free,variables.are to be
evaluated. As the closure mechanism may.require.the.rekention of environment
branches corresponding to fugotignal applications from.which control has:been .
returned, the envircomment becomes a Lres rather than.the. linear stagk of S;
hence we call our new larguage T. The diffanence hetwesn T and S is that in.
T, the laﬁlbda expr'ession> |

(LAMBDA(s,...s ) b)

is no longer self e'\raln.xai:ing,1 Its value, in.environpent g, is.
(FUMARG(s,...s ) b e)

which is the representation of a glosure in T. We define T as follows:

T(x;e] =
if x. is.a number,. then x; ;-
if x is a member of {T,F, G&NTW&U&} then x;
if x is an. identifier- then lookwpixsed; .

[T . EE AN coond SRRy
‘ . . . e el Wl

! We say an expression X is self evaluating if the value of X is X.
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if x is of the form (T y z) then Tly;el;
if x is of the form (F y z) then.T[z;e];
if x is of the form (GREATER y z) then:
if T[y;e])T[iiel,then T;
else F;
if x is of the form (PLUS y z) then T[y;e}+T[z;e]l;
if x is of the form
(LAMBDA(s,...s ) b) then
(FUN!RG(31...sn) be);
if x is of the form
((FUNAHG(31;l.sn) be,) y...y,) then
T[b;(81,Y[y1;e]) .es (sn,T[yn;e])+e1];
if x is of the form (y z, 22 cee zn) where y is‘not a
FUNARG closure, then
T((Tlysel z, ... z )iel;
else undefined;

»

”

We note that a lambda expression is not applied directly; it is first
converted to a closiwe (by its evaluation), and then applied by the evaluation
of its body in an environment formed by appending the bindings of its bound
variable list to the closiure environment. Thus the free variables of a lambda
expression are evaluated in the environsient in which the lambda expression is
evaluated. The reader may verify that the function represented in the lambda

calculus by
(LAMBDA (X) (LAMBDA(Y) (PLUS X Y)))

which the preceding section showed to be inexpressible in S, is expressible in
T (indeed, by the same lambda expression).

2.4.2: Functional Incompleteness of T

Except for the special cases involving the ‘application of the primitives T and
F, the T evaluator unifermly evaluates the expriessions supplied to an operator
as arguments before the operator is applied. ' This order: of evaluation, which

has been termed applicative order, has the virtue that each subexpression of
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an AE is evaluated at most once, whereas in the normal order evaluation of the
lambda calculus an argument to a function may be - evaluated -many times. The
disadvantage of applicative order evaluation is that:arguments may be
evaluated (once) even though their value is irrelevant to the computation;
this is not merely a matter of occasional rinefficiency, since the ‘{rrelevant
argument may not be defined whereby the entire computation ‘diverges. Consider
the case of the trinary projection function

P31[x;y;Z]=x

which returns its first argument regardless of whether its remaining arguments

have defined values. The applicative-order counterpart of P is represented

31
in T by the expression:

f31=(LAMBDA(X.YtZ) X)

This expression does pot return a value under "-evaluation unless all three

arguments have det‘ined values.

Jur decision to distinguish between P31 and f‘3~‘ in effect recognizes the
undefined element, *, as a member of. the functicnal domains of our applicative
languages. Intuitively, * represents the "value" of those computations which
do not terminate, and whose expressibility in each language L is guaranteed by
the Turing universality of L.

We now show that P, is not expressible in T:

31

Thm 2.4: For every AE £, the T value of the expression

(£3e" (2.5]

(where ¥ denotes any expression whose T -value is undefined) is undefined.

proof: We consider exhaustively the possible T values of the operator f:
If £ is a number or a primitive operator, then the value of [2.5] is
undefined due to an error in fugggigggligx i.e. the application of a
primitive to arguments for which it is not derined may assume that f is
either a combination or a lambda expression, in which cases the value of
t he combination is the value of the application of the T value of f

the specified arguments. If the value of fis a number or a primitive,
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{2.5) is again undefined due to an error in functionality. Hence the
value of f must be a closure. The computation of the application of a
closure involves binding the values of each argument onto the
énvironment, hence the evaluation of [2.5]) entails evaluation of each
argument. Since not—every argument has a defined T value, the value of
(2.5] is undefined.

Since clearly the projection P31 has the property of £ in Theorem 2.4, T must

te functionally incomplete if we are to consider P31 a function.

2.5: The N model

This section introduces an applicative language whose interpretation involves
normal order evgluation. The superiority of N over T derives from this
revised evaluation order of N, which permits an expres;ioqnto be évaluated
even though subexpressions of it may be undefined; A thebrem of Church and
Rosser establishes that if an AE, A, has a value undér any evaluation order,
then it has that value under normel order evaluation; thus in' terms of

evaluation order, N is optimal.

The simplest implementations of normal order evaluation involve the
substitution of argument text in the bodies of lambda expreésions, rather than
the binding of argument values in environments. While the explication (and
implementation) of such substitution algorithms is relatively straightforward,
evaluation by simple substitution is often inefficient since

1) It involves making many copies of program text during execution, and
2) It often involves multiple evaluations of the same subexpression.

For reasons of efficiency, substitution evaluators are thus primarily of

theoretical interest.

More efficient implementations of normal order evaluation retain the
environment structure of the T model, and introduce additional mechanism to
indicate which bound expressions have or have not been evaluated. Since the

vnvironment implementations of hormal order evaluifion involve considerable
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bookkeeping machinery and are hence conceptually much more complex than the
substitution algorithms, they will not be pursued.

2.5.1: Axioms for the Lambda Caiéulus

The primordial applicative language is the lambda éa»leulus, which h‘ag. been the
subject of much investigation since its conception by A{lopzo; ChuréhA m the
1930s. The Serténtic basis of the lambda calculus is ‘a.ﬁs_‘e‘t_‘ of axioms which
define an equivalence relation, =, on expresSions of the language. Each axiom
may be interpreted as a conversion rule (or redyction'rule) in the sense that
it provides a means for converting (or recjucing) an AE to an equivalent (under
=) AE having a dif‘f‘er-ent f‘om. 'rhe presentation of‘ the axioms in this chapter
is somewhat infomal serving pr'imarily as motivation t‘or the N interpreter;
the interested reader is ref‘erred to Curry[12] and Hindley[21] for further |
detail. Related issues are also covened in greater depth in later chapters of
this report.

The axioms of the lambda calculus are of 4 types, designated alpha
(equivalenee under renaming), beta (function application), delta (primitive
function definition), and, in some formulations, eta. The delta and eta
axioms are not used in all formulations. The eta axiom seems to serve no
important function in the evaluation of expressions and will be presented here
only in passing. ‘The delta axioms may be avoided -by well knbwn éoding
techniques which involve the representation of nonfunctional data, e.g.

natural numbers, as lambda e!xpr'essions.1

The formulation which will be primarily referred to in subsequent chapters
camprises the alpha, beta, and delta axiom.s, and 13 of‘ten termed the
beta~-delta-calculus in the literature. Unless ot.herwise gualif‘ied, generic
ref‘grences to "the lambda calculus" in this,ﬂ repqr}t?‘ggpote tb;‘e" beta-delta

calculus.

The equivalence relation = of interconvertability is generated by a relation

! Many such codings are agssible'va popular choice represents 0 by the
eﬁression (LAMBDA (X) (LAMBDA (Y)Y} ) and the number. n+1 by

MBDA (X) (LAMBDA(Y) ((N X)(X Y)))) where N is th repﬁes‘éntation of the number
n. For development of such a coding, see Churchf
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-> of reducibility; hence X->Y implies X=Y which, in turn, implies Y=X.
Reducibility is in general antisymmetric, however; thus -> provides an
ordering of equivalent expressions which'has:impo?tent ramifications in the
lambda calculus. The relation -> is defined to be a monotone x*elgt;on1
meaning that it has the following properties:

Reflexivity: For every X, X->X;
Transitivity: If X->Y and Y->Z, then X->Z;
Monotonicity: If X->Y and B is the result of substituting, 1n an expression

A, X for an occurrence of Y, then B->A.

The relation = is in addition an equivaletnce relation; hence XzY implies Y=X.

Central to the axioms is the ;gp;tltu&ig_ gnlg S of fundamental importance
to the lambda calculus as well as the theories of the tollowing chapters of
this report. S is fbrmulated as a three araument function, such that the
meaning of S[X Y;Z] is roughly "the result of substituting the expression X
for free occurrences of the variable Y in the expression Z. The definition of
S is further complicated, however, by the requirement that the operation
S[X;Y;Z] not introduce confliets between free.variables in the expression X
and bindings of X within Z. There is a long history of incorrect algoritms
for S; the definition given here is due to Curry:

Defn 2.6: For expressions X and Z, and variable Y, the expression S[X;Y;2] is
defined as follows: ‘

1) If Z=Y, then X;

2) If Z is a primitive, number, or identifier other than Y, then Z;
3) If Z is of the form (z Z, ) then (S[X;Y;Z ] S[x ! z ]),

4) If Z is of the form (LAMBDA(A)M) where Y-A ‘then Z;

5) If Z is of the form (LAMBDA(A)M) where Y is different from A, then

(LAMBDA (B)S[X;Y;S[B;A3M]T). where the variable B is chosen as follows:
i) If Y does not occur free in M or if A is not free in X, then BzA;
ii) Else B is any variable which ocecurs free neither-in.M nor in X.

! Terminology after Curry[12]
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We now procede to the statement of the axioms:

Axiom alpha: If E is a lambda expression of the form (LAMBDA(X)M) and the
variable Y does not occur free in M, then R->(LAMBDA(Y)S{Y;X;M]).

We say that expressjons A and B are gopgruepk if A can be converted to B by
alpha conversion alone. Nq_-t.e.th#t if X->Y by alpha conyersion then Y->X. by
alpha conversion; hence X=Y. Congruence is thus symmetric and transitive,
and under most circumstances congruent expressions may be treated as

identical. We say that expression X is in pérmal mm 1f‘ the only ‘reduction

which can be performed on X is alpha eonversion.1

Axiom beta: If E is an expression of the form L (LAMBDA(X)M) -A) then
E->S[A X; M] :

Axiom eta: If E is an expression of the form (LAMBDA(X)(M X)) where X does not
appear free in M and M 1is a.lambda-expresaion, then E=>N.

Axiom delta: If E is an expression of the form (F A, Az An) where F is a
primitive function symbol and each Ai is in normal form and contahins no
free vapiables, then E-)f‘[A1;. .'.;An"j'“im"cre 4 is ‘rf.he Bper.ation”derioﬁed ‘by
F. ' ‘

The following two theorems are of t‘undamental 1mport.ance 1n the lambda

calculus. The first is due, in its initial prinitive f‘om, to Church and

Rosser and is referred to 1n the literature as the Church-Rosser Theorem

Thm 2.7: Let X and Y be expressions such that XzY. Then there exists an
expresion, %, such that: X=->Z and Y->Z. R ‘

proof may be found in Curry[12] or Hindley[21] ang elsewhere.

The Church-Rosser Theorem shows that the lambda calculus is consistent in the
sense that the relation is nontrivial; in particular, X=Y is not true for
incongruent expressions X and Y in normal form. We can thus prove that
expressions X and Y are not interconvertible by finding normal forms X  and

! This definition is recast more f‘omally in the'terminolvbgy of Chapter 4.




-36- 2.5.1
Y, where X->X* and Y->Y’, which are incongruent.

Unfortunately, not every expression X is convertable to an expression X’ in

normal form. For example, the important eﬂ,_;:prjo;e;si@pn
Y=(LAMBDA(F) ((LAMBDA (H) (F (H H) Y)(LAMBDA(H) (F (H H)))))

which is the "paradoxical cambinator" of: Curry, has no normal form. Further
discussion in this area follows in Chapters 4 and 5, along with related
technical developments.

A second important theorem, due to Corrado Boehm, has.been proved only for
systems which prohibit delta conversions:

Thm 2.8: Let X and Y be incongruent expressions in normal form, and let C and
D be arbitrary expressions. Then there exists and expression Z such that
C=(Z X) and Ds(Z Y).

proof originally appeared in Boehm[20], in Italian; a proof in English
appears in Curry[27].

Boehm ‘s Theorem guarantees that incongruent normal forms in the beta-eta
calculus1 are semantically distinet; in particular, the axiomatic assertion
that any two incongruent normal forms are interconvertable results in an
inconsistency. The extension of Boehm’s Theorem to systems which include
delta conversions requires that the constants added to the pure lambda
calculus also be semantically distinct., Ve might., for example, formulate a
calculus including the numeric constants without providing any means for
distinguishing between them: we could provide the primitive PLUS but not
GREATER. While this formulation is valid in terms of the lambda calculus,

Boehm's Theorem is clearly inapplicable since there is no expression Z which
distinguishes, say, between the normal forms 2 and 3.

! i.e., that formulation including axioms alpha, beta, and eta, but ekcluding
delta conversions., '
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2.5.2: Normal order: Substitution

Each of the lambda calculus axioms provides a means by which an applicative
expression E may be reduced to an equivalent expression E°. While the axioms
themselves place certain restrictions on the order in which such reductions
may be perf‘ormed,1 the evaluator of an applicative expression has a great deal
of freedom to choose the order in which to evaluate subexpressions.

Normal order evaluation specifies that at each evaluation stage, the leftmost

reducible subexpression is to be converted,

2.5.2.1: The N Evaluator

We define the N value of an AE x as follows:

N[x] =

if x is a number, then x;

if x is a member of {PLUS,GREATER} then X3

if x is a lambda expression, then x;

if x is of the form (PLUS a b) where N[a] and N[b] are
both defined and numeric, then N[al]+N[b];

if x is of the form (GREATER a b) where N[a] and N[b]
are both defined and numeric, then if N[al>N[b] then
(LAMBDA(X Y)X) else (LAMBDA(X Y)Y);

if x is of the form ((LAMBDA(a)b)g) where a is an
identifier and b and ¢ are AE’s, then N[b'] where b”
is the result of substituting ¢ for each free
occurrence of a in b; )

if x is of the form (a b) where a and b are AE’s and a
is not a lambda expression, then N[ (N[a] b)];

else undefined;

Note that we have eliminated the primitives T and F, which are entirely
equivalent in N to the lambda expressions which replace them as values of

GREATER.

1 Not every expression E containing applications of lambda expressions, for
example, is beta-reducible. Applications ofaxiom al ha, ie the renaming of
variables, may be required before axiom beta is applicable.
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2.5.2.2: Axiomatic Consistency of N

We show in this section that N evaluation is consistent with the semantics of

the lambda calculus by demonstrating that N preserves the equivalence relation

Thm 2.9: Let E be any AE such that N[E] is defined. Then E->N[E] where -> is
the reducibility relation defined by the lambda calculus axioms.

proof: by induction on the level of recursion in the computation of N[E].
basis: if E is a number, a primitive, or a lambda expression then N[E]zE.
induction: we assume that the Theorem holds for recursive calls to N.
Then the Theorem holds for the remaining syntactic cases of E by the

monotonicity of ->.

We note in passing that N[E] is not necessarily a normal form. Lambda
expressions, in particular, are not reduced by N, since otherwise the
evaluation of certain meaningful expressions (e.g. the paradoxical combinator
Y) would not terminate.

2.6: Functional Domain of N

In this section it is shown that the entire domain of N constitutes a
funct ional domain satisfying the intuitive criteria of [1.1]. We interpret
the semantic equivalence relation, ~, on the domain of N as follows:

For X,Y in D, X°Y if and only if [2.10]
for every Z in DN and number n,
(Z X)=n <=> (Z Y)=n

where DN is the domain of N. We now justify this interpretation of “on N
thru '
Thm 2.11: The domain of N is a functional domain, obeying the criteria of

{1.1], under the above interpretation of ~.

proof: The equivalence relation ~ defined in [2.10] must be shown to obey
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the three clauses of [1.1] over the domain DN of N. We treat the clauses

individually:

1) For mumeric constants X and Y, we must show that X~Y <=> X=Y.
<{=: direct, by the equivalence of identical expressions.

=>: Assume X"Y. Then by beta-reduction,

((LAMBDA(a)a) X)=X

and
((LAMBDA(a)a) Y)=Y

and thus, by [2.10], X=Y since they are numeric. By [2.7] there exists a
Z such that X and Y are each reducible to Z; since X and Y are not

reducible, Y, Y, and Z must be identical.

3) To show: X~Y <=> for all Z in DN’
(Z X)~(Z Y) or neithrer defined.

=>: Assume false. Then for some X~Y there exists a Z1 such that
(Z1 X)T(Z1 Y)
where T is the negative of ~. This implies, by [2.10], that there exists
a 22 such that
(Z2 (Z1 X))=n
fdr some numeric constant n but not
(Z2 (Z1 X))=n

(we are assuming here one of two completely symmetric cases with no loss
of generality - the other case follows by interchanging the symbols X and

Y). Defining Z3 by the lambda expression
235_(LAMBDA(a)(Z2 (Z1 a)))

we note that

(Z3 X)=n but (Z3 Y)#n

hence by [2.10] XtY.
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<=: Assume that for all Z in DN' (z X)™(Z ¥). Then (Z X)=n (for numeric
constant n) if and only if (Z Y)=n by the argument of part (1). Hence by

[2.10] X~Y.

2) It must be shown that XY if and only if for all Z in DN’ (X Z)~(Y 2).
From part (2) of this proof, X°Y <=> for all Z:

((LAMBDA(a) (A Z)) X)~((LAMBDA(a)(a Z)) Y)
hence, by beta-reduction,

(X 2)~(Y 2)

The significance of Theorem 2.11 is that every element of the domain of N
corresponds to some element of the abstract semantic domain: every element of
DN is intuitively functional. Thus N (and the lambda calculus on which it is
basgd) is a language of "pure" functions. We shall find in the next chapter
that this pleasant property costs us something, however, in terms of

expressive power.

2.7: Summary

The material in this chapter is largely introductory. The three interpreters
presented are abstracted from conventional implementations, and their scrutiny
serves to relate common implementation issues to the expressibility of

functions. The major findings were:

1) Each language is arithmetically complete, in the sense that every

canputable function defined on the natural numbers is expressible,

2) The FUNARG problem leads to the inexpressibility in S of functions whose
domain contains integers and whose range contains infinitely many

functions.

?) Applicative order evaluation renders inexpressible in T every function
whose domain includes *, the undefined computation. An example of such a

function is the constant function (LAMBDA(X)3) of one argument.
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4) The interpreter N, based on the normal order evaluation of expressions by
substitution, suffers from neither of these deficiencies. We can

construct a functional domain F such that every expression X in the

domain of the language N corresponds to an element of F; thus N is a
"pure" language in the sense that every expression corresponds to a
function or a number. This is not true, for example, in S, where lambda
expressions containing free variables can compute different functions in

varying contexts.

We are left with N, an interpreter whose behavior is intended to model the
lambda calculus; the remainder of this report, roughly speaking, deals with a

particular weakness common to N and the lambda calculus.
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Chapter 3:

Motivation for a Multi-valued Semantics

Central to this chapter is the argument that the N model, and hence the lambda
calculus, is functionally incomplete because of the inexpressibility in N of a
class of computable functions on N's domain. The inadequacies of N leading to
this weakness are explored, and two new model languages are presented, each
curing the problem in a different manner. The first model, which has
provision for encoding representations of functions as integers, is found to
be unsatisfactory for both practical and semantic reasons. The alternative
solution proposed in this chapter involves mechanism for the representation of
semantic elements with multiple values; this mechanism, called EITHER, is the

principal focus of the remainder of the Thesis.

3.1: Necessity of non-functions: WHICHFF

Consider the family of partial functions, {FFi} for i ranging over N, which

satisfy the following conditions: for each natural number i,

FFi[x] = i, i=x [3.1]

divergent, i#x

Thus each FF, has a single element in its domain: the number i. For any other

argument theivalue of FFi[x] is undefined. The {FFi} are clearly partial
functions in the intuitive sense of Defn [1.1], and are computable in each of
the model languages considered here. Furthermore, they are semantically
distinct: for no numbers i#j does FFi*FFj. There is then nothing intuitively
objectionable about a function which maps each FFi to its corresponding i.
Consider such a function WHICHFF which, for each natural number i, has the

property that:
WHICHFF[FF ] = i [3.2]

Intuitively WHICHFF is a function from {FFi} onto N; furthermore it is
demonstrably camputable using "dovetailing" or multiprocessing techniques.
Note in particular that the following definition of WHICHFF satisfies the

condition of [3.2]:
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WHICHFF[f] = i1 such that f[il=i, (3.3]
if such a number i exists;

else undefined

We may view the dovetailed evaluation of HHICHFF{f} as the computation of f[0]
for one second, the camputations of f{0] and f[1] each for two seconds, and
similarly wntil any one of the computations f{i] terminates normally; the
value of this f{i] would then be taken as the value of WHICHFF[f]. However,
WHICHFF is not expressible in N; this is a result of

Thm 3.4: Let L be an arithmetically complete apbiicative language and let D
be the domain of L. Then no function saxcnﬂ having the properties of
{3.3] is functional over D,.

L

proof by reduction to the halting problem. Assume that DL contains a

funct ion WHICHFF having the property given in {3.3]. Then for any
function £ in D, and any number i, L[(WHICHFF £)]~} if L°FF . Fow

L
"~ consider the union of the functions FF, and FF2, .given by:
FF,Z{x] = 1, L{x]=1; S ‘ {3.51
2, Li{xJ=2;

divergent otherwise

F‘12 is clearly a computable f'irst order t‘unction, hence it is

expressible in L by the arithmetic conpleteness of L. Now L[ (HHICHFF
)] can have as its value at most one of {1,2}; th;xs either L[ (WHICHFF

FF12) J£1 or L{(WHICHFF FF}Z) }£2. Assume, with no loss of generality, the

former. Then define the second order function g as follows:

glf] = the function Bps where
golil = 1, 1=1;

2, 1=2 and f[0] defined;

divergent 6therwi_ae_ Fob every computable
first order function f, g¢ (or equivalently gi[f]) is evidently
computable. Moreover, if f{0] is undefined then gr is identical to the
function FF,; otherwise g, is identical to the function FF,,. We use the
ability of WHICHFF to distinguish between l"l?1 and FF12 to determine
whether f[0] is defined, by means of the function h given by
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h[f] = WHICHFF[g[f]]
We note finally that for any function f

£{0] convergent => g[f] -~ FF12 => h[f)£1;
and
f[0] divergent => g[f‘]"’E‘F1 => h(f]=1

Hence h[f]=1 if and only if f[0] is divergent. The divergence of f[0] is
decidable, as one of the computations h(f] and £[0] must converge; thus
the function h provides a solution to the "halting problem" for first
order functions, and is a well known noncomputable function. Since h is
clearly computable in terms of WHICHFF, we conclude that WHICHFF is not a

canputable function over any domain including the first order functions.

Since it was shown in the last chapter that every function expressible in N is
functional over all of the domain of N, it follows that WHICHFF is not
expressible in N, This inexpressibility relates intuitively to two aspects of

the implementation of the N interpreter:

1) The interpreter does not admit multiprocessing. If, in the evaluation of
expreésion A, N embarks on the evaluation of a subexpression a of A whose

N value is not defined, then the N value of A is not defined.

2) The only mechanism in N by which a function f can recover information
about its functional argument £ is the application of g. There is no
means by which f can discover the algorithm (or program) by which £
computes values, even though the internal representation of g necessarily
includes this information. Hence if f is to make any use of g, then £
must be applied to some argument; By the constraint (1) above, the
nontermination of this application results in the nontermination of the

application of f.

The correction of either of these deficiencies is étraightforward in an
implementational sense -- many extant languages boast provisions for
multiprocessing and/or access to representations of functions. However,
neither "correction" is easily reconciled with the semantics of an applicative

language. The second limitation of N seems a natural consequence of our
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distinction between the notions of a function f and any of the algorithms for
caomputing f from its arguments; a language which provides mechanism for
distinguishing between algorithms for comput ing a particular function f would
certainly have non-functional elements in its domain. The semant ic
ramifications of a cure to the first problem, however, are more subtle and

will be explored in detail.

The following sections present two alternative extensions to N, each
corresponding to a "fix" of one of the above limitations. The function
WHICHFF is expressible in each.

3.2: Coding primitives: The C model

We noted that a limitation of N, justifiable by our intuitive respect for the
semantics of functions, is that no information can be recovered about an N

function without the application of that funetion. Br particular, N provides
no means for recovery of information about the representation of a Fuiction as

an N expression. We have thus avoided the "Turing nachine tar pit" -- the
argument that any language as powerful as a Universal ‘ruring Hachine has

exactly the same set of expreasible functions,

The C model presented here has, in addition to the primitives and structure of
N, primitives for the translation of the represéntation of language element.s
to and frem a tractable form. Making the f‘undaaental assumpt.ion that any
function defined on a domain F is computable if and only if it is computabie
from the representations of elements of F, we must conclude that a Universal
Turing Machine (or its equivalent) operating on t;he"re'presentations of
arguments to the computable function f can cmpmé‘re‘ﬁr-&entatibns of the
values of f£. This is the substance of our claim of fufictional completeness of
the language C. 7 .,

The interpreter for C is identical to the interpreter t‘or N except for the
addition of the primitive operators CODE and DECODE. CODE maps
representations of the domain of C into the natural numbers'

CODE: DC -> N
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and may be viewed as a Goedelization of the character string representing its
argument. The claim we make for CODE is that if (CODE X) and (CODE Y) have
the same (numeric) value then X and Y are semantically equivalent; they are
in fact represented in an identical manner. We cannot, of course, claim that
in general XY implies (CODE X)=(CODE Y), as there are many representations of
each semantic element and the semantic equivalence of the representations is
effectively undecidable. The operator DECODE is the inverse of CODE: given
the Goedel number of the representation of an element, it returns the element.
We thus claim that each expression X is semantically equivalent to (DECODE
(CODE X)).

Our claim for the functional completeness of C is formalized, to the extent

possible, in

Thm 3.6: Let F be a functional domain of C, and let
g: F ->F

be a computable function on F. Then g is expressible in C, i.e., there
is an expression G in the domain of C such that for all x,y in F, gl[x]=y

implies that (G X)~Y.
proof: Since g is computable then so is h defined by:

h = (LAMBDA(Y) (CODE (g (DECODE Y))))

as it is simply the composition of computable functions. Furthermore,
since h is a function from N to'N, it is expressible in C by the
arithmetic completeness of C; let H be the representation in C of h.

Then the function g is expressible in C by:

G = (LAMBDA(X) (DECODE (H (CODE X))))

It must be recognised that CODE is not functional: it radically disobeys the
intuitive requirements of Defn 1.1. We note, for example, that CODE might
return different values for the arguments (LAMBDA(X)X) and (LAMBDA(Y)Y) as
they have different representations, violating our requirement that

semantically equivalent arguments produce semantically equivalent results.
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WHICHFF example of the preceding section. The representation of WHICHFF in C
involves writing an interpretor, operating on the CODEd representations of C
expressions, which simulates the required "dovetailing" by computing 1 step of
(g 1), 2 steps of (g 2), 2 steps of (g 1), ete. Presentation of actual code
for WHICHFF on C would be, at best, a messy task;. it is hoped therefore that
the reader will accept the expressibility of WHICHFF in C on the ‘basis of
Theorem 3.6 and this informal discussion.

3.2.1: The Turing-machine Tar Pit

The introduction of the specter of coding requires further reflection. We
have made the enticing observation that, with the introduction of a simple
mechanism allowing the representations of functions to be accessible as data,
every camputable function becames expressible. We have noted éorollar'y
disadvantages -- (i) the semantic confusion resulting from the nonfunctional
character of QODE, and (ii) the practieél absurdity of having to include the
code for interpreters in the definitions of certain functions. ‘

However, the inclusion of coding primitives in an applicative language may be
objected to on more fundamental grounds than the above. The stated semantic
goal of an applicative language is the representation of functions. Thus such
a language provides a set of rules and conventions for associating expressions
with abstract functions; moreover, the power and consistency of the language
stem largely from the applicability of these rules and conventions to every
expression in the language. In the lambda calculus, for example, we are
assured that expressions which are interconvertible via the alpha and beta
axioms are equivalent. The cost of this assurance is a corresponding
constraint on the computations which we might perform: the alpha axiom
positively prohibits us from writing a function which distinguishes
(LAMBDA(X)X) from (LAMBDA(Y)Y). We accept this constraint because the
structure which it imposes is useful to us; we recognize that we cannot be
assured of a relation and simultaneously be allowed to violate it at will.

Coding primitives may be viewed as a mechanism for violating the structure
imposed by an applicative language. None of the lambda calculus axioms, for

example, are valid in the presence of coding, since "functions" can be written
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which distinguish between interconvertable €Xpressions, The rules and
conventions for representing functions are, in effect, abandoned. The
programmer is thus freed from the structural constraints of the language, but
finds himself in a semantic anarchy -- while he may write any function he
pleases, he may make no assumptions about the structure or representation of

its arguments.

3.2.2: Functionality of DECODE

We may convineingly defend the contention that CODE is not a function by
demonstrating that it returns semantically distinet integers, say, for the
equivalent arguments (LAMBDA(X)X) and (LAMBDA(Y)Y). This demonstration does
not apply, however, to the inverse of CODE; there is nothing inherently
nonfunctional in the fact that DECODE returns semantically equivalent
expressions (LAMBDA(X)X) and (LAMBDA(Y)Y) when given semantically distinct
integers as arguments. It is the purpose of this section to demonstrate that
functions with the property of DECODE (i.e. mapping a subset of the natural

numbers onto the entire domain of discourse) are expressible in N and the

lambda caleculus,

3.2.2.1: LAMBDA-free AEs

It is convenient for certain purposes to use the techniques developed

primarily by Curry[12] of the calculus of combinators for the reduction of

applicative expressions to equivalent expressions whose use of lambda
expressions is highly restricted. For our purposes we shall consider the

combinators listed below (along with their respective definitions):

I = (LAMBDA(X)X)

K = (LAMBDA(X) (LAMBDA(Y)X))

W = (LAMBDA(X)(LAMBDA(Y)(X Y)))

S = (LAMBDA(X) (LAMBDA (Y) (LAMBDA(Z) ((X Z)(Y Z))))
G, = (LAMBDA(G) (G G))

G, = (LAMBDA(G) (LAMBDA(Y) (Y G)))

G, = (LAMBDA(Y) (LAMBDA(X) ((Y X) X)))

3~ i



-50~ 3.2.2.1
G), = (LAMBDA (G) (LAMBDA (D) (LAMBDA(X) (G (D X)))))

We show in this section that every applicative expression using no lambda

expressions other than the above combinators; we begin with

Lemma 3.7: Let R be a LAMBDA free AE in the single argument applicative
language L, and let R contain occurrences of the variable x. Then R is
equivalent (by alpha and beta axioms) to a LAMBDA free AE of the form (R’

x) where R’ contains no occurrences of the variable x.
proof is by structural induction on R.

basis: R is atomic (in particular, R is not a combination). If r is the
variable x, then r” is (I x)=x (by axiom beta). ’ff::ﬁi“s not the variable
X, then r contains no free occurrences of x and r” is ((K r) x) = |
((LAMBDA(X)r) x) = r.

induction: R is a combination of the form (lil1 Rz).» By inductive
hypothesis, R=((R1' x)(RZ' x)) for some AEsf.RT' andRz not involving the’
variable x; then R°=(((S R,) R,) x) = ((LAMBDA(Y)(LAMBDA(X) ((R, X)(Y
X))))) = ((R1 x)(R2 x)).

The principal result of this section is the following adaptation from Curry’s
Synthetic Theory of Combinators:

Thm 3.8: Let A be an AE in a single-argument applicative language L whose
semantic equivalence obeys axioms alpha and beta. Then A is equivalent
to a LAMBDA-free expression A% containing only the combinators I, K, W,
S, G1, GZ’ 03, Gy, and the primitives and constants of L.

proof: We show that, given any“such A which is not LAMBDA-free, we can
construct an equivalent A’ containing fewer LAMBDAs. Let a be an
innermost LAMBDA expression occurring as a subeiprossion of A. We then

construct A° by replacing a as follows:

Case 1: a is of the form (LAMBDA(x)x) for some variable x; we replace a
by I (equivalent by axiom alpha).
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Case 2: a is of the form (LAMBDA(x)y) where x and y are different

variables; we replace a by (K y).

Case 3: a is of the form (LAMBDA(x)(b x)) where x is a variable and b is

an AE: replace a by (W b)=(LAMBDA(Y)(b Y))

Case 4: a is of the form (LAMBDA(x)(c d)): By Lemma 3.7, the body (c d)
is equivalent to an AE (r” x) where the variable x does not appear in
r’. Then a=(LAMBDA(x)(r’ x)) which is reducible according to case 3.

Since each expression A which is not LAMBDA free is thus equivalent
to an expression A’ containing fewer LAMBDAs, a finite number of such
reductions will reduce each such A to a LAMBDA free A%, This completes

the proof.

It is a relatively simple exercise to show in addition that each of the
cmbinators I, W, G1, G2, G3, GM is in turn equivalent to an expression in K
and S, allowing us to simplify Theorem 3.8 by eliminating all but 2 of the
combinators. This is unnecessary for our purposes, however, so long as the
number of combinators required is finite. An important observation to be made
at this point is that the construction of A* detailed in Theorem 3.8 is
effective; thus we could program a computer to convert AEs to LAMBDA free

form.

3.2.2.2: An Enumeration of DN

In this section it is demonstrated that the domain of every applicative
language with the power of the N model contains functions which enumerate the
domain of that language, ie, each such language L with domain DL contains a

function

f: N => DL

.such that for every finite expression x in DL there is a number n which
satisfies (f n)=x. We procede by Goedelizing the LAMBDA free expressions of

DL'
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Let pair be a number pairing function such that, for each 1 and j in N, the
value of pair[i,j] is a unique number Pij’ and let left and right be functions
recovering the components of a pair; ie, for every i and j, left{pair(i, jl]1=i
and rightlpair(i,jl]=j. There are many well known such pairing functions;
since they are all first order computable functions, we may assume that they

are expressible in each of our model languages.

Let us now suppose that we label the (finitely many) primitives of the
language L as Py Poy +oe pn. Note that we include the combinators K, I, G1,
etec. in this list so that we can enumerate LAHB!_)A free expressions only. We
now specify the coding details: for each LAMBDA free expr@sion x, we define
the Goedelization g[x] as follows:

glx]
if x is a number then pair[0;x];

if x is a primitive Py then pair{1;3];

if x is a combination (a b) then pairlglal;glbl];

The function g is computable from the representation of X, but we cannot in
general claim that it is computable from the functional properties of x. The
function g is, in fact, a satisfactory choice for the COPE" function of the C
model, assuming (as we may) that we are content to deal with LAMBDA free -
expressions of C. 1If such a function g could be shown to be computable in,
for example, the N model, we would have a direct a priori demonstration that
the languages are expressively equivalent. We must, however, be content with
the expressiblity of a semantic inverse of g: the function enu defined such
that, for every LAMBDA-free expression x, emu[glx]]l=x. This apparent
asymmetry can be explained by the observation that g is not a function, in the
sense of Defn [1.1] which prohibits the mapping of semantically equivalent
expressions into di.ffering numbers. The fact that enu may map different
numbers into semantically equivalent values is consistent with its
functionality. We label the expressibility of enu as

Thm 3.9: Let L be an extension of N with primitives 11, 12, ..., 1n
(including combinators K and S). Then there is a function enm:N—>DL such
that, for every LAMBDA free expression x in DL’ there is a number i such

that emu[i]™x.
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proof is a straightforward programming job. Such a function for the
language N would take the fgrm:

(LAMBDA(N) ((GREATER (LEFT N) 1)
((ENU (LEFT (RIGHT N)))
(ENU (RIGHT (RIGHT N))) )
((GREATER (LEFT N) 0)
((GREATER (RIGHT N) n-1) 1n
11)...))
(RIGHT N) )))))

where 11 1is the ith primitive of N, and LEFT and RIGHT are the N.
expressions corresponding to the Jleft and Light, functions above.

3.3: E model: Multiprocessing primitives

An extension to the N interpreter which is somewhat more palatable than the
use of coding primitives is the addition of mechanism for multiprocessing: the
quasi-simultaneous evaluation of several expreasions. We eonsider here the E
model, which is the ¥ model of Chapter 2, augmented by the primitive operator
EITHER whose interpretation is as follows ‘ ‘

For every choice of expressions g and D, s . [3.10]
E[ (EITHER ap_)] = L '
if E[g) is defined but E[b] is not, then E[a];
if E[b) is defined but E[a) is not, then E[bl;
if E[g) and E[b] are both defined then one of‘thesé‘values;
else undefined.

Note that we do not specify which of the arguments is: returned if both have
defined values; we may consider that this seleotion is ‘made by some
nondeterministic process over which we have no control. EITHER is evidently
computable by dovetailing techniques, eg by evaluation of E[a] and Ef}b] each
for 1 step, then each for 2 steps, and so on:until one evaluation or the other

returns a value. EITHER is not, however, functional: in the case where a and
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b each have defined values (and their values differ), then the value of
(EITHER a b) is dependent on the representation of a and b and on details of
Scheduling of the dovetailed computation. '

The power of the either primitive is demonstr'at:ed by the expressibility of
WHICHFF in E as follows:

WHICHFF[L] = g,[£;0]
where g,[h;n] = either[nlnl;g,[h;n+1]

Note that for i>j, g [FFJ,i] is undefined and hence for i<j g [FFJ,i]=j. Thus
for every number j, E[(WHICHFF FF )1=3.

The presentation of the EITHER primitive 1n this section is inf‘or'mal based
largely on its intuitive relation to- the 1mp1ementation mechanism of

mult iprocessing. The formalization of this mechanism is a principal topic of
the remaining chapters. The remainder of the present chapter explores the
impact of EITHER on the semantics of an applicative language.

3.4: The Intuitive Parad ox

The reader has doubtless noticed that t‘undamental queati;m; raised in the
first section of this chapter demand a more pr'ecige chamc;exization of the
hitherto vauge notion of functional completeness. Specifically, Theorem 3.4
shows that WHICHFF is not functional over the entdrety of ‘any functional
domain which includes all first order functions. Thus the basic intuitive
requirements of [1.1] are inconsistent with the existende of a functional
domain F which is arithmetically complete and includes ‘every computable
function f:F->F. Two alternatives facing us are the following:

1) We can deny that WHICHFF is a computable function. Indeed Theorem 3 4
may be interpreted as a statement that no cowputable funct ion def‘ined on
first order functions has the properties of 'WHICHFF given in [3 2] Our o
intuitive claim that WHICHFF is a computablé fMAstion Is based on the
incomplete specification of its behavior over the efitire functional
domain: [3.2] merely defines it over the réstricted domain of {FF,}.
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2) We can revise the notion of a functional dgmain F such that, for ever'y
f‘unotion fin F there is a domain of specification over which' the
behavior- of £ is defined., The. functional criteria of [1.1]'are then
requir-ed to apply only when the argumnta of:L are drawn from its domain

of specification, Sf..

3) We can postulate new elements of the‘”t“ﬁﬁeflionei domain F corresponding to
the values returned by otherwise nonfunctional procedures.

We reject the first choice on the grounds that it _restricts our considerasion
to those functions expressible in the lambda ealcuius, giving us no way of

di stirguishing between N, ;30d, the intuitively superior .- THe 'SBcond eholce 'is
rejected after brief‘ consiQeration (ip.a fallewing seetion) partly" because of
t he technical ccmplications it entails, but moisartly beceuse it deriies the
semantie validity of ‘the intereating e,lmgal‘ Al titelved oxprés sions.  'The
third choice seems the most promising from the poink of viww of rfgorous’
analysis, but requires a subgt.antia; intuitl v leap whose: usePulnéss must be
careful ly scrutinized Thie project is Qprmcbedwci.n sabnque‘nt« seet:iv:mst

e

3.5: Multi-valued Semantic Elements

The domain Dy of language N was shown, in Chapter 2, 4o have the :property that
every element x of Dy corresponds to exactly. one:element. of & funetiomsd -
domain; thus each expr'ession X in Dy has, intuitively, exactly one semantic
value or meaning. In this chapter it was shown that this graceful pr'operty
of Dy is inconsistent with the-expressiblity of the runction ancapp a
demonstrably computable and.intuftively weil ‘behaved’ runction over a
particular subset of D.. Our implemeftation of HHICHE‘F while functional over‘ )
this restricted domin S, behaves 'poorly When: givaﬂ argument:s fr'om DN which
are not .in S; furthermore, this anncdying ‘def¥ct is characteristic of m_:_y_
implementation of WHICHFF in a language w?‘ficienﬂfy power'f‘ul as to be "
arithmetically ccmplete.‘ The, probleu 1s evident when WHICHFF:is applied to
the f‘mction‘FF 2.’e:lt:her' of the values 2. or 3 is comsistent with the '

Fpn 7

! It must be recalled that we have postulsted a semantic element .,
corresgonding to the "meaningless" or nonteminatm muﬁation* hence a’
possible semantic value for x is %,

[N
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definition of WHICHFF [3.3], and there is no implehentetion of WHICHFF which
consistently returns a single value, eg 2, when applied to every x in D

Semantically equivalent to FF12 Thus the evaluation of (HHICHFF FF12) leads
to, exactly the same underdetermined result as-the evaluation of (EITHER 1 2):

the E values of each expression might be 1 or 2, depending on circumstances

which are irrelevent to the semantics of each expression,

3.3;1: Domains of Specification

One means of avoiding such apparently nondeterministic computations is to
exclude them from our semantic ‘model, ie, to deny that (EITHER 1 2) has any
semantic value. Under this" ‘restriétion, we must carefully exclude from our
consideration .any -expression having multiple B viiues, either by avoiding the.
use of EITHER and reverting to the well behaved dbmain DN’ or by aasuring
ourselves, at each application of EITHER, that the result is single valued.

We may note, pursuant to the lattesr: program, that for all expreasions g,and b,
E[(EITHER a b)] is single valued if

1) a is single valued and bis meaninglees;kcr .

2) b is single valued and g is meaningless; or

3) a and b .are both meaningless; or ‘

4) a and b are each single valued and their vilues are semantically

equivalent,

So long as the arguments to EITHER aatisfy the above ariteria, EITHER is
intuitively functional For each function f whose:definition ‘involves EITHER,

we may then carerully define a domain of specification Sf ‘such that for

arguments x from Sf, E[(f x)] is single valued. . We may, for example, show
that our definition of HHICHFF in terms ©f EITHER is functional over a domain

of specification including the functions {FFi}

This means of avoiding the semantic difficulties of EITHER may raise certain
aesthetic objections. First, it places on us the considerable burden of
having to construct domains of specification for each of a large class of
functions, and the necessity of showing that each such function is well
behaved over its particular domain of specification. Second, it rules out
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consideration of algorithms for well behaved functions which have
multiply-valued subexpressions. Consider, for an example of the latter

limitation, the function f defined so that

fln] = 5, n=1
5, n=2

else undefined.

Now, since f[1])=5 and f[2]=5, it is intuitively reasonable to claim that
fleither[1;2]]=5; yet we cannot make such a claim unless we are willing to

assign some semantic value to either[1;2].

3.5.2: EITHER and the Lambda Calculus

There is an essential incongruence between EITHER and the axiomatic basis of
the Lambda Calculus which precludes the incorporation of the former as a
primitive with an associated delta r‘ule.1 Recalling that these axioms define

an equivalence relation, =, on the domain of the language, incorporation of

EITHER results in the equivalences:

(EITHER 1 2)=1
(EITHER 1 2)=2

and hence
1=2

from which it follows, by the famous logic of Russel, that "I am the Pope".
Clearly the relation between (EITHER 1 2) and 1 is not equivalence, but rather
some irreversible reducibility property. Any evaluator which can yield 1 as
the value of (EITHER 1 2) cannot be claimed to preserve semantic equivalence;
it merely reduces that expression to one of its several values and discards,
in the process, information about the other values. This is the underlying
reason why N (and the Lambda Calculus) are incapable of expressing WHICHFF,
and is basic to the proof of Theorem 3.4.

! Such a delta axiom is formally ruled out by the requirement that the
ar%uments to primitives be in reduced form, thus restricting applications of
EITHER to cases where both arguments have meaningful E values.
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3.6: The Power Set Domain

The natural extension of a functional domain F of single-valued elements to a

domain F* of multiply-valued elements involves the interpretation of F* as the
power set, or set of subsets, of F. Thus the elements 2 and 3 of“F correspond
to the unit Subsets {2} and {3}, respectively, in F#*, while the semantic
element of F* corresponding to the value of (EITHER 2 3) is the subset {2,3}
of F containing bath 2 and 3. The meaningless element # correspondé to the
empty subset @ of F, having no value. Other useful relationships which we
would like to see in F#* include the following:

1)-If a”b in F then {g,b}~a™b in F®,

2) (EITHER (£ a)(£ b))"(f (EITHER a b)), or equivalently, the elements
{r{a]l,r[b]} and f[{a,b}] in F* are the same.

3)Thve natural ‘interpretation of either on functions leads to the semantic
equivalence (EITHER f g) (LAMBDA(X)(EITHER (f X)(g X))). This allows us
to propose, in symmetry with (2), that: e :

4) ((EITHER £ g) a) ~ (EITHER (£ a) (g a)).

5) (EITHER a #)"a, where ®* is the element corresponding to the undefined

camputation,

6) If a corresponds to {a1,...,aj} in F® and b corresponds to {b1,...,bk},
then (EITHER a b) corresponds to {a1,...,aJ, b1,...,bk} in F*, 1In
general, EITHER of multivalued elements corresponds to the upion of the
respective elements of F$%. ; '

3.7: Interpretation of F#

The semantic model being developed in this chapter demands a certain amount of
intuitive realignment on the part of the reader. The attractive feature of F*
as a semantic domain is that it allows the preservation of a notion of
semantic equivalence, without cost in terms of expressibility of certain
functions, Its major disadvantage, at least from an',intui‘j:ive standpoint, is
that it requires that we postulate certain aba-traet semantic elements which
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are intangible in practice -~ if the expression x has multiple values, say 2
and 3, then we have no way of discerning from the value "3" typed by our E
interpreter that "2" is also a value of x. We could, of course, build an

interpreter which would enumerate the values of x X by dovetailing computations
at each EITHER juncture. However, as x might have 1nfinite1y many values,
this process may never terminate; worse yet, even for an x with finitely many

values we cannot tell, in general, when all of the values have been typed.

There are, however, situations where this ambiguity is unimportant. We may
know, for example, that x is single valued, in spite of the dual values of a
subexpression y of x. Alternatively, we may recognise ‘that x X has many values,
but be willing to settle for any one of them.

3.8: Computable elements of F#*

If we have a procedure for identifying the computable elements of a single
valued domain F, we can characterize the computable elements of the power ‘set .
domain F* as those elements of F#* whieh are effeetively enumerable sets of
canputable elements of F. Given an expression X we can enumerate the
components of the F% element representing X' ‘one means of doing so is provided
in Chapter 6. Furthermore, given an expression G for a function which
emumerates a set S of elements of F, we can construct an expression whose

representative F* element is S; take for example the expression
((Y (LAMBDA(H) (LAMBDA(X) (EITHER (G X)(H (PLUS 1 X)))))) 0)

where Y is the fixed point operator (LAMBDA(F)((LAMBDA(G)(F (G
G)))(LAMBDA(G)(F (G G))))). This expression reduces to an expression of the

form

(EITHER (G 0)
(EITHER (G 1)
(EITHER (G 2)
(EITHER (G 3) --- ))))

and its corresponding element of F¥* is exactly the range of G.
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We may use as our function G in the above expression an Venumerat.or ENU of the
entire domain F, constructed by the techniques of spc.;ion 3.2.1.2; this
expression, TOP, corresponds to the semantic element éf’ F# which is the set F
itself,

3.9: Summary

This chapter raises the ‘question of the expressibility of a particular
function, WHICHFF. This function is ;ng:gpr%,sibie in the _jl{.ambda.calculus, and
intuitively it requires a mechanism for multiprocessing for its implementation
in spite of its applicative -- hence time independent -- nature. Two '
alternative extensions of the N interpreter are preposed, .each of which
renders WHICHFF expressible:

1) Primitives can be added to N which allow coding and decoding of arbitrary
" expressionsr into and from numbers. This ;neghanism allows programs to

access the representation of functions, and it is argued that such a .
CODE/DECODE facility extends any arithmetically complete language to
funct ional canplet.eness. Yet the use of this meebanism is awkward: the' _
specific 1np1enentation of WHICHFF, for example, requires coding an
interpreter which simulateg the necessary ‘multipr:oces.‘si_ng. Moreover the
semantic ramifications of CODE are drastic, involving abandonment of much
of the applicative structure of any language in which it 'is embedded.

2) A primitive, EITHER, can be added to N to implement multiprocessing.
EITHER renders WHICHFF easily expressible, and it may be justified
semantically in an applicative language.

In connection with (1), it is noted that although the new primitive CODE is
radically nonfunctional, the inverse operation of DECODE (which maps codings
into the f‘mct.ions which they represent) is acceptable as an element of our
functional domain. A combinatory proof shows that such decoding functions
are, in fact, expressible in the unmodified N language;fhence we can write in
the lambda calculi functions which enumerate the entire semantic domain of

these calcull.
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The introduction of EITHER or equivalent mechanism requires that we modify the
Structure of the semantic domain and its relation to expressions of a
language. In particular, it seems most natural to associate with each
expression a gset of abstract values, rather than a unique single value. We
thus move from the domain F of single values to the domain F# whose elements
are emumerable subsets of the elements of F; we term F#® the power set domain.

The presentation of EITHER in this chapter is informal and relies heavily on
implementational notions such as multiprocessing. The following chapters
formalize the mechanism in terms of systems of conversion rules, based on the
lambda calculus; this process both justifies and refines the rough
implementation model sketched here.
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Chapter 4:

Theories of EITHER~conversion

While the implementation and semantic considérations of the previous chapter
provide a strong intuitive baSis for the interpretation of EITHER, the further
development of this new mechanism requires something more concrete.
Specifically, the incorporation of EITHER into a language E involves syntactic
manipulations of expressions in E, and hence necessitates a formalism which
distinguishes those syntactic manipulations which are semantically valid from
those which are not. The relationships developed in the last chapter are
analogbus to the convention that "(PLUS 2 3)" represents the sum of 2 and 3,
without a correspondiﬁg mechanism for associating this expression with the

expression "5",

This chapter begins the project of developing formalisms, i.e. conversion
axioms, for the syntactic manipulation of exp.-essions involving EITHER.
Several theories (i.e., systems of axioms) are presented in this and
subsequent chapters; each is based on the beta-delta1 calculus, with
additional axioms for manipulation of the new EITHER construct. The
distinction between these theories stems from an issue of evaluation order,
discussed in a following section, and reflects alternative interpretations of

certain expressions involvihg EITHER.

A principal difference between the axiom systems presented here and those of
the lambda calculus is the introduction of a new asymmetry, in the form of an
ordering relation », between expressions of E. We have seen in previous
Ssections that it is futile to require that E interpretation preserve an
equivalence relation; such a requirement was shown to lead to an
inconsistency in any language capable of expressing WHICHFF, since (WHICHFF
FF12)'1 and (WHICHFF FF12)”2 together imply that 172,  The asymmetry of »,
however, allows the relations (WHICHFF FF12)>] and (WHICHFF FF12)>2 to hold
without compromising the semantic relation between 1 and 2, We view the
relation » as designating EITHER-reducibility, and may interpret x»y

informally to mean that the values of Yy are among the possible values of x.

1
No attempt is made to incorporate eta conversion into the systems presented
here, although we expect that no new difficulties would arise in doing so.
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We shall use xsy to mean that both x3y and y»x.

It is important to distinguish between the relation » and the "reducible to"
relation, ->, of the lambda calculus. If the expression X is reducible to the

expression Y by means of conventional lambda calculus axioms, then it will
follow that X»Y and Y»X; the reverse, however, is not true., The semantic
interpretation of X»Y is that every value of Y is also a value of X; i.e., the
element of F®* corresponding to Y is a subset of the element corresponding to
X. ,

k.1: Preliminary Definitions:

The terminology of this section is adapted from standard usage in the lambda
calculus, and appears e.g in Curry[12].

The relétion » defined in each of the axiom systems presented here 13 a
monotone relation, i.e. it has the following properties:

Reflexivity: For every X, X»>X.

Transitivity: If X>Y and Y>»Z, then X>Z. ‘ _

Monotonicity: If XéY and B is the result bf substituting X for an occurrence
of Y in expression A, then B)A. X for an océui'“r;ence of Y, then B>A,

The above properties are assumed to be axioms of each system.

Certain of the axioms to be presented lead to a distinction between the
operations of gontraction and abstraction; for example, the derivation of
S[A;x;M]1 from ((LAMBDA(x)M)A), justified by the beta axiom of the lambda
calculus, may be termed a beta-contraction. The inverse operation of
converting S[A;x;M] to ((LAMBDA(x)M)A) may be termed a beta-abstraction. An
expression which is a candidate for contraction is called a pedex; thus

( (LAMBDA(x)M)A) is a beta-redex in the lambda ealculus. The result of
performing a contraction on a redex X is termed the gcontractum of X.

An expression in a particular calculus is in normal form if it contains no

Ezng%‘:all that S is the substitution operation of the lambda calculus, Defn
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redex applicable to that calculus. We say further that the expression X is in

beta-normal form if X contains no beta-redex, and similarly for the delta, ¥,

and E redexes to be defined presently. The statement that X is in normal
form, without further qualification, may be taken to mean that X contains no

beta-, delta-, *-, or E-redexes.

We shall often use the notation X{Y} to designate an expression X containing a
particular instance of a subexpression Y; having identified an expression
with the notation X{Y}, we shall then use an expression of the form X{Z} to
denote the result of replacing Y in X{Y} by the expression Z. In this
notation, the monotonicity of » is the implication of X{Y}>X{Z} by Y>Z.

A relationship of the form A»B is in general derived through a series of steps
A1>A2, A2>A3, where each Ai:tAi+1 involves the substitution of an expression Y’
in Ai for an occurrence of an expression Y»Y’. The monotonicity of »
justifies each such substitution, and the transitivity assures that the
validity of the entire series follows from the validity of the individual

steps. We shall use the terminology

Defn 4.1: A reduction step in A from X to Y, for expressions X and Y and a
particular axiom system A, is a proof that X»Y by a single application of

an axiom of A.

Defn 4.2: A reduction seguence from X to xn in system A is a series

0
X »X.»...»X such that each X,»X
0" n i 7is

is a reduction step in A.

4.2: The Either-R Theories

The first axiom, common to each of the systems presented, is taken directly

from the lambda calculus:

Axiom alpha: (Renaming) Let E be an expression of the form (LAMBDA(X)A) where
X is any variable and A& is an expression, and let Y be any variable not

occurring free in A. Then Ee«(LAMBDA(Y)S[Y;X;A]).
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We say that expressions A and B are congruent if A can be converted to B by
alpha conversion alone. Congruence is thus reflexive, symmetric and
transitive, and to simplify subsequent proofs we shall often allow ourselves

to treat congruent expressions as identical.

The next axiom is a restricted form of the beta axiom of the lambda calculus,
allowing beta conversion only on a beta-redex whose argument is in normal

form:

Axiom beta-R: (lambda conversion) Let E be an expression of the form
( (LAMBDA{a)b)c) where ¢ is in normal form. Then Ee«E’, where E’ is the
contractum Slg;a;bl of E.

The following axiom provides a paradigm for delta-conversion, the application
of primitive functions to arguments in normal Torm. A Vp‘articurlar calculus
will have a family of delta rules, specifying the behavior of each primitive
-- e.g. the delta rule for the primitive PLUS asserting the equivalence of
(PLUS n m) to n+#m for all integers n and m. Of interest here is the general

form of such rules:

Axiom delta: Let E be an expression of the form (A B) where A is a primitive
function symbol and B is a normal form expression containing no free
variables. Then EeE’, where E’ is the contractum of E derived from B by
the (here unspecified) rules associated with A.

We may term such an expression E a delta-redex, and the conversion of E to E’
is a delta-contraction. Since the relation between E and E° is equivalence,

the axiom provides also for the delta-abstraction of E° to E.

We note that axioms alpha, beta-R, and delta define a lambda calculus under
the equivalence relation =; no use has been made of the asymmetric relation
N _ o :

We shall term an expression of the form (EITHER a1 aé)‘, where a, and a, are

1
arbitrary expressions, an E-redex. We treat the E-redex as a new syntactic
construct, rather than attempting to classify EITHER as an -added primitive
funect ion whose operation is specified by delta rules. In particular, we

regard the restriction that arguments of primitive functions be in normal form
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as unacceptable to the process of EITHER-conversion.

Axiom epsilon: (EITHER-contraction): If E is an expression of the form (EITHER

a1 a2) where a, and a, are expressions, then E)a1 and E>a2.
Axiom mu: For every expression E, E«a(EITHER E E).

Axiom rho: (EITHER-distribution) If E is an expression of the form (f (EITHER
a b)), where f, a, and b are arbitary expressions, then EeE’ where E’ is
the expression (EITHER (f a)(f b)).

The conversion of the redex (EITHER a1 aé) to one of the expressions a1 or a2
will be termed an E-contraction. The conversion of an expression E to (EITHER

E E) will be called an E-abstraction.

4.2.1: Properties of Either Theories

The elementary relationships established in this section hold for subequent
theories as well as for Either-R. In addition to their usefulness in proofs,

they provide a preliminary reassurance that the Either-R axioms are consistent

with the intuitive semantics of EITHER.

Thm 4.3: X>Y if and only if, for all Z,
Y>Z => X»Z

proof: only if: by the transitivity of »,
if: Let Z be Y; then Y»Y by the reflexivity of », hence X»Y by above
hy pothesis.

The above theorem is consistent with the intuitive notion that X»Y means

values derivable from Y are also derivable from X.

Axiom mu justifies the trivial abstraction of an expression E to the

expression (EITHER E E); The following theorem shows that nontrivial EITHER

expressions may be abstracted:
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Thm 4.4: Let X, A, and B be expressions such that X>A and X»B. Then
X>(EITHER A B).

proof: By Axiom mu, X>(EITHER X X).
But since X»>A and X»B, (EITHER X X)>(EITHER A B) by the monotonicity of
». Hence X>(EITHER A B).

We may apply this theorem, for example, to the expression A given by
A= ((LAMBDA(X) (PLUS X 3))(PLUS 1 2))
By performing single beta and delta contractions, repectively, on A we deduce
the relations
A>(PLUS (PLUS 1 2) 3)
A>( (LAMBDA (X) (PLUS X 3)) 3)
Application of Thm 4.4 yields the result
' A>(EITHER (PLUS (PLUS 1 2) 3) ((LAMBDA (X(PLUS X 3)) 3))
This demonstrates that the Either-R theory allows EITHER-free expressions

(such as A above) to be converted to expressions containing EITHER.

Thm 4.5: XaY if and only if for all Z, X»Z<{=>Y>»Z,

proof: is by two applications of 4.3.

Thm 4.6: For all f, g, and a,
((EITHER f g) a)»(EITHER (f a)(g a))

proof: By Axiom epsilon, ((EITHER f g) a)>(f a) and ((EITHER f g) a)»(g a);
hence, by Thm 4.4, ((EITHER f g) a)>»(EITHER (f a)(g a)).

The intuitive arguments of the last chapter suggest that the above result
could be strengthened to full equivalence (i.e., =), and this more powerful
result may in fact be a theorem in our Either theories; however we have not

pursued this equivalence since it is irrelevent to the subsequent proofs.
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4.,2.2: EITHER and Evaluation Order

Chapter 2 notes the distinction between normal and applicative order
evaluation, characteristic respectively of the N and T interpreters.
Applicative order evaluation, in which arguments to a function are evaluated
prior to the application of the function, is shown in that chapter to lead to
the inexpressiblity of certain functions which ignore their arguments. For
example, the applicative order evaluation of the expression

((LAMBDA(X)3) A)
does not terminate if the value of A is undefined, whereas the normal order

evaluation of that expression yields the value 3.

The restricted conversion of the beta-R axiom is similar to applicative order
evaluation -- in each case, the argument to a function must be avaluated
(reduced to normal form) before the application of the function (beta
conversion). The only distinction between beta-R conversion and the
applicative order of the T interpreter is the degree of evaluation required;
while Either-R requires that arguments be reduced to normal form, T requires
only that they be reduced to lambda expressions or atoms. We may thus view
the restriction on beta conversion as a more serious constraint than the

applicative order evaluation of T.

The motivation for this restriction in the Either-R system is our intuitively

based demand that the axiom of EITHER-distribution, rho, hold. This axiom is

in fact inconsistent with the unrestricted beta conversion of the lambda

calculus; consider, for example, the expressions I, Z, and F defined by

I = (LAMBDA(X)X)
Z = (LAMBDA(Y) (LAMBDA(X)X))
F = (LAMBDA(H)(H H))

Using the axioms of Either-R (notably EITHER distribution) in conjunction with

unrestricted beta conversion, we may deduce that I=Z as follows: By Axiom m,
I = (EITHER I I)
and by (restricted) beta abstraction on each of the terms of the E-redex,

T = (EITHFR (F I)(F 2Z))
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since both (F I)zI and (F Z)zI. Then the axiom of EITHER distribution yields

I = (F (EITHER I 2))

from which, using unrestricted beta conversion (as the argument is an E-redex |

and hence not in normal form) we deduce that
I = (((EITHER I Z)(EITHER I Z))
whence by EITHER contraction
I (1 Z2) =12
Thus we have derived I>Z; to show Z>I (and hence IeZ) we make the deductions

I»2
(I2)>»(z2)
Z»1I

using the monotonicity of » and beta-R abstraction.

It follows that, using unrestricted beta comversion in -conjunction with the
Either-R axioms, we can prove eyery pair of expressions equivalent -- i.e.,
the system is inconsistent. We avoid this pitfall in Efither-R by means of the
restriction on beta conversion. The beta-li' restr:lction is not, however, the

designated the Either-K theory -- is presented

It should be noted at this point that the restriction.on beta conversion is
expensive in terms of expressive power. It prohibits, for example, the

reduction of the expression
((LAMBDA(X)3) ((LAMBDA(Y)(Y Y)){LAMBDA(Y)(Y Y)))

to the value 3, since the argument in that expression has no normal form. A
more serious drawback is that it interferes with the expressibility of
recu;-sive fmctiohs sinc'e recursion requires, in the lambda calculus, the
application of functions to arguments having no normal forms. Chapter 5 is
devoted to the mechanism of %*_conversion, which mitigate these limitations
imposed by the restricted beta conversion.
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4.2.3: Consistency of Either-R

An extension of the axiomatic basis of the Lambda calculus may lead to
inconsistencies, e.g. the equivalence of 1 and 2. Such equivalences do not
hold in the conventional lambda calculus; 1in partiéular, the first Theorem of
Church and Rosser establishes the consistency of the Lambda Calculus axioms by
showing that the propoéition X=Y is not provable for any pair of expressions X
and Y having incongruent normal forms. We are thereby assured that the
equivalence relation = established by the lambda calculus does not place every
expression in a single equivalence class, and thus tha£ the cardinality of the
domain of the Lambda Calculus is greater than 1; The existence of infinite
sets of mutually incongruent normal forms1 shows that the domain of the lambda
calculus is infinite. Mbreover, an important theorem of Boehm[20] shows that
any axiomatic assertion of the form X=Y, where X and Y are incongruent normal

forms, leads to an inconsistency.

The theorems of Church-Rosser and Boehm are, not surprisingly, inapplicable to
the axiomatic extension presented here. Furthermore, they probably cannot be
augmented in minor ways to argue the consistency of the present system, as the
uniqueness of normal forms, on which they depend, has been compromised by our

extension.

Accordingly, is the purpose of this section to establish that the domain of
~the lambda calculus is a subset of the domain of the Either-R system, and that
the new equivalence relation e is consistent with the relation = of the lambda

calculus, In particular we wish to show that, for any two either-fr gg
expressions X and Y, X=Y if XaY. Proof of this assertion establishes that

1) The domain of the Either-R system includeé the domain of the lambda
calculus, hence the new system is nontrivial (having infinite
cardinality); and

2) The semantic equivalence defined by the Either-R calculus, applied to
EITHER-free expressions, is a subset of the equivalence of the lambda

calculus,

1tgor example, the set I=(lambda(x)x), I z(lambda(x)I), I”‘=(lambda(x)I’),
ete.
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It has been noted that in the Either-R system there are expressions X and Y
such that X=Y but for which XeY is not provable -« a consequence of the
restriction on beta conversion which is explored further in the analysis of

the R-® system in the following chapter.

We procede to the consistency proof, beginning with with the following
definition:

Defn 4.7: The EITHER-free expression X’ is an e-resjdue of the expression X

if and only if X’ may be derived from X by replacing every e-redex
(EITHER x, xz) in X by one of the operands X, or x,.

Thus the expression X° is an e-residue of X if X° is EITHER-free and X>X° may
be demonstrated solely by means of EITHER-contraction (axiom epsilon).

Defn 4.8: The expression X is unitary if and only if there exists some
EITHER-free expression Y such that, for every e-residue X° of X, X"=Y (in

the lambda calculus).

Thus ;
(EITHER (LAMBDA(X)X) (LAMBDA(Y)Y))

is m:ltary-, since its e-residues (LAMBDA(X)X) and (LAMBDA(Y)Y) are congruent.
We note that EITHER-free expressions are unitary, although unitary expressions
are not necessarily EITHER-free, as the'raboveywexample demonstrates.
Furthermore, a unitary expression X my'oontain subexpressions which are not

unitary; witness the expression

((LAMBDA (X) (DIFFERENCE X X))(EITHER 2 3)) [4.9]

whose e-residues are

( (LAMBDA(X) (DIFFERENCE X X)) 2)

and
( (LAMBDA (X) (DIFFERENCE X X)) 3)

each of which is convertible to 0 by the rules of the Either-R system., Hence
expression [4.9] is wmitary; it contains, however, the subexpression
(EITHER 2 3)
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which has e-residues 2 and 3, which are not equivalent under =. Hence the

subexpression is not unitary.

The proof of the consistency of Either-R is based on the observation that,
while EITHER may be introduced into EITHER-free expressions by
EITHER-abstraction, the result is necessarily unitary. Moreover, the axioms
of Either-R preserve the unitary nature of expressions; we will thus argue
that the result of an Either-R reduction sequence on an EITHER-free expression
must be unitary. We now introduce a relation which orders expressions by the

interconvertability, in the lambda calculus, of their e-residues:

Defn 4,10: For any expressions X and Y we say that X encloses Y if, for every
e-residue Y° of Y, there is an e-residue X’ of X such that X =Y in the

lambda calculus.

Observe that enclosure is reflexive and transitive; the following lemma

establishes that it is monotonic:

Lemma U4,11: Let Y be a subexpression of X{Y} and let Y enclose Z. Then X{Y}

encloses X{Z}.

proof: Each e-residue of X{Z)} is of the form X {Z°} where 2% is an e-residue
of Z; and for each e-residue Y° of Y there is a corresponding e-residue
X“{Y'} of X{Y}. Hence for each e-residue X {Z°} of X{Z} there is an
e-residue X" {Y'} of X{Y} such that Y'=Z°; it follows that X {Y'}=X"{Z"}
hence X{Y} encloses X{Z}.

Corollary 4.12: If X{Y} is unitary and Y encloses Z, then X{Z} is unitary and

every e-residue of X{Z} is convertible to an e-residue of X{Y}.

Lemma 4.13: Let X>Y be a single reduction step in Either-R. Then X encloses

Y.
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proof: Let U be the subexpression of X which is replaced by an expression W
in the reduction step X»Y. By Lemma 4,11, we need only to show that U
encloses W to establish that X encloses Y. We exhaustively examine the

possible-reduction steps from U to W:

Case 1: Alpha conversion on U. Then U and W are congruent, and for each

e-residue W’ of W there is a congruent e-residue U° of U.

Case 2: beta-R conversion on U, Let P be a beta-redex of the form
( (LAMBDA (X)M{X})A) where A is in normal form, and let Q be the contractum
S[A;X;M{X}] of P. Then every e-residue P° of P is of the form
( (LAMBDA (X)M’ {X})A) where M’ {X} is an e-residue of M{X}, and there is one
such e-residue P’ for every e-residue M’ of M. Each e-residue W of Wis
of the form M’ {A} and there is one such e-residue W’ for each e-residue M’
of M. For each M’ the corresponding e-residues of P and Q are
( (LAMBDA (X)M” {X})A) and M’ {A} respectively, which are interconvertible in
the lambda calculus by a single beta conversion; hence P encloses Q and Q
encloses P. W is either a beta-R contraction or a beta-R abstraction of U,

hence U encloses W.

Case 3: delta-conversion on U. If either U or W is a delta redex, then both U
and W are EITHER-free and thus U encloses W.

Case 4: EITHER contraction. If U is an expression of the form (EITHER A1 Az)’
clearly U encloses both A1 and AZ; each e-residue of W is an e-residue of

A1 or of Az.

Case 5: EITHER-abstraction. Then W is of the form (EITHER U U), and each

e-residue of W is an e-residue U” of U.

Case 6: EITHER-distribution. Let P be an expression of the form
(EITHER (F A)(F B))

and let Q be
(F (EITHER A B))
The e-residues of P consist of all the expressions of the forms (F° A”) and
(F° B°) where F°, A, and B” are respectively e-residues of F, A, and B,
We note that the e-residues of Q consist of exactly the same set of

expressions, hence P encloses Q and Q encloses P, Thus for a conversion
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U>W of the forms P»>Q or Q»P, U encloses W.

This completes the proof of Lemma U4.13.

We present the obvious generalization of this result as

Corollary 4.14: Let X and Y be expressions such that X»Y in the Either-R

system. Then X encloses Y.

proof follows directly from Lemma 4.13 and the transitivity of the enclosure

relation.

This corollary shows that the ordering » of the Either-R system implies
enclosure; thus the number of distinet (under = of the lambda calculus)
e-residues of an expression X can only be decreased by a reduction step in
Either-R. While each reduction step may introduce new E-redexes (by
EITHER-abstraction), the terms of each redex so introduced are necessarily

interconvertable. The consistency of the Either-R theories is a special case

of this corollary:

Thm 4.15: Let X and Y be EITHER-free expressions such that X»Y in the
Either-R theories. Then X=Y in the lambda calculus.

proof: By Corollary 4.14, X encloses Y; since X and Y are each EITHER-free,
X and Y are respectively e-residues of X and Y. Hence X=Y in the lambda

calculus,

The above theorem establishes that the Either-R theories are consistent in the
sense that they introduce no new equivélences between expressions which are
distinct in the lambda calculus; and are hence of infinite cardinality. It is
noteworthy at this point that the above proof, specifically Lemma 4.13,
depends on our restriction on beta conversion. when unrestricted beta
conversion is allowed (as in the Either-K theories presented in Chapter 7) it
is not true in general that every beta-redex X encloses its contractum X", as

demonstrated by the beta redex
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A= ((LAMBDA(X) (PLUS X X))(EITHER 2 3))

whose e-residues are each convertible to 2 and 3, respectively, while the

contractum of A
(PLUS (EITHER 2 3)(EITHER 2 3))

has an e-residue (PLUS 2 3) which is convertible neither to 2 nor to 3.

4.3: Summary

This chapter defines the ground rules for the axiomatization of Either
theories and presents the Bither-R theory. While the usefulness of this
system is limited due to the restriction placed on beta conversion, it
develops much of the mechanism to be used in subsequent chapters. '

The principal distinction to be made between the Either thegries lies in the
circumstances in which beta-conversion is allowed. The Either-R Theories,
‘which prohibit beta-conversion unless the argument to be substituted is in
normal form, allow the distribution of functions over the terms of an
EITHERexpression -~ a relationship which we find intuitively gratifying.
Unfortunately this restricted beta-conversion results in a very weak theory, a

problem to which the next chapter is devoted..

The Either-R theory presented in this chapter is shown to be consistent; in the
sense that X»Y, where » is the ordering defined by the new axioms, is not a
tautology. The proof is based on the consistency of the lambda calculus;
specifically, it is shown that, for expressions X and Y which are EITHER-free
(and thus admissible syntactically in the lambda calculus) X»Y implies the
interconvertability of X and Y. This general technique will be followed in
subseguent consistency proofs as erll. ‘
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Chapter 5:

%®_Conversion

It was noted in the previous chapter that the restricted lambda conversion of
the beta-R axiom, i.e. the requirement that the argument of a beta-redex be in
normal form before the contraction of that redex, severely limits the
expressive power of languages based on the Either-R theory. In particular,
the inexpressibility of recursive functions constitutes an intolerable

restriction since it renders such languages functionally incomplete.

The mechanism of %_conversion, to be introduced in the present chapter,
ameliorates this limitation by extending the ordering relation » in a way
which is consistent with its function in the Either-R theory. Although
%.conversion and EITHER reduction are in an important sense complementary
operations, their respective mechanics may be dealt with separately; thus for
the purposes of this chapter we temporarily disregard the axioms of EITHER

conversion. In Chapter 6 we combine the two mechanisms.

The semantic interpretation of » Suggested by the Either-R theory is one of
inclusion Qf values; it was noted that X>Y signifies, in general, that each
value of Y is also a value of X. The corresponding relation in the semantic
domain F* is set theoretic inclusion. Thus if x and y are the semantic
elements of F* corresponding to X and Y, respectively, then X>Y implies that y

is a subset of x. Consistent with the semantic notions of Chapter 3, the

expression (EITHER X Y) corresponds in F* to the union of the elements x and
Y. It was further suggested that the undefined computation corresponds, in

F*, to the empty set -- i.e., it has no values whatsoever.

This chapter develops the syntactic analog of the empty set in F#,
Specifically, the new syntactic element #* is-introduced as the canonical
normal form representation of the undefined computation. The interpretation
of » as set theogetic inclusion in F* suggests that, for every expression X,
X>* (since every set has the empty subset). It would seem, then, that the
consummation of the semantics of EITHER reduction requires that its syntactic

mechanism reflect this aspect of the structure of F¥,
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5.1: The R-* Theories

We now focus our attention on *-conversion and its relation to the restricted
beta conversion. To this end we consider the R-® system whose axioms include

alpha, beta-R, and delta di scussed previously, im addition to the following:
Axiom sigma: (®-contraction): For every expression E, E>%.

Thus ® is an expression in the R-¥% system which is lower, in the sense of »,
than every other expression. While every expression is reducible to %, ¥ is
itself only reducible to * (as * is not a beta- or delta-redex, and contains

no variables).

Defn 5.1: An expressiom of the form (®* R}, where A is an arbitrary
expression, is called a ®-redex. '

Consistent with our previously defined ndtion of normal forms, we shall
henceforth require an pres.sio;x X to ccata,linv no ¥%-redexes if it is in normal
form. Noting that the only conversion which may be performed on a ¥-redex
without resulting in another %*-redex is its replacement by %, we shall say
that the contractum of a %*-redex is ¥, '

5.1.1: Significance of normal forms

The restricted lambda conversion allowed by the beta-R axiom bears a curious
resemblance to the lambda-I caleulil of Chw'oh[ﬂ; In these systems, Church
specifically prohibits expressions of the form (LAMBDA(X)M) unless the
variable X appears free in the body M; thus the lambda-l systems exclude, in
general, functions which ignore their arguments. A prineipal consequence of
this restriction is the fact that, for expressioe X to have a normal form,
every subexpression of X must have a normal form. Ue note, with passing
interest, that the normal form restriction of deta-R allows us to derive any
normal form in the lambda-I caleculus which is posasible using unrestricted beta
conversion; this follows frem the cbservation that in the lambda-I system we
can always reduce the argument in a beta-redex to normal form before
contracting the redex.
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Church’s preference for the lambda-I over the unrestricted "lambda-K"!
theories stems from the elusive nature of those expressions having no normal
forms. The theorem of Boehm assures us that expressions having incongruent
normal forms are semantically distinct, and the theorems of Church-Rosser
guarantee that equivalences between expressions having normal forms are
decidable. The semantics of normal forms is consequently uncomplicated:
every pair of semantically equivalént normal form expressions is provably
equivalent, and for every pair of incongruent normal forms we can find a
context in which they produce different values.

The admission of expressions having no normal forms compromises this situation
severely. The requirement that a semantic equivalence relation be
extensional, i.e. that equivalent expressions produce equivalent values in
identical contexts, leads to a distinction between semantic equivalence and
the equivalence of interconvertability under the lambda calculus. Scott[22],
10 oo~ "of fixed point
operators which are not convertible to one another despite the fact that they
produce the same values when embedded in identical contexts. The problem of
constructing a functional domain for the lambda calculus is fundamentally
equivalenf to the definition of an extensional relation of semantic equialence

| for example, demonstrates an infinite sequence Yo, Y

over the expressions of that calculus, a project whose recent success is due
to Scott. The technique used by Scott[5,6,22] involves the notion of
successively better approximations to the abstract semantic element
rep}esented by an-expression X, so that the semantic elemént associated with X )
becomes the limit of this sequence of approximations. In the Scott model, a
function f° approximates every extension f of f';A more generally, f°
approximates f if and only if for every z, f[z] approximates f{z]. This
notion of approximation seems essential to the interpretation of domain
elements as functions, largely because the theorigg of functions with which we

are familiar employ type restrictions ruling out self—application.2

! Church[1] and Curry(12] refer to the unrestricted conversions of the
conventional lambda calculus as lambda-K conversion gresumabl{ because of the
admissibility of the combinator K:(LAMBDA(X)(%AMBDA( )X)) in these systems.

K is excluded from the restricted Tambda-I systems by thé non-occurence of the
bound variable Y in the body of (LAMBDA(Y)X). '

2 In.particular, (LAMBDA(X)(X X)) is difficult to interpret as a function in
the usual set-theoretic way. Hindley[21] speculates that a theorg of
functions based on combinatory logic, rather than set theory, might
consistently allow self-application; while awaiting further developments we
remain pessimistic.
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The mechanism of ¥*-conversion presented in this chapter is reminiscent of the
4Scott construction., Specifically, we introduce means by which the various
approximations of an abstract semantic element can be represented as
expressions inrthe language itself, and provide for the syntactic conversion
of an element X to an approximation X° of X. We have thus come to view

. %®_conversion as a syntactic analog of the Scott construction in which
approximations are expfessed in the domain of the language rather than in the
abstract semantic domain. |

The addition of ®*-conversion to the lambda calculus leads to a multiplicity of
normal forms for every expression. We shall see, for example, that the Y

operator
Y= (LAMBDA(F) ((LAMBDA(H) (F(H H)))(LAMBDA(H) (F(H H)))))

which has no normal form in the conventionél lambda calculus, has'infinitely

many normal forms

%
(LAMBDA(F)(F %))
(LAMBDA(F) (F (F %)))
(LAMBDA(F)(F (F (F %))))

when *-conversion is admitted. Each of these normal forms may be interpreted
as an apprbkimation to the Y operator, and in any context where Y gives a

normal form value, one of the above normal forms of Y will give an identical

value., Since the semantic element associated with each of these normal forms.
is clear (in the sense that normal forms are semantically distinect) we retain
something of the semantic simplicity of the lambda-I calculus. The semantic
value of a given expressionAié simply the set of normal form values of that

expression, and expressions X and Y areysemahtically equivalent if and only if

they have identical sets of normal forms.

One of the motivations for %~conversion is to enable us to retain the power of
the unrestricted (lambda-K) calculus while restricting beta conversion. It is
intuitively reasonable to expect that one can always find a sufficiently close

approximation to the argument of a lambda expression that the restriction on
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beta conversion becomes unimportantnwhere ®_conversion is allowed, and much of
the remainder of this chapter is devoted to the proof that this is in fact the

case.

5.1.2: Theorem on Normal Forms

The main result of this section sheds light on the ordering (under ») of the
normal forms derivable in R-* from an expression A. We begin with the
following definition, adapted from Curry[12]:

Defn 5.2: Let P be a redex and.Q be a subexpression in an expression B, and
let B° be the result of replacing P by its contractum P° in B. We define

the residuals of Q with respect to P as subexpressions of B° designated
as follows: )

Case 1: P and Q are the same redex in B. Then Q has no residual with

respect to P.

Case 2: P and Q are non-overlapping subexpressions of B. Then the
rdsidual Q° of Q is that subexpression in B’ which is homologous! to Q

in B.

Case 3: P is a subexpression of Q. Then the residual of Q in B is the
expression Q° which is homologous to Q in B. We note that the

occurrence of P in Q has been replaced by P’ to make Q°.

Case U4: P is a beta-redex ((LAMBDA(X)M)A), and Q is a subexpression of A.
Then P° is S[A;X;M] and contains n instances of A corresponding to the
n free occurrences of the variable X in M; let these instances of A be
identified as 4, ... A . Each Ai contains an instance Qi of the redex
Q; these n expressions Q ... Q, are the n residuals of Q in B". Note

that n may be zero, in which case we term the contraction of P a

cancellation and Q has no residuals.

! hoﬁologous subexpressions occupy the same relative position in their :
' containing expressions; thus A in ((X (W A) Z) Y) is homologous to B in ((P (
B) g) S%digdependently of the structure of the subexpressions X, W, Z, Y, P,

y R, a .

[



-82- 5.1.2

Case 5: P is a beta-redex ((LAMBDA(X)M)A) and Q is a subexpression of M.
Then P“ is S[A;X;M]) and the residual Q° of Q is the subexpression of
P° which is homologous to Q in M.

Case 6: P is not a beta-redex, and Q is a subexpression of PF. Then Q has
no residual in B”.

Informally, a residual of an expression Q is am image of Q@ after a
contraction. Consider, for example, the residuals of the subexpression G‘Ews
3 4) in the beta-redex

( (LAMEDA (X} (PLUS X X})}(PLES 3 3)) o £5.31
whose contractum is the expression
(PLBS (PLUS 3 4)}(PLUS 3 A})

We note that the two residuals of the subexpreasion (PLUS 3 3) of expression
[5.3] are the occurences of (PLUS 3 &) in the contractum. Contraction in the
delta redex (PLUS 3 B) ip expreasion [5.3] yields the residual

( (LAMBDA(X) (PLUS X X)) 7)

We shall cccasionally find it useful to speak of the rgsid:ual of an expression
Q after a series of contractions; we may thus refer to Qn as a residal of Q
with respect to the sequence of contraections mt;...wﬂ if there is a
subexpression Qn—l of B ﬂ-t such that Q.“_f is a residual of Q and Qn is a
residual of Q:n_ Thus comsecutive beta- and delta-contrastions on expression
[5.3] yield

t"

(PLUS T (PLUS 3 B8))
which contains a single residual of the subexpression (PLUS 3 4)}. The
following lemma establishes that the residual of a redex is always a redex:
Lemma 5.4: Let P and Q be redexes in an expression B, and let Q° be a
residual of Q with respect to P. Then Q° is a redex.

proof: We consider the followling callectively exhaustive cases:
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Case 1: P and Q are non-overlapping.1 Then Q° is the same redex as Q.

Case 2: P is a subexpression of Q; we consider the cases of the syntax of
Q:

a) Q is a beta-redex of the form ((LAMBDA(X)M A). If P is a
subexpression of M, then Q° is the beta-redex ((LAMBDA(X)M’)A). 1If
P 1s a subexpression of A, then Q° is the beta-redex
((LAMBDA(X)M)A "),

b) Q is a *-redex of the form (* M); then P must be a subexpression of
M, and Q" is the *-redex (* M~),

c) Q cannot be a delta-redex, as it contain P.

Case 3: Q is a subexpression of P; we consider cases of the syntax of P:
a) P cannot be a delta-redex, as it :ontains the redex P.
b) P cannot be a ®*-redex, as then Q would have no residual.

c) P is a beta-redex of the form ( (LAMBDA(X)M)A) where Q is a
; Subexpression of A, If Q is cancelled by the contraction of P, then

Q has no residual; hence M must contain 1 or more free occurrences
of X. Then each residual of Q is the redex Q itself,

d) P is a beta-redex ((LAMBDA(X)M)A) where Q is a subexpression of M.
We examine syntactic cases of Q:

1) Q is a delta-redex; then Q° is identical to Q, since Q may
contain no free variables (in particular, no free occurrence of
X).

11) Q is a #*-redex (* M). Then Q° is the *-redex (# M7),

" 111) Q is a beta-redex ((LAMBDA(Y)B)C). Then Q" is a beta-redex of
the form ( (LAMBDA(Y)B’)C’).

] - :
tEwo expressions are non-overlapping if neither is a subexpression of the
other.
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The converse of the above lemma is not in general true, i.e., the residual P’

of P may be a redex even though P is not. Consider for example the expression

P = (((LAMBDA(X)(LAMBDA(Y)Y)) 3) 4)

which is not a redex. Contraction of the beta-redex in P yields the residual
P’ of P given by

P’ = ((LAMBDA(Y)Y) &)
which is a beta-redex.

We should like to distinguish between feduction steps in R-#* which are
contractions and those which are abstractions; for this distinction the

following notation is convenient:

Defn 5.5: A contraction step A»>B is a single reduction step from A to B
which is either a beta-, delta-, or ®-contraction.

Defn 5.6: A contraction sequence Ag»>A.13>. . 3>A, from Ay to A, is a reduction
_ sequence from AO to An containing only alpha-conversions and contraction
steps. The length n of such a sequence is the. number of contraction

steps in the sequence.

We now examine contraction sequences which terminate in normal forms,
beginning with

Lemma 5.7: Let X{Y]} be an expression containing a redex Y, and let
X{Y}»>...»>X" be a contraction sequence of length n, where X° is in
normal form. Then there is a contraction sequence X{Y'}))...>>X', where
Y’ is the contractum of Y, of n or fewer steps.

proof is by induction on n.

basis n=1: X° contains no redex, hence Y must be either contracted or
cancelled (by a beta- or #-contraction). If Y is contracted then
X[Y"}>>X" by the null sequence. If Y is cancelled then X[Y J}»>X’ by the
same contraction as X[Y]»>X". '
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induction: We assume the lemma to be true for sequences containing n or
fewer steps. Consider the first contraction step X[Y]))X1 in the
n+1-step sequence X[Y]»>...»>X", and let Y1...YJ be the j residuals of Y
in X,. If j=0 then the argument in the basis applies, as Y is either
contracted or cancelled in the first step. If 3>0, j applications of the
induction hypothesis establish that x]’>>...>>x’ in n-1 or fewer steps,
where X is the result of contracting each Y in X,. But x[r']>>x1’ in
a single step; hence X[Y'I»>>X° in n or fewer steps.

The significance of Lemma 5.7 is that the contraetion of a redex Y in
expression X cannot prolong the reduction of X to normal form: 'Informally, w
expect that if the subexpression Y Plays a significant role in the evaluation
of X the contraection of Y will shorten the reduction of X; 1f, however, Y is
irrelevent to the value of X then Y may be replaced by an arbitrary expression
with no effect on the evaluation of X. This oonsideration motivates

Lemma 5.8: Let BO>>BI>>...>>B be a contraction sequence of length n, and let

B be in normal form. Let P be a redex in BO’ and let P’ be the
contractum of P, Then one of the following applies: ‘

a) There is a contraction sequence B')>...>>B of n or fewer steps, where
B® is the result of substituting # for P 1n B ; or

b) There is a contraction sequence B'))...))Bn containing fewer than n
contraction steps, where B° is the result of replacing P in B by P°.

broof is by induetion on the length n of the contraction sequence Bo>>Bn.

basis n=1; then Bo>>Bn in a single contraction step. Let Q be the redex
contracted in Bo>>Bn. If Q is the same redex as P, then B° is identical
to B ne and (b) is satisfied. Otherwise P must have no residual in B n?
sinee B is in normal form and any residual of P is a redex. Then P must
be caneelled by a beta- or #-contraction in Bo>>B ,» and (a) is satisfied.

induction: n>1. Consider the redex Q contracted in the step Bo>>B1_ Ir
‘Q is the same redex as P, then (b) is satisfied as before. Otherwise we

consider the j residuals P1...PJ of P in B,. If j=0 then P is cancelled
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in the step B»>B,, and (a) applies. If 3>0, we apply (by the inductive
hypothesis) thé lemma to the contraction sequence B1>>...>>Bn, whose

length is n-1:

Case 1: Each residue Pi in B1 is convertible to #; i.e., (a) applies to
each Pi. Then (a) applies to P in BO' as B*>>B1' in a single step,

where B,* is the result of replacing each Pi in B1 by %,

Case 2: Some residue Pi of P in B1 iS not convertible to #; i.e., (b)
applies to Pi. By Lemma 5.7, contracting any Pk in B1 cannot prolong
the sequence B1>>...>>Bn; by the induction hypothesis, there is at
least one Pk ghose contraction shortens the sequence. Then if 31‘ is
the result of contracting each Pk in 81, there  is a contraction

1>>...>>Bn in fewer than n-1 steps. Since‘B'>>B1' in a

single contraction step (of the same kind as Bo>>B1)'(b) is satisfied.

Sequenoe'B

- This completes the proof of Lemma 5.8.

The f‘o]y.ilov»ding theorem establishes a fundamental property of *-conversion.
Informally it ensures that, for any‘two normal form epressiqns A1' and AZ'
which are each derivable from an expression A, there is an expression A® in
normal form which is an upper bound of A.* and A% in the sense that ABS>A.*
and A'>>A2', and furthermore that A»>A®. This result is then extended to the
case of an arbitrarily large finite set of expressions A1 ...A each derivable
from A. The existence of normal form upper bounds of arbitrary sets of

expressions derivable f?cm A is essentially equivalent to the proposition
that A can be approximated, to arbitrary accuracy, by normal- forms derivable

from A.

Thm 5.9: Let A_® and A.* be normal form expressions-and let A be any

1 2

expression such that A>>A_#% and A»>A_%. Then there exists an expression

1 2
A* in normal form such that A>>A%, A'>>A &' and A’))AZ'.
proof: Let P[n;m] be the proposition that Lemma 5.9 is true for every A,
A1l, and A2' such that: '
(1) A>>A1' in n, steps and A>>A2' in n, steps, where n1+n25n; and

(i1) A contains m or fewer redexes.
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Then the lemma is true if and only if P[n;m] is true for all n and m; we

procede in the following steps:

1)

2)

3)

For every n, P[n;0] is true since in these cases A contains no redex

and is consequently in normal form.

For every m, P[1;m] is true since in these cases either A3A1' or

AzA_*: hence A must be in normal form and A%®=A.

2
If for some n and m and for all j P{n,j] and P[n+1;m] are true, then

Pln+1;m+1] is also true.

proof: Let A, 11*, and Az' be expressions such that the premises of
Pln+1;m+1] are satisfied; then A contains m+1 or fewer redexes, and
n,+n.>n+1 where n an‘dn2 are the respective lengths of the sequences

1 2= 1 _
A>>A_ % and A>>A_ %, We now choose an innermost redex Y of A, i.e. a

rede; Y which cintains no other rede:. Such a redex Y must exist
unless A is in normal form, which is ruled out because m+1>0. Let
A{Y} denote A (which contains Y as a subexpression) and let Y’ be the
contractum of the redex Y. Then by Lemma 5.8, one of the following

applies:

a) A{'}>>A1' in n
steps.

4 or fewer steps, and a{'}>>A2' in n, or fewer

[ 4

" b) A{Y'}>>A.* in n,” steps and A{Y'})&z' in n,” steps, where

n1 +n2 <n1+n2.

If case (a) applies, then A{®*} has fewer than m+1 redexes, and by

4)

Pln+1,m] the proposition P[n+1,m+1] is true. If (b) applies, then
P[n+1,m+1] is true if P[n;j] is true (where j is the number of redexes
contained in A{Y"}); by hypothesis, P[n;j] is true for all j, hence

P[n+1;n+1] is true.

If for all j P[n;3j] and P[n+1;0] are true, then for all i P[n+1,1] is

true.

proof is by induction on i. P[n+1;0] follows directly from (1);

P[n+1;1i+1] follows from (3) and P[n+13i].
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5) For every i and j, P[i;j] is true.

proof is by induction on i.

basis: from (2), P[1,3] is true for all j.

induction: Assume that P{i;j] is true for all j. By (1), P[i+1;0] is
true; hence by (4), P[n+1;3] is true for all 3.

This completes the proof of Theorem 5.9.

The proof of Theorem 5.9 involves a succession of steps from the expression A
to the normal form A%, such that the r'esul‘t:,AJ of each step retains the
property that AJ>‘>A1' and AJ>>A2". The moderate complexity qf‘ the proof stems
from. the obscure sense in which each step comes "closer™ to A%®; by Lemma 5.8,
each successive step. from AJ to Aj+1 either: ) o
i) _Reduces (by one) the number of redexes, while keeping the total number
of steps in the contraction sequences AJ>>A1' and AJ~>>A2‘ constant; or
i1) reduces the total mumber of contraction steps, while changing
- (increasing or decreasing) the number. of redexes by some 'arbitraby finite

amount.

The proof of Theorem 5.9 is essentially a demonstration that A% can always be
derived fraom A by such a sequence in finitely many steps.

The generalization to arbitrary finite sets of normal forms follows naturally:

.l...AJ be expressions in

normal form such that, for each i, A>>Ai. Then there exists an

Corollary 5.A10: Let A be any expr‘ession and let A

expression A* in normal form such that A>>A® and; for each i, A®>>Ai,
proof is by induction on j.

basis: For j>2, the corollary is trivially true; for j=2, it is‘ trde by
direct application of Theorem 5.9.

induction: Assume the corollary is true for each set A1
fewer than j expressions. By Theorem 5.9, there is an expression A12! in
12?>>A1rand A.‘Z'))Az..and A>>A12’; by the induction
hypothesis, we can now find an upper bound of the set A12', A3,...,A

.+.Ak containing

normal form such that A

J
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which contains j-1 expressions; let A* be the normal form upper bound of
this latter set. But, since A¥>>A,2#%, it follows that A%>>A. and ASXA,;
hence for each Ai, A#>>Ai, and A* is the required upper bound.

The final theorem of this section establishes that, for the evaluation of any
particular expression X{Y} (i.e., the reduction of that expression to a normal
form) there exists a sufficiently good approximation ¥* of -Y such that Y¥ is

in normal form:

Thm 5.11: Let X{Y}»>...»>X* be a contraction sequence of length n, where X®
is in normal form. Then there exists an expression Y* in normal- form,

such that Y»>Y¥® and X{Y¥#}»>X*%,

proof is by induction on the length n of the contraction sequence. If n=0,
then Y is in normal form.and is the requirad Y%, If n>0, we consider the
pesiduaIS»Y1...Yj of Y in X,. By the induction hypothesis each Y, can be
‘contracted to a normal form Y ® and the result-x1' of replaeing each Yi

i

in X1 by Y1‘ is such that x1'>>x9. Since for each i Y>»>Y.#*#, by Corollary
5.10 there is a Y* such that Y»>Y® and for each i Y'))Yi. Then

x{¥}>>X{Y'}>>x1>>.;.>>x*.

We may speculate further on the structure of the set S of ﬁbnnal forms of an
expression A. The above theorem shows that any:finite subset of S has an
upper bound in S; since ® is in S, we may claim further that each finite
subset in S has a lower bound in S. It seems likely that S forms a lattice
ordered. by », which is to say that each finite subset of S has both a least
upper bound and a greatest lower bound. In general such a lattice of normal
forms can be complete only for those expressions which have normal forms in
the lambda calculus. :

5.1.3: Relation to the Lambda Calculus

In thig section we demonstrate a sense in which the R-* theory is as powerful
as the (unrestricted) lambda calculus; in particular, we show that any

expression A which has the normal form A  in the lambda calculus has the same
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normal form in R-%,

Thm 5,12: Let A0->A1->...—>An be a sequence of beta- and delta-contractions
in the Lambda calculus (possibly intermixed with alpha conversions), and

let An be in normal form. Then A0)>An in R-%,

proof is by induction on n, the mumber of contractions in the sequence

A0->...->An.

basis n=0; then A, and A are identical, and the theorem is trivially

true.

induction: n>0; we assume then that A1>>A and must show that A0>>A . We
procede by showing that Ao>>A for each of the possible contraction steps
A0'>A1' If the contraction step is an alpha- or delta- conversion, then
the same contraction can be performed in R-%* hence Ao>>A1, we.thus‘need
only consider the case where A ->A, by a beta contraction. Let P be the

beta-redex contracted in the step A0->A1;athen P is of the form
( (LAMBDA (X)M{X}) Y)

and the contractum P’ of P is of the form M{Y}, containing J instances
(residuals) Y1...YJ of the argument Y. By Theorem 5.11 each Yi may be
contracted in R-% tq a normal form Yii, such that A1!>5>An where A1' is
the result of replacing each ,Y1 by Yi" By €orollary 5.10 there e.xi‘sts
an upper bound Y* such that Y>>Y* and, for each i, Y".»'»Yi' By _
contraction of the subexpression Y of AO{Y} we have AO{Y}»AO{Y*}; since
Y* is in normal form, the beta contraction of the redex P® in AO{Y'}

( (LAMBDA(X)M{X}) Y*)

yields a contractum M{Y*} containing j instances of Y*. But each
instance of Y* may be contracted to the corresponding Y #, hence

] » . » : -
AO{Y }>>A1 . Then we have Ao{Y}>>Ao{Y.})>A1 ))An,,and A0>>An in R-%,

The simplest illustration of the use of %-conversion to mitigate the beta-R
restriction involves the evaluation of the expression A given by
= ((LAMBDA(X)3) B)
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where

B = ((LAMBDA(H) (H H))(LAMBDA(H)(H H))
3ince B has no normal form in the conventional lambda calculus (or, as a
consequence, in Either-R) the beta-redex A cannot be contracted under beta-R.
tience A has no normal form in Either-R; in R-%*, however, ®*-contraction on the
subexpression B of A ylelds

A > ((LAMBDA(X) 3) #)

which may be contracted, under beta-R, to the value 3., We thus can derive the
value 3 from the expression A, despite the restriction on beta conversion. We
may of course derive other normal form values of A which involve the element
*. these may be interpreted as "approximations" of the value of A in the sense
that they retain partial information concerning the value of A. In this light
the expression * itself is a particularly bad approximation of A, as it gives
no clue about the value of A. The expression 3 (whiéh is, significantly,
®.free) is a perfect approximation of A since it contains all of the
information necessary to.derive the value of A -- i.e., A=3 in the lambda

caleculus.

5.1.4: Consistency of R-* Theories

We observe, at this point, that the addition of the *-conversion axiom to the
lambda calculus does not lead to iﬁconsistency; specifically, if X and Y are

* .free and X»Y in an R-# Theofy, then X=Y in the corresponding Lambda
calculus. The intuitive justification for this claim stems from the
unidirectional nature of ®*-contraction - there is no corresponding abstraction
operation. Thus if the reduction X»Y involves the %-contraction of a

subexpression U, then U must be cancelled since Y is ®*-free.

The consistency of the R-* Theories follows as' a special case of the
consistency of the Either-R-* Theories, which is proved in the next chapter;

consequently no prpof is given here.

5.2: Applications to the Lambda Calculus
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The theorems of this chapter may provide tools of general usefulness in the
study of the conventional 1ambda calculus. Suppose, for example, that neither
of the expressions X and Y have normal forms in the beta-delta calculus, and
that furthermore they are not interconvertible. We may still suspect,
however, that they are equivalent in an extensional sense. In particular we
may wish to prove that if either of Z{X} or Z{Y} has a normal form in the
lambda calculus then Z{X}=Z{Y}.

The mechanism of *-conversion suggests a technique for constructing such
proofs, Suppose we could show that in R-* the expressions X and Y have
identical sets of normal foms.1 From Theorem 5.11 it then follows that, for
any Z and every Z* in normal form, Z{X}»>Z* if and only if Z{Y}>>Z%, But
Theorem 5.12 extends this extensional equivalence to thé lambda calculus;
hence for any Z and any normal form Z%, Z{X}->2* if and ohly if Z{Y}->Z%* where
-> denotes lambda calculus reduction. We deduce from these observations that
any two expressions which have interconvertible sets of normal forms are '
egivalent in this important extensional sense. ‘ :

We may apply, for sake of illustration, the above technique to the example
cited by Scott2 of the two fixed point operators

Yog( LAMBDA(F)(Z 2))

and ‘
Y,=(Y, (LAMBDA(Y) (LAMBDA(G) (G (Y G)))))

where Z is the expression
(LAMBDA(H) (F (H H)))

YO and Y1 are not interconvertible in the lambda calculus, and neither has a
normal form. Noting that Y, contains the single redex (2 Z), the unique

single contraction which can be made reduces YO to the expression

(LAMBDA(F)(F (Z 2)))

! Specifica’11¥ we must show only that X>X® implies Y>Y#3X# and conversely,
where X* and 4 are any normal form expressions.

2 Scott[22] credits the examgle to Corrado Boehm, and acknowledges an
unpublished proof due to David Park that the expressions Y, and Y, are
equivalent in the Scott formalism. Y 1
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which again contains the single redex (Z Z). It becomes clear from the
sequence of reductions that this process leads to the conclusion that the

normal forms (in R-#) of YO are all of the form
(LAMBDA(F)(F (F (F (F ... (F #) ... )))))

and for every natural mumber n there is a normal form Yofn whose body is F

applied to ® n times,

We now refer to the definition of Y1. By Theorem 5.11, ior every normal form
Yj' of Y1{¥o} there is a normal form YO* such that Y’{Yo’}>>Y1'. Hence every
normal form of Y1 is a normal form of Y1{Y0'“} for some for some n. But each

of the latter is of the form
(G (G (G (G ... (G®) ... ))))

where G stands for the expression (LAMBDA(Y)(LAMBDA(G)(Y G))). But (G %)
reduces to (LAMBDA(G)(G (* G))) from which, by contraction of its ®*-redex, we
arrive at Y,'IEXLAHBDA(G)(G %)). Then 11'25(6 Y1'1).has as its maximal normal
form (LAMBDA(G)(G (G ®*))); and it becomes clear from this informal argument

that each R-®* normal form Y1'n of Y1 is of the form

(LAMBDA(G) (G (G (G (G ... (G #) ... )

whose body contains n applications of G. Thus each normal form derivable from

Y0 in R-® is derivable from Y,, and conversely.

1

Now if, for some X, X{Y0}=xl in the lambda calculus where X* is in normal
form, then by Theorem 5.12 X{YO}>X‘ in R-#, Then by Theorem 5.11 there is a
normal form Y # of Y

0 0

Y1*m>>Y0'n, then X{Y1}>>x' hence X{Y1}=X' by the consistency of R-¥, An

entirely symmetric argument shows that X{Y1}=X' implies X{Yo}=X'.

such that X{Yo'“}>>X'; since Y1 has a normal form

5.3: Summary

The mechanism of ¥®*-conversion introduced in this chapter allows expressions to
be approximated, to arbitrary accuracy, by expressions in normal form. The
initial motivation for ®*-conversion is the mitigation of the limitations on

expressive power imposed by the restricted beta-conversion, but the techniques
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of this chapter may be useful generally in the lambda calculus.

The principal technical results of the chapter are:

1)

2)

3)

4)

The introduction of * as a canonical representation of the undefined
(nonterminating) computation, and the axiom on star conversion asserting
that, for every X, X>®., This axiom is motivated by the interpretation of
» as denoting set theoretic inclusion in F#; the empty set, correspoﬁding
to the undefined computation ¥, is a subset of every element of F#%,

‘Theorem 5.9 and its corollary establish that for any set A1*...Ani of

normal forms derivable from an expression A,in B-?,;;here exists an
expression A%* in normal form such that A>A* and A%»Ai for each i<n.

Theorem 5.11 shows that if expression X{Y} is reducible to Z%, a normal
form in R-%, then there exists a normal form Y* such that Y>Y* and
X{Y®}>Z®%,  Informally this result assures us that,‘fé}‘every expression Y

"and -every context X{Y}, there is a sufficiently good normal form
‘approximation I* of Y. The previous result (2)then guarantees that, for

any finite set of approximations of Y, we ecan 'find a normal form Y#*
which may be used in lieu of any member of ;he set.

Theorem 5.12 provides the final tie to the lambda calculus, by showingv
that every normal form derivable in the lgmpda calculus is derivable in

R-' .

The R-* Theory is thus as powerful, in an important sense, as the lambda

calculus with unrestricted beta conversion. Furthermore, the R-* Theories
suggest a natural test for extensiénal equivalence of epressions: the
interconvertability 6f hormal forms. This ;gcgniquevgs applicable to the
lambda calculus, and the extensional equivaiénée>6f ﬁoncon#ertible fixed point
operators Yo and Y1 is used as an illustration.

The development of #-conversion in Chapter 5 is independent of the EITHER

reduction of the previous chapter. The combination ofrthe two mechanisms is
the project of the next chapter. '
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Chapter 6:
The Either-R-#* Theories

The desire for a syntactic basis for a language E, incorporating the EITHER
mechanism informally déscribed in Chapter 3, has led to the presentation (in
Chapter 4) of the Either-R theory. It was noted that the restricted beta
conversion of Either-R limits the usefulness of that theory since, for
example, it prohibits the expression of récursive functions. The inadequacy
of Either-R as a basis for the 1anguage E motivated the development, in the
last chapter, of ®*-conversion. The present chapter brings these efforts to
fruition in the form of the Either-R-* system, which consistently combines
*_conversion with EITHER reduction and provides a'satisfaétory basis for a
language E. ’

Specifically, an Either-R-# theory shall consist of the following axioms; each
of which is presented in a previous chapter:

alpha (Ch. 4) interconvertability (by renaming) of congruent expressions --
e.g. (LAMBDA(X)X) = (LAMBDA(Y)Y);

beta-R (Ch. 4) lambda conversion restricted to redexes whose arguments are
in normal form -- e.g. ((LAMBDA(X)X) 3)a3; |

various delta axioms (Ch. %) specifying the interpretation of primitive
functions and constants -- e.g., (PLUS 3 5) e 8;

epsilon (Ch. ¥) contraction of E-redexes-- e.g., (EITHER A B)»B (Ch. y),

mu (Ch. 4), abstraction of E-redexes -- e.g. E-(EITHER‘E E);

rho (Ch. 4), distribution of function application over terms of an E-redex
-- e.g. (F (EITHER A B))e (EITHER (F A)(F B)).

sigma (Ch. 5) '—contraetibn -- A>* for every expresion A.

6.1: Consistency of Either-R-#%

The cbnsistency.of Either—R-' may be established by techniques closely
analogous to the Either-R consistency proof. Recall that thé earlier proof
involved the notion of gnclosure, and culminated in the implication of
enclosure by » -- i.e., X»Y in Either-R implies X encloses Y. Extension of
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this technique to the present case requires that the mechanism of

%*_contraction be accounted for; accordingly, we extend the notion of

enclosure by

Defn 6.1: X *-encloses Y if, for each e-residue1 Y’ of Y, there exists an

e-residue X’ of X and an expression X* derived from X by #®*-contraction

alone, such that X#zY® in the lambda calculus.

Note that we admit expressions containing the element # in the lambda _
calculus, treating ®* simply as a free variable. It is clear from the above
definition that '-enclosure is transitive, and that if X encloses Y then X

‘—encloses Y.
The following Lemma and its Corollary confirm that ®-contraction introduces no

new equivalences in the conventional lambda calculus:

Lemma 6.2: Let X and Y be #- and EITHER-free expressions, and let X»X* by the
®—contraction of a subexpression U of X. If X#=Y in the lambda calculus,

then X=Y,.

proof: Noting that X* contains a single * (the contractum of U), treating *

as a variable in the lambda calculus gives us
X=( (LAMBDA (®)X#*) ©U)
‘by beta conversion. But X*z=Y, hence
X=( (LAMBDA (*)Y) U)

and as Y is *~free the contractum of this beta-redex is simply Y. Hence

X=Y.

Corollary 6.3: If X and Y are ®- and EITHER-free and X>X# by a series of

®-contractions, then X*zY in the lambda calculus implies X=Y,.

proof is by a simple induction on the number of #*-contractions in the

' Recall Defn 4.7.
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reduction sequence from X to X*%.

The above lemma and its corollary are hardly counterintuitive in light of the
developments of Chapter 5. 1In particular, it is clear that any occurence of *
in X* must be cancelled in the derivation of Y from X, since Y is ®-free,
Hence we may replace such occurences by arbitrary expressions, which are still
cancelled in the derivation of Y: the choice of the homo logous subexpressions
of X yields X=Y. |

The consistency proof for Either-R-* follows the format of the corresponding
proof for Either-R, except that the enclosure relation in the latter proof is
extended to ®*-enclosure in the former. The basis of this extension is given

by

Lemma 6.4: Let X>Y be a single reduction step in Either—R-'. Then X

S.encloses Y.

proof: Lemma 4.13 estaplishes the lemma for the reductions allowed in
Either-R; hence we need consider only the case of a %*-contraction. Let
U be the contracted subexpression of X. For each e-residue Y’ of Y,
there is a corresponding e-residue X  of X such that either X’ and Y are
identical or Y’ is the result of the '-cohtraction of an e-residue U’ of

Uin X", Hence X“>Y’ by ®_contraction, and X *-encloses Y.
The ﬂollowing‘theorem is the Either-R-* analogy of Theorem 4.15;

Thm 6.5: Let X and Y be expressions containing no occurrences of EITHER or L
and let X»Y in Either-R-#*., Then X=Y in the lambda calculus.

proof: By Lemma 6.4 and the transitivity of #_-enclosure, X *-encloses Y.
Since each of the expressions X and Y is EITHER-free, each expression is
its own un ique e—residue; and X>X*=Y where X»>X* by ®*-contraction alone.
By Corollary 6.3, X=Y in the lambda calculus.

Thus the consistency of Either-R-* follows from. the consistency of the lambda

calculus,
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6.2: Relation of #* to EITHER

We have already noted that the mechanism of #*-contraction leads to the
interpretation of each expression A as the upper bound, in the sense of », of
a family of expressions derivable from A. To formalize the relation between

such a family of expressions, we introduce the terminology of

Defn 6.6: Expressions X and Y are consistent in a theory T if and only if
there is an expression Z such that both Z>X and Z>Y in T.

Then the R-% theories are partitioned by the consistencywrelation into
equivalence classes, of which there are infinitely many (since there are
infinitely many mutually incongruent normal forms). Then the characteristic
of R-* which is established by Corollary 5.10 is that any finite set of
consistent expressions in nornél form has an upper bound which is also in

normal fom.

We note that in R-* the » ordering on the set or,exprqssions derivable from an
expression A is, in general, nontrivial. Unless Auia_the eleﬁent # the upper
bound of the set, A, is distinct from the lower bound #; furthermore there may
be infinitely many expressions A1)A2>... in the set such that for no J>i is
AJ>A1. This is cer@ainly not the case in the gonventional lambda calculus, in
which consistency implies interconvertibility and hence equivalence. What the
mechanism of ®-contraction has added to the lambda calculus is a method of
deriving from an expreséion A an approximﬁtion A% to A which is strictly
weaker in the sense of ». We may.then view the * mechanism as a method of
intboducing new expressions which are weaker than the‘ cqnventional lambda

calculus expressions, as each expression in R-* is derivabie from a ®-free

expression.

In this light we must regard the EITHER construct as a mechanism for
introducing stronger expressions into the lambda calculus. While R-* (and for
that matter the conventional lambda calculus) containvupper bounds only for
consistent sets of expressions, we can with EITHER represent the upper bounds

of arbitrary (enumerable) sets of expr%sibns.1 Observe further that, for

! Or, eguivalently, we may say that in the Either theories, every set of
expressions is consistent.
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arbitrary expressions X and Y, the expression (EITHER X Y) is the least upper
bound of X and Y since by Theorem U.4, Z>X and Z>Y implies Z>(EITHER X Y).
This suggests that the ordering of Either-R-#* expressions by » forms a

complete lattice.

6.3: Evaluators for E

As we have noted, interpreters for languages supporting the EITHER construct
require a slightly different structure from our previous examples: the
Eeducibility of expressions to multiple values suggests that an evaluator for
E should emumerate the vélues of the input expression. Accordingly, we
formulate the evaluator as a function E of 2 arguments, an expression X to be
evaluated and a mumeric index j specifying which value is to be returned. The
evaluator is constructed such that, for each X and j, E[X;3j] is an expression

- X° in normal form such that X»>X° in Either-i-%*, The value of E[X;j] is, in

general, not defined for all values of j; it may be assumed in particular
that EfX;3j] is undefined for those cases of X and j not represented in the
algorithm presented informally below. We again assume the existence of an
invertable pairing function, and use here the notation <n;m> to denote that
natural number which uniquely encodes the ordered pair of natural numbers

({n,m). We make the further assumption that for no n and m is <n;m><2.

E[X33] =
if j=0 then #;
if X is at.omie1 and j=1 then X3
if X is of the form (LAMBDA(Y)M) then (LAMBDA(Y)E[M;nl]);
if X is of the form (EITHER A B) and j=<1;n> then E[A;n];
if X is of the form (EITHER A B) and j=<2;n> then E[B;n];
if X is of the form (A B) and j =<<m;n>;p> then

APPLY(E[A;m];E{B;n];p);

where the algorithm for APPLY is given informlly by

APPLY[F;X;3j] =

1
Recall that the atomic exgressions are identifiers (including primitive
function symbols and variables) and numeric constants.
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if F is of the form (LAMBDA(Y)M) then E[S[X;Y;M];j];
if (F X) is a delta-redex and j=1 then F[X];
else if j=1 then (F X);

We note that E[X;j] is in normal form where it exists, and the value E[X;j] is
in each case the result of an Either-R-#% contraction sequence on X. Although
we don’t claim that the values E[X;j] of X are ordered by » for successively
higher values of j, the index j specifies, roughly, which of the '
approximations of X is to be returned.

We may envision implementations of the E interpreter which make use of massive
_parallelism to compute simultaneously the values of (F X) for many different
appromimations‘of X; such use of redundant computation may serve to minimize
the real time required to compute an acceptable value for X. Such an
implementation follows, roughly, the spirit of fast adder circuitry which
ccmpdfés redundantly the high order portion of a sum simultaneously with the
low order portion, and then selects the correct high order portion on the
basis rof' some intermediate carry. These implementational issues are largely
ignored in the present work, but present some intriguing possibilities for

future research.

6.4: Summary

The Either-R-* Theory may be used as the semantic basis for a language, E,
which solves the specific expressibility problem demonstrated in Chapter 4,
The evaluation of expressions in E lends itself naturally to the use of
multiprocessing techniques which tend to minimize the total real time
necessary to relize an acceptable evaluation of an expression (F X) by the
simultaneous application of F to one approximation of X while computing a
better approximation. While the implementation details are not pursued here,
we feel that current technological dévelopments make this area worthy of

further study.




7 » -101-

Chapter T:
The Either-K Theories

The inconsistency of EITHER distribution (Axiom rho) with the unrestricted
beta conversion of the lambda calculus has motivated the restricted beta-R
conversion of the systems presented thus far. This chapteb .explor-es an
alternative formulation, in which EITHER diétributivity is sacrificed in order
to accommodate the conventional (unrestricted) beta conversion.

The Either-K theories include the axioms alpha, delta, epsilon, mu, and the
(unrestricted) beta axiom of the lambda calculi:

Axiom beta: Let E be an expression of the form ((LAMBDA(g)b)e). Then EeE’,
where E° is the contractum S[g_,;g;j}_];1 : '

Since Either-K preserves the axioms of the lambda calculi, it is clear that
.the equivalence = in Either-K is a proper extension of the lambda calculus
equivalence =. In this sense the Either-K calculi are closer to the
conventional lambda calculi than the Either-R-* theories. '

There is, however, a fundamental sense in which Either-K is a more radical
departure from the lambda calculi than is Either-R-%*, In the latter theories
functions are ultimately applied only to normal form operands whose semantics
are those of the lambda calculi. The ability, in Either-K, to apply functions
to multivalued expressions (such as E-redexes) requires that we reinterpret

the semantics of each funetion relative to these new elements of its domain.

7.1t K-abstraction
By the axiom beta of the lambda caleculus, the expressions

M
and
((LAMBDA(x) M) A)

are gquivalent when A is an arbitrary expression and M contains no free

1 .
S is the lambda calculus substitution function given in Defn 2.6,
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oceurrences of the variable x. This fact is consistent with the observation
that the bound variable, x, is ignored in the body of the function applied to
A; hence the value of the application is independent of the value of the
argument A. Despite the intuitive satisfaction with which we accept the above
equivalence, the presencé of functions which ignore their arguments
cqmplicatés the probf of many otherwise stréightfoﬁward results in the lambda
calculus. Indeed, Church hés arﬁued against the inclusion of such functions
in his theories, fearing at one time that they led to 1nconsistencies.1

The task of proving the eonsistency of the Either-K theories, to be attacked
presently, is likewise complicated by the inclusion of functions which ignore
their arguments. The definitions and results of this‘sectioh brovide:%he
mechanism for dealing with the formation of such functions in latéé proof's.
We begin with

Defn 7.1: A K-redex is an expression of the form

((LAMBDA(x)M) A)

where A is any expression and M is an expression not contaihing free

ocecurrences of the variable x.

Defn 7.2: A K-abstraction is a reduction Stepz consisting of the replacement
of a subexpression M by a K-redex of the form - (
( (LAMBDA(x)M) A)

where A is any expression and x is a variable not occurring free in M.
We now wish to show that the K-abstractions in a reduction sequence can be
postponed to the end of the sequence. We introduce a term to describe

reduction sequences whose K-abstractions follow all other reductions:

Defn 7.3: A reduction sequence R is K-normal if no K-abstraction in R

1 For discussion and historical insight, see Curry[12], particularly the
canment at the end of Ch, 3.

2 pecall Defn 4.1.




7.1 -103-

precedes a reduction step which is not a K-abstraction.

Thus a reduction sequence XO>X1>...>Xn is K _normal if there is an i, where
0<i<n, such that the reductions X0>...Xi
reductions Xi>...>Xn are only K-abstractions. We wish to show that, for every
reduction sequence XO>...>Xn, there exists a K-normal reduction sequence from

are not K-abstractions and the

XO to Xn. We begin with sequences of length 1:

Thm 7.4: Let XO>X1>X2 be a two-step reduction sequence from XO to XZ, where
the reduction step X0>X1 is a K-abstraction and the reduction step x1>x2
is not a K-abstraction. Then there is a K-normal reduction sequence from
XO to X2, containing at most one reduction step which is not a -

K-abstraction,

proof: Let U be the subexpression of xo which is replaced'in the reduction -
- step x0>x1; Then U is replaced in this step by U°, an expression of the
form
((LAMBDA(y)U) A)

where y is a variable not occurring free in U, We exhaustively examine

classes of the reduction step x1>x2:

Case 1: The reduction step modifies only the subexpression A of U%; let U
become A° in x2. The K-normal sequence from XO to x2 is then the single
K-abstraction replacing U by

{{LAMBDA(y)U) A7)

Case 2: The reduction sﬁep modifies only the subexpression U of U°; then U

becomes W in X2. The K-normal sequence from Xy to X, is then:

a) Replace U in XO by W, yielding xo';
b) Replace W in xo' by the K-redex
' ((LAMBDA(y)W) A)

yielding X2.
Case 3: The expression U° in x1 is replaced by U by beta reduction. Then
X0 and X2 are identical expressions, and the empty reduction sequence
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ﬁauxznmxy

Case 4: The reduction step replaces some subexpression V of X1 by the
expression V', where V is not a subexpression of U’ and U’ is not a

subexpression of V. The K-normal sequence from Xo to X, is then

a) The replacement of V in Xo by V°, yielding XG';

b) The replacement of U in xo' by U°, yielding X2.

Case 5: The expression U’ is replaced by the expression
(EITHER U° U”)

The K-normal sequence from erto X2 is then
a) The replacement of U in Xo by (EITHER U U), yieldingkxof; ; -
b) The replacement of (EITHER U U) in 0' by (EITHER U° U") through two

consecutive K-abstractions,

- Case 6: The expression U’ is replaced by the expression
(EITHER ((LAHBDA(y)U).51)((LAHBDA(V)U) A2)
by Axiom rho. The K-normal sequence from Xo t;o\x2 is then
a) The replacement of U in Xo by (EITHER U_U),~yielding‘x0';
b) The replaeenent of (EITHER U U) in Xo’ by
(EITHER ((LAMBDA(y)U) A1)((LAHBDA(y)U) Az))
through two consecutive K-abstractions.

Case T: The subexpression U’ is replaced by an expression W of the form
( (LAMBDA(Zz)U) A)
derived fram U’ by alpha conversion. Then the variable z does not occur

- free in.U, and xo may be reduoed~tovxz,by a ‘single K-abstraction.

Case 8: Some subexpression V containing U’ is replaced by an expression
V’. Then one of the following applies: 5 . .
8a) V' is derived from V by alpha‘cOQVers;on.: Thenbwe may apply that
alpha-conversion to Xo, yieiding xé;,‘and'foliow ﬁith the
K-abstraction from Xo' to X,. _
8b) V' contains n occurrences of U°, where n is zero or greater. Then
there is a reduction of the same type frcn?xo t0>de, where XO' is
identical to x2 except for the n oceurrences of U in Xo' corresponding

to n occurrences of U’ in Xz. Our K-normal sequence from XO to x2
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consists of the reduction of X to X.  followed by n K-abstractions

0 0
replacing the occurrences of U by U’.

This list of cases is exhaustive, completing the proof.

Theorem 7.4 shows that every two-step sequence of reductions is equivalent to
some K-normal reduction sequence. The generalization of this result to
sequences of n reductions is complicated by the fact that the K-normal
sequence guaranteed by Theorem 7.4 may be of arbitrary length, thus ruling out
a simple 1dduction on the length n of the reduction sequence;

Lemma 7.5: Let R be a reduction sequence fron X0 to«xn containing exactly 1

reduction step which is not a K-abstraction. Then there is a K-normal

reduction sequenée from xc to xn.

- proof: by induction on the length n of “the reduction sequence R.-
basis: Trivially true for n<2; for n=2, guaranteed by Theorem 7.4.

induction: Let XO>X1>...)Xn be the reduction sequence R. If the step

KO>X1 is not a K-abstraction, then R is K-normal; hence we may assume

that X0>X{ is a K-abstraction. Then a single‘step‘of the subsequence

K1>...>Xn is not a K-abstraction; by the inductive hypothegis, there 1$'a
K-normal reduction sequence_X,)YoiY1>.;.>Xn of which only the reduction

. step X,>Y, may be other than a K-abstraction. But by Theorem 7.4, there
is a K-normal sequence XO>ZO>...>YO eduivalent to the sequence x0>x1>yo;

to X .
n

thus the reduction sequence XO>ZO>...>!0>...$X§ 15 K-normal fronxo

Defn 7.6: The K-index of a reduction sequence R is the number of
non-K-abstraction steps in R which follow the first K-abstraction in R,
If R contains no K-abstractions, then the K-index of R is zero.

Note that the K-index of a reduction sequence R is zero if and only if R is
K-normal. We shall base the induction in the proof of the next theorem on the
K-index of the reduction sequence to which it is applied.
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Thm 7.7: Let R be a reduction sequence from XO to xn_ Then there is a

K-normmal reduction sequence from X. to Xn.

0
proof is by induction on the K-index of R.

basis: If the K-index of R is zero, then R is K-normal.

induction: The K-index n of R is greater than zero. Let X >'...>Xn denote

R -
’ and let xiaxi 1 be the first K-abstraction in R. Let XJ>XJ+1 be the

f‘lrst reduction step following X °X1+1 in R which is not a K-abstraction;
the existence of such a j is assured by the K-index of R. Then the

subs eguence xi>xi 1 ...>XJ>XJ 1 of R contains a single step which is not
a K-abstraction; by Lemma 7.5 there is a K-normal sequence
Xi>Yo>...)XJ 1 from x to XJ 1° *q -
.4 )...)X Y . ..» J+1—"'xn has a K-index of n-t. By the induction

170
hypothesis, there is a K-normmal sequence from X. to XE.

"Then the sequence R” given by

1

It follows from Theorem 7.7 that every reduction sequence may be reordered in \
such a way that every K-abstraction follows every reduction step which is not
a K-abstraction. Curry[12] refers to. expressions as figtifious if they appear
as the arguments of K-redexes; hence A is a f‘ictitioua subexpression of Bif A
is cancelled in the evaluation of B. Iheorem 7.7 asserts that the
introducf.i'on of ﬁctitious sixbexpressions can be postponed to the end of a
reductibnv_‘séquenee. Consider the following expressions:
2 = (LAMBDA(X)3)
A = ((LAMBDA(H)(H H))(LAMBDA(H)(H H))
I = (LAMBDA(X)X) -
Then the reduction sequence
3»(Z4A)y » (I (ZA)) 7
is not K-nomal, since tbe K-abstraction 3>(Z A) precedes the beta abstraction
(Z R)>(I (Z A)). We may, however, reorder the sequence so that the fictitious
subexpression A is introduced in the last reduction step; the resulting
reduction sequence
35 (I3)> (I (2A4)

is K-normal.
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7.2: Consistency of Either-K Theories

It was noted, following the proof of the consistency of the Either-R theories,
that the technique used there was inapplicable to the Either-K axioms since

unrestricted beta conversion does not preserve the enclosure relation. We
avoid this difficulty in the corresponding proof for the Either-K theories by
arranging the reduction sequence of an EITHER-free expression so as to ensure
that arguments in beta contractions are unitary. Since the Either-K reduction
sequence of an EITHER-free expression can introduce non-unitary subexpressions
only through K-abstraction, the result of the preceding section provides a
critical step in the present proof.

We begin by distinguishing expressions containing only unitary subexpressions:

Defn 7.8: An expression X is pure if every subexpression of X, including X
itself, is unitary.

.

Note 1nfparticu1ar that every EITHER-free expression is pure. We now procede
to the major task of this section, which is the proof that the reductions
permitted by our axioms preserve purity of expressions. We begin with the

case of beta-contractions:
Lemma 7.9: Let Y be EITHER-free and let X be a pure beta-redex of the form

((LAMBDA(y)B) A)

such that for each e-residue X° of X, X'zY. If Z is the result of lambda
conversion on X (ie, Z is the result of substituting A for each free y in
B), then for every e-residue Z° of Z, Z'=Y.

proof: Let Z° be an e-residue of Z. Then Z° contains zero or more

occurrences of A,, A,, ..., A, where each A; is an e-residue of A. By
the purity of X, A is unitary, hence each A1 is convertible to A,. Thus
2°=Z°° where Z°° is the result of lambda conversion on

((LAMBDA(y)B") A,)

where B° is some e-residue of B. Hence Z”°=Y, and Z':=Y.
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Lemma 7.10: Let X, Y, Z, and Z° be as in Lemma 7.9, above. Then Z is pure.

proof: Let U be an arbitrary subexpression of Z, and let W be the

corresponding subexpression of B. If W contains no occurrences of y

which are free with respect to X, then W and U are identical, hence U is

unitary by the purity of X. If W contains such occurrences of y, then U

is the result of lambda conversion on '
((LAMBDA(y)W) A)

and, by Lemma 7.9, U is unitary.

We next show that beta abstractions preserve purity, so long as they are not

K-abstractions:

Lemma 7.11: Let Z be a pure expression containing 1 or more occurrences of
the subexpression-A. Let W be a beta-redex of the form

((LAMBDA(Y)B) A)

such that the contractum of W is Z, Then W is pure and, for every
e-residue W’ of W there exists an e-residue Z° of Z such that W'=Z".

proof: Since A is a subexpression of the pure expression Z, A is unitary;
~let the e-residues A1', AZ',...Ak' of A each be convertible to A’ in the
lambda calculus. For each e-residue B’ of B there is a corresponding
e-residue Z° of Z, such that Z° contains some AJ' in place of each free
occurrence of Y in B; hence Z°'=S[A";y;B”]. Each e-residue W' is of the
form ((LA, “MBDA, “(Y)B")A, ") where B” is an e-residue of B; but then W' is
convertible to S[A";y;B"1=Z°. Thus each e-residue W' of W is convertible
to an e-residue Z° of Z. Noting that homologous'subexpressions B1 and 21
of B and Z, respectively, are either identiéﬁ; or related by
Z1=S[A";Y;B1], we deduce by the above argument and the purity of Z that B

is pure. Hence W 1srpure.

Note that Lemma 7.11 fails to hold for K-abstractions; consider, for example,

the K-abstraction
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M>( (LAMBDA (X)M) (EITHER 2 3))

where M contains no free occurrences of the variable X. Clearly the
abstraction of M is impure regardless of the purity of M. We now present the
principal result of this section, from which the consistency of the Either-R

axioms follows directly:

Lemma 7.12: Let X»Y be a single reduction sﬁep other than a K-abstraction in
Either-K, and let X be pure. Then Y is pure and X encloses Y.

proof: The cases where X»Y is a beta conversion follow directly from Lemmas
7.9, 7.10, and 7.11; and if the step is an alpha conversion, the
. e-residues of Y are clearly congruent to the e-residues of X, and Y is
pure. If X»Y is a delta conversion then both X and Y are EITHER-free and
the lemma is trivially true. If X>Y is an  EITHER-conversion in either
direction, the purity of Y follows fr'm the purity of X and the
e-residues of X and Y are identical.

The consistency of the Either-K theories is presented as
[ 4

Thm 7.13: Let X and Y be EITHER-free expressions, and let X»Y in Either-K.
Then X=Y in the lambda calculus.

proof: From Theorem 7.7, we may assume that there is a K-normal reduction
sequence from X to Y; let X)...>xi>Y0>...>Y be such a sequence, where the
subsequence X)...)Yo contains no K-abstractions and Yo)...>Y contains
only K-abstractions. Then Yo must be EITHER-free, since each of the
K-abstractions Y1>Y141 can only increase the number of EITHER redexes,
and Y is EITHER-free. Y0=Y in the lambda calculus since each of the
conversionS’Yo§...>Y is a valid beta conversion.. By Lemma 7.12, X must
enclose YO since X is pure; but each of these expressions is EITHER-free

and hence is its own e-residue. Thus x=¥0=¥.

Corollary 7.14: Let X and Y be EITHER-free expressions, and let XeY in
Either-K. Then X=Y in the lambda calculus.
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proof: Directly from Corollary 7.13.

7.3: Functional Domains of Either-K

The semantics of the Either-K Theories bear a superficial similarity to those
of the corresponding Either~R-* Theories: in each case a functional domain F
of the lambda calculus is extended to a domain F* whose elements are
emmerable subsets of F. The question of restrictions on beta conversion
seems, at first glance, to be an issue of evaluation order whose semantic
ramifications parallel, say, those of the applicative/normal order
distinction. While this analogy can be defended, as it has been in earlier
sections of this thesis, there is evidence suggesting that the distinction
between the Either-R and Either-K semantics is of a rather more fundamental

nature,

The di stributivity of function‘application over EITHER terms, sanctiomed in
the Either-R Theories by Axiom rho, constitutes a limitation on the expressive
power of languages built on these theories. Consider, for example, the
function £ ﬁhose informal definition is

flx] = x+x;

which computes, in the- lambda calculus, a numeric value which is twice the
value of its argument x. Our experience with conventional applicative
languages reinforces an intuitive expectation that f will have only even
numbers in its range (assuming that the domain of f is the set of natural
numbefs). The natural extension of our intuition to the Either-R Theories is
consistent with the range of f there, containing enumebable'sets of even
numbers. In the Either-K Theories, however, we must realign our intuition.
The application of f to the argument either[2;3], for example, is reducible in
Either-K to any of the numbers in {4,5,6)} rather than the {4,6} result of
"Either-R. Thus although the semantics of the application of functions to
single-valued arguments remains consistent with the lambda calculus, the
behavior of functions with multivalued arguments differs between the Either-R
and Either-K systems.




A more bizarre demonstration of this difference is the function g defined

informally by

glx] = if x>x then 1;

else 0;

which, in the lambda and Either-R calculi is equivalent to the single argument

constant function which always returns zero. Yet the Either-K reduction of
gleither[1;2]] yields the values {0,1}, even though g[1] and g[2] each
evaluate to {0}. Since the behavior of g in Either-K violates the
distributivity axiom of the Either-R Theories, we clearly cannot express in
these theories a function with the properties of g; yet g appears to be a

canputable function definable on the domain F#*.

7.4: Summary

This chapter presents a consistent theory which combines EITHER conversion
with unrestricted beta conversion. This combination requires 1) that we

abandon the distributivity of functions over EITHER terms, and 2) that we
reinterpret the semantics of EITHER. The latter reinterpretation is only

hinted at in this chapter, and we confess that the semantics of the Either-x

theories require further study.
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Chapter 8:
Summary and Conclusions

There has been a definite tendency, in the course of the work reported here,
to provide questions much more frequently than answers. We regard this
situation, perhaps‘defensively, as a healthy attribute of research in a field

as theoretically immature as the science of programming'languages.

8.1: Summary

The general topic of this thesis is the correspondence between the syntactic
mechanism of an interpreter and the semantic structure of the language it
‘interprets, The.restriction of this study to the class of applicative
languages is defended, in Chapter 1, 6n the grounds that
1) Interpretive -mechanism for applicative languages is simple, since such
complications as assignment, side effects, and transfers of control are
avoided;
ii) The semantics of applicative languages are independent of the notion of
time;
iii) The theories of mathematical functions may serve as a semantic basis

fbr‘applicative'languages.

Expressions of an applicative language are viewed as representations of

objects in an abstract semanticd functional domain containing functions and
constants, and expressions are semantically equivalent if they represent the

same.abstract element,

Tﬁe stack- and tree-environment interpreters presented in Chapter 2 illustrate
semantic limitations imposed by typical compromises between efficiency and
expressive power. The defect of S1 must ‘be viewed as an interpreter "bug" if
'we take mathematical functions as a semantic basis, since certain expressions

are interpreted by S in a manner inconsistent with the behavior of functions.

The T interpreter of Chapter 2 relates the issue of evaluation order to the
expressibility of certain functions. The applicative order evaluation of T,

1 i.e., the FUNARG problem.
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in which arguments to a function are evaluated before the application of the
function, is seen to lead to the inexpressibility of functions which ignore

the value of their arguments. This motivates a preference for the normal '

order evaluation of the N model, in which such functions are expressible, The
demonstration in chapter 2 of a functional domain F of N-assures us that every.
expression is interpreted by N in a way that is consistent with our functional
semantics; it does not, however, establish that every valid semantic element
(e.g., every computable function defined on the semantic domain of N) is

expressible in N,

Chapter 3 demonstrates a function, WHICHFF, which qlespite its computability is
expressible neither in N nor in the lambda calculus. The expressibility of
WHICHFF seems to require a mechanism analogous to multiprocessing, and two
therapeutic language extensions are considered:
i) A "coding" primitive whichv allows a progfam access to the represeptation
of a function supplied as its ar‘gument;. and o |
ii) A primitive EITHER whose intéhpretation involves the dovetailed .
evaluation of its argumerits.
The admission of coding essentially abandons all semantic constraints and
allows the programmer to reinterpret expressions as he wishes; we thus di_scar-d
this alternative as semantic anarchy. The EITHER primitive may be justified
in terms of applicative semantics, however, by the exbans:lon of the semantic
domain F into the power set F#, each of whose elements is a subset of F. ‘Thus
once EITHER is introduced we must semantically associate each expression X
" with an emumerable set of abstract values or "meanings® of X. Such a
‘multivalued semantic domain is necessary to reconcile the function WHICHFF

with applicative language semantics.

The semantic domain F* motivated in Chapter 3 is suggestive of a complete
lattice ordered by set theoretic inclusion. The undefined (or nonterminating)
computation is naturally associated with the empty set in F*, and that
expression TOP whose values include ‘the entire domain of the lambda calculus
corresponds to the maximal element of F#, The semantic element associated
with the expression either[a;b] becomes the union of the respective F*

elements corresponding to the expressions a and b.
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In Chapter 4 our attention returns to the subject of interpretive mechanisms.
In particular we desire a formalism for syntactic manipulation of expressions

in a language including EITHER, reflecting the insight gained through informal

scrutiny of the structure of F¥ in Chapter 3. The formalisms introduced in
Chapters U4-7 are systems of conversion axioms, similar to (and based on) the
lambda calculus; each system (or theory) defines an ordering, », corresponding
to inclusion in F* -- thus, for example, either[a;b]»a and either{a;bl»b in

each system.

A complication arising in Chapter 4 involves the reconciliation of the beta
r-educt:ion1 of the lambda calculus with the intuitively motivated requirement
that functions be distributive over EITHER terms -~ i,e., that fleither{a;b]]
be equivalent to either[f[al;f[bl]. The EITHER-R system presented in Chapter
4 resolves this difficulty by restricting beta conversion to arguments which
are reduced to noﬁmal form; while consistent, the resulting theory is too weak

to be useful,.

The syntactic mechanism of *-conversion, presented in Chapter 5, solves this
problém of Either-R. Chapter 5 introduces the expression * as a canonical
(normal form) representation of the undefined computation, and extends the
ordering » so that the syntactic significance of * (A»* for every expression
A) reflects the semantic significance of the undefined computation (the empty
set 1s a subset of every element of F#). The use of ®-reduction allowsievery
expression, including the single-valued expressions of the conventional lambda
calculus, to be reduced to multiple normal forms. The R-%* theory developed in
Chapter 5 reinforces an interpretation of the normal forms derivable from an
expression X as approximations to X, and shows that for any context A{X}
having' normal form value A’ there exists a sufficiently good (normal form)
approximation X* of X such that A{X®} also has the value A°. This result has
major sémantic éohsequénces; in particulaq, it implies that meaning of an
expression x is completely characterized by the set of normal forms derivable
(in.R-*) from X. Moreover the result 1sbshown to carry over to the
conventional lambda calculus, since every normal form defivable in the lambda

calculus is derivable in R-#*., The extensional semantic equivalence relation

! Informally, beta reduction is the application of a lambda expression
(user-defined function) by substitution of its argument for free occurences of
the bound variable in the body of the lambda expression.
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suggested by these findings, namely the interconvertability of normal forms
derivable in R-*, is demonstrated by showing the equivalence of

non-interconvertable expressions for the fixed point opgrator Y.

The mechanisms of *-conversion and EITHER-reduction are combined, in Chapter
6, to yield the Either-R-* system. The respective functions of the two
mechanisms are, in a sense, complementary; roughly speaking EITHER allows
expressions to be combined to make "stronger" expressions while *-converSion
allows expressions to be resolved into weaker component expressions, The
Either-R-* system is consistent, retains the power of the lambda calculus, and
interprets EITHER according to the semantic notions of Chapter 3. We thus
view Either-R-* as a practical syhtactic basis for the construction of for
int'erpreter's of languages based on multivalued semantic domains; such an.
interpreter, E, is presented at the end of Chapter 6.

Chapter 7 explores an alternative resolution of the conflict between
unrestricted beta conversion and the distributivity of functions over EITHER
terms. The Either-K system presented in that chapter sacrifices such
distribdtivity in order to allow the unrestricted beta conversidn of the ’
lambda calculus. While this combination resulﬁs in a consistent theory (as
demohstpated in Chapter 7) it leads to a semantiec structure which is
fundamentally different fram that of the Either-R theorigs, in particular
regarding the application of functions to multivalued arguments.

8.2: Conclusions

The study of applicative languages from the complementary viewpoints of
interpretive and semantic structure leads synergistically, we feel, to a new
insight in each area. We have repeatedly found the syntacﬁic mechanisms and
semantic structures to be mutually illuminating, and view this dual
perspective as a principal influence on the direction and motivation of this
thesis.,

The following are viewed as the principal results of this thesis:

1) The motivation and presentation of an applicative model of

multiprocessing. The applicative approach to this mechanism has certain




8.2

2)

3)

4)
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technical advantages over conventional formulations; notable among these
is the complete irrelevance of time as a parameter of language semantics.

The corollary disadvantage of the applicative model is its uselessness in

the study of time dependent implementation considerations -- such as
scheduling, deadlocks, and synchrony of processes.

The formulation of the semantic domain F* for multivalued applicative
languages. We find particularly interesting the potential extension of
the Scott formalism which F* suggests: we have added; to the Scott
domain, wnique upper bounds of arbitrary sets of semantically distinct
elements. The lack of such upper bounds in the Scott model has been
conspicuous, and the EITHER construct presented here seems to provide a
natﬁral interpretation for them.

The mechanism of *-conversion and the results relating it to the

conventional -lambda calculus. These results augment the lambda calculus

‘with a syntactic substructure (i.e., tnae ordering under ») which bears

close analogy to.the semantic étructure developed by Scott. 1In addition,
%-conversion provides a concrete (syntactic) relation of semantic
equivalence which may illuminate the relationship between lambda calculus

expressions having no normal forms.

The presentation of consistent theories of EITHER conversion. The

anal&ses of these systems is by no means exhaustivé; we have not shown,
for example, that no axiom is derivable from the remaining axioms. The
theories do, however; provide sufficiently powerful syntactic mechanism

that interpreters may realistically be based upon them.

Directions of Future Research

~ We recognize that this section constitutes fertile grounds for an essay strewn

with universal quantifiers. Restricting our attention to specific questions

left unanswered by this work, we find most demanding of further attention:

1) The relative expressive power of EITHER-augmented versus CODE-augment ed

languages. Wevcdnjecture that every computable function defined on the
single-valuéd domain of the lambda calculus is expressible in the

1énguage E, and have in fact spent considerable effort in trying
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(unsuccessfully) to prove this conjecture. The discovery of computable
functions expressible (with coding) in C but inexpressible (with EITHER)

in E would be counterintuitive and somewhat depressing.

2) The semantics and expressive power of languages based on the Either-K
Theories. The presence of functions which compute different results for
a multivalued argument X than for singlevalued components of X raises new
fundamental questions: what is a computable function on F®? Are the
Either-K Theories functionally complete? If not (and we are pessimistic
on that issue) which functions are not expressible in Either-K?-

3) There appears to be a great deal of room for further development of the
theories of EITHER conversion. The extension of these theories to allow
eta reduction seems feasible. Further extensions may make the
extensional relation of semantic equivalence‘tractable by syntactic means
alone, e.g. by axiomatically asserting in Eithgr-ﬂ-' the equivalence of

expressions whose normal forms are interconvertable,

4) The area of interpretive mechanisms for EITHER-based languages has some
interesting possibilities. The techniques of computational complexity
studies, for example, might yield some quantitative bounds on the

camputation time necessary for the evaluation of classes of applicative

expressions. As the cost of computation power continues to plummet,
methods for making use of massive parallelism becomes a practical as well
as academic interest.

5) The reiationship between the mechanisms of EITHER- and ®_conversion and
the semantic constructions of Scott demand more serious attention than
the informal pai‘allels drawn here. Much of Scott’s important work seems
to bear rather directly on the systems presented here, and we recognize
that too little advantage has been taken of this resource.

It must finally be acknowledged that our quest for a functionally complete
language -- one whose domain D contains every computable function defined on D
~- has not been an unqualified success., The lambda calculus, whose functional
campleteness was suspect, was scrutinized and found to be incapable of
expressing certain functions (e.g. WHICHFF). To remedy this inadequacy, the
lambda calculus was extended via the EITHER construct; the result (the Either
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- theories) is, indeed, capable of expressing WHICHFF. However, the new -
systems have additional elements in their domain, so that the functional
completeness of the Either theories is again suspect. The results of this
thesis, then, suggest a similar program of scrutiny and extension to repair
their inadequacies. There is an inevitable circularity in this coﬁrse of
research, mitigated by the fact that each cycle allows us to'éee previous
cycles more clearly, ' '

A way a lone a last a loved along the/
riverrun, past Eve s and Adam s, from
swerve of shore to bend of bay, brings

us by a commodius vicus of recircula ion
back to Howthe Castle and Environs.

-Finn n’s Wake
lastﬁgirst lines
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