MIT/LCS/TR-140

NAMING AND PROTECTION IN EXTENDIBLE
OPERATING SYSTEMS

David D. Redell

Tius blank page was inserted to preserve pagination.

R I e T TR A e s

MAC TR-140

NAMING AND PROTECTION IN EXTENDIBLE

OPERATING SYSTEMS

David D. Redell

This report reproduces a thesis submitted to the
University of California, Berkeley, on September
23, 1974 in partial satisfaction of the require-
ments for the degree of Doctor of Philesophy in
Computer Science ’

Publication of this report was sponsored by the. Com-
puter Systems Research Division of Project MAC, an
M.I.T. Interdepartmental Laboratory and was supported

in part by the Air Force Information Systems Technology
Applications Office (ISTAO) and by the Advanced Research
Project Agency (ARPA) of the Department of Defense under
ARPA order No. 2641 which was monitored by ISTAO under
contract No. F19628-74-C-0198; and in part by Honeywell
Information Systems Inc.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE . : MASSACHUSETTS 02139

I S G A

This empty page was substituted for a
blank page in the original document.

' NAMING AND PROTECTION IN EXTENDIBLE OPERATING SYSTEMS

David Day Redell

stract

The properties of capability-basad,extendible operating systems
are described, and various aspects of such systems are discussed,
with emphasis on the conflict between free distribution of access
privileges and 1§;er ravpcation oﬁ‘;hpsg;g;iyilggegf The discussion
culminates in a set of goals for a new capability scheme.

A new design is then progosed!‘whiqp prgxﬁggg‘bothvtxpe exten-
sion and revoggtigggghropgb the definition of generalized gealing
of capabi}i;ies,‘ ?he_implgmentat;qp.pf this»dggl;p_is disgussed
in sufficient detail to demonstrate that it would pg»wo;hgb}e and

cceptably economical

The utility of the proposed capabi}ity mechanism is demon-
st;qted by describing two fac;l;t}es_;mplemen;ablg in terms of it.
_ These are: (az;réquable‘pargmeﬁeys for 9#11; bgtwegn mutually
suspicious subsystems; and (b) difectories providing a civilized

medium for the storage and distribution of revocable capabilities.

R s ST

ii

First, I wou14 like to thank my thesis advisor, Professor
R.S. Fabry, ’for providing that skillful blend of encouragement
and constructive criticisa which constitutes Jood mdvice. I am
also‘ indebted te the other members of "y Mm, Professor
James H. Morris and Professor Mirtin Cratis, for vesfing aud
commenting on earlier vergions uf this thasim. = (

It is a pleasure to thank the othors who resd and comsented
on earlier drafts, including Dr. James Cray, Dr. -'l{ﬁt’iaét Lampson,
Gene McDaniel, Dr. Bernard Peuto, Dr. Howard Bturgis, and espe-
cially Pavl McJones. Earlier conversatiocns wl-.thkmce I.induy also
underlie much of the work described here. o

Ruth Suzuki deserves the credit for the extremaly fast and
accurate t'gping of the final draft of ﬁvh t&i’i’u |

Most ®f all, I thank my wife Conufé, net oiily For her
patience andl understanding, but for typing the rough draft as well.

Abstract .

Contents

. - e« o " e & e . . .

Acknowledgments+ « « « o 4 o s o0 .'} ..

Chapter

Chépter

Chapter

1
1.1
1.2
1.3
1;4
1.5
1.6
2:
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
3:
3.1
3.2
3.3
3.4
3.5
3.6

Introduction o 4 4 W e a7 e .
Overview . o . v + i s s a0 4 e e e e
Protection o + o o o o v v v o o0 s uin
Framework for Discussion

The Computer Btility v . . .

Extendibility . . . , . . . « v 0 o o

Thesis PLAR & « + « o o o o o o o e s

A T&pical’Capability System

A Typical Capability System

Implementation of Capabilities in TCS

Revocation of Access Privileges . .'. .
Indirection Through Link Segments . . .
Type Extension . « . « + ¢ s &+ « o = .';

Hierarchies of Objects and Types

Type Extension Using Sealed Capabilities .

Goals for a New Capability System . . .
A New Capability Systém s e e e e e e
A New Capability System

Design Considerations for Revocation .
Interactions with Type Extemnsion . . .
Genefalized Sealing ., « . .
Examples of Generalized Sealing

Implementation of Generalized Sealing in

NCS .

11
11
21
38
54
61
71
77
82
83
83
83
96
97
106

113

Chapter 4:

Chapter 5:

References .

Some Implementation Details

Possible Elaborations on the Design

Two Facilities Using the New Capability System .

Possible Facilities Using Generalized Sealing
Revocable Parameters

Directories

Summary and Conclusions

Summary 0 ..

An Area for Further Research

The Future of Protection . . .

Page
130
134
137
137
138
143
154
154
154
157

158

Chapter 1

Introduction

1.1 Overview
" Computers have been with us now for juét‘@ver'a‘ddartef of a

Centdry." A1though their ultimate potential impact on society is
still hard to predict, it seems saféyfo\EAY'tﬁif':héy will rank
with such transforming inventions dé‘ﬁhe'pfié%ing’ersé and tele-
vision in their effect not only On-thévﬁaylﬁ6511Vé;‘but also on
the:wéy we think. Already their role has shifted from that of
‘'simply high speed calculating tools to a more fundamental function
as the n3€nrdi'reﬁbsit6rY'f0rkaﬁ:ihCreaﬁiﬁéﬁ%ﬁbuntﬁbfﬁébéiéty's
body of information. The near future éhdﬁrdthéémthE‘develobment
of computer utilities bringing relisble and economical computer
access to the general public, in the form of services of unpre-
cedented scope and power [Fr 74]. |

These new roles of computers raise many serious social ques-
tions which are far from being answered'[Rd‘74,’DF 65,'HEW 73].
Moreover, even if these questions arg‘saiisfhétorilﬁ answered, the
resulting policies will require an appropriate technological frame-
work within which they can be expressed and enforced [Po 74, Pe 74].
Thus, sdch social and legal issues as priVacf, secrecy, confiden-
tiality, and accountability gemerate a technologiéal problem which
could be called the "total system security pfobIéﬂ?"

The main subject of this thesiérisbgrdtecﬁibn. Protection is
that aspéct of the total system sédﬁrif&‘btoﬁiém;ﬁhidhvdealé with

the control of access by programs running within a computer system

to information stored within the system {La 71, Jo 73]. It is thus
concerned with prevention of undesired accesses, whether accidental
or malicious. Protection is intimately involved v:wifth‘ the naming

~ mechanisms used by programs to specify which Atess of i;nfomtion
‘they wish to access. We will diacyss gystem deaigne which provide
both naming and protection in a single iategrated mechanism [DVH 66,
7 Favb74]. We also emphasize the nption of fx,atlg‘y,‘uttibutnble
access privilqggg, in the qe,nse’t;lug .any Mpmqt of a ptivilege
may pass it on as he seea fit (La 69]. On the other hand, we recog-
nize the importance of allowing later revocation of such privileges.
The main result of the thesis is the description of a naming and
protection mechanism allowing both frme digtribs

ga of privileges

and subsequent revocation in an orderly wAy. .

R

Another desirable . characteristic of naming aM ptotection

SLAIN

mechanisms is extendibility (La 63b, iln?;ﬂ W’ pmperﬁy allaws

‘the constryction of the systea in layers or "leyals of abatraction”
[D1 68b], thus increasing relisbility apd allowiss user-written
extensiona to augment the system with naw services in 4 uniform

vay. The extendibility of the proposed mechs

ismg will be discussed

in some detail.

1.2 Protec

'l‘he prouction probhn is oply ope %; of ;?e total system
security problem. Thus, in discussing the pwc:@g problem, it
is important to delin;it the scope, of the discuagion by distinguish~
ing several other closely related problems, including:

a) Hardware reliability

'b) _ Physical security
c) User authentication
d) Perscunel certifigation.
ALl of the sbove problems exhibit two Xather uefsértuqate properties:
1) They do not admit of complgte solutioms, but enly of solu-
ions quantitatively comparable in terms .of ‘cost~effective
_prevention of trouble (e.g. high pemetratiom cost, long
,', mean-time-between-failures, u_.'e}gg‘.)‘ S
~2) The failure of a splution to any ope of them can under-
| uine the entire protection aystem. ,
On the other’ hand, if we hypothesize a situat_jygg Jin which problems
(a) through (d) have been complet:ely solved, we can consider the
protection problem as occurring in a self—containéd ar_tificial
‘universe, free of such real-world d}strqctjms‘ a8, Jocks which can
_be pigked and circuits which can burn out, Within this idealized
framework, the protection problem-dogs admit of complete solutions
in many important situatidns [La.74]. Thia #&Q39§ F9 say, of
‘c‘;':urse_;, that all sol};t.ionq_gonstmgted;,gim;sush a framework
are automatically complete. For example, m cap protect data by
requ;.ripg \ac_cﬂ;gsrsing pxogrm to provide a password ov key authorizing
the access [La 69]. Intemlpamm like external passwords,
are vulnerable to gueasing, and are thus not. a gouplete solution.
‘On the other hand, one can implemsns «Wm% keys which are
_unforgeable, opening lacks which are unpickshle, thus providing
a complete solution to the problem. The significance of this lies

not primarily in the reduction of the probability of failure (from

negligible to éero) but in the conééptual shift‘in how one views
the mechanism (with absolute confi&éncé, rather than quantitative
optimism).

It can be argued that the above viewpoint is untéaliétic;
since problems (a) through (d) ﬁo not‘adnicjafﬁcoﬁpleteasélutLOns
as hypotheéized. The point, however, is tﬁit\tﬁis factorization
of the fotal security problem allows one to take a very figorohs
approach to the situation in which malicicus intent manifests
itself in the behavior of high speed internal c¢omputations. This
is precisely the situation in which our intuitions are least likely
to prove reliable in assessing thefquuntitativﬁ’adequacy qf,inéom-

‘plete solutions.

1.3 Pramework for Discussion

For our purposes, we can regard the funct165 of thé operating
system as being the'transtrHAtion'of‘the basic hafdﬁhfe,tesources
of the computer into a universe bf abatract-feq§urces or objects,
and a set of operations for manipulating fhoqe obﬁects; This point

of view is often referred to as ths'chféﬁtfqriéﬁféd hgproach, and

the collection of operations as'the”ﬁbbtract~hnchine;’“3§éh object

has an attribute called its type, which detérnihes;the‘set of
operations which can meaningfully be applied to ths object. Various
types of objects are provided, most ndtahiy'grodﬁsshs. Processes
are the active entities in the system, c&ﬁturing tﬁé“iﬁtuitive‘
notion of a "locus of control"” or “executioquoint;“ _Proceséeé

can attempt to access other objects in the system by performing

various operations on them, and it is these accespes which are

checked and allowed or dissllowed by the protegtion nechanisms of
the system. At any given time a process hss %gme set of privileges,
| specifying which operatious it nay yerform ng which ijects This
set of privileges is called the ﬂﬂ!ﬂi_ in gpich the process is -
executing. The priviieges available to a process can change as a
result of either:
‘a) addition or removal of ?riygﬁggggw%gfitqtdpmg}pfof

execution, or
: TREE g

b): switching to a different domin of execution.
Thus, domains themselves have an independent existence snd are
objects in their own right. (The ,Teasons, for tskin; this point of

view will becoue clesr in Chapter 2) A dquain csn be chgracterized

:process.‘ It will often be convenient, hgwever, to refer to the

actions of a process executing in a donain ss being gerfqrmed by
the domain itaelf and we will use this active charactetization
when‘there is no danger of ambiguity.q o ‘

- The domsin model is genersl enough to deqcribe most protection
;schemes found in existing systems [Ls ?1] we are . interested in
:a perticular clsss of sueh schemes in vhich a donain congists of

a set of capabilities [DVH 66 La 6Q! Fs 74] A tapability serves

both as the neme of an object and as a set of Qrivileges to access

S 4

that object. Thus, in a capability system, a domain is able to

name only those objects to which it hss .access viq its cspabilities.
Those capabilities are stored in the mepoTy, o: the domain, which

. we wiliiasscme consists_of a number waseﬁgﬁ§F3v£99-§§e5BcD 721,

v

each of which comprises a variable length array of addressable

items. A domain may copy its capabilities and distiibute them as
it seﬁﬁ‘fit,'although it may not, of Eoﬁri@, -iﬁevérbitrary modi-
fications to them. ‘Thus,‘capabilities‘iiévl££§ 3a£a‘“seaied in a

box," a characterization which we will pursue in some detail later.

1.4 The Computer Utility

The mechanisms discussed in this thesis would be useful in
any computer system.' The éoﬁtext vﬁiaﬁ‘naxiniiésltﬁeir importance,
however, is that of the computer utility. Tha uotian of a computet
utility has received considerable attention 1n the litaracure [CV 65,
Sa 66, Sc 72, Fr 74] and seemns likely to plly an 1ncreasingly
important role in the future. Ig)such a utility, a large user
community shates an appropriately large inféinhtionﬂstarégeband
processing facility in much the same manner Eh&t-the~h;;f§ of elec-
trical ahd'telgphone utilitiesbshjfe the eérféépanﬂing ébwer gemera-—
tion and comsunication facilities. Such gﬁzaicaiiphariég‘(i.eq,
sharing of éhyéical‘resoutceé) pra?idé&ftﬁe 6§iéini1 qot@veifoq
developing multi-user coupnieﬁ sysﬁehsv Thitfﬁntive‘wasAﬁhe desire
to lower the cost of hardware resources thtcuuh econonies of scale
and statiaticnl smoothing of 1nad flnctuatiaus This 13 gradually
being rendered less important by the continual dtcline in hardware
costs. A much more fundaaental motive reuains howavur, ‘which is
in itself more than adequate justification for buildiug a conputer
utility. This is the desire fbt flexible g aharing (sharing

of informstion) between users, so that thgy nay bu@ld>u90n each

pthe:'s work [Sa 66!“De 68]. A L
Since the user commupi;z“of ?»CQ“EQEFE;VF¥%¥E¥M$%§§ﬁ§FF of the
public at large, the logical sharing within that community takes
on more the character of transactions in a marketplace than of
informal friendly cooperation [Fr 74}. In‘pégpggq}gg;!
~a) Sharing is often financially moti;dégg; _k)
jb) The parties 1nvolved nay npt trust gach pther.‘%w

Point (a) 1mp11es that sharing often r%presents aalggor rental of

the shated objectslv The rgntal case is a_strong test pf the pro-

tection and accounting mechaniam of the couppten;utility.' This 1is

particulazly true in the case of subletting, in Which access, to a

_rented object passes through severgl hands b?forpx eaching the end

~ user. Point (b) which is in part regult pg (a), reflects the

fact that the standard attitude of the pa;tieg,ipngyed,ipLa trans-
er o . i Col TR . e _c;‘:;"s‘-‘”“f IS A RS H g
action in fny market place is gsg&l}yvsdme degree of mutusl suspi-

clon. Since programs in the system serve as the agents of users

on the outside, the programs themselves algo exhibif mutyal suspi-
clon. More detailed discussion and expmples of mutual. suspicion

can be found in Lampson [La 69] and Schroeder [Sc 72].

One aspect of the mutual suspicion problem yhich can be awk-
ward to'hgﬁglg;iglthgrfac; that the degree of syspicion between two

users may change with time. For ssample, gn employee may join or

leave a company, or a renter may be late in paying bis bill. Thus,
| “ is important that the privileges of g given user or program to

~access a given object be able to change with time, Moreqver, it
_4a very destrable chat these adjustmente of privilegey be as patn-

less as possible. We will égdfgsgegbiﬁwiggugé;fasd@éﬁ}gggth;

e s R LR G L

particularly in the case of increa‘iihg‘ Sdﬂiiicioh‘where previously

granted privileges are to be revoked.

1.5 Extendibility

The construction of a large operating system is a formidable
task. As the richness of the usar enviromment proﬁded is incréased,
80 also is the size and complexity of the uyétiﬁ whi:ch‘ provides ii:.
In fact, unless controlled by a suitable dedi‘sh, methodology, the
complexity of a large operating system kay éﬁaiﬂé'biis'eﬁr being
cohplgtely’ debugged. One of the most proﬂsiug' mh ﬁtho&blogibﬁ
s that of layering, in which the system is comstructed &s a base-
';_gyg_l_" and & series of extensions. Rach layer extends the environ-
ment in which it runs, thus presenting & richer enviromment for
higher layers. The imy assumption in such a nyafty:‘ii 1s that no layer
has embedded in it any knowledge of the functioning of :higﬁex
layers. Mc, combined with the cbvious pucautim of prl"‘nécting
lower laiers‘ from imerference byk high,e’rr hﬁgi‘h,v ;ﬁ.ei&h a ctmtqfre'
in which changes to and malfunctions of higher hﬁré cmt affect
the correct functioning of lower layers in any way.

The construection of a layered system can be viewed in two ways.
From a top=down point of view, the task isom 0t‘ an;:
dividing the desired set of functions into a uqudmi of layers.
From a bottom-up point of view, the task is to tmiim iﬂ."nvpre-
existing system into a more complete environment bi'%add‘i’ﬁgﬂruéeful

 new features. The latter point of view {s most epprppriate in the

"Sometimes called the "kernel” [Wa 74] or "nucleus" [Ha 70].

i i

case of user-written extensions, although to gtlargq;exten:, the
T I S 5 AR ST AN

exact distinction between system ggpggﬁggwggghupegbg;ggxams becomes
inimportant in s layered desigm.

Given the object-oriented point of view discussed sbove, the
objects and providiag the eppropriste eperations on thep. This
tmedtately raises the question of how such obscre sre pamed and
how access to them is controlled, It iélﬁatdesirable for the base-~
level naming and protection mechanisms to provide these functions
fof_all higher level objects in the system, We will &escribe

various type extension features which allow this.

1.6 Thesis Plan

Since the mechaﬁisms described in this theais.represent fur-
ther developments of ideas fouhd in several existing or proposed
computer systems, it is appropriate to summarize those ideas.
Thereforé, Chapter 2 begins by describing a hypothetical system
exemplifying the relevant featurﬁs of those systems, and goes on
to discuss the use of those features in various situationé, placing
special emphasis on revocation of privileges and on type extension.
The chapter concludes with a list of goals derived from’thege
discussions.

The cenfral portion of the thesis is Chapter 3, which proposes
a new system design satisfying the goals derived in Chapter 2, and
discusses the implemeéntation of that design in some detail. Some

possibilities for further elaboration of the design are also

10

discussed briefly.

Chapter 4 examines the use of the mechanisms.of Chapter 3 in
providing two facilities helpful in common situations: revocable
parameters for mutually suspicious subsystem calls, and directories,
for storage and distribution of capabilities.

Finally, Chapter 5 summarizes the results of the thesis and

briefly evaluates their significance.

Sl S AR N e

are applicable.

11

2.1 A Typics1‘Cepsbility Systen ‘

The central goal of this thesis 1s the detailed specificstion

of a proposed behavior for capsbilities, and the description of an

.efficient implementation of capabilities exhibiting such behavior.

The main aspects of capability behavior to be examined are the
distribution and revocation of privileges, and type extension. To
bring the issues into focus we sketch a hypothetical system called

npcsh (for "Typical Capability System") to serve as a context for

4discussion and as a starting point from which various improvements

can be explored | This typical system as described below is not
identical to any existing or proposed system but eontsins feetures
found in many previous systems, including CAL—TSS {La 69 st 731,
Magnum [Fa 68] Plessy 250 [En 72 Co 72] KYDRA [Jo 73 Wu 74],
Project SUE [Gr 71], BEC 500 [La 69], and Multics [BCD 72 CV 65,

Sa 741.

In the definition of TCS, two conflicting considerations

'influence the level of detail at Qﬂicﬁ'thé'ﬁeéiaﬁs featsres should

be described. On the one hand, it is important that the definition

be specific enough ‘to make subsequent discussions clear and unam-

K]

' biguous. On the other hand the inclusion of extraneous detail

would not only cloud the issue but might slso falsely appear to

restrict the class of systems to which our subsequent improvements

a

‘ For these reasons, the definitionﬁthat fqllows :ends to pin

12

down only those details which are relevant to the later discussion.
In other cases, several alternatives may be sketched, or the fine
points may be glossed ovat.entirely.whgpenot chfigiently
interesting. | » ' | i)

In‘defining TCS, a logical plage ﬁo begin is yithrthe capa-
biliti&s tﬁnnselvts. As sta:eﬁ ?igviguﬁly;'d cap;bility serves
both as ﬁhé name of an object and as ivpacktgp of‘griyiiggegrallow—
ing the objcct to be accessed in various way: Iiiis aioo desirnble
to diatinguish between objecta of diffcrun: typts in TCS chis
distinction is carried in the capability, rathgr than in the object
itself, for reasons which will beco-e clcar du:ins che discussion
of type extemsion. Thus, a capability fﬂt an objact coutaina.

a) the unique idcntifier or "ID” of ths object,

b) the *123 of the object o o i
; c) a aet ef grivilgges to accesa tht object. | B

Each domain in Tcs has its own segnnn;ed gggress 32553. (As
poinced out by Fabry [Fa 74}, freely copyable ctpabilities elimi-
nate the need for comnunica:ing donains to share & common address
space.) The capabilities poesessed by a given donlin are stored
within che scsuants of its addre-s spnce.' At thn same tipa, those
capabilitics serve as the ckeleton which definnu und ctructutes
that addreis space. (It is~worth enphauizing :hat an address space
defined by freely cépyable capabilities nendu to be s uuch more
fluid structure than a nore convantional aﬂdres. space defined by

system data structures.) Aasocintad with each doulin is a single

The object ID has sometimes been referred to as the "unique name'
or "global name" of the object. We wish té wvoid this terminology
to emphasize the fact that it is the ~capability itself which
should be thought of as the global name of the objoct.

. Jevel addresses and/or_programmable

implicit segment, which serves as the ?rootﬂyofm;ga.address space.*

A capability for the implicit segment is part .of the definition of
the domain. All other segments (r objects of other types) are

‘ addreébed via cgpgbilitiea in_;hisﬁimpliéit segment, fIhe?e‘is no
fundgqe@tal'réasqn, however, to :ggg;;gf éapabili;iea tq}appeai
‘only in this implicit, segment; in-fagt,.it,gdiLfﬁeﬂqsqgﬁEd hete

~ that capabilities and "nq;mai" data can be ftée;y intermixed in
any segment. ‘(Wgys.of implementing chiaiyithqut ;qmprgm;g;pgqthe
1ntegrity,of the capabilities will ﬁe diqgugs#d“xpter,)

Outside the context of any‘gartiqula: add;ess space, we can

»défine the gbsqlute gddtegsAof an,iﬁem,Séépabil;gy or datum) to be
a p#ir <C,d>, where C is a capability (for a segment) and d

is a displqpeﬁgntv(yprd,byte; or bit pgﬁ?@x),” Let. (C,d) denote -
;he contents of add:ess_jﬁg,d>.v Thgg i£ Cii ia,g%ggpgbility for

_Some domain's implicit segment, a slmple address w. issued by

thet domain corresponds to the sbsalute address <Cpw> (L.e.,

| vhrdsyw‘ 6fﬁtﬁg_imp;ic%t,ségmgn;)g ‘§;$;;a¥1xé‘th§,stagdgxd notion
ofvthe‘two;part gddrgsgﬂwslw“pg wggg‘iqf iﬁléag?egt, 8 ié equi-
yalent t°,;<(01’9)ﬁ??r Whgpbcapgbil;t;gs can be stored anywhere
1guthekadd§esaiapgc¢,_addresses(4nvo;vingtthgp can become more com-
plicated, such as s|w,|w, = <((C;,8),¥,)¥,> . (wherg both <C,,s>
and <(CI,s),w > must contain _segment capabilities). This suggests

_the Pr¢v18499,9§,§$¥¢°& ?8rdva?9;1*?1=!!¢t8ﬁ1°n49£-thsse~nulti-

11437 regtaters to hold

el sl

This is similar to the Multics degcriggor segment [B(72] ,or the
‘CAL-TSS working C-1ist [St 73]." In the '[ra 68"

Plessy 250 [En 72] machines, it is effectively 1np1enentgd in hard-
ware in the form of several capability registers. Lampson [La 74]
refers to the implicit segment as the "access point" of the domain.

14

Antermed{ate capabilicids during the evaluation of such addresses.
Lacking these features, a domain ‘wuz‘&*ufécuy utilize ‘only
capubﬁiti:és in its mpnc‘tﬁ degménit; all other capsbil{ties would
have to be copied fnto the implicit segient &ﬂmm Various
forms of multi-level addressing have Been provid-d in cxisting
systems [Ha 72, St 73, Ne 72, Wu V41.

" Figure 2.1-1 depicts two domains nl and :bz . whose implicit
segments are 8, and 8, résp&&tiﬁi}?-.' The address space of Di
includes segments ’31, 83, ‘8'4 and 35' The a&rua spice of I)2
‘ S5, Sg» and S,
shared by both domains, and ‘that the eddress space of D, may in

includes 82, ’ﬁ‘t:.'f'chif §, and S, are
fact Include (indirectly) the entire address anee of Dl, depend-
‘ing upon the privileges in "Dz'vsl capsbility !orsl o

- As mentioned in Chapter 1, domains can be ‘characterized as |
either active or passive objects. In its passive role as a collec-
tion of privileges, a domsin in our tjﬁiéifé@dhiﬁti sﬁété’i is
identfeal to its implicit segment; from this point of #1&, the:
distinction between a domain and A segment is hiﬁply a question of
emphasis. On the other hand, in its active role_ as ‘an exerciser
of privileges, ‘& domain is sure to require ad‘ditiml m%atMtion
in its represemtation, rqiat:hxs to contiol s“ti-u"éf‘dtes, e’i*to.t"haadling,
entry points and ®0 on, which we will call 1&: &o&ﬁn‘-&udﬂg:or.
While the exact details of this extra Infiﬁ:htim ﬁ”énoi' televant
to the current discussion, it will sometimes be mful to d_ijl,»c:j.n—
guish between the domain in this larger ssnse, and ite implicit,

 Segment.

15

Figure 2.1-1: An example of two domains

16

The active characterization of QOnains is somewhat inpreéise,
since, strictly speaking, nothing is ever done by a domain but
always by a process executing in or associated with the domain.
This raises the issue of the exact relationship between 4q-ains and
processes.” Since protection and scheduling are essentially inde-
pendent fusctions, ic is tempting to dcﬂm du-n:lns and procesles
independently, and to allow processes (lt lsast potentially) com-
plete freedom to chopae their do-gia o!,qs-c§tttn.‘ This implies
that | | e

a) A given process may execute in.ygriqu,dohgins at

different times.

b) A given domain may have zero, ome, or le?aral processes
| executing in it at any givqii time.

'In such a scheme, two types of connuniettﬁen lechnnitns are required.

One is 1ncctproceau co-nunicaq;on, vhich dlluua tuo pqrallel pro-

cesses, in the same or differQnt &onnins ito oyuchrOnize their
execution and exchange messages. The othnr is tntnrdanain

communication, which occurs at the point im time when a process

crosses from one domﬁin into another. This is generally viewed as
being much like a procedure call/return aequnnce,ﬁincluding the
passing of parameters, and is thus referred to as a domain-call.
This will be discussed in more Attail later.

In actual systems, one or bo:h of two simplifying rnstrictions
is often imposed. The first restriction 13 to force a given process
to always execute in the same domain. This eliqinaaeq,thejﬁnther

complex machinery needed for domain-calls, and forces all

*)
Called "environment binding" by Jones [Jo 73].

17 .

inter-domain communication to be cast as inter-process communication.
While this is clearly a simplification of the base-level system,

in practiee it often forceé‘highér‘lévéf'séféﬁﬁfé to essentially

isimulané“déniihﬁcalls“ﬁsing*multfﬁib"ﬁfdéééﬁeé; dﬁ1y one of which

- is active “at any given time. This isiﬁﬁf"éﬂlyfiﬁéffiéiént, but can

also. be surprisingly clumsy, coﬁsiéérthé'%hatfﬁérdilél“brbéeSSes‘ N

seem to be such a powerful construct. Indeed, ;ﬁ%:hﬁuséd;bbtential

. parallelism seems to cause ‘much of the clumsiness, -

- The ‘other restriction which is often ‘vappi;ie‘a" 18 to allow only

one process at a time to execute in'a given domain. 'This can be

done dynamically, treating the domain as a "critical section," but

is more often dome statically, by associating hxﬁﬁkdbnain‘with a
single pfbcess, and allaﬁiﬁt'buly’ihﬁtﬁbrﬁﬁeﬁs*tdfétécute in it.
One'reasqn'for making this restriction is the“pteviously mentioned
correspondence betweeﬁ'domiina and address spaces. As pointed out
by Lampson {La 69} this teads to rhd<’inxiddﬁesé?ﬁénfliéts between
multiple processes executing in theé same ‘domain. Oné way to avoid
these conflicts is to quip each process with special base registers,
or a pushdown stack foi:wotking storage, but what such mechanisms
really provide is simply ‘the ability for &ich"of°fﬁé‘processes
executing in a given domsin to see the domain someévhat differently,
in a rather stylized way:. A wmore atréightforﬁﬁr&*and”fléxible
approach . 1s ‘to -actually provide &”differéﬁf””éﬁpy“iof‘fhé‘domain

for each process, and to use the standard sharing mechanisms to

avoid redundant storage of the identiéal compdnents of these domains,

18

(e.g. pﬁre procedures, unchanging upobiii&“g,; ;o:‘,c‘:..)«.*k. In ‘such a
| scheme, each process his.‘a‘ptgiun set of my.' Mmmna
them using the domain-call mechaniss.. Such.s ssheme will be assumed
in subsaquent discussions of TCS, although this is not essential
to the proper functioning of the improved capshiiity mechanisms
proposed later. | |

Given that a domain possesses soma .capability, it is allawed
not only to use the capability to access the indicated object, but
also to manipulate the capability itself in ceztain carefully
constrained ms,, including:

a) Copying: the capsbility may be freely cepied et eny time,

‘bere denoted by a. simple Assigpment,

¢+ C,
b) quucgg_.g privileges: the privileges in the: cnpbili:y

ug be reduced, bers demoied by R TR

| reanca:(c.,r),)
wheze P ,isf a mask indicating Eh‘ M?ct.ﬂ, of C-‘_"l
previous privilegas which ara. te hﬂmuimd. C
In some aystems [St 73] these two. mrumm h&addmnd
here, they are presented separately to eass the: J.m; tm&tm
to an i-pmved scheme . ‘
One use of the mechanisms demiqu mmmh;m N

*We will assume that a domain is created by an explicit create-
domain operation, and remsins in existence until dmstroyed [St 73].
A more complicated approach provides the automatic creation of a
domain whenever a call is directed to a global domain-pgatotype .
object [Wu 74]}.

19

passing of capabilities between domains via shared segments. 1In
one sense, this 18 a very powerful feature, sipce it ellows‘gny
possessor of a privilege to pass it.on without requiring any sort
of approval by the original donor of that privilege (except in the
special case in which the donor is empowered to disallow all such
v'sharing, e.g. ‘in the case of e "confined"’subsystem [La 73]) In
”another sense, houever this feature is very weak ‘since it pro~
vides only a relatively costly, clunsy and unstructured method of
inter-domain coumnnication. This weakness‘would be particularly
evident in the case of nistrust between domains (e g. "mutually
suspicious subsystems) Both of these considerations suggest that
" the domain-call nechnnism should provide for the passing of capa-
'bilities, as well as dats, as paraneters.: The latter conaideration
suggests ‘the utility of such a feature whils the former shows

" that the ability to keep a domaiu fron givingnaway its privileges
is already eliminated by freely copyable capabilities and is not
further compromised by allowing the passing of capabilities as

' parameters.

We assume that TCS allows the passing of capability psrameters
" ‘and implements this by copying the indicated capabilities from the
calling domain (or 1ler) to the called doaain (or callee) at the
time of the call and copying back any result capabilities at the

' time of the return. A domain—call thus takes the form

ca’ll (CG’P]. ’le":" ’e IPN) e

where the P, are parameters (data or capabilities) and CG is

20

a gate capability for the callee, alldwiﬁg dcﬁivltion at a particular

entry point. $imilarly, a domain-return takan the form

return (B1 Rz....,in)

where the R1 gre‘the rgsults and the gegnrnégatg is inglicitly
the site of the original call. We leave unppqcii#éd‘hérekguch
details as static vs. dynanicvalloc§tion_of quce;for capability
parameters in the receiver's addrescAspace;“qg;qict#c.type:ghecking
of capability parameters, and so on. o

| In addition to making unwnnte& acaeba@g:co.qugc:s, domains
can misbehave by nak:l.ng nmrmmble dmdt on the resources of the
system [La 71]. Some mechanisn must be providtd to prevent them
from 1ncerfering with each other in this nnnnsr. Sinee the details
of accounting and resource allocatioa are beyond the scope of this
thesis, we will sinply assume that each dol-in is funded by an
account, which limits its resource cansunption

One particularly tricky problem which occurs in capability

systems 1s the 'lost object prob;eq," which srises when all capa-
bilities for a given object are 1nndvarblp§1ysgi§§gfdad, mng;ng
explicit Qeatruction'of the objact 1onsaibl§, andﬂthe space occu~
pied thus'uureeovefable.n Given our attitudu ahout accouacing, this
is really an opporcunity for self-inflictcd h&ru, rather than mali-
cious sabotage. Nevertheless, recovery from such situations must
be possible, hence several possible solutions to'che‘lost object

problem will be discussed at appropriate points.

< g

21

/

2.2 Implementation of Capabilities in TCS

TN o

S .
SN FR R P

In this section we discuss, in a fair anount of detail cer-

tain aspects of the implementation of a system like TCS Three

considerations influence the choice of the particular mechanisms

i SR

described in this section For one thing, various systems similar

;§~‘

to TCS have been constructed and their impleuentations, although

Yitvg

varying in msny ways, have shown some‘eoumon features whose advan-

tages have become generally accepted.» In addition, certain facilities

not, included in any existing capability system are widely regarded

St :‘7: FETEATIT

as desirable, hence their implementation implications are of interest.
R e

Finally, discussion of implementation of TCS is intended to set

% owed Dligdan nfoo

_ the stage for the corresponding discussion in Cha?ter 3 concerning

the implementation of a more sophiaticated'cagability scheme

The most obvious necessity in implementing a capability system

is some mechanism to protect the representations of the cspabilities

themselves from unauthorized alteration. The proper functioning
3 e

of the entire system is based upon the intesrity of capabilities,

hence this mechanism should be simple, to maximize not only its

reliability, but also its understandability, snd thus inspire user

“L

confidence. Two mechanisms have baen proposed which we will call

£
s A .

A "partitioned menorY" and "tag;ed nsmory

,,,,,,,

All capability systems vhich,have actually been constructed

TRk U owa

have used partitioned memory. As its nane susgests, this scheme

involves partitioning the segments in the system into two classes.

cigiy o

capability segments which contain only capabilities, and data seg-

ilad ¥

ments, which never contain capabilities. One obvious advantage

‘of this mechanism is that the cost of distinguishing between

T B T I G P e e T

22

capabilities and data is distributed 6vét ati entire segment, reduc-
ing thevoverhehd per itenm, but tﬁenmaih‘advantége of partitioned
memory is more subtle; it involves théﬁavoiéanéé of certain address-
ing compiiéatiéns which arise in the tagged ;;ﬁ;f§'§§§t6ach; as we
shall see shortly. The main disadvantage of ﬁﬁrtiiiéhéa memory is
that the artificial division of a user's memory into two parts is
inconvenient. It is often quite natural for information structures
(e.g. entries in a table) to contain botﬁ aata'aﬁ& égfébilities.
While su;h intermixing can be simulated ﬁaiﬁg a pair of segments,
this 1s a fairly clumsy procedure. For thiﬁ’aﬁdjéthei reasons,
discussed in detail by Fabry [Fa 74], we réjeééjpartitidned memory,
as indicated by our specification of TCS as allouing free inter-
mixture of capabilities and data 1n any sagpnnt.
The tagged nenory appraach allows such 1atatn1xture by attach-

ing one or more extra "tag" bita to each 1nfotnntion 1tem in each
segment. The term "1ten" is used here to &enote the basic ‘address-
ible unit of nsmory (worxd, byte, etc.). _xhesa tag bits are unmodi-
fiable by any»doftware eicépt the noét:ceﬁttai routine of the base-
level system. _Each item's tag 1ndicates’i£s status as 'data’ or |
'éapability.' An item must be thgﬁe&>§§k$ capaﬁiiity tofﬁe used

as one. An item so tagged can be genzritedv;hly by copying another
such item, or by the baééélevel cap@bilityecraaiion‘rbutine. On
the other hand,fa tagged éapability can be éiiséd:by overwriting
it; either with data ér with anothe;.dépdbility.. (The systen gould
require thaticapahilities always be ex;iicitly efaséd Séfofe their

étorage is reused. We reject this as too inconvenient for the user,

. . a.coptiguous sequence. of AL

. .hagged memory s, given by Feustal

23

although there are cases in which it would mgke things .glightly
. . easler for the gystem.) = .. e amed v

- The ‘only preduction Gouput'mﬂh#%b -use tagRed WemoTy are
the Burzaughe BS000:[By 61} #nd its degcendanys,’ .The protected
 items in these machines are. "descripters' .rathex 'gp@n é gapgbilit ies.
- The differences between the in;é%'.?953%9%‘3*5}?%a:—“ﬁrﬁa.w%%!’t for
one; desguztes;ev@re.,.;c,qnsidesa,b;,xvrswé}}??tﬁm;, cgpapilities. A
‘Burroughs descriprer is 48 hits lmz while weny gxtendible capa-
bility, systems have allewed iy exseps;of 100 bite, fgr;eqch capa-
‘bility. Tbe impact of this Wl beeome clesr in & mamept, .

- While the advantages of tagged Bemgry.have hesn slovly gain—
. ipg aecepkance,.smothier txgod which has. had eyen mexe jmpact is
_the reductipn of the size of;khe addrssssble %&‘F;Hﬁ"—mﬂ

While machines with items of 36, 48,:9% even, 6f) bits yers coumon

. ip the pest, she byse (8 bit.charscrex) is, rapidly.besewicg a
unjversal siaodsrd, and SETORS, STGWMRCA.cap,be mede, for, the ultl-
mase reductiop to:bit addressable.pemories. . 1p, sush,gcheses, a
larger unit of 1ngomtion (gg ;.&}c%i-mnil rg,x;@?&m;?d by
. apd; pamed by the addresp of its
. first item plus its length (implicit oF explicit). inm iteps.
. There: is a very malmnflic& basmeen, thepe typ feprures.
. Two_problems. ariee when the,re ton. af, & 5egags capability
iteps, in memory.;. Ope, 18 the obvious
increase in comt of associating @, tag With epch item ap the, items
- get smaller. The gther is the mmq 1 pueh 4 acheme, of
Various experimental. machines. have use w Aneluding

the Rice computers and Iliffe's BLM. A 3emtal scussion of

e 73] -

i a pequence of addressabig

24

addressing thc utddlie of a &Mif!:ey.

| If 'we assume that each item hae & oue bit tag, we sre faced
with the question of ‘which of the items fa & capabflf€y should have
thefr tugs on (f.e., set to 'capabifity'). If all of ‘thefr tags
are on, there is no convanient way for the systew to distivguish
Between & valid capabilfvy address, and ona which pofnts to the
niddle of 4 capubility. Thé latter cuss eould 1e4d te the recog-
nition 6f the last few itéms of ome capabiiify, together with the
first few items of an imbedfsately following capudility, as con-
stitutifig & valid capabitifey, henée this asbigaity must be svoided.
- One way of doing this is to'turn on onty ‘tha tag of the first item
in each capability, and require that the first (ind only the first)
item located by a capubiiity sddress be so W ' This makes the |

" othet itesd in a éupatinty iddistingaistable frow data, however,

and leaves them open to alterttian unicia ‘dvery store opeérstion
scans the tigs of the appropriste numbet of preceding items and
tatns thel off to lnsure invalidation of any em&ﬂity which con~
taihe the wu(s) being modified.

It is clear, then, that an sddress pointing into the widdle
of & capability mast be distinguished doth ‘fﬁu&_‘ a %1id'embuny
address atdl from ah sddress of untagged data. &h;i»sﬁgaep;s the
tieed for two tag bics on eaéh iten, omé indicsting whether the
itefi 1s part of a capability at @11, snd the othet ‘Wndicating vhe-
ther {t 18 the first ivem of a capability. Blace the wecond tag
1a tiecegsary only when the first one iabg. 1t cotm e’ f'mlen'l'
from the bits of the item only when needed (slthough this obviously

doesn't work on a bit-sddressable memoty, since the ftes would then

25

have no bits left at alll). ’ ; .

The other problem, the high cost of tagging small items,
exerts a strong pressure to increage the size of iggﬂg;;,Atguments
1n»favp§ of gmgll,igaws}ggue:gl;y:gigﬁﬂghgugggs gha;!fgér'akgiven
total yit capacity,.gddresg éize g;qgsmonL;tlogqr;;h?%gql;y‘with
ﬁgcreesing item size, Unfortunately, the cost of tagging grows
iinearly, reachingua max;mumvig ;he:§i§—aqgggg§thg,g§gg‘qf two‘
tagvﬁits:pe: ipforﬁation‘bit, which 1siclggtxykgutwpf‘;heigugstion.

One’glté;nﬁtiQe tagging ;cheng qﬁ}chvge:;gjegtﬁg}pra!small :
iteé; bu;vimpqgep ;he rgstrictioﬁ that ggpébé%}g%gs}cgg oqu;be
stored aﬁ éddreqsps which are an 9”59 ¥ﬂ;F$P1¢*9f the length of a
capability. In‘guch a schemg,uggpor%é;s:1tag:$ddge;§§§}e for normal
data;.while capability addr‘39€§79¥§§,;99§F§{2F3'Q?;§99.9F3d3t31~
mined "capability frames." Suphxgqut;ct}gggggggéfto gpmplicate
ﬁhe software and sgprifice“many,ofzghggadvgnpaggghof item-
addressability. y o

A much more sophisticated 8¢Pf9?£ ‘hi?h;9l99 involves the
notion of a capability frame, éttenpts to exploit the fact that
‘the assignment of tag bits to egch\i;ggﬁ;g_gzrg}gtivelykineffi—
'.cient encoding of the set of pogaib}g{@gtg/;;pg@il}ty configura-
tions in a given region of mnmpry.w’#vgn if»ggggﬁ&%;tiga,gqn*begin
at any address, the hqmber'of?di§t§§g9t£gxiﬁ?igﬁ%ggb;}p‘g%g;ven
cgpability‘framg is ﬂ;t‘latéai Atjiésiréﬁg}éﬁ%§b§§1i§%éiﬁ‘begin
in a frame, and can be preceded by one or more dﬁta items and/or
the trailing items of a:capgbiiigy which began in Eggbgggyious
frame. By associating with aacpiffES?iEhé“i@?éﬁ??kﬁiééié@?gent of

the capability, 1f aty, beginning in' the frame, it is possible to

. 26

simulate two bit tagging of each item. This is a somewhat compli-
cated approach, but may eVentually:provq‘to{be the key to bit-
addressable tagged memories, since it aliows the cost of tégging,
like that of addressing, to’grdw'dniyﬂlégéritﬁnically with decreas-
ing item size. This scheme also has the rather intriguing property
that reducing the size dfﬁéapabiiiiieé does ggg‘alwafé 1néréase the
efficiency of memory utilization. For ngngEn ﬁaﬁtétn of uéage,
there is an optimm size for cépabilitieé;wiucﬁ that deviation in
either direction increases the total ovnrhéaa‘fdf'capability
storage.* No existing system uses such é ééheie}.a1fhodgh it has
begn}tentativgly'1nvqstigatéd”by Gtay.[Gi 731;‘;r¥

We thus conclude that our 1ﬁplenenta£ibn of TCS should use one

of three tagged memory schemes: . “ |

a) Items should be single bits, and the scheme just described
should be used to simulate two Eii'tagsiﬁg.

b) Items should be a substantial fractibn‘bf‘the sige of a
capability, allowing a two bit tag ﬁ;f;itém:at a reasonable
cost. | | -

c) Items should be large enough to hold théﬁtire‘capAbility,

allowing a simple one bit tag per item.

*Assume, for example, a bit addréss;blik;i;6r§’1ﬁzwﬁich the average
. object is N bits long snd is pointed to by k. capabilities.
Then the overhead for capability storage is the fraction of memory

taken up by tags, plus the fraction holdipg ihe capsbilities them-
selves. As ﬂggznction of the size ¢ b:agagagigzgieq, this is

F(c) ct+log c + N+ke ° ‘

For instance, 1f N = 105 bits and k' = 10, the storage of 64 bit
capabilities requires about 133 of memory, while reduction to 32
bits or expansion to 128 bits increases the overhedd to about 17%,
and 16 bit or 256 bit capabilities pequire sbout 223.

27

To simplify subsequent discussions, we adopt alternative (c),
although it would probably not be feasible for TCS as described
since capabilities are so large. In Chnpter 3 however e will
describe a scheme in which capabilities fit into more reasonable
sized tagged items. ‘

B The second major implementation aspect to be discussed is the
mechanism for mapping the IDs found in capabilities into physical
‘addresses of objects. The most obvious solution would be to simply
»use the physical addresa as the ID but that would imply updating
all the capabilitiea for an object whenever it sas moved or deleted
This 1s impractical due to the proliferation allowed by free copy-
ability, especially in a system allowing intermixing of capabilities
and data in segments.

Most capability systems have solved this problem by localiz—
ing changeable information about objects in a aystem,data structure
and forcing all access to the object via capabilities to go indi-
rectly through this structure, which has been referred to by such
terms as ''Master Object Table" [St 73], "System Capability Table"
[En 72], and "Global Symbol Table" [Wu 74] Here, we will refer
to it as simply "the map."

There is a one-to-one correspondence betveen objects and

ntries in the mspr An object and its nap entry are created and
destroyed together. Since the capabilities for an object are not
updated when it is destroyed it is not satisfactory to use the
location of an object 8 entry in the map as its ID, since that

would prevent re-use of map space freed by object destruction. In,

fact, the ID of a destroyed object must clearly never be re-used,

28

since capabilities for the old object could‘théh be uéed to access
the new one., This suggests thaﬁliDs should berduite long, so that
the space‘of IDs can never be exhausted; even‘ifwobjects’are created
and destroyed at the maximum possibie'iét;‘for th§ entire life of
the system. The alternative of occaisionally stopping the‘system
and comﬁacting the ﬁpace of IDs 1@ §i#uaiﬁi;; Suf iéss ﬁttractive.
Any generﬁtor of a sequeﬁce of unique iong integéfs can be tﬁe
source of IDs. A counter of the Eotal'numbef.df objectb created,
or a reél—tiné ¢lock of sufficient iength and resolution are the
common gxanples.v In either case, ﬁiovision must Se‘mm&e‘fbr
;esﬁarting the system after a faiiute uithoufzany pdssibilicy of
iepeating a pfeviously‘unedtlb. | | ‘:

As a first approximation, we can consider the map translating
such st into/phybical addresée; a;‘béihg\inélé;nnted ;é a large
hash tgble.in'primary-memoty, keyed on iﬁé.? Figure 2.2;1 shows
the representation of capabiiities and naﬁ éﬂtries. (Tﬁé field
labeied "address" is issumed to contain any extra ihforuation
neceésary to~distinguish betwéen pfinary and aeqondar& storage
addréssea~ The details afe hct relevant hafe.) Bach éietciae of
a capability involves: N

1) checking the apﬁropriateness'of the aétion, given the

type and privileges in the edpabiliiy (and signalling
an error otherwiée), o \ -

2) hashing into the map to Qerify the existence of the map

entry, and hence the‘correspondiﬁg‘objéct (and signalling

an error otherﬁise),

29

type
capability: privileges
object ID
object ID
map entry:
address

Figure 2.2-1: Format of capabilities
and map entries in TCS

30

3) checking the address in the map entry for the presence

of the object in primary memory (and signalling an excep-
tion otherwise),

4) using the address to perform the access to the object.
These steps are simple enough to be implnaented in hardware or
firmware, and uould be used heavily enough to. justify such imple-
mentation.

As déascribed so far, the mechanism doee not deal adequately
with the two extreme cases of objects which are accessed very fre-
quently, and those which are acceesed very infrequently. Objects
in the foruar claas, such as segnents containinz executing programs,
are so heavily used that hashing into the map in primary memory is
unlikely to be efficient enough. Thus, it is necessary to hold
the most aétivg map entries in spaciai ,h""d',"'“e'

In our implementation of TCS, this hardware takes the form éf
a special associative memory, each element of which can hold one
map entry. The association is on IDs. On each access, the ID in
the capability is first presented to the associative memory. If
a matching entry is found, no reference to the map in primary memory
is made. Otherwise, the standard map reference is done, and thé
result replaces the least active (e.g. least recently used) entry
in the assoclative memory, as well as being used to perform the
aécess. The effectiveness of similar hardware has been clearly
demonstrated in existing systems [Sc 71].

Whenever an entry in the primary-memory copy of the map is
updated or deleted, any corresponding entry must be invalidated

in the associative memory. This can be done by selectively

"frequency of such context switching,

R e i e

31 -

clearing the matching entry (if any) or by totally flushing the aaso-

r,}w

SV GLLUOW 2{5{3 a0

éi;ifééihehofy.‘ The cost of reloading the entire associative memory

St 3 TSt FUES DI O ¢ 4 5 711 63‘34{; SN
bn eacﬁ such flush might be acceptable, but the ettra conplication
required tb do -elective clearfhg 13 ao Ibwﬂéﬁ:tsit would undoubtedly

,,,,, ’(& 3

" be ‘the method oF choize. Note that total ﬂnahing o the associative

3 hasun s Jdl?iifﬁ ‘
mamory is nevcr logicaiiy necessary duc to tha‘ﬁﬁt‘ﬁf context—

% SET b RNV
1ndependcnt names as association keys. éinilar ncchnnisns involv-

oA G SaR BT A

ing associatfon on context-dependeut‘naics rcquite total flushing
ii’ Al W E

each time thc ‘cohtext’ (dountn, roce;i;ﬁcic 5 is ﬂwitched of

s &l MO aseh
coutse. the' significance of this is entiréi;“déienaent upon ‘the

ST YRR 0 o G B LYY FAUT L S B

" One apparent ‘alternative to & special atsociativa ncnory would

PRSI AT & 0L E i3

;Se’Ehebﬁiocigibﬁjéfﬁa*zéhirgi purposd“associntlvc ucaory'orl"cache"

s GG STV S

“holdlhg the mest active items in primery memory, f68&1410ﬂ87°f how'

addn etk A
they are being ‘used. Such a cache wouidwnatutally tend to captnre

S A S s TR peny o R s VA Lbhee sa ¥ed H’:}. R sk Tt
the most active entries in the nap, ;nd thus speed up the standard

Tomd il BSanOYq IS DAY

:machinery for’ acccasing ‘via thc nap in primary memory. In spite

Madass v

CoF 1es’ appealing siﬁplicity, ‘we reject tﬁis scheme For several

titw . YT

reasons. For one thing, a’cache which s large CHO“Sh to be useful

farﬁhéﬁ4hap items (élg. instructions, data) is unlikely to Bc as

& :Fh.‘ B3I

fast as we can afford to maﬁe special hardunre which captures only

he ;_.{,.;»
P 'z D nm it

active map entriés. ?1acing map eatries he sé-e cache with

oo

’other ‘data also sacrifices any opportunity to acceas “the two in

” . ~ [T
1P30Y wRAYL §io

“baralicl In addition, the cache, by tranaccxcmly apeeding up

R S5 L ol M

’primary memory, in no way bypasses the hanhing necessary co ‘locate

a map entry. This means that entire “colliaion chains fron the

% Forts sisg W

map, rather than just active entriea, would need ‘to migrate into

R e s iRy duporngos

32

the cache, and would have to be scanncd on ?@ch access, thus further
degrading pcrformanee as conpared with that o{ the spocizl purpose
associative gnuogy. A nq:ngpgfrgl ?‘YLQf;5?{5?9S}§;1,9£,?h°39
’ébjectioni‘ip ;o s@y that the @éqba sijp{y ngkqg‘ghg ngpp;y“faster;
. the telative ovarhead for neccssing,pup catrias in memory is thus
not reduced by zhe cache. n??“‘,?_?ff?‘{_Y&?*f;‘%&ﬁﬁk%g,g°r other
purposes, is not optimal for °!REP¥13§,¢°t1??,“?PiFQF?ie‘tg
Another altémai:ive which‘ has been adopted in aome systems
stems from the observation that qgtivu capu&ilities, as well as
active map entries, should be held iﬂ fnat haz&WBre To ;h;s end,
programmable capability registers can be provided, into which an
exacut1ng progean can load capabilities befors, use [Fa 69, B 72].
Moreover, the map entry correspondtng to sn setive capabyiicy is
 iteelf active, suggasting that space be provided in the reglster
for the map encry as vell. An gccess via such “emect! sogtater
can chen proceed directly to the object. Of course, it is still
necessary to automatically relond any rcgistcfs holding copies of
a map entry which is updatad which ‘dds a ccrtain anonnt of com-
plieatipgg;o_che ngchgnia!: Hé;gg,‘;heVag@igigg?ogﬁgggg;&gg?ble
capability regi#ters, wﬁether duart otrnot. introduces tha standard
problens of register allocation, sgve[xcato@o anucncee and 80 .
on, as well as the»novel requircnnnt that & calling dpnnin _expli-
cely erase rogtoters containing capabilities oot being passed as
parameters. Other conaiderations in the use of cepability regte-
ters‘afe d;scu#ged by N;e§h§§:[§§¢221, L » ;
; ‘,We_adop: f;rwoprligg;gggggaggon of TC8 gggwagggg§gt%¥§:meqpty

approach rather than smart capability registers, although the

33

preference is not a strong one. We assume that the overhead of
fetcﬁlng the capabilities themselies from primary memory is suffi-
_ciently reduced by transparent ﬁnch;nisms such as a program-counter

holding the current proce&ure»capabiliiy,'otiﬁirdware implementation

of all or part of the executing dgqh@g 8 1§p11c1t segment.

gt}

The success of the associativenneaory approach is completely
dependent upon the observed goadoaey=!a¢mvg1y & small number of

objects to be heavily acceesgd du:iﬁ; any tiven small interval of

A . -5 S B2

time (i.e., fraction of a second) xOn a coaraet time scale (i.e.,
minutes), the same kind of bqhavturiflwbﬁggrved in the sense that

during a given coarse time 1ntervn1 noat of the objects in the

system will not be accessed at all.s This suggests that the map
entries for such objects be kept in%secondary memory, and be brought
..into. the.hash-. c&bl&~ia-yrin§ry ndiory an;y when needed [Fa 74].

W:’kza-.»-\m s curiagnd
"“Bxperience with a smﬂir scheine’ (tke "Active Segment Table'* [BCD 721)
in Multics shows that this approacgﬂpan be quite successful'

~~~~~

o

ficant speed-gegalty.

: 14-

¥

~ Another aspect °f TCS' $mpLgnan§nxinn tn»b.‘d&scussed ig para-

meter passing during domain calls. !his 18 included mainly ns

background for a more elaborate schp-a dpvaiaagdwin Chapzaz‘l

e s

hence it omits details not relévant to tﬁat discussion. Figure

2.2-2 shows, the qprgéggg,gg_;he domain call jmstruction. First,
the return gate must be retained, allowing re-entry into the caller

at the site of the call. This is saved in a pushdown stack of such




34

call(cC G’P

1'929. e ’Pn ) ’.
P

P « get _parameter(l,cfalidr) ;
put_parameter(I,Callee,P)

Figure 2.2-2: TCS domair~call opevatich




gates which is associated with the process.* Then the parameters
are copied from the caller's address space into that of the callee.
We assume the existence of two sub-operations internal to the base-

level system:

P+ getnparaneter (1,D)

pu;_pa:augtet (1,p,P)

These operations serve to fetch ;nd stote the I‘;h parameter P
at the appropriate 1ocacion in the address space ‘of domain D.
The actual layout oi the paranetjrs in the addreas space need-not
‘concern us here. We aaaume that RP. the nulbqr of parameters,
and GR’ the return gate, are automatically available to each base-
level operatidn. (Mpn;woébtatigga finish by éxiting through GR;
the exceptions are Hp-diﬁ4c$iii;£d donnin-rtturn ) To simplify
the discussion, we have omitted daacription of the copying of
results ‘from the cal;ge bacﬁ tg the callet ﬂhcn the return is done,
~since this is virtually identical to the handling of the parameters
during the call. Thus, Figure 2.2—3 ghows only the retrieval of
fhe return gate from the stack necessary to resume execution of
the caller.

In concluding our discussion of TCS' implementation, we
briefly consider two poshible vays to attack the lost object pro-

blem, neither of which we regard as satiafnccorj. One approach

is to maintain with each object a reference count of existing

*A variant of the call operation, referred to as a "jump-call” is
obtained by omitting the saving of the return gate. This causes
the callee to return not to the current caller, but to the pre-
vious caller. This is occasionslly useful, as we shall see in
Chapter 4. ”




36

return( )

ENTER

G+ pop( )

EXIT thru G

Figure 2.2-3: TCS domain-return operation
(without results)



.capabilities, and to delete an object when it bocomes lost, as well
as when it is explicitly delété&.*f iheféﬁaré 5&*1&552 threeudraw-
backs to this approach: | |

“a) The deatruction of oébaﬁiiitiéoﬁio;gi tﬁ;oogﬁiovofﬁriting

or segment deletion) must be detected and the reference

vemee Yo saret o a

counts maintained.
b) Lost self-referential structures are not deleted properly.
¢) An object may be 1ost to the uaer ﬁho funds it even
though capabilities exiat eIaewhere | A
We therefore reject the tefofénéévéohntfaﬁﬁfooch; z?ofiazcontrary
view, ses Walf, etal. [Wwu 741y, 0 TR
Another “approach is to allow "un-losing" of lost objects by
ailoﬁingﬂa;soith51§ihﬁtﬁotizodiéo;gié;(;fé?&gﬁf$wh£chdo§osVthe
funding ooEOuotj to ré{&eét éﬁonéﬁénddi‘Eé&ﬁ?é@idﬁ”&f”fuii§ privi-
leged capabilities for funded objects ICé 5?1 Thia 1s rather
W"inelegant and requires fairly couplicateé data ‘structures which
nay ‘or ‘may not ‘be otherwise necesanry. R VAT e |
‘Other approaches to d”booo;loveINSQiGtioo’to’tﬁo lost object
"problem can be envisioned’ (e. g global garbage coliection) but we
choose instead to postpone the solutfon until a higher level of the
system. Thus, the ﬁoae;1GVé1‘oyot;3d;fn§iy aifgwémobjocté to
become lost, and the users depend upon the directory system, as

" described in Chapter 4, to prevent this occurtence;"

NS RS

% . )

We assume that explicit deletion is slec igviilable; since other-
wise, the user who funda the- object nny be unsbie g2 reclaimsthe
‘space occupled by X,

TR




38

2.3 Revocation of Accegs Privileges

In ﬁhe contéxt of TCS, we now explore ve;ioueuapproaehes to the
distribution of capabilities and the revoeat;pg ofjaccess privileges.
As an example, we use the simple situstion in which domain A
wishes to grent to.domain B a set pf gg%y;legeg to access object
X.

The first approach which suggests‘;saelf_ie the simple copying
from A to B of a'capability for:zx“eoptaig}ng the desired
privileges as shown in Figure 2. 3—1 This is clearly the intended
use of copyable capabilities, and is quite satiﬂfactory provided
that the amount of trust A has in B teunins conltant. If,
however, A eubseqqeptlyvdee}des thﬁtfég'€~4;ff‘?‘@t,§?5 of privi-
leges is more appropriate for B, a_gecone:cepeyilieykfo:,‘x must
be passed as a replacement. Thisbpny;be{quite;;gcopvenient‘for B,
who may have made various copies ofetheAq:;g%&glbggpayézigf{ some
of which may have been passed on to other domatns, Moreover,
unless thebprivileges in the pewﬁcagab;l;ex greve superset of those
in the original, A must Pe§31?1§t199¥}!ﬂ“?“‘°,thﬁ? B “yill
retain both»eapabiL;;ies, ahd tﬁua possess the gpiqq‘ef Fhe:privi-
leges in ;ﬁe'two. In other words, priej}egeqtoneehgtan;ed can never
be‘revoked. . _

This simple example‘ehqés that the txpipe;ﬂeapebility mechanism,
thle useful, does not adequately cope with ehefdifficult situation
of changing levels of trust, particularly when trust decreases and

. revocation of: grivileges is desired.. Ee&ato pnopusﬁag any

We will generally omit the phrase "the nctsen nho owns & donain"
and simply inpute feelings of "trust" and “suspicion” to the
domains themselves.




39

Note:
— = object name
= = —f@ = capability propagation

—— C— —— T—— ———

Figure 2.3-1: Passing a capability



40

fundamental changes to the behavior of capabilities, however, it
seems appropriate to explore the various &pproaches which have
been proposed for solviﬁg"thé revéZatiahW;}oblem without making
any major modifications to the underlying capability mechanism.

Caretakers: A standard "escape hatch"” in most pfotection
systemis 1s the ability to interpose a "arctak!r" domain between
an object and the domains which accéss it. The cafhtaker can
_ implement any access control protodol ppgfiiﬁﬁﬁded by the system.
. This situation i;”shown in Figure 2.3-2, in uhich A has created
a caretaker domain C, and given to akw-gmc9pgbi1£ty to call G,
rather than d capabilityvtg access X di:ectly. Two problems
are immediately-evident. éOne is simply the inefficiency of
calling C each time B aécessea X. For example X may be a seg-
ment, in which case the eitra domain-call is likely to cost much
more than the segment accéss itself. The other problem is that
B now receives a ceﬁhbility'ofﬁgype 'domain' rather than one
indicating the type of X. Unlggs'thé system provides facilities
for allowing domains to="nasqu§tﬁde" as objects, this will change
the interface seen by B when accessing X. For example, to
store into a segment, B' must éxecute either a store-opgration
or a domaia;cail-operation, depending on whether or not a care-
taker has been interposed.

More generally, one can object that the caretaker mechanism
is not, in itself, a solution to the problem, but merely a frame-
work within which a solution can be implemented. We have said
nothing so far about the basis upon which the caretaker C decides

to allow or refuse a given access request. In the simplest case,




41

call-only

Figure 2.3-2: A caretaker domain



42

A specifies a single set of privileges and gives a corresponding
capability to C, who exercises it each time B (or any other
domain having a copy of B's capability) attenpts an ‘access. When-
ever A's levéi of trust in B -deefeaaég, a weaket .capability can
be given to C On the other hand, if A.<iﬁ$m!m'to confer inde-
pendently revqaable privileges to acegna dx oa’varioua domains
by authoriziug them all to call C,- ﬂQen ”?‘» given that it can
distinguiah rtliably between its ﬂarious cni16233 finds itself in
the positioh of a proced#s ia L@ppaon s,"neaange system" [La 71];
‘that is, C must easentially teﬁiavant the ﬁystcm 8 protection
machinery. This can be avoided by d’finiq‘ multiple caretakers
for X, each allowing an independeqt agt of privileges, as shown
in Figure 2,.3-3. Since the carecdkegs in this situation are not
really making any decisionsk ggt qte nctely using their privileges
whenever requested, one wouyd hqée that the overhead of an actual
domain call might be aV°1d§§1 é;ngill return to this point later.
Controi: Most mofétn pro;ecti&g systems provide some mechanism
to capture the notion éf one donninfieing ogbutdinatg‘to, or upder
the control of, anotheerGQAi;:}w¥§is is sunetine§ fepresented by
a static domadn hiferarehy [St 73], but we.will treat comtrol as
being a privilege which, when cqntained in a cgpability for‘a
 domain, authorizes the possessor of the cabcbility to control that
domain. (The distinction is not very important fdf‘thg discussion
which»follqws.) In our typical system, much of the power of con-
trol can be granted by giving one domain a suitably privileged,
capability for/gnother domain's implicit segment, as waé suggested

in Figure 2.1-1, although complete control would require a




Figure 2.3-3: Multiple caretakers

Rt S




44

capability of type 'domain' allowing adeepa to the controlled
domain's domain-descriptor.

This facility for one domain to control another 19 applicable
to a subset of our problem of changing degrees of trust{*domain A can
attempt to enforc¢e any reduction ﬁh its degrée of trust of B by retain-
ing control over B, although this requires that B have total
and unconditional trust im A, The latter conditinn clearly limits
the class of situations in which control of B by A is appro-
priate.

Even viten the control facility is agplicabie’ tﬁere are still
problems with its usa. - It would appear cﬁa& A, havipg given a
capability for X  to tQﬂIrOlledjdonain B, could léter gearch
the entire address gﬁace ﬁf B,(freducing thg'btivilegea in all
copies of the capability to match its regti;d intentions. The
success of this search, quevot, can.be compromised if B is
allowed to exscute.concurrehtiy, making the capabilities in ques-
tion "moving targets." Thus, concﬁrrent execution by B (or any
other domain able to manipulaté B's address space) must be pre-
‘veﬁted, either implicitly by placement %n,the sane‘proceas with
A, or explicitiy by being "stopped" by NA, using its control
privilege.

Even if . A manages to successfully weaken the capabilities
in B's address space, there remains the possibility that copies
may have éscaﬁed to other domains which are not under A's control.
To prevent this, A must carefully limit B's éonlnnication with
other domains via shared segments, domain~call parameters, and so

on. In short, B must be "confined," which, as noted by Lampson




[La 73] can be both very restrictive for B and very difficult
| for A. In the latter regard however, #t is worth noting that
the‘problem of “cqvert(channeae" does nct?eiigtéfgr capabilities,
since transmisaion of the bits of a capability 18 not the same as
transmission of the capability itself.r I '
A simpler mechanism which has been proposed [La 7i{igr 72]
to.deal with the above problems uses a "copy-flag" contained in
; each capehi}%ty, ”Or;grnelly{?theiflegt}sgogﬁegﬂg¥}qY«copying, but
once it is turned off{hit can:never he‘turmgqlhéckwpn,‘ggg all
| eopying of the“capebility}ie disallowed. Thus, A gan place a
non-copyable %Péb%%itx,,for X n B's sddreps gpace, and later
remohe any‘déSireéAér1V1133?9;f?QF,FP‘Fh99R§§§}%SX;vé??gid?nt that
no other copies exist. This is even more of a restriction on B
then confinement3 however, since gree:copyahigﬁtx:%exOnefpf the
fundamental prcherties‘?f capabilities:‘ igpgpf_eggmmeetthét the
passins éf c;pamme; as domé;ln-,cel},. parameters is done by copy-
ing, then non~copyab1e capabilities canpot even be passed as para-
meters, making them virtually useless.A Iheﬁechgme‘cgmcke;ealvaged
by introducing fihcirect capeb;litres"rvhichrgp}mt to the non-
copyable'ce?ebility apd;are themgelyee“copyab}e,“hct, as we will
see 1ater, such an 1ndirection feature 13 pownrful enough to com~
pletely eliminate the need for A to cbntrol B in the first
place. v h m e |
0wnershig:ﬁ»1he idea of Qme user or eqma%n ?qyn}hg" a shared
.object hes ag?eared in mahy‘syetemgarggr eueh ggrgcseqtae:eccount-
ing ahd resource allocation,mas well;es%fgr PE?tEQE%QQF Ih the

context of protection, the owner of an object is thought of as

e SRR kit S




retaining ultimate control over the 6bjeét; in the éensé that any
other domain's capability for the object should be subject té revo-
cation by the owmer. Owhership,'iike cbﬁtrol; éd@ld be defined

as a staﬁic relati&ﬁbhip between éaéh‘ébj;ét‘anégifé éwnihg domain,
but again, we assume instead that ounership is simply a privilege
which confers 'owner' status on,any poo'ssaot oféa capability con~-
taining it. | -

As described thus far, owneiahiﬁyaioidé the problems which
limit the applicability of the control scﬁQ;Q:’ Iﬁ:particular, it
is usable in the case of nutdallsusﬁieidé;'bincé it makes no assump-
tions #bout the relationships bei&kén:&eiﬁiﬁéi_ HﬁﬁnVer, several
iégues'havéabeen left uhresolﬁéd; Pt et |

If the owner of an object vishes~£6,§§§eke ;’given set of
privileges from all outstanding c:ﬁdbiiitiig for the objeét then
the desired action is clear, if someuham inpraetical. Thé base
level system must suspend all othar activity and search the address
space of eva:y domain in the systen, perfotaing the appropriate
reduction om each capability for the object in question. It is
‘'worth noting that one case ofjéuch unifbrmirdvocaiion has'a-much‘
more reasonable interpretation; if giilpii;iiééésvaié to be |
revéked from all capabilifies‘for thefésjeét, the owner can simply |
make a copy of the object and.desﬁroy the 6ti§iﬂ;l. Ah‘évén more
efficient mechanism to produce the same effect,can be provided in
the coﬁtéﬁi of the impleneacétion.ih a&éﬁion iﬁé‘ﬁf’simgly allow-
ing the owner of an object to chaﬁgé‘its4iﬁiuéﬁ§ré£§ invalidating
all outstandiné capabilities [CC:69];l‘(0f ébu:&é;‘thgioperation

must return to the owner a new capability ébﬁi&iqﬁﬁgvtﬁn‘new 1D.)




S A e SEOTC RS

47

If the owner of an object wishes to revoke individual privi-
leges, a global seageh“fé‘impl;gd, as indicated above. 1If, how-
ever, the owner wiéhea to revokéighese privileges from somé but
not all of the c;pabilittes for tﬂe object, even more fundamental
problems arise. The cenqral queséion is how the owner should
;specify the set of caquﬂli;ies on vhich ‘the revocation is to take
effect In thg context qf TCS, thefénly obvious bossibility is

iA the gpegification of a set of douqﬁna ig,ihigh,the gevocation
. o

‘ﬂ should oceur, eithet by Eisting th; set, or By 1isting the couple-

’nentary set qf domains vhieh should xgmain unaffeCted. The pro-

T o

blem is th;t in a system%providing freely copyable capabilities,
the owner of an object i& unlikely to have conplete knowledge of
“the pxopagation of capabﬁlities for that ébiptf‘chrougbout the
system, and is therefore not in a positiqﬁ to provide eitver type
: ”__tef' M«*listﬁ. ...... .Figure 2.3-4 depigwmwn’ in whi;:h A
has given capabilitiee far ouned object ¥ to B and G Sub~
o seguently, B and C hgve passed coples o?“tbeir capabilities
to D and E, respectigely. If A now decides to revoke some
privileges from B's ggggbility, the revocation should clearly
effect D's capability, but notﬁ C's or E's. A domain list pro-
vided by A to coﬂxrol the reqpcution would specify either revo-

cation from B, allowing D to escape, or exemption of C,
incorrectly affecting E. -

There are other relatively simple situatibﬂs in which no
correct domain list can b; prepared, regardless of A's global

knowledge of the distribution of capabilities among domains.

Figure 2.3-5 depicts,sﬁch a situation, in which domain D has




48




49

Figure 2.3-5: Multiple sources of capabilities



50

received capabilities for X from both B and C. Ideally, revo-
cation of B's privileges shoﬁldkaffect the capgbility which D
received from B, but not the oﬁb received from C. Such distinc-
tions clearly capnot ﬁéngpresseiﬁin a domain list, and require
of A a completely unreasonable amount of knowledge of the inter-
nal structure of other déméins.'iv ’

Yet another fundamental problpﬁ involves theiapthorizatioh
of revocation by domains other ;héaAthe;pfigiual owﬁer. 'In
Figﬁre 2.3-4, for example, B stands in much the)hgme rel&tioﬂship
to D as A does to B, hence it~§oulduseﬁl.f;;sonable to allow
B to revoke the privileges it granted to D. 8ince ownership is
a normal privilege, A could authorize this by siggly inclﬁding
'ownership' among B's privileges, but th;liéleagly gives B too
much power (e.g. the ability to integferé#q}thj~Q;“ﬁnd Ex. Simi-
larly, in Figure 2.3-5, ' B should be aathdriié&fi# reVoké the
privileges of the capability it has pasaed‘gp D, but;nbt the one
D ‘has received frqm c. e

Thus, the privilege of ownership, whilg sufficient to author-
ize the total revocation of all capabilitieskfor an objéct, is
insufficient to deal with ﬁore ﬂgneral situations.

Indirection: Most of the problems vith revoéation‘in capa-
bility systems seem to be caused by the propagation of capabilities
throughout the system. This guggests that domain A in our exam-
ple should nevef give to B a capabili;y fof X whose privileges
it may subsequently wish to revoke, but should retain the capability
and give B a "pointér" to it. The success of tﬁis approach is

very sensitive to the exact nature of the "pointer."




From domain A's ppint of vigw,‘pge’mgggﬁo?vious kind of
pointer to the capgbility is‘s;mply itsladdféggh;nl A's address
space, but this address by itself is meaningless to B. To use
‘the address, B needs to specify that it ngg%Q_be interpreted
relative to A's‘addresa space, an action gh;ggﬁqlgarly requires
<aqthoriiation in the form of a capability fg; ¥At‘(qr for A's
implicit segment) allowing capabilities in Afs?gdqresg space to
be exercised, but not fetched or stored,ﬁxGiving(quchla capability
to B clearly compromises A, however, since B may use it not
only in conjunction with the pointer provided by A, but also
with any other pointer B may ;nyeqt,uvyotgqver, th}s scheme
also cauéés problems for B, since ;natggdhgf aAgingeAcgpability
for X, a capability for A ‘§n4 a Eqinteyﬂggp; Qgrgsgd. ~ Thus,

B effectively receives the absolute address Fclaﬁéx? vhere A,
s the multi-leval address of X' in A's address epace. These
ppoﬁlemg éan be rgdu9ed sgmewhat b? &he‘obv;qpsvgxpédien; of alwa}a
p#ssing tﬁe sipéle absglutg_gddrgss ﬁg,d?‘%inléjgicgggbility

for X, thus liﬁiting§ A's vulnerability to a single segment, and
guaranteeing‘that the poiﬁ;gt which B pga;,h?nd;g will always

be é‘#implg displacement. Moreover, if_thiE:Ei?Plﬁ absolute address
can itself somghqw Pe squeezed iptqva‘g;g§¥g gqpability, both
problems have been ;olved, since only thgkp§ngiga?glot?;;n A's
Qddreés space which contains Fﬁg céP??*;}FY;f?E g;é}a usable by

B, whé need only keep tfgc@ of ﬁh@ﬂplgt,ga?gbi}i;y, rather than

?a caéability ana a pointer. Of cQﬁE§¢3 cgrghygy;,?;ili\bg_taken
to”#llow B to igno:ebthediffgrgpge"bgtggég_gpq}qt gapap;lity

and a capability for the desired object.




LT BRI o e bt

52

Evén ignoring the problem Of'squéezing so much information
into a single capability, there are still restrictions on the use
of indirection through capability'alots.f The proﬁiem is that such
slots can never be reused. For exanpi;,-suppoéé th#t' A passes
to B a‘capibility for the slot eonﬁdining.oneidf' A'svéwn capa-
bilities for X, as shown in Pigure 2.3-6. If A later decides
to revoke all of B's privileges to .éc.ia';x by efasihg the capa-
bility from the slot, B stiii retaing its slot cépability. There-
fore, A must be very careful never to pince aﬁother4¢apab11ity
in that slot. |

One way of attacking the ﬁonéreﬁakbility‘problem 1§‘to squeeze
still more information into the alot‘capquiifb; namely”the ID of
X, and to check on each access that this ini#tches the one in
the slot. This eases the réstriétion;sannﬁhlt;‘ & §16: may be
used any number of times, but only once fé&yiny glven object. Com-
plete reuaability‘of slots fequites:th§‘§néi§;ibp af'a'iglot D"
in both the slot capability and tﬁé céé;biiiiy iﬁ'ﬁhe slot; to be
compared on each access. This esienfially'aiohats to re-invention
of the unique ID mechanism of the baae-level system, and 1is likely
to be very cumbersome, for both uset nnd inpleueator.

The»non—reusability of slots in the 1nd1rection scheke is n@t
really a‘fnyél flaw. It simply forces tﬁé‘;eéh§§iaﬁ to be used
in a rather stylized way. For example, domain A, rather than
giving B a capability for some location In its ‘own data struc-
tures containing a capability for“x, nuct‘dbp&’the cabability
for X to some spot whi¢h will never be used fqr.aﬁ}thiﬁg except

indirection via B's slot capability. Actuaily, A would




53

Figure 2.3-6: Indirection through a '"slot"



54

undoubtedly have made an extra copy for B's use in any case, so
that subsequent revocation of B's privileges would not interfere
with A's own accessing of X. Thus, the only real burden on A
is the careful allocation of slots 80. that they will never be
reused. One approach wpuld be te éet litﬁtgogéfgegnent of A's
address space and a@lgc#te g;ogsw%q%ﬁt*gpquéntiagly; A much more
atttactive, 1f rather more expe;pive;”s&h;;; iﬁ éhe creation of a
tiny new segment to hold each slof.‘)thﬁa‘éé;’é;ly takes advantage
of the base-level allocatioa machiuery,fgut also implies that the
displacement which we squeezed into the slot capability is always
zero, and hence may be omitted.

Privilege revocation by 1ndirec§io§ through such "1link" seg-
ments is actually a fairly actracgivéﬁséhéib}ﬁ@high we pursue in
some detail in the next section. iIt is comce@éually related to
both the caretaker and control scgannavdtgeusé;d above. If one
thinks of the link segments as domains, in the'paeaive sense, then
indirection through such a link &oﬁain is much like calling a
simple‘caretaker which merely exercises it#»dqﬁabiiity §n.deaand.
(Note, however, that the cost of an actual domain-call hae been
avoided.) On the other hand, from the point of view.of its
creator, this passive caretaker is a very‘whlldbehaved controlled
domain, since there is no possibility of its capability béing

copied or moved.

2.4 Indirection Through Link Segments

Since indirection thfough link segments created especially




35

for that puxpose'seems to,providg,mnny g;sirable fegtnres £or revo-
cation, we noy pursue this spprogghssomgwhag,more yigoroqsly The
discupsion is still in terms of TCS, in the sense that we attempt
to mintuize modifications to the baps-level eyptem and construct
the revocarLon machinery "on top, of! that systen, Although ve
| Wil Jater argue that o fairly somplex savocation factlicy should
instead be included in the base-level system, it is useful to
explore this higher level implemengstioniasﬁe{firstdstegi‘
xS FHOE ) DR e

As mentioned during the discussionyof ownership, it is
; desirsble for Eny possessor‘of”ﬁfciﬁﬁbilityitﬁfbe able to distri-
bute copies of it while retsining the power to revoke the privi-

TR RERIE W

:leges thus conferred. Thus, if access privileges pass through the

o ST LA W RNEIN & e SEPN ks

hands of several distributors, the corresponding link segments

: form a chein:‘iésbebilities sccessin;mii: thst chain are subject
'to revocation by any of the di;t;ibd:oii.ﬂ‘Anyﬁzosseseor of such
a capability may extend the chsin b;icreating silink segment and
storing the capability in it:‘ Retaining ;ybow;;ful capability for

the link segment allows later reduction of the privileges in the

capability stored there. If end when all privileges are to be
it EEE O :

revoked the 1ink segment can be destroyed.

TG w0 Hi HEREE

Thus far, we hsve made no cbsnges at all to the TCS base-

é 1

level cepability mechanism, but neither hsve we provided any way

Lo

for the indirection chains to be used to access the target object.

B sz".iv‘.’{ i ;

&

This will require a fairly simple modification of the base-level

Torvasly

system, but before describing that modification, it is instructive
to observe precisely what goes wrong in sttempting to do without it.

ER R D L

In terns of our stsndard exawple of A giving B privileges




56

to access X, we find that A, in Figure 2.4;1, hhving created
link segment SL and stored its capability"é” for X there,
must now give to B a capability C " for S Clearly, B's
capability C, must not allow B to tamper with the capability
in S, but only to use it as a component of a multi-level
address for X. (For eiinble;‘If'lx is ; ca;hent,°'b'bbaddress

for its 5th word, given”that C, 1s located at locatibn'B of B's

L

implicit segment S;» 1s

3|o|s = <((€4,3),0),5> = <(C;,0),5> = <C_,5> )

There are four 1nterdependent problens with this atteupt to
imple-ent link segnants on an unnodified cepability system

1) NOn—tranapatency. A donain accsaaing an object must

know how mnny 11nks are present 1n the chain leading
from its capability to the object (i e, hou unny 0'
to insert in its multi—level addrcas, as’ in '"3|0!5"
above)

2) .Ambiguitz- A link in the chain is indistinguishable
from a target object which happens to be a segnent con-

taining a capability 1n location 0

3) Subvertability This is really iaplied by problems (1)

and (2); if the accessing donain eccidentally or mali-
ciously specifies a multi—level addreca which is too
short, it can obtain a copy of a capability stored in
the chain, thus circuuventing aubaequent revocation

4) Loss of selective adjustneat in logg‘chains Only the

last link in the chain conteins a capability whose




57

Figures 2.4-1: Example of indirection
through a “"link" segment



58

privileges apply to the target object. Eéch €arlier
link contains a capability whose privileges apply to the
ﬁext link in the chain. The only revocation allowed by
such a link is total revocatioa‘bx breaking the chain,
All of these ¢ifficulties are avnidad”by a ginple modifica-
tion to the blae—level system, which Quttﬂancas a new operation
on capabilities, and changes the behayior og the base-level system
slightly when a capability is enconq%ered to yhich this operation
has been applied.
The new operation Si;éﬁg;a capability of’type 'ségnent' to
be converted into a cabébiii£§ of type 'indirect’ in which all pri-
vileges are 'on.' (As. we shall see later, this is just a specific
instance of a more general machanisn usaful for type ektension )
The intention is that sugh"§gd1rect capabilities for link segments
should be handed out to domains which are being given revocable
privileges. For exampie,*in?Fignre 2.4~1, the capability CL
which A gives to B muat be of txpe 'inditect ' although A's
own capability for: SL is of type 'segment . '
Whenever an operation which expects a capability for some
object anéounters instead a capability of.ty?¢ ’1ndirect,"the
| indirect\caﬁability is followed; that is, i;\ig replaced byfa copy
of the capability in (loéation 0 of) :he~aegignt to which it points,
with any privilegeé,deleted which did not aleo occur in‘the‘orif
ginal 1ndire§t capability. This step is 1tg:a:ed,igs necessary,
until the resultant capability is not of type '1nd§xect,' at which
'point the opér&tion proceeds as usual.

Thus, each time an object is accessed via a chain of link

-
J




R o o S L

i [N JERER S S W PR

ing is not performed when the capability itself is manipulated

separate mechanisms.

Lo . B PRI ST el Ul ERD ThEel FEG

SRR e T U e e T e R

59

segments, that chain is automatically followed to the target object

I ¢ o i PR S S LS o

unambiguoualy indicated by the firet non—indirect capability

T R

encountered. The resultant capability is exercised, but is not

i st owoadolesmsy i of sopdediedeld

otherwiae available to the accessing domain, hence the chain cannot

L Ey v s‘*i CTERAIG Y T F el L=Te

be circumvented The privilegce conferred are the interaection of

s ey v tald )

553 PRI S

those found during the entire scan of the chain, thus allowing

« Pt EER FAlV LInunR g
independent revocation by each internediar% domain controlling
Jursoat . B sostrihel ekdy sigoodils

4a 1ink in the chain. In other worda, problema (l) through (4)

: A rA s B A ten rorhasedd T ¥ s SRR L6 e a1 ar
above have been avoided ) ,
ST UEATE B R TN R AR vancswsly o

It is important to note that an indirect capability is

o B S ciinam s o Facn sl Gl ,.';"v‘,; PET nid

followed y when it is uaed to ‘access its target object follow-

et ong alnsd sl send SBose W

g cargap simnaogen Y&LoLITred & g bubivon
(e g. by the copy or reduce operationo) o
EES PR R PR TR G SIS 24 0 6% ¥ Rt e

The indirection fe&ture being deacribed is fundamentally

g ,: Tl P e A 7‘1 j’.‘«i 3 “t

different not only in design, but in intention, fron the multi-

-y [N
St LN

EESERT FE- St 031 Y I R vam 31

level addreasing feature of TCS In some ayatema, such addressing

e ta e ((3!‘1:,: AP L0y

has aleo been referred to as “capability indirection.: A system

voodlinw cllans e nEc Ak

Py

AP TR S LA TR i A traf ed e It S L s

in which both of these featurea were deaired wonld require two

Distribution of revocable capabilitiea using this scheme
anfoans wi o tacs Sl GREARS TO1, 3enaaT ;

involves five atepa'

s e re rgnlmoyg o0 0G0 D gmie puelared re

1f Creation of a link segpent.. o N

RS £ chhexIo s AR SN AT B A S & 00 T RS R AR o @ S RN

‘2. Conversion of agcapability for thag.aegment into an

[ TR & S vace Flnigey o0 U BW 3 Tappbo &l axdd?
’ indirect capability o S
I S & LE AR riss HESEHI T Chadpaes g 0 b

3. Copying of the diatributor}a ovngpgreriul capability

for the object into the link




A ey T

60

4. Reduction of the privilegas ef thn cnpability in the
link to an appropriate 1eve1 | |
5. Distribution to thz recuiving dan;in(s) of copies of
the indirect capability ptoéuced in step 2 |
Any later reduction in level of trnst cnn b& enferced by re-~execut-
ing step 4, specifying some reduced stt of ptiviieges.' -
| Although this indiréction scheun does a teaaonablé job of
capturing the notion that a distribntor of a capability should
retain the power to revoke the ptivileges it ccufers, it gives
one the feeling that the dasired -eehnnicn is buing “simulated "
in the sense that the basic action of disttiiu%iﬁg a eapability
1is provided by a particular non—ato-ic sequcnee of opetations,
rather than being an atanic operatioa. Thig-ﬁis two consequences-
a) It is inconvenient for the u:cr.'q" o
B} It nay aliow other aequcnces of operations to produce
a non—meaningful state. o O
The former problem can be easily dealt with by providing a simple
‘ 1ibraty procedure to perfor- the actiana raquiraaifor ;apability
distribution. The 1atter problem, houavtt. ia not ao easily dis-~
posed of. Suppcse, for exanplc, that by acciﬂant or design,
domain, in performing step 3 of the ptoccdurd; btoren not the
appropriate object capability, but the inditect capability created
in step 2. This is just one way in which cireular inditection
chains can be created. Such chains, Hhcu followcd will cause an
endless loop in the base-level synte-. Of cburse, one could deal

with such a situation by placing an arbitrary limit on the length

of an indirection chain to be followed before it is abandoned and




61

an error is signalled but this is rather ad hoc and inelegant.

An atomic operetion producing only well forled chains would be

A

much more attractive

Another problem with this scheme ie its relative inefficiency.

. i

For one thing, it would generate large nunbers of small segments
This could be extremely coetly in terns of both space and time

b : i

‘especially in a system using block~oriented rotating magnetic

v
53 1 N S 4 4*51

storage and a corresponding paged primary -enory. For another

AT

(thing, the scheme requires the following of a chain of links each

FS R

time an indirect capability is exercised. This overhead could

g ex’,i»eﬁﬂf El r.f:,i". # ‘f RS GED L

prove prohibitive, particularly in the caee of indirect access to

"71‘:?

segments. Moreover any mecheniem attenptiag to capture a compu~
tation 8 set of recently used cheins end retain them in faet hard-

RSN J €

ware would be complicated by the fect that every store instruction

P SN OWH o 30}
would have to be regarded as potentielly invalidating this "look-
. AR Yo ,_,s-.f.‘r'-
back" infornation by overwriting a link in some chain
: BT v?.:i”iu:t?
By comparison, if equivalent revooation feeturea were built
L Teniz

into the base-level eyatem, they would probably be eesier to use,

ISR T N A

harder to misuse and ‘more enenable to opti-ization. This approach

B {an R 4 PeTs ARy Gl ¥

is explored in detail in Chapter 3

2 5 Type Exteneion

J The definition of a large conplexreyeten Q. a sequence of
"layers" has‘been found to be a valueble technique:‘aiding all
) etagee of design, implenentation: t::ting,Jnnd docunentation
[Di 68b Pa 72 La 69] In an object?oriented‘;y;tem, this implies

fISTIGA LYY RS




62

/ that not all of the various types of objects provided will be imple-
mented, or even known about, by the bsse—level system. On the
other hand, it would be most inconvenient if the naming and pro-
tection mschinery provided by the base~1eve1 system (i e. capabil-
ities) hsd to be reinvented by each new layer ot the system this
would not only raise serious probleus for the iuplementation, but
would also force the users to interfcce with several parallel
mechanisms for storing privileges, passing privileges to other
domsins, and so on. It is therefore very desirsble for the base-
level capability machinety to provide capabilities for objects
of which the base-level system hss no knowledge.‘ A

The various bsae-level facilities invoiving capnbilities can
be divided into two categories. In the first category are the
facilities involving capsbilities thenselvesz their creation,~
integrity while stored copying, arasure, end so ;stf In the second
are the fscilities for manipuleting base-level objects named by
capabilities: fetching froo a segnent or calling a domain, for
example. It is the facilities in the first‘cstegory which ‘can and
should be provided for higher-level objecto unknown to the base-
level system | B - o

As indicated in section 2.1, a capability provided by TCS con-
tains the type of its corresponding object. The division of the
set of all objects into types is a well knorn snd 1ntuitive idea
(slthough, as pointed out by Morris [Ho 72], the difference between
the type of an object and the privileges allowing sccess to it is

somewhat indistinct)., The set of objects provided by the base—level

system falls into some small fixed number of types. The question.




63

is: what type of capability is used to name a higher-level
(Wex;endgd") ob;ect? Various answers Qave}bggﬁ proposed, four of

which we will explore.

égproach 1: 8gpresentatioq caquiiit;g§51‘Agy_g%yeqwlayer of
the system rung in an environment prqvided by the lower layers,
hence any object it defines must be represented in qgfmshof lower

level objects. We willqasapme thag,ghgkrep;eggptqq;on‘gf each

extended object 1s a single lower level object
’rgbjgct caprg a segment cqq;aipiqg_sgpgpi}é;ias&ﬁo:nany other ob-
quts whiéh a:e_dgcessary. AIhué_the most obvious g@p@idate for
thebcapabi;ityAfprlgn ggpendgd object?§s%;§gg}ng>qggﬁpilipy for
_‘;hg‘regregénting obiect;‘ A goqqggspppyf¢§§3;Xcgggp;;igyicould
call the layer implemgg;;hg ;hgt'Q§tg?ngw5ygéA;ox5g4uga§,some
operation, andipaaajthe cgp@b#%@tiwtq ;pd;cggg_ggéffgtended object
td‘which the ope;qxionlghould bgéappl@gd.gzﬂaﬁigg kggn Rgsaed this
capability, the dpmg;p?implemen;ing,thﬂé}&Qggggtqggggc;on would
QutomaticalLy have access to‘thg;rgprgggﬁgsipn.of;hg‘opject.
:Thera are at lqaqpvthree gfgb;egs Vithvthiﬁ,ePPF°59h~ The
first and most important ;onqernglthe‘pglggg}pgﬂof an apgropriate
seg.pf privileges ?o appear invghe‘qugg}¥igxfyAThe_@ifficulty is
.tb@t the domgin 1galegen;igg §hg Q;tegged Qbifﬁ;:F“QPirQS essen~
tially complete power to manipulate ;hgkggg;%gggtgtion, while
wishing to deny such powgr,;qythevqgégg.4qggigﬁs) in order to
prgvent?tagpgringAyith the rgpsgaegtgg}on.ﬁ;lf thevaang ggpability
is used by po;h, ;his is.clgarly not Ppssib}g, ﬂﬁgge, thevimple—
‘menting domain, having upon request, created the representation

of a new qxteqded object, and thus‘gbtaipéq,afgg;}y“p;;vileged




R R SRR e S R R A T
64

capability for that reptesentafibﬁ; must appf&ﬁfiétéiy weaken that
cépabiiity beéfore returning 1€ to ‘the éaIifﬁktdhéfidaifihl However,
in order to guarantee its own future access toféﬁé feﬁréa;ntation,
the ‘implementing domain must do oneof twoehings " #ither it must
' save a copy of the otlgihaI’fﬁliy'ﬁiiviiéégﬂjéﬁpibilffy;fér later
use, or it must make arrangements iilébiﬁgffé’t%:éﬁnvéfipihe weaker
capability back into the fully #fi%iidgedgbné dhiﬁuit‘létér receives
it as a paraﬁetet to some operation on the ettigﬁéd objééf.

The first method obliges the implementing domain to maintain
a global table containing p;iﬁileéd@dcébi%iffflé%‘fbr'aiiwexis;ing
extended objects which its layéfigéd’éf?dtgd;';ﬁd:faéiocate the
corresponding entry whenever it reééiééb‘hfabdkrﬁééf“éapiﬁility.
This method is feaéohaﬁlé,‘if”ségéﬁhiimti§ﬁby§ﬁwg | 7

The second méthod”requiféﬁ‘ébné’fadiii%j(éiﬁiiéx to Jones'
"'émplicatién" ' [Jo 73], allowing the inplmnting domain to add
specified privileges to capabilities of the iypé §f‘thg rebrasent— _
ing object. Clearly, the ﬁbﬁerEtéfiipiifyqékﬁiﬁiiifiéé‘6f a given
type is a very ﬂangefoﬂs power, and must Sé'tfihfffpéontrolled,
since it can éompletely'sﬁbbert fhé’{ﬁtéréusdfig}éféctiéﬁ4bf
objects of thatvtjpe'if»miéuséd. 'ﬁﬁﬂle‘ﬁﬁiﬁfi;%Sn'incbnﬁiete sub-
version of ‘the objeéfs'in question, iﬁ“fﬁi‘éﬁﬁéé%;hﬁf‘tﬁey_still
follow the‘seﬁahiic rules which ééfihé"fﬁéir‘€§p§, it must be
' regarded as a failure of the éérfé%ﬁdﬂdiﬂb’liié}éﬁhiﬁéé‘éhe correct
functioning of a layer includes the ﬁféfhé%fénﬁgfﬁité"ﬁbéfi from
each other. Thus, the authorization of aqﬁii¢éti§i‘?hﬁst'be the
| responsibility of the la&éf‘impléﬁéntid§:¥ié‘%§§iﬁﬁﬁé&e“é&babilities

are being ampiified.  One of thé‘ﬁaiﬁlciiﬁééiﬁ'df 1§yet;ng; however,




65

‘is that a given layer should heveﬁno knowledgezofvhigher layers.
vThus, it is not possible for a layer t&}éietingpish between "legi-
timate" hiéher iayers which needlaepliti;etipe?'and untrgstworthy
domains which would use amplification tqi;ainaundeeired access to
other domainsi ebjects.‘ We thus eoeeigge\that priyilege amplifi;
catibn by itself is iesuﬁgieient to eeiyevthe“problem of assigning
apprepriate priyiieges tobthevqsiggzandiimpiementiegvdpmains of
an e;teeded object,‘given that\the:eeqeitype q{icapability is used
By both domeieer‘v(ln conjuqetien'with.gnqther&eggplegentary
meehanism'("constituent rights" [Jo 73]5,‘howevet, amplificatiou
can provide a very powerful type extension facility which is equi-
:valent to one which we will describe 1ater )

The‘second prpblem with themrepregeptatiqgfcaﬁgbiiity approach
invplves tte(centrol of eccese to the,extepdegzpbjeet,\es opposed
1to ite representatioﬁ. Priviiegee~ererneede§,in eeeh capability
‘to speciff whith»ofvthe oﬁeratioes en_the ertegded:type are author-
rized tovfoesessers of that eaeabiiitf; Ttis eertainly cannot be
,qone by assigning new meeniege“to the exigtinngriyiiegeggrsihce
graeting the use Qf seme eperatiop on the eitended object Qould
then imply granting some unrelated access to the representation
>Hence, multiple sets of privileges are needod On the one hand,
this tends to make capabilities undesirably large. On the other
hand the number of sets of privileges provided places a fixed
upper boun§ on the number of times a heeeﬂlege}\ty?e“eaq”be extended,
Tﬁie situatioe‘ie especieliynfrtetreting sigee in gqettcepebilities,
only one of the sets pf privilegee;wili be non-empty. |

The third problem with the repreeentati?qfeapabiiity approach




66

is the difficulty of detetmining;jéiven aoueJcapabiiity,'the type
of ‘the corresponding objéct.‘ This is caunulby the - "unofficial"
status of extended types in this approach A given base—level

object may have been extended one or note”tihes, but the type

‘flelds of all capabilities for it still contain its base-level

" type. The only indication tnat;tﬁe‘capabiiitpiis:of a given

extended type is the presence of a uatching folly privileged capa-
bility in the previously mentioned table kopt by the douain imple~

menting that axtended type. Thus, one is not able to aak of a

~given capability "what is its type?" but only "is it of type "

~ for some list of types T. This ie a cluaoy end coatly substitute.

Approach 2: Domain capabilitiea. Thia approach is in some

sense, a variant of the previoua approach in which the represen-
tation of each extended object :La ‘a donain.MA using douain has
only one ptivilege in 1its capability fot.thic representation domain:
the privilege of callingdit To perfcrm an extended operation,

the user performs such a call, indicating only the operation to be

performed; the object to which tba operation applies is implicit

in the identity of the'cafled donain Actually, this apptoech ,
falls outside the framework of our discuasion, since it requires
independent domains callable by any ptoceaa (at 1east if extended
objects are to be shared). It deserves nention,‘however, since'
it has been used in at least two syéé;as?iaﬁ"ii””réiés]} and
because it attacks the three ptoblema of the tepreaentation-
capability approach with somewhat mixed reaults

The firat problem, ‘that of easily.allowing onl&lthe‘imple—

plementing donain full access to the object'a tepteaentation, is




67

‘bypassed, since each object has, in effect, its own copy of that

domain, which can retain a privileged capability for the rest of

“the representation in some convenient location in its address

space

The second problenm, that of controlling accese to the extended

’object is solved by embedding in the domain information about the

operations it is willing to perform. Thus, privileges for extended

S il

| objects are represented and controlled differently for base—level

and extended objects, whenever a less privileged capability for

an extended object 1is desired a copy of the domain can be made,

“which is then ordered never to perform the operations being denied

to receivers of the less privileged capabilities. This is not as

expensive a solution as it might appear for two reagons. First,

et iy
EEEN H

the various copiea of the domain representing a given extended

B

'object can retain in their implicit segments the information spe-

S SN

lcifying the operations they are willing ‘to perform, and can thus

share all the other identicsl components of their address spaces.

Second the capabilities for a given object exhibit a strong ten-

B S

dency to fall into a small number of subsets, each containing capa—-

bilities with identical privileges (a tendency which we shall

K"
HE

exploit later). Thus, the number of copiee of the domain repre-

psenting a given object tends to be mmch smaller than the number

of capabilities for the object.

The third problem, that of determining the type of a given

object is handled in an interesting if somswhat clumsy way.

' Clearly, examination of the capability will always indicate the

type to be 'domain. One can establish a uniform convention,

B TR R O




68

however, for associating some arbittarily choean unique capability
with each extended type, and storing a copy of that capability in
some standardized location in each donnin (e 8- 1ocation 0 of its
implicit eegnent) repreoentins an object of that type. If users

ness ol

are allowed to examine that location, they can then reliably deter~
mine the type of each extended obj;ct. The nlin objection to this
scheme is that baoe—level types aad oxtended types dre repreaented
differently, which disallows any unifotu typo—checking mechaniem. |

There are some other problons peculiar to the do-nin—capability
' scheme. Two difficulties atise trom the fnct tm: the domains
implenenting the extended type are asaociated with the objects of
that type, rather than with the accoesiné‘;rocenaes.. One reason
for wanting to associate a doﬁnin with each prooeaa as the "repte-
sentative" of a given layer is that the local storage of the domain
provides a natural repository for infor-ation deacribing the status
of that process from the point of view of that layor. This Yown''
storage is ‘not provided by a echene ;tich asoociates doueins with
extended objects instead of procesaes [!a 76]. Sone syatema have
made heavy use of auch own storage (e. g. CALoTQS Hultics) it is
not clear to wgat extent this is intrinsically oecessary

Another ninor difficulty with the donain—caoability approech
is its implicit assumption that all operationo’on extended objects
are monadic. While this is undoubtodly the uoot cotnon cage,
7 examplos abound of ueeful operationn which epply to two or more

objects ("file-to—file copy"), to some large inplicitly defined

set of objects ("close all open files") or even to no object at

all ("creete a file"). Forcing such operations into the mold of a




69

call on a particularvobject is not oniy artificial for the user,
but can be somewhat inconvenient for the 1mplementqr.

Approach 3: Sealed-data capahi&itieg. This approach is moti—

¥

vated by,theNfoilowing’QbeeryetionVehgntvthefyeeﬂof_representation
capabilities in Approech 1: 1If the using dogeins are not allowed.
direct access to the repreeentation of an extended object, and if
the implementing domain always replaces the user 8 weak capability
with the corresponding strong one saved in its own table, then the

user's weak capability is never actually used‘to access the repre-

sentation. This suggeste the poenibility og changing the type

_field in the user s capability to contain, ot the type of ‘the

representation, but some new value associated with the type of the

extended object. There are two distinct ndventegee to this change.

-On the one hand it provides an eesily visible and unforgeable

(given mechanisms to be described shortly) indication of the type

of the extended object. On the other hand it renders the capa-

bility useless fot directly accessing the representation, thus elim-~
inating the need for a eeparate set of privileges to control

such access, as was required in the representetionvcapability

approach.‘

From the implementing domain'sg viewpoint, the creation of a

new extended object using this epprooch conld he _done. by:.

‘ i) V creating a representation of the ob;ect e
2) _bsaving a fully privileged eapghility for the representa-
(tion in a hash table keyed on IDs . o |
’73) ’constructingve_ney capahilitx,centgin%ng_theﬁegtended

_type, full privileges, qu;fhﬁv;9~9f the representation,



70

and returning it to the caller.
When called to perform some operation, the implementing domain can
examine the passed capabllity: |
1)  checking the typé to vériffsthtt tﬂe tbject is one that
it implements B R R | |
2) checking the ptiviloges to verify that the requeuted opera-
tion is authorized
3) ‘locating the rcptasentation capability in its table and-
‘performing the operation on the :aprcoentation
Clearly, the creation of étpdbiiities for cxt‘ndéa:objects
must be carefully conttolled Bince a fors'd cayability could deceive
not only the users, but also the inplancnting donnin.‘ The creation
of capabilities of a given type can 1ts¢1f be authorized by a capa-
bility. ‘When this capability and an arbittary datu- are presented
to an appropriate new'base-level operatibn; a new capabiiity is
returned with the authétized type, all ﬁfiiiitéétlion,' and the
datum as its unique ID. (As suggestad above, this night be the ID
of the representation, but could be ‘any valus desired by the imple-
menting domain, ) Section 2.6 will diacuss how such authorizations
to create new capabilities can thenselveu,be.ctnated.and distri-
buted. B
The sealed-data approach as‘déstribed}{gAa q;ite acceptable
type exten§i§n ncchdnism;'aﬁd has in faétfﬁée; d;éd in at least
one actual system [St 73]. It‘élac;é each hiihét layer in much
the same position as the base-levélks§atcn; a ttéﬁbility is reggrded
“as holding an ID sealed in a"tanperproofbbox,-whith guarantees

that the name presente&‘b& a user 1is ihlflht aiﬁalid name given




71

him by that layer. Furthermore, it allows this without forcing
re-invention of‘thg Bgaligg.mechanisghin each new layer. It does,

- however, require that each new layer jmplement its own table for
converting an ID into 3 capability for the represeptatiom of the
corresponding object; this is a p@rtial:dupliégtign of the function
of the baseflevgl "map" of seection 2.2. It is desirable to avoid
re-invention of the map, as well as of the capabilities themselves,
an advantage possessed by our fourth approach ;to type extension.

Approach 4: Sealed capabilities. The need for each layer to

maintain a table mapping extended gbject capabilities into repre-
sentation capabilities can be elimipated 1fj§gewsy§&em.siwply
allowsﬁgach extended capgbili;y,tq 53&55;5,ghejco;peapqnding repre—
sentation capability. The ex;qndgg-;ap&biligyfggus Becémés a
tamperproof box holding another capability! On the gurface, this
makeg it appear inevitﬁple for capabilities to grow larger an&'
larger as objects are gxtendeq repeatedly, a problem already dis-
cussed in connection with our firat approach to type extension.

A carefully degigned implementatiom, hoﬁevep;wqggwgyoid this
phenomenon, allowing unlimited exteansion with fixed size capabil-
ities, as we shall see in section 2.7, which discusses the sealed~
capability approach in more detail. First, haweyer, we digress

- briefly to examine some more gemersl questions sbout type extenmsion.

2.6 Hierarchies of Objects and Types

In a pon-extendible system, only.a small fixed number of

predefined types are provided, heuce types can be. identified by




72

small integers. In an extendiblé system, a much larger set of
- types is needed. Two conflicting consideérations influénce the
choice of the size of this set. On the one hand, it is desirable
to minimize the size of type identifiers, sincé these appear in
capabilities, where compactness is a great vi¥tue. On the other
hand, it is desirable to maximize the total number of types
available, to insure that the supply will n&ﬁef be'exh;usted,
especially since type identifiers, like object IDs', can never be
reused. | |
Emphasizing the first consideration results in a system in
which the number of types, while much I&fﬂtt‘ﬁﬁan the number which
would ever be legitimately used, fs stifl fairly modest :(Ae.‘g.' thou-
sanﬁe or'mﬁﬂions of types) [St 73]fk Tﬁiéiiéﬁvﬁs 6§én the possibility
of a malicious program using up all »‘avéfiabré'*’ﬁypas‘ within a few
minutes of determined computihg.'”Tﬁpéé“iﬁ such s‘sySteg must
therefore be viewed as a finite resource, and must be allocated
as such. This is possible, but somewhat inconvenient.
Emphéﬁiztng the provision of aﬁ‘iﬁﬁihﬁﬁﬁéiblé'éupply of.types
results in a system design in which thé“sﬁﬁé%aof'type identifiers,
~1like the vspa’ée of object ms‘,"is"effe‘é*t‘ivéifi' mﬁnité ({.e. too
large to de exhausted during the lifetime of the syétaﬁ)} By
combining these two infinite name bpieés, the HYDRA system [Wu 74,
Jo 73] provides an elegant conceptual franéwork in which types are
themselves objects. This is illustrated in Figure 2.6-1, which
depicts the set of all objects aB forming &' three-level tree. For
purposes of this figure, only two aﬁtﬁbutes"o! each object are

of interest. One is its ID. The other is its typé, which is




73
An object:

© type

(=
N\

 Figure 2.6-1: Three-level object hierarchy

>




74

]

simply the ID of some other object,f ,Ih31sting that the other
object so identified be of tyﬁé”'tﬁpe, and providing a special
root-object with ID 'type' (which is g}‘o of type 'type') forces
all objects (except the root) to occupy either the second or third
level of the tree. The secondAlevel contains the types, while
the third level comtains the non~type objects.

Creation of objécts in guch a scheme can be described concep-

tually as a single opefﬂtioﬁ:é

c « create _object (C )

obj type

where the new object will be a type iE ctﬁﬁw” is‘a;capabilit&

naming the root object .and a nornal ohjeca AL C ‘type is a capabil-

iy, min; a second level object. If ?gtm m a third level
object, an error is iigga&led. ‘In practiqg, ef course, such a
 unified base-level create object operagion caﬁpot replace the
specificfthect-creatinn«Qperationsyfn;fthe variohs.extended types,
since only the eortespoading iaygr haa~bbth tha auﬁhority and the
bknewladse naedad to crea:e and initt;;iﬁe the warieus conponents
of the rnpxeaentation of a given typowof‘extendea”ebgeCt.

The pggc;igal disadvaptage,of th v}gvppint just described
is the large éize of type iDs. Nev;f;hel;;;; we‘adopt the HYDRA
view of types as being objects. In Chapter 3, we describe a scheme
which manages to adopt this point of view, and yet provides an

extremely compact representation for capabilities.

There is a second kind of hierarchy among the types in an

Unique IDs, ‘which are simply long integers, are shown as symbols
in Pigure 2 6-1 for clarity.

f



75

extendible system, which has been described by Morris [Mo 72].
This second hierarchy involves only the types, rather than all
the objects, and attempts to characterize the lqyered nature of
the system. Figure 2.6-2 illostrates a simplo examplé, in which
segments are assumed to be predefined and various plausible
extended types are shown, each indicating the type of its imple-

mentation. This assumes that allxobjects of a given extended type

have the same type-of representation, which does not seem unreasonable,

One can find examplzs however, Qf situations in which differing
characteristics .of objects of the sang extended type might make
different types of repnesentationc deairnblo In Figure 2,6-2,
for exanple, one might wish to alkpv 1ong dgcunents eouposed of
a-collection of text fi;es,“phich, aceordin;ﬂgo.our.conventions,

) i _ i
would be represented by afsegmnntoconcoiningéheveral text file
capabilities. As another‘exanple, one nighbéwish to represent a
customer list as a sorted-file or as a lin!od 11st, depending on
the frequency of insertioms and dqietions oupueecd. in the general
case then, the types form not a siuple treé but a directed graph
without cycles. The latter property expresses the partial order
induced on types by the layered sttucture of the system. Note that
for any given extended object, there is onlylonekrepresenting
object, hence for a given representing object, the extended objects
it represents can form at most a tree. (Of course, in any realistic

situation, this tree is only a linear chain.)




76

DOCUMENT CUSTOMER LIST

Figure 2.6-2: A type tree



2.7 Type Extension Uaing,Sealéd Capabilities -

We now return to the last of our four approaches to the naming
of extended objects, that using "sealed capnbiiicies." As in the
sealed-data gppgo&ch, the manufacture of extenﬂ¢¢ capabilities
must be carefully controlled to prevent qugegy. Given the vigw
that types are objects, the appropriate authorizatipn to manﬁfac—
ture a capability of a given type is avgapability of that type.

A layer can obtain a new type T by executing

VCT + create type ( ) .

- sﬁbgquepti?, ;t‘éan“geiliqgg‘capability :C‘be’e$ecut1ng
(Cg v oseal (C,Cp)

as illustrated in Figure 2.7-1.- C, will have type T, all privi-
- leges on, and a new uniqpe 1D aagi;hid by ﬁic‘lyatdn;

Later, . C can be recovd . by wetng

c *,?“ff'l'(cn’grkg,.'v

Note that CT must be presented to authorize unsealing, thus pre-
venting any random possessor of C8 from obtaiuing the capabilitf'
’ C which is sesaled inside.

The implementation of capability sealing as just &escribed

requires a fair amount of machinery, such aavﬁhatvto bevdeacribed

in Chapter 3. However, a slightly restricted version of éapability

sealing can be added to TCS in a surprisingly simple way. In the

descfiption below, we assume that a layer wishes to implement




78

Cs <« seal(C,CT)

type
C privileges
S
< ID
~
type (T) \\\
privileges (all) =
ID (new) [ —
~
/ ~
~
AN
RN I ~

Figure 2.7-1: Sealing a capability



;z,ﬂfﬂb@f& ok AR o AT

S

'capnbilities of type T sealedlineide.

‘79

extended objects of type T , whoee representations are of type T .

The creation’ of type T is perforned by the operation:

Cp + create type (T_,P) .
: X- FEE T sl IEEUREL Y

WonwE o capn T AR
i oy NG

TS

| “Note that the type of the repreaentation (T ) must be specified

I Y “"«’ oL R N E

This is one of the restricfions neceelery for thc inplenentation

described below, and forcee the oet of typee to forn a tree, as
: Bifee A ;

discussed in the previous section.l Also, a set of privileges (P )
= E :H}v{} Seebmmai e

must be specified whose significencenwill ‘be explained below

ST L PL

The resulting capebility for the new type (A ) allows the crea-

LY
~~~~~~ 1\

tion of new capabilities of type T conciining reprcsentation

gl LR B R L S

The crettion of an extended obfect io;olvee the c:eation of

its representation (which reautt: in a capebility C), followed
RIS S TR A ol
by the creation of a cepnbility C for the extended object using
» HFSE ; st Loy s
the operation'

o

Cx + aenl (C ¥ ,ﬁ.l; x’)s G g

O R R ;
iSEE T » N

.This prOd“QG&fa sesled capsbility . G . The; m rescncuon in

the. acheme 1s the zequ&rm&: Lhat G conuiu at least the privi-

~leges in P . (In-pragtice, thia 1e ng punblem, since sealing is

generally preceded by the cxestion of the: reprssentation, which
produces a fully privileged capahﬁldsaﬁw§§?)g; EriAn o g

Later, whenever the‘inpleaeqfing domain receives as a pafa-‘
meter a capability Qx of the new type, it can recover the sealed

capability C_ using the operation:

80

c, + unseal (é*;c;i) .
Note that the tecovered ca.pability C has exactly the privile;es‘
Pr, which cannot be greater thnn th priv:u.cges in the capability
orig:lnally sealed Thus the hyer vmich :hwlmm:s the repre-
: senting cype mod not truat the 1aycr WImnting the extension,
since the latter can only recover pri&egu which it: had previously.

The scheu just described can bc wlmnted by repreunting

, the extended type as shown in rtgute 2. 7-2 lhc inplmtation
of sealing now cons:l.sts of mely chming t:h type fi.cld of C
fron T, to T and turning on all pnv&%w to prodnce C..
wh:lle #nsealing sinply changes it bac:kan&L uf;n thc privilages to
Pr’ :hus reereacing C asai.n)lote thnt c - w:[ll thus contain
the same ebject. ID u did C e’ raﬂmr tm)a m ID provided by
kthe systea. In practice this | is not n urim problen '

’l’hia letation clearly alloul a g:&m objact to be extended -
one or more times, and still be rcpremtnd hy a szandnrd-siud
capability. Variations on this scheme which depend on short type
iDs are described By Sturgis [8t 73] and Lindsay [Li 7;3]. Another

- related scheme is the "constituent: rights™ approdch disciisged by
‘Jones. {Jo 73}, which 1is essefitislly equivalht to ‘sedPing a segment
containing aeversl capabilittes. - Chegter ‘3 will describe a scheme
e, ‘alBowthg arbi-
trary sealing of capabdlitfes. . = . 0 iei.

- which ekiminates the: restrictions described '

s

81

Figure 2,7-2: Representation of a type

82

2.8 Goals for a New Capability System

This chapter has attempted to set the stage for the proposed

capability mechanisa of Chapter 3 by sketching a typical capability

systeam, exploring the problems of revocation and type extension in

the context of that system, and discussing various relatively minor

modifications to such a system attempting to spive those problems.

In disucssing these modifications separately, examining both their

strengths and their weaknegses, a pulbct of dasirable properties
have been noted. These are listed below,| and are sdopted as the
goals to be ut by the dui.;i propaud iniCh'tQt 3.

1)

3

o

5)

6).

7)

Goals

Revocation should take effect {mmedfately.

It should be possible to reveks ths mmu pﬂvunse‘

" in & capability iwtly.

It :m.ld be possible to seleatively revoke the privi-

leges of a subset of the capabilitiss for an object, and

this should require no global knowledge éf' capability
propagation. ' v
Any distributor of a capability c-"i‘:.‘ct.. ‘ﬁ'n't just the "awner"‘ ‘
of the object) should: bc able to revoke itt privileges.

The users of upabilithi mu not need to dht:lm:bsh
between revocable and wmubh thc.

The cost of revocability nhould not In excessive.

The mechanisms of revocation and type extension should

interact correctly.

83

Chapter 3

A New Capability System

3.1 A New Capability System

The goal af this chapter is the description of a new capa-
bility system (calle@*!ﬁﬁ-f&t qhqg;; ‘which meets all of the goals
listed at the end of Chapter 2. | ;Elﬁﬁrequires a fairly substan—
tial departure from the ?CS system of Chapter 2. After discussing
two abstractions of ‘the élink éesnent" acﬁene'of Chapter 2, wé.
adopt the fanily tree model to ﬂescribe the ravocation behavior
of capabilities. The mechanisufof generalized sealing is then

proposed, to provide both rcvocation and type extension, and the

practicality of implenenting the -chene is grgued‘in some detail.

3.2 DesiggﬁConaiderations for Revocation ,

In the design of the NCS cap:bility scheme presented in this

.w:._.v-

‘ cﬁapter, we wish to retain as nﬁﬂ?”!f‘podﬂible of the advantages

e

tdtng fts pro-

blenms. Ehere are at least two approachesgwhich can be taken in

of thé inﬂirbction scheme of Chapter 2,

,attemyting to capture the ésaence of the indirection scheme in a
base-level construct, as depicted in»?*gquWQWlea. On the one
hand,' as in F%gure 3.2-1b, one can i;egasd fG ae being merely
a part of thefmapping from ¢, to &h@ ohigck.. i;d C, as being

a special revoker capability vhich allovs that napping to be broken.

FELE T L ed SBGE

On the Gther hand, as in Figure 3 2-1c, one can regard both C :
being

and C_ as being capabilities for the object, with C

b b
somehow dependent on ca in the sense that revoking Ca

84

object

(a) Indirection scheme

object

(b) Revoker-capability approach (c) Dependent-capability
approach

Figure 3.2-1

automatically revokes Cb as well.

Taking the former point of view results in a scheme in whiéh
the mapping from a capability to an object is itself viewed as
being essentially like an object, since one can have a capability
for it and thus be authorized to manipulate it. To allow indivi-
dual privileges to be revoked independently, one must define the
mapping'asiégéfiining, or at least limiting, the privileges of the
capability, -The establishing of one's future power to revoke a
capabilitj should be anvgcgg;cﬁgpgpgpiqp,«as.d;scussed in Section
2.4. Fér ;£;;p1e; the situation indfiédfé“3;2—1b can be produced

by executing

Fr + revoker (Cb)' .

Subsequently, the .possessor- of %Ct can revoke the privileges in

Cb by executing

‘revoke (Cr,P}"“.

In its effect on C this is equivalent to the TCS operation

‘b’

reduce (Cb’P) .

The difference lies in the fact that, unlike reduction, revocation
also takes effect in any and all copies of Cb which may exist.
The interaction of revocation with copying is clarified in

Figure 3.2-2, which shows the situation resulting from executing

86

object

Figure 3.2-2: Interactions of copying
and revoker capabilities

87
C «C
y z

cr_* revoker (Cy)

cC «C
X y

This kind of interaetion causes subsequent revocation of C_ to
affect Cx but not Cz, which is clearly the desired behavior.

More complicated situations include "subletting," as shown in
Figure 3.2-3, in wﬁich'both the priginal owner (héiding Co) and
an intermediate disE:ibutO@w(hoiding Cd) retain the power of
revocation over the user (holding Cu), and "bill cqllect;ng,"
as shown in Figure 3.2-4, in which the ability to revoke the access
of the user (holding Cu) is délagated to a "colléction agency"
domain, with the owner (holding Co) retaining the option of later
disabling the collection agency if the contract with the user is
renegotiated. Note that the latter example takes advantage of the
fact that¥re§b€a$ility,‘bting authorized by a capability, is itself
thus revocable. e

The revoker-capability approach juist :described has a good
deal to recommend it, andéhas in fa;t been explored in some detail
in a system design projé&t.ﬁé Stanford Research Institute [Neu 74].
However, we pursue beré'the'dépandent—capability approach instead.
Investigation of the two approacgea reveals the following advantages
of this choice:

a) It avoids the introduction of special capabilities

authorizing revoéation,vthus simplifying matters some-
what (although a certain amount of complication is

unavoidabie, as we shall see shortly).

88

object

Figure 3.2-3: Subletting using revoker capabilities

. (———-‘El ¢,

NS

object

Figure 3.2-4: Bill-collecting using revoker capabilities

e e BT af

89

b) It avoids treating the capability-to-object mapping as a
manipulable object, which,g;gg;figgg;ly-redpgggﬁ}mpi§4
mentation costs, but,gpgrificepityg?ghé;ity to make
reypéabi;ity itself revocable.

c) It ggn:be cast in tegmgjofhgjmgchgéigm (;9 be degcribed
in Section 3.4) which ??}f%?s,;h§3“99i93§ of revocation
and type extension. | | |

It must be admitted that the choigg.§g:pqt;ggtgrely clear-cut; in

par;}cular, the opposite cqgclus;pn m@?h;»bgzgégched in.a.gontext

in which‘revoggbleirevoggbi;;tyngggvcpﬁéiqﬁgggw}ypoxtapg,i:

Oné motiyatiqn fo; the,no;}pp pg‘gepquagpygapabi};Figs is
the observation tha;_a weakapqd:cgpy of ak£a§;§gular,¢apability
can arrive in the Pﬁssﬁs?_§99¢ 8 domain as a result of either of the
following sequences of actiqps:

a) Thg)p;;v;}gggq‘1nﬁ;he‘or#gigalfgggp?#l};yiare reduced

to ;bg desired set, 59@ tb‘“,§ gqéi}isxpgsgedito the

b) A copy is pgssgd gpﬁ:hg;eggi?;yg,éoha@E, ggdxghen the

| ‘extra privileges are revokad from the original.

‘The essence of sequence (b) is that the granting domain "has

‘second thoughts” 4nd wishes it had ggeé:sgggggge_(a) instead. This

suggests defining the revoke opeggﬁ;gnhpg simply changing the

reduce operation to be commutative with copying, }n the sepse that
revoke (C#,P); Cb + Ca
and '

Cb + Ca; revqke‘(ca,'?) '

90

‘produce the same‘nef'éffect. ‘Of cdﬁtsé,>r§§3Eatipn cannot be
expected to undo any intervening exercise 6f tﬁE'affected capa-
bilities hence this commutativity applies only to the state of the
protection structures, rather than to the state of the objects
being protected. Nevertheless, it is an attractive way of describ-
ing the effect of revocation. |
Exactly how the revoke operation mhnagéa fﬁ find all outstand-
ing copies of the capability being févokedfiél'éfﬁéoﬁtde, the cen-
tral implementation question concerning this scheme. At this |
level of discussion, however, we siﬁpiyriﬁakinéﬁihdi:acglobal
search is done to'i¢ca£é and revoke the apbtbﬁfiﬁéeﬁéapabilities.
Given® that we require commutativity of cépying and revocation
there are several possible schemes, corfhsbéadiﬁg"ébvdifférent
assignments of dependency among the v;riiﬁs;éﬁbébiiitiesi¢21sting
for a given objéct.‘ Clearly, the cﬁiﬁnthﬁiiiti’fequirenent con-
strains the choice to assignments in which the dependency set of
any given capability includes allyéth;f ‘capabilities which have
been derived from it thrbugh.oné or more levels of copying. We
examine three schemes, corresponding taviﬁfeé'éﬁ&h‘assignmencs.
Scheme 1: The simplest scheme considers all éﬁbab;ii&ies
for a given object to be iﬁtetdependént,“so«tﬁitireﬁoﬁinélprivifi
leges from any of the éapaiilities,afféciﬁgéﬁgﬁiall."Thié approach
18 clearly unsatisfactory iﬁ géﬁéfal,}for'téo)tEASéns: '
a) All capabilities for a given object are fcrced to contain
the same set of privileges.
b) Any domain pqsseaging a privilege can revoke it from

all other domains.

91

Nevertheless, this approach has one virtue which makes it worth
mentioning: it i1s possible to copy a capability and have the copy
retain the revocation powers of the origina;. This is desirable,
for example, when a domain simply wishes to move a capability
within its address space.

Scheme 2: A more appeelipg scheme considers the capabilities
for a given object as formiﬂgfi "family tree" generated by the
copy operation as follows:

‘a) The initial capahility (p}n@ucnd”a; quect creation time)

1occupies the root noée of ; thé tree. g
kb) Whenever an existing capability i& copied the copy occu- |

s,

pies a new son node of the node contnining the capability
being copied. ‘ ,’ h , , ‘; f
A typical family tree is sﬁowh in”!igute 3. 245 By defining a
capability to be dependent on eth of its ancestors in the family
- tree, we maintain at all times. th. condition that no capability
can have any privilege not,pgeeesee@ by all of its ancestors.
Thus, revocation affects entiie anbtfees of the family tfee.

This tree-structured dependency solves the two problems
encOuntered with version 1 above, since it allows different
capabilities to contain different sets of privileges, and strictly
circumscribes the effect of revoking privileges from any given
capability. Thus domain A may pass capabilities to domains B
and C, such that

a) B and C have different privileges from each other,

and from A,

b) A may revoke the privileges of° B and C independently,

Bt L Eat s

92

L]

Figure 3.2-5: A typical family tree of capabilities

93

and c¢) B and C may not interfere with each other, nor with -
A, by revoking the privileges.

Unfortunately, by treating copying in this way, Scheme 2 sacrifices

the one advant;ge of Scheme 1: the ability to produce a copy with

identical revocation powers., A capability cannot be méved by copy-~

ing it and discarding the original, since the copy, being a son

of the original would lack ;he power of revocation over other

such sons, and would therefore bp an inadequate replacement for

the original. xhﬁ
The problem ie caused by twa=gouf1icting notions of what

copying 1is fo;, uussesting that: twa”dtftéreﬁy operations are needed.

5 E

Eggg By eombining the"ggtions QI'Scheme 1 and Scheme 2,

we define a "reduced fanily tree“ of capabifities generated by a

pair of copy opetltipnp: SRR ;f7,
Cb +agah‘v:;,,”(as in Scheme 1) .-
C, + son (Ca) (as in Scheme 2) .

b
The reduced faﬁily‘tfee’ié génerhted&ié“foilowé:
a) The initial capability occupies the root node.
b) The copy operation produces a new capability occupying
the same node as the capability being copied.
c) The son operation produces a new capability occupying
a new son node of the node containing the capability
beiné copiled.
. A reduced version of the family tree in Figure 3.2-5 is shown in
Figure 3.2-6. As in Scheme 2, revocation affects entire subtrees.

Thus, while Scheme 1 proposed a set of capabilities, and

94

Figure 3.2-6: A reduced family tree
corresponding to Figure 3.2-5

- 95

Scheme 2 proposed a tree of capabilities, Scheme 3 proposes a tree
of sets of capabilities. This is intended to capture the observed
tendency of the éapabilitiea for a given objeéfwtaffall'nAfﬁfally
into subsets: containing equivalent' capabilittes ‘(as mentioned in
Chapter. 2).. In this scheme, the capsbiliries it each famfi&“tfee
node: slways contain the same privilegew; #itice any ¢hange'to ‘one
- of them affects them all. On the othekr Wand, capabilities in’
dtfferent nodes of the family tree can contasin #&fferéht“pfivileges,
dnd‘intéract'accordink'to%th§»tu1és~bf~deveenaiht?rtvbcdfibng”'This
contrasts with ‘«oyst¢m 11ke TC8;, in whic¢h aﬁyffﬁofcapabilitiés
may contain different privileges, and reducing“the'pri§iiégestin
one never affects the other. | |

Onevvalid complaint about this scheme is that it forces an
early decision as to which cagabilities ona miy eventually wish to
revoke. irhe*reeounoudcd §01£¢y*waﬁld*be té'ui;f&'revocable capa-
- “btlity whenever there was 'anyvdoabtceueemﬁgﬁ?éhg‘ trustworthiness
ofgé\redeiving domsin. . Indeed, thi"1sw€he?fépﬁif£¢téioﬁ'fdr‘our

tion &tatus may

restriction that capabilities with the same revoca
not differ in their privileges. It seems intuitifely@reasonttle
that any level of trust less than complete trust may dbe subject to
change, especially since incompleté:trust is often based on incom-
plete knowledge. Thus; the saia”reid#ii&ioﬂi‘ﬁh§ﬁh prompt Yne to
pass ‘a capability with rectrictedfﬁfivixhgdaiiﬁduld‘proﬁﬁf“pné to
- make that capability revocable. RN S RN | |
Wh-ﬁishzto adopt the reduced family fr!é:tﬁfthefhbdel'of*
revocation behavior in NCS. The implesientatfon described in -

‘Section 3.6 produces exactly this behavior, in ‘addition to a -

sealed-capability type-extension machanism.. In the implementation,
‘these two mechanisms not only interact stromgly, but.also display
a striking similarity, despite their appsxentiy Jdmmimini_
. tions,. We therefors present, in- Section: 3.4, a:more general: v

H W vhich subsumes. them both.. - It- showld: be: emphasised that
this gemeralized mechaniem does. ngt prowide.amy: sdditional privi-
lege revocation festures,. butfmextm rathur as-an isteresting
descriptive device uaifying two- sesmingly different comatructs.

We will concime to use the family. tree.desex "m’“:fﬁil@ymdre

appropriate.

© In the design of NS, we. wishite sdopt.the seaied-capebiiity
~approgch to type extension, -as deseribed in- Mng m ‘afnor
restrictions in. the TCS umiliggj sealing wechantan %Oﬁﬁrstettqn 3
will be eliminated, but this is not a ..m, omact. What
- crucial, w“ s is-the ‘P“;P‘!f;s:iﬁmtm-anf _type-extension
with revocation. ' ‘ :

One aspect of such proper imteractien has »llrMy 1 men

tioned: it must be posaible to-revels secess to extended chbjects,

[3

as well as. to . base-laevel objects. MNo — i e

be handled through the normal "“‘m’mwwm, without,
fon‘. auy need to Wlicigxy notify the layes. “m imple-
ments the ob;'wct that. access is being zevoked. . Thus, o extra bur-
den 1is. placed on the user of the. extendad m*’-‘i‘“ﬂh caxtain

mild constraints are placed on the implementing layer, as we shsll

-~

A

see in Section 3.5, ; o

Another interaction which must be handled properly is the
revocation of capsbilities for objects which are representatione
of extended objects Since such capabilities can be sealed inside
the extended object capabilities (to any depth), the revoke opera-

rv?

tion, during its hypothctical globel search, nnst be able to look

inside the extended object cspabilities and renove the appropriate
privileges from any eligible representstion capabilities it finds
there. This requirement rules out such inplenentatipns as that
described for TCS in Section 2 7 in which a sealed representation
capability has no explicit existence, but can be reconstructed on
the basis of certain assumptions, the key sssunption being that
,its privileges rennin constant which can be false in a system

v

providing revocation. The importent point here is not that a
IAyer implementing sn extended type would nornnlly be in the posi-
.tion of hsving its representstion eepabilitiesirevohed but that
it must not be poesible for the freely eynilsble type-extension

mechanism to be misused to "hide" cepnbilities from the revocation

mechanism

3.4 Generalized Sealing

In discussing cepabilities, ve hsVe sonetines referred to
A Lode U

them as being infornstion “sealed in a box " This charecterize—

HES

tion has been used by Lampson [La 69], Horris [Mo 73] and others,

and suggests the obvious generslizstion of repeated sesling, i.e.

boxes within boxes. we have alreedy seen one situation in which

=]

98

such a construct was useful: the sealed cepnbilirf approach to
tjpe‘extension} In this section, we propose a much more general
vcepability seeling mechanism foifhcsfﬁiiéh not“oni;“eliows'type
extension without the restrictions iapoaed in Section 2 7, but’
also provides for revocation which follows the reduced family tree
discipline of Section 3. 2 |
The aet of seeling infornarion in,a bok can have tﬁo conse-
quences: o |
" a) Readingvof che,information 18 prevented. -
b) Modification of the‘infornetion;isjprevented.

‘Morris [Mo 73] has referred to seeling as being transparent if
only restriction (b) holde, and gggggg if both reatrictions (a)
and (b) hold. We wish to generalize this distinction to allow
partially opaque sealing of capebilities. Thia‘ie acconpiished
by using boxes wnicn ere pertiyjopaene andwperrip'érnneperent.

The opaque parts of a box have infornation on them, they cover

and override the correeponding parts of the capability sealed
inside. The transparent parts of a box allow the corresponding
parts of the capability sealed inside to show through, an& to thus
remain in effect. It is not surprising that this selective "fil-
tering" action can be used to capture the notion of priviiege
’revocation, as we shall see. | R

The ability to seal things in'ooxeskia carefoily controlled;

as is the ability to unseal boxes and thus gain accees to their
contents. Various kinds of boxes are aveilable"the sealing and/or
unseaiing of a given kind of box is icgelf authorized by an appro-

priately privileged capabiliry for airype.wﬂin thie echene, a type

W e e YRR B T T T ey v

Do o ot s

99

is simﬁly a template for making boxes. As w@_will shall see, such
templates, when used in a particular way, ganetntd a HYDRA-style
3-level object hierarchy, but this is not an explicit part‘of‘buf
definition of types. The association of boieS'with types should
not be taken as meaning that boxes are themselves objects, which
they are not. A box is merely the "skin" of a capability, and has
no Independent existence of its o&n.

The format of boxes is shown in Figure 3.4-1. A type is just
a template for making boxes, and a capability is‘juét a box con~
taining something, hence this can also be usea as the format of
types and capabilitie&._ One Qanuthink of the'gields as being

R A

written as’ "trit atrings" whgte each digit takbs its values from

P, ¢t b A i veait i u“,'ﬂ,».o!:s,

{0,1 transparent} The fields ‘are a11 fauiliar from previous dis-

N - -

- cussiens, with the excaption of the "capability—ID" field. This

y)'*

field iﬂggtifias the capability, and serves to distinguish it

(and all copies of it) from other ainilar capabilities, even if
their type, privilegea and obéectsiﬂ fields are the same. This is
important,'for example, during the hypothetical search which per-
forms revocation of privileges.

In spite of the alarming size of these capabilities, we con-
tinue to assume that each addresssble location in memory is capable
of containing one. At‘tﬁé same time, we will take ghe apparently
paradoxical view that each of the four fields in a capability is

the full size of a data item which could be étored in the same

location as the entire capability. This kind of behavior should

come as no surprise in a system which allows capabilities to be

nested to any depth without increasing in size.

B tiadile e R

100

capability-ID

type

privileges

object-ID

Figure 3.4~1: Format of boxes,
types, and capabilities

101

The seal and unseal operations are fairly simple. Executing

. Cg « seal (€,C)

creates capability C_ by sealing Cé in a béx specified by the

'S
iamplate cﬁntained in type T, as agfhorfzedéby the privilege of
sealing in CT The box produced 13 a yotbatim copy of the tem-
plate in type T with the exception that the capability-ID and
object-ID fields,: £f opaqua,vwillgh;v%ithe same new unique ID

written on them. " Executing

.c.+,u§se§l (Cs,CT).”"“

reverseh tﬁe.process bykreﬁ;;lhé‘one bévhoée b;xes from C; until
1t sucesds 1n removing a box whoge gygg fig;gm;s opaque. The
value of 1&5 type field must. natchutha§ of. thaitemplate in type T;
otperw;ae,”ggjgrror is signalled and nqrwalue is returned. The
capability CT must contain the privilege of unsealing.

Given the above mechanism, various kinds of templates can be
defined, of which we will use three.

The simplest kind of template is shown in Figure 3.4-2. It
isgonpleiely.t:aqapaxent,wandwﬁéngratﬁﬁwnggséwe will call
"lfockerg," aince,,ﬁhait o,nlyw.fmunn wi.s.,.mk,,m:iyent their possessors
faom madifying~their~&onee§t§ ia';ﬁy way. - Iawgarticular, lockers
are used to*concrol revocttian, ns'ﬂill‘be‘dipcusaed in the next
segtion.‘ A type containing this template 13 provided by the system,
and a capability for the type, allawing sealing but not unsealing,

is publicly available.

102

Figure 3.4-2:r A "locker" .

capability-ID S,

) lqi\; »
~
& i " o i T)
. P . AisE 3

Figure 3.4-3: A "revoker"

s

_capability-ID

type R
priﬁileges‘ o ’
object-ID 4w1

Figure 3.4-4: An "extender"

S e el AR i it I e T S e i o e o b S

103

A slightly more complicated template is shown in. Figure 3.4-3.
It is transparent except for an opaque capability~ID :field, and

generates boxes we will call "revokers."

akl from the defini-
_Fion_éf,thg.seal operation that\ggch,peyg;pyoggpgﬁill.;huawhave
its own new capability-ID.) As will be agﬁg;iq”;hezn;x;<section, ,
sealing a capability in a revoker box is equivalent to genefatiﬁg
a new son-node in the reduced fgﬁ;lx¢;ree.‘g§;;ype containing this
template is also publicly\aﬁa;lqp;gggg;ueggling,_butwpoi unsealing.

The third kind of temp;gteviswshownfigiﬁigpre 3§A-4. It is
completeiy opaqh;.‘ The vaiue«ggﬁ;hg,tyne.f;gldqigéjustﬁthe ID
~of the type containing the template. Boxes geperated by such tem-
_plates we will call "extenﬁers;?;Hxxtepgg; hgxegfproy;QQ a sealed-
capability ;ypgfe#tensiqn.fgcility;gsvdésgt;§g§ in Chapte;wzz
~ Several types ;Qnga;ninzﬂsucp_;égp}g&egi;rc?g;egggiqnd,by the system,
an@}an ngration is provided for .creating more; such typeg.an demand.
These types are pot made publicly acgessible. |

There may be 6ther kinds of ;qgg;ates}ug;gh vpuigwprove
‘interesting or useful, but we will notﬁpgraggﬁghig here. Instead,
we turn to the relationship between the sealing mechanism and the '
other operations of the base-level system.

As mentioned previoysly, the basq-level operations taking capa-
bilities as arguments can be divided into twp groups. Most of
them simply "look at" the capabilities as the names .of objects
which are their actual argyments.. A,fqgiqg.gggp4qg§ directly con-
cerned with the cababilities themsglyes,‘ilﬁg,;reﬁﬁqen;_gfacapa_
| bilities by the former oggrationg';s.quitgvsiqé;g:,,;ﬁey always

rely on the external appearance of a capahility, regardless of its

104

- internal structure of nested boxes. Fdr’théVihfter‘dpetations,
chefsituatioﬁ is more complex.

In addition to the seal and unseal operations described above,
* there are four kinds of base-level operatiots which manipulate
"cspabilitiga’fhenselves: : ‘

a) creation of base-lével objects

b) copying of capabilities

Se) etnsiug”(ovefwrifing)'of capabilities

d) revocation of privileges ,
Each of these i now described in some detail.

Ciaattén“af bh%e—levél;ébjéctﬁ 18 1dvolved with the capability
‘mechanism in two ways. On the one hand, edch new object must be
named by an initial capability whidh' {5 to be retutned as thé
‘value of the creation operation. ”Tﬁéifiﬁfiéitiéhléf this capability
-can best be déscribed as the sealing'of sn empty extender box,
using a type owned by the baéééi§€615i§¢€ii éi”n"téﬁbl&té: Thus,
base-level object creatton depaﬁﬁi‘on‘ééilingJ S
- On the othet hand, sealing dépends on the ptevious creation
of types, whith are base-level objéét&i**iyyea’corfeéponding to
the various base lével 6bjects (ééiﬂéﬁés; déﬁiiﬁ;:ﬁétc.)vdte
‘created at system initfalifation timé. At least the ™root" type
(ID = 'type') must be created "oﬁi’df éﬁih‘iif;“jandiiﬁ’féét, all
base-level types are-predﬂﬁabiy c:é;ﬁoé‘fhibfﬁayeféifEOéﬁh‘concep_
tu&l‘ly‘, orte can think of the bh‘é&dé‘vréf’s?&tgi “uding its own
" creaté_type ' operation, which would fa fufu uié‘théfeéhi‘Operation
 8pecify1ng'th&‘root‘typé'as 4 template). | |

o Copying of ¢aﬁab11itiés‘1B'ééiﬁiﬁtui11yléiiplé in’ this scheme.

A N B Y T T e e

The entire capability, including any number of nested boxes, is
reproduced exactly, so that the new capability ia indistinguishable

from the original. Thus, executing

C,.+«¢C

i g 2

results in two identical capabilities.

The overwriting of a capability with data or with another
capability is also’simple.b Theﬁove;yritteq capahility ie_destroyed,
with no particular eide—efﬁectsvexcept topzthe;obvious possibility
that some previously allowahle actionsteremnoe'gorbidden.

The most complicated operation in this scheme is revocation,

which is performed by executing
revoke (C,P)

~which tevokes:frop C (and_all copiee‘of‘hC) ‘ahyrp:ivileges
Which areLcezo in mask P. Ihe PS?@F39§FVb9¥ of_fg is required
to be a revoket,. Note thatkthe tgyoke)ope:ation,_like the TCS
reduce operation, is portrayed as, uodifying an existing capability,
rather than producing a8 new one (cf. seal, unseal). Geheralizing
the discussions of Sections 3.2 and 3.3, we oill hypotheeize that
the underlying capability machinery pegforqsva élohal search any-
time an existing capability is go@i:ied gad_teﬁlecte.the‘changes
cinrallycopies of the capability, even thoeepphich are gealed in

’nesteq boxes.* (These copies are eaaily recognized by their

,,,,,

*In the design being described, this hypothetical search is exploit-
ed only by revocation. Sectieﬂ '3.8 wilt survey wotie possible ela-
borations on the design, two of which would also depend on this
search. At ‘risk of repetition, we agafn ‘point out ‘that this global
search i1s only a descriptive device, and is not actually implemented
as such.

106

capability-ID fields.) The particular modification performed by
the revoke operator is the writing of an opaque 0 at each posi-
tion in the privilege field of c which corresponds toa 0 in
the mask P. This is oxmly done, however, if the outermost box of
C 1is a revoker; the revoke operation-refuaes to write on any
other kind of box, and signals an error if ‘this is attempted
Operations must also be provided for testing the tag of a
memory location to see whether it contains a cepability; and if it
does, for displaying the various fields of theJoipebilltf.“These

operations are stteigﬁtforwerd‘an&'reqoire‘no"detaiie& discussion.

3.5 Examples of Generalized Sealing

This section outlines some intended uses of the NCS sealing
mechanism joet described, and reviews the 3oo1e’listed at the end
of Chapter 2, to assure that they have all been met. The descrip-

tion of directories and other specific facilities which can be

 implemented using NCS capability sealing is postponed until

Chapter 4.

There is more than one reasonable way to use the NCS sealing
mechanism for revocation, depending upon the exact situation (i.e.
the number of domains 1nvolﬁedAand their felhtiooshipe‘to‘each,
other). In the example sitoationaibelow;wit is aoionedrthet

domain A possesses a capability ‘and wishes to pass it to ome or

‘more domains B. In choosing e_ﬁpthod.oi'doing’tﬁis, ‘A controls

' the possibility of,leter.tevoeatiqﬂ,oﬁ"tﬂe #exieue‘ceyebilities

passed.

To illustrate the various situations, the sealed capabilities

are shown as arranged in corresponding redussd family trees. Recall
that sealing a capability in a8 revoker box corrsaponds to generating
a new son node in uhs tree. §("

The simplest situntion 15 one in which’ A conpletely trusts
B, and simply passes a copy (c) of its own capability (C), as
shoun,1nwgignm¢43,§gl,,,xhgiqgg;:;apquqg@'q;gﬂa;g of this is in
"system calls," in which A regards domain calis on B as being
operations of its "extended machine." As will bs seen in Section 3.6,
the passing of such g.n—seslsd cspsbility psranstsrs represents’
a considersble ssvtng.“ This 1: wery significant. since expetience
| suggests that a grest"uidnnity of domain calls sxscuted are in
: fact system calls {85‘7249 There are also logicsl reasons for

. o g e,
passing non-sealed~csﬁsh&i&ﬂ&§s pn certain kinds of system calls.

e o wu~_«,

namely those which dtinpi¥!ﬂ¢,

sxtended -ncblniznl for capability

storage and/or transmission, such as directoriss or nssssge

R P T S
IR L3 \

channels.

If A does not have complete trust in B, then before pass-
ing C to B, A shautﬁ“ltsl it in a revoker box. Byvkeeping
one copy (C) of the snsléﬁ'eapibility, and passing another (C)
to B, A retains thctggng of later revoking B's privileges.
This situation is ilgysarlﬂﬁd 1n Figu:e 3. 5«2.

If A wishas to pase. ;v""csbig cspsbilities to the several

ls }‘w .
domains Bl,Bz,...,B g %ﬁlternsﬁive wouyld. be the creation of

;{
Gy as above by stg}ini’ ﬁgnfséreyoker, followed by the passing

of n ' copies of CR (densted CB). to the domains B as

i’
i
- shown in Figure 3.5-3. . (Note thet Lhia 48 Juat the;situation

108

109

which would arise if A passed CB to Bl, and B completely

1 1

trusting Bz---Bn, in turn passed copies to them.) There are two

limitations to this use of the mechanism. One is the non-selectivity
of A's power of revocation; revoking privileges from any of the
domains Bi requires revoking from all of them. The other limita-
tion is the lack of isolation between the domains Bi;
them is capable of revoking the privileges of all of them, which

any of

may be inappropriate.
Both of these limitations can be avoided by simply handling

each of the domains Bi separately as in Figure 3.5-4. This

allows selective revocation from each of the B and isolates

i’

them from each other in case they are mutually suspicious. For

example, the various Bi may be the renters of a program owned

by A, in which case both of these considerations are important.
On the other hand, there are situations in which A does

not need to revoke the privileges of the various Bi selectively,

but does wish to isolate them from each other. For example, a
professor may wish to grant access to a grading program to all of
the students in his class. He certainly wishes to prevent the
students from revokiﬁg this privilege from each other, but may
well have no desire to revoke their privileges independently,
especially since this is somewhat costly and requires that A

retain and use n different capabilities Cp - In this situation,
i
in a revoker box, and

A can produce a single C_ by sealing C

R A

can then distribute the capabilities CB " produced by in turn
i
sealing CR in a locker box, as shown in Figure 3.5-5. This not

only eases simultaneous revocation, but is significantly cheaper,

B Y N R]

R R

110

~Figure 3.5-4: Paasing independently.

revocable capabilities

v

’Fighre‘B}S—EE Piisinafiabi;tedli

- simultaneously revacable capsbdlities .

111

giventthe implementation to be described. ;;

“from this discugsion, if should be:cleér that goals 2, 3, 4
" and 5 of Séetion 2.8 are satisfied by the proposed design. Goal 6,
that o!@féaabnahig cost, will be treated in the mext section,
| which proposes arn implementation for sealed capabilities and dis-
cusses its efficiency. This‘léiﬁéékéﬁfy°é§ai”fffiﬁaé of ‘inmediate
revocation, and goal 7, that of proper intetactTén between revo-
cation ahd type extension. Beéwﬁkﬁmfﬁénfjcﬁgbééégﬁ goals generate
one fairly subtle problem, which miit be didedssed pefore all the
goals can be considered satisfied.” u 7 wl

" It 'is ‘elear that’revocation as defined takes effect immediately
in the sense thit the privileges of the appropriate capabilities
afe’imhédiatél&‘ﬁbdified. This is oniy sighifichht, however; to
the extent that the corresponding opétitions on the objéét in ques-
tion are immediately prohibited, wﬁiéhfiﬁﬁtégékﬁﬁgeafs dﬁ§the’
checkiné of thevprivileges by the opétaffgdé.ﬁxﬁgiééih imagine the
fbllowing kind of éqggg;io,n%q which tevocaéiog:ié effectively
délayed; Suppoéé'that donaiﬁ' A in process P, passes to domain
B 1in process P, a capability to access X, which is an extended
object implemented by layer L. Suppose that layer L 1is repre-

sented by domain L, in P, and by domain L, in P Assuming |

A A B B’
that we can say nothing about the relative execution speeds of PA
and Py [Di 68] the sequence shown in Figure 3.5-6 is one possible
outcome, and produces an effective delay in revocation wﬁich is
visible to A. Strictly speaking, the problem here is caused by
the occurrence of étep Al between steps B2 and B3, which should be

executed together as a "critical section." Synchronization between

Al.

A2.

A3.

A4,

AS.

in P

A revokes B's privilege
to modify X
A calls LA to examine X

LA returns to A the

original state of X

A calls L

to examine X
A

LA returns to A the

modified state of X

Figure 3.5-6

112

BL.

B2.

B3.

B calls L

in P

B to modify X

LB verifies that B is

authorized to modify X

L

B

performs the previously

checked modification of X

and returns to B

e ek e a e St e i

the base—level system and higher layers is fraught with difficulties,

however, hence ‘the following alternative aeems preferable when a

" layer is about to access the repreaentation of an object, it must

wyl bl

first lock all parts of the repreaentatiop to bebtouched and then
check to see that the requested operatian 18 authorized In many

cases, this interlocking would be neceaaary anyway, the major

i change due to’ revocation is the noving of privilege checking inside

of the critical section. (In’ particular this means that pre-check—
o

ing of privileges as an integral part of the donain call machinery

st 73 Wu 74] is not very useful in a syatam in which privileges

FULE

are revocable.)

“In the context of Figure 3. 5—6 uch checking would delay

step A3 until after step B3, Th. crucicl point is that this
" renders the situation 1ndistinguisy‘ble frou one’ in which step B3
bectrred before Al. Thus, alrhough an access nay occur‘clightly ‘

 after permission to perform 1t has bcen revnked there is no way

for a properly Written (1 e. tining independent) program to detect

e

this occurrence.

3.6 Implementatiqn of Generalizcd Sealiq;,in acs

' As in previous discussions, we besin by dascribing the repre-
sentations of capabilities theaselvea.} A tagsed nemory location
holding a capability appears to the user‘to coﬁtcin a rather ‘large

amount of infornation, but in actuality 3t contains a short form

CE T R R S A

Except for real-time delays.

114

of the.capability, consieting of a "locker’bit"* ahd the ID of the
capability aa shown innfiéore 3.6—1. The qther fielde_are stored
elsewhere, and the j £)) is sufficient to locate them, allowing recon-
etruction of the complete ___g forn of the capability

The most important advantage of thia approach is that it
allows the chnngeable information (e 8 revocoble privileges) in
all copieo of a capability to be centralized and thup updated
:without a global search. Thia is crucial to the practicality of‘
the achene and will be diacuaaad 4in more detail shortly.

This approach also allows the effoctive atorege of an entire
capability in a single practicel—eized wcrd of 8 tagged memory.
. For exanple, on the terribly peaoiniotic aalunption that a new
| unique ID is generated overy 10 nicroaecondt, the uae\of 48 bit
words would allow the syateq:to rog?contingoqglx_ﬁor_abogt a cen~
tury without exhausting its supply of n&lll.v Using a name—apace

compaction approach and a aomeuhat more realietic level of pessi-

mism would probebly allow the use of 32 bit uords withqut reqniring

an objectionable frequency of system ohutdoqna to perform the
compactiona (i e. once evaery few weeks or nohtha at worst).

An attractive way to store the boxea uhich conatitute the
actual substance of the capabilitiea,yould be in a global hash
table containing small fixed aized entriaa and keyed opn unique IDs.
The map, as deacribed in Section 2 2 is ju;t such’a atructure,
which auggeate implenenting each box as & l&p antg? Thia approach
’yielde an integrated structure for the reconntruction gnd inter-

pretation of nested cepabilities fron their ehort.forne The

Thia is not the same as the tag bit on the capabilityg and will
be discussed below.

115

locker bit

|

capability

capability-1ID

(short form)

capability-ID

type

privileges

contents

Figure 3.6-1: Format of (short-form)
capabilities and map entries

116

increase in size and complexity of the map machinery, while non-
negligible, is not excessive.

The format of a map entry is shown in Figure 3.6-1. The
capability-ID, type and privileges fields of the corresponding
box are represented dir?ctly, while the object-ID field is replaced
by a new "gontents" field which serves to locate the contents of
the box. Map entries for various particular kinds of boxes are
shown in Figure 3.6-2.

Base level capabilities, while conceptually the same as other
extenders, are represented in a special form. The contents field
contains the physical address of the object, hence these map
entries correspond to the map entries in a systeﬁ like TCS. The
privilege field would always contain all 1's since revocation
does not operate on extender boxes, hence its value can be implicit;
the space in the map entry is used to record the size of the base-
level object instead.

Normal (i.e. user created) extender boxes are represented
similarly, but their contents are capabilities, rather than physical
a@dresses, and_they make no use of their privilege fields.

Revoker boxes represent their transparent type and privilege
fields as all 1's. In the case of the type field, this value is
a constant which is specially recognized by the capability recon-~
struction machinery. In the case of the privilege field, it is
used as a mask, hence any O0's written in it are effectively opaque,
as required for revocation.

Note that no map entry format is described for locker boxes.

Locker boxes are so simple that they may be implemented in a much

117

[PR TS

Initial capability
for base-level .

. T

object
(special extender)

Siﬁe,

1

Extender

(normal extender) f:;

.

——

Revoker

1.1,

- }~ ! K LIPS &
P
SN g ¥l i
c

Pigure 3.6<2: Map entries

representing various kinds of boxes

Cap

.‘Type
Priv

.} Cont

Cap

- Type

Priﬁ

Cont

Cap
Type
Priv

Cont

118

cheaper way. As shown in Figure 3.6-1, 3 single locker-bit in the
. short form capability, rather than a gonplete map entry, serves to
1ndicate the presence of one or more iocket baxaa - (Since they
are transparent gnq‘ggnfreggygbxgjqgp}tipln»qoaqecueive,locket
boxes are indistinguishable from a single one.)

Given‘the described representations of the various kinds of
boxes, the seal and unseal operations may be implemented as shown
in Figures 3.6-3 and 3.6-4, respectively. The seal operation
. creates a new map-entry rspxeaenting.:he new box and stores in its
\ contents field the sapability bcing adhled SélIing in a locker
kboklie handled spceially by simply &uﬁhing on the locker bit in
the secled\ccpability.> Thﬁ'ﬂﬁ!éil“ﬁvitltion simply returns the
contents of the appropriate extender box. (Recall that revokers
and lockers can never be unsealed.) Figure 3.6—5’suunar1zesvthe
various low-level -facilitties used in the desctiption of these and
other operaetons These are aggsumied tb be clear fton previous .
discusstuna‘ with the éxception‘af“c&ptbility teconctruction

("R!c!?“?“&ﬁd ‘assoclative memory Ioo&up ("C:p find" and "Cont_find")
which will be described” shortly.‘m o

The cr&ation~of each _naw baae—level cbject 1nc1udes the
construction of the "root" map entry represencing its initisl
capability. This map-entry is self sufficiept, in the sense that
it does not depend on #ny other map entry for its pfoper in;erpre-
tation. IOn.the other hand, a map entry representing a revoker or
extender box contains another capability; its one-word contents.
field holds the short form of the capability, hence its interpre-

tation is dependent upon the other map entry holding the rest of

119

pa wpre—)
C « Recaplc) | -
Cp + Reeap{ey)

4 I + New_ID() |
| M + New map entry(I) |

LockeR(c) « A

i

Type (M)}""«gl‘l# ,1 .
Priv(M) % 41 . 12 _ Type(M) + Obj (CT)

HIR S Cont(M) « ¢ o
' Cap(ca)~+ 1
‘Locker(cs)* 0

Figure 3.6-3: NC5 seal operation

120

Cn + unseal(G;GT)V

C + Recap(c) |
.crﬂf_nacéy(qi} "

v Return €omt (C)

Figuié 3.6-4: NCS unseal operation

Y

121

Fields in various data structures (see also corresponding figures)

Cap (x)
Type (x)
Priv (x)
0b3 (x)
size (x)

Cont (i)

Unique names

Map
New map entry (I)
Map entry (I)

Delete_pspﬂgntry)

-Capability recomstructilon -

“Recep. (c)

Associative memory
Cap_find (I)

Cpnt*find (x)

RS

capability»ID
type
privileges |
object-ID |

sizg

contents

‘generates-a new unique: ID

createa map entty with capability-ID I
finds nap entry with capability-IDa

deletes mnp eatry M

reconstructslong: forw of ¢

find entry with capability-ID=-I

{etee LAY entry) *
find entry with contents= x

- (else: mﬁeuwy’):& gk

Figure 3. 6 5 Low 1evel facilities used by operations

iy ORI T A B A

L it A r T ey o R

122

that capsbility. ’i'hua, reputed uﬂ.i,n. of a bue-level object
%

results in the gemntion of a tree of map utries, uhich combines
the functions of the type :ru of Sectiom 2. 6 and thc reduced
family tree of Sectien 3 2. An exsmple of ‘uch a tree is shown in

g ? %“

Figure 3 6~6, in vh:l.ch a ug-nt is used as the rcpuuntation of
an extended gbject of cyp; 'dircctoty,' fat vhich various capabilitiu
have been distributed. o i

It is important to note that while the mwguion
semwu .mh-.tmmmml,. the unseal apmm does not dis-
mantle them. For example, in r:tgurn 3.6-6, if th. hyor :l-ple-
unting directories unseals c3 to obnin cs . the np nttuctute
’runhumhtnpd ThmMwa‘i;mﬁwﬁnp |

SRS SRS S

‘ entr:tec un bc diacuuod latcr.

‘,..,

In m-r to reconntruct the 1on| fon of a cqmbility, it is
~v1th the

' necessary to examine the boxes Mmi#ﬁ -

outermost: and. warking: jewerd, until all fislds are: Mletely opaque.
Given the particular kinds of boxes und in our scheme, this simply
entails tcmins down a chain of (sero or -'ote) ra;oher- until a
non-rwom m u m:ud This rlcmtraetion procedure, |
shown 1n m 3.6-7 + 18 rather swht to the "fallmd.ng" proce-~
dure for hdimction cha:l.ns of Section 2.&, In oth.t fiauru, the

RS RS RN

apability mmctm prm is utmnd to 1n the form
C « Recap (c¢) .

where c denotes the short form and C the reconstructed long

- form of the apability. In additi.oﬁ to the vt-aibl.g long form, the

reconstruction pProcess also recovers the represengation pointer

123

Capabilities:

long: Y Yy f 8 I ’55: g
"dir’ ‘dir™ 4 | 'atet | | raix’ "seg'
. I 2% ‘ 1 e, | i1,
- Kt . ! p————
: a
€5
short: , Fi
Map:
Objects:

Figﬁre 3.6-6: A map entry tree

T SERATE T S T T 3

124

C + Recap(c)

x + Cap(Cont (nl) : B
P+ PAPriv(M) ;

- i

NG

"Cap(A) + Cap(c)
- Jrypefd) + Type(M)
fPeivi{A) « P ;
- [UsIta) « Cap(m)
. Jsizela) « priven] |
Kont(a) « cm(n)} | ,

Figure 3.6-7: Capability reconstruction

N

from the capability to the object, which consists of the short form

representation capability in the case of extended objects, and

the address and size for base-level oﬁjecta. Thus, the result of

the reconstruction process is a iagging, as shown in Figure 3.6-8.
" The cost of the réconstruction process is relatively high,’

since it involves scanning a chain of map entries, each of which!

. mast-be lvmd’ by hashing-into the map. The retention of the most

“dctive” uﬁppingn“iﬁ fage hxrﬂva;e thus becomes even more important

" “than in a system “Iike TCS. Thg assoctdt1ve’ memory discussed in

Section 292_9991§\b° used wiiﬁ?ut change to hold map entries from

s 1"’

‘active chatns mmd thus speed Up the scan. On the other hand, a

.73 {{

- 502 increase in Ehe size of thh asaociutivctncnory entries allows

"them to contain entire mappinss. rather th‘“ single map entries.

v

On the average, this modification would prubnbly not provide a very

g drwic improvement. in quada »(hv wmm monstruction

process entirely, rather than narély accelerating it) and might
even slightlyégii6§¢:thé;éé;iﬁig;;;i;fiﬁﬂng# gtili;ation in the
associative memory (if the average chain iength was less than 1.5
map entries). It is desirable, however, sinc¢ it allows a fixed
amount of associative memory space to effectivély contain a chain
of arbitrary length, thus preventing long chaiﬁq frop severely
degrading performance by filling up the associative memory. We
therefore specify the gséociative memory as containing the several
most recently used complete mappings. Tha_éxact number to be
retained would depend on several consider#tions,iranging from
available hardware components to expected usage patterns. Two

factors which favor maximizing the number are the relatively high

126

capability-ID

: ,X i 1\ 344

ERS DR SR

type
i:—b

Capability

Representation "
rotater

* Base-level objects only
. Rex Address if bane-levcl ohjtct
' Reprasentation capability (ﬁnﬁ: formw) if extéediiled object

Figure 3,6—8; A_nnyging o
(as stored in the assotistive: semory) -

127

cost of initial loading (= capability reconstruction) end the fact
that the retained mappinga renain valid through domain—calls and
process switching. '

In the various figures, the associative‘menory’facilities are

represented in the form

A + Cap_find (X)°

A + Cont_ftad {(X) .

Each of these finds an associative memory entry whose‘appropriate
field (capability~ID or contents) contains the value X If no
such entry is present, the least recently used entry is found.

| The revoke operstion is quite straightforward in terms of

its effect on the map. Since all copies of a 3iven revoker box

are represented by a single map entry, the nasking of the privilege

fleld of that map entry eutonatically revokes the corresponding
privileges from all the copies, includins those sealed inside
other capabilities. The only problen is that soue of these latter
capabilities may already have been reconstructed and saved in the
associative menory, necessitating their rennval.

Unfortunately, the names of all such capabilities cannot be
determined from the name of the capability being revoked except

by introducing a complicated and fragile backpointer structure

into the nap—entry~trees. One way of dealing with this problem is

i

ato conpletely fluah the aasociative«ainory on each revocation

‘o This will be sazisfactory ig- the !reqnency of revocation is rela-

sar

,tivaly lOU; If revocetiontih a anfficienti? !requant occurrence,

-\hossver, this uill drasticelly reduee tﬁe ntiliéy df the associative

128

memory by forcing heavy use of the axpenniwc rcloading procedure.
A quite satisfactory compronisc betwunn total flnshins of the >

associative memory and selective renoval of only the affected E

capabilities 1e the teuoval of 311 cap.bilitinc fbr the same '

object. This is easily accompliahod using thn "Cont*find" feature
of the assoclative memory, as shown in Pigure 3.6-9. (Por sim-
plicity, we have assumed that ‘0. is not a valid value of the 'Cap
or Cont fields of a mapping, and can thnrcfote be used to diaable

an associativc memory entry) This acni—nelcc:ivc remov:l will

3

somctimcs force unnecessary reloading of c&pcbilittcs which were
not affecmd by the revocation, but thiu wﬂl only happen when
capability is revokcd and anothcr capnhility for thc same object

which is not its descendant in tha faaily trea :ppoqrs in the

associativc ncnory. ‘ ’

The storage of 1nact.ive nnp entrics in ncon&ury nenory is
mich the ssme in ucs as m TCS. Each rcs up antry carruponds to
a complete tree in ucs but only the ;ctive patha in the conplete

tree need be hept in prinary ncuory. It scc-s likely that known

-

techniques for localizing list structures 1n nacondary -enory {
'[Bo 671 could contribuce significantly to niniii!dns thc overhead

incurred ‘when an inactive path beconcs sc:ive and -us: bc brough:

into printry ncnnry.

*One possihle frequent exanple of this unuld be rcmtcacion of a
domain-call parsseter upor returs: fsoe the: esll. -Resotation of
the callee's capability would unnecessarily remove the ¢aller's own
capability from the. associszive mewory. This ccuﬁi be.avoided us~
ing a modification suggested by Peter Bishop of M;I.T., in which
the mapping. produced by the capapility reconstrucéion methanism
would include the length of the chain scamned to produce it. By
comparing this value for the. capsbility Weing. revoked. amd the
capability being removed from the associative menipry, one could
avoid removing tree-ancestors of the revoked capakility.

1

129

- revoke(C,P)

o P Ty reary e
Priv(}i) « Priv(M)A P

z"‘!wz 2rd ek e S

"'Ll

Cap(A) =0
Cont(AY = 0

b

130 S .

3.7 Some Implementation Details

In describing;' ati hpleaen&d system, it is often desirable
to omit or simplify certain details vhich, wiiile necessary in the
implementation, are of‘ 1itti§ Vi‘ntriuic interest, and tend to °®
obscure the significaant ptiac;l.vm of the design. Uﬁfortumtteiy,
in arguing the practicality of an wilplmteé system like NCVS,
one is oﬁtged to address such issues. - This- ngétiﬁn is invdlved
with usuch details relating to the maintenance bf the system data
structure we have called the map. Readers nha;«fin‘d themselves:
growing bm':ea with the arguentl can skip th remsainder of this
section vithout signifimt loss of co&tiﬁuizy. |) *

The banic problem w:lth the map as described thus far is t:he
lack of any mchanim to keep 1t fr:o- filling up. ‘For example,
by repeatedly sealing a #ingle eq;abﬂity at the rtlétively ﬁodcst
average rate of once per nillisecﬁn&, a malicious domain could:
fill up a 1 million word map in a few minutes, In a system like
TCS in which ea-éit mp entry cerrupoﬁs to a diffcrcat objectﬁ, {one
might be able r.é depend oa the Mttum of other rescurce usége
for the ocbject to limit "ﬁuéq of the mp-rmxchgurce and pre-
vent its exhaustion. This is clearly mot the case in the new
scheme, in which creation of map entries does not ‘:inply,any other
resource usage at an."" | L | - S

For this reason, it is netessary to treat mmtrus a8 an
allocatable resource and thus lin;; the smount of -ap space
available to each domain via its account. An account's reserve
of available map space must be decremented each time a domain it

funds creates a map entry, and incremented when the map entry is

e bl

131

deleted This requires that each mep entry contain an extra field

sl TwmAss T
specifying the account which funds it siuce thie mey not be evident
. T ,_i' 2;4.‘:‘ L :»;:«*;n PEe
at the time at which‘it is deleted Since unused map space resides
S Y &

ST &

on secondary storage, it is quite inexpensive, hence the allocation

given to each account can be sufficiently generous that no ‘reasonable
. .,,4,47 o s, i 5 v , [kl \\{* %.} ool il

E e

program would ever. exheust it. The limit eerves only to contain

Comgdn i ol tiban) L ontola
the demege doue by pethologicel prograns - . !

- ﬁé{;i‘:iné’hsystem 8 point o‘f ,Viw, the problem vis now solved
isioce':ech'ueerucanvh;ru»o;ly}him;elirhyiegtra;a?ant use of map
space.v This is not reelly sufficientjhoeeviifwthe consequences of
such“;elf-inflicted harm musti;o: blhia; ;;;;}efd Avéiveuwaccount 8

i - % Pl an LB 0SS

7"‘allocation of map space can be cluttered by an undebugged program,

. L 3 P A
Ueneris o R VIGHm Jiew & S el § O 3 “y LAY l}f L563

V'hence some mechenism must be provided for prevention of and/or

. : . el G i
e ey iy Ub Toeiad, o S L v x fabi 13 siisrs o

recovery from such a situation. Preventien cannot reasonably be

FESTINNES i et s 11 g CEtis g By ety s Lol .g,‘. 43}{
expected of the base-level aysten, since it cannot distinguish
ORI § § f { 5808 3K }:J FEEHD 'ﬁf LY fanei o

between legitimate end illegitinate use of -ep space, hence recovery

BT B muﬁi‘}"&t D8 Bl N T

4mnst be possible.‘ We take the point of view, however, that this

H Sty 3T cesoadd ogd footoToas s el
recovery need not be perticulerly easy or greceful since, as
sk by Fid Iz »;»A"’;';'xp LQAE‘%;.,’,(L 4—;«_};5{ Nf;i K

mentioned previously, most use of the seeling nechanism is expected

T ihoREaTdus ALuas sl nEL LA

vto be made via more civilized facilities rather then directly. The

I

. em Craris 3
implementation of such facilitie. will be discuseed in some detail

FICE IR O s R D

pin éﬂiﬁai:“i ﬁ:Atwthisipoint we ereéonly concerned thnt such faci-
(R 87 2 % : LT [l Fian R TR FegT e
lities ;ee ;ealing in an orderly :ey. -)9 fv “MA')
whet constitutee orderly;ueeio; tﬁé*é;;ii;é necheniam? So
) . PR RS I S ST B P H
far, no method hae bee; deecrib;; for renovinﬁ ueeeeded map entries,
Gnogren d variels e lpseergl o s B

hence any use of sealing will eventuelly fill up the map The
G B

ity (58 R P " 4 134} ‘3 ¢
basic question is' when ie a map entry no loaser needed? There
PR e D lg nbeap se b st aramel cdlesy sl

132

are at leaat twc circuutancn 1n uhich t.his 18 true'
'a)" Its privilege field 1s aupty, S ; B !
b) Its contents field point- to a m-e’xhtent up entry
or objecc ‘ ‘ ‘ !
If either of these conditionh holda the np em:ry i.s \ueleu and
may be deleted. Condition (a) mgnts tht ravalm oporntion, upon
reducing t:he privileges in a up eut;ry, :hould chock uhether any
privilcges remain, and if not m;tu the eatry fm thc map. ¢ Con~
dition (b) mggeats that tha capchmey rueomtmction uch;nisu, |
upon emountcring a nap entry \dwu muats ﬁ.cld mntaina such
a "dead-end" capability (wh.teh we \rill eal}. an “whw" entry)
‘should cmcm 1t from the up A up -uzry m coam:a fnld
contains t.hn address of a ban leval object 1: dcloted whcu the
object is deletsd thna uoluing my mp min peint:l.ng t:o it,
| VIn general, the delction of a m an:ry mvcma one ot nore
other map entries t.o beeone 1solatcd. md thut h dakted the next
time t:hay are exereised by the recmtrw:tim mm‘ In this *
way, entire inolatad subtrees can be muy aliaim:ed (The
case in which such cntr:l.« are never -ubmtly am::iud will
be discusm shortly) ‘
| 'xhua. in oddit:ion to its noml cxmm activitm
(destroyiu uuueedad objacts, atc.). s uu-m m should
revoke any unneeded capabil:u:ies to clm whm wp ?’:"
Swln’ly, the problm of clmins ap l!tnr ﬁh aucution of
an umh!mu«l domin involves dalet.iaa of m obj‘cts and. up
entries, followed by dnhti.an of t:ho dm;in imlg@ Pxehlm can
arise if t:he faulty domain has duetrdﬂd all capckiliem for any

133 :

such object or map entry, which is then lost. A feature solving
the lost object problem will be described in Chapter 4 but it
would be expensive and cumbersome if used for every mep entry. We
therefore allow map'entries to become lost snd require that recov-
ery from this situation be possible. This requires the revocation
of all capabilities originally passed to the faulty domein, thus
isolating the subtrees of map entries produced by its execution.
The lost map’entries in these(trees will never be exercised how- .
ever, since by definition there are no capabilities for them.

For the reason just cited ‘some mechanism must be provided to
exercise lost map entries. Moreover,'eyen‘for map entries which
are isolated but not lost, it would be helpful if their elimina—
tion from the map was automatic, since it may be some time before

they are exercised This can be accomplished by adding to the

base—level system a relatively simple operation of the form:
exerciee (I)

,Which simply exercises the I-th map entry by reconstructing its
capability. A 10W°pt10tity background process (sometimes called a
"daemon" phantom") can now be constructed which uses the new
operation to slowly sweep through the map eliminating isolated map
entries. The rate at which this is done is a tradeoff between
minimizing the extra load imposed on the map machinery and maxi-
mizing ‘the rate at which map spece is‘recovered. Given generous
“allocations of map space to the various accounts, the rate could

probably be quite low. The exercise operation is not available

to the users, since they have no use for it, but it is not at all

134

dangerous, hence the background process need not be trusted by

the base level system.

3.8 Possible Elaborations on the Design

There are several directions in which NCS as described in
this chapter could be elaborated. We here digress briefly to dis-
cuss four examples, arranged in order of increasing difficulty
of adding them to the implementation described.

A simple feature which might well be included in an actual
system allows examination of the relationship of two capabilities,
to determine if one is a descendant of the other in the same map
tree. This would be useful:

a) To determine revocability of one capability by another.

b) To determine accountability for unauthorized distribu-

tion of a capability.
This checking could easily be provided by an operation which simply
scanned from the first capability's map entry to the root (base-
level object) entry of the tree, watching for the second capability's
map entry.

Another feature, which has been mentioned previously, would
be the definition of other useful kinds of boxes in which to seal
capabilities. For example, a box in which two or more capabilities
could be sealed would eliminate the need for a small segment to
act as the root of a compound representation of an extended object.
This is similar to the scheme used in the HYDRA system [Wu 74].

On the other hand, its implementation would require variable-sized

135

map entries, thus significantly complicating the implementation of
the map.

A third rather interesting possibility is based on the obser-
vation that the masking of privileges by the revoke operation is
not an intrinsically irreversible process. One could just as easily

provide an '

'unrevoke" operation for restoring previously revoked
privileges. Note that in this context, the use of lockef boxes
takes on a new significance, since it not only prevents inter-user
interference, but also prevents the possessor of a capability from
restoring privileges which have been revoked from it. The only
major implementation difficulty with this feature is the impossi-

bility of automatically deleting tqtally revoked entries from the

map, since they may later have their privileges restored. This

would require explicit deletions of map entries, making the appear
ance of the mechanism more complex., In addition, the whole notion
of unrevoking privileges cannot be described cleanly in terms of
the family tree model. Nevertheless, this feature could be quite
useful, since it allows increased levels of trust between domains
without necessitating the inconvenient repetition of the capability
distribution procedure. The whole notion of temporary revocation
could be quite useful, for example, in the debugging of locking
protocols in a complex multi-process data-base system.

The fourth possibility is similar to the previous one in the
sense that it attempts to preserve an established pattern of dis-
tributed capabilities while changing the meaning of those capabil-
ities. In this case, the change is to allow switching of the con-

tents of an extender box. This would enable a layer implementing

136

an extended object to dynamically change the identity of its repre-
sentation. Of course, care must be taken to avoid the possibility
of circularities in the map; this can easily be done by using the
first extension mentioned above to detect the case in which the
new representation is a descendant of the extender which is being
modified and signal an error.

The extensions described in this section could be added to
NCS without excessive difficulty, but for the sake of clarity, the
remainder of this thesis will assume that only the mechanisms ori-
ginally described in Section 3.4 are provided. The facilities
described in Chapter 4 would require some modification if any or

all of the extensions were in fact included.

137

Chapter 4

Two Facilities Using the New Capability System

4.1 Possible Facilities Using Generalized Bealing

The: purpose of this chapter is to-briefly explore two: examples

of helpful facilities which can be constructed: using the NCS

generalized sealing mechanism described in Chapter 3. One is an

improvement to the base-level domain-call n&inery providing

selective revocation of capability parameters:pasesed on a call
when. the corresponding return oceurs. - The other is an extension

providing a new type of object cam & dﬁectmyy -whieh’ allows

storage and distribation of capihilinh& im: 8 manper which is often

much more cmweni.ent than that provided. by the base~level system.

- Other umeful facilities could also be:dafimed:in a similar
fashion. Plausible exewmples might incimde:i
a) An interprocess communication facility providing extended
objects called measage, channels, capable. of transmitting
messages comtaining rapabilities: valid saly until the
next mesgage is recedved. - .- |
b) A remtal mediastion Bervice, guarahteeing to the: lessor
-that privilcges -willl be: revoked upon: coat—ractf -expiration,
and to the lessee: that: revoecation’ eannot occur before \
. that time..

These and other poasibilities will be left: umexplored here. The

- point is simply that the nested: capability scheme: alklows the

‘construction of an. open-ended set: of extensdons, many.of which can

also make use of the revocatiom preperties provided.. . .

©

138

4.2 Revoca.ble Paranetets

There are certain events which constitute natural points at
which to distribute and revoke capabilities, The most obvious
empln are the occurrence of a dommin-call snd the subsequent
corresponding return. As discussed by Sd:mndct [Sc 72], the
temporary granting of access to pn'aleter ubjoct:s is a matural
and useful feature of calls between smstually susptcious domains.
There are other situations, however, in which it is unnecessary
or even inappropriate to revoke all capebility ‘pu-au:drs when a
return occurs. in particular, as previously noted, calls to trusted
mhiaem!.an domaing need not revoke their p&ms, which
can result in substantial savimgs. We thevefore propose a more |
general mechanism in which the caller can specify, for each para-
meter passed, whether it is to be yevoked whem the called domain
- returns. | | _

It would probably htpouﬂd.c to: provide mg improved domai‘.n
call as an extension rather tham an istegral part of the base-
level system. fhis would reguire ihat»sn domein-calls and returns
(oxr at lesst all those which involved smy vewocable capability
parameters) be routed through this mcnam,aukich would be both
clumsy and costly. We therefore describe revocsble parameters as
being included in the base-level domain~call mechanism. ,

In t’he ‘previous discussion of parameter passing in Chapter 2,
we found it unnecessary to specify the details of the copying of
capabilities from the caller's address space to the callee's
address space. Ia discussing the modifications necessary to pro;

vide revocable parameters, we continue in the same fashion,

describing the implementation of parameter passing in terms of the

get_parameter and put_parameter operations used in the discussion
of TCS in Section 2.2.
When a domain call occurs, the caller controls parameter

Yo

-revocation by passing a Boolean. vector R az an extra parameter,

each element of which specifigs whether the corresponding parameter

should be revokcd upon raturn. The call thus has the form

Call (CG,F

1’ 29---9P‘9R)

. where R[i] rgontrals~the-zevo§§é}on of ?i.
szocation“of'barametefb“éé implemented using the same push-
¢anf§t;CkahiCthQVé8 theﬂféﬁﬁ?ﬁfgate used to reactivate the call-
ing domain when the»ealleemrexgéns. Thus, instead of just a gate
capability, each domain—call cbtresponds to a packet of information
“as shown 1n Figure 4.2-1, The first item is N, which is the
number of capability parameters.cgﬁberrevékadqgatd the last item
is the return gate. Between them are the Nk capabilities which
will be revoked when the return occurs. Figure 4;242 depicts the
domain-call operation, and resembles Figure 2.2-2 which shows the
TCS version. The differences comprise the steps necessary to save
the extra inform#tion in the stack. Each fevocable capability
parameter is sealed in a revoker box; one copy of the sealed capa-
bility C 1is passed to the callee, and another is retained in the
stack.k The discipline followéd is thus thag of Figure 3.5-2; seal- "
ing of the callee's parameter in a locker is nbt necessary, since
it is not received by any other domain. Figure 4.2-3 depicts the

domain-return operation, as compared with the TCS version in

140

Top of stack

Information for
ong»cnll

Figure 4.2+1: Parameter vevocation dita in stadk

141

call(C P +R)

G’Pl’PZ""’ NP—l

R+ ésqﬁparameter(NP,Caller)
5 NR < 0

Yes

; r “puéé%ﬁx) .
; i - cG + ge;_Pargnater(O,Caller)
{ Ex1T thru G
! .
ter(I,Caller)
Yes

|

put_parameter(I,Callee,P) c *_Seal(P.Crevoker)
: ; -] put.parameter(I,Callee,C)
. push(C)
I« I+l l' Np « Nptl

Figure 4.2-2: NCS domain-call operation

142

return()

ENTER

gl

NR + pop()

Yes

&

No

C « pop()
revoke (C,0)
NR <« NR—l

G < pop() |

EXIT thru G

Figure 4.2-3: NCS domain-return operation

143

Figure 2, 2 3. The added steps use the information in the stack to

revoke the appropriate cspabilities from the callee before retriev-

LN

ing the return gste and returning control to the caller. ~Note that

3

the revocation is total and thus releases nap entries in an orderly

5w,

way, as discussed in Section 3 7

4 3 Directories

The notion of a directory, catalogue or name-table mapping
symbolic object names intp some form of internal object pointer
‘has appeared in most operating systems.‘ The idee of a 1arge
collection of directories arrangsd in.;?tree—structured hierarchy
originated mainly with the Multics system [Da 65],»and has been
adopted in several other systems incezthat time [St 73 Co 72,
klRi 741. | - |
| - A directory consists of a variable number of entries, each
containing a different symbolic name snd a pointer to sn object
(plus other informstion to be discussed shortly) The assumption
that a unique directory entry is created with each object com~
bined with the fact that directories are themselves objects, induces
‘a tree-structured hierarchy on the set of all objects in existence
at any time. The internal nodes are the directories and the leaves
are the objects of other types. Concatenating the names of all
entries along the 'path:from the root directory to a given object
yields the tree hame of that object which uniquely identifies it.

HFR £IE

The global tree—structured view of the universe of objects

et

-

* bl
Except the pre—defined root" directory.

144

can be useful in several contexts, such as systen bsckup and
.recovery, accounting, and as described below in solving the
"lost object problem," but it is often more convenient in other
‘contexts to nodify this view in two vaye. o |

a) To allow the establishing of seseral directory entries
for the same object.

b) .To allow general path names which can be interpreted as
starting in any directory, rether thsn only the root-
directory. o » |

Both of these features can be edded wdtbout disturbing the under-
lying tree&structure, as long as the extrs entries ("links") in
(a) can be distinguished fron the originsl entries ("brtnches")
uhen this is desired This treet-ent of links as beins full-
fledged directory entries, contrasts with the Hultics approach
in which links are merely'a re—naning device lnd heve no pro-
tection significance. We choose this spproech to facilitate sub-
1etting of rented objects. % |

| In addition to neming, the directory systen,is useful for
purposesof access control. Attaching an 5&5235 list to each
directory entry aids in the orderly diotribution of privileges

to access shared objects. Each entry in thc eccess list contains

a pair
(lock, privileses)."

which allows any possessor of a key mntching the lock to obtain
the corresponding privileges.. (Of course, tbe specificstion of

the access list, like the creation and deletion of entries,

145

represents an access to the directory itself, and must also be
controlled.) The simplest example of a lock would be a user name.
A more sophisticated version of this is the "principle identifier"
used in Multics [Sa 74], which is a kind of three-dimensional user
name with more complicated rules for matching locks with keys.

An even more flexible scheme will be described below. Note that
in all such schemes, a user may not invent his own key(s), but

may invent any locks he chooses and apply them to his objects, as
discussed by Lampson [La 69].

In non-capability-based systems, directories are usually
implemented as base-level objects [Or 72, Ri 74], since their
access lists are generally used as the system's primary protection
facility. In a capability-based system, howevef, directories can
be implemented as a higher-level extension, providing symbolically
named ''pigeon holes" for the storage and dissemination of capa-
bilities [Fa 68]. This is an attractive organizafion, since it
removes from the base-level systeﬁ all handling of symbolic names
and the corresponding variable-sized data structures. From the
point of view of the base-level system, the directory layer is
simply another user domain, although, of course, it must be regarded
as a trusted machine extension by normal user programs which store
their capabilities in directories. The desirability of providing
both directories and capabilities in the same system is convincingly
argued by Lampson [La 69].

The directory layer described below provides for storage of
any number of capabilities in each directory, Ane per entry.

Attached to each entry is an access list atuthorizing a domain to

146
obtain a sealed copy of the etoved capability by.executing
B '(*"
C + lookup (cn, Name , c‘),

where CD is a capability for the directory (authorizing lookup

acceas), Name is a character strin;, and Cx is a Egz.capebiiity.

The unique ID of the key capability ia uatchad against the locks
in the access 1ist of the entty and the correaponding privileges
are returned in c. Subsequent reduction of the privilages

authorized to holders of key C will retroactively reduce the

.privilegea in C, using the undarlying revocation nachinety.

(Various conditions, such as failure to find an entty with the
given name, or failure to find a 1ock in the access list which
matches the key C cause errcrs to be aisnalled and no capability
to be returned) The use of freely diatributable capabilities as
the keys authorizing ditectary looknps allous the users to flexibly
and econoaically eatablish any group anthoriaetion schane desired
by simply paaaing keys to each othar.v neitber the base—level
system nor the directory layer need take any explicit notice of
such groups {La 69 St 73] More conglicated facilitiea such as
path name lookup [Da 65], multiple directory saarching [Or 72, st 73]
and antoaatic looknp on first use of a ay-balic name (Da 68]

could be inplenented in terms of this basic lookup priuitive*‘
these will not be discussed here.yw

In such a directory system, there is no intrinsic distinction

In terns of baae—level Operationa, thia uould be written
' C + call (C C ,Nane CK) o

where is a capabiiity for a gate into the directory layer
correapoﬁding to the lookup operation.

R A Y e T L A R RS

between the various directory entries containing capabilities for

a given object. For the reasons cited previOusly, however, it is
useful to distinguish one of the entries as a brsnch and consider
the others to be links. In particuler, one can solve the lost
object problem by guaranteeing that the branch exists for at least
as long as the;pbjeet;' This 1is ‘@écomplished by creating the
object and the branch simultaneously, and having the directory
system, upon’removiné the branCh f%on”:ﬁé'31re5%6£y;>déiece the
object (if it still exists) k |

The use ‘of branches to solve the lost object proble; is rela-
tively straightforward in the case of base~1evel objects and
directories. By performing the creation of a11 such objects through
calls on the directory layer which also create a directory branch,
one can insure the existence of a branch for each new object.
When the branch is removed, the object can be destroyed by the
directory layer, either internally (in th& -case of directories) or
by calling the appropriate operatfon (ia the case’ of base-level
objects).

In the case of extended objects, however, the situation is
more complicated, for two reasons: |

a): 1t is inappropriate for the directory layer to have

embedded in it any knowledge of (e.g, calls on) higher
- layers. C e B R T A

b) New higher level extendg.d, typea can, be defined at any
These consideratione render impossible the ereation af such objects
via the directory 1ayer, and,necesgitate\e noxe circumspect

3

148

approach to their deletion when a branch is removed.
When a higher layer creates an extended object X and wishes
to take advantage of the directory syacea to keep X fron becoming

lost, it can do 80 by executing

make_branch (G, Name, Gy, C.) * .

This creates an entry in the direcqory 1nd;gat¢d by CD' The
entry has name Name and contains ,Cx, a_cnpabilicy_fox the new

cbject. 1In addition, the entry holds CG a capability for gate
G into the caller (i.e. the 1ayer 1lplencnting the object) When
the branch is later removed from the Aiggc;pry, the directory sys-

tem guarantees to execute
call (CG;CX) | W | .
The gate G should correspond to the deletion. opeta:iou for objects
of tha extended type, haence this is equivalent to .
deletéb(cx) .
Of course, it is the responsibility of the ilmyer implementing X
to insure that this call does fn fact result in the deletion of X.

The directory layer's only contern 1s that it ust be prepared for

anything which may happen between the time it performs the call

*Repeatea use of the make branch operstion specifying the same
object X would cause the directory structure to'fail to be a
tree. This might be of ¢oncern to layers at or sbové the level
at which X was implemented (although it certainly would cause no
‘trouble for the ‘directory layer). ’The layer tuplementing the ob-
Ject could protect itself from this situation if the make branch
operation were modified to require anm sxtrs’ parmmeter Crs a
capability for the type of X, as authorization to make a branch
for X.

149

and the time the callee returns. This could include various types
of errors, blocking of the process, and even further calls on the

directory layer. The straightforward way to handle thia is simply
| to have the directory layer complete its part of the branch removal
and then exit to the object deletion operation via a jump—call as
described in Section 2.2.% | |

It might appear that the calling of the higher layer object

deletion operation by the directory layer violates the ordering
constraints of layered system construction | This is not really
the case, however since this call does not represent any knowledge
of the higher layer embedded in the directory layer. Such "blind"
upward calls are quite similar to hardware "traps" or "exceptions.

The other directory layer operations of interest are:

make_link (C,,Name,Cy)
remove_entry (c)) Hane)
set_lock (CﬁyNsue,L,P)
Cg * create_key‘(’)x’:
create_directory (CD,Nane)i~_

delete_directory (Cp)

The make 1ink operation establishes a new entry in directory D,
containing Cx and nsmed Name.‘ Thea r;move entry operation
removes a link or a branch. In the latter case, it performs
object destruction as described above. The set lock operation

establishes a new lock on the named entry in directory D The

lock is L (i.e. it can be opened using a key with capsbility—ID L)

We ignore the extra complications involved if object deletion is
allowed to fail. -

150 .

and it confers the set of privilegea P. The create Eey opera~
tion simply returns a capability of type 'ksy with a new unique
capabilicy-ID The create directory operction establishes a new
eupty directory as a son of directory D (i e. pointed to by a
new branch in D with nanz Nane) Thc dclete directory opera-
tion deletes the directory D. This requirea tlnaval of all
entries from D, including any_branchas fqr other dircctories
| which nuut thus be deleted, an& sokcn.b In‘otherwcrds, the entire
subtree rooted in D must be traveracd and delctcd This coupli-
cation is best postponed until a hishcr laval utility progran,
hence the directory layer can siuply refuae to delete a non-
empty directory. o l

The implementation of directorieaias de;cribed is relatively
straightforward. Each directory is represented as a segment, con-
taining entries formatted as in Biguzqﬁé.B-lf VThe original capa~-
bility C and the entry name sre present when the entry is first
created, along with the dclctionagatcrcapability in the case of a
branch. Subsequent use of the set lock operation.proceeds as
gshown in Figure 4.3-~2. rir-ttehc lock 1is added to the access lint
if not already present togethcr with a capability to hold the
-privileges corresponding to the lock This capability is created
by sealing the original capability Cx in a revokcr box Then
the privileges in the capability are rcvokad doWn to the desired

level. Note that in the case of applytu; the set lock operution

to an already existing lock, any outstanding captbilities previously

obtained via that lock using the lookup opcratiqn will also have

their privileges revoked. Finally, if the pevocation was total

o e T IS e T w;f»vfﬁ-a‘/'»;:«,r~za%’,£sx:wr,fw§s‘~eq§;%“’, eii

151

deletion gate capability* {

"object capability { *»\ X

ce

symbolic name R Name

ot 1 L3 & - ae
i o
TR R ad @

acdess list ﬁ

*in branches.only

Pigure 4.3-1: A directory entry

b3
%
i

152

remove <LI R CI>

| .from access list |

]

D

' Figure 4.3-2: The set_lock aperation

153

sad

(i.e. P=0), the 1ockkiq delg_t:.ed from the access list. (Such
total revocation 1§:4g;qq,,pgrgozjg§4 on each lock in the access list
when the entire directory entry is removed. This is another exam-

J . _ .
ple of orderly use of the underlying map machindy; ‘asé discussed

o inséctim 3.1:"“ SRS B T 3~ S F S L N U B SRR (S SV

“fhe looKiap operation; upon -Pinidfig the nimed ‘emtry, searches
* the access 11i#t for ‘a YTock satching thé pfofferéd key: "If-one is
‘found; ‘the correspording ‘Céabitiey 'te ‘seated 1A“a locker box and
returned -6 "the ‘calier. - This LR Wt peddtt ‘£ the s‘ef;jl'bck
“éind "lookup -operations 18 distributton ‘of dapablities ‘Folloving
t’he vﬂjéﬁffnﬁiﬁf Fi’:gure PSR B i b2 3p s RS ORTE

U the éféi"iéé__ﬁéi""'}‘Oﬁe‘t‘a’tioﬁ*i#‘“f"iﬁfé‘e*ﬁf‘ﬂiﬂfiwz’:ﬁﬁmt- It
would ‘Bé ‘nicely captired by the #fmple #afing of ‘an empty extender
' box. - ‘Lackig ‘thits fscitity, ‘thé &trectéry layer éan siuply seal
* anyfididy cpability, stite onty ‘the “éxtérndl “#ppearitice of the
: newkeycapabil‘ityisdigﬁificaﬁf
" THe ‘directory layer fst'ddséribed ‘is prébably the best exam-
“ple’of “thé kind ‘of “useful ‘extensiotis ‘Whtch ‘can be ‘ctidticted using
' the ﬁé.s“uésrad capdﬁﬂity nechiniom " Tt ‘provides ettre

’i useful

features for thé‘uséfs of '¢hé gyst y«f&s tpledentation is
‘rénde¥éd relativeély “simple by the poldt“of the tadeflying base-

~ fevél nanfng dnd ‘protetricn factitties it Leogas wideacs

154

' Chapter 5

Summary and Conclusions

5.1 Summary

This thesis has discussed integrated naming and .protection

‘mechanisms for computer systems, PIMWPWP.M .names called
- capabilities which both identify an object -and asuthorize sccess

~ to it. A major advantage of capabilities is the flexibility pro-

vided by 4t‘hcir being freely copyable. vA’ fco,rtmandm disadvantage
in e;:ig.ting. capability systems has been the di:iig\.‘l;ty .of .,x':.ev‘oj‘king
previously dis:ributed capabilities. The umxamlt, -of bhis .
theé:h has been the. design of a capability system providing both
free diatrihutian and orderly revocatian of mabil&ni«. : Varioua
approaches to this problem were diacuand dn Eha.ymr 2, culainating
in a set,o,f. goals to be met by a new .;duign. « Ihe zanemlized _

capability sealing mechanism of . wer 3 as . shown to meet thaese

goals,’ prwid:lng selective revocation Qf caasb&litics, as well as '

a flexible typa nexcmion facility, A pouih]@imlemution of

the design wag discussed inkguffgcigqg;4§g§i1@§9;§§l§n§t{ﬂt§v1t8 .
pxac“ticg,igityﬁ; Various possible alabor;q;im@n uhe c;ggi,m::wcre -
also ,diccm Chapter 4 described two ;mmm "‘amlyug |

5.2 An Area f_pr Further Research

In terms of the facilities provided, the nam.ing and protection.

mechanisms described in this thesis appear to be a sound basis

upon which to build a secure and flexible user environment. In

155

particular the provision of revocable capabilities eliminates
one of the main objections often made to;Qapebilityebased designs
[Sc772], thus making the_proposed\design agplisable in a wider
class of situations One could thus characterize the thrust of
this thesis as an attack on the flexibilitx aspect of the pro-
tection problem.

On the other hand the thesia does not makevany direct attack

. on another more general aspect of the protection problen which one

might call the comprehensibility of protection mechanisms.

Experience indicates that protection mechanisms which are confusing
to users are likely to be misused or even go unused [Sa 74, Sc 72].
’Even the usef who correctly applies a,¢9“f931§3 protection feature
may feel no‘great confidenee that it‘enfortes his‘intentions.
‘There are at least three ways in'which protection systems can be
confusing: “ - | |
"755‘, They can be‘based on a 4is°:d§?1¥sse£k9?.99???ate but
P interacting mechanisns o ‘ |
b) bThe relevance of the mechanisms topspecific situations

3

can be obscure T
ISR

c) The correspondence between globsl state of the protection
machinery and the desires of the users can be difficult
, Aot it St i s o ;

to assess.

A fair amount of progress has been made on problem (a). The
‘early proliferation of ad hoc protection mechanisms was a major
motivation for the original development of cepabilities [DVH 66],
as well as later more:abstract trestnents:bywyanpson)[La 711,

Jones [Jo 73], and others. On the other hand, strict minimization

B S & ot

156

v'of the set of primitives will not necessarily clarify the descrip-

tion, especially since it nay exacerbate ptobleu (b) ' For example,

our unification of privilege revocation ané type extenaion in a

single uechanism, while intaresting in itsclf -ny or nay not repre-
sent a net increase in the ccnprehnnsibiiity of the design

Problem (b) is caused by the g;p — often quite broad -

| bétween the concerns of the hunnn uaerl and the nechanisns provided

by the protection system, in %eraa of which they sust express

those concerns. Of course, the uuer ﬁntd ant deal only with the

. protection primitives of the syste-, varioua extensions, auch as

those nentioned in Chnpter 4, can be previd.d Tbesc do not go far,
however, 1n attenpting to cayture the 1nteraations beeucen users
seen in the larger social context. This 1: dua in part to the
imprécidion of many legalhandvsdgiiizpfiﬁéipiis}lit;;izing from

their implicit reliance on the rcaaonabla judgennnt of the parties

"involved, :characteristic sadly laching 1& unlt colvuters. Mach

work remains to be done 1n mnpping Such princiylcs into the pro-
tection prinitivea of conputer systc- [Ie 74 Pe 74 Tu 74].

Problem (c) is perhaps the aoat difficult of the three.

’ During our discussion of capability nachaniins, ve enphasized

the desirtbility of allowing distributian and revocation of capa-

bilities without requiring global kanuiadgt of such propagation on

'the part of the participants. éu globcl kaewliise is sometimes

‘desirable for 1ts own sake huuUVQr. nortavut, avaa 1f the entire,

state of the protection ﬁiéhiné%&sié vieible (uhith can 1tself

raise serious questions of privacy), the fnll sisaificance of that

vstate cannot ‘be assessed without kaouiedge of thc levels of trust

055" SRS e S

o R T L R

-

and suspicion between the various possessors of access privileges.
: A
This appears to be a very fundamental problem, and it is not clear

what approach (if any) will prove fruitful in dealing with it.

5.3 The Future of Protection

Much work remains to be done in the area of protection In
the long run, protection will couttibute to the development of
generally available computer utilities in at least three ways:

| a) By facilitating the dévéidﬁidot‘of e#tromely large soft-
~vare oysteua,‘snoh~ag~soﬁﬁ$§%icated service programs,
aod the ooeratinéisystkiﬂﬁfﬁihe computer utility itself.

'b) By proteccing the invcatnonts of users who develop large

‘*proprietary prograus ahd/bt'dita bases, thus providing a
suitable matketplace for such services.

c) By enforcing socialjﬁout!bls oh the disaemination of

<:'étored 1nformation. e
~ Given the difficukty and inporeunce of the probkems to be solved
protection pronisea to be an actihz arna of research for many '

years to come.

[BCD 72]

[Bo

[Bu

[cc

fcv

[Co

[Da

[Da

[DF

[DVH 66]

[De

671

6lj

691

65]

72}

65]

681

65]

65]

158

References

Bensoussan, A., Cingen, C.T. and Daley, R.C., "The
MULTICS virtuel memory: enncggtsenndﬂdgqign," Communi -
cations of the Associltion for Coqgutiqgrﬁachinery,
Vol. 15, No. 5 (May 1972), pp. 308-318. o

Bobrow, D.G. and Hurphy, D.L., "Structure of a LISP
system using two-level utoraae," Co-uﬂhations of the
Association for Compat iog Mschioexy, Vol. 10, No. 3
(March 1967, pp. 155

Burroughs Corporetion,:"The descriptor -- a definition
of the B3000 information pxoggasing;syatem," Detroit,
Michigan (1961).

Conpucer Center, University of Chlifornia Berkeley,
Guide (1969).

Corbato, F.J. .and Vyssotaky, V.A., "Introduction and
overview of the MULTICS system," AFIPS Confereace
. ae 1965 LJoint Computer Coufetence, Vol 27,

Cosserat, D.C., "A capability oriented multiprocessor
aystem for xapl~:1un~aggltsg;&gns " ICC Conference,
Washington, D.C. (October 1972 8 PP. ‘ ,
Daley, R.C. and Neunann, P G., "A general purpose
file syatem for. secoud;:y‘a;qypgaﬂ ', Proceedings AFIPS

1965 Fall Joint Computer Conferemce, Vol. 27, Pt. I,
AFIPS Press, Montvale, Nil., 9. 2f3-230.

Daley, R.C. and Dennis, . J“Be,y"Virxqal,aemoty,processes,
and sharing in MULTICS " Canluncationg of the Associa-
or Comput ing 3 &¥, Vol. 11, No. 5 (May 1968),

David, E.E. and Fano, R.M., “SOmc thoughts about the
social implications of accessible computing," AFIPS
Conference Proceedings 1965 Fall Joint Computer
Conference, Vol. 27, pg.liz3-247

Dennis, J.B. and Van Horn, E.G., "Programming semantics
for multiprogrammed cowputations," Communicatiomsof the

Association for Compu igg Ms¢hinery, Vol. 9, No. 3
(March 1966), pp. 1&3~15

Dennis, J.B., "Segmentation and the design of multi-
programmed computer systems," Journal of the Agsocia-
tion for Computin ~hinery, Vol. 12, No. 4 (October
1965), pp. 589-602.

[De
[Di
[p1
[En

[Fa

[Fa

[Pe

[Fr

[Gr

[Gr

. f6r

68]

68}

68b)

121

68]

74]
73]
74]
71}

72]

73]

[Ba 70}

[HEW 73]

FESATRAN:

Dennis, J.B., "Programming geperality, parallelism, and
computer architecture," Proceediggg_IFIP 1968, North
Holland, Amsterdam, pp. Cl-7.

Dijkstra, E.W., "Cooperatiﬁg Sequential Processes,"
in Programming Lapguages (P. Genuys, ed.), Academic
Press (1968), pp. 43-112. A

Dijkatra, E.W., "The structure of the THE multiprosrmins
system," cations of. th Association for Computing
Machinery, Vol. 11,° NQA.§§'>‘yg1968) pp. 341-346.

England, D.M., "Architectural features ef System 250,"
Infotech State of the Art kaport on Operating Systems
(1972), 12 pp. \ .

Fabry, R.S., "Preliminary. desqription of a supervisor
for a wachine oriaqtod a;qpn&»ggpabilities," ICR
Quarterly Report 18 (Auguat 1&@8) ICR, University

of Chicago.

Fabry, R. S.,'"Capability—hascd addressing," Communications
of .the Aseociation"or ompaLl Machinery, Vol. 17,
No. 7 (July 1974), pp.

Feustal, E.A., "On the.advantagga of tagged archi-
tecture," IEEE Tre £ ters, Vol. C-22,
No. 7 (July 1973), PP- 644—65 :

Frankston, R.M., "Thc conpu&et atilicy as a marketplace
for computer services," Pro;a;g MAC Report MAC-TR-128
(1974).

Graham, G.S., "Protection sttuctures in operating
systems,'" M.S. thesis University of Toromto (1971).

Graham, G.S. and Denning, P.J., "Protection - principles
and practice," Progeedings AFIPS 1972 Spring Joint
Computer Conference, Vol. 40, AFI?S Presa, Mbntvale,
N.J., pp. 417—429.

Gray, J.N., IBM San Joaeaassearch Laboratory, private
compunication.

Hansen, P.B., "The nucleus of a. multiprogranming system,
Communications of the Association for Computing
Machinery, Vol. 13, No. 4 (April 1970), PP. 238—250.

U.S. Department of Health Education, and Nhlfare,
"Records, computers and the rights of citizens," Report
of the Secretary's Advisory Committee on Automated
Personal Data Systems, Hhshington, D.C. (July 1973)

[HP 73]

‘/[».on 731 \‘

fLa 69]

[La 69b]

[La 71]

[La 73]

[La 74]
(L1 73]

Mo 72]

(Mo 73]

[Ne 72}
[Neu 74}

for 72]

[Pa 72}

‘ "l‘cchnigun, Acaduic Prcu, !lcv York, !‘t Y

160

noare, C.A.R, &nd ?a’rtomc, R.H.,

1"

Jones, A.K., "Protaceion fo: projrammed systeas," |

- Ph.D., thesis, Catnegiiﬁﬂhilbn«ﬂhiv!tuity (1973)

wtﬁctms " P;oceed-?

Lampstn, B.W., “An mwi& of ‘the CAL t:lmharing
systen," Computer Cum—u‘ m«rnuty of California,
Berkeley (1969). '

' Lampson, B.W., “Ptot‘ctfcn ™ Py a8 Jth Annual
© Prificeton Confersnce Wt%cy (March 1971),

Lampaon, B.W., "Redundancy and robustness ia memory
proestion, " osestinge W17, North Bolla

;’1 vﬁi ’

Limiuy, B. G. s Su;gut:lom for an extensible capahility—

based machinie architecture,'t Toternatiohal Workshop on-
- Computer Architecturé, W rrme (June 1973).

Morris, J.H., ”Auth‘nttuticm t&ga. the ‘proper division |
of hardmhf:oftwam mmmuty" (197%), unpublished.

‘Morris, J. u "Types are not nta " ACM Sy-posiua on

Princlpla of Progr

m ; ”" Mtalt, M‘.‘. '

Readhm R.M., '?t‘omci& sym and protection
s : 8 1972 ;

, Mplmntqtiom,'f Pre

pp. 571-578.

Neumanti, P.G. et al, "On the design of & provably

| seture operating mu&," Wovktng Paper, IRIA Inter-

national Workshop on Protabtivi’ in Opcratiag Systm,
Paris (Ausust 1974). .

Otgnniék ‘E.I. 'mu ULTICS 8 "'"un }a Mnauoa of
its Stmcturl, 'l‘he ﬁ, bridge, Mass. 1972).

Pnrnas, D.L., "On the critaria to be uazd m deconposms
systems into nodulu," DL . of ¢

[Pe

{Po

853

[Ro

V[‘Sa

[Sa

' [Se

[Sc

[8S

[st

{Tu

[Wu

74]

74]

74]
74]
66]

74]

7]

72]

72]

73]

74}

74]

161

Peuto, B.L., "Comparative study of real estate law
and protection systems,'" Ph.D. thesis, University of
California, Berkeley (1974).

Popek, G.J., "Protection structures,” omputer, Vol. 7,

No. 6 (June 1974). PP 22—-33.

Ritchie, D.M. and Thompson, K., "The WIX time-gsharing
systea," Communicgtions of the Association for Computing
Machinery, Vol. 17, , Ro. 7 (uly 1974), pp. 365-375.

Rotenberg, Leo J., "Making couputcu keep secrets,"
Ph.D. thesis, M. I ‘r. (1974), Project ‘MAC Raport
MAC-TR-115.

Saltzer, J.H., "’!raffic ébntrol in a8 multiplexed

‘computer system," Ph.D, thesis, H 1. T (1966) Project
.. MAC Report MAC-TR-~30,

Salczer, J.H., "Protection and the contzol of mfor-
mation sharing in WL’I'ICS," ‘ aications of the
Assoclation for Comp gz M " Yo. :
July 1974), pp..

Schroeder, M.D,, "Perfomance of the GE-645 associative
memory while MULTICS is in opcf;:ion," Procaedingg
Workshop on System Perf luation, Cam ri_,dge,
Mass. (1971), pp. 227-245. ‘ :

Schroeder, M.D., "Cooperation of mutually suspicious
subgystems in a cmuur utility," Ph,P. thesis, M.I.T.
(1972), Project MAC chort mcumlm,

Schroeder, M.D. and Saltzer, J.H., "A hardware nrch;l- »
tecture for implementing pxot.oe i.m rin;s, Comsunica-

tions of the m«m ation for ting Machinery,

Vol. 15, No. 3 (M |
Sturgis, H,E., "A poatnorteu for d ::hntharing syatem,"
Ph.D. thesis, Ua:l.varsity of Califormia, Berkeley (1973),

Xerox PARC Technical Report 74*1.‘ ,

Turm, R., Priva and security in personal information

‘databank systems," Rand Report R-1044-8SF (1974),

Rand Corporation, Santa Monica, Calif.

Wulf, W. et al, mrm the lwml of a mltipmconor
opcrating system,” :ione of the gmciﬁion
i A " d 1 * ﬁ. v 19?4) N)

BIBLIOGRAPHIC DATA
SHEET

1. Report No. 2.
MAC TR- 140

3. Recipient’s Accession No.

4. Title and Subtitle

Naming and Protection in Extendible Operating Systems

5. Report Date: Igssued

November 1974

6.

7. Author(s)
David D.. Redell

8. Performing Organization Rept.

No. MaC TR~ 140

9. Performing Organization Name and Address

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY :
545 Technology Square, Cambridge, Massachusetts 02139

10. Project/Task/Work Unit No.

11. Contract/Grant No.

Department of the Navy
Information Systems Program
Arlington, Va 22217

2641
12. Sponsoring Organization Name and Address . 13. Type of Report & Period
Office of Naval Research Covered : Interim

Scientific Report

14.

15, Supplementary Notes

16, Abstracts

The properties of capability-based extendible operating systems are described,
and various aspects of such systems are discussed, with emphasis on the conflict
between free distribution of access privileges and later revocation of those privilege

The discussion culminates in a set of goals for a new scheme.. A new design is then
proposed, which provides both type extension and revocation through the definition of
generalized sealing of capabilities. The implementation of this design is discussed
in sufficient detail to demonstrate that it would be workable and acceptably economi-
cal. The utility of the proposed capability mechanism is demonstrated by describing
two facilities implementable in terms of it. These are: (a) revocable paramters for
calls between mutually suspicious subsystems, and (b) directories providing a
civilized dedium for the storage and distribution of revocable capabilities.

i

17. Key Words and Document Analysis. 17a. Descriptors

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement

19.. Security Class (This’

2]. No. of Pages

Report) 166
A?prox.red :.EOT Pub?ic Release; 120, Security Class (This 22. Price
Distribution Unlimited Page
UNCLASSIFJED

FORM NTI!5-35 (REV. 3-72) USCOMM-DC 14852-P72

THIS FORM MAY BE REPRODUCED

