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ABSTRACT

Upper and lower bounds on the inherent computational complexity of
the decision problem for a number of logical theories are established.

A general form of Fhrenfeucht game technique for deciding theories
is developed which involves anslyzing the expressive power of formulas
with given quantifier depth., The method allows one to decide the truth
of sentences by limiting quantifiers to ramge over finite sets. In
particular for the theory of integer additiom em upper bound of space

cn :
22 is obtained; this is close to the known lower bound of nondeterministic
c'n
time 22 .

A general development of decision procedures for theories of product
structures is presented, which allows ome to conclude in most cases that
if the theory of a structure is elementary recursive, then the theory
of its weak direct power (as well as other kinds of direct products)
is elementary recursive. In particular, for the theory of the weak
direct power of <W,+> , and hence for integer multiplication, an upper

2¢n

bound of space 22 is obtained. The known lower bound is nondeterministic
' !
20 n

time 22 .

Finally, the complexity of the theories of pairing functions is
discussed, and it-is shown that no collection of pairing functions
has an elementary recursive theory.
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Chapter 1: Introduction and Background

Section 1: Introduction

The significance of the distinction between decidable and
undecidable theories has been blurred by recent results of Meyer and
Stockmeyer [Mey73,MS$72,SM73,Sto74] and Fischer and Rabin [FiR74] who
have shown that most of the decidable theories known to logicians
cannot be decided by any algorithm whose computational complexity grows
less than exponentially with the size of sentences to be decided. 1In
many cases even larger lower bounds have been established. In this thesis
we investigate ﬁhe computational complexity of a number of different
logical theories, obtaining decision procedures whose computational
complexities roughly meet the known lower bounds and deriving a
new lower bound whose complexity is very close to the known upper
bound.

Let N be the set of nomnegative integers., Whether a sentence of
the first order theory of N under addition is true is decidable
according to theorem of Presburger [Pre29]. A more efficient decision
procedure given by Cooper [Co072] has been proved by Oppen [Opp73] to
require only 22 - steps for sentences of length n, where ¢ is some
constant. 1In Chapter 2 we present a fairly general development of
Ehrenfeucht games [Ehr6l] which allows us to show that gpace 2 * is

sufficient for deciding Presburger arithmetic.

Let N* be the set of functions from N to N of finite support, i.e.,

*
N ={f: NN | £(i) = 0 for all but finitely many i € N}.
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The structure < N',» > of positive integers under multiplication is
* _
isomorphic to the structure < N , + > (the weak direct power of <N, + >)

where addition is defimed component-wise. The first order theory of
this structure is kmown to be decidable by a theorsm of Mostowski [Mos52],
Mostowski's procedure, however, is not elementary recursive in the

sense of the following definition:

Definition 1,1: An elementsry recursive fupction (oo strings or integers)
is one which can be computed by some Turimg Machine within time bounded

above by a fixed composition of exponemtiasl functions of the lemgth of
the input. (This is showm by Cobbam [Cob64] and Ritchie [R1it63] to
be equivalent to Kalmar's definition [cf. Pet67].)

In Chapter 3 we use the technique of Fhrenfeucht games to derive
some general results about the theories of weak direct powers wvhich
ensble us to obtain a new procedure for deciding whether sentences are
true over < N*, + >. Our procedure can be implsmented on a Turing machine

,em 2c:'n

, " |
2 tape squares (and hence 22 steps) on

vwhich uses at most 2
sentences of length n. As a corollary we obtain the same upper bound on
decision procedures for the first order theory of finite abelian gi‘oups.
Recent results .of Fischer and Rabin [FiR74] show that for some comstant c' > 0,
any procedure for the first order theory of < N*. + > requires time

c'n
even on nondeterministic Turing machines. Thus (see Sections 2 and 3)

2
22
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the worst case behavior of our procedure for < N*, + > is assymptotically
nearly optimal in its computational requirements.

In Chapter 4 we extend the methods of Chapter 3 in order to obtain
general results relating the complexities of theories to the complexities
of their weak direct powers and direct products, thereby obtaining
computational versions of results of Mostowski [Mos52] and Feferman
and Vaught [FV59]. 1In particular we show that the theory of the weak
(or strong) direct product of a structure is elementary recursive if
(but not only if) the theory of the structure is elementary recursive and
if another condition holds; this other condition says roughly that not
too many sets of k-tuples can be defined in the structure with
quantifier depth n formulas.

Chapter 5 is concerned with the computational complexity of pairing
function structures. A pairing function is a one-one map P: N X N ? N,
and the associated structure is < N,p >. Although the theory of the
set of all pairing functions is undecidable and the theories of some
individual pairing functions are undecidable, Temmey [Ten74] shows
that many commonly used ones have decidable theories. Our main result
is that no nonempty collection of pairing functions has an elementary
recursive theory. In fact, for some constant ¢ > 0, the theory of2
any nonempty collection of pairing functions requires time 22". height cn
to decide.

In Section 2 of this chapter we present the definitions and basic
theorems of automata theory needed to clarify the basic notions of

upper and lower time and space bounds used in the following chapters. In
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Section 3 we discuss the reducibility techniques which allow us to
achieve many of the upper and lower bounds. Section 4 consists of
a description of the notation and fundamental concepts of mathematical

logic which will be needed in the rest of the thesis.
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Section 2: Automata Theory Background

We shall consider a version of Turing machiueswhicb: may bg ,e;Lther
deterministic or nondeterministic, one tape, one.head automata,
with -a finite tape alphabet L, For a rigorous.definition of these.
machines the reader cam consult [Sto74, Sectien-2.2]. For most ef our
purposes, however, the exact details of the definition chosem do not
matter very much, so we provide only an informal descriptiom here.

The tape is one-way infinite to the r;lght and- the -automaton starts
in the initial state with its heaﬂ on the leftmost' square: of the.tape.
At any step, depending on the current state and the current comtents of
the tape square scamned by the head, the automaton can write a new
member of L on that square, move the head right or .left, and go into a
new state. The Turing machine is deterministic.if its actions at any
step are completely determined by its :#tate and by thé contents of the

square pointed at by the head. If the machine .is popdeterm

there may be a finite set of permissible actipns,;m;ble;a; ARy moment,
Thus, the deterministic Turing machines form a subset of the nondeterministic
" ones, : : c S g

A (deterministic or nondeterministic) Z-autematon 1 hag L as the tape
alphabet; at any moment, all the symbols on the tape are from the
alphabet Z, B € Z. Let E* be the set of all finite sequences, or
"strings" of elements of X and let Z+ = Z* - {A} where A is the empty
string., If vy € E+, then I accepts "y if there is-some sequence of possible
steps of M with the tape squares initially containing the string Y¥¥ ...

and the head scamming the leftmost symbol of 7y, that ends with an
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accepting state. Tﬁe set L(M) = {y € Z& I R accepts y} is called the
langusge recognized by B.
We now define what we mean by the time and space wsed by Turing
machines. If R is & (nowdeterministic) Z-Turing machine which accepts
y €T by sowe computation eomtsining at moBt n steps then we say that
M accepts y within time n. If T accepts y by some cemputatien during
which the head visits at most n differsmt tape squares them we say that
T accepts y within space n. " Let L = LA amd let £: B+ N. Then we
say T recognizes L within time (space) fi(n) if for every vy € L, B
accepts y within time @@a) £ (|y|) where |¥| is the Lemgth of the
string y. NTIME(f(n})  (NMSPACE(f(n))) is the set of languages (vwhere
by language here we mesn a subset of I for some alphabet I) each of
which is recognised by some nondetsrministic Turing machine within
time (space) f(n). DTIME(f(n)) and DSPACE(f(n)) are dafined similarly
with respect to detegministic mechines. .
In order to compere the upper and lower bounds for the computatiomal
complexity of the theories we shall consider, it is necesssry to understand °
certain relationships known to hold between time and space for determimistic
and nondeterministic computations. (These uimtert are discussed more fully

in [Sto74}.)

Fact 2,1t Let f: N~ N,
A. Nondetermimistic versus deterministic time
ay DTIMB(f(n)) S NTIME(f(n))

b) NTIME(E(m)) < bTDE(cE™).
ceN
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B. Nondeterministic versus deterministic space
a) DSPACE(f(n)) S NSPACE(f(n))

b) NSPACE(£(n)) S DSPACE((£(n))>)

C. Time versus space

n

a) DTIME(f(n)) S DSPACE(f(n))
NTIME(£(n)) < NSPACE(f(mn))

b) NSPACE(f(n)) S UpTT™E (c £
cEN

All of Fact 2.1 is relatively straightforward to prove, with the
exception of B.b. B.b is proved by Savitch [Sav72]. By (B), if we
are discussing a lower or upper bound of the form 'space 2" for some
constant c" it is unnecessary to specify if we are talking about deterministic
or nondeter?inistic space. Similarly, we can talk about a bound of>the

.‘. height cn "
form "2 for some constant ¢ without specifying if we are

talking about time or space, either deterministically or nondeterministically.

Each of the gaps between a) and b) in A, B, C above represent

important open questions of automata theory.
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Section 3: Using Redueibilities to Prove Upper and lower Bounds

Definition 3.1: Let El and 2, be finite alphabets and let L, < Z:

and L, < E;. Then L, < , L, if for some function g: 2'14'-0 Z;':

1 *ps Do
I) for all yezl‘“, YEL =gy €L, and

I1) there is some Turing machine which computes g within time a

fixed polynomial in the length of the input and within space linear in

the length of the :l.npl;ll:‘.‘r

If S is a collection of languages over 21 (s < p(zl)), then we say
S = p'sz if L < plL2 for all L € 8.

We now state Lemma 3.2, which 18 a very powerful way of proving
lower and upper boumds., For a proof (whieh is really very simple) of
this fact and for a very thorough discussion of reducibilities, see

[Sto74].

Lemma 3.2: Say that 1‘1 < szz. let f: N9 N, If

DTIME(£(n)) DTIME(£(cn) + p(n))
DSPACE{ £f(n)) DSPACE(f(cn) + n)
L, € NTDE(E()) * ™ L1 € § NroaE(£(en) + p(n)

NSPACE(f(n)) NSPACE(f(cn) + n)

for some comstant ¢ > 0 and polynomial p(mn).

f A deterministic Turing machine computes g if when it is started with

Y¥¥ ... on its tape, y € » and its head on the leftmost square, it
eventually halts and g(y) is the string on the tape to left of the head.
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Contrapositively, if

DTIME(£(n) + p(n)) ~ DTIME (£(cn))
DSPACE(f(n) + n) . .\ DSPACE(f(cmn))
L, ¢ NTDME(E(n) + p(n) 2 T2 &) NrmME(£(em))
NSPACE(£(n) + n) NSPACE(E (cn))

for some constant ¢ > 0 and some polynohial"p.

An example of the way we use Lemma 3.2 is the following: say that
cn
we have languages L1 and Lz.such thqt we know that_L2 E»SPACE(ZZa )} for
| ,en

some constant c, If L, < pLLZ then we can conclude that L € SPACE(2™ )

1
2c'n
for some constant c. If we know that L, ¢ NTIME(2" ) for some

constant ¢’ > 0, and if L, < szZ’ then we can conclude that

"c'n

L2 ¢ NTIME(Z2 ) for some constant c' > O.T This latter idea is often

used in conjunction with Lemma 3.3.

Lemma 3.3:(see[Co73,SFM73Sei74],) Let f: N # N be one of the functions
' 2 .

g -~ .
n 2 . .
2n, 22 ’ 22 s OT 22 gbelght % Then there exists a language L such that

L € NTIME(£(n)) and L € NTIME(£(n/2)). ,

n 2" . height n
Theorem 3.4: Let f: N # N be one of the functions 2n 22 ,22 or 22 _

and let L QEE (for some E ) be such that NTIME(f(n)) < pd oL

0 0° The? for

some constant ¢ > 0, L ¢ NTIME(f(cn))

T It is easy to see that if L ¢ NTIME(f(m)), them amy nondeterministic

Turing machine which recognizes L takes time at least f(n) on some
v € L of length n, for infimitely many n.. :



. VAN
Proof: Say that RTIME(f(n)) = z“o By Lemma 3.3, let 1 be such that

L ¢ NTIME(f(n/2)) and L € RTIME(f(n)). So L = p!’Lﬂ. Py Lemma 3.2,

L, € NTIME(£(cn)) for some comstamt ¢ > 0. : | 0

A typical way Theorem 3.4 is used is the following. Fischer amd
Rabin [FiR74] show that if TH is the theory of integer addition, then

n , cn
NTIME(2Z ) < 4T, concluding that TH ¢ wroe(2® ) for cemstant c.

L ) . ‘ 4 c'n
In Chapter 2 we show that TH € SPACE(Z2 ) for seme comstant c), and

1
‘ ,c'n
hence that TH € D'I'I!!I;‘:(Z2 ) for some constant c'.
A natural question is whether or not we can get a DTIME upper
bound for TH and an NTIME lower bound for TH which are closer to

[}
22c b ocn ’ : ’
each other than are 2° . and 2 « If we could, this would settle

an important open question of automata theory. § Yor instance, say that

we could show that TH € D‘I"I!»Il‘:(z2 ) for some constant c', Since
Jn

,26
Nmm(zzn) < Je'rﬂ Lemma 3.2 would imply that N'mmu ) < U n'rmz(z ),
- _ - &N

narrowing the gap 1n Fact 2,1, A. ’I‘his_:,would also contradict the popular

conjecture that (for most functions f that are encotmtored) there 18 a
language in NTIME(£f(n)) wh:lch rgnites DTIHE(c (n)) for some constant c.
The reason therefore that we have not been able to narrow the gap between
our DITME upper bound and NTTME lover bound for TH, is mot becau.e we do
not underctcnd the aqmmive power md other propertiu of m, but
rather because we don t mderstand mmy baic propert:ies of the very

notions of deterministic and nondeterministic computation.
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Section 4: Mathematical logic Bacggrgggd and Notatiom:

Most of the motation of mathematical logic that we shall use is
fairly standard; the reader can find preéise definitions of those
concepts not defined here in [Mené64]. |

‘& will always represent a language of the first:order predicate

calculus with a finite number of relational symbols R,, Bys ooes R,

where @i will be a t -place formal predicate for 1 <1< 4 For

technical convenience, & will ﬁot contain function symbols. Sometimes
we will choose &£ to have a constant symbol e as well. The formal

variables of & are writtem as x,, X, xlO"xlli ..., that is, th¢ 
subscripts are written in bimary. For expoéitory”éonveniénqe, we‘will‘refer to

distinct formal variables as x,xo,xl,ng esey y,yo,yl,‘.;., z,io,zl,v...,
Wy WgsWps e e s X' ,7',2, ee. o
The atomic formulas of £ are strings of the form'@i(vl,vz,;..,vti)
where v,,Vy, «oe5 Vi represent (not necessarily distinct) formal
i

variables; if & has a comstant symbol e, then each vj, 1<j< i,;can

represent either a formal variable or e. We define the formulas of £

recursively as follows: Atomic formulas are formilas; if F, and F2'are

formulas and v is a formal varisble, then’each of the strings




e R RS b T

wlbe

(F, VFY T
(Fy A Fp)
(Fy *+ F,)
(F v Fp)

EVF1

VVF1

is a fornula.f We use the usual notions of an occurrence of a
variable in a formula being bound or free, and define a sengence of

£ to be a formula in which there are no free occurrences of variables,

A structure for £ is a tuple 8 = < §, Rl, cees RL > where S is a
£
set and Ri S8 " for 1 <1< 4; if & has a constant symbol e, then a

structure for £ is < S Rl, ceey RL’ e > where e € S, We call S the
, - ¢ .

domain of 8. .If F is a sentence of £ we will use the usual notion of

F true in 8 or 8 satisfies F or F holds in 8, and we will write this

8 + F. Sometimes we will say "F is true" or "F holds" or merely assert
"F" when 8 is understood. TH(8) = the theory of 8 = (F_I F is a sentence

and 8 F F}. If P 1is a nonempty colleetion of structures, then define

When writing formulas we will omit parentheses when it will not lead to
confusion.
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TH(P) = theory of P = [V TH(S).
g8 cP

Our 1gngga§e>£ would haye been jusf as pawerfpl h#d;we ief; out
much of our logical notation. For instance x Vv & iswqquivglent‘to
~x » y and VxF {s equivalent to ~Ex~F. It is only f;r convenieﬁCe
that we h#ve made £ as lArge as we havé:

- We‘éayva formula F is a ﬁboiéan coﬁb#ﬁgtion of ;ubfqrﬁulgs
Fis Fos eees F 1 T is obtained by combining F,, F2, eees B
using perhaps A, V, *,&, ~ but no quantifiers. Clearly every formula

is equivalent to a Boolean combination of formulas, each of,ﬁhich begins
with an existential quantifier.

 We now define annotated formulas in order to be able to talk about
‘substituting members of a domain for free occurrences of variables, and
in order to be able to talk abouf the relations defined’by formulas. Let
F be 'a formula and say that we have a sequence of formal variaﬁies :

containing (not necessarily exclusively) the variabiés which occur

freely in F, say X1 Xgs eoes X . We define the gggoggted fgrmula,

F(xl, Xyy saes xk) to be, formally, the ordered pair consisting of F and
the sequence‘xl, Koy sees Kpo Informally, vhen'we»yrite F(xi, Xyy eves xk)
we think of ourselves as associating with the formula F the sequence

Xys Xy eens Xpo We will usually use F and F(xl, Xy, ;.;, xk) inter~

changeably, and call them both formulas, as long as this association is
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understood; we will never associate two different sequences with the
same formula.

Say that F(xl, Xps wees xk) is an (annotated) formula and 8 is a

structure with domain S, and a, € S. By F(al, Koy eees xk) we will mean

1 for free occurrences of xl

the formula obtained by substituting a
in F. Note that this is technically not a formula of £ but rather a

(non-annotated) formula in the language &' obtained by adding constant

symbols to &£ for every member of S, If 815 895 eess 8 € S, then
F(al, 8ps eees ak) is defined similarly, and we write
8 F F(al, 895 eees ak) if F(al, 8ys sees ak) is true in 8.
For k > 0, we use ;k to represent the k~tuple (xl, Koy =ees xk), ;k

to represent (al, Bys eees ak), (;k’ b) to represent (al, gy sees 8 b),

etc. Thus F(;k) will be used instead of F(xl, Xgs sers xk), etc. ek

and gk will stand for the k-tuples (e, e, ..., e) and(e, e, ..., €).

Sk is the set of k-tuples of members of S. (Sk is isomorphic to the set

of functions from {0, 1, 2, ..., k-1} to S.) For k = 0, Sk is taken to
be the singleton set containing the empty set, and Zk’ ek, etc.,

denote the empty set. However, we take (;k,b,c) to mean (b,c) when k = 0, etc.
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If we write F(;#) when k = 0, then F is a sentence;,F(;i), F(Zk), etc.,
are in this case no different than F itself.
k

If § is a structure with domain S and A < S and F(;k)‘is an

annotated formula, then we say F defines A in 8 if

A= (;&_twsk ‘ 8 ¢+ F(;i)}. We say "F defines A"if 8 is understood.
More generally, say that we are interested in a particular nonempty

class of structures P. By a k-place property G we mean a function which
assigns to each structure 8 € P a subset of Sk (where S 1s the domain of
8); we will usually refer to the value of G on'$ s the relation G

restricted to 8. If ;# € Sk, then we write 8 F C(;k)‘to mean that ;k €

the relation obtained by restricting G to 8. When G is>a'property ve
sometimes write G(;k) to indicate that G is a k-place propérty. If

g(;k) is a formula, we say that g.defiqesAG in P if in every 8 € P,

G defines G restricted to 8. We say "G defines G" when P is understood.

Formulas Fl-and F, are equivalent in 8 if for some sequence

Xy Kps eees Xy of variables, the free variables of both F, and F, are
from among Xys Xy eees X and the annotated formulas Fl(xk) and Fz(xk)

define the same subset of Sk. F1 and F2 are equivalent in P if they are

equivalent in every member of P. We say “F1 and F2 are équivalent“ to




mean with respect to the class of all structures, unless 8 or P
is understood.

~Since we shall be interested in Turing machines whose input
strings are sentences of £, we have to have a precise notion of the
alphabet used to write formulas and a precise rnotvion of the length of

formulas. Our alphabet consists of T = {(, ), A, V, #,&, ¥, ¥V, R, x, 0, 1,]

(where 0 and 1 are used to write subscripts of variables and relation
symbols); if e is a symbol of &£, then e € T also. If F is a formula, then
by the length of F, written IFI, we will simply mean the lemgth of ¥ as
a member of I . |

Another usage of the notation F(xl, Xgs eees xk) ser_Ves to

emphasize that the free variables of F are from among X1s Xps ooy Xpo

For instance, the more mmemonic notation ‘.'!xkF(;k) will sometimes be

used instead of EkaF. If we write IF()_:k)I we simply mean IF

Notation: If o is a string, then lal is the length of a. If o is a set,
then |a| is the _cardinality of o. 1f o is an integer, then |a| is the
absolute value of «. N+ is the set of positive integers. For i € N+,
Qi will always represent a quantifier, i.e., either V or I, All

logarithms are to the base 2,

Definition 4.1: A formula F is in prenex normal form if it i8 of the

form lelev2 kakF' where F' is quantifier free and Vis Vo eees Vi
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represent formal variables.

Theorem 4.2: Every formula F is equivalent to a formula G in prenex

normal form such that G has at most lFI quantifiers and is of length

at most lF -loglF . Furthermore, there is a procedure (i.e., Turing

machine) which given F computes G within time polynomial in IF

Proof: There is a standard procedure for converting a formula to one in
prenex normal form [Mené4]. The procedure basically just "pulls out"
the quantifiers to the front, except that first the names of certain
variables have to be changed in order for the procedure to produce a
formula equivalent to the initial one. The procedure does not change
the number of quantifiers, so G has at most |F| quantifiers. F has at
most IFl occurrences of variables, sé if these are given all different
names (in the worst case) and the binary subscripts are chosen to be
as short as possible, then F grows by a factor of at most log ‘Fl when
put in prenex normal form. This procedure can be checked to operate
within polvnomial time. o
Thus, to show that a theory can be decided within space f(cn) for
some constant c, where f grows faster than polynomially, it is
sufficient to give a procedure which decides the truth of prenex normal
form sentences of length at most n log n with at most n quantifiers,

within space f(cn) for some constant c.



204

Definition 4.3: If F is a formula, we will write g-depth(F) to mean

the quantifier depth of F. Formally, if F is an atomic formula then

q-depth(F) = 0; if F, and F, are formulas then

1
q-depth(F1 \% FZ) = q-depth(F1 A Fz) = q-depth(F1 -+ F2) = q-depth(Flé4 F2) =
Max{q—depth(Fl), q-depth(Fz)], q-depth(~F1)= q-depth(Fl),and

q-depth(HvF1)= q—depth(VvF1)= 1+ q-depth(Fl).
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Chapter 2: Ehrenfeucht Games and Decision Procedures

Section 1: Introduction

In this chapter we present a development of the Ehrenfeucht game ap-
proach to deciding logical theories. This approach was originally
described in [Ehr61], and in particular the reader may wish to consult
this source to 1éarn about the relationship to game theory. A discussion
of game theory also appears in work by Richard Tenney [Ten74,Ten74']. Tenney
uses Fhrenfeucht game techniques to decide the theories of certain
pairing functions and to decide the second order theory of an equivalence
relatién. Neither Ehrenfeucht nor Tenney explicitly describes these
techniques in generality. We shall present a development in this chapter
which, although not completely general, is géneral enough to handle a
wide varilety of cases. Where possible we will describe our decision
procedures in terms of bounds on quantifiers, so that to decide the truth
of a sentence one need only decide the sentence when each quantifier is
limited to range over a particular finite set. This idea, which will be
carefully described in the next three chapters, is also used by Tenny,
Ferrante and Rackoff [FR74], and Ferrante [Fer74]. 1In addition, as part
of our development of the Ehrenfeucht game approach we shall characterize
it in terms of the quantifier depth of formulas.

Section 2 of this chapter consists of a general development of
Ehrenfeucht games. Our approach is somewhat different from that of
Ehrenfeucht or Tenney, but several of the basic theorems and ideas come

from these sources. In Section 3 we derive a decision procedure for
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the first order theory of integer addition as a corollary of our
general development, In Section 4 we discuss an important open
question relating the complexity of decision procedures to the index

of the equivalence relation which characterizes Ehrenfeucht games.
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Section 2: The Ehrenfeucht Equivalence Relation and Ehrenfeucht Games

Let & be a fixed langué.gerof the fifst ofder pfe&icate calculus
with finitely many relational symbols@l,ﬁ.z,... ’R'l. where @1 1s a t, - |
place formal predicate for 1si<4. Also, let & have a single’ const_:énf:
symbol e. Let 8=<8, RI’RZ"”’Rz’é> be a fixed structure for £.
(Actually, the constant symbol e plays no fmportant role in this chapter
but 1s included so that we can talk about weak’ direct powers  later.)
In addition we will assume we have a norm on 8, by which we mean a
function || |]:S#N, and we will denote the norw of a€S by [all.

If 1 €N, then we write a<1i to mean ||a}| <1. We iptroduce this concept
of norm in order to describe simple decision procedures which use space
efficiently (and without a significant time loss). - However the reader

should note that many of the theorems below make no mention of the norm

and are independent of this notion. o
We now define the Ehrenfeucht equivalence relation.

. - - k - .
Definition 2.1: For all n,k€N and all ak,bkes , égfipe &3 b, 1Lff

for every formula F(x, ) of ~depth=n F(a, ) and F(b,) are either both
*x q > Fidy) and % .

true or both false (in 8).

Remark 2.2: For each n,k€EN, is an equivalence relation on Sk.

n

Ehrenfeucht originally defined = by induction on n; his definition
consisted of a combination of our defisition of g .together with what

we call Theorem 2.3. We will prove this.theorem later.

Theorem 2.3: Let n,k €N and ;'kr:[.’ €s. Then ;k nil i)‘k ®

1) For each a € S there exists some b € S such that ak+1

1o

t1®
k+1°

o

SH BN

and 2) For each by E S there exists some a.k+1€ S such that ak+1
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Lemma 2.4: Let n,k €N and ;k"ske s* such that

o'y

1) For each _a.k+1€_S there exists some bk+1 €S such that ;k

+1 k+1°

=11}
o't

and 2) For each b €S there exists some a 4;16 S such that ;ic+1

S

k+1 k+1°
Then 3 ntl bk'

Proof: Say that 1) and 2) hold, Since every formula is equivalent to

a Boolean combination of formulas each of which begins with an existential

quantifier,‘it is sufficient to prowve, for F_(;(k) of the form @xm_l G(;‘k-ﬂ)

~where q-depth(G) <n, that F (;k) ®F (Bk).

So assume that F(;k) holds., Then let & €S be mh that G(;k+1)
holds. By 1), let by, €S be such that 2H1 E Ekﬂ. Since c(ikﬂ) is
true, G(Ek+1
symmetry, F(;k) holds if F(Bk) holds. 0O

) is true (by definition of ), 8o F(l;k) is true. By

Definition 2.5: For each n,k€N let M(n,k) be the number of equivalence
classes of = restricted to Sk.

Lemma 2.6: Let n,k€N. Then M(n,k) is finite and for each ;.kE Sk there

is a formula F(;ck) of gq-depth n such that for all Skésk',

SFF(Ek) @ l-)k =a (i.e., F defines the = equivalence glau of :Lk).

n
Proof (by induction on n): If n=0 and ;kESk, we can clearly take F(ik)
to be a conjunction of atomic formulas and negations of atomic formulas.
Since an argument place of an atomic formula can be occupied by either a
formal variable or by g, the mumber of atomic formulas in which at most e,

L t
X 5%),0 0 5% OCCUT is ig;)l(k-!-_l) i, so

ﬁ (k+1)t1
M(0,k) <211 '
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Now assume the lemma true for n (and.,g_ll k). We shall prove it for

n+l (and k). Let Fl(;‘k+1) ’F2(§k+1)""ﬂﬁ(n,k-l‘-l)(;k+l) be a sequence of

formulas of q-depth n such that for each ;k+1E Sk”‘ there ‘exists an i,

1<i<M(n,k+l), such that Fi definee tbe ’.i‘equiva}e?ee eless of a1’
For each <-: € s* define

w(c )={1 | 1 <1 <M(n, k+1) and ka'HF (ck’xk+1) 18 true] We sha}l show

that for all b ,c i

/\ gxk+1Fi(xk+1) A

o L (
1EWE 1¢W( ) RLACWY )
\ 1s1M(n, k+1)

= HEIHGE ). Thus the formula Fr)-

( defiges the El equivg-lence class of ck

Clearly if b

Kk H—l k’ theu W(hk)-w(ck) sinee each formula

Exk +1 Fi(xkﬂ) is of q-depth n+1. “To prove the comerse we - firat prove

£

the following Claim,

_(Q_.Ligz If W(bk)=w(c ), then for each ck €S there exists some b, G S

such that c:k +1 n k+1

some ck+ GS such that ck+1 = k+1)°

Proof of glaim: Say that W(bk)-w(c ) and ck_,_lés; Let 1, 1<{<M(n,k+l),
Y

= b (and by symetry, for each bk+ ES t:here extsts ''''

~

b

be such that F, (xk+1) defines the ﬁ equivalence class of °k+1 F (<:k +1
is true, so !ka_ﬂ Fi(ck’xk-i-l) 1s true, 80 1€w(ck) So iEW(bk)" This
means that '.':ka+1 Fi(bk'xk 4+1) is true, and therefore we can find bk 1 such

that:; Iz‘,,_(bk ) ie true. Since F, defines the = equlvﬁcnce clus of ckri—l'

we must have &y ) % Byyye

By the Claim and Lemna 2. 4 W(bk’)uw‘(ck) @ bk n+1 k dete that the

equivalence class of ck is determined by W(ck) whieh is a subset of
M(n,k+1)

n—fl

(1,2,... ,M(n,k+1)}. So M(n+1,k) <2 This and the bound on M(0,k)

i
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5 ()
. } height ntl

imply that M(n,k) SZ2 for some constant c. 0

Remark 2.7: There are structures 8 such that
+k v
2n

.’ } height €n
M(n,k) 222 (for some constant € >0), so M(n,k) is not in
general bounded above by an elementary recursive function FOr many

structures, however, M(n,k) grows considerably more slowly.

Definition 2,8: Let H:N° 4N be a function which 1s nondecreasing in each
* argument. Then 8 is H-bounded 1ff for all n,k€N and a'nr(im) of
q-depth sn and all %ES , Lf Cﬁck_'_lF(ak,xk*l) is true .1g.8 then . '
(3 <0 g5 Loy 11 19Goyom ) 40 crue 1 3. G cake Hax ¢

to be 0.)

Remark 2.9: If our norm on S is the identically 0 function and HN'g-bN |

is the identically O functi.on then clearly 8 i{s H-bounded. This méanvs’ that
often when we have a theorem which involves  the concepts of norm and:
H-boundedness, ﬁe can immediately obtair; a simpler theorem which doesn't
mention those concepts; sometimes, &s is the ‘case w:lt:hLemna 2, IO,Jt:hils,

new result is still interesting.

Lemma 2.10: Let HN <N be such that 8 is W-bounded, Let n,k€N and
let ;.k,l';ké S'k such that ;'k nf—l Bk' Then for each?a'.k*_i GS there .exilts_
some bk+i€ S such that ;k-i-l = -k+1 |

and such that
opyp || =10k, e (116, 11).
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- - k - =
Proof: Let a.k,bkes such that a, %, b.. Let ak+1€S. By Lemma 2.6

there is a formula F(;ck_l_l) of q-depth n which defines the = equivalence

n

class of a .. Since Exk+1F(ak’xk+l) is true and a, %, b.s

b - €
E{le(+1F(bk,xk+1) is true. Since 8 is H-bounded, we can choose by €8S

such that F(b, ,.) is true and Hb H SH(n,k,llS'Iiusck{ | ‘biH}). But

k+1 k+1

F(b k+1) implies b ak+1 O

Proof of Theorem 2,3: Theorem 2.3 follows immediately from Lemma 2.10

(keeping in mind Remark 2.9) and Lemma 2.4. O

H-boundedness of a structure guarantees that quantifiers in a

formula ranging over all of S can be replaced by quantifiers ranging
over elements of S whose norms are bounded by a function determined by H.

This is made precise in the following lemma.

Lemma 2.11: Let H:NB.;N be such that 8§ is H-bounded. Let n,k€N and
let lel Q,%, ...Qkxk}?(xk) be a sentence of & with gq-depth <ntk, i.e.,
g-depth(F) <n. Let ElkéNk be a sequence such that miZH(n+k-i,i-1,1§__:]néi{mj})
for 1<1i<k,
Then lel Q'ZXZ"'QkxkF(xk) is true @

. < < X
(Ql.x1 ml)(Q2x2<m2)...(Qkxk m.k)F(xk) is true.

Proof: Consider the formula sz2 Q3x3 ...QkxkF(xk). Because o is
H-bounded, if m, 2z H(n+k-1,0,0) then lel(QZXZ"'Qkxk F(;ck)) is equivalent
Py -
to (le1 ml) (Q2x2. . 'Qkxk F( xk)).
Now for each a €S such that Ha” <m,, consider the formula

Q3x3 Q% - - .Qkxk F( 8,Xp,Kgyees ,x.k). Because S is H-bounded, if

m, 2H(n+k-2,1,m1) then szz(Q3x3...Qkx.kF(a,xz,x3,...,xk)) is equivalent



to (sz2 <m2) (Q3x3. .o QX F( 8,KyXqge s ,-xk) ). Hence,
(lel <m1)Q2x2. . .Qkxk F( xk) is equivalent f:o
(Qpx; <m, ) (Qx, <m))yky-- - Q& FIxp). |
By k-2 additional applications of the Heboundedness of 8, we arrive

at Lemmg 2.11., O

We now demonstrate the existence of a general method of proving

H-boundedness.

Lemma 2.12: let H:NB-'N be a function which is nondecreasing in each
argument, and say that for each n,k € N we have an egquivalence relation
En on Sk satisfying the following properties:

1) For all k€N and all Sk,ﬁkesk, a By b = a §b .
and 2) If n,kEN and 3,6, €s* such that & £ B, then for each
a €S there i3 some LI ES such that ak+1 B bk 1 and such that

by ! sn<n,k,1g§k( | Ibil .

THEN

't

- - k -
I) For all n,k €N and a.k,bkES » & E

5_Pl
-1l
=2}
=
.

and II) 8 is H~bounded.

Proof:

rh

of I) by M on n: I) certainly holds if n=0. Assume I)
is true for n; we will prove it for n+l.

Say that a E ; we wish to show that ' By Lemma 2.4
" a‘k n+1 k

n+l k
and the symmetry of E b1 it is sufficient to show that for every 8y +1€S
there is some b, . €S such that ‘a‘m_1 =b, .4+ So choose ak+1€S' By 2)

there is some b, € S such that a.w_1 E bk+1' By the inducti on hypothesis,
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2+l & DleHl”

Proof of II): Let F(ik+1) be a formula of q-depth <m and let ;.kE gk

be such that‘-SxkﬂF(ak,ka) is true. Let.a ., €8 be such that F(a,H_l‘)f‘_
holds. Since a E ., ;k, condition 2) implies that we can find some
ay,, €S such that a . E (a8 ) and such that

| ! | <H(Mm,k, Max {:]} ; 2 Ao 1

|la) | <H, ’1514”“1””‘ But by 1), Ay Eg (Betpy) =

;k+1 2 (;k’al'(-l'l) = F(;k’al'cﬂ.) holds. ‘So 8 {s H-bounded. 0.

By applying Remark 2.9 to Lemma 2.12 we ‘1mediate‘1y obtain Lemma 2.12°.
Lemma 2.12': Say that for each n,k €N we have an equivalence relation E
on Sk satisfying the follow:lng’properties:
1) For a]y.l‘kEN and all a.k,bkés » 8 Egb = a § b, .
e = ok - -
and 2) If n,k€N and ak,kaS such that a, E ., by, then for each

ak+1€ S there is some bk+1€ S such that a1 En bk+1'

- - k - - - -
THEN for all n,k €N and ;k,bk-eS , a E bk = a = bk.

We loosely define_ an "Ehrenfeucht game (abbrevigted E-game) decision
procedure" for TH(3) to be one that involves defining relations En and
proving that the conditions of Lemma 2.12 or 2.12' hold. This will be made

- clearer in the examples of Section 3 and Chapter 3. In Section 4 of this
chapter we present a general discussion of the computational complexity

of E~game decision procedures.

Lemma 2.13 shows how H-boundedness implies bounds on the norms
of members of the S equivalence classes.
Lemma 2.13: Let H:N3-0N be such that 8 is H-bounded. Let n,k€N and

et m € . ‘m, 2 -1, i~
let m, Nk be a sequence such that m, H(n+k~1,1 l,llsd?:éi{mj]) for

futh T R AR L S R e S gt i e e
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1<i<k., Then for each ;kE Sk there is some bkE Sk such that e-lk

S
=

and Hb” <m, for 1l<isk,
i i

Proof: Let n,k,;\k, and ak be as in the statement of the lemma. By

Lemma 2.6 there is a formula F(;;k) of g~depth n which defines the =

equivalence class of a, . Since F(ak) holds, Hxl E{xz...ﬁx.kF(xk) is true.
7 < < .. < - . . .

So by Lemma 2.11, (&x1 ml)(E{xz\mz). (E{xk\mk)F(xk) is true This

means that for some I-Jké Sk, F(‘Bk) is true and HblH <m, for 1si<k, [J
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Section 3: An E-Game Decision Procedure for Integer Addition

We now present some applications of Section 2. For the rest of
this section let Si“be the language of the first order predicate calculus
with the formal predicates vy +v, =V, and VySV, -and the constant

symbol 0 (where VysVgsVsa represent formal vaxiablqp)»

Definition 3.0: Let Z be the structure < Z, +, <, 0 > where Z is the set
of iﬁtegers and where + and < are fhe ﬁsu#i intégef‘éddiﬁion and order.
If a € 2, define ||a|| = lal = abéolute‘Q#lué‘of a.

| We will obtaih a theoretically efficienﬁ decision procedure‘for TH(Z)
using reﬁults of the previous section, Although‘ﬁe will ‘be using an
Ehrenfeucht game approach, many of the ide;s we shall use come from a
quantifier elimination decisioﬁ prbce&ure for TH(Z),obtaiﬁed by Cooper
[Coo72] and analyzed from a complexity viewpoint by Oppen [Opp73]. We
choose this example because it illustrates our thesis that all known
quantifier elimination procedures can be converte& to E;game deéision
procedures without significant loss of time and sometimes with a saving
of space. Some of‘our results about TH(Z) appeared in preliminary form
in Ferrante and Rackoff [FR74]. | |

Although our procedure for TH(i) has about the same time complexity

as Cooper's, it only requires a logarithm of the space used’ﬁy Cooper's

procedure.

DefiQitiqgﬁB.l: If a, b,'c € Z, then a ~ b mod c.(a is equivalent to
b mod ¢) if ¢ divides a - b, If A'is>ain6nempty finite set of integers,

then lem A = the least positive integer which every non-zero element of
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-t
A divides.

Definitiom 3.2: Let a, b € Z and let d € Nfl Then we write a,: b
if either 1) a =1
2y a2d and b2d
or "3) as ~d and b < -d.
’ Wﬁen we talk about = holding between objects one of which is the
cardinality of a sei, we wili often omit the ver;icnl liﬁas indicating

cardinality. For instance, if A and B are sets, we will write A = B

d
and A = 5 instead of |A| = |B| and |A] = 5.
d | d d
Lemma 3.3: ‘#§t a, b € Z and let d € N+. fhen a : §' ‘
for every ¢, -d <c<d, a2 ¢ ﬁ‘b zc. |
Proof: Left to the reader. ' u)

Definition 3.4: Define a sequence of sets of integers vo, Vé, VI, v;,...

as follows: Vo = (-2, -1, 0, 1, 2). If V, has been defined, define

v 8. = . ' .
Vi = { p” I § = lem Vi, v, v' € Vi, v # 0) and define

v =vaJ{a +b| a, b€ V{}.

i+1
Definition 3.5: Let n, k € N. Then define the equivalence relation

k - = .k
En on Z as follows; Let a, bk €272, let § = lem Vn. :

t We use this nonstandard notation for equivalenéé mod ¢ so as not to cause

conflict with other notation we use.
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Then a, En bk iff for every v, € (Vn) :

2

g k .
1)12=41 via, ~ ifl?ibi mod &
| k k
ane. 2)121\71&i :2 121 V1"
Lemma 3.6: Lét k €N and lét ;#, Ekvé Zk such tﬁat ;k’EO E&.
Then ;ﬁ i Ek.

Proof: Say that ;% Eq 3#. We wish to show that for any quantifier
free formula'F(;k), YA S F(Zk) “'Z F,F(Eg). Since every quantifier

free formula is a boolean combination of atomic formulas, it is

sufficient to assume F is atomic. We need only consider the following

cases for F:

Xy = X5 Xy s xz, X + X = X, Xy + X, = X3, Xy f Xy = Xy, Xy + x,

In these cases, in order to show that r F(Ei) o ZF F(Ek), it is
necessary to show (respectively) that 0 s 0 ® 0 <0,

a. ~a.<0®b, -b,s0, a, =0®b, =0,

1" %2 1”02 1 1 =0®b

) 9 =0,

2a, - a, = 092, -b, =0, a, +a, - ay*= 0«b

1 1 - b 1t a7 8 1*by " Py =0

But since 0, 1,‘-1, 2, €Vy all these facts follow from 2) in the

definition of Eg. | - O
20n |
Lemma 3.7: For some comstant c, |an <2 and Vn = {=a |'a € Vn]
jon , ,

2

and Max Vﬁ <2 for all n € N.

=

X3o
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Proof: |V0| = 5,  In geweral, |V£' = ‘Wil;z arid

Tyl = 9]+ 1917 < [l s fv ) < 5,

It is trivial to show thatv = (-a | aEV}

Max V., = 2. In general, lcm Vi < (mvi)!vil. So

0

Max V < Max(Max V i 2.Max v*) < 2-lcm V, -Max V,

i
1 i nm
55 66 ; - k6§ )
< 2-(Max V ) V £ (Max V5) . Sb‘Hi!»Vn < 2 .
,on 22°n '
v <2 amdMexv <2

i+l

for some constamt c and alln €8, O

Theorem 3.8: There exists a constant d such that the following is true:

Letn,kGdelctak,b GZkauchMakwubk" Then for each
&bl €2z there exintn some bhl—l_e Z such that a'k-l-l E bk+ amt mh ‘that
d(n-l-k)

| < (14 Max{bi})z .

Pret1 1sisk

Proof: Say that a.k nﬂbk and that 8y € % levd =lemV and

note that 82 = lcm V' since 1 € V . Let T={ Ev t+v v €V '
- 11 i . i n

forlSiSkanﬁ Ivlsé)beanonmptyoubaetofz There must

exist either a member of T which is S &ak+1 or a mmber of T2 6ak+1

(or both):; these two cases are symmetrical, so uamt wtthout loss of
generality that some mewber of T is < 8a . . Let L v,a, + v be the
- g1 11

largest meinber of T which is < 6ak+1 where vy Gw V; fﬁr 1=14 < k and

|v| < 63. Consider the sequence
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k k k / k 5
.Eviai+v, _Eyiai+v+1, Eviai+v+2,...,2viai+v+6 .
i=1 Ci=1 i=1 i=1

If 5a'k+1 is not equal to any of them,ktheny 6ak+1 is bigger than all

of them and one of them (other than X via, + v) is equivalent to

t=1

6ak+1 mod 63. It is therefore the case that for some u: |u| < 6?

k ' .3 k , |
and ‘E via, tvtum ba, ., mod 87 and '2 via, +v <

i=1 _ i=1
k ’ k

: < 6 = & =
.E v 8, +v+u 5ak+1’ and u = 0 z via, +v 6ak+1.
i=1 _ i=1 :
k

Claim: For every t € T, t < ii}lviai +v4+uets 63k+1 and

k
t = .E'_viai +v+uet2 58k+17'

i=1
Proof of Claim: 1If i§1viai +v+4+us=s 6ak_+1" then the claim is trivial.

kK - ok
So assume ? v.ay +v+ud éak+1. Then u # 0, and so I viay +v+uis
i=1 i=1
k o k

strictly between 1§1viai + v and 6ak+1. Since @1"131 4+ v is the largest

member of T < 63k+1’ we canpot have any t € T such that

k

T v,a

2 13 +v+usts 6a.k+1; hence the Claim follows.

= i 1 g gt &
Now let y = lcm Voa1- Since 0 € Voo 0 € v, Therefore Vn‘ Voalr

2 _ ' ' 2
Since 6§ = lem Vn and Vm_1 - (_2e|.,e € Vn} , We hgve 20" divides y. Since
_ _ k k 2 ' '
akEn+1bk’ iflviai A 121 vibi mod y , and so 68k+1 S
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K ok 5
Tva, +vi+um Zvb +v+umsdsd

=1 i1 1=1 i'i

‘ k
implying that § divides I v,b, +v+u. Define
, i=1 .

k
bk+1 = (1§1vibi- + v 4+ u)/é. We will show that "k+1 nbk'l-l

e+l k+1 k+1

Let w, . € (vn) . We want to show that 121!'1&1 9 12,1"},1 nod 8

2

ktl T+l .
and that L w Zwb . If Yt = O then these facts follow

i=1 151 52 {=1 14°

immediately from the fact that Zka “Hb]!t since V_ SV, end 62 divides

yz. So assume .o # 0.
k k 2
Since akE k’ we have iflwiai Re iflwlb" mod: 8. Thus to show
k1 k+1 2
that Tw,a, ~ Lwb, mod §°, it is sufficient to show that
11 i1
i=1 i=1 © . - :
W, mod&z But w ~w b nod&z
13 ™ Vi1 Pt et 1% ™ Yier1 Pkl )
) kel kt+l
& 6ak+1 ~ ébk-pl mod (blwh‘_l;)é ). Hence I wi‘i ~ E'i.bi mod 52
i=} 1=l
k+1 ktl
Next we will .show that 1731wia1 62 z ylb Since ‘Vn = (~aa € Vn] R
k+1 k+1 K+l K+l
and since L w,a, =, Lwb & I -w 18 L - b - we can assume without
Pt o e it s Sl % Mt & |

loss of generality that Vsl 0. By Lemma 3.3 it is suffictent to show
k+1 k+1

that T w aizd@ Ewb for everyd {d[sb “Therefore fix d,
i=1 i=1

la| < 62,

k+1 k
iElwiai zd @ (;SI(G/WR+1)'ia1) + 6ak+1 2 d(&/wk+1) @

Sa, g 2 (Z( 6/ +1)wiai) +d (8/w +1)
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(<8 ha  Jw, €V! for 1 S i<k and lacs . )| < 83, s0
ket

k+1

k
( E (-6/w 1)w a, ) + d(d/w +1) € T. By the above Claim, we can

continue: 6ak+1 2(2 (- 6/wk+1)w a, )+ d(&/wk_H)

k k

Tv,a, +v+tuz( Z(-8/w

)w ) + d(8/w.
1=1 k+1

1) ©

k
z (V + (& /w )wi)ai‘z d(s/w -v - u,

Vit k+1 )

3

ladfw. ) - v - u | =38 < y% (since 267 divides y):

et1)

Because ;‘kE b, we have

+1°%
i?l(v + (6/wk+1)wi)a 2 d(8/w. +1) -V e=-u®
K
ifl("i + Gl wdby 2 d@ ) - v - u®
K
rZ_} (6/wk+1)w b, + glvib +v+uz2 d(6/wk+1) ®
k K+l
121(6/"1&1)" by 8byyy 2 d@ A, ) @ ifl“'ibi zd.

It remains to calculate the size of bk+1'

' 3, .3
< < ke 5
|k+1| IEvb + v+ ul kMaanlll;::k[b]-t- + 8
< keMax V_,,*Max (b,} + 2.(Max V )'an'3. Therefore by Lemma 3.7,
n+1 1<isk i 7 |

,d (nHk)
2 :
we have for some constant d, Ibk+1| < (1 + Max {bi} 2%

1<i<k
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Corollgrj 3.9: TFor some constant d, 7 is H-bounded whefé ,

' zd(.n+k)
H(n,k,m) = (1 + m)22-

Proof: Immediate from Lemmas 2.12, 3.6 and Theorem 3.8. O

Theorem 3.,10: Let F be the sentence of 31, lelexz...annG(xn) where

G is quantifier free. Then for some constant d independent of n, F

dn+1 2dn+2 gdirin
2 2= -~
Qyxy <27 dees (@x <25 e(x).

. : 2
is equivalent in Z to (_Q.lx1 < 22

_ ‘ 22d(n+k)
Proof: Say that Z is H-bounded where H(n,k,m) = (1 + m)2 .

2dn+i _
‘let m, = 22 for 1 <1 <n, Applying Lemma 2,11 to Z, we see that

sincem, 2 H(n - 1, 1 = 1, Max {|m,|}) for 1 < 1 S n, F 1s equivalent
1 1sj<a 3

.to (lel < ml) (Q‘2x2 < mz) ese (Q-nxn' < mn) G (;n). 0

Corollary 3,11: For some constant ¢, TH(< Z, +, <, 0 >) can be

decided within space 2© .,

Proof: By Theorem 1,4.2, given a sentence F of 21, convert it to an

equivalent sentence lelexz PR ann G (xﬁ) wvhere G is quantifier free
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and of length at most n log n where n = lF|. F is equivalent in Z to

dntl

2&&2 dndn
2

2 52 _ |
YQx, <20 ) L @E, <2 )6 (X for

2
(le1 ﬁ 2

some constant d (by Theorem 3.10).
F can be decided in Z by setting aside for quantifier Qi; 1<i<n,

JonH g+l

2 + 2 tape squares; every integer 5”22 in #bgolute value
can be written in this space in ﬁtnary. Jf£én deéidé F‘ﬁybcyciing -
through each quantifier space appropriately, all fhe time éesting
the truth of G on.differeﬂt n-tuples of integeras, We let ‘the reader
convince himself that a Turing machine implementing this outlined

cn
procedure need use only 2 tape squares for some constant c. O

Theorem 3.12: For some constant c', amy nondeterﬁinis;ic'Turing
_ cn
machine which recognizes TH(Z, +, <, 0) requires time 22 on

some sentence of length n, for infinitely mamy n € N.

See Fischer and Rabin [FiR74] for a proof of Theorem 3.12. Their
proof uses the method described in Chapter 1, and hemce, for the
reasons described in Chapter 1, the upper bound of Corollary 3.11 matches

the lower bound of Theorem 3.12 reasonably well.

Definition: Let R be the structure <R, +, <, 0% where R is the set of
real numbers and + and < are the usual real addition and order.
As above, the upper bound for TH(R) in Theorem 3.13 is close to

the lower bound of Theorem 3.14,
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Theorem 3.13: For some comstant c, TH(R) can be decided in space 2°n,

The proof appears in Ferrante and Rackoff [FR74}, Although part of
their proof uses quantifier elimination, it could be rewritten to follow .

the E~-game formst ussd above without loss of efficiemcy.

Theorem 3,14: For some comstant c', any nondeterministic Turing machine
which recognizes TH(R) requires time ° ™ on some sentence of lemgth n,

for infinitely many n.

See Fischer snd Rsbin [FiR74] for a proof of Theorem 3.14.
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Section 4: Complexity of E-Game Decision Prog edgr_.;_gg.

We have mentioned that an E-game 'p'roéed'urve for deciding TH(8) is
one which proceeds by defining relations E and proving that the
conditions of Lemma 2.12 or 2.12' hold. It is them necessary, in
order to decide a sentence with n quamntifiers, to-be able to write
down for every i between 0 and n representatioms of all the E,
equivalence classes on s -i; this is what is really going om in
Lemma 2.11 and the examples of the previous section. . Chapters 3 and 4
contain further applications of these ideas.

It is not enough only to be able to write dowm for every n, k € N
representations of all the .En equival'me:;elaun,,onsk., -but this 1is.
certainly a mecessary part of am VE-ga;n'c-:docision%préeedura. Recalling

that the'En classes are at least as‘mnaroixa as the E ¢lasses (because
, n

of Lemma 2.12), we see that if an E—gaﬁa’précedaré (as we have described
them) is to be elementary recursive, it is necessary that M(m,k) be
bounded above by an elementary recursive function.

Now the only other method we know about for obtaining elementary
recursive decision procedures is elimination of -q'uant‘l.fiers, and we have
stated above that‘ in all known cases a quamtifier elimination procedure
can be transformed into an E-game procedure without sacrificing (if it was
there in the first place) elementary recursivemess. Wh#t this means is
that in order for a logical thepry to be elmenta;x recursiveiy degidable
by known methods, it is necessary for M(n,k)‘ to ﬁe bounded abovg by an
elementary recursive function. This_;gisgs the following important -

conjecture,




bl

Conjecture 4.1: If TH(3) has an elementary recursive decision
~ procedure, then M(n,k) is bounded above by an ‘elqnm;r‘tiggya;"chrsive

function.

Although Conjecture 4.1 is open, its converse is definitely false.

For the purpose of this comterexample, let £ be the language of
the first order predicate cnlulut‘ with the furmal predicates Ny Vs
and vy~ Yy (v.l is eguivalent to v.zt) and the toustamt saymbol O (although
the constant ‘symbol ismm't really necessery).:

For every nonempty set A of positive integers let 'the an .
equivalence relation on N such that for .every pesitive integer i

1) 4f 1 € A then there is exactly onc.-z gqgj.v;l._encq c:-.;ju_s‘of size 1,
and

2) if i ¢ A then there are no equivalence classes of size i,

Define the structure ‘SA = <N, =, Z. 0>,

For any 1 € N+, there is a sentence Fi which can be obtathed 1n -
time polynomial in i which siys that there is an equivalence class of
sizek emm::tlﬁr 1 Therefore, if TH(SA) can be decided within time g(n),
then A can be decided within time g(p (ii)) + p(n) For some polynomial Pp.
Since we can make A arbitrarily hard to decide or arbitrarily nonrecursive,

ve can make TH(3,) arbitrarily hard to deiide or arbitrarily nohrecursive.

Now let A be a fixed set of positive integers and considér M(n,k)




-

AL

for 8,; we will show that (no matter what A i8) M(n,k) is bounded above
by an elementary recursive functiom, contradicting the converse of

Conjecture 4.1,

For each ay s bk € N define a En bk iff for all i,j such that

1=i,j <k,

I) ai'z 0« bi‘X 0, and a, = 0«b, =0,

~ ~ = ¢:> =
I1) a; A aJ b i bj’ and a; gj bi bj'

and

III) (a €N | aya . It is not difficult to prove

4

J = {bEN|b~b
ik

Lemma 4.2 using Lemma 2,12',

Lemms 4.2:  a E b =3 = Db

Since the number of En equivalence classes on Nk

is bounded above by an elementary recursive function (of n and k),

2c(n+k)
namely 2 , M(n,k) for SA is bounded above by the same function.




-46-

' Chapter 3: Weak Direct Powers

Section 1: Weak Direct Powers and Ehrenfeucht Games

Let £ be a language of the first order predicate calculus with a

finite number of predicate symbols &,, 8,,...,8, such that & 1s.a t,

place formal predicate for 1 <1 < .C, and iith a constant syubol e, -
Definition 1,1; Let 8 =< S, “1?“2-"" R,, e > be a structure for £.
For all a € 8, Hallwis the norm of a. 'ﬂu weak direct power of 8

' ' * % % : ‘

is the structure 8 = < s*, R:, R.z.,..., Rt’ e > where

s* = (£: N+ 5 | £(1) # e for only finitely mamy 1 € N};

L Af£ 3 (1) €R, for all

t
for 1 = § s 4, 1f ?t. € gs’k)j o then -t't € Rj ) j

3 ]

1 € N (where ?t (1) abbreviates (£,(1), fz(“i),‘..‘;, £, (D))

e*(1) = e for all 1 € N,

For a nmorm om 2" we define, for f € S*,
[£]] = Max((1 € R | £¢1) # e} U (|IE|] [1 €RD. By £ <mwe will
mean || £|] < m.

Mostowski [Mos52] md Feferman and Vaught [FV59] both show that
TH(S) decidable = TH(8') decidable. However, their proofs are such that
in every case, the decision procedure for TB(S*) obtained is not elememtary
recursive, In this section we will present some general theorems which

will allow us to derive significantly more efficient decision procedures for
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subsets of N, such that U B, =N and such that A
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TH(S*) in many cases, and in particular to obtain a procedure for TH(Z*)
(where Z is the structure of integer addition defined in Chapter 2)
which closely matches the lmown lower bound. In 'Ch;pte‘r:’ 4 we prove
even more general theorems which give a vc'ovnldivtion under which we can
conclude TH(S*) elementary recursive‘if TH(S) is elemientary recursive.
Now let H: N3 - N be such that 8 is HQbounded. Let M(n,k) be the

function as defined for 8 in Chapter 2, definition 2,2,5.

Definition 1.,2: Define the function u: N2 N by set:ting u(O k) = 1
and p(n + 1, k) = M(n, k + D) eu(n, k + 1). Hence p.(n,k) = H Mn -1, k + 1i).
i=1

*
Definition 1.3: Define H': N° + N by H (n,k,m) =

Max (H(n,k,m),m + p(n + 1, k), |[el]}.

. ' * .
" The major theorem of this section will show that 3 1s H*-bounded.

We now prove a combinatorial lemma, = is defined in Definition 2.3.2,

Lemma 1.4: Let Nl and N, be sets and let n, m ent such that

N1 nom sz Let Al’ Az,..., A be a sequence of (possibly empty) pairwiae
v n
disjoint subsets of N; such that U A, =N,
=1 '

Then there exists a sequence Bl’ Byyeees By of pairwise disjoint

2 ‘ : 1.;_,31 forlS‘:lS‘n.

i=]
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Proof- If |N l = |H2| then the Lemma is oBvioﬁs. Assune 1N'|'2 nem

‘and |N2| 2 nem, For some i, 1 < i <n, we must have IA l = m, ao:asiéﬁg

without loss of generality that |A l 2z m,

‘Define numbers,pz, Pgseses Py € N by

Clagl af o] <m

Py T _  for 251 S'ﬁ. v
. m if.|’Ai|2m >

;MuﬂyEpism-1m=nm-m‘Mmehﬂihm,ﬁﬂ@ﬁﬁﬁkw’
sequence of?pairwise,disjoint subsets of Nz,_nannli 32, 33,..., Bn;’

such that IBiI == Py for 2 <1 <n. So -Ai = Bi' £oz‘fi2 £ 1isqn, -Tet

n ' n ‘v ‘ coe
B, =N, - li B,. ,INZl 2 nem and ;;;Bi < nem - m, so IBI| 2 m, Since

DU - T R ‘ D

For every n, k€ N, define the Ehrenfeucht relation = on both

. |
s* and (s*)* as in Chapter 2, Definition 2,2.1.

; -+ * k , -
Definition 1.5: Let n, k € N and ?k, 8, €(s)*. Then we say LE 8

1£f for all 3, €5, (1 €8 | By =3y = (1ev | gk(i) =3).
n(n,k)

— *k .. = - -
Lemma 1.6: For all k € N, fk’ ng(S),lfvkaogkth‘cn fk

ol
{
ol
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Proof: Say that Ek E0 Ek‘ We wish to show that for every quantifier

free formula F(;k), 8* F F(Ek) & 8* k F(Ek). It is clearly sufficient

to prove this for the case where F is atomic. By symmetry, it is

— — *
sufficient to show that F(f,) false in 8% = P(z ) false n 8,
Thus assume that F(?k) is false in 8*. By definition of the

relations of 8* we can choose 10 € N such that F(fk(io)) is false in S,

Since T, E, g,, we have that (i € N | £(1) 5 fk(io)) =
'M(O,k)

(1 €N | g (D) g'f'k(io)}. Since p(0, k) = 1, we have

(1 €N | g, (1) g?k(io)]l = 1. So let i, € N be such that

Ek(il) g"f'k(io). By definition of ¥, F('f'k(io)) false in

8 = F(g (1,)) false in 8. So F(3,) is false in s”. | 0

. * _ _
Temma 1.7: Iet n, k € N and Ek,ng(S )kauchthatkan_'_lgk. Then

* *
for each fk-l-l € S” there exists some B1et1 € 8 such that

D £ B Sen1
and

2) g.ll <8 (n,k, Max (|lg, ]I},
Fet1 1<isk =+
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Proof: Let ., & € (s*)¥ be such that T E . B . Let

tt—————

' ‘ * 1 =2 o, k)
m = Ma:kcllsill} md let £, €5, Let b, B2, ..., Ty OV
1=i

be a sequemce of representatives of all the ﬁ_dquiva;gqgo classes on

Sk+1. Our goal is to find 8141 € S* such that 1f 1 £ § < M(n, kil), then

(ten |E, @ = ) = (tew]| FARREY) §'§{+ﬂ; we also want
u(n,k+l)

”ng|| < K (n,k,m). Instead of defining S1er1 simultaneously on all of N,

we will define it scpara:ely on various pigcca,of N.

For each a € s¥ d_eﬂu Ny(a) = (L €N | 'f"k(t} = a) and
T ; v o Cowdl T

Ny(z) = (1 €N | g (1) = ). We claim it is sufficimt to define

n+l

Biet1 an each Nz(;k) such that
) (1eN () | B 1) =51 = cieu(“)l"' () =83
1% 1 et o kRt Sy 2% | By ’ 2 Pk

for all j, 1 < § < M(n,ktl).

II) I1f i€ NZ(Zk') and 1 >m+ p(n + 1,k), them g, (1) = e.
and ' '

IIT) If1€Ny(a) md i< m+u(@+ 1k, the gy 11 = H(n,k,m).

An examination of the definitions of H* and the norm on 3* will show
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that II) and I1I) together imply | |gk+1|| < H*(n,k,m); Since
- - - - k . '
(N () | a € Sk} and [Nz(al)l a €8} are each a cplyl_eqt.ion _of
disjoint sets, it 13 easy to see from I) and the definition of

=  that 1f 1<§s Ma, k+1) ‘then
uin,k+l) -

U {1en<-")'|'*'<1.>s.33 D = (Ut EnGlE, @ 5L,
akGSk_ 148 | fie Y e Ly akESk | 2"k 8k+1 k+1]

i.e., {1eN'lf"-,(1)'s‘3') = {1enl u) }
. _ £1<-4-1 2 Pl sCarietd) E‘1e-|-1 k+1

ST o So now let :k € Sk be fixed for the rest of ghiq proof,."?_;Abbreviate__
| N1(.Zk), by N, mg_.r;z(:k) by Ny. Begin by defining gkﬂg.-;),. if
1- € N2 and 1 >m +, p(m+l, k); this guarantees IT) abqve. It :_tanaihs’ to de-
fine gkﬂm N3 - €n, | 1's m+um 1, D).

The definition of E mpnes that N1 = N We now
v W(nl,k) ‘

1]

| danonstrate that N1 = ;k ek then N, 1s an infinite set,
‘ (bl k) _ o N \

ad [Ny 2 u(m + 1,) since g (1) = ek for m< 1% m+ e+ 1,K); 1f

ak ? ekthennann (sincei>m+u(n+1 k)#gk(i)aekaiinz)
n+l . ‘ : .

Bt RS 3-_

- Define, for 1< ] < M(n,k+1), A =A{i 'E'_lel .Ebl-l(i);xé ti{_’*_i]-' -
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A A2""" R AM(n,"k-i—l’) form a sequence of paimiser d:l.aj‘omt sets whosg

1’
simae =
ml u(mtl, k)

Ny and un + 1,k) = Mok + Lyeun, & # 1),

' @im'.ig.ﬁl,
Lemmna 1.4 tells us there exists a sequence Bl, Bz,‘.‘..,- BM(n.bﬂ‘)

pairwise dis joﬁt subsets of !I3 whose union is N3 -such that

A, = B iflSjSH(nk+1)
3 um ey

Now let i € N H we want to define gk-l-l dn_i-. Let jbenuch that

. Since

i¢€ Bj‘ Since Bj 4 ¢, we also have »Aj ¥8. Soletd, € -Aj’ |
1 €N, and 1 €W, we have £ (1) = a = g (1). By Lemms 2.2,10
0 €N %2 fle) =& T & .

we can define g . .(1) such that ?k-l-ll(io) = Ew;l(i) and

e (1] = Hem, e Max( | lslml gy e e 113y < “n(n,;c,m);

) abo . | =5
Clearly III) above. holds. Since i € Aj k+1(1 ) = k+1 So
Ek—i-l(i) i bi_‘_l Thus, we have defined gkﬂv-e S* BO that for
1< § < M(n,ktl), _ .
= = ’ E —j
Ay = (1 €N | By ) Shyy.

(1 €N, | Bouy(1) =03,.} =B
3 gk""l n kil ju(n,kﬂ-l) i

To complete the proof of Lemma 1.7, we must show I), i.e.,

(1en, | 5. (1) =8 ) = whemlsjsn(n,k+1)
N2 | 't Pkl 4 (a, k1) Ay A
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So fix j, 1 < § < M(n, k +1). 1If

} we are done, so assume

(1 €Ny | gpyy (D) ﬁgiﬂ} = (1 €N, | g, Bl

BH

(1 €N, | Ek+1(i) ;Exgljwl} # (1 €Ny | gk—rl(i) : Elj<+1}' Since

R o o

N3,=, (1 6 N2 l i <m+pu(+1, k)}, there must exist some 1i>m+ pn + 1, k)

- — -— =i »
such that 1 € N2 (hence gk(i)t:1 a.k) and gk+1(i) § bk+1' But since

k+1 k

‘ i>m+ p(n + 1, k) implies ng(i) = e , this means that a +, e

X v P

- k4l i L - =
and blj(_‘_1 e . Hence, both A, and ({1 € N2 | gk+1(i) E bljc-i—l} are

i

infinite, so {1 € N |§ (1) E.I;j } = A,.
’ 2| Ben®™ ey

* * ‘
Theorem 1.8: 8 1s H -bounded. Also, for every n, k € N and

- -— * k = — -
o 8 €GN B B 8 T g &

S

Proof: This follows immediately from Lemmas 2.2.12, 1.6, and 1.7. D




Section 2: Applications

We now present seme .applications of the material in Segtion-1.

Let £1 ‘be the langunge of Chapter 2.
Let Z =< Z, 4+, <,'0 > be the structure of Chapter 2 -and let

' ‘Z* = <‘Z’.‘, +, X, »0* >“be ‘the weak direct power of Z. As before, for -

a €z let ||a]| = |a| end, following Definition 1.1, for f-e,:z* let

|1l = Max ((1 €N | £) 40y U (]£)] |1 €mp).

| e (rk)
. v
Lemma 2.1: There exists a constant e :such that 2z is (1 +m) "22 ~bounded.
2d(n+k)

Proof: By Corollary 2.3.9, Z is H-bounded where H(n,k,m) = (1 + m)-2°

for some constant d. We'now calculate bounds for the function M(n,k) for Z.

SA o)+
Le_tting nii = ‘22 _ for 1 <1 <k, we 'see that

m, 2H(n +k = 1, 1 =1, Max (|m,|}) for 1 £ 1 < k. 'S0 by Lemnsa 2.2.13,
1 1sisi 3

for each ;k € ‘Z_k ‘there 'is ameik 6;-Z‘k .such -that :k %’ Ek and

for 1 <1 =+k. ‘Hence, since m, < m., we certainly have

|bi| < m

2d (mHk)+k

2 k a 2
M(n,k) < (22 _ +1)". So p(n,k) =Nl M(n -1, k+1) <2

i=1

L4 (k) |

for some constant d'.

So for some constant ‘e, H*(n,k,m) = Max{H(n,k,m), m+ p(h + 1, k), O) <
2e(n-’:—k) '
(1 + my-22
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2e-(n-l-k)
S * . 2
By Theorem 1.8, Z is (1 + m)-2 -bounded. ' _ O

Theorem 2.2: Let F be the sentence of £1, lelex2 .o prnG(xn) where G

is quantifier free. Then for some constant e independent of n, F is
gentl gent2 2en+h

* 2 : 2 ; 2" - -
equivalent in Z to (le1 <2 )(Q,x, <2 ) P (ann <2 .)G(xn).
. Proof: Theorem 2.2 follows from Lemma 2.1 exactly as Theorem 2.3.10
follows from Corollary 2,3.9. » , : ,.1:

v o : *
Corollary 2.3: For some constant ¢, TH(< Z, +, <, 0 > ) can be decided

zcn.

within space 22 .

Proof: By Theorem 1.4.2 it is sufflcient to consider the sentence F of

£1-which in prenex normal form is lelexz ...'anhG(xn)_where.G ig
quantifier'free_and of length at most n log n.

By Theorem 2.2, F is'equivalent‘to
en+l : 2en+2 ' 2en+n

2 : .
2 2 2 —_ :
(Q1x1‘< 2 )(szz < 2 ») e Fann < 2‘ _ ,)G(xﬁ) fgr some .
constant. e, o 2en+{. DR | gentl
= SR 22° i L2t -
Now if £ € Z and f < 22 . then £(4) = 0 for~ji?‘22 . and -
penti ' Ze“+i" '
27 - % -
- successive values

'lf(J)‘ <22 for all § €N, so the first 2
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en+1i 52

z +2).2

of f can be represented on a tape with roughly (2
tape squares. SO0 a procedure like the one outlined‘in Corollary 2,3.11
would decide TH(Z ) in space 2 for some constant c. 0

' * ‘ * *
Definition 2,4: Let N be the structure < N, + <, 0 >, {i.e, the

weak direct power of the nonnegative integers (under + and <).

Remark 2.5: The structure <N , + > is isomorphic- to the structure

-+

<N, * > (i.e., the positive integers under multiplication). So an

' *
upper bound on the complexity of TH(N ) is an upper bound on TH( < N+, - >).

*
Corollary 2.6: TH(N )‘ can be decid}ed in space 22 for some constant c.

Proof: Since x 2 0 18 a formula of 81, it is easy to see that:

TH(N*) sz TH(Z*). So Corollary 2.6 follows from Lemma 1.3.2. S

The upper bound - of Corollary ‘2.3 and Corollary 2.6

‘matches the lower bound of Theorem 2.7 reasonably well.

Theorem 2,7: (Fischer and Rabin [F;R?d],)k For some constant ¢' > 0, any

nondeterministic Turing machine which recognizes TH(Z*) (ot TH(N*))
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2c'n

requires time 22 on some sentence of lcng;h n, for infinitely many n.

Our next goal is to present a decision procedure for the first order
theory of finite abelian groups,f this theory was originally shown to be
decidable (see [Szm55], [ELTT65])by a less efficient procedure than ours.

Our approach will be to show that this theory is Sp TH(N ) and conclude

Theorem 2.8: The first order theory of finite abelian groups can be
oCn i 1

decided within. space 22 for some constant c.

There is still a significant gap between the upper bound of Theorem
2.8 and the known lower bound of Theorem 2.9. v
Theorem 2;9- (Fischer and Rabin [FiR74]): For some constant c' > 0,
any nondeterministic Turing machine which recognizes the theory of

v ) . zc"n R R

finite abelian groups requires time 2 on some sentence of length n,
for infinitely many n.

The language of groups, £2, merely contains the formalipredicace‘
vy + V) = V. We are interested in deciding which scnt;atices'-of 32 are.

-true of every finite abelian group. ‘Recall that every finite abelian

T ‘This teopic is also diacussed in Chapter 4 from a siightly different
viewpoint. -
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group - (henceforth abbreviated FAG) is tsomorphic to a finit:e direct
product of finit-e cyclic groups [MB68]. For 1 a ponit:l.ve integer,

‘let Z'i rdenote the cyclic gfoﬁp’ {0, 1, ..oy, 1 = 1} where addition is
»performed mod I.; The basic idza of the mbeéding (due to Michael J.

Fischer {Fis73]) is to thi,nk of every nonuro f € K as rapruanting

an FAG G Thil is made pracise in t:he following definition.

Definition 2,10: Let £ €N, £4 0 . Define .¢$ - |(1 €N | £(1) 4 O]l

Define m.: {1,2,..., f} * N by

inf(j) - the i'" smallest member of (1 € N | £(1) $0) for 1< Lo

Define the FAG Gf =~G1xc._,x cae XG'ef where Gj = zf(mf(j)) for 1 = 3 < Lf.

Clearly every FAG is isomorphic to G, for some f ENX, £f40.

_ * .
Definition 2,11: Let f, g €N , £ ¥ 0 , be such that for all 1 €N

a) f(1) = 0=g(i) =0
and

b) £f(i) >0 = 0 < g(i) < £(1).
Then we say that g represents < g(m (1)), g(me(2)); --., 8(me(de)) > € Gy

. * ‘ .
Clearly for each f ¢ 0 , every member of ,Gf. is vepresented by a unigue g € N*.

We now describe some properties definable: 1&.}'.1 ‘by formulas

: *
interpreted over N .
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1) ONE(x). For £ € N, ONE(f) will hold iff for some
i €N, £(1) = 1 and for every j # 1, £(j) = 0. ONE(x) is equivalent to
* * ' *
x #F0AVX'(0O=Sx'"AxXx'"=<x)*(x'=0Vx'=x)),
/ *
2) ZERO(xl,xz). For fl’fZ €N, ‘ZERO(fl,fz) will hold iff
'ONE(fl) and fl(:l) =0 = fz(i) = 0. ZERO(xl,xz) is equivalent to
UNE(xl) A Vx'((ONE(x') A x' # xl) + ~(x' < xz)).
3) PICK(xl,xz,x3). For fl’fZ’f3 EN ’ PIQK(fl,f‘z,fs)(iv.vél.'ll hold
iff ONE(Fl) and
(fl(i) = 0= fz(i) - O)A(fl(i) =1 fz(i) = fj(i)) .
FICK(xi;xj,x3) is equivalent to
ZERO(xl,xz) A X, < x4 A ~(x1 + Xy s xa), v
* - *
4) MEM(xl,xz)- For f,,f, EN, MEM(£,,£,) will hold iff f, #0
and fz represents a member of Gf . MEM(xl,xz) is equivalent to
1 .
* _
X, F0A X, S %y A VxVx',Vxé ([PICK(x,xi,xl) A‘?ch(x,xi,xz)] -
(x! # 0 x4 x'))
1 2 177
*
5) PLUS(x,,%p%g,%,). For f,£,,65,8 €N, PLUS(£,,f,,£,,f,) will

hold iff £, # 0* and f2,f3,f4 represent members of Gf-and the member
, He 1
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~ represented by £, is the sum in G of the members reprasented by va

1
and f3. ?Lth(xl,xz,x3,xa) is equivalent to

MEM(xl,xz) A MEM(xl,x3) A }m{(xl,xa) A VxinVx?xé'Vxl" [
(PICI.((?(,Xi,XI) A PICK(x,xé,xz) A mcx(xaxi.,xs) A mx(xox‘lnx&).) ud

| P | ' - ¢ ) 1
(xé+x3 xAVx2+x3=-x4+x1)].

Proof of Theorem 2.8: Using formulas defining MEM anci PLUS and the fact that
f € N* repfeunts a FAG 1f and only if f # 0*, wo‘obtnin‘ a procedure thchv
operates in polynomial time and linear space which takes a samtence F of

.ﬂz to a sentence F' of £1, such that F is trua of every

FAG @ F' € TH(N*). So TH(FAG) sz m(N’f). Theorem 2.8 therefore follows

from Corollary 2.6 and Lemma 1.3.2. O
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Chapter 4: Some General Results gbout the Complexity of Direct Products

Section lzﬁlg;rdductiqg.

Let &, 8, and g* be defined as in Chapters 2 and 3, and let M(n,k)
 be defined for 8 as in Definition 1.2.5.

Theorem 1,1: IfTTH(S) is elementary recursive and‘;f‘m(n,k)'is bounded
above by an elementary recursive function, them TH(3 ) is elementary

recursive,

Theoram91.1“can be proven by modifying eithcrnuoqtowﬁkifa or Feferman and
Vaﬁght's_decision_procedure for TH(S)? [Mos52,FV59]; but ﬁe #resent a
different approach in Section ‘2 and prove:thare«anquantipatiwi version
of Theorem 1.1. In Section 3 we present some sinilér“results“for other
notions of direct products (besides weak direct powers). -

The converse to Theorem 1.1 is false.

' Coumterexample to the Comverse to Theorem 1.1:
'Lgt £ be the language used in the couuterexlmplh.toqConjecture 2;4.1."

For every nonempty set A & N+ define SA as in Chapter 2 to be
<N, =, T 0 >, As in Chapter 2, by varying A we can4make SA arbitrarily
hard to decide. Let A be a fixed set such that 1 ¢ A, {.e., there are no

% equivalence cl#sses of size 1,

Claim: SA consists of an infinite collection of infinite equivalence classes.
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Proof of Claim: Since 0 is mot in an equiva!me clau' of size 1, fh_cre
exists some number, say 1, such that 1 4 0. Since A # §, there exists
some finite x cléas, and hence at least two x classes. So there

exists some number, say 2, such that it {s not true that 2 % 0.

. * o
Thinking of every member of N as an infinite sequence of members
of N, we see that the strings 0,0,0,... ; 2,0,0,... 3 2,2,0,0.¢. 5 ...

. : o : ok *x .
form an infinite set of pairwise inequivalent members of N . 5o SA"has .

an infinite number of equivalenée classes,

Let v,0,0,... be any member of N*, where y is a.finite sequence of
members ‘of ‘N. The strings v,1,0,0,... ; v,1,1,0,0,... ; ... form an
infinite set of elements equivalent to v,0,0,... . So each equivalence

*
class of SA is infinite, proving the claim. : 0

From the above t:lazl.m,T it is not hard to see that a semtence of &
* ‘
with n quantifiers will be true in SA iff it is true in a domain of
size n2 consisting of exactly n equivalence classes of. ci_:é n.  Therefore,

' TH(SZ) can be decided in polynomial space, even though 'I'H(SA) m‘be

arbitrarily difficult to decide.

t and Lemma 2.4,2,
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Section 2: Complexity of Weak Direct Powers.

Our goal in this chapter is to prove Theorem 1.1; aptpally, ve
shall prove a quantitative version of Theorem 1.1, whicﬁ.rélates the
complexity of TH(S*) to the complexity of TH(S) and»M(n;k).

To begin with, let 8 = <1S,.Rl,..., Rz,“e > be a structure as before
and let & be the corresponding first order language. 8 and £ are fixed
for the rest of this chapter. Let ﬁ beAdefingd;on1Sk for each n, k € N

as in Chapter 2, Definition 2.2.1. Let Cn be the set of equivalence

,k

classes determined by = on Sk“and let M(n,k) = ICn kl aésbéfore. For
3

n
Z& € Sk, let [;#]n be the equivalence class.of ;&ldetermined by i.
By Lemma 2.2.6, for every ;% c sk there is a formula F(Ek) defining

[;kln. What we are now interested in is how much time 18 needed, as a

function of n and k, to write dowm all such formulas,

Remark: Here is the motivation behind what we will be doing. Using a

decision proceddre for TH(S) we will obtain (efficient) represemtations
of the members of Cn,k' This will allow us to use results of Chépter 3‘
to obtain efficient representations of the ﬁ classes on ks*)k. We will
then decide thé truth of sentences in S* by limiting quantifiers to

range over appropriate sets of these representations.

Definition 2,1: We will define for every n, k €N ‘a collection of

formulas, ﬁﬁ,k, such that.in every member Qf-ﬂﬁ’£=¢xaetly xl’xZ"""xk'

occur freely. Firstly, for every k € N define
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= (F(;k). | F is an atomic fornila}; for every W & 61;' |

define F (;k) to be the formula (/A\NF) A ( /\ ~F); define

Few F€5k-ﬂ

0,k,W
%0,k = (Fopw | 8F Txyxy ..o B Foy u(x)).

Assuming an o+l ‘Wies- been defined such that in every member exactly
L 4

For every W < ﬁn‘ K+l

~ 3“;-:-1”‘

Rgseees xk-l-l occur freeiy, we now define 3“_'_1 Kk

xl,

define F
n~+1 k,W F&?

(xk)tobet!uformla (/\ExHF)A(
: ' ' nm

Define 3 n-ﬂ,k w(xk) |8 F ExyEx, oo H:k - k, . Clwiy

exactly xl'xZ""" xk occur freely in each mbf ’n-l—l,l‘c"

Lemma 2.2: Let n,k € K. Then

(AQSkIsomemSerofS‘

n ,k

defines A} =‘ Cn,k‘

Furthernoi'e, every

member of C 15 dtﬁnadbyauniquemmberef?

n,k n,k*

Proof: Lemma 2.2 follows immediately from the proof of Lemma 2.2.6. [

We next wish to calculate how long it takes as a function of n and k
for a Turing machine to write down the sef yn,k on its tape when
implementing Definition 2.1. In order for a Turing machine to do this
at all it is necessary that TH(S8) be decidable, so for the rest of this

section assume that there is some decision procedure for TH(3) which
- _ :

Every F € .‘in k 1is considered to implicitly contain the annotation
s : ’

X1s Koy eees Xpo
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operates within time Ti(n). In order to simplify the,c_e],culations

to follow, instead of working with the function Ti(n) we will use instead some non-

decreasing function Tl(n)bz Max (Ti(n), 2#}. It will similarly

make things simpler below if we define the function

T,(n) = Max((M(m - &, ¥) | 0=k <n U(d)."  The reader may

note that st many places in the calculatiomns below we make gross over-
estimates, This is because we are ultimately 1ntereeted in the amount
of nesting of exponentials in the complexity of our decision
procedures, and our over-estimates do not affect this, whereas they do
have the advantage of shortening the expressions we obtain.

We first define L(n,k) to be the length of the lmgest formula of

the form Fn,k,w'

To calculate L(0,k), note that (as in the proof of Lemma 2.2,6)

|5 | = )3 (k + 1)ti {(where 6_?,_1 is a t:i-pla*ce relation for 1 < i < £).
i=1

As k increases, the length of the longest member of Gk' will increase since

longer subscripts of formal variables will have to be written; however,

for every k = 0 the length of the longest :eember of Sk w;11'bé < c° (k+1) for
some constamt ¢, independent of k. Everything 6f the form "J'o KW looks
like a concatenation of the members of Gk, with some _addit-ional logieal
symbols, and is of length < twice the length of t;he;e,,oneatenation of the

members of 61:‘ That is,

1‘It: is easy to see that 'T2 is nondecreasing.



L(0,k) s2+c - (k+1}-2 (& + 1) € (& + 2) 2 for some constant c, independent
1=1 N |

_ Qf'k, | »

looks 1ike a concatenation of the

Everyt:hing of the form F n+1 kW

members of F 'n, k+L’ with some additional symboh, for some comstant c3
they are each of lemgth < c,+(k + 1)*the length of the comcatenation

of the members of F n, kL’ That is;,

L(n + 1, k) < cqg°(k + 1)*L(n, k + 1).]%#“ s

ey (k + 1) L(n, k + 1)'-'1‘2(n +k+1). Since

c
L(O,k) S (k+2) 2and Ty(n+k) 2n+k  we can calculate that

: c4(n+1) ‘
L(n, k)S(Max{T (a+k), 2)) - for every n,k € N and for some constant c,.

Now define T(n,k) to be the time which & Turing machine implementing

Definition 2.1 takes to write down ¥

a.k O0 its tape. We first calculate
.

an (upper bt;und on T(n + 1, k) in terms of T(n, k +‘>1).‘
To compute gn-l’-l,k we begin »by\con;puty:lkng $n’k+1- w{#hin time T(n,k+1).

We next write dm'besidg ¥

- .
T, kb1 OF the tape the set [ b,k W | w sn,k-i-_l}'

Then for eachwcﬁ bl we write dm the sentence .

Exlﬂxz eos Exk F n+1,k,§1"' and then ‘use our decision p:dc’cdum for
m(S) to decide for eqch‘ W C yn,k-l-l 1£8 F Exlﬂxz oo Exk nH, k W

We lastly consolidate all the material on t:he tape (i.e. eruing Fn+1 k, W
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cases where it is not true that 8 b Hx fx, ""Exk.Fn+1,k,W) 80

that pext to gn,k+1 we have written $n+1,k'

For each W & 9n 1° wevknow that X 15Xy, -4, X oOCCUT in

ykt

Fotl,k,we SO that |x,8x, ... Hx, Fnﬂ,kz,wl < 3"Fn+1,k,wl < 3-L(n + 1, k).

The decision prqce&ure for TH(8) decides whether or not

8 r ExFx) ... Ox F,) o within tine and space T, (3-L(rH,k));
actually in order to decide if Exlﬂxz cea ka Fn+1,k,W € TH(8) and
;eturn the Turing machine head (which started on the leftmost ¥) to
its original position requires time < 2T1(3-L(n_+ 1; k)).* So whgﬁ

computing 3n+1 x’ the total amount of time used in deciding membership
]

|7 | T

(n#eHl)
2
in TH(S) is < 2T1(3'L(n + 1, k)2 n,kt+l

‘< 2Ti(3'L(n + 1, k))-2 ‘

We lastly calculate how much time i¢ used in computing F ok
’ ’

which is not used in either computing~3h'k+1 or in deciding membership
?
in TH(8). The total amount of space used in this way is the space on

which 3h’ is written plus the space to write Fn+1;k,w for every

k+1

WE%F

n,k+1.p1u8'the space to write ﬂxlﬂxz eee ka En+1,k,w for every.

: | ’ | ' | l':?:n k-l;lI
WEF i this ds < (Lo, k+ D):[F L]+ (Ln + 1, 1))-2 4
T, (ntk+1)

R
B s+ 1, k) < 502 2 ‘L(n + 1, k).

|F

van |
(3L + 1, B2 W <




B
The time our Turing machine uses (asfde from compﬁting 5‘n ot
. y
or membership in TH(8)) is spemt in having the head go back and

forth in this spﬁce dcmrg the necessary amount of copytng, the reader
‘ T~2w‘(n+le+1): . s for
aan verify for himself that this is < (5-2 ‘L(n + 1, k))
some constant cs.f
So the total amount of time used in computing ¥ el I
9 &

rzcnmi) T

Corbletl) Cg
= T(n + I, k) < T(n, k + 1) + 2‘1'1,.,(3"'1.@ + I, ky)-2’ 4 (5¢2

2 U L, k)

Since Tz(n): 2 n ol '1’,1 (w) 2 Z.E for all n € N, we cap calculate that

for some constant Cer

T(n + 1, k) < T(n;, k + 1) + [TTQ(TT@ + &k +2 )) yl .

It can also be seen that the time needed to write down Ek is

p _
polynomial in the space needed, and therefore < (L(0, k)) 7 for gome

constant c.. Obtalniag ¥y . from & is certainly quicker thas obtaining
c : c6(k+1)‘ e

51,k from 30‘,k+1" so we have T(0,k) < (L{(0,k)) 7 + [TI((szﬂ(k +2)) ) 3

Doing some final calculations we can conclude that

* We are using the fact that we can simultaneously use space for two
different purposes. TFor instance, some of the space on which sentences
are written down is also used feor decidinmg truth of sentences in &.
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c(n+k+1) ]c

T(n, k) < [T;((Ty(n + k +2)) )

for someNconqgﬁnty¢ andfa11

n,k € N.

Lemma 2.3: For some constant c, there is a procedure which given n,

writes down the sequence‘?o’n,lﬁl’n_lf ooy $n’o within time

[Tl((Tz(n 4-2))9(n+15]c; the,léngth of this sequéncé is < (Tz(n 4_2))c(n+1).

Proof: When we were calculating above the time to write down ?n or e
H .
were calculating as well the time to write down the sequence

30,n’ ?l,n-l’ ees ¥

. The length of the sequence is
n,0 ’ _ o ) IS

c(n+l)

S_(n + 1)(T2(n))eL(n,O) < (T2(n +2)) for some constant c. y 0

Remark 2.4: Note that every member of gn o Must be a true sentence and
hence define the set whose sole member is the empty set. Therefore,

Lemma 2.2 implies that M(n,0) = |%_ .| = 1.

Definition 2,5: For every n, k € N, let Fn be that member of.S‘n

ok ok

which defines [ek]n.' That is, F isvthe,unique?membér of Fn k such
. . 3

n,k

that 8 + F_ (¢°) (uhere F(e) 1s the formila (of &)

obtained by replacing free occurrences of x, by e, for 1 < 1 < k.)
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Lemma 2.6: For some constant c there is a procedure which given n, writes
down the sequence

go’n’ 31’n-1’ LA ) sn’o' Fo,n’ Fl’n-l, e ey Fn’o 'ithintm
c(n+l)

[Tl((Tz(n-i-Zf(ﬁl))]c; the length of the sequence is < (TZ(P + 2))

Proof: First compute the sequence 30’ 3’1’“1, cosy 3'!"0 as in Lemma 2,3,

n’

Then for each k, 0 < k < n, and for each P € sn-k x> ¥rite out the formula
bad
o . S B

F(gk); each of these formulas will be of length < L(n,0) and there are at
most (Tz(n))-(n + 1) of them, Then use iﬁe dcéuﬁh procgdure for 8 to
decide each of the sentences F@k}, and then consolidate the information

on the tape..

The time used in deciding each sentemce F(gk) (and returning the head)

is < ZTi(L(n,O)), e0 the total time used in deéiding i:ruth of sentences in

§

8 is < (2T1(L(n,0)))-(T2(§))-én +1)..

So the time to write down ﬁo’n, 31.n_1,, cees 3‘n’0 plus the time used

in deciding truth of sentences is <

[T, ((Ty(n +2))° D)

3 (2, (W@ i0)))+ (Ty(@)) ¢ (m + 1) for ¢ as in
Lemma 2.3, As in the.proof of Lesmma 2.3, the remaiming ttue und is

polynomial 'in the space in which 3‘0’“,‘31,'“_1‘, iieey ,ﬁh’rﬁ ‘amd 811 the -
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" sentences F(g}) are written, which is =< 2(T2(n *_2>)c(n+1).

L(n,0) < (Ty(n +2 )™

and so we calculate that for some other

constant c, the seguence yO,n’ gl,n-l’ cees Fn’o, FO,n"Fl,n-l’ cves Fn,O

c(n+1))]c

can be computed within time [Tl((TZ(n +2)) and its length is

< (Ty(n +2 D,

Definition 2,7: For all n, k € N and every F € ?n K define W(F)
1]

to be the set such that F = Fn,k,W(F)'

- k
. 1
Remark 2.8: If n,k € N and F € 3n+1 K and F' € 3n,k+1 and_ak €S

such that 8 F F(;i), then

F' € W(F) « for some a , €5, 8k F'(;i+1)'

~ .k Kk *
We are now ready to consider the structure 8 =<8§ , Rl, cees Rz, e >

as defined in Chapter 3, For each n,k € N let = be defined on SX and on

* %*
(s )k as in Chapter 2 and let.En be defined on (S )k as in definition

3.1.5 and let p(m,k) be defined as in definition 3.1.2.

Definition 2.9: For each n,k € N, define

* - '
% = (V: - .
n,k (V: N - 3n,k| for all but finitely many i € N, V (1) Fn,k}
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For every V € ¥ ., define ||v|| = Min (1 € K| for all § 2 1, V(}) = F_ }
nk n,k
= the norm of V. Por every ?& E.(S*}k, let Vny? be the unigue member
£
} k

*
of ¥

n,k suc? that Vﬁ = (1) defines [fk(i)kx for all 1 € N.

="

* -
Remark 2,10: For every V € ?n k there exists some fk € (S*)k such that
}

Then fk i -
Proof: 1If Vn,?£= angk then for every i € N, [fk(i)]ﬁ = [gk(i)]n,

meaning that fk(i) . gk(i). This implies that fk En 8y By Theorem

3.1.8, E;

=i}

Ei. _ 0

* -
Definition 2,12: lLet n, k € N and V € 3# k and let F(xk) be a formula
?

- *
of q-depth < n. Let fk € (8 )k be such that V = Vn i Then we say
*Tk

k). By Lemma 2.11, this notation is well defined.

*
VIFIiff 8 F F(

*
Remark 2.13: Ifn €N and V € 3n 0 and F is a sentence of q-~depth < n,




-73-

then V F F 1f£ 8" F F.

* *
Definition 2.,14: ZLet n,k € N. Define tbe map EX: S‘Mi e vranﬁ,k-l-fl)

(where EX stands for exfension and P(A) is the set of subsets of A) as

* %
. 1 L ]
follows: If V € F 1,k and V' € ?n’] ' tfhen W{G EX(V) iff |

a) for each 1 € N, V' (i) € W(V(1)).
and |

b) [1v']] < [Ivl] + utm + x + 1, 0.

Lemma 2.15: Let F(x,,,) be a formula of q-depth < n and let
* % L
V € $n+1,k' Then V F Exk+1 F(xk-l-l) ® for some V' € EX(V), V' I F(xk+1)'

Proof of € .
_ — * k ' —
Say that V is vn+1”fk where fk € (S ), and that V' is Vn’gk.g.l |

"f')and

, - * kel
where B4y € (s) | énd say that .Vn,.gk_‘_1 : Ex(vn-i-lg k

,Vn’-g-k-'_1 [ F(xk+1) vhere g-depth (F) < n.

let { € N. We have Vn_*_l’gk(i):defines [fk(iﬂm_l, and _Vn’§k+1(i)

defines [‘gk+1(i) ]n and Vn’gkﬂ(i) € .W(Vn-!-l,-fk(i))' ~ By Remark 2.8 we

can choose ¥k+1(i) € 8 such that. [?k+1(i)]t; = [gk_'_i(i) ];1.

SoV'=V ¢ and V'F F(x,,). By Definition 2,12
ket

1- —
where we assume ka+1F(xk+1) is annotated by x;, x5, ..., X.
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* — * —
8 r F(le),, and therefore 8 3xk+1F(£k,xk+1). So

Yo+, E " T
Proofof”: o ‘ P . ‘
Say that V € 3n+l,k such that V + Exk_._lF(xH_l) where g-depth (F) < n.

For 12 ||V|[, V(1) defines [eX] ,,. Therefore there exists T, € sHE
such that E (1) = e for 1 2 ||v|| and such that V(i) defines '['Ek(i)‘]&l

for 1 €N, So V = vn+1,-f-k'

* - *
Since 8 + C-[xH_IF(fk, xk+1)’ we can find £ € 8 _such that
* —
8 + F(fk’f)" fk En+1 fk so the proof of I.m 3. 1.7 ahon that we
can find £ . € s* such that ('fk,‘f) E, 'EHI and such that ,le;(i) =e

whenever i = || n+1 I H + un + 1, k). BSI Lemma 3.1.8,
k

ELDEE = (B0 2F =8+ P(E ).

||+u(n+1k)S]| fk||+u(n+k+10),and

clearly VF’Ek-kl:"- F(xk_H). For e:a;:h i€N, Vn+1,.?kfi) defines"

(F (D] ,, ad V_ 5 defnm [E ,,(1)]_ implying (by Remark 2.8)

™

that V. = (1) € W(V

n, fk-l-

n"'f € EX (V O

i)). So{V ”» 1 fk

n‘l~1fk
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Lemma 2,16: ILet F be the formula Q1x1Q2x2 oo annG(;g) where G is

*
quantifier free. Let V, € 3n Then

,0°

8%k F e (QV, € EX(V,) (QV, € EX(V;))...(QV, € EX(V,_))(V, F C).

*
Proof: 8 F F & V0 F F. By n applications of Lemma 2.15 we have

cee ® (QV; € EX(Vy)) o.. (QV € EX(V_ )V, F G(x)). 0

Theorem 2.17: Say that T.: N @+ N is such that TH(8) can be decided -

1

by some algorithm within time Tl(n) and such that Tl(n) 2 2" for all n € N.
Say that TZ: N -+ N is such that T2(k + k') 2 M(k,k') and Tz(k) 2 k

for all k,k' € N, (Assume Ty is nondecreasing.)

*
Then there exists an algorithm for deciding TH(8 ) which operates

within time [Tl((Tz(n -I--2))dn )]d for some constant d.

Proof: By Theorem 1,4.2 it is sufficient to consider the sentence F of
the form lelex2 cee annG(in) where G‘is quantifier free and of length

at most n log n, The decision procedure proceeds in three steps.

Step 1: ‘Compute the sequence

F

F n,0* Yo,n’ F1,n-17 ***¥y,0°

O,n’ yl,n"l’ s ey By Lema 2.6
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this can be done within time [TI«TZ(n +2 ))C(n+1))]c

and the length
o+
of the sequemnce is S‘('I.fz(n +2 f(n 1).

Step 2: Compute u(n,0) (say, in umary).

pm,0) = | 1%y yle el gls (@), S0 um,0) can be
computed and written down using at most ~(T2.(n);)“ more tape squares
than those containing the sequence computed in Step 1., .
Step 3: Say that ’:,o = {Vy). We want to decide if
@V € EX(V())(Q,V, € BRK(V;)) ... (QV, € EX(V, _,))(V, * G).
To do this we have to have a way of writing down representations of
members of 3-’:_1’1 foi 01 £n, Our convention is as fgnm: if
V €% ,, then BEP(V) is the seguence V(0), V(1), ..., V(||v|]).

Now 1f Vg, V;, ..., V_ 1is a sequence such that vm € EX(V,)
for 0 < i<n (Qhare ‘Vo € 3‘:’0), then si;ce ||Vo|| = 0 and
HV1+1H < HviH + u(n,0) we see that ||vil| < f°14n,0) for 0 < i < n.
So for each Qi’ 1<1 <n, set aside (L(n,O))’o(lﬁ’.-#(n,O).) gdditiogal
tape squares; this is enough space to write dm the representation of

any member ofvﬂ‘:__i q of norm < {+y(n,0) (since L(n,0) 2 L(n - 1, 1)).
. 9
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Claim: There exists a procedure which given
yn,O’ yn-l,l’ she yO,n’

]
Fn,O’ Fn-l;l’ cees Ee,n’pY’ Y as inpu;, where

* .
Yy = REP(V) for some V € 3n 0 <1i<n, determines, using

-i,1°
no more space than the input takes up, whether or not y' € EX(y).
Proof of Claim: Say that y is the sequence v(0), Y¥(1), ..., Y(J)
and y' is the sequence y'(O), v'(1), e.. Y'(J') for some J, J' € N,
We first calculate 1 (say in unary) such that y(0) has free variables
*
exactly XgsXys sees Xg3 that is.y = REP(V) for some. V elgn-i,i'
Assuming i < n, in order to ensure that y' € EX(y) we need only check that
' ' . ) '
1) y' is a sequence qf members of 3n_1_1’1+1, and J' $.J + pu(n,0).

'.'= ) |> 1 LI .
2) Y'(I)=F ;g gy @0d 1£ 37 >0, then y'(3'-1) FFho1-1,141°

and

3) for every j 2 0 such that j < J and j < J', we have y'(j) € wivy{.

For every j such that J < j < Ji, we have y'(j) € W(y(@3)).

1), 2), and 3) can be checked using no additional space, and so

the Claim is proved.
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Now to decide F, -cycle through each quantifier space aﬁpropriatéiy;
That is, use the space set aside for in tio cyc¥e through the ~nepféoexitgtives.
of menbers‘-of zx(v_o:),’ cbtaining different nlm for R;E'?'(v‘l)., the épsé,e
set aside for Q, to cycle through the rmesentatim ‘of the members 'o;_f
‘each EX(VI), ei:c.’ ‘For every particular value of ‘Vu € 3;“" Jooked at,
we have to decide :from amtvn) Af :vn 1 /G*(;?n); It is sufficient f‘to'bé
able to test 1f ¥ + Gylx ) for each stomic formsla Gy(x ) escurring in
G. But recall thet fer :every { €N, -anfi) is simply Lmjgsctm of
atomic formulas or megatisns of atemic formulas. 8o %ﬁh' + Gb(:?:n) Lff
for every ‘fnfmla ‘FE'H‘u’n of ‘the sequemce m(vh)., ‘ﬂo'fE ‘W(F). So
TH(S*)_ is ‘d»acidab‘l'e.l Pesting if ‘Vn 4+ G uses only ::hg -apace on ‘which G
and REP'(Vn) are written,

The total spwe used in .is‘te?s :2 qd “3., i:mt:l.tuh‘m.:‘gi the output pf

step 1, 18 = (T, + 2™ 4 (1,@)H™  + ne(L(m,00)+ (1 + ops(n,0))

outputofStep 1 Step2  Step 3
(the n log n space on which G is written fi-sv insignificant). The time

used by Steps 2 and 3 is at most exponential in this bound. . Since

c(nt+l)

u(n,0) = (Tz'(an)/)"n- and L(n,0) = (Tzfn +2)) s we have that the
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total time used in all three steps is < [T,((T,(n +2))dn)]d for

some constant d (since the length of a sentence is > 0). O

Corollary 2,18: Let 845 895 € N, 4 2 1 and S, 2 2, such that TH(S)

can be decided within time

cn 2c(n+k)

2
2,' height 8; 2,' height S5
2 ] and such that M(n,k) < 2 for
all n,k € N. 2c'n
. 2.' £ height sy + s,
Then TH($ ) can be decided within time 2 J for

some constant c'.

proof: Immediate from Theorem 2,17, J
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Section 3: Results about other Kinds of Direct Products

In this section we atat’:e’ some result‘swabout étizer kinds of ‘diréct
products, thus giving quantitative vérsimu of some mdditidnal theorems
of Mostmki @,Fefer-ﬁ and Vaught [Mos52, TVSﬂ‘. We will not present
proofs here, but our results follow from extensions of the idess in

Chapter 3 and the preceeding parts of this Chapter.

Definition 3.1: Let I be a nonempty set, and let (8(1)| {1 €1) be a

collection of structures for £, indexed by I; say that
S(i) =< s(i), R{i), Rgiz cees Rgi), e(i) > for all 1 € I. lLet

D=(f: 1 US(‘” | £(1) € S(i) for { € I}). For each j, 1 < j < £,
i€l

t

defineR, <D 3 as follows: if .Et

t
] €pi, then E_€ R, 1ff

3 i3

_ftgi) € a§i) for all 1 € I. Define e € D by e(1) = e') for a1l 1 € I.
Define the gtropng direct product of the system (8(1) | 1 €I) by
smouc(s(i) | 1€1) =<D, R, Ry, ouey, Ry, &>,

Let D' S D be the set (£ € D | for all but finitely many 1 € I, £(1) = e(1)},

t
and let R3 be the relation Rj restricted to (D') ]

for 1 < j < 4. Define the yeak direct product of the system

(S(i) ‘ {1 € 1) by wm(g(i)l i €1) n<D" R', Ré. .‘."Ri” e >,
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If T is finite, then sTRONG(3'Y | 1 € T) = wmés(i) | 1 €1).

If we take I to be N and 8 - 8 for some f;xed structure 8
.and all 1 € N, thep we denote STRONG(S(:") | 1 € N) by 8% and call it
‘the strang dixect power of 8; WEAK(SF(i) | 1 €n 1q 8*, the weak
direct power of 8, which was defined earlier. 1f P is a nonempty
collection of structures, then STRONG(P) is the class
{STRONG(S(i) | i €e1) | 1 ié asef anﬁs(i) € P for i € I} and
WEAR(P) is the class

{WEAK(S(i) | 1 €1) | T 1s a set and 8(1) €EP for 1 € I}.

Mostowski shows that if TH(8) is decidable, then TH(8') is decidable.
Feferman and Vaught show that
TH(STRONG () = m((sRove @ |1 € 1)| 1 15 a ;g_;_:_g set and 3“_)5'55 o 1 € 1),
and i£ Tﬁ(P) is decidable, then TH(STRONG(Pj)‘ apd TH(WEAK(P)’) are decidable.

We can prove stronger versions of these theorems.

Theorem 3.1: Let 8 be a structure and let M(m,k) be deﬁ;ned as before

(Definition 2,2.5). Say that TI: N - N is such that TH(8) can be decided
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by some algorithm within time T,(n) and such that ‘Tl(n) 2 2" for all
n € N. Say that T,:N N is such that T,(k + k') = M(k,k') ‘and

Tz(k) z k for all k, k' € N, (Assume T1 is nondecreasin_g.)

Then there exists an algorith;n fqr_ déciding ms‘*’) which operstes

vithin time [T,((Ty(n +2))%1° for some constant d.

Definition 3,2: IfFP is a collection §f structures, let
INFSTRONG(P) = (STRONG(3) | 1 € 1) | T 1s an infipite set and
8(1) EP for 1 € I},

Let INFWEAK(P) =‘ {WEAK(S(i) | i€ | I is an infinite set and

8 cp for 1t €13,

Theorem 3.3: Let P be a nonempty collection of structures and for each
8 €P, let Mg(n,k) be defined for 8 as before (Definition 2.2.5). Say

A

that Tl: N + N is such that TH() can be decided by some algorithm
within time Tl(n) and such that Tl(n) 2 2" for all n € N. Say that
T2: N @+ N is such that T2(k + k') 2 Ms(k, k') and Tz(k) 2k for all

k, k' € N and all 8 € P. (Assume T, is nondecreasing.)

_ Then there exists algorithms for deciding TH(STRONG(P)),
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TH(INFSTRONG (P)), TH(WEAK(F)), and TH(INFWEAK(P)) which operate within

n
time [TI(Z(TZ(D*Q» )]d for some constant d.

It is important to note that in Theorems 2.17, 3.1 énd 3.3, the
decision procedure that is produced is obta;nedyeffectiVeif ffoﬁ the
one that isvgiven. For instamce, in fheorem $.SV'TH(STRQNC(P)) {a
completely determined by TH(P).

Now let P be the collection of finite cyclic group structures.
Since every finite abelian group is isomorphic.to a finite direct
product of finite cyclic groups, the first order theoxy of finite abelian
groups is the same as TH(STRONG(P)). TH(P) 1s decidable, and we could
have used the technique involved in proving Theorem 3.3 to prove Theorem
3.2.8. Every finitely generated abelian group is isomorphic to a finite
direct product of cyclic groups [MB68]. So if P' is the collection of
cyclic group structures, them Tﬁ(STRONG(P')) is the first order theory
of finitely generated abelian groups. But using results of [Szm55] it
can be shown that TH(P) = TH(P'), and so by Theorem 3.2, 8 we see that TH(STRONG(P )

em
can also be decided within space 22 for some constant c.
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Chapter 5: A Lower Bound on the Theories of Pairing Functions

Section 1: Introduction
A pairing function is defined» to be a one-one map p: N X N -+ N.

The language &£ we shall use to talk about pairing functions i.n this

chapter is the usual language of the fi.rst order predicate calculus with
the formal relation p(vl, vz) = vj. If p: N X N.+ N is a particular

pairing functiom, then we can interpret formu¥as-and senterces of &

in the structure < N, p > in the obvious way; by a Pestrusture we shail
mean a patr € N, p > where p is ‘a'i*pai.'riﬁg finetion. Let P be the
collection of all ‘P-structures. Note that although equality is not a

formal predicate of &, we can défine equality in P by writing

Vx(p(vy,Vy) = X & p(vz,\}z) = x), which we will henceforth abbreviate
as v, =V, (where v, and v, represent. formal variables). 1In [Ten74]

Richard Ten:ney refers to some unpublished results of Hanf and Morley
which show that TH(P) is undecidable. We will preaent our owm proof of
this in Section 2. Tenney also proves that the theories o,ﬂ a large
class of pairing functions, including the most common examples, are in
fact decidable; however, none of the decision procedures for P-structures

that he arrives at are elementary recursive.T

1 In an earlier version of Temney's work [Ten72] he presented some

elementary recursive algorithms which were supposed to be decision
procedures for some theories of pairing functions. We pointed out to
him that this was impossible, and he has since written a corrected
version [Ten74] in which all the algorithms presented are non-elementary
recursive.
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The major result of this chapter will be that this is an intrinsic
difficulty of pairing functions. We shall show that no nonempty
collection of P-structures (and hence no single P-structure) has

an elementary recursive theory.

2
Definition 1l.1: Define f: N+ N by £f(i) = 22' _%height i. That is,

£0) =1 and £1 + 1) = 251 for 1 2 0,

Theorem 1.2: Let C be a nonempty collection of P-structures. Then

NTIME(f(n)) = p!‘TH(C)..

Theorem 1.2 will be proved in Sections 3 and 4. Using the methods
described in Chapter 1 for proving lower bounds, Theorem 1.2 yields the

following corollary.

Corollary 1.3: For some constant c > 0, the following is true: Let C be
a nonempty collection of P-structures and let M be a nondeterministic
Turing machine which recognizes TH(C).  Then for infinitely many n, there

{s a sentence in TH(C) which I takes at least £(cn) steps to accept.

We have remarked that Temney shows that many pairing functions have
decidable theories; in fact, some of the.decigion procedures that he
presenfs run within timg f(c'n) for some conséant ¢'. So the lower bound
of Corollary 1.3 is achievable (except for ﬁhe value of c).

We conclude this section with some simple generalizations of

Corollary 1.3.




| Definition 1.4: ‘Let n be an integer > 2. Then an n-lfng function

is a om-mmp p:: Nn -+ N. Sn, the lngmeforn—ungfmtlmn,

is the language of the first order predicate calculﬁt with the formal

predicate p(vl,.w_r” eves V) = Voq- An mestructure is & pair < N,p >

where p is an n-ling functiom.

Corollary 1.5: Let n > 2 and let C be a monempty colloctidn of n-structures.

- Then ’m(c) has no elementary recursive decision procedure.

Proof: Assume for convenience that n = 3; the other cases are handled
similarly. If p is a 3-ling function mnd a € N, define the pairing
function p, by pa(‘l"z) = p(a,al,az)-. I1£f F is a sentence of £ (the

language of pairing functions) and x is a variable not occurring in F,
define F'(x) to i:e the formla of»&3 gbt;ingd by gepllac.ix‘ag every atémic
formula of.F of the form p(vl,vé) = vy by p(x,vi,vé) = vy, It is easy

to see that for any 3l-structure < K,p > and any & € N,

<N, p>FF'(a) ®»<N, p_>F F.

Now let C' be a nonempty collection ofﬁ-str‘mt(u".“ and define
C=(<N, p > | <N, p>€c’ .and a €N); C is #m@ty collection
of P-structures. Let F be a sentence of &£. Then ck F“ :fyo: every

<N,p> €C' andaEN,<N,pa>!‘- F ® for every < N,p > € C' and
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a €N, <N,p>F F'(a) ® C' F VXF'(x). An elementary recursive

decision procedure for TH(C') would therefore yield an elementary

recursive procedure for TH(C), contradicting Corollary 1.3. U



Our goal in. th:l.s section is to prove that the set of sentences

LT

true of all P-tt:rm:tnrea is not recnrsive, and that ‘Some 1ndividua1
P~structures ‘also ‘have undecidable theories. These proofs are due to
the author, Jesnme Ferrante, and ‘Robert -‘Hossley.
Definition 2.1: Let F_ (xI,xz) be the formula
Ex gx (p(xl:xz) = x3 A p(x3,x4) = X )
I£8 =< N,p > is :a P=structure, define
N e ] ,
REL(S) = ((8;,8,) € N° | 8 # Fpo (a;,8,)) -

Let Ne SN be the set .of even, nonnegative integers.

Lemma 2,2: Let R GrNe X Ne‘ Then for some pairing fumctiom p,

REL(< N,p >) = R; furthermore, we can choose p to be onto as well

as omne-one.

Proof: Let (al’bl)’ (az,bz), «s. be an enumeration .of Nz such that each

‘pair occurs exaé'tsly once and such that bi # 21 for each 1 € N+. (For
instance, we can choose an enumeration (0,0), (0,1), (1,0), (0,2), (1,1), ...
where the numbers grow sufficiently slowly to ensure that b 1 ¥ 21i.) We

will now define the .soqmceyp(zal,,‘bl),p(az,bz), cee o
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Let n € N+ and assume that p(ai,bi)_has been defined for

0 <1 < n; we now define p(an,bn).

Case. 1: (an,bn) E\R. Define p(an,bn) = 2n,

Case 2: bn = 21 + 1 and a = 21 and.(ai,bi) € R. »Define,p(qﬁ,bn) = bn'

\ .

Case 3: Otherwise. Let m be the least member of N such that
a) m is not equal to either 2i or 2i + 1 for any i such that (ai’bi) € R.

b) m € (p(a;,b) | 1<
and

c) m ¥,bn'

Then define p(an,bn) = m,

We first show that p is one-one., Say that p(aj,bj) = p(ék,bk) = ]J,

I1f J = 2i where (ai’bi) € R, then both p(aj,b )} and p(ak,bk) must have

h|
been define via Case 1, so j =k =i, If J = 21 + 1 where (ai’bi) € R,

then both p(a ) and p(ak,bk) must have been defined via Case 2, so

b
73
bj =b, = 2{ + 1 and a, = g = 2i. 1If we do not have either J = 2i

or J = 21 + 1 where (ai’bi) € R, then both pFaj,bj) apéNp(ak,bk) must

have been defined via Case 3; by Case 3b), we must have j = k. So

p 1s one-one.
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We will now show that p is onto. Let m € N, Assume that p
is not defined to take on the value m via either Case 1 or Case 2.

Then we do not have m = 21 or m = 21 + 1 wvhere (ai,bi) € R. Let
S=((a,b)€N2|bGNemdaQNemdb#m}._ p cannot have been

defined on any member of S via Case 1 or Case 2, so p m\-t have

been defined on every member of S via Case 3, Since S is infinite,
((a,b) | p 1s defined on (a,b) via Case 3 and b # m) is infinite. So
p eventually takes on the value m via Case 3, and hence p is onto.

It remains to show that REL(< N,p >) = R. Say that (ai’bi) € R.

By Case 1, p(ai,bi) = 21, and by Case 2 (since Casel doesn't apply to .
(21, 24 + 1)), p(21, 24 + 1) = 21 + 1 and hence (a;,b,) € REL(< N,p >).

Say that (ai’bi) € REL(< N,p >). Then for some c € N and some ] éN+
we have (p(ai,bi),c) = (aj’cj) qd p(a ,pj) = cj. Since we‘can't have

c.,=2j, p cammot have been defined on (aj,cj) via Case l,and looking

3

at Case 3c), we see that p cannot have been defined on (aj,cj) via Case

3. So p was defined on (a cj) via Case 2. This means that (:_1 = aj +1

j’
and a = 2 'whe’rev (3,1, € R; that is, pa,,b,) = 2k and (a,,b) € R. p(ay,b,)

cannot therefore have been defined via Cases 2 or 3, and therefore we have

that 1 = k and p(a;,b,) € R. : ' O

Definition 2,3: Let £1 be the language of the first order predicate
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caleculus with only a 2-place formal predicate REL. Define the class of

2

structures for 31, C = {<D,R> | R € D° and D = domain R} (where domain R

for a 2-place relation R means (a | for some b, (a,b) € R or (b,a) € R}).
Lemma 2.4: (Kalmar [cf. Ch56]). TH(C) is undecicla.ble..r
Theorem 2.5: a) TH(P) is undecidable.

b) There exist particular P-otructnxés,with undecidable

theories.

Proof: If F is a sentence of £1, let F' be the sentence of &£

obtained in the following way:

1) For every quantification Qv in F, change it into'a quantification
over the values of v which satisfy g*lEXZ(FREL(xleZ) A(v= Xy v j = xz)).
and

2) Replace each atomic formula of F of the form gg;(vl,vz) by

Exlﬂxz(FREL(xl,xz) A X) =V A Xy = V2>‘, (We are assuming that neither

%y nor X, occur in F.) It is easy to see that for amy 8 € P and sentence

F of sl-,. < domain(REL(8)), REL(8) > F F @3 F F',

T Actually, the theorem gs stated by Church as TH({< D,R > | R & Dz])
is undecidable, but Lemma 2.4 follows immediately from the proof.
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Proof of (a): We will show that CF F &P F F',

CHF=for all <D, R>€C, <D, R>FF=
for all 8 € P, < domain(REL(S)), REL(S) > F F =
for all1 8 €EP, 3 FF" =P F F',

Conversely, P+ F' = for al} 8 €P, 8 F F' =

for all 8 € P, < domain(REL(8)), REL(&) >F F =
o (by Lemma 2,2)

for all < D,R> € C swch that D S K, <D,R > F F..
By the Skolem-Lowemheim theorem [cf. Men64], this implies that for every
<DR>€EC,<D,R>FF, inplying CFF. SoCFFePFF.

Henée, a dect;ion procedure for m&) wouldlyiv.'eld. ene for TH(C) ,

contradicting Lemma 2.4.

Proof of (b): It is my to see that there @ista some R CNe X Ne
such that N, = domain R and TH(< N_,R >) (in £;) is undecidable. (We

can, for example, choose R to be an equivalence relation so as to make

TH(<' N e’R >) undecidable, as desériﬁed in Section & of Chnptcr 2,) By

Lemma 2.2 we can find 8 = < N,p > such that RfL(S) = R. Then for any

gsentence F of £1 we have < Ne’R >FF®8F F'. So T™(8) is undecidable.

Remark 2,6: Let P' = (< N,p >€P | o 18 5‘“?91’ ' The proof of Theorem

2.5 shows that (a) TH(P') is undecidable and (b) TH(8) is undecidable for

some 8 € P',
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Section 3: Comstruction of Formulas Which Talk Aboyt Large Sets

Our goal in these next two sections is to ‘prove Theorem 1.2, i.e.,

that NTI}IE(f(n)) < pz'm(C) for any nonempty collection C of P-structures.

We shall do this as follows: Let M be a nopdeterministic Turing machine
over the alphabet Z. Then for every w € =t ve will produce a sentence

F, of £, such that for any P-structure S, 3 F Fw # M accepts w within

time f(|w|); furthermore, the time it takes to produce Fw will be poly~-
nomial in |w|, and the space needed will be linear in lwl If M
operates within time f(n) and C is a nonempty collection of P-structures,

then we have C F F, ® TR accepts w within time f(ilw|) & N acéepts w, and
hence NTIME(f(n)) < p“,"I‘H(C). ‘
The way Fw will "say" that I accepts w withinktime f(|w|) is as

follows: We regard the instantaneous configuration of a gompﬁtation of
Mon w at any time as a string of length f(lwl_), and hence the
concatenation of the first(f(|w| + 1) / f(Iw] )) (which is 2 f(|w|))
successive instamntaneous configurations is a string ofvle:ngth f(|w| + 1).

Fw will "say" roughly that there exists such a string of length f(lwl + 1)

which contains an accepting corpfiguratioh. In order to write sﬁch

sentences as'Fw, we will first have to be able to write doﬁm formulas of

£ of length propoi:t:ional to n which allow us to describe the basic
get-theoretic relations on the subsets of an ordered set of size f(n + 1).
The above is an intuitive outline of our approach. The ideas for

this outline first appeared in Meyer's proof that WSIS is not elementary




recursive [Mey73], and also occur in[FiR74], [Fer74]1, [MS72], [SM73], [Rob73],{Sto74].

In the rest of this section we shall shov how to write formulas of length
proportional to n which "talk about" sets of size f£(n + 1); these
theoreﬁs do not appeal to any of these previous papers si;ncc the
development in .thi‘s' bect:;én is necessarily intimately connected with

the nature of P—strﬁctures. " In Section & we shall ﬁruent .a dévalopment
along the lines of Meyer, etc., which shows how to use the fot‘iixlu

derived in Section 3 to prove Theorem 1.2.

let < W,p > be a P-structure. We first define partial functions
£: N 9N and v: N + N as follows: for a € N, 4(a) = b :lf for some
c €N, p(b,c) = a; r(a) = b if for some c € N, p (c,b) = a. Since
p is one-one, r and £ are ;ndced partial functions. Clearly r and 4
depend on p, but it wiil always be clear from the context what pairing
function a particular .'r and L come from. Let ¢ € {r,l.),* be a string;
we define the partial function fo_: 'N 4+ N in the obvious vay, namely
if N is the empty string then fx(—a) = b 1ff a = b, and 1f o is

Lo' (ro') then fa' bfc,' ('-r-fc,)- Henceforth we will use o ambiguously
to designate both the string in {r,l]* and the function f c" -

Lgt Ft(xl’IZ) be the formula 3x3(p(x2,-x3) = xl)’ gd let Fr(xl,xz)
be the formula Hx3(p(x3,x2) = xl). Then for any 8 € P and any a,b € N,
8 F Fy(a,b) iff 4(a) = b and 8 + Fr(a,b) iff r(a) = b, Since we will

be expressing properci.‘es using the partial functions r md L, and since

we will be interested in writing down formulas that define these



properties, it is important to realize that we will be implicitly

using the formulas Fz and Fr'

Definition 3.1: Let < be the reverse lexicographical ordering on

* , *
{r,2) . That is, 0, < o, if either 0, = 0,0, for some O, € (r,4 ,

= ] - 1 | ] )
or if oy 01£0 and 0, czrc.for some 0), 05, O € (r,4) .

oy < c, means O, < o, and o, # Tye

All the properties mentioned in this chapter will be with respect

to P.

Definition 3,2: For each n € N, we define the property ORDn(x,yl,yz)
as follows: let < N,p > € P, let a, bl’ b2 € N. Then

\

<N,p >F ORDn(a,bl,bz) 1ff there exists_ct,c2 € {r,L}* éuch that
(@ oyl = lo,) = £
(II) % < o,

(I11) 0,a = b1 and 0,8 = b2

Remark 3.3: <N,p >+ ORD_(a,b,b) Lff for some o € tr, 87,

lo| = £(n) and 0a = b. Clearly |(b] <N,p >+ oRD_(a,b,0)}] = 2™ = £(m + 1),
| (a,b,b))

Definition 3.4: For n € N we define the property FﬁLLn(x) as follows:

let <N,p >€P, let a €N. Then <N, p >F FULLn(a) iff




b | <N,p >+ oD (a,b,0)}] = £(n + 1),

Lemma 3.5: Let < N,p > be a structure and let n € N. Let

Ty _'02,, caey 02‘ be the increasing (with respect to <) sequence of
those members of {t,t}* of length n. Let bl, bZ’ __..;, 1:02n be a segquence
of (not necessarily distinct) members of N. Then there exists a € N such

that c,a = b, for 1 < 1 s 2",

i i

Proof: (by induction oun n).

Let < N,p > be a Pestructure. Lemma 3.5 is true if n = 0, since

we can choose a -'bl. So assume the Lemma for n; we will prove 1vt for

‘n+ 1.

Let b b!, b

1 Pp» Dby bé, R - b;n be a sequence of members of N

211

1

n+ ' - '
of length 2 . Define the sequence Cys Cgy cess © by ey p(bi’bi)

2

for 1 =1 < 2", Let Cyo Tgs 2025 T be the increasing sequence of
2

those members of (r,l)* of length n. By the induction hypothesis, we -

can choose a € N such that g,a = ¢ for 1 < { s 2. By definition of <,
£6,, *0ys A0, TOn, «es, Lo _, To _ is the increasing sequence of members
1 1 2 2 oh oft
i i t

*
of (L,r) of length n + 1. Since loia = fc, = b, and rg,a = re, = b!

a is the element we were looking for. Hence we are done. a
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" Lemma 3.6: Let <N,p > € P and let a, n € N. Then the following two
statements are equivalent.

(I) <N,p >+ FULLn(a)

(IT) For every a' € N, if [(RD_(a,b,b) = onnn(a',b,b)) for all b € N]

then [(ORD_(a',b,b) = orwn(a,i:,b)) for all b € N]

Proof:

(I = II):_Say Fhat'FULLn(a) holds in-<’N,p > and that a' € N has the

property that for all b € N, <N,p > F.ORDn(a,b,b) = < N,p > F ORDn(a',b,b).
We have f£(n + .1) = (] <N,p >+ ORD_(a,b,0)}] = |(b] <W,p >FORD_(a',b,b)} |
< £(n + 1). Hence <N,p >F ORD_(a'b,b) = <N,p > F ORD_(a,b,b).

(IT = I): Say that II is true. Let A & N be a set of cardinality f(n+l)
such that {b I <£N,p'> F ORDn(a,b,b)} S A. By Lemma 3.5 we can choose

a' € N such that {b | <N,p>F ORDn(a',b,b)} = A, 80

(b | <N,p >F ORD_(a,b,b)}< (b | <N,p >F ORD_(a',b,b)}. So by II,

{b ' <N,p> F ORDn(anbsb)} = {b I <N,p > P_mn(a'sb_nb)} = A. Hence,

|{(b | <N,p >F ORD_(a,b,b)}| = |A] = £(n + 1) and so <N,p > F FULL (a). U

Remark 3.7: if-< N,p > F FULLn(a), then clearly ca is defined fbr

every ¢ of length f(n); furthermore, if |61| = |02| = f(n) and oy #‘02,
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then 0ja § O,a, Hence ((by,b,) | <N,p>¢ ORD_(s,b,,b,)) 1is & linear

ordering on the set (b | <N,p >+ OBD (a,b,b)} of cardinality f(n + 1).

Lemma 3.6 showed how FULL cam be expressed from the property ORD ;
the purpose‘of Lemma 3.8 is to show how ORDn+1 can be expressed from

ORD and FULL . Let <N,p > ¢ P and let a,b,,b, € N Lesma 3.8 says that

<N,p >F onnn+1(a,bl,bz) if and only if there exists some c € N which

"codes" strings 9139, GV{r,L]* of length f(n"+ 1) auchrtﬁnt o8 = bl

and 0’2

a= b2 and al‘< Oype 'To see how this coding is dons, examine Figure 1.
Every node in the tree in Figure 1 represents a (not necesssrily distinct)
member of N. The value at a node is p of the values of the two sons

(if they exist); for instance, p(g,h) = ¢. In order for ¢ to code the

strings oy = Yf(n+1) cee Yo¥q and Oy = 6f(n+1) ere 6261 it is necessary

that di = Yy oees YpYpa and e, = 61 oo 62 18 for 1 <1< f(n + 1); note.

that ¢ may code numerous pairs of strings. In order to say that c codes

strings 9,59, such that cl(a) = b1 and cz(a)‘- bz and oy < Oy, One has

to be able to talk about the nodes labelled by di,cl,dz;ez,..;, ef(n+1)

and their ordering from left to right, and for this reason we insist that

€15 Cos sees cf(n+1) all be distinct so thgt we can talk about their‘

ordering using ORDn.
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Lemma 3,8: Let <N,p > € P, let n € N, let a,b,,b, €N. Then

< N,p > F ORD

n4_1(9., b ) if and only if there exists ¢ € N such that

the following four facts hold.

1) <N,p >k FULL (c).

Let @)be the linear order imposed on the set {b | < ﬂ,p- >k ORDn(c,‘b,b))
by ORD . Let €y,€5y «ees Cprnyyy be the elements ordered by & ustu;_ 1;:

increasing order (with respect to@).

2) M, is defined for 1< 1 < £(n + 1.

Define the seguemce do,dl, coes f(n+1) by d = g and ¢l1 = “'“’i for
0<1i<f(n+ 1) Define the sequence €)18ys ceos 'ﬁ(n+1) by e, = 8-

and e, = rle, for 0< 1S £(n + 1) (rhe, is defined since Aic, is defined).

3) For 0< 1< £(n + 1), either d, =rd _, or d, = 4, ,, and either

= re b and ef(n-l-l) b

(-1 97 & = "ei-l' Also, d

ey f(n+1)

4) Either d

(=% for all 1, 0 < i < £(n + 1), or there exists some i,

0<1%f(n+1) such that 4.1) d, = e, for 0 § <1 and 4.2)

di = “1-1 and e, =re, ;.
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Proof: Fix < N,p >, n,a,bl,bz.

(If): Say that for some c € N, 1) through 4) hold. - If 0 < i < f(n+l), define

Yy = L ifd, = Ldi-l’ a;xd v; =T if d, = rd »an‘d di #‘ .'edi-l' If

i i TUi-1

0 <i < f(ntl), define 61 =r if e, =re, i, and 61 =k if e, = !'ei-l ;nd

o, o ,
e; # re, ;. Define 0,,0) € (r,d) by 0) = Yg(pyy---¥pYy and

[~

9 = 6f(n+1)"‘6261' It is clear from 2) and 3) that cia = blx and

cza'= bzl‘ We. wish to show oy < 0,. If 6'1 # Oy» ’tilen‘\for some 1 we have

= ' . PR . = <<i¢ £
Yy Sjwhen0<j<i,andyi,#6i,Sodj‘ejforo j . 1

= = = 1 = . . = =d..
d then v,d, ;= d; = e, =bse, ) =8;d;, w04y 5 =5y =

1 %
By definitiom of vy, v, = 4 and so 01< Ope If dy # ei"' then,by 4.2)

d, =44

: : = <
1 {-1° So Yy L»and 01 ?2'

.- : i %
(Only if): Say that < N,p > F ORDn+1(a,b1,b2). Let 01,02 € (r,4) be

<a, and |&1]:= oyl = £n + 1) and 0,8 = b, and c,a = b,.

such that ¢ 1

1

Say that o is Yf(n+1)”' Yo¥q and that Oy is af(n+1)y‘." 6261 where
vy € (r,4) and 61 € {r,4) for 0<1i < f(n + 1). Define the sequence
dgsdys eves dpppgy DY dg = a and d, = v, d, 4 for 0< i = f(n + 1)-

Defj.ne the sequenge _eo,el,i svey ef(n-f-l) by ey = a and e = éiei-l

for 0 <{i{ s f(n + 1). Clearly 4 ='b, and ‘e b,.

£(n+l) 1 f(n+l) = 2
Define the sequence 813895 -o» gf(n+1) by gy = p(di,ei) for

1<1i< f(n+1). Define hl’hz’ cees hf(n+1) € N as follows: let h1 be
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~any element of N; for 1 s { < fim + 1) let &, ba such that

"
9(81+1’h1+1) ¥ P(sj,hj) for any j, 1 5§ < {. ':(‘hi-i-l can be chdun in
fhis way since p is @e-m.) Define the w éf Qiotinct uubers
of N--jcl,cz, coes ‘cf(n;l-l)"- by "ci - p(ﬁi,h;) f.otls 17 .S f(n + 1).‘

Clearly d, = flc amde = réc, for 1 S 1 % £(p + 1). By Lesma 3.5,

i i

we can find ¢ € N such that if WysOys weey uﬁﬂl‘) are those wembers of
(r,4)" of length £(n) listed in imcressing order, then c, = ac for
1<1i<£f(n+1). Clearly c satisfies properties 1), 2), and 3).

Ifo, =¢

1 =Cp thend, = e for 0 <1< fln+1). Oth.crwiu“al ‘<»62
implies that there exists i, 0 <i < f(n + b, %a’;uch that Y} -‘53
1f0<j<i{, qdyi'fzqdai=r. Thisw? thntdj'-ej if
0<§<1i and cli = “1-1 and e = réi-l’ s0 4) lylds aléo. _ ) 0

Lemma 3.9: There exists a‘sequ.m'me of formulas of £
ORD,(X,Y,,5,), ORD,(X,¥,,¥Y,)s .. such that
(I) ORD (x,yl,yz) defines the property om)n for n € N.
(I1) There is a progedure which given n € )l+ computes gp_n within

time polynomial in n and space linear in n,
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Proof: Define ORDO(x,yl,yz) to be

[y; =y, A 32lp(z,yy) = x V P(p,2) = x)]va(yl,yzl)‘ = X

If we have ORD defining ORDn, then by using Lemma 3.6 we can obtain
a formula FULL (x) which is of length proportional to the length of
ORD and which defines the property FULLn. Lemma 3.8 therefore gives

a way to define ORD
a— 1

+1 using ORD . ('ITT}%S 18 qompletgly straAightforward

if one notes the following fact: in Lemma 3.8 we occasionally quantify
over i, 1 < i < f(n + 1), but this can be expressed 1ndi;:gct1y as

quantification over the ordered set {b l ORDn(c,b,b)})T.

1f one used Lemma 3.8 in the simplest way vto write down ORD +1

using subformulas ORD , then since ORD would océur more than once in
—n -—=n 4

ORD the length of ORD would be at least prdport:ional to nz. We

—n+1’ |
can, however, use a result due to Fischer and Meyer [cf. ‘FiR74] to

obtain (using Lemma 3.8) a formula _Ql;gn of length proportional to n
which &efines- ()RDn for all n € N+. This result is stated formally and

1s proven in Appendix 1. Thus by Theorem A.2 of Appendix 1, vie:_can conclude

Lemma 3.9. ~

t It is at first difficult to see how to use Lenma 3. 8 to write ORD ORD .1

using ORD ' as a subformula, since_g;;ha free variaebles of ORD are fixed

and we might wish to use formulas similar to ORD but with different
free variables at different places in ORD 1 oRe way is by under-

standing the phrase "using ORD as a subformula" to mean using
formulas like ORD ‘but with the variable nemes changed. Another way

is by the follawing trick: Say we have a formula F(x,y) and we wish
to have a formula G(y,z) such that F and G define the same property.
We can let G be Vx sz((x =y A X, = z) * VxVy((x = X Ay= _y2) <+ F(x,y))).




Corollary 3.10: There exists a sequence of formulas of &,
FULL) (x), FULL, (x), ... such chat |
(1) mn (x) defines the property FULL_ foi: all n € N,
(I1) There is a pruedurc wvhich given n G l! couputu ﬂn vlthin

time polynomial :ln n and within space lincar 1n n.
Proof: Use Lemma 3.6 to express FULL using ORD for n € N,

Lemma 3.11: There exists a sequence of formulas of £,

DISTO(x,yl,yz), DISTl(x,yl,yz), .«s such that

I) If 8 € P and n,_g,bl,bz €N, :heq.s F DIST (a,bl,bz) L)

(1) 8 + FULLn(a)

(2) 8+ ORDn(a,bl,bz)
(3) .. The distancs from bl to bz in the ordering determined bymh

is exactily f(m).
I1) There is a procedure which given ne€xr" computes DIST within time
polynomial in n and space linear in n.

Proof: ~Let DIST, be p(yl,yz) =xA ¥, ,lyz ‘
Let&EP,u;aI, 85 bzén. Wemmiayt:huSI-mLL(a)

and [{c €N | c #by, and 8 + (R’Dn(s.br.c) and 3 F mnn(a,a:,a:z)l - £(n).
(This jmplies that 3 F mbn(g,bl,bz).) But by Lesmma 3;5, this will be true iff
8+ FULL (a) and there {s some c' € N such that SF FULL . (c') and such that

for all ¢ € N,
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S FORD 1(c c,c)) @ (¢ # by and 8 + ORD (a, l,c) andS k ORD (a,cb )).

We can therefore write down a formula DIST‘(x,yl,yz) for n € N (by using FULL ,

ORD , FULL , and ORD ) such that (I) and (II) are satisfied. [

Definition 3 12: For all n € N, let SET (x,yl,yz) be the property

such that for & E P and n a,bl,b2 € N 8 F SET (a, 1, 2)

$ + FULL (a) and 8 F ORD (a,by,b,) and 8 F ORD. (b, ,b,,b,).

Lemmg 3.13: Let 8 € P and let n,a € N such that S F FULLn(a).

Let A < (b | 8 b ORD_(a,b,b)). Then for some b, € N,

A= (b, | 8 F SET (a,b;,b,)}.

Proof: Say that 8 ¢ FULL (a) and A S (b | 8 om)n(a,b,b)}. Let A' SN
‘be such that 0 < |A'} < £(m + 1) and A = A" N (b | 8 F ORD (a,b,b)}.
By Lenma 3.5 we can find some b, € N such that -

A' = (b, | 8 ORD_(b,,b,,b,)}s Hence, A = (b, | 8 ¢ SET _(a,b;,b,)). O

nggg 3,14: There exists a sequence of fotmulas of £,8 SET (x,yl,yz),
SETl(x,yl,yz), ... such that
(1) SET (x,yl,yz) defines the prOperty SET for n E N.

(II) There is a procedure which given n € N computes SET within
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time polynomial in n and spece linear in n.
Proof: One can eyily write down SET using FULL and ORD . O

Note that by Lemma 3.5, m(x) is satisfiable in my P~structure,
Hence, the formulas FULL and ORD allow us to write form].u vhich no
matter which P-structurs they are 1nterprcted in, talk about an o_rdered
set of size f(n + 1), Using g;_:_sgn we can talk sbout two mﬂ“tl of
this ordered set being f(n) apart. Using §_E;_'§n we can talk about all
subsets of this ordered sat and refer to the basic. .ott-eﬁeoritic,( relations.
In what follows we will think of a oubcet of thio ordcrod set as
corresponding to the binary string vh:lch is the chuacteriitic sequence
of the subset. It will be mful to be able to cxpru' the property that

such a binary string begins in a particular way.

Definition 3.15: For every y € (0,1}*»1“ BTARTy(x;y,n) be the propetty
such that if n'= |y|, 8 € P, a,b,c €N, then 8 ¢ START (8,b,¢) 1ff

1) 8 ¢ FULLn(a) '

Let ©be the ordering determined on {b' | 8 k onnn(a;b* ,b*)} by oRD_,
Let o be the characteristic sequence (with respect to @ ) of the set
(b' | 8¢+ SET_(a,b,b')} = (b' | 8¢ ORD_(a,b',b") and St énnt'l(b,b',b')},

i.e., a is the binary string of length f(n + 1) determined by b, a and 8.
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f(n})-n_s for some 8 € {0,1'}* of length f(n + 1) - f(n).

2) a=vy0
3) ¢ is the n + 1 smallest member (with respect to @ ) of the set

(' | st ORD_(a,b',b')}.

* , o
Lemma 3.16: Let y € {0,1} , |y| = n, and let 1 € (0,1}). Let 8 €P and
let a,b,c € N. Then 8 F START, , (a,b,c) ® the following eight properties
hold for some a',b',c' € N.
\.
1) 8 ¥ FuLL_ ., (a).

2) 8 ¥ FULL (a')

Let @ be the ordering determined on {c" | Sy 0RDn+1(a,c",c"] by
0RDn+1. Say that C13C€gs sevs cf(n+1) are the first f(n + 1) elements
in increasing order (with respect to @). Let @ be the ordering

determined on {c" IS"ORDn(a',c",c")] by ORDn.

3) {c" | Sl-ORDn(a'-,c",c")}= [cl,cz, e cf(n+1)]" Furthermore,

e &) ¢j+1 for 1 < § < £(n + 1).

4) st SETn+1(a,b,c ) @ 8% SETn(a',b',cj) for 1 < j < f(n + 1).
5) S\-STARTy(a',b',c').

‘6) St SETn+1(a,b,c') ®i=1.

7) ¢ is the immediate successor/of ¢' in the qrdéripg' @

1" " "‘
8) 8 does not satisfy SE’:n+1(a,b,c ) for any ¢", o(dc @cf(n+1)’
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Proof: (3) says that the ordered set of size f(n + 1) determined by

‘ORDn and a' (and 8) is the same as the first f(n + 1) eleménts of the

ordered set determined by ORD e+ and a. 4) therefore says that the

binary sequence of size f(n + 1) determined by SE'I‘n and a' and b’ is

the same as the first f(n + 1) elements of the binary sequence of size

£(n + 2) determined by SET ., and a and b; 5) and 6) say that this

n+l
sequence of length f£(n + 1) begins with yi and 8) says that the rest of
it is 00.,.. . 7) says that c is the n + 2 smallest mberof the

ordered set determined by ORD b1 and a. a

VRO

Lemma 3.17: For every y € (0,1} there exists a formula of &

START (x,y,z) such that )
(1) START (x,y,z) defines the property STARTY for y € [0 1’} .

11) There is ocedure which given v € {0,1 utes START
(11) There a pr g Y € { } cm? SIART,

within time polynomial, in 17! and'spacé linear in |

Proof: Let START, (x,y,2z) be the formula ’ﬂz'(p(z,z') = xA z #2'), .
Lemma 3.16 shows that S'I‘ARTYi can be expressed in a fixed way (depending on i

FULL,O ORD_,

but independent of y ) using STARTy, together with FULL n+i’ 1’

SET

1’ SE’I‘n, and DIS’I‘n_‘_1 where n = |yl A11 of theu latter propertiel can be

can be expreﬁned in a

expressed in a fixed way from ORDn, and so S"rAR'I‘Y i

fixed way from START and ORD . 1In order to conclude Lemma 3.17,



-109-

we have to use a more powerful theorem from Appendix 1 than that used in

the proof of Lemma 3.9. Since for all n € N, ORDn_‘_1

a fixed way from ORD , we can appeal to a special case of Theorem A.9

can be expressed in

in Appendix 1 (in which Ey = F}) to conclude Lemma 3.17. ‘ O

Remark 3,18: 'Foi"y € {0,1}* let START\"(x,y) be the property such that
Sk START; (a‘,‘b) & for some ‘c, SP STARTy(a,b,c). We will really only.usve
the fact that ﬁe can write short formulas defining ﬁhe properties START;;
thg reason we have dealt with the more complicated S’I‘;ARTY was in order

to be able to express these properties inductively.




In this section we will use the ,florml*gis FUI.L » ORD ,
DIST , SET , START to talk about Turing machines which recognise

languages € NTIME(£(n)), and hence prove Theorem 1.2,

Theorem 1.2: NTIME(f(n)) < P‘TH,(C) for any nonempty collection C of
P-strué tures, | ( | |

" Proof: Let M be s nondetemministic I~-Turing machine which operates

within NTIME(f(n)). In arder to prove Thecrem 1.2 we specify in

detail (partly reviewing from Chapter 1) the nature of our Turing

machine. The tape alphabet is T, ¥ € T, and R has one head and one

tape where the tape 18 one-way infinite to the right; initially the head
is on the leftmost square of the tape and Il never tries to read off the
tape. If w € Z+, then we input w to 9 by having the initial tape contents
be w’“... . Let the state set of M be {1,2, ..., k) where 1 is the initial
state and k is the accepting state. T accepts w 1if there is some
computation starting on w¥¥... such that IR eventually enters state k.

Let us assume that vafter entering state k, M thereafter stays in state k

without moving the head or changing the tape contents. Since T operates with-

in NTIME(f(n)), if T accepts w then there is some computation of T on
w which enters state k within f(IwI) steps and hence without leaving the

first f(|w|) tape sfguares,
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Let w € Z;+, lwl = n, Let g(n)'= f(n + 1)/f(n);'g(n) 2 f(n), so
if T accepts w there is some computation-which accepts w within g(n)
steps. Consider now a particular‘computation of M on w which goes for
g(n) steps without leaving the first f(n) squares. 'lLet Wi € '2* of
length f(n) be the contents of the first f(n) éape squaréé at time 1
(vhere TR begins at time 6). Let U, € {0, 1, 2, :k}* of length £(n)
be such that Ui = o9 j Of(n)"q'1 where at time i, is in state j and the
head is pointing at square q (where the leftmost tape square is squaré 0).

Let W = Wo'Wi- o'W

:d }
g(n_)"lan U U

G'U; cee 'Ug(n)-—l 80 that
*
lw| = |u] = £(n + 1). Define the marking strimg M € (0,1} of length

Cfm+1) by M= (1 018 o 11 call (W,U,M) the computation

triple of the computation (on w). (W,U,M) is an accegtigg" cdmputation
triple if k appears in U. Clearly M ;écep;s \ if ax;d only if there is an
accepting computation triple for w. |
Let (W,U,M) be a computation triple for w € E+, |w| = n, For any
string y, let y(i) be the i + 1 member of y so that
= W(0)-W(1l)e ... W(fE(n + 1) = 1), etc. For every j, 0 5 j <g(n), and

every 1, 0 < i < f(n), the values of W(j-£f(n) + 1) and U(j-£f(n) + i) tell
us the contents of square i and whether or not the head is pointing at
square i (and if so, then the state of ), at instant j. The rules

(of the finite state control) of M together with the fact that we only
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consider computations which do not leave the first f(n) tape squares

put constraints on the values of W,U, amd M around place

jef(n) + 1 + f"(n) (Lf j+f(n) + 1 + f(n) < f(n + 1) ),dépending on the
values of W and U at j-f(n) + 1.

For instance, say that 0 < k < k + f(n) < f£(n + 1). Say that
W(k) = 0 and U(k) = 5 and say that if I is in Qta:te 5 with the head
pointing to a square comtaining O, then the machine »is allowed to
print 1 amd move the head te the right and t:raimfer to state 7; 1t 1s
permiseible therefore that: W(k + f(vn)).‘_- Lmd Uk -l'-,f(g)) = ) and
Uk + f(n) + 1) = 1 and M(k + £(n) + 1) # 1. If U(k) = 0, then we
must have W(k + f(n)) = W(k). The point is th;t vt:hore are oniy certain
values of (W(k), U(k), WCk + fem)), B(k+ f€n) - 1), U(k + £(n)), |

Uk + £(n) + 1),M(k + £(m) + 1))

which are permissible, i.e., consistent with n.v These ideas are developed

rigotouaiy in [Ste74, Section 2,2].

Lemma 4.1: LetW€EZ', UE (0, 1, 2, .., B, ME (0, 1} be strings
of length f(n + 1). Then (W,U,M) is an accepting computation for:
we (0,137, |w| =n, if and only if

1) M € 1-(0,1}* and every comntiguous f(ﬁ) sjnhol of M contains exactly
one 1. -

2)wW e w#‘f(n)hnc *,

£)-19,1, ..., 1.

3) u € 1.0
4) For 0 < 1 < f(n + 1), 1f M(1) = 1, then exactly one of the numbers

U(i), (i + 1), oeey, U(E + f(n) =~ 1) 18 nonzero,
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5) For all i such that 1 < i <1i + f(n) < f(n + 1), the value of the 7-tuple
W), U(), W + £(n)), U + £(n) - 1), U(L + £(n)), ﬁ(i + f(n) + 1),
M(i + £(n) + 1)) is consistent with M.
and | ‘

6) U contains an occurrence of k.

Proof: 1) through 6) say roughly that W and U begin with the right
configuration, that the tramsition between any two successive configurations
of length f(n) (marked off by M) are permitted by the rules of M, and

that the accepting state appears in U. These are neceésary and sufficient

conditions for (W,U,M) to be an accepting computation for w. ]

Completion of the proof of Theorem 1.2: Let w € 2+, |w| = n, We have
shown thaﬁ with formulas of length proportional to n we can talk about
an orderéd set of size f(n + 1). Every subset of this set can be

thought of.as.a string of length f(n + 1) over {0, 1}. Evéry sequence
Yo Yos sees Yy, of v strings over {0, 1} of length f(n + 1) represents

a string of length f(n + 1) over the alphabet [0,1}v (the set of v-tuples

containing just 1 and 0), namely the string y where

YD) = (v;(1), Yp(1), eeey Y (1) for 05 1< £+ D)5 if

lZU (0, 1, 2, ..., Kk} | = 2Y, we can think of Yi» Ypr eees Y, 88
representing a string of lemgth f(n + 1) over the alphabet

ZU (0, 1, ..., k} by coding ZU (0, 1, ..., k) into (0, 1}'. Say that ¥ is
coded as(0,0...0). Then the string wﬁf(n)'n

will be represented by
v times '
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v, 0 7,y 0f ™y 0f ™ yhere v, € (0,1)" ‘and 18 of

length n for 1 < 1 < v,

Therefore using FULL , ORD , DIST , SEL , S m m, ,m\’v

we can write a sentemce Fwof length on which suys that there uxists
(W,U,M) satisfying conditioms 1) through 6) in Lesma 4.1. That is, for

any 8 € P, T, will be true ia 8 if and only if IR aceepts w, Hence, if C
is a nomempty collection ¢f Pestructures, r, € TH{C) =M pecepts w.

So}L'_(‘.m) < Mm«(c).- | 0
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Appendix 1: Writing

Let £ be the language of the first order predicate calculus with a

finite number of relational nymbols_gi, @Q’ cees R, Let P be a

class of structures for £, Henceforth all properties and all
equivalences between formulas of £ will be with respect to P. The
purpose of this appendix is to prove that one can construct short
formulas defining certain inductively described properfiea.
Theorem A.2 below will essentially say the following: given a

sequence of properties GO, Gl’ .« such that G0 is defined by a formula

of £ and such that G can be expressed in a fixed way (independent of i)

i+1

from G, using the language £, then for every i > 0 there is a formula of

[

S of length proportional to i which defines the property G,.

We assume for convenience that equality is definable in P, and
hence for convenience assume that vy = Vg is an atomic formula of £.
We also assume that every structure in  has a domain of cardinality
2 2,

Now let k € N be fixed and let £' be the language of the first order
predicate calculus which is the same as & except that a k-place formal

predicate R, has been added.f

T Two formulas of &' are equivalent if they are equivalent in any structure
obtained by adding to a structure from P an interpretation for R.
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Defin;tion A.l: Let E(Ek) be a formula of &£' and let G(;k) be a

property. We define an infinite sequence of properties,

Go(xk), Gl(xk)’ .s. 88 follows: Let Go(xk) pe G(xkéf‘ Eor svery i1€N
and for every structure 8 € P with domain § and for every‘zg € Sk, we
say that 8 + G -(;k) iff 8 F g(;#) when the formal predicate R is

i+l

interpreted in 8 as G, (restricted to 8),

Theorem A.2: Let E(;£) be a formula of &' and let g(;k) be a formula of
£ defining the property G(xk). Let GO(xk)? Gl(xk), 35 be the
properties defined in Definition A.1. Then there exists a sequence
go(xk), gi(xk), ees oOf .formulas qf & sqch that |

(1) 91 defines the property Gi for each 1 € N,

(II) There is a procedure which given i € N+ computes gi within

time a fixed polynomial in i and space linear in i.

“Theorem A.2 is due to Fischer and Meyer [cf. FiR74], working from
earlier ideas of Stockmeyerv[SM73]. A kéy part of the proof will be

Ioma A. 3‘.
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Lemma A.3: Let F be a formula of £'. Then there exists a formula F'
of &' equivalent to E such that F' has exactly one occurrence of the
predicate letter @_, this occurs in an atomic formula in which all the

k formal variables are distinct.

Proof: Let F be a formula of £'. Since any formula of &' can trivially
be extended to an equivalent one with at least one occurrence of R,
assume thatf_ containe at least one occurrence of R, Assume F is in
prenex normal form so that ¥ looks like Q,v,Q,v, ... Q,v A where A is

a quantifier free formula containing m 2 1 occurrénceé of the symbol R
and where VisVgs cessVy represent formal variables. Let us say that the
m atomic formulas of A in which R occurs, from left to right are
&(VII’VIZ’ ceus vlk)’ R (v21,v22, ooy v2k)’ cees @_(vml,vmz, ..v., vmk)

where the symbols vy for 1 £ i =mand 1 £ j < k represent formal
’

3

variables.

Let y,, yi, Yo» yé, ...,ym,y!;1 be distinct formal variables not
appearing in A, Let A' be the formula obtained from A by replacing

@-("11"’12” cees vik) by Yy = yi for 1 < 1.<m, Since in every structure
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of P there are interpretations of y and y' which cause t;he formula

y = y' to be true, and interpretatioﬁs which cause y = y' to be false,
we see that A is equivalent to

By, 8y 8y, 8y, «.. By Hy (A'A 1£:;m[(yi'= vy e &(vil.v;z, ;-., v D

Now let y, y', Z12Zps sees zk be distinct formal variables not

occurring in /\ [(y, = yl) & R(v,;,,Vv cees Viu)le
reien 1T 11:Vize o0 Vi

ls/\is [(Yi = Yi) «» &(vﬂ,viz,’, esnsy vik)] is equivalggt to-
m . ,

=v,. Az

VyVy'Vz 11

...Vzk[(\/ (y = Yy Ay = yi Az

1<i<m 1

1
@y = Y’)oig’_(zlszzo ‘;""»lk))]‘
So we have shown that F is equivalent to a formula with exactly one

occurrence of R, which occurs in the atomic formula R (;k). » O

Definition A.4: Let F(x,) be a formula of £ and let z. ‘;z " .., z, be
—_——— 05 1°72 k

distinct va.riablés ali of which are different from"xl,xz, cees Xy o

(2 %)

Then let F (‘z'k) be the formula obtained from F in the following way:
If v i8 an océurrence (not necessarily free) of a formal variable in F,

then if v = for some i, 1 < i < k, replace v by x5 if'vv =x, for some 1,

2y
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1<1i <k, replace v by z.

Definition A.5: If F is a formula of £, define the gize of F, s(P),to
be the length of F when each variable subscript is counted to be of

length 1 and all other symbols are counted normally.

The following lemma follows immediately from the definitioms,

- &%) _
Lemma A.6: Let z(xk) and F (z,) be as in Definition A.4.
(5 1% _ (e lx)
Then s(F) = s(F R ), and F(x,) and F " (z"k) define the same

propér ty .

Proof of Theorem A,2: Let g&k) be a formula of &' and let 6(x,) be a
formula of £ defining the property G'(:t_k). By Lemima A.3 assume 'th;t F
contains exactly ome ‘occurrence of F_?-_ ; the proof of Letima A.3 assures us
in fact that we can insist that the agomic formula in which R occurs is
&(;k) wherg Zis Bys e I, aTE distinct variables not occurring in -
[xl,xz, ooy x.k}.

Now defit;e a squence -G-O(;k)’ -G-l(;k)’ cee qf .formltln-s of & as follows.

lLet G, be G. For all i € N, let

Sy be the formula obtained by

141
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| (z, 1% —
substituting G’i k% for @_(zk) in F. It is easy to see by induction

(using Lemma A.6) that gi(;k) defines Gi(;k) for éagh i €N.

. (z, /%)
For o = IE_I we have s(gH_l) < < + s(g:t N ) = L + s(gi)

for 1 € N, so 8(9-1) < 8(G) + 1i°c,. Every variable occurring in each Qi

0‘
is either from the set {xl,xz, sy X} Or occurs in F or occurs in G.
If ¢y is the maximum length of any such variable -uﬁscript, then

R T
Igil < c1°s(§_i) < ¢y (s(G) + i'co) < ¢c+i for 1 €N and some constant ¢

independent of i. It can also be checked that one can compute G,

within time polynomial in i and space linear im 1. ' O
Remark A.7: Theorem A.2 can be improved in a number of ways. Firstly,

we can obtain our result even without the lreatri;tions that equality be
definable in  and that every structure in P/vhja\’re a d@in of cardinality
2 2, In addition, using a trick suggested bybsdova& [S0173] we can obtain
the same result even if our language of the predicate calculus doesn't

contain &,

Theorem A.2 can be generalized in a number of ways. We will only
present the particular gemeralization which we need in the text.

To begin with, let £" be the language of the first order predigate
calculus which 1s the same as £ except that we have ad&ed two new formél

k-place predicates: R and R' for some fixed k € N.
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Definition A.8:  Let gc(xk), gl(xk), zo(yk), El(yk) be formulas of £V,
o — . _ : * ‘
Let G(xk) and G'(yk) be properties. For every y € {0,1} we let
GY(;k) and Gw'/(;k) be properties as follows: If A is the empty string,

* )
let G, be G and let Gi be G'. For every § € {0,1) and every

8 € P with domain S and every ;k‘é Sk we say

8+ Gy, (a) (where i € (O,1)) 4£f 8  E,(a,) when R is interpreted as
Ga'(restrictedato,sy_andi&’ is interpreted as Gg;‘we say‘s'k-Géiézk) iff

8 r §£(2£) when # is interpreted as G&‘and.gf is intqrptateduaﬁfGé.

. Y oy vy

Theorem A.9: Let Ej,F,,Fg,F; be formulas of £ and let G(x), €' (¥y)
be formulas of £ defining, resﬁectively, the properties G(gg) and

-— * g — —
Gv(yk). For each vy € (0,1} , let Gy(xk) and G;(yk) be as in Definition
A.8. Assume that for any 8 € P, the relations obtained by restricting

*

GY and G; to 8 are both nonempty. Then for each vy € {0,1} there exist
formulas gy (;'k) N g;{ (;k) such that 4
(I) G defines G. and G' defines G'.

Y Y Y Y

4
(I1) There is a procedure which given y € (0,1} compugaa,gy>and gfy

within time a fixed polynomial in |y| and space linear in |y|.
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Proof: The basic idea of this proof is what we call f'_s:l.;ggxlzg:aneous
definition"; for every y € {0,1}* we will write down a formula which

defines both Gyland G;, as described below.

For each y, let Hy(;g,;ﬁ) be a 2k-place prbpetfyv‘uhiéh we define
informally to be"“GY(;g) A G;(§£)"} more7fofmally;”if‘8 € P with domain
S and ars bk €8s, then we say S F Hy(ak’bk) 8 ¢ G§(8k> and

S+ G;( k). The formula ﬂ%ka;yk) = g(xk) A g'(yk)‘defines*HAka,yk).
Let § € (0,1)" and let i € (0,1}, We now show informally (this will

be made precise below) how H61 can be expressed from H6: It is sufficient

"oa 7 | 1
to show that Gg 4 and Gy can be expressed from He. Using F, and F; we

can express G6i and Géi by uéing G6 and Gé. Siﬁce for any 8 €P
' ok
with domain S and any a, €s,
8 - G,(a ) ® for some b, € Sk 8 + H,(a b ) and E
Gak k ’ Gak’k’ .
8k Gg(ak) @ for some bk €s,8¢F H, (b ,ak), we see that Gg and Gg

. can be expressed from H&'

Proceeding more formally, let 83 be the lhnguagé of the first order

T since the relations obtained by restricting G6 and Gg to 8 are nonempty.
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predicate calculas obtained from &£ by adding a 2k-place formal predicate U.
Let W,,Wys ooy W be distinct variables not occurring in EO’-I'-‘ ’F-'o?zi'
For i € {0,1}, let :‘f:i(;k*) be the formula of 23 obt.gined from E by
substituting Ewlﬁwz, ...,»Ewk‘g(vk?wk) for Qﬁvk);every time R appears
(where VisVos eees YV represent formal variables), and substituting
Ewlﬂwz cos Ewk U (;k,:v-k) for R' (_;k) every tim R' appears; obtain
f_?‘_;_(;k) ' from gi in the same manner.
For 1» € {0,1), define the formula %(;k';k) of £ as
- - *

zi(xk) A ?’_:'[(yk)., One can now see that for § € (0,1} , 1 € {0,1},

- - k — -
8 € P with domain S, and ak’bk €S, we hgve 8¢ G&i(ak) «8 ¢ ?—i(a'k)
vhen U is interpreted as H restricted to 8, 8 + Gé'i(gk) 8k zi'_('ﬁk)

when U is interpreted as H, restricted to 8,and therefore

6

8 F H&i(;k’i;k) ® 8 i-. Ii(;k’;k) when U is interpreted as Hé‘restricted to 3.
Now let {zl,zz, cees sz} be a set of 2k distinct ygr;ables not

intersecting (xl,xz, coes XpsY1sVgs cees yk} or the set’of’variables in

TO and Tl' Let ;{)Gk,?k) and El(;k";k) be forgnul_u of 33 such that each

contains exactly one occurrence of U, namely in the atomic formula y_(;m‘),
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and such that I', is equivalent to

N ~and [

20 1 is equ%vglent: to T,.

* : - -
For every y € (0,1} define the formula Ey(xk’yk) of £ as follows.

- — — — . %
Let gx(xk,yk) be, as before, the fomla;,_(_;_(xk)/\ g'(yk);‘ for § € {0,1)
and 1 € (0,1}, let H,, be the formula obtained by substituting, for

_ (| & 7 ) o |
U(z,, ) in T,, the formula H 2 e . It is now easy to see that
—"2k i =5 s
B—y(xk’yk) defines Hy(xk’yk) for y € (0,1} . As in the proof of
Theorem A.2, we can check that |gy| < c|y| for |y| > 0. L’a.gt],y, for
* - - -
4 1

Yy € {0,1} , let '(';'Y(x.k) be Hylﬂyz aee Hykg_y(xk,yk) and let _(_;_Y be

dIx

lﬂxz ense '&’xk_liy(;k,;k). It -is clear that conditioms (I) and

(I1) of Lemma A.9 hold. ‘ ” m
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Appendix 2: Notation

The empty set.

(x|x € A and x ¢ B} (set difference).

The set of all subsets of the set A.

The cardinality of the seth,.

The length of the string o.

The absolute vglue of the integer n.

The set of all strings over I if U is a finite alphabet.

The empty string.

T - ().

Concatenaﬁion of the strings o and v.

The i + 1 (from the left) member of the strimg .

If o is a sﬁring, then -0t ... o (k fims) if k >0 and A if k = 0.
If S is a set, then S X S X ... X § (k tM) if k>0 and ¢ if k=0.

(al,az, ceey :ak) if k> 0 and ¢ if k = 0.

(e,e, ..., e (length k) if k > 0 and ¢ if k = 0.

(e,e, ».., &) (length k) if k>0 and ¢ 1if k = 0.
Maximum of the set A.
Minimum of the set A. Min A = 0 if A = ¢.

logy n.
f(a) = f(b) = a = b,

For all b € B there is some a such that f(a) = b,
The set of nonnegative integers.
The set of integers.

The set of real numbers.




N
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B

~ mod k
M(n, k)
TH(S)
TH(P)

S F
1al]
A

m

L)

<

pe
DTIME(£f(n))

NTIME(£(n))
DSPACE(£f(n))

NSPACE (£ (n))
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The structure <N, +, <, 0 >,

The structure < Z, +, <, 0 >,

The structure <R, +, <, 0 >.

A logical strudture with domain S.

The weak direct power of S.

The dohain of_S*;

The strong direct power of 8.

The Ehrenfeucht. equivalence relation (defini;ion 2,2.1).
Equal up to size n (definition 2.3.2). '

Equivalence mod k.

The number of'; equivalence classes on Sk.

The set of sentences -true in 8.

The set of sentences true in aevery structure in the set P.
F is true in 8.

The norm of the element a of a logical structure.

Finite abelian group.

A (one tape, one head) Turing machine.

A language recognized by T,

Polynomial time, linear space reducibility.

The set of languages recognizable within time f(n) by a
deterministic Turing machine.

The set of languages recognizable within time f£(n) by a non-
deterministic Turing machine.

The set of languages recognizable within space f(n) by a
deterministic Turing machine.

The set of languages recognigable within space f(n) by a non-
deterministic Turing machine.
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