CAMBRIDGE

MAC TR-148

PROGRAM RESTRUCTURING FOR VIRTUAL MEMORY SYSTEMS

Jerry William Johnson

March 1375

This research uas supported by the Advanced
Research Projects Agency of the Department
of Defense under ARPA Order No. 2835 uwhich
wuas monitored by ONR Contract No. N@BP14-78-
A-8362-8806.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

MASSACHUSETTS

82133

This empty page was substituted for a
blank page in the original document.

PROGRAM RESTRUCTURING FOR VIRTUAL MEMORY SYSTEMS

by

Jerry Hilliam Johnson

ABSTRACT

The probiem area addressed in this reportx is program restructuring,
a method of reordering the relocatable sectors (subroutine and data
modules) of a program in its address space to increase the locality of
the program’s reference behavior, thereby reducing the number of page
fetches required for its execution in a virtual memory system.

Theoretical upper and lower (optimum) bounds are derived for the
paging performance of programs over all partitions of relocatable sectors
into pages.

Program restructuring techniques are developed which use intersector
reference models based on sector working sets and sector stack distances.
These intersector reference models identify the local reference behavior,
and clustering procedures are developed that use this local reference
behavior to rearrange sectors into pages such that significant
improvement in paging performance is obtained.

Results of measurements of paging performance obtained in the
computer ' laboratory are discussed. The relationship betueen the paging
per formance of a program restructured by the practical restructuring
algorithms and the theoretical bounds on paging performance are compared.

xThis Technical Report reproduces a thesis of the same title submitted to
the Department of Electrical Engineering, M.1.T., on June 15, 1974, in

‘partial fulfiliment of the requirements for the degree of Doctor of

Philosophy.

ACKNOULEDGEMENT

I especiatiy express my appreciation to my thesis supervisor,
Professor Stuart E. Madnick, for the substantial! time and effort he spent
supervising the thesis and in parttcular for his enthusiasm throughout
the course of the research.

I also wish to thank Professor J. D. Bruce and Professor Y. R. Pratt
for their helpful comments which greatly improved the presentation of the
uork and for their encouragement throughout the course of the research.

Appreciation is extended to I1BM*s Cambridge Scientific Center for
making the CP-CMS computer system available for conducting the
experimental part of this research. | also uish to single out Oon
Hatfield and Coyt Tiliman of IBM for their helpful assistance and many
editorial comments.

I thank the members of the Programming Technology Division of
Project MAC for making the Dynamic Modeling System available for
composing and reproducing this report on-tine. [aiso thank Albert Vezza
for his encouragement and many helpful suggestions during the research
period, Stewart Galley for his unifying editorial comments and Susan
Pitkin for performing all the on-line editing that transpired betueen the
thesis and this report.

I especially thank my wife, Janet N. Johnson, for her patience and
understanding throughout my years of graduate study at N.1.T.

The author is grateiul to Project MAC and 1BM for their financial
suppor t.

Work reported herein uas supported in part by Project MAC, an
M.1.T7. research project sponsored by the Advanced Research
Projects Agency, Department of Defense, under office of Naval
Research Cuntract Nonr-4182(81).

- TABLE OF CONTENTS

SECTION PAGE
ABSTRACT i
ACKNOWLEDGEMENT i
TABLE OF CONTENTS iii
LIST OF FIGURES vii
LIST OF TABLES ix
CHAPTER 1 INTRODUCTION 1
1.1 Introduction | 1
1.2 Motivation _ 1
1.3 The Nature of Program Restructuring 3
1.4 Importance of Program Restructuring 7

1.4.1 Comeau’s Results 8

1.4.2 Results of Hatfield and Gerald 8

1.4.3 Program Design Considerations 18

1.4.4 Related Performance Benefits 12
1.5 Related Research and the Need for Further Research 12

1.5.1 Intersector Reference Models 16
1.5.2 Reordering Procedures 17
1.5.3 Sector Ordering Evaluators 19

1.5.4 Performance Bounds 28

1.6 Summary of Goals

CHAPTER 2 FORMALIZATION OF VIRTUAL MEMORY
SYSTEMS

2.1 Introduction

- 2.2 Major Parameters of a Tuo-Level Yirtual Newory

Systea
2.2.1 Configuration
2.2.2 Program Behavior
2.2.3 Automatic Management Algorithm
2.3 The ¥irtual Storage Model
2.4 Performance Measures
2.4.1 Effective Capacity
2.4.2 Effective Cost
2.4.3 Effective Access Time
2.4.4 Page Trace Simulation
2.5 Page Fetch Function Performance Model
2.5.1 Replacement Algorithm Considerations
2.5.2 Program STructure Considerations

2.6 Sector Fetch Function Performance Model

CHAPTER 3 PAGING PERFORMANCE BOUNDS
3.1 Introduction
3.2 Lower Bounds

3.3 Upper Bounds

24
24

24

28

38

32

33
33

&

33
44

g

71

3.4 Simple Example of Computing Bounds 75

3.5 Extensions to Louwer Bounds 88
3.6 Bound for Working Set Management 186
3.6.1 Lower Bounds for Working Set Management 110
3.6.2 Upper Bounds for Working Set Management 119
CHAPTER 4 INTERSECTOR REFERENCE MODELS 122
4.1 Introduction 122
4.2 Intersector Reference Models 123
4.2.1 The HG Intersector Model 124

4.2.2 Working Set Intersector Reference Modeils 126

4.2.3 LRU Stack Intersector Reference Mode! 136
CHAPTER 5 CLUSTERING PROCEDURES 143
5.1 Introduction _ 143
5.2 Clustering Procedures 143
5.3 Nearest Neighbor Methods 144
5.4 Hatfield and Gerald Method 1508
5.5 Sector Interchange Procedure 151
5.6 Intercluster Bonding Me thod 157
CHAPTER 6 EXPERIMENTAL RESULTS - 167
6.1 Introduction 167

6.2 Restructuring Phase 1 174

vi

6.2.1 Constrained Procedures
6.2.2 Unconstrained Procedures
6.2.3 Theoretical Bounds

6.3 Restructuring Phase 2

6.4 Restructuring Phase 3

6.5 Effects of Input Data

CHAPTER 7 DISCUSSION AND CONCLUSION
7.1 Introduction
7.2 Summary

7.3 Further Work

REFERENCES

175
180
184
191
194
197

283
2083
283
284

286

vii

LIST OF FIGURES

FIGURE PAGE
1 (a} Tuo Level Hierarchical System 27
{b) Virtual or Composite Memory System 27

(c) Representative Parameters for Several

Yirtual Memory Systems 27
2 Logical Address Structure 29
3 Louer Bound on'FFp Given by Theorem 1 B5S
4 The Allouable Yalues of FFp as a Function of |Mp]| 76
5 Parachor Curve of FFs(|Ms|,ST,Fd,Ro) 134
6 Parachor Curve Illustrating Yalues for D 142
7 Results for Phase 1 176
8 Results for Phase 1 177
9 Results for Phase 1 179
10 Results for Phase 1 181
11 Results for Phase 1 183
12 Results for Phase 1 185
13 Results for Phase 1 189
14 Results for Phase 1 190
15 Results for Phase 2 192
16 Results for Phase 2 135
17 Results for Phase 3 196

18 Results
19 Results
28 Results

21 Results

for

for

for

for

Phase
Phase
Phase

Phase

viii

199
280
282
282

LIST OF TABLES

TABLE PAGE

1 Néjor Parameters of Tuo-Level Hierarchical

Yirtual Memory Systems 26
2 Example of Page Trace Simulation to Determine FFp 37
3 Parameters for Curves of Figure 12 186

4 Parameters for Curves of Figure 15 193

This empty page was substituted for a
blank page in the original document.

CHAPTER 1

1.1 Introduction

In this chapter, the problem of restructuring programs to improve

their paging performance in virtual memory systems is presented.

1.2 Motivation

As the use of multiprogramming and virtual memory techniques has
become more widespread, the performance of paged virtual mewory
hierarchies has become more important. The fact that paged virtual
memory systems can be made to perform efficiently at all depends
prinarilg on an inherent property of program behavior knoun as "program
locality” [01,02,03,04]. Program locality arises from empirical
observations that actual programs cluster their memory references so
that, during any interval of time, only a subset of the information
‘available is actually referenced. |f a program is favoring a subset of
its information at some particular time, we should like very much to have
this subset in primary memory. As a result, much of the research efforts
made to optimize the performance of programs in virtual memory systems
were spent devising strategies for page management algorithms that could

maximize the probability of finding in primary memory the information

needed by the :CPU at the time it is referenced, thereby winimizing the
number of page fetches. Several studies fBl;ﬁZ,DZ! have shoun that this
~probabijitg strongly depends on the reference patterns of the program
being executed, that is, on hou distributed in the virtual address space
are the information items successively referenced by the processor.
Generally, the Wigher the degree of locality of a program, the higher the
per formance of the virtual memory system uith respsct to that program.
Houever, several comparisons of page replacement algorithms have been
reported [B1,H1,C1], often realizing as much as 38 to 48 percent
improvement from one algorithm to another for certain programs. In
particular, an algorithm has been found 81,M11 that gives the minimum
number of page fetches for a program. Even though the minimum
replacement atgorithm is practically unrealizable, as it requires a
knouledgé of the future page references of the program every time a page
fetch occurs, the algorithm is important because one can use it as a
theoretical bound against which the performance of any other ﬁag%nq

algorithm can be compared.

In all the studies of developing page management algorithms to
increase the performance of virtual memory systems, the prograu;s page
reference pattern and hence its locality is considered as a
non-modifiable input to the system. In contrast to the exploitation of
the existing locality of programs by paging algorithms, relatively little
attention has been paid to another important method of cbtaining better

per formance from virtual wemory systems. This method is to increase the

degree of locality of the program to be executed. Even less research has
been focused on developing bounds on the performance improvement due to

optimum program locality.

In this report, we propose to focus most of our research efforts
in the study of program restructuring [C2,H1,02], a method of rearranging
the relocatable sectors (subroutine and data modules) of a program, to
increase the locality of the program’s reference behavior and thereby
reduce the number of page fetches required for execution in a virtual
memory system. The essential idea behind program restructuring to bring
about this localization in its reference behavior is to take sectors of
the program that are used closely together in time and cluster them

closely together in the virtual address space.

1.3 The Nature of Program Restructuring

The nature of program restructuring methods that have been
proposed so far can be classified along several dimensions. With respect
to the extent of the programmer’s involvement, restructuring can be
manual or gutomatic, depending on whether rearrangement decisions are
made by man or computer. MWith respect to the level at which
restructuring is applied, He can make a distinction betueen external and
internal reordering. In external reordering, the sectors which are

rearranged in virtual memory are relocatable sectors of instructions

and/or data. -Internal restructuring consists of reordering parts of
relocatable sectors uith respect to each other or simply deciding where
to insert page breaks in the code K1,Yl]l. Extsrnal restructuring is
faster and cheaper since it never requires reprogramming. HWith respect
to the type of information on which a2 eestructuring procedure is based,
there are gtatic methods, which only make use of the knouledge of the
static properties of the program, and dunamic methods, which are based on
data, collected during exscution, representing the dynemic behavior of
the program. .

Algorithms for automatic restructuring can be applied at
compilation time if they are static: tup&sﬂlionaﬂptoivave those methods
uhich construct a graph model of the progrem te be restructured, whose
sectors are repressnted by vertices (uhese usight is the size of the
sector) and arcs repressnt the iransitions (daia or control references),
and then cluster ertico; according to connactivity considerations or to
the cyclic structure of the graph [B3,L1,R1,¥2]. UWe are interested in
gutomatic, externa| program reitructuring methods based on the program’s
dunamic bshavior and in subssquent discussions ue ﬁill simply call this

progras restructuring.

In order to provide more insight into the character of program
restructuring which we uill study, ue make the following general
assumptions. A program consists of a8 finite set of relocatable data and
procedure sectors. These sectors are gpaque, since We are concerned uith

the interactions among the sectors and us are not concerned uith what

goes on inside each sector. The average size of a relocatable sector is
small with respect to the size of a page (between one-tenth and one-hal f

page size).

Informally, the basic approach to program restructuring is to run
the program with a set of "typical® input data, record the sector
reference behavior, formulate an intersector reference model based on the
recorded information, and then apply a program restructuring procedure
uhich uses the model of intersecior reference bshavior to reorder or
partition the sectors into logical pages such that the intersector

references among sectors in different pages is minimized.

The aim of program restructuring is to increase the locality of
the program’s address reference pattern by reordering the relocatable
sectors in virtual memory such that sectors that are needed uithin a
relatively short time of one another are found in the same logical page
or in logical pages that would otheruise tend to be in primary memory at
the same time. The act of restructuring will tend to create a situation
in which there are either very strong or very weak affinity bonds betueen
logical pages. The resultant goal of program restructuring is to
minimize the page fetches required by a program during its execution in a
virtual memory system. This is a very difficult goal to achieve because
the number of page fetches is a function of primary memory allocated to
the program, the page size, the fetch and replacement policies, the

sector reference behavior, and the selected ordering of sectors into

logical pages.

In order to pose more formaliy the nature of the restructuring
problem for :amy program modeled by a set of relocatable sectors of
specified 'size and a-messured sector “trave dascribing the sector

reference behavior, ue need the follouing definitions.

A program is regarded as "'a -dirscted graph G of m nodes, of size
S,>8, i =1,...,m. The nades represent relocatable sectors. Let N be
the page size, -such ‘that 8§ < 5.<N for all i. Lat C = (cy),
i,7 = 1se..,m:be:a weighted connectivity matrix describing the edges of
G. The edges of [represant the intarsector reference behavior of the
program. MWithadge (i,}) ie asesciated a cost c; > 8 of traversing
that edge. -Hou to chocse the best intersector referencs mode! C from the
measured sector trace is an important research problem. Houever, c;
might represent the prebability that sector i references sector j, or
c;j might be the total number of times sector i makes a data reference
or a transfer of control to sector j, or ideally c; uould represent
the number of page fetchee which uould occur due to sector i referencing
gector j in a given virtual memory system uniess | and j were grouped

into the same page.

Let n be the number of logical pages of the restructured progranm.
An n-uay restructuring of G is a sst of nonempty, pairuise disjoint

UL, Pi =G and |p;| < N for all i, where |p;| stands for the

size of subset p;, and equals the sum of the sizes of all the sectors

of Pi. The cost definition for the restructured G is the summation of

C; over all i and j such that i and j are in different subsets

{pages). Thg cost is thus the sum of all external costs in the partition
of G. A restructuring of G is optimal if it achieves minimum external

cost or equivalentiy maximum internal cost, because the total cost of all

edges is constant.

We can now point to two distinct and difficult problems
associated with program restructuring. One is, given G and C, hou to
find an optimum restructuring of G, and the other is how to model thg
intersector reference behavior C such that an optimum solution to the
restructuring problem formulated on C gives the minimum number of page

fetches for a virtual memory system.

1.4 Importance of Program Restructuring

The potential of program restructuring for improving the
per formance of programs running in a virtual memory system can be best

illustrated by citing some reported results.

1.4.1 Cowmeau's: Results

The fiwl'atx-pubfl‘-ism~ rasul ts-of program restructuring to increase
the performance of prograws in a virtual wemory system was in 1967 by L.
W. Comeau [C2]. Comeau reports that the%ordering of relocatable sectors
of code over virtual pages can have 2 profound effect on paging
per formance. lmepar'ti‘wur. he: found - that the riusber of page fetches
during an assembly could be decreased by a factor of five by changing the
ordering of the menitor modules at load time. Four orderings of the
moni tor modules uere compared under the: same primary wemory constraints
and the same: paging algorithes. The aipheteticei ordering produced 6580
page fetches, the randow: order gave 4280 fetches, and order based on
krrouledge of the: page size and functions of the modules resulted in 2488
fetches, and-an erdering besed on the knouledge of the functions of the
modules, page size and a'detailed history of-intermadule activity

generated uhile the program uas in execution produced 1268 fetches.

A subsequent experiment by Tsaco, Comeeu and Margolin [T1],
per formed on an [Bl1/368 Model 48 in a CP/48 mvironiont, shous that
paging activity is reduced much more by a good losd sequence of operating

system subroutines- thean by replacement aigorithws.

1.4.2 Resulits of Hatfield and Gerald

In 1971 Hatfield and Gerald [Hl] reported that improvements in
paging performance, on the IBM/366 Model 67, in the range of tuwo-to-one
to ten-to-one can ocbu} by using experimental techniques, based on
information compiled from sector reference traces, to restructure the
relocatable sectors of compilers, editors, and assemblers. This is a
significant reduction in the number of page fetches experienced by
existing, frequentiy executed programs, and hou close this is to the

optimum reduction is currently unknoun.

Also, they present an excellent discussion supported by many
detailed measurements, which shous that the sector reference behavior of
most programs they examined (especially the system programs: compilers,
assemblers, editors, etc.) proved to be remarkably insensitive to the
input data in rather large domains. This is very important because there
is no merit in tracing a program, massaging the traced data, reloading
sectors, and measuring changes in paging rates if the improvement only
holds for the particular set of input data used when it was being traced.
For tunately, the relative number of intersector references of many
commonly used programs is rather insensitive to input data. However, it
is certainly still true, especially for particular application programs,

that the uniformity of intersector references over a range of input data
should be established before sector reordering on the basis of

intersector behavior is attempted.

18

In adeition, they reported that program restructuring to increase
the locality in program reference patterns can have a such wore profound
effect on paging performance in & virtus! sewory system than page
replacement algoritims. '

1.4.3 Program Design Considerations

Another technique of increasing the degres of lecality of
programs, but certainly not the easiest to accomplish, consists of
teaching the programwers how to design wore local prograws [B4,85,G1,M1],
making thew auare of the important language transistor considerations,
providing them xith unawbiguous feedback about the paging performance of
their programs smd shouing them hou the system penalizes those programs
which exhibit a poor degree of locality. The typical attitude of virtual
memory systew designers may be expressed by Denning [0Z2) when he states,
it is not knoun whether programmers can be properly educated, inculcated
Hith the 'right’ rules of thumd, so that they habitually produce programs
with "good” tocality.” Unfortunately, the freedom of the programmers
from the need to smorry about physical memory space and its management in
a virtual memory system is a major obetacle to their education in the art

of locality.

Therefore, especially for frequently executed programs such as

operating systems, assemblers, compilers, editors, production prograas,

11

etc., we can see the appeal and the potential rewards of the program
restructuring approach, that is, to design the program without
excessively caring about its locality, and then to rearrange its
relocatable code and data sectors in the virtual address space so as to

make its reference pattern more local.

12

1.4.4 Related Performance Benefits

I1f we can reduce the number of page fetches required by program

restructuring, ue will get improved performance in several areas:

1. Reduced time spent paging.
2. Less supervisory overhead spent in main
N
memory and paging management.
3. Better throughput on the average, because a
program will interfere With others less.
4. Better paging operation when it is needed,

because there will be less contention for the

paging device.

1.5 Related Research and the Need for Further Research

The only comprehensive research in the area of automatic program
restructurjng uas reported Ly Hatfield and Gerald [Hl1l. The essence of
their work can be interpreted in the following context. A program
consisting of m relocatable sectors occupying n logical pages of virtual
memory was run uwith a typical set of input data and sufficient
information uas recorded during the run to produce a complete éector
trace. A camplete sector trace is the time sequence of all sector

references (instruction and data references) during program execution.

13

A "nearness matrix" C for modeling intersector behavior wuas
constructed from the sector trace. The nearness matrix is an mxm matrix,
whose entry C;{l < i <m, 1 < j <m is the number of times sector j
followed sector i in the sector trace or equivalentliy the number of times
sector i referenced sector j during the execution of the program. This
matrix is equivalent to a directed graph G of m nodes where the arc from

node i (corresponding to sector i) to node j has Cj as its ueight.

No computationally feasible procedure was found to produce and
prove an optimum restructuring of G, based on C, into pages, i.e. one
that minimized the summation of C; over all i and j such that sector
i and sector j are grouped into different pages. Instead heuristic
approaches uwere used to restructure G. One method used essentially the
largest values of the eigenvectors of C as a basis for grouping sectors
together. Another heuristic approach uwhich gave slightly better results
Has a procedure which attempted to cluster sectors into pages, under the
constraint that the size of each cluster be no greater than the page
size, such that the square of the interconnecting weighted arc distances

betuween pages were minimized.

The latter heuristic approach is quite similar to the procedure
reported by Charney [C3] which partitions a netuork of interconnecting
components into groups of components such that the total number of

interconnecting wires betueen groups tends to be minimized.

14

As Hat$ield and Garal-d peinted out, a disadvantage of program
restructur ing forsulated on the nearness matrix C is that the nearness
matrix contains global information about sector -interaction, whereas
paging depends on local reference patterns. For example, consider two
sector reference traces S, and S,. Assume that sectors i and j are
referenced exactly k times in both traces. Let S, = a; (ij)*a*; and S, =
oy (i jap ¥ uhers a and ap represent long sector reference
strings. The value C; is k in both cases and C; is larger in
S, . Therefore, the probability that the clustering algorithm will
group i and j together is greater for §; than S;. Houwever, the cost
of not grouping them together is greater for 5, , since the number of
page faults due to the references j immediately following those to i will
be at most 1 for 5, for all real wemory sizes greater than one and can
be k for S, for certain a,’s. In other words, even an optimum
solution of the restructuring problem formuliated on the nearness matrix

may not give the minimuw nuwber of page faults.

‘Hatfield and Gerald realized that there are many céses where the
nearness matrix alone does not have all the informatior needed for
producing a good sector ordering and that the ordering obtained by the
restructuring algorithm from the availadie information is based on
heuristics. Accordingly they supplemented the automatic sector
reordering phase uith a hand finishing phase of additional sector
reordering based on complex human interpretation of the program’s use of

virtual memory over the course of its execution as displayed via an

15

interactive graphics package. EQen though the reordering phase based on
human decisions provided additional improvements in paging per formance,
it can be quite time consuming, and the results are soneuhét dependent on
the imagination and insight possesed by the programmer making the
decisions. Furthermore, the absence of any knouledge about the maximum
possible improvement makes it difficult to determine a suitable stopping

pocint based on some cost-performance criteria.

In order to determine if a new ordering is actually better or
worse than an old ordering, they simulated the paging per formance of each
ordering over a range of primary memory sizes and page replacement
policies. Evaluation of sector orderings by simulation can be an

expensive process if many sector orderings are compared.

Based on the current state of research into the problem of
program restructuring as discussed above, ue can identify several areas
of potentially reuwarding research. MWe will assume that a program is
modeled by a set of relocatable sectors of specified size and a sector

trace describing the sector reference behavior.

16

1.5.1 Intersector Reference lModels

We need a model. of intersector reference behavior C, defined over
the sector traca, that incorporates more of the local reference behavior
of the program upon which paging actually depends than that captured by
the nearness matrix. For eknple. the probability that a reference from
sector i to sector j will cause a page fault is related to such local
information as the time elapsed since the last reference to sector j and
the number of distinct sectors referenced since the last reference to
sector j in the sector trace. If the time is short since sector j uas
last referr'od to and fittle ‘virtml -menpry spsce Mas used durlng that
time, it is probable that sector j is still in primary memory and a neu
reference will not cause a page fetch. If the time and space traversed
betueen references to j are large, it/ is probable that a page fetch will
occur unless j is grouped into fhn same page as the referencing sector or
some recently referenced ssctor. He propose to formulate and investigate
tuo approaches uhich seem to have potential for identifying and -
quantifying local sector reference behavior which can be used to ueight
C; entries. These approaches are based on sector working sets and

sector stack distances defined over the sector trace.

17

1.5.2 Reordering Procedures

Another area éoncerns finding better procedures for restructuring
or grouping the m relocatable sectors of a program into n logical pages
such that the reordered program achieves or tends to achieve the minimum
external cost formulated on an intersector reference model C. A strictly
exhaustive procedure for finding the minimum cost grouping is often out
of the question. To see this, consider the simple problem of dividing m
sectors into pages containing g sectors each. The total number of

groupings is as follous:

Groupings = m!

g™ (n/g)!

For most values of m and g, this expression yields a very large
number; for example, if m = 40 and g = 4, it is greater than 1825,
Formally, the problem could be solved as an integer |inear programming
problem, uith a large number of constraint equations necessary to express
the uniformity of the partition [J1]. Houever, since it seems likely
that any direct approach to finding an optimal solution will require an
inordinate amount of computation, the quest for better heuristic methods
appears to be the best approach. The first and foremost consideration in

developing heuristics for combinatorial problems of this type is finding

18

a procedure that is pouwerful and yet sufficiently fast to be practical.
A process uwhose running time grous exponentially with the number of

sectors is not likely to be practical.

19

1.5.3 Sector Ordering Evaluators

A computationally inexpensive evaluator of sector orderings is
needed so that a neu ordering can be estimated as better or worse than an
old ordering without simulating paging performance for a primary memory

size and page replacement algorithm.

One theoretical approach recently reported by Sekino [S4] may be
applied, given a sector ordering into pages and the probabilities of
sector i referencing sector j for all i and j, to compute the page fetch
probability. However, a major drauback of this approach is that after
the probabilities of going from one system state to another are- computed
(uhere a system state is determined by the r pages of an n page program
in primary memory, the page being referenced, and the state of the
replacement algorithm), then, even in its simplest formulation, the
solution of rx(7) simultaneous equations are required {a solution
computationally infeasible for values of n and r usual iy encountered in

real programs).

Another approach relies on the ability to construct a iatrix
model describing the int;raector reference behavior from the sector
trace, given additional knouledge about the size of available primary
memory and the paging policies, such that the cost of a sector ordering
(i.e. the cost of the interpage arcs cut) produced by a reordering

algorithm, is proportional to the number of page fetches expected for

28

that ordering. Hou successful is this approach or any other
computational ly inexpensive approach is an open research question.' but
the existence .sﬂf»ihi.-ﬁ probism and the potantial expense of any solution

points out, in part, the .immense valus of the next research topic.

1.5.4 Per formance Bounds

The trewmendously large number of ssctor orderings, and the
difficul ty and swpense invoived both in choposing a relsatively good
ordering and in.avaiuating & nes ovdering.as betder or uorse than an old
ordering illustrate the vital sead to.have -thesreticsl. bounds on the
optimum improvement .in. the paging perforsancs of virtual semory systems
through program-sastruciuring.-

[baunds on the minimus number of page fetches uhich could occur
during execution of a program for any raordering of relocatable sectors
into logical pages uere knoun, they could be used: to determine whether
or not a given program should be considered for restructuring based on
its current paging performance; to evaluate the results of a
restructuring procsdurs, uhsther automatic, manual or both, for a given

program; and to nrscagnize .when a good program structure .is found.

Automatic mtnni:twlng prmnhmed’on heuristics appear to

be the only computationally feasible approasch. It is unlikely that any

21

one procedure uill provide near optimum solutions for all programs. One
attractive methodology for program restructuring when bounds on the
optimum performance are known is to have a set of automatic restructuring
procedures available which can be successively applied to a particular
program until a reasonably good solution is obtained. In the case when
no reasonably good solution is found automatically, a decision to
.consider manual restrﬁcturing and its extent can be made based on the

potential for additional improvement versus its expected cost.

The theoretical work reported in the literature to date in
developing bounds on the paging performance in virtual memory systems
that can result from program restructuring is nil. HWe will present a
forma! approach to thié problem and some preliminary results in the next

two sections of this report.

It is our objective to develop upper and louer bounds on the
number of page fetches uhich can occur over all reorderings of sectors
into logical pages of a program, for any program modeled by: a set of
relocatable sectors of specified size, a sector trace describing the
intersector behavior, any two-level virtual memory system modeled by its
page size, primary memory size available to the program, and page

replacement and fetch policies.

22

1.6 Summary of Goals

The goale of this thesie are as follouss

1.

Formalize and anatyze the effect of the
structural ordering of a program’s relocatable
sectors upon ites paging performance in

virtua! wemory systess.

Bevetop theoretical bounds on the optimum

improvesent in the paging performance of

prograws in virtual sewory systems which can
rasult from restructuring the relecatadbie

sectors of prograwms.

Develop theoretical bounds on hou "bad"” the
paging performance of programs can get if the
"worst" ordering of retlocatable sectors is

chosen.

Formalize neu models of program reference
behavior, such as intersector reference models
based on sector working sets and sector stack
distances, and analyze their effect on reordering

procedures for improving the paging performance

23

of programs.

Design and develop practical algorithms for
restructuring programs to improve their paging

per formance in virtual memory systems.

Perform measurements to compare the relationship
between the improvements in paging performance
produced by these practical algorithms and the
optimum improvement specified by the theoretical

bounds.

24

'CHAPTER 2
FURMALIZATION: OF VIRTUAL MEMORY SYSTEMS

2.1 Introduction .

In this section a formalization of the fundamental
characteristics of tuo-level virtual‘ﬁenory sg;falo is presented and
certain perfermance measures a?c derived. The pur.pose of this chapter
is to develop the terminology and the framework necessary to vieu this

research in its proper perspective.

2.2 Major Parameters of a Tuo-Level Virtual Memory System

Figure 1 and Table 1 present the major parameters of a tud—level
vfrtual memory system. These parameters can be'qrouped into three
categories: (1) Configuration, (2) Automatic Management Algorithws, and

(3} Program Behavior.

25

. 2.2.1 Configuration :

Virtual memory is assumed in this theéis'to:be‘inplenented by
paging on a tuo-level hierarchical physical memory system consisting of
primary memory, Mp, and.secondary mewory, Ss. (Note that we have chosen
the nofation Ss for secondary memory, i.e., secondary storage, because
the notatfon Ms would lead to notational conflicts later in this
report). Each storage device is partitioned into physical blocks called
pages. A page is the basic unit of }nfornation transferred between Mp
and Ss. The page size (usually 4,896 or 2,848 bytes) is denoted bu N.
Each memory device is further characterized by .its random access time
T, transfer rate B,, cost/byte C;, and capacitg'fn pages |, |.

We assume that Tp < Ts, Bp > Ba, Cp > Cs and [Mpl < [Ss].

1. Mp is the primery store
2. 5Ss ig. the secondary store

3. lﬂfl“ 8 the- size in pages: of the i-th store

4. B; is the- tranafer rate of the i-th store

5. G is«thewcns*luuitfui“hevi-th‘stowe

6. T; is'the«averagaraseead*tiua:qfatha i-~th store
7. N is-thavnunBCr»ofﬂbntea‘inza,paga»(page size)

1. F is the fetch algorithe

2. R igs the replacement algorithm

Program Behavior

1. A is the logical addéess trace

Table 1

Héjor Parameters of Tuo-Level
Hierarchical Virtual Memory Systems

27

C).

B}.
Processor Processor
A=a|,32, coe A-a|.az. ¢e
VI(Tp.Bp) ﬂ {Tv,Bv)
(Cp, [Mp|)
(Cv, |Mv])
{(Ts,Bs,N)
(Cs, |S,|)
IBM/360-67 1BM/378-165
Mp Core Cache
IMp] 192 pages 16K bytes
Cp $1.53/byte 8.88/byte
Tp 375 ns 168 ns
Bp 21Mb/s 188Mb/s
Ms Disk Main Store
|Ss] 20848 pages 512K bytes
Cs $8.084/byte $8.58/byte
Ts 8.6 ms 1.44pus
Bs 1.2Mb/s 16Mb/s
N - 4096 bytes 32 bytes
Tv 885 ns 230 ns
Cv $8.18/byte $08.77/byte
|Mv] 2848 pages 512K bytes
Figure 1.

A). Tuo Level Storage Hierarchy System. B). Yirtual or
Composite Memory System. C). Representatative
Parameters for Several Yirtual Memory Systems.

28

2.2.2 Program Behavior

The processor, under program control, generates a sequential
sequence of references to the storage sgétem. The processor references
are in the form of logical address references or virtual memory
references which serve to uniquely identify each unit of stored
information independent of its location in Mp or Ss. The time sequence
of logical address references is called an address trace, A and is
defined as:

A= a'.az,....aL.

Each logical address, ai. may be separated into a logical page
reference and an offset within that logical page. This separation
process is pictorially illustrated in Figure 2 uhere the set of 2xxn
possiblie addresses are partitioned into Zttﬁlpages of 2xxn, = N
logical addresses each. The time sequence of logical page references is

called a page trace, P and is defined as:

P=p',p?,...,p¢ where p'= integer (a' /N).

n-bits

29

-]
L_ﬁv*“"* ‘Address o
alLogical Address
j-—————— n-bits >
Page Disptacement T
j#- - n, -bits —sle-ny -bitag—— >
{(n=n; +ny)

b) Logical Address Partitioned into

Page Address and Displacement

Figure 2

Logical Address Structure

30

Information movement betueen Mp and Ss is accomplished by
transferring pages betueen Mp and Ss. UWe can analyze interlevel

movement for address trace A bg'considering the corresponding page trace

P.

One method of constructing a rapresehtation or model of a
complex activity such as program behaviof is to first analyze a
particular characterization ard then gradually introduce additional
detail. In the case of prograwm behavior, it is convenient to begin by
considering only the address trace and the corrasponﬂing page trace.
Later, we will consider the effect of the p}egrnn's‘utructure on its

behavior.

2.2.3 Automatic Management Algorithm

Since a processor can ;erviéé only that portion of a program
which resides within primary memory, which is relatively small in size,
the opefating system must exercise a special algorithm, called a paging
algorithm, to keep the "most active" pages of a program in prinarg_
memory. This is accomplished by transfarring pages of the program back
and forth betueen primary and secondarg'nelories. The goal of a paging
" algorithm is to maximize the number of times logical information ié fn

the primary memwory when being referenced.

31

The paging algorithm must consist of tuo basic policies. The
Fetch policy, F, decides when and wuhich information should be moved up
from Ss to Mp. The Replacement policy, R, decides when and which pages

should be transferred douwn from Mp to Ss.

Definitions

1. 0 = {a,b,...} ig a finite set of logical pages

2. P=p',p?,...p' is a page trace uith p'e Q.

3. NL; Q is the comtents of Mp at time t.

4. F = ' ,#2,...f is a finite time sequence of L sets,
f'cQ, 1<t <L, | |

5. R=r',r?,...,rl= (¢) is a finite time sequence
of L sets, r'g d,l <t <L,

6. M

e ey u 1 <t <L

7. F and R are valid if fin 1! = ¢,r'c Ny
and p*e M,

1<tS_Lo

The F and R poliéies are defined to denote a particular
realization of a paging algorithm for a given trace P. For a page trace
and initial primary memory state "%- a F-policy and a R—policg-
together determine the time sequence of priﬁarg memory states that will
occur as the virtual memory system processes the trace. HWe uill
consider only valid F and R policies. That is, none of the pages

fetched at time t, f', may be in primary memory at time t-1; the set

32

of pages removed at time t, 93. nuﬂt~bn~iN»priuarg memory at t-1; and

the page reference at time t, p’. wust be in primary memory at time t.

2.3 The Virtual Storage Model

A tuo-level hierarchical virtual storage systen, V, is composed
of all the parameters described abeves
V = f(<configuration>.<pragﬂal;bohaxiorx;<aiggnithns>l

V= f(<|”D|.T'P-cPcBﬂ» |58|..TSV.~G&»BB‘-N>-'<Q>.<F- R>l

The rationale for tuo-level hierarchical vfrtual memory systems
as shoun in Figure 1 is to coupls expensive ifou capacity fast memories,
Mp, ufth inexpensive large capacity slouer memoriegs, Ss, such that the
composite or virtual memory system appruéchog the spead of the expensive
memory and the capacity and cost/unit of storage of the inéxpenéiﬁo

memory.

2.4 Per formance Measures

The rationale for a virtual memory system, V, immediately
suggests three measures of its effective performance. These three
measures are its effective capacity |Mv|, effective cost/unit, Cv, and

effective access time, Tv.

33

2.4.1 Effective Capacity

The effective capacity |Mv] = |Ss| is achieved through the
paging algorithm of the virtual memory system and the constraint that
all logical pages initially reside in Ss.

2.4.2 Effective Cost

The effective cost Cv is defined as follous:

Cv = CplMpl+Cs]Ss]
Mp|+|Ss|

The effective cost Cv is seen to approach the cost Cs under the usual
condition that the size of secondary memory is much larger than the size
of primary memory.

2.4.3 Effective Access Time

For simplicity in developing techniques for analyzing and

providing insight into the much more difficult problem of the effective

34

access time, Tv, ue uill first consider a demand fetch policy, Fyq .

Later, our considerations will focus on other fetch policies.

Assume that, at time t, the processor generates a logical
address reference @', shich refers to page Pe At that point in time,
the page p may reside in ﬂp or ‘Ss. 'Under a demand fetéh policy Fd, if p
is in Mp, the reference proceeds and mo page movement occurs.
Otheruise, if p is in Ss, a m_mnw page fetch occurs and the page |
is automatically transferred to Tip and the raference proceeds. If Mp
uere already fuli, the removal policy, R, must be employed to remove

. some page in Mp to provide space for the nen page reguest.

Formally, a demand page fetch policy Fd, for a virtual memory

system V is defined as follous:

Recali that

1. P =p',p%,....p¢ is the page trace determined from A
and N. |

2. Fg= f4,¢%,..., ¢4 is a valid fetch policy.

3. R=rl,r2,...,rt is a valid removal policy.

4. M- i ueh)-rt,

Definition of Fy

1. 1fp'ety', then fh=r'= 9.

35

2. 1f ple ' and IMY' 1<IMpl,
then fi= tp't and r'= ¢.

3. 1f plety! and |n';‘|-|np|_.
then fi= Ip') and r'= {a}
where a ¢ M'' and a is selected by

the removal algorithm.

Under demand paging, the primary memory Mp simply fills as
required by 1 and 2, while the first |HQJvpageq.g;aArefgrenced.

Subsequentig,_referenced pages are suapped betueen Mp and Se as required
by l_and 3.

Let FFp, the number of page fetches from Ss during the

processing of a page trace P. be defined as the page fetch function and
its value given by:

FFp = 2%, 1§ 1.

By analogy to the paga fetch function, the number of references

‘satisfied by Mp is called the page success fuaction, SFp, and it can be
‘conputed as '

SFp = |P|-FFp.

36

The effective access time, Tv, of a virtual memory system V, is
defined as follous:

Tv = FFpTs + (1-(EEp)) Tp

Pl B

The value of the effective'access'tlhe_TQ, is seen to approach
the fast access time Tp, of primary mewory as. the value of the fefch ‘
frequency fﬁnction..FFpllPl. is reduced toward zero or equivalently, for
a given page trace P, as the vatue of thc*pagq*fatch*function FFp
approaches zero. Thérefore. we see that the value of FFp is a crucial
measure of the performance of a-program in a virtual wemory system. In
general, ue wish to winimize the page fetch functiﬁn in order to

minimize the effective access time Tv.

2.4.4 Page Trace Simulation

One method to determine the value of the pagé fetch function
FFp, fof a given virtual memory system V is te compute the resultént
page trace P, frow the address trace A and the page size N, then
gimulate the paging algorithms, F and R, and record the contents of Mp
at each step of the page trace. Table 2 illustrates this step-by-step
simulation, assuming demand paging and LRU (Least Reﬁentlg Used)
removal. The contents of Mp are shoun ordered to reflect tﬁe LRU
ordering: the top page is the page most reﬁentlgifatched into Mp: the

bottom page is the page least recentiy used by the program and is the

37

Virtual memory system V = f (<|Mp}, Tp,Cp,Bp,|Ss|,Ts,Cs,Bs,N>,

<A>,

<F,R>)} with parameters

2 12

A=a',a
P = a,b,a,b,c,c,b,a,a,b,b,a, uhere pi = integer (a' /N).
However, we have used lower case letters to represent
logical page addresses instead of page numbers because
it simplifies the presentation.

Pl = 12

Q= 1abcl and |G = 3 < |Ss]

IMp| =2

F = demand fetch, Fq

R = LRU replacement, Rpy

Simulation:

Time 12345678319 11 12
Page Trace,P ababccbaa b b a
Fetch, F abB0cBBad 8 B 86
Remove Rypy 8886a088c8 8 8 0
HL>contents ababccbaa b b a
after time t ababbcbb a a b
RESULTS:

FFp = T'4 Ity | =4

FFp = 4/12

1P}

Tv = IS + 2Tp

3 3
Table 2

Example of Page Trace Simulation to Determine FFp

page selected for removal when necessary.

2.5 Page Fetch Function Peﬁfornancé Model

From the above discussion, ﬁe obiserve thatvseveral paraﬁeters
of a virtual mémurg system V=f(<|Mp|,Tp,Cp,Bp, |Ss|,Ts,Cs,Bs,N>, <A>,
<F,R>) influence the value of the page fetch function, FFp. These
parameters are the page size N, the prograt's.storage reference pattern
A, and the removal policy R, the fetch polfcg Flaéd the size of primary

memory |(Mp|. Therefore, we define
FFp = FFp(iMp},N,AF,R).

- The significance of all these parawmeters on the page fetch
function measure will be considered and investigated. Special emphasis
will be focused on analyzing and understanding the relationship betueen

the program’s structure and the logical address trace.

We will not elaborate in great‘detail, bqt it should be pointed
out that,‘for hierarchicallg—structured virtual hénorg systems of wmore
than tuo levels, say K levels, and demand paging (those studied bg..
Madnick [M31)}, uwe can derive the effective page trace and thus the page
fetch function for paging to the i-th level from level i-1 (level 1 is

primary memory)l. To illustrate this, note that the resul tant fetch

39

policy at level i-1, F_, = fL,.fil.---ftlv

is essentially the‘page trace P, for level i. There is an easy
compression of F,_; to omit the values of fL.- ¢ and a

minor relabeling required to adjust for the difference in page size used
by M and M_; of P! = f, (N_, -1/N;). This

procedure is applicable for all levels 1 < i < k, and the goal of a

k-level memory system is to minimize Eﬁﬂ FFp,;x Tpy,; -

2.5.1 Replacement'Algorithm Considerations

Even though we will be primarily concerned uith the effect of a
program’s structure on the value of the page fetch function, FFp, we
need to consider some important effects of the page removal algorithm on
FFp. Many removal algorithms have been proposed and studied in the
past, such as First-In-First-Out (FIFO), Least Recently Used (LRU), and
Belady’s [B1] Optimum algorithm (0). We will define these removal
algorithms under demand fetch to illustrate hou particular aigorithue
may be specified in our general mode! of removal policies. and to
establish exactly uhat these algorithms mean, since they will be
referred to frequently in the remainder of the thesis. Furthermore, ue
have chosen to discuss this particular subset of removal algorithms
because they uwill enable us to present several important and well knoun
properties of removal algorithms uh}ch uwill evgntuallg be needed in our

research. Let:

40

1. P =vp'.p2,..., pL be a page trace computed from
A and N,
2. |Mp] = number of page frames in primary memory, Mp.
3. Mp'= the set of pages in Mp at time t.
4, Fd = fL,f%.....fb be a demand fetch policy as
previously defined. Recall that the
definition of Fd specifies.all the
mechanics of paging except the page.to be

selected for replacement.

The LRU removal policy, Ry, is defined for demaﬁd fetch, Fd,
as Ripy = r{pu,rinu,.-,rkpu where
rlpy = ¢ if) = ¢ or |Mp"Y| < IMpl; otheruise,
riru = a, where a is the page in Mp which uaé least recently

referenced.

The optimum removal policy, Ro, is defined for demand fetch, Fd,
Ro = rL ,r%,...,h% where r&a ¢ if fL= ¢ or
IMpt'l < IMp|; otheruise, r!= a, uhere a is the page
in Nth with the longest future time to next reference in the page

trace, P, from p’. If a ¢ Hp“'is never referenced again, .then

its time of next reference is assumed ta be w . If a page must be

removed at time t, and several pages haQe the same longest future time

to next reference (i.e., all equal to w) then remove any one of the

pages.

41

Under demand fetch, the First-In-First-Out replacement policy,
Repg i3 defined as
R | 2 L
FIFO = T EIFO» TFIFOr s+ CEFD where
r}wo = ¢ if f§= ¢ or |Hp““<|ﬂp|: otheruise,
'}wo = a uhere a is the page in Np“'uhich has been in

Np“' longer than any other page in anL

We nou present sevaral well known properties of these replacement

algorithms.

Lemma 1.

For a given page trace, P, primérg memory size of |[Mp| page frames,
and demand fetch policy, Fd, then the number of page fetches using any
valid removal policy Ra is greater than or equal to the number of page
fetches using the optimum replacement policy, Ro. The proof of this
Lemma can be found using various techniques in [A1,Ml] and is not

repeated here.

Inclusion Property:
Under demand fetch, Fd, any replacement policy is said to satisfy
the inciusion property if for all page traces, P,
a. Mp' (1) c Mp'(2) c ... c Mp! (n), uhere Mp' (j) is the
contents of primary memory Mp at time t if the size of Mp i9 j page
frames (i.e., |Mp] = j}, 1 < j < n.

b. At any time t after Mp has become filled, there is a strict

42

replacement ordering referred to as the "replacement stack," RS,
RS = rstl),retZ),...,reln), where rstf} = Mp' () -Mp' (j-1) for

j =1,2,...,n, and retn} is the page to be removed next.

The general class of dewand-fetch replacement algorithms which
satisfy the inclusion property are referrsd to as "stack algorithms® in
the literature. The class of stack algorithws, as noted by Denning

(D11, "contains atl the reasonable algorithwe.”

Lemma 2.

The number of page fetches required by any stack algorithm for»ang
page trace is a monotonic function of priwary wewory size, [Mpl, in page
frames. To see this, note that if there is a fetch at time t for a
primary memory of a given size, there must also bevonu at time t for
. every pr imary memory of snalléﬂ gsize. The proﬁf-@fgth?s Lgppa can. be

found in [D1,M11.

Lemma 3.

Demand fetch uith LRU removal and demand fetch ufth Dptimum
réﬁ]acemeht are stack algorifhui‘ The,proof'uf this Lenna-cab be found
Cin M1, | I

We will refer to-tﬁe.ahove we'l | -knoun properties several tiueslin
the rest of this thesis. At this point in time, us can immediately

conclude that, for any [Mp| and A,

43

a. FFp(|Mp|.N,A,Fd,Ro) < FFp(|Mp{,N,A,Fd,Ra) from Lemma 1, when
Fd, Ro are demand fetch and optimum removal policies and Fd, Ra are
demand fetch and any removal policies.

b. FFp{{Mp|,N,A,Fd,Rzy} < FFp{|Mp’|,N,A,Fd,Rpy) and
FFp({Mp|,N,A,Fd,Ro) < FFp(IHp'I.N.A.Fd.Ro) from Lemmas 2 and 3

where |[Mp| > [Mp'|.

Due to its simplicity, the FIFO replacement algobithm uas used in
many of the early paging systems. In recent tiﬁes it has been
discovered that FIFO has certain disturbing pecularities, such as the
possibility that the number of page fetches uwill double for a memory
size increase of one page frame {Al,M1]. Hence, FIFO is not a stack
algorithm, and we cannot claim that, for any A and |Mp],
FFp{|{Mp|,N,A,Fd,Rpeg) < FFp(|{lp'|,N,A,Fd,Rppg), where
IMp|>{Mp’ .

. Thus, we observe that the inclusion property of stack algorithms is an

important property.

Various forms of the LRU replacement algorithm.frequentlg occur in
contemporary virtual memory systems. Empirically, LRU replacement has
been found to closely approximate the paging performance obtained by the
optimum algorithm for many actu;l programs. The optimum policy is not
physically realiiable since it requires future knouledge about reference
behavior, but it can be used as a theoretical basis for performance

comparison with practical algorithms. Houever, the value of the page

&4

fetch functien,
FFp({Mp},N,A,Fd,Ro) = 2%, |fi| is physically realizable [BE]

since it does not require future . knowledge.

For any page trace P = ﬁ'.pz.....pl and'pfinarg memory size
|Mp|, Belady has given a one-pass procedure which uill compute the value
that lfgl would take on under optimum removal for any 1 g t <L |
' ui thout any knouledgé.of,theuﬁaée tracelaftnr»t {i.e.,
pt*! ,p™? ,...,pl). In particular, this procedure determines

whether |[fi| = 1 or 4] =.4, but it does not specify of uhat

page fL consists.

2.5.2 Program Structure Considerations

In this section, ue will extend the page fetch function performance

model to account for the program’s. structure.

The programs ue consider are defined to consist of a set of
m relocatable sectors of specified sizes. The.structure'of.a program is
specified by a pafticular load ordering sequence of its sectors in its
virtual address space. This ordering is called a gactor ordering SO,

and is defined as

45

S0 = S, ,S;,.+-, Sp

where S, denotes the first, S5, the second, and S, the last sector
loaded in the virtual address space. Thus a program can have m!
distinct structures, one for each possible sector ordering, SU.'
Houever, once a sector erdering is chosen, it does not change during the
execution of the program. Let |S;| be the size of the jth sector and
let L|S;| be the load address of S5; in the virtual address space of
the program. If the sectors are loaded contiguously in virtual memory,
then L[S; | = Zt% IS; 1. In any event, ue assume that the
structure of a program is completely specified by its sector ordering
S0, which is further defined to include the size and load addresses of
all its séctora. Therefore the sector ordering SO of a program
specifies the load sequence, S;,5;,..., S,, and the values of
IS;1 and L|Sj| for all 1 < j < m.

We have previously modeled the program behavior by its logical
address trace A = a',a%,..., a' and have shoun that the address
trace A and the page size N are sufficient to determine the page trace
P = p',pz...., pL. Houever, the address trace and hence the page
trace depends on the particular sector ordering chosen for the program.

t

. For example, if a , the logical address referenced at time t , is

t

Hithin sector j, then the value of a' depends on where S; is in the

gsector ordering SO.

46

In order to study the effect of a program’s structure on its paging
per formance, we uill wodel a program’s behavior by its gsector trace.
The sector trace ST of a program is defined to be the time sequence of

sector references and is given by
sT - s',52,..., st
where S! denotes the sector referenced at time t,

Given the logical address trace A corresponding to a specific
sector ordering S0, the sector trace ST can be easily éouputed from the
load addresses of the sectors. Then this_saﬁtbr ffaca can be‘used to
compute the page trace resulting from any program réstructuring
specified by a neu sector ardarjng if the sectors do not cross page

boundar ies.

In particular, given a program modeled by its sector tréqe ST and

its sector ordering S0, the page referenced at time t, p', is given by
p' = integer (LIS'[| /N),

where S' is the sector referenced at time t in the sector trace ST,
L|S'| is the load address of sector st given by the sector ordering
S0, and N is the page size. We are assuming at this point that

individual sectors do not cross page boundaries.

47

As long as this is true, we can define the restructuring of a
program as a partition of the relocatable sectors into logical pages.

In particular, let,

1. @ = {5,,5,,...,5m! be the set of relocatable
sectors making up a progranm.
2. n = the number of logical pages of size N of the

restructured program.

Then an n-uay restructuring of P is defined as a partition

I =ill;, M,,..., MIn) uhere II has the following properties:

a. v, Oi =Q, Minj=¢ for all i = j.
b. 2 ISk] < N for all Hi, 1 < i ¢ n.
Sk(ni o

Thus, ue see that a partition, I , specifies'the set of relocatable
gectors grouped into each logical page. MWe will assume that the set of
sectors in n; are loaded one after another into logical page 1, then
the set of sectors in n, are loaded one after another into logical
page 2, etc., until all the sectors are loaded in the logical address
span of the program. I[f 2 ISk]<N, then there uill be a hole or
Sk(IIi

a non-referenced area in the top of page i.

Therefore, given any partition, I , of the relocatable sectors into

logical pages and any sector trace, Wwe can compute the page trace

immediately. For example, let S' be the sector referenced at time t-
in the sector trace and let §'¢Il j, then the page, p!. referenced at

time t is j.

From thé above diacussion, ue obgerve that —- given‘ang'tuo—level
virtual memory system VY, with page size N, uith primary memory size of
IMp| page frames, with any valid page fetch algorithm Fa, and with any
valid page removal algorithm Ra-- ue have the value of_the‘page fetch
function FFp. This FFp is for a program uwhose structure iainodéied by
any parfition. ﬂa; and uhose reference behavior is modeled by a sector
trace ST. FFp can be uniquely defined in terws of the follouing
parameters:

FFp=FFp({Mp|,N, Ila,ST,Fa,Ral.

. For a particular virtual memory systenm, V. the values of IMpl, N,
Fa,Ra are fixed, and a given reference behavior fixes the value of ST.
Under these conditions, the value of FFp vecomes a function of the
different par{i{ions of relocatable sectors into pages. Houever, as
pointed out in Chapter 1, the number of different partitions becomes
astronomical for many: typical programs. For example, phase 1 of the AED
compiler has 18’ different partitions. For such programs it is
impossible from any practical point-of-vieu to determine the best
praogram structure (the Il tﬁat minimizes FFp) for a given referenﬁe

behavior by trying out all partitions,

43

From our discussion in Chapter 1, uwe knou that for a given sector
trace, a partition II which groups sectors into pages such that the
number of intersector references betueen pages of the partition is
minimized may not minimize FFp. In fact, ue presented a quite plausible
sector trace where such a [l would indeed be a very bad partition. One
major goal of this thesis is to find some way of computing the minimum
value of FFp over all partitions.

If‘upper and lower bounds on the value of FFp over all partitions
can be found, then a particular program structufe could be evaluated as
good or bad. Furthermore, those bounds uould provide a meané of
evaluating the ability of practical clustering procedures to produce a

good program structure.

The practical drauwback of the model developed for the page fetch
function, FFp, is that sectors are not allowed to cross page boundaries.
Even though this may not be a serious drauback, ue will eventually try
to extend the model of FFp to take into account the case when sectors

may cross page boundaries. .

58

2.8 Sector Fetch FuﬁctioﬁrPerforuance'Nbdcl-

We uill now define a measure on the information transfer betueen
the tuo Ievels‘of a virtual wemory égete§ which is independent of the
sectof ordering. In the next section, we uifll alplog this measure to
find theoretical upper and lower bounds nﬁ the value of the page fetch

function over all sector partitions.

[we assume that the basic unit of information transfer betueen
the tuo levels of a virtual mewory sgste# ¥’ is a sector instead of a
page, ue can formulate a wmeasure on the Fﬁterlevul.lovenent of]
information during the execution of a program shich is independent of

its sector ordering.

Let FFs, the nuuhuf of sector fetches which occur in a virtdal~l
memory system V;.dﬁring the procesaiﬁg of a sector trace ST, be defined
as the sector fetch function. The processing of a sector trace in V' is
called sectoring and can be interpreted similarly to the processing of a
page trace or paging inV as prévioualg discussed.

Since the virtual wemory systenm, Y', for sectoring is to be
modified slightly from the virtual memory system, V..used in our
discussion of paging, we need to define th§ notion of sectoring more

precisely.

51

The parameters of a demand sectored virtual memory system, V', are

defined as followus:

1. |Ms} is called the size of the primary memory, Ms.
[Ms| is the number of sector frames in the primary memory.
The size of these sector frames, say in bytes, need not be the
same. Instead ue assume that the size of a sector frame in
bytes is exactly equal to the size in bytes of the sector it
containsg, fhus, the size in bytes of any sector frame and of
Ms can vary uith time if the sector sizes are different, but
the important fact is that the number of sector frames iq Ms
is fixed and equal to [Ms|. In contrast, we should point out
that the size, |Mp|, of the primary mémorg, Mp, for a paged.
virtual memory system, V, was defined to be the number of page

frames of fixed size N in the primary memory Mp.

2. ST = S'.Sz.....SL is a sector trace of a
program.

3. Fd = f! .f%....,fb is the demand sector:
fetch policy of V',

4. R = r'.rz,...,rL is the sector removal

policy of V',

Let Ms! denote the set of sectors in primary memory at time t and

IMs' | denote the cardinality of this set.

52

Nou, demand sectoring and the value of the sector fetch function,
‘FFs, is defined as follous:
| a. IfS'e Ms™', then f:, -r'=¢
“and Ms'= MstL
b. I1fS'e Ms™!' and |Ms™!| < IMs|, then
fL=IS'l. rt= ¢ and
Me' = ns*! + {S'}
c. 1fSte Ms"' and lﬂshﬂ = |[Ms], then
¢h= ts'y, rt= (S} and
Ms'= Mst' + (S'1 - {S) uhere
Sc Mst!', and S is selected in accordance
Wwith the removal algorithm.

d. FFs = Zt, 1651,

The value of the sector fetch function FFs, for any sector trace,
ST, can be uniquely determined by simulating algorithm Fd and R for a
primary memory of size |[Ms] at each step of the seqtor trace.
Therefore, ue define

FFs = FFs(|Ms{,ST,Fd,R).

It should be clear that the value of FFs uill be the same for any
sector ordering, since the sector trace is independent of the sector
ordering. It should also be ciear, from the definition of [Ms] and
parts a. and b. of the definition of deﬁand sectoring, that the value of

FFs for a given sector trace is independent of the sector sizes. HWe do

53

not need to be concerned uith the implementation problems associated
uwith the variable sector frame sizes of ¥’', since ue Will be using the
sector fetch function only as an analytic tool, and since we can
determine the value of FFs through simulation without even knowing the

gsector sizes.

In the next Chapter, the sector fetch function, FFs, will be
utilized to provide upper and louer bounds for the page fetch functiaon,

FFp.

This empty page was substituted for a
blank page in the original document.

54

CHAPTER 3

PAGING PERFORMANCE BOUNDS

3.1 Introduction

In this chapter, ue uill investigate fhe effect of a program’s
gstructure on its paging performance in a Qirtual memory system. We will
begin by presenting theoretical upper and lower bounds on the value of
_the page fetch function, FFp(|Mp|,N, Na,ST,F,R), over all partitions,

[la, of relocatable sectors into logical pages f;r fixed values of the

other parameters.

Recall that the value of the page fetch functi‘on.
FFp(|Mp|},N, II,ST,F,R), is the number of page fetches a program would
experience in a two-level virtual memory égstem. ¥, with primary memory
size of |Mp| page frames of size N, using the page fetch and removal
algorithms, F and R, respectively, for a given sector trace, ST, and
program structure, [I. We would like to present a uniform method that
would bound the value of the page fetch function; FFp, over all
partitions, [la, of relocatable sectors ihtb logical pages for "any" fixed
values of the remaining parameters. The merit of such a uni form bounding

method uould be tuo-fold. First, it uould be applicable to any tuo-level

55

virtual memory system, VY, that is, any values of |Mp}, N, F, and R.
Second, it uould be applicable for any program behavior characterized by

a8 sector trace.

In contrast to a uniform approach, a sacon# approach would be to
bound the value of FFp over all partitions uhen certain or all of the
“remaining parameters are constrained. For example, ue couid assume that
iMp] =1, F = démand fetch, R = FIFO replacaﬁént and ST = ang'fixed
sector trace, and then derive bounds: on FFp~nvcr a4I Ma. Clearly, the
disadvantage of the second approach is that it would have quite |imited _
applications. Houever, one advantageaoi«the~seconﬂ~approach is that the
additional knowledge gained by fixing certain ﬁara-etars of the-virtual
memory system could permit the utitization of bouhdihg'pethods uhich
would result inltighter bounds. MHe will investigate both approaches in
this chapter. MWe have the conviction that.a uni form approach over all
virtual memory sgsteﬁ parameters and~al1 auctnrvtraceé is vital'for
general applicability., However, given a uniform bounding netﬁod. it
would certainly be worthuhile to investigate the possibility of obtaining
tighter bounds uhen feasible constraints on ce(tain parameters of the

virtual memory system are specified.

Ue begin by imposing congtraints upon the structure of the program,
that is, on the partitions, I , of reiocﬁtahfu ssctors into pages, and

then gradually remove these constraints.

56

3.2 Louer Bounds

Let us constrain the structure of a program such that each logical

page contains at most k sectors. [n particular, let:

1. Program = {5,,S,,...,5,1 be a finite set of
m relocatable sectors such that |5, | < N for B < i < m; that
is, the sector size in bytes is less than the page size, N, in
bytes; otheruise, the sector size mag varg.

2. ﬂa>= tn,, I, ,..., I} be any partition of
the m relocatable sectors into n logical pages where the number
of sectors | Il;| in page j satisfies the constraint

1 < | I} <k

3. Recall from our definition of Il that

p) IS;| < N must always be true.
S" el'li

Thus, we are currentlg.concerned uitﬁ all the partitions, Ila, uwhich
restructure a program such that each logical page has k or fewer sectors.
The sector sizes may vary, but the sum of the sector sizes grouped into a
page must not exceed the page size. ‘With this rather flexible gonstraint
on the allouable partitions, we can find a lower bound for the value of
the page fetch function, FFp, over all such partitions for a given sector
trace and any virtual memory system. We present thisllouer bound in

Theorem 1.

57

Theorem i

Given any tuo-level virtual wemory system V, with page size N,
primary memory size |[Mp|, and ang‘valid.ﬁagulreﬁlqcanent algorithm Ra,
any valid page fetch.algorithn~Fé; and any qactor-trbca STa, then, for
-any partition [la, of relocatable sectors into fogﬁca# pagas of the
program where each page contains atlnost k secfors. the minimum number of
page fetches given by the page fetch funcgiun--ﬁdui, FFp, has a louer
bound given by: _ v '
kaFFp(|Mp|,N, Mla,STa,Fa,Ra) > FFs (|Ms| = |Mp{#X,ST = STa,Fd,Ro)
where the value of the sector fetch function, FFs, is the number 6f
sector fetches wuhich otcur in a tuo-level viétuﬂ& wewory system V', with
primary memory size |[Ms| « |Mp| xk, the came qtctbf trace'STé, demand

fetch Fd, and optimuw repiacewent Ro.

Corollary la

The size of Mp in bytes is equal to the size‘of Ms in bytes if each

page is completeiy filled with exactly k sectors of the same size.
Proof of Theorem 1

Notation and properties

Let STa = x' ,x%,...,xt where x' is the sector referenced at

time t. For virtual wewory system V and(FFp5lat=-

58

1. Ma=1{10,, 0, ,..., 0} be any
partition of sectors into the n logical pages of the program
where each page contaings at most k sectors. (This
interpretation of a partition nill be useful later in this
thesis.) .

2. P = p'.pz.....pL be the resul tant page
trace computed uniquely from ST and Ila , such that if
x' €llj , then p' = j.

3. M) be the set of pages in Mp at time t
and H% = ¢. |

4. F, = fL.f%....fE be any fetch policy
where fin M;! = ¢ and [} | = the number of
pages in f} and x'e [N:'U f:],

5. R, = rL,r%,...rg be any removal policy

where r! ¢ N:' and x'¢ r} .

6. nL o= (nu fl P -rl

Given thé above notation and properties, we uWill first prove:
vLemma 4, |

For each Fa and Ra there exists a.démand fetch and removal policy,
Fd and Rd, for the FFs model such that

k*FFp(|Mp|,N, Ma,STa,Fa,Ra) > FFs(|Ms| = |Mp|*k,ST=STa,Fd,Rd).

Proof:
For the FFs model,; Fd and Rd uill be constructed by forming a

sequence of valid replacement and fetch policies

(F, ,R;), (F; ,Ry),..., (Fh,Rh) uhere:
1. Fp o= £, ot and £ = v g -
the set of sectors making up the set of pages in f\, for
1 <t <l, where | U.f |= the number of sectors in the set.
2. Similarly Ry = ey, P, .0, .and ‘
r% = Y rﬁ. for 1 S t <L.
3. F, =Fq = 4,¢4,...,¢% and
R, =Ry = rhord el f§r 1 <t <L uwhere
) = rho= 9 if xle H',','_; = and
rhom e if oty MY and MY < IMs)s
‘fg = x' and r} = be 'y iffx'f1f§l
Cand MY | = {Ms}; and
My = M5 vl)-r) to satisfy dewend

sectoring.

For reasons of expediency, the proof of Lemma 4 uill be divided into

tuo parts, Lemmas 4a and 4b.

Lemma 4a: , ‘
If IMs| > |iMpll, then for (F, ,R;) = (Fa,Ra), there exists a
valid sequence of sector replacement and fetch policies
(F, ,R,), (Fy ,Ry),..., (Fh,Rh) such that (Fh,Rh)=(Fd,Rd) and
de If} | 2_2%4 IfL|: uhere | |{Mp}l denotés'the maximum number
of sectors that could ever be found in Mp. (Note-that. in

Lemma 4, | [Mp|| = Mpixk,)

60

A proof similar to Lemma 4a has been givey by [M1]1 for pure paging
systems. Houwever, ue need the follouing proof to make our extensions

easier to understand.

Proof of Lemma 4a.
Thé procedure for constructing F; and R, from their immediate
predecessors F;; and R, in the FF; model for 1 < j < h is:
STEP 1.
Choose the amallest t such that fL, and/or rL, do

not satisfy demand sectoring.

STEP 2.

Let z° be the sector ix'} referenced at time t in the FFs model.

CASE 1.
Nou suppose that fL, does not satisfy demand sectoring.
la.
If t <L and z'¢ fL,, then set f} = 1z}, and
ﬂ;' = fﬁh v (fL,- {z’}). This construction insures that
ﬂf‘ contains the sectors already fetched by the

FF, model but not fetched by the FF, model (i.e. deferred sector

fetches).

61

ib.

[f t =L and z* ¢ f.,, then set f} = {2},

le. v _

If t <L and z'¢ f|, ,then set f| = ¢, and t' = ;4 u ¢, . Note that
this allous the reference x' = z' te: procesd because sector z'¢ M, . 2’
M., . since z'c Mp' and |Mj| = |Me} for al¥ 1 < j < h, and since

IMs| > IIMpll. The last fact, |Ms} > |iMsi], atiows M., to hold
}1IMpl| sectors; therefore ue- can a_l»-uagg» knp a sector in M| until
the corresponding page is removed from:{Mp-as shown in CASE 2 belou.
1d.

If t =L and 2°¢ f';_, » then set f_'; = ¢« The reference proceeds

due to the sawe argument as givem: in'lc.‘

In all subcases of CASE 1 note that F; is\v.ﬂ:idrsivnce

f}y/ I‘I'i" for 1 < t <L, that F; satisfies demand sectoring af

least up through time t, and that 2‘;;. If“ < Z'i., |f}_|l. .

CASE 2 ‘

Nou suppose that r}_l does naot satisfy demand sectoring.
2a. _

If t <L, and f] = {z'} and |M} | = Ms}, set

r} = {b’} for some b'e r}_, and

rt! = rbhu (rL6). Note that since

MY | = IMs| and £, = ¢,then rl, » ¢ and the

62

above operations are aluays defined. Also, note that r?'is

constrained here and in all subcases to contain only the sectors aireadg
removed in pages by the FF, model but not yet removed by the FF,

model; therefore, a sector uill not be removed from FF; until the
corresponding page is removed ffom FF,. This constraint is enforceable
since the memory size of FFs at each step j, IMj}| = [Ms], satisfies the
relation [Mj| > ||Mpll for 1 < j < h.

2b.

If t =L and ff = (2"} and M} | = |Ms|, then
r% = (b’ ¢ ri,.
2c.

If t <L, and f} = ¢ or Iﬂtj |<iMs], then set r} - ¢

and r?' = rﬁlu rL,.
2d.
If t =L, and f% = ¢ or IHﬁj | < |Ms], then r% = ¢.

In all subcases of CASE 2, note that R, is valid since
r}g Ntl for 1 < t <L, and that R; satisfies demand

sectoring at least up through timé t.

A final comment: if it ever occurs that z'e¢ rL, and
z'e fL,. then gsimply remove z° from both. This only reduces the
value of lf}l. and it takes care of the case uhen a page is fetched

into and replaced from Mp uwithout having all of its sectors referenced.

‘The above procedure, after being applied at most h times, must terminate

-

63

with a valid replacement and fetch policy pair (Ry,F,;) such that:
Tha b1 2 Th e

Hence, Lemma 4a is proved.

Choosing |Ms| = Iﬂhl *k satisfies Lemma 4a ﬁnd ue immediately get
Ty 1E 1 2 Z4h, 1fh 1| = FFs(iis|=|Mp] =k,S5T,Fd,Rd).

Lemma 4b.

L., 1€} | < keFFR{iNp|,N, Tla ,STa,Fa,Ra)..

Proof:

AR RIS AN TR I R D I [T IR TS

But [ufl] /7 |11 <k, since ‘qu_:l is the number of sectors in
£ and |f!| is the number of pages in f . Hence, | |

i, IF 1 < ke Zh, |f.| = k% FFp(itp},N,IIa,5Ta,Fa,Ral.
Lemma 4b is proved.

From Lemmas 4a and 4b, ue immediately get
k*FFp(|Mp|,N, Ta ,STa,Fa,Ra) > FFs(|Ms| = |Mp| =k,STa,Fd,Rd),

and Lemma 4 is proved.

From Lemma 1 of‘Chapter 2 , ue knou that

FFs(|Ms] = |Mp| =k,ST,Fd,Rd) > FFe(|Ms| = }Mp| =x,ST,Fd,Ro).

64

From Lemma 1 and Lemma 4 we immediately get
kxFF, (|Mp|,N, Ma,STa,Fa,Ra) > FF, ({Ns| = |Mp| »k,STa,Fd,Ro)

and Theorem 1 is proved.

Proof of Corolilary 1la.
The size of Mp in bytes is |Mp|xN, and the size of Ms in bytes is

{|Mp|xk) framesx (N/k)bytes/frame = |Mp|aN.

Nou, a feuw comments about Theorem 1. For any given program behavior
characterized by a sector trace, Theorem 1 provides a method of computing
a louwer bound on the inprovement in paging performance over all sector
partitions into logical pages, when pages are constrained to have k or
fewer sectors. The lower bound given by Theorem 1 is valid for any
virtual memory system. Another beneficial property of Theorem 1 is that
the louer bound is specified in terms of a stack algorithm. We knou that
Ro is a stack algorithm from Lemma 3. Furthermore, it is well knoun:
that, for all stack algorithms, the number of page fetches required to
process a page trace can be computed for all primary memory sizes from
one simulation run. For a general dfscussion of the procedure, the
interested reader should see [Ml], and fof a particular discussion of a
‘gimulation procedure for the optimum replacement algorithm which requires
only one péss through the page trace, reference is made to [BS5]. HWe
implemented the latter method for the.sector fetch function, FFs, and
from one simulation run through any sector trace ue were able to plot

FFa(|Ms| = |Mp] % k,ST,Fd,Ro)/k as a function of |Mp|.

65

Figure 3 conveys the general shape of this bound.

FFp T

FFs(|Ms| = |Mp] % k,ST,Fd,Ro)
k

/

-
—»

Mpl

FIGURE 3.

Lower Bound on FFp Given by Theorem 1

66

The utility of such a curve as shoun in Figure 3 is as follous.
Theorem 1 states that the number of page fetches given by the page fetch
function FFp(|Mp|,N, Ma,ST,Fa,Ra) for the same sector trace cannot be
reduced belod the curve shoun in Figuré 3 by any reordering of sectors

into logical pages regardless of the paging algorithms employed.

Given that we have a procedure for louer bounding the effects of a
program’s structure on its paging perfornahce in any virtual memory
system, an interesting question is, just hou tight is this bound for
popular virtual memory systems? If Fa is constrained to be demand fetch
and Ra is constrained to be LRU, FIFO or Optimum replacement, then ue
could prove, by example, that the lower. bound on FFp given by Theorem 1
can be the greatest lower bound for certéin sector traces'andronlg a
lower bound for others. MWe will show that it can be the greatest lower

bound in a follouwing example later in this thesis.

We uill present and discuss empirical results in Chapter B uhich
illustrate that the bound given by Theorem 1 is indeed rather tight for
real programs running in a paged virtual memory system using demand fetch
and LRU replacement. HWe Qill not discuss particular empirical results in
this chapter because ue uwant to relate the results to intersector
referenée models, to clustering procedures and to theoretical bounds at
the same time. Intersector Reference models uill be developed in Chapter
4 and clustéring procedures in Chapter 5, and in Chapter 6 we shou the

results of applying these methods to restructure real programs such that

67

the resul ting number of page fetches is quite close to the theoretical
bound developed in this chapter for most memory sizes and popular paging

algorithms.

Nou consider restricting the fetch and replacement policies of FFp
to be demand fetch and LRU replacenent; Under this restriction, cén‘ua
replace the optimal sector replacement policy, Ro, of the sector fetch
function, FFs, by some less efficient policy such as LRU and hence |
produce a tighter lower bound on FFp over all partitions? This line of
logic led to the following question: is it true that

kxFFp(|{Mp|,N, NMa,STa,Fd,Ripy) 2 FFs(|Ms| = |Mp} = k,STa,Fd,Ripy}?

It seems intuitive that the above conjecture would be true even for
the case where each logical page contained éxaﬁtlg k sectors. Here, the
sectored memory could contain exactly the same number of sectors as the
paged memory could contain. Futhermore, at most k sector fetches would
be required to bring into Ms the same information hrought_into Mp by one
page fault. One might expect that, for programs having a good structure,
i.e., all pages contain sectors that are used together, each ﬁage fetch
should produce k sector fetches. Hence, we have divided the value of FFe
by k in the conjecture. In spite of its intuitive.appeal. we can prove
that the conjecture is not true for ail program behavior. In 6rder td

validate this claim, we present the following Theorenm.

68

Therem 2

For any tuo-level virtual memory system V, uith page size N, primary
memory size |Mp|, demand fetch Fd, and LRU replacement Ry » then
there exists a sector trace ST, and a partition Il of relocatable sectors
into logical pages where each page contains k sectors, such that
kxFFp(|Mp],N, T ,ST,Fd,Rpy) < FFs(|Ms| = |Mp] xk,ST,Fd,Ripy),
where the value of the sector fetch function FFs is the number of sector
fetches uhich occur in a tuo-level virtual memory V’, wnith primary memory
size |Ms| = |Mp| x k, using demand fetch Fd, LRU replacement R gy,

and the same sector trace ST.

Proof
Consider the virtual memory system uith the parameters:
IMpi = 3 pages
k = 3 or each page of size N contains three sectors.
{Ms] = |Mp| %k = 9 sector frames
F = demand or Fd |
R = LRU or Ripy
Program = {abcdefghijkl}, a set of 12 relocatable

sectors of size N/3.
ST = (adgjklhiefbc)z.
IST| = 24

AAHARAAAAA KA IAAARA KKK RAKKAK IR KKK ERR KKK KKK KEARRKKKA KKK KKK KRR KR

69

Consider Il =labc,def,ghi, jk1} uhere A = abc, B = def, etc. Then

for ST = adgjkthiefbc: adgijkthiefbc

P = ABC 0DD CCB BAA ABC DOD CEB BAA
Fd = ABC D83 8808 8A0 980 D88 888 9A0
Ry = 099 ASS 806 808 088 ABO 880 809
M\ = ABC DDD CCB BAA ABC DDD CCB BAA
AB CCC DDC CBB BAB €CC DBC CBB
‘A BBB BBD DCC CCA 888 88D 0OCC

Lo

FFp = Z%fl |f;| = 7 page fetches

A AAK KA IAARACR AR

AR NIRRT R RK

Nou, ue compute the number of sector fetches for the same sector

trace.

ST = adgjk lhief hcadg jkihi efbc

Fd

adgjk thief bcadg jklhi efbc
Ripy = 00008 8888a dgjk! hiefb cadg
HMs

]

adgjk lhief bcadg jklhi efbc
adgj klhie fbcad gjklh iefb -

adg jkihi efbca dgjk! hief

ad gikth iafbc(aégjk.rhie

a dgjk! hiefb cadgj kihi

adgjk lhief bcadg jklh

79

adgj klhie fbcad gjkl
adg jklhi efbca dgjk

ad gjklh iefbc adgj

L o]

FFs = 228, |t!| = 24 sector faults.
so FFp = 7 < FFs/k = 24/3 = 8 QED.

AORAARA AR AKAKKAAA KA AKAK KA KA KIKIARA KA KKK KRR KRR EAR KRR KKK

It is interesting to observe that, if the above sector trace,
ST = (adgjklhiefbc)?, consisting of tuwo cycles through the same sector
reference pattern, uwere generalized to a sector trace
ST = (adgiklhiefbc)", consisting of n cycles, then FFp = 3+2n and
FFs = 12n. Hence, FFp is approximately a factor of 2 less than (FFs)/k
for large n. These last tuwo values of FFp and FFs are easily verified by
observing that the paging and sectoring simulations of every cycle after

the first are respectively the same.

In our empirical studies of the paging behavior of real programs, We
found instances uhere
kxFFp(|Mp|,N, II,ST,Fd,Rpy) < FFs(|Ms] = IMp| »k,ST,Fd,Rpy) -
These instances occurred for memory sizes |[Mp| in the fegionvof lou
paging rates under good program structures, i.e., under partitions uhich

produced low values for FFp.

7

We point out in passing that other similar attempts to bound FFp for
certain memory constraints faited. Forwoxaupie.
~ kaFFp(|Mp|,N, T ,ST,Fd,Repo) is not louer bounded by
FFs(|Ms| = |Mp| xk,ST,Fd,Rego).

The interested reader may verifg this by going through the
simulation in the proof of Theorem 2 with Rgyro and

ST = (a def bc ghi jki de), while keeping everything else the same.

3.3 Upper Bounds

Hou large can the value of the page fetch function become by
choosing the "worst” program structure, that is, the program structure

which results from the partition, II, thaf maximizes the value of FFp?

Theorem 3

Given any tuo-lievel virtual neﬁorgvsgsten V; Hith page.size N,
primary memory size |[Mpl, denand.fetch Fd, LRU'replaceneﬁt Ripy » and
any sector trace STa, then for any partition. Ita, of the relocatable
gectors into logical pages of the prograi,.the maximum number of page
fetches given by thé page fetch fﬁnction Fvais upper bounded by
FFp(|Mp|.N, Ta,STa,Fd,Rpy) < FFs(|Ns| = {Mp},ST = STa,Fd,Ripy),
where the value of the sector fetch funcfion. FFs, is the number of
sector fetches uhich‘occur in a tuo-level virtual memory system V', uith

primary memory size |Ms] = |[Mp|, demand fetch Fd, and LRU replacement

72

Rigy » using the same sector trace ST = STa.

Prpof: Let:

ST = xl,xz,...,xL

be any sector trace.

nm=tu,, M,..., M,} be any partition of sectors
into pages.

P = p',pz.....pl be the resultént.page trace
computed from II, and ST.

HL = contents of memory of FFp model at time t.

M. = contents of memory of FFs model at time t.

Fp = f,,f%,...,f, = F4 of FFp.
Rp = r'p .rzp ,....l"lb = RLRU of FFp.

Fs = tL ,#2 ,...,fY = F, of FFs.

Rs = rl ,r2 ,...,rL = Ry of FFs.

.Suppose. at time t in the FFp model, that p'- z, the page
containing the-set of sectors II, is referenced. Then, at time t in

‘the FFs model, x'= z' is the sector referenced, where sector z' ¢ II, .

CASE 1.

Suppose p‘e thl. Then f;= é.
If x'e Ms™', then f}= ¢, and |f) | = |} 1.
It x'¢ Ms'!', then t\ = b’y Hsf'. and

PEL 1 < 16L 1.

CASE 2.
Suppose p'y Mp'' . Then f,= {z}, and
ri= (b} c Mp™' under LRU.
If x'¢ Ms*!, thlen fl= 1z'), rl=a ") ¢ #pt! under
LRU, and |f| = 1£} 1.
If x'e Ms"!, then f;= ¢, and |f;| > |fl|; This
condi tion causes a problem. '
He will prove that p'¢ Mpt' and x'e Ma'! can never occur

together.

Assume x'e Ma"'. Let t' < t, be the largest time, t', such
that x* = x', then p'c Mp'. Since p'y p*!, then
there occurred at least |Mp| distinct page references to Mp in the
interval {t-1-t',t-1) none of which were p'. Therefore, these were at
Jeast |Ms]= Iﬂpl distinct sector re*eruncea to s in the interval
(t-1-t’, t-1) none of which were x' and x'e Me"! but this
contradicts Rs = Rigy. Thus, x'w Ms™! it ply mpt!,

Hence, Zh, 1f\] <3}, {fl] and the Theorem.

is proved.

Corollary 3a

FFs(kx |Mp|,ST,Fd,Ro)/k < FFp({Mp|,N, Ila,STa,Fd,Riy) < FFs(iMp],ST,Fd,Ry)

Proof:

Follous immediately from Theorews 1, 3.

74

Theorem 3 provides an upper bound on the value of the page fetch
function, FFp, over al) partitions, Ila, of the relocatable sectors into
logical pages for virtual memory systems which employ the popular demand
fetch and LRU removal algorithms. Under what conditions will the upper
bound given by Theorem 3 be the |east‘upper bound or even a tight hpper

bound?

Let the interval of time betueen a fetch of any page and the
subsequént removal of that page be called a'page lifetime. Now, consider
a partition, Ilc, of sectors into logical pages, such that, during a
lifetime, of any page, only one of the sectors of that page is
referenced. Houever, let this one sector be referenced any number of
times in a given page lifetime, and let the particular sector uhich is
referenced vary from lifetime to lifetime. MHe will say that such a

partition satisfies the page lifetime constraint.

For any partitions uhich satisfy the page lifetime constraint, it is
obvious that Theorem 3 is the least upper bound. This implies that the
extent to uwhich partitions exist uhich-groupvsectors together uhich are
not used close together in time is.fhe extent to which Theorem 3 uill

produce a tight bound.

Since LRU is also a stack algorithm, the values for the upper bound
given by Theorem 3 can be computed for all memory sizes by one simulation

of the sectoring activity for FFs(|Ms| = |Mp|,ST,Fd,Rpy).

75

Therefore, by applying Theorems 1 and 3 a graph similar in form to that
shoun in Figure 4 can be obtained. The gap betusen the tuo curves
represents the range of values of the -page fetch function, FFp, over all
partitions uhen demand page fetch and LRU page replacement policies are
employed. For a particular program structure..the value of FFp in
rélation to thg upper and |ouer bo&nds~can be used to evaluate the

potential of pfogran restructuring.

In Chapter 6, we uill present empirical results which shou that the
.bounds given by Theorém 3 are quite reasonable for several actual
programs. This implies that real programs can have sector arrangeneﬁts
uhich result in a lot of page fetches. In fact we found in our studies
of real programs that the actual value of the page fetch function can
vary by a factor of tens for two different orderings of séctors into the
logical pages. All of these results for real programs are given in
Chapter 6. Houever, ué uill nou present an example which uill shou the

logistics of applying Theorems 1 and 3.

3.4 Simple Example of Computing Bounds

We have chosen a very simple, compressed sector trace of a rather
smal!l program so that (a) ue can illustrate the actual computation of the
upper and lower bounds and (b) we can easily obtain the best and worst

sector partitions. Note that this example does not represent any of the

76

FFp A

Upper Bound giver. by Theorem 3

> IMpli

FIGURE 4.

The Allouable Yalues of FFp as a Function of IMpi

77

real programs we tested, since in thuose cases, the: minimum number of
references in any sector trace was over 1/2 wmillion. Even though this
example does not represent am actual program, it does indicate that, even
when 2/3 of this program can fit inte primary wemory, there is a wide
‘variation in its paging behavior over sector partitions. 1t also
illustrates that there are simple secibr"tracesruﬁere the bounds given by
Theorems 1 and 3 are simultanecusiy the‘greatucf lower bound and the

smal last upper bound, respectively.

Example of Results:
Consider a virtual memory system uith parétuterhz
Inpl = 2. ER
k=3 sectors per page.
F = demand or.Fd.
R = LRU, or Rjpy -
Program = {abcdefghil, a set -of 9'reloc§tsule
sectors of size N/3.
ST = aehae Ehdgb dgaeh bficf ibeha dgadg.

IST| = 38.

AR KKK u*nuu*n**nw“mmswmnw-

78

Applying Theorem 1, we compute FFs(|Ms|=6,S5T,Fd,Ro):

ST = aehae hbdgb dgaeh bficf ibeha dgadg

!
a
[}

aehBB BbdgB BGBBG BficB 8888a dgbBso

oo
9
]

00008 PPAPO 00BA8 Bdga® PBBOC fi0G

M = aehae hbdgb dgaeh bficf ibeha dgadg

aeha ehbdg bdgae hbfic figeh adgad
aeh aehbd gbdga ehbfi cfibe hadga.
aehh hhbdg aehbb bcfib ehhhh
aee eehbd gaehh hhcfi beeee
aa aaehb dgaee eehcf ibbbb
Theoretical minimum = 12/3 = 4 page fetches.

0K 000 A0 R K R KK AR ORI AR A K I AR AR AR AR R KRR AR RK

Applying Theorem 3, ue compute FFs(]HsI-Z.ST,Fd,RLm,)z
ST = aehae hbdgb dgaeh bficf ibeha dgadg
F4 = aehae hbdgb dgaeh bficf ibeha dgadg
Riru = @Baeh aehbd gbdga ehbfi cfibe hadga
M = aehae hbdgb dgaeh bficf ibeha dgadg
aeha ehbdg bdgae hbfic fibeh adgad
Theoretical maximum = 38 page fetches.

AR AN AR A KK A AR AR KRR IR R AR KRR KKK KK KR KKK

There are: 91 = 288 distinct uways of
(313 (3/3)!

reordering the 9 relocatable sectors into 3 pages.

AAACACR AR A KA AR AR AR KKK KKK KRR KKK KK ERKK K KRR KRKK

7

~ Consider I; =~ labc def ghi} where page A = abc , etc.
Nou ue compute FFp(|Mp| = 2, N, ,ST,Fd,Rpy).

For ST = (aehae hbdgb dgaeh bficf ibeha dgadg), we get

P = ABCAB CABCA BCABC ABCAB CABCA ‘BCABC
Fs = ABCAB CABCA BCABC ABCAB CABCA BEABC
Rigu = BBABC ABCAB CABCA BCABC ABCAB CABCA
M, = ABCAB CABCA BCABC ABCAB CTABCA BCABC

ABCA BCABC ABCAB CABCA BCABC ABCAB

FFp = Z%., |f}] = 38 page fetches for I, = theoretical
maximum, |

. TAAAARK AR A KKAKARIORAR R KR AR KR RN KRR RERRIRKREREREREK KK

Consider II, = {dag beh cfil, uhere page A = dag .-etd.
Nou ue compute FFp(|Mp| = 2, 0, ,ST,Fd,Rpyl.

For ST = (aehae hbdgb dgaeh bficf ibeha dgadg), ue get

P = ABBAB BBAAB AAABB BCCCC CBBBA AAAAA
F - ABOSO 00000 PPB8E8 OCOPG CPPOA POGOO
R = 080860 06000 POCOD BACDG PPGOC BBEVD
M, = ABBAB BBAAB AAABB BCCCC CBBBA AAAAA

AABA AABBA BBBAA ABBBB BCCCB BBBBB

FFp = Zaﬁ||f3|= 4 page fetches for II, = theoretical
minimum.

AEAAAAHK AR ARAAAAK KA RAAIKAAA KKK KA KIR KRR K KKKK

In the above example, the theoretical minimum value of FF, = 4
from Theorem 1 and the theoretical maximum value of FFp = 30 from
Theorem 3 were found to be the greatest lower bound and the smallest

upper bound respectively over all partitions, II .

3.5 Extensions to Lower Bounds

In section 3.2, lower bounds were derived for the case where each
page contained at most k sectors. In this section, uwe would like to

relax this constraint.

What were the problems associated with the constraint that pages of
a partition must contain at most k sectors? There are no problems uhen
the sectors are all the same size. Houever, uhen the sizes of the
sectors vary considerably, it becomes more complex to determine the best
k. For example, if one chooses k to be, the maximum number of sectors
uhich could fit into ahy page; then the set of all partitions are

allouable, but the value of

FFs(|Ms|={Mp| *k,ST,Fd,Ro)
K

81

might not produce a bound which is as tight as ue can produce. This is
due to two reasons. First, since [Ms}={Mp| % k, the size of MNs l‘ght be
larger than necessary to aluays hold the sectors present in pages of Mp.
Note that some pages of Mp might hold fewer than k sectors and that FFs
is a monotonically decreasing function of {Ms|. Second, perhaps we can

reduce the divisor k uhen sowe pages must contain fewer than k sectors.

On the other hand, if one chooses k to be sowe value leés than the
maximum number of sectors uhich could fit into a page, then some of the

partitions are ni_:t considered.

We will nou consider all partitions of relocatable sectors into
pages. The only coﬁsfraim is as Mfor‘e,v‘ |

z 1Sjl < N for atl i, uhich simply

S; ell,
states that the size of any block of the partition in bytes must be less
than the page size, N, in bytes. Note that this set of all partitions i.o
the same as the set of partifinné sihen k is chosen equal to the maximum
number of sectors uhich could Wicaﬂg fit into ima. Houever, we |

will find tighter bounds,

Consider a program uhich consists of m relocatable sectors of
various sizes. MWe define the "sector size vector®, 55, to be a sequence
of sizes of these m sectors, S5 = |5,],1S;},...,}Sm}, such that

ISi] < ISj| for alt i < j, 1 < j,i < w, where |Si| is the size of Si in

82

bytes. Recall that:

IMp| is the number of page frames in the
paged memory, Mp.

N is the page frame size in bytes.

Now we define a function, f,, in terms of [Mp|, N, and SS:
£, (|Mp),N,SS) = the maximum number of sectors of sizes in S5 which can
be packed into a set of |Mp| page frames of size N bytes each, when

gectors are not allowed to cross page boundaries.

Example.
Let:
IS;1 = ISz 1 = |S3| = 1888 bytes; |S,| = 2008 bytes;
IS5 | = 1Sg | = 38088 bytes.
N = 4888 bytes
then,
£, (1,N,SS) = 3
£, (2,N,55) = 5
£, (3,N,S5) = B

Since the computation of f; can become a complex combinatorial
problem in itself, ue will give an easy method of computing an upper

bound for f,.

The function‘fﬂ is defined in terms of IMp|.N,SS as follous.
£ (IMp|,N,S5) = W if and only if
%, ISi] > IMplaN and I [ISi] < IMp| .
It should be clear that f,(lﬂp‘;N,SSJ <] t|Mp},N,S5) for atll
[Mp].N,S5S. For the above example, ' .

£ (1,N,S) = 4

£ (2,N,5) = 5

4 (3,N,5) = 6.

Let us interpret a particular foru of f3 that isg, if [Mp] = 2,
then f, (2,N,SS) is by definition the maximum number of sectors which

can be packed into 2 page frames of N bytes each.

We can use f; ({Mp}|,N,SS), ¢, (2,N,S55) and the sector fetch

function. FFs, to lower bound the page fetch function, FFp, as follous:

Theorem 4.
Given any tuo-level virtual memory system V, uith page size N,
primary memory size |Mp{, any valid page replacement algorithm Ra, demand

page fetch Fd, and any sector trace STa, then for any partition Illa of the

relocatable sectors into the logical pages of the program, the minimum

number of page fetches given by the page fetch function FFp is !uuer

bounded by

FFp(|Mp].N, Ma,STa,Fd,Ra) > (FFs({Ms] = ¢, (JMp|,N,SS),ST,Fd.Ro)) -~ A,
"“‘L‘L_T*- 0 .n".ss1 !)“!/"2

84

where 4 = 2f, (1,N,55)-f, (2,N,SS), and
t, (Z,N,SS)

where the value of the sector fetch function FFs is the number of sector
fetches uhich occur in a tuwo-level virtual memory system V', with brlnarg
memory size |Ms| = f,; (|Mp],N,SS), using demand fetch Fd, optfmum
repiacement algorithm Ro, and the same sector trace ST = STa. The

function f, is as previously defined, and SS is the sector size vector.

Corollary 4a

FFp{(|Mp|,N, IMa,STa,Fd,Ra) > (FFs{|Ms| = f, (|Mp},N,55),ST,Fd.Ro))-1
. f, (2,N,S5)/2

Coroltiary 4b

FFp({Mp|,N, Ma,STa,Fd,Ra) > (FFs(|Ms| = W, ,ST,Fd,Ro)-1,
W, 72

where W, equals either f, ({Mp|,N,SS) or 4 (|Mp|,N,S5}, and W,
independently of W, equals either f, (2,N,SS) or f| (2,N,SS).
Corollary 4b says that we can louwer bound FFp in terms of the easily

computed function fY.

Corollary 4c

FFs(|Ms] = |Mp] %k, Ma,STa,Fd,Ro) < FFs(|Ms| = ¢, (I{Mp],N,SS),ST,Fd,Ro)
K f, (Z,N,55)/2

Corollary 4c states that the bounds given by Theorem 4 may be tighter
than the bounds given by Theorem 1 where k is the maximum number of

sectors which can physically fit into a page.

Proof of Theorem &

Notation and properties

Let ST, = x! .x2 ,...,xL where x' is the sector referenced

at time t. For virtual memory system V and FFD,Y jet:

1. 0, = tm;,, 0, ,..., M} be any partition of sectors into
the n logical pages of the program uhere each page contains any

number of sectors such that T |Sj] < N for
. S ,dli

1l <i <n.
2. P = (p',p?,...,p') be the resultant page trace computed
uniquely from ST and Ma , such that, if x'e Hj , then p' = j.
3. Fa = f,,# veee,fL be the demand fetch policy, uwhere
fle Ma and fL¢ Mp*' and |f1| =1 or 8, the
number of pages in £ . Note that we have chosen to denote Fd
for FFp by Fa to a&oid notational conflict uith the Fd for FFs.
4. Ra =ry ,ri ,...,rl be any removal policy where
rle Mla and r'.g ﬂp“- and Ir',l =1 or 8, the |
number of pages in r'..
5. M, be the set of pages in Mp at time t and M) = B.

B. My~ tMplu flr-rl.

First we prove Lemma 5.

86

Lemma 5:
There exists valid demand fetch and removal policies, Fd and Rd, for

the FFs model such that

FFp(|Mp|,N, Ma,STa,Fd,Ra) > FFa(|Ms| = f, (IMp|,N,SS).ST,Fd,Rd)- 4 ,
f, (2,N,58)/2

uhere A = 2f, (1,N,5S)-f, (2,N,SS)
f, (Z,N,SS)

Proof:
For the FFs model. Fd and Rd Wwill be constructed by forming a
sequence of valid replacement and fetch policies

(F, ,R;), F;, ,R;),..., (Fh,Rh), uhere:

1. Fp = ¢, ,6,...,f and £} = glf!) =
the set of sectors making up the page in f:. for 1 < t < L.
2. Similariy R} = rﬂ.r%,....rﬁ and
rlo=glrl), for 1 <t < L.
3. Fh =Fd = f4,#5,..., %5 and
Ry =Ry =rh,rd,....rh, for 1 < t < L uhere
£} -f,', =0 if x'e H’;‘; f:, = x' and
rho= 0 if gty and MY |<IMs);
fL = x' and r& = {bl c ﬂ%' if
x' ¢ MY and MY | = |Ms|; and
My = ;' v fi)-rl to satisfy demand

sectoring.

87

Since [Ms|=f, (|Mp|,N,SS) > [IHpll, Lemwa 4a says that the above
construction exists such that
T 1612 25 1t

Therefore, swe have Fact 1:

Fact 1.

s 1eh 1 2 2N ey = FRs(iMs)=f, (|Mp],N,SS),ST,Fd,Rd).

Nou, let's prove Fact 2..

Fact 2. _
%, |f?| < ((f, (2,N,SS)FFp({Mp],N, Mla,STa,Fd,Ra)+f, (2,N,SS) =a)}/2

Proof.
Thy 10 = 2hy leteh)= L, 1fHlatR)] |
since |fl] = 1 iff Jg(fl)| > B and || = B iff
gt = 8. | |
Note that |g(f:)| ias the number of settors~in the page apecifiéd by f:.

Also, note that Y., |l |=FFp(|Mp|,N, Nla,STa,Fd,Ra).
Nou let’s compress Fa = £ L8ft to>get

Fo = fa of2 ,....f} by taking out all the f| = 8.

88

Cleariy 2%4 If;|- 2“.1 |f:| and

hy U6 Hatedy = 24, 16 ateh)= 2h, 16).

Fur thermore, note that, under the definition of demand fetch, no two
successive page fetches can be to the same page. This is obvious, since
under demand fetch a page is fetched and is kept in primary memory until

it has to be removed to make room for another page.

Therefore no tuwo successive values g(f:) and g(f?') can

be the same.

Nou, the sum ZEI If: ||g(f:)| is clearly maximized

-if, for all odd t, Ig(fr)l is equal to the maximum number of

sectors which can fit in a page, and if, for all even t, Ig(f:)I is
equal to the next maximum number of sectors uwhich can fit in a page.

Thus,
L t g el 't 't L ”® ’
2|,| lfl l-— E,_l 'fa |'g(f.)l < 2',1 Ifa 'fl (Z.N!SS) for even L . and
2
zl. 'ft I . 2L’ lf't Il (f") L-1 t ’ -) v
tel 1 = Ly 1%, gtif, I < 2,,, lfa Ifl (Z.N,SS)"'.f. lfl (I,N.SS’
2

for odd L°'.

89

Note that f, u.u.sm-f.. {1,N,S51 4§, (Z‘Z,N:,SSIJ, (g-,u.sm. and thus
by 18 < (z,g,ssy i, 16! | +f, (1,N,S5)-f (z,g,ssr

Sfor all L’.

Hence, ZY., i1

< (f, (2,N,S5) FFp(|Mp|.N, Ta,STa,Fd,Ra)+(2f, (1,N,S6)-f (2,N,55))/2

and Fact 2 is proved.

From Fact 1 and Fact 2, ue have

FFp(|Mp|,N, Ma,STa,Fd,Ra} > FFsi|fts| = £, (|Mp},N,55),57T,Fd,Rd)- 4
v T, (2,N, 55172

This proves Lemma 5.

Nou, from Lemma 1, ue knou that,

FFs(jMs] = £, {|M¥p|,N,SS},ST,Fd,Rd) > FFe(|Ns| = f, (I1p|,N,SS),ST,Fd,Ro)
Therefore, Theorem &4 fol lous iue,diatelﬁ. QED.

Proof of Coroliary 4a:

It follous immediately from the fact that

8 < 2f, (1,N,S5)-f, I2,N,55) < 1.
f, (2,N,55)

30

Proof of corollary 4b:
Corollary 4b follous directly from Theorem 4 and Lemmas 2, 3.
Lemmas 2, 3 give,
FFs(|Ms|=f, {({Mp},N,SS),ST,Fd,Ro) > FFs(|Ms|=W, ,5T,Fd,Ro)
since W, > f; (|Mp|,N,SS). Thé divisor goes through since

uz > f| (Z,N,SS)-

‘Proof of corollary 4c:
Coroliary 4c follous from Lemmas 2, 3 since

IMp| %k > £, (|Mp],N,SS), and k > f, (2,N,SS5)/2.

To compute the lower bound of Theorem 4, simply make one sector
simulation run through the sector trace and record the number of sector
fetches for each possible sector memory size. Then for a particular
value of |Mp|, use f; (|Mp|,N,SS)} to select the proper value of FFs and

divide by f, (2,N,SS) to get the bound.

If the objective is to lower bound FFp over ali partitions, then
Theorem 4 may give tighter bounds than Theorem 1 if the range of sector
sizes is large. For this is the case when f; (|Mp|,N,S55) < kx |Mp].
Furthermore, f, (|Mp|,N,SS) can become substantially less than kx {Mp]
for large values cof |Mp|. The term, f, {2,N,55}/2, in the louer bound
is the average value of k for the tuo pages having the largest number of
sectors. MWe cannot extend this average over all pages, since every other

page fetch could be to the page containing the largest number of sectors,

a

while every intervening fetch could be to the page having the second
largest number of sectors. Even if all pages are fetched, if the above

behavior occurs sufficiently often in the execution of a program, then we

still cannot average over all pages.

Is there any Way to compensate for the case when some sectors are
much larger than others? For ease in the follouing discussion, let the
average vaue of k for the two pages having the (argest number of sectors,
f, (2,N,55)/2, be denoted by k', and let the average size of these
sectors be denoted by N/k'. In order to illustrate some typical values
one may encounter, we point out that for the real programs ue
investigated, the values of k’ were on the order of 3 to 6, and, hence,
N/k’® uas 1/3 to 1/6 of a page for a page size of 4896 bytes. Nou let’s
assume that we are given a particular program, Q, and ue éompute the
value of N/k’ and find tﬁat there are several sectors uhose sizes are
considerably targer thaﬁ N/Kk*. Nou'consider what happens if ue break up
these large sectors intoc as many subseétors.as ue can uithout increasiﬁg
the value of k’. This neu program Qith the targe sectors replaced by the
smal ler subsectors is called @*. Given O*, it is still quite easy to
compute a sector trace over 0* from the address trace. MWe call such a
‘sector trace ST*. Using this sector trace, ST*, and the program,

Q*, we can abplg Theorem 4 to compute the lower bound on the page fetch
function, FFp, over all partitions, Ila*, of sectors of 0' into
logical pages. MWe present two important observations on this louer

bound:

92

A). This lower bound is valid over all partitions of sectors of
Q° into pages. Therefore, the lower bound is certainly true for all
the partitions over Q" that are constrained to comply with Q. That is,
if a page in a partition of Q* contained one subsector of a sector,
then it would have to contain all the subsectors of that sector. This
restriction on the set of all partitibns over ﬂf simply produces the
set of partitions which result uhen reprogramming is not alloued.

Let Mar* denote any such restricted partitions of O*.

B). This louer bound using ST* and Mar* over U* is probably
much larger for most real programs than the lower bound comﬁuted by
Theorem 4 usihg ST and Ila over 1. The rationale for thiélis simply that
ifluill take several subsector fetches to bring into the sectored memory

the same information that could be fetched by one large-sector fetch.

Observation B need not necessarily be true; that is, the louer
bound uhich results from breaking up the large sectors could
theoretically be smaller than the lower bound computed by not breaking up
the large sectors. However, this presents no practical_problems. Since
both methods will produce valid lower bounds, we simply compute both and
use the greater louwer bound. In our analysis of real programs, we found

that the lower bound computed from breaking up the large sectors uas

substantially larger than the lower bound computed when the large sectors.

were not divided.

93

Me will nou formalize the notions of 0 and ST* and define the
relationship betueen 0 and @ and betueen ST and ST*. Then, Theorem
5 is presented, which states that the:pagevfctéh.function. FFp, is louer

bounded in terms of the sectoring behavior glvan‘bﬁ‘STf.

Let, Q = O,V O, ={set of w relocatable sectors of any progran}
uherevﬂ|-15| \SpveveesSids Qp=iSpy » Spupeee 5wl
such that f, (2,N,55)/2 = k/2 and |Si| < ISj| for all Si e O, and
Sj e Q,.
Let, SS = |r)l,lralsecesirk b Irilsccsslry | be the sector
size vector of O; that is, r;e Ufandijrgl < irl forvi < j and
Irm | < N; the page size. S
Note that |r, | is the size of the largest secfor in Q.

Furthermore, note that the above construction is aluays possible.

Nou, we break up the large sectors of O into subsectors. Let

Si = (Sii*} for 1 < i < k and

Si = (Si} ,sa;.....s‘i;- } for k<i < W such that
: _

I | < ISij*].

This last constraint is sufficient to guarantee that

(f, (2,N,55))/2 = k/2 does not change because of the small eubsectgrs;
In practice, one could choose |Sij*| - |r,| for 1 < j < |; and

Ire | < 1Sij*) < 2|r | for j = |;.
k k)

94

Nou define, Q*= O U Q= i{set of m’ relocatable sectors

of the same program}
where Q} =1S},, S3;,...5 !} and

0‘2 = ‘Sibl,l ,S'.“]'z ,...,S;‘”k'l..'..,S‘,'n-'l 'S:n',z ,...,S;,-,'m}.

Let, SS* = |ril,Ir5),c...|ry | be the sector size vector
of Q','lrf | < |rf | for i < j.

Note that (f, (2,N,S5)}/2=(f, {(2,N,55%))/2.

Given any address trace, A, and the sector ordering of the programs
Q and @* for that address trace, We can easily compute:
ST = S5',52,...,5' for Q and ST*= §*,52,...,5% for Q*, where
S'e¢ 0 and S™e¢ Q. |
Note that, if S = Sij* then S'= Si for 1 < t < L.
Thus, we can also compute ST from ST*.
Theorem S5 is presented in terms of the above definitions of Q* and

ST,

Theorem 5.
Given any tuwo-level virtual memory system V, with page size N,
primary memory size |Mp|, any valid page replacement algorithm Ra,

demand page fetch Fd, and any sector trace STa, then for any partition,

5

[la, of the relocatable sectors into the logical pages of the program, qQ,
the minimum number of page fetches given by the page fetch function,
FFp, is lower bounded by |

FFp(|Mp|.N,Ma,STa,Fd,Ra) » FFs(|Ms| = f, (JMp],N,55*),ST = STa*,Fd.Ro)- A,
f, (2,N,55)/2

uhere A = 2f, (1,N,SS) - f, (2,N,S5),
f, (Z,N,55)

and uhere the value of the sectpr fetch function FFs is the number of
sector fetches which occur in a tuo-level virtual memory system V', with
primary memory size |Ms| = f, (|Mp],N,S5*), using demand fetch Fd,
optimum replacement algorithm Ro, and sector tréce ST = STa’; The
function f, is previousiy defined, SS is the sector size vector of Q,

and G5" is the sector size vector of Q.

Proof:
Let Q, ST, U* and ST* be exactly as defined immediately before
Theorem 5 uas stated.
Let Ma*= {0}, N%,..., I} } be any partition of the
relocatable sectors of 0% into logical pages, where page k = IIy

for 1 <k <nand I iSij*] < N.
Sjelly

Applying Theorem 4 to Q* gives by simple substitution,

FFp(|Mp|,N,Ma*,ST* ,Fd,Ra) > FFs(|Ms| = ¢, (|Mp],N,S5*),ST*,Fd,Ro)-a,
£, (2,N,55%)/2

and since f; (2,N,56*}/2 = f, (2,N,55)/2 ue get

FFp(|Mp|.N, Ma,ST*,Fd,Ra) > FFs(|Ms| = f, (|Mp|,N,55*),5T" ,Fd,Ro) -A.
f, {2,N,55)72

36

Let Ia = M, M,,..., [In} be any partition of relocatable sectors

of Q into logical pages such that I ISi] < N and Si ¢ Q,
) Sieﬂk,

where page k = [lk for 1 < k < n.

Given any [la, then we construct Ilar* as follous:
Har*= {llr}, Or%,..., Ory } such that,

for all Si e Ik, Sij*e Mrk*

for 1 < k < |; and page k = IIrk* for 1 < k < n.

Now,

FFp(|Mp},N,Mar* ,ST* ,Fd,Ra} > FFa(|Ms| = f, (|Mp],N,55*),ST* ,Fd,Ra)- A,
f, (2,N,551/2

since the set of all [lar* is a subset of the set of all [la*.

Nouw uwe prove that

FFp(|Mp|,N, Mar*,ST*,Fd,Ra) = FFp(|Mp},N, Ma,ST,Fd,Ra)

We need to shou that the page trace

oL

P*= p*',p*,...,p" , computed from Mar* and ST*, is the

same as the page trace P = p',p?,....p', computed from Ila and ST.

Let ST*=S*' ,52 ,....5%* and ST=5',52,...,5.

Let the sector referenced in ST* at time t be S* for 1 <t<l,

Then S = Gij* for some 1 < i <mw and1l < j < I,

97

and Sij‘e Tirk" for some 1 < k < n. Hence, p = k.

Given S = Sij*, then S'= Si, and, given Sij*c Mrk*,

then Si ¢ Tlk. Hence, p'= k, and ue have p* = p' for 1 < t < L.

Therefore,

. FFp{|Mp|,N, MNar*,ST*,Fd,R3) = FFp(|Mp|,N, Na,ST,Fd,Ra) and

FFp(|Mp|,N Ma,ST,Fd,Ra) > FFstiNs] = f, (|Np],N,§5°),5T° ,Fd,Ra) - 4,
M t, (Z,N,55)/2

QeD.

The follouwing simple example is given to illustrate that Theorem SH
can produce a tighter bound than Theorem 4. This example is made as

" simple as possible such that the mechanics of applying Theorem 5 can be

presented.

Example:

Let @ = 1S,,5;,...,512 | where |Si] = 1888 bytes for
1 <i <8, and |Si| = 4889 bytes for 8 «i 5'12 and N = 4888 bytes. Now
let's divide Si for 8 <i < 12 into four parts, each being 1808 bytes
long; i.e., Si becomes {5i,,Si;,5i3,5i4} where |
|Sivj] = 1888 bgtes for 1 < j 5 4. Thus,

n. = lS| 'Sz .Sa peee .58 ,Sg|,5§2.8g3.594.... '5'2,|'S'2,2'S|2,3’S'2,4}.

38

Let ST°'= S5,,5,,53,-..,58, Sg; +Sa2 +S03 +S04 s--++ S12,1+5122+5123+ Si24-
This represents the compressed reference

behavior of one pass through ' uhere every

unit of O° is touched. [t is reasonable to assume that such sector
behavior could represent one pass through a small loop of a much larger
real program.
Nou. S7=5,,55,,S3,++++ S3,59+59+50+5a+¢+-+512,912,512» 5j2-
Evaluating FFp(|Mp|,N=4808, Ma,ST,Fd,Ra), gives 6 page fetches uhen
M, = iS,,5,,5;, Sq}, M= (S5,56.57,55! and

i = {Si+6} for 2 <i < 6, and |Mp| and Ra take on any values. It
should be clear that this partition minimizes FFp.

Theorem &4 gives a lower bound for FFp of

FFs(iMs]| = f, ({Mp|,N,55),5T,Fd,Ro) - A = (12/4)-8 = 3,
. f, (2,N,55)/2

for all values of |Ms|. Note that f; (2,N,SS) = 8 and
f, (1,N,SS) = 4, hence A = 8. Theorem S gives a lower bound for FFp

of FFs(|Ms| = f, (|Mp[,N,55*),5T* ,Fd.Ro) - & = (24/4)-8 = 6,
f, (2,N,S5)/2

for all values of |Ms|. Thus, Theorem 5 gives the greater lower bound,

and it is a factor of 2 better than the bound given by Theorem 4.

99

Nou ue extend Theorems & and 5 to include the cases uhere sectors

can be any size, and we let the sectors cross page boundaries,

We nou present Theorem 6 which lower bounds FFp over all sector
orderings SO into the n-page logical address space. The sectors can be
any size and may cross page boundaries. This model corresponds to the
case uhere sectors are clustered together into groups and then these

groups are packed into the virtual address space.

Since sectors may cross page boundaries, one may not be able to
determine the page trace from the sector trace ST. We define SOT to be
the sector trace consisting of ordered pairs of elements:

soT = (5',0'1,(52,0%),...,(5',0%) uhere S' is the
sector referenced at time t and 0' is the offset in S' referenced at
time t. Given a sector trace SOT and a sector ordering S0 as defined in

Chapter 2, the page trace follous immediately.

Note that SOT" is exactly the same as ST* except that the
elements of SOT* are simply ordered pairs. Also note that the
construction of Q* is not affected by allouing sectors to cross page
boundaries.

Theorem b.

Given any tuwo-level virtual memory system V, uith page size N,

primary memory size [{p|, any valid page replacement algorithm Ra,

demand page fetch Fd, and any sector trace S0Ta, then for any sector

180

ordering S0a, of the relocatable sectors into the logical address space
of the program Q, the minimum number of page fetches given by the page
fetch function FFp, is lower bounded by

A.

FFp(|Mp|,N,S0a,50Ta,Fd,Ra) > FFs(|Ms| = 4 (|Mp[,N,S5),ST = SO0Ta,Fd,Ro)- &
£ (2,N,55) /2

and by
B.

FFp(|Mp|,N,S0a,S0Ta,Fd,Ra) > FFs(|Ms] = £ (|Mp|,N,55'),ST = SOTa* ,Fd,Ro)- 4
£ (2,N,5S)/2

where A = 2f4 (1,N,S5)-f4 (2,N,SS),
Y (2,N,SS)

and uhere the value of the sector fetch function FFs is the number of
sector fetches uwhich occur in a tuo-level virtual memory system V’, uith
primary size |Ms|, using demand fetch Fd and optimum replacement Ro, and

sector trace ST = SOTa in part A and ST = S0Ta* in part B.
Proof of Theorem bG:
Let SOT,= (S5',0'),(52,0%),...,(5',0'), uhere S' is

the sector referenced at time t and 0' is the offset. For virtual

memory system V and FFp, let:

181

1. S0a be any sector ordering of the relocatable sectors in the n
pages of the address space of program Q.

2. P = pl ,p?pL be the resultant page trace computed
uniquely from SOTa and 50a, such that p'= (L{S')+0')/N.

3. Fa=+¢L,62,..., f\ ve the demand feteh ﬁol icy, where
fl= 1p') or @ flnMpt' = @. Note that ue have
chosen to denote Fd of the FFp model by Fa to avoid notational
conflict with the Fd of the FFs wodel.

4. Ra =rl,rZ,...,rk be sy removal policy under demand
fetch, where r: c Mp*! and Ir: =1 or 8., |

5. Mp'= (Mpt'-rl) U ¢ and °= 0.

First we prove the following lemma. .

Lemma G:

There exists a valid demand fetch and removal policy, Fd and Rd,

‘for the FFs model éuch that

FFp{|Mp|,N,S0a,50Ta,Fa,Ra) > FFsi|Me| = % ¢} pi,N,55),507a,Fd,Rd) - A,
, Y (2,N,5)/2

‘where 4 = 2fY (1,N,5)-fY (2,N,S5).
4 (2,N,SS)

For the FFs model, Fd and Rd will be constructed by forming a valid
sequence of replacement and fetch pol‘icigs

(Fl 'R| ’. (Fz 'RZ)""'(Fh 'nh’g mre:

182

1. Fy=£4,¢%,..., ¢, and £ = glfl)=the set of
sectors having any of their parts in f: for 1 < t < L.
2. Similarly, R = rﬂ,rﬁ,...,rﬁ. and
rﬁ= g(r:) = the set of sectors having any of their parts in
r; for 1 < t < L.
3. Fh = fd = £},f%,...,f5, and
4. Rh = Rd = rL,r%,...,rb,vfor 1 <ts<L, uhere
£l = rh=19, if x'e Mdt! f:,: x! and
rh= @, if x'e Ma"' and |Mdt! [<|Ms);
fL= x! and r&a {blc Hd“', if xtend! and
IMd™! |=|Ms}; and Md' = (Ma“Lridu ¢ to

satisfy demand sectoring.

Lemma 4a is still true for this case when sectors may cross page
boundaries. The proof of Lemma 4a when sectors are allowed to cross
page boundaries is exactly the same as before except that we add the

follouwing to the proof. (Recall that z° is the sector referenced at

time t.)

If it ever occurs that z’e-leand z'¢ Mp*', then
simply remove z' from fL,. This only reduces the value of
|f}| and it keeps sector z' from being added to the deferral sector

tist when 2' is in the sectored memory.

163

Since |Ms| = % (|Mp}.N.SS) > |Ip]|, Lemma &a says that the

above construction exists such that
oy 1fY 1 2 2., 16 |=FFaliMe}=f ({Mp],N,SS),S0T,Fd,Rd)
Fact 3

L, 1#)) < (9 (2,N,SS)FFp{Mp],N,50,50T,Fd,Rd)) + ¢4 (2,N,S5)% &
2 Z

The proof of Fact 3 is exactly the same as Fact 2 of theorem &
except that |g(f1)| becomes the number of sectors having any of‘

their parts in).

Hence Lemma 6 is true. Lemma 6 and'Le-a 1 prove part A of the

Theorem.

Proof of part B.

Given any address trace A and any O, construct Q*, SOT, and
SOT* exactly as in Theorem 5, except denote the slements of SOT and

SOT* as ordered pairs,

The proof of part B is almost exactly the same as the proof of

Theorem 5. We point out the exceptions belou.

184

Instead of applying Theorem &4 to Q" as in Theorem 5, ue apply
part A of Theorem 6 to Q" and use the fact that

Y (2,N,SS) = £ (2,N,55') to get

FFp({Mp|,N,SOa* ,S0T" ,Fd,Ra) > FFs(|Ms|=f} ({Mp|,N,55"),50T" ,Fd.Ro)- A
% (2,N,S5)/2

In the proof of Theorem 5, uwe restricted the set of Ila such that
subsectors could not be in different pages. Here ue restrict the set
SO0, of all SO0a' to get the subset SOhpy . Let x ¢ SO,
then x ¢ SOk if the subsectors of each sector in x occur together
as a subsequence of SOar*, and if the‘subsectors of each sector are
ordered in the subsequence as they occur in the sector. We are simply
restricting the set of ali S0a* such.that we get the set of all SOa
when the common subsectors of each subsedugnce of each SODar® are

concatenated together.

Since the above result, FFp > FFs, is true for all S0a*, ‘it must
be true for any constrained subset of S0a*. In particular it must be

true for all SO0ar*. Thus

FFp(|Mp|,N,SOar* ,S0T* ,Fd,Ra) > FFsl|Ms| = ¢4 (|Mp],N,S5"),S0T7* ,Fd,Ro)- A
£ (2,N,S5) 72 '

Nou we need to show, as in Theorem 5, that the page trace P*
computed from SOar* and SOT* is the same as the page trace P

computed from SOT and S0a. This is obvious from the construction of

SOar* and SOT*. That is, P* computed from (S* ,0%)

185

and SOar® must be the same as P' computed from (s!,0') and SOa.
Thus, FFp(|Mp}|,N,S0a,S0T,Fd,Ra) = FFp(Ile.N,SOar*,SOT*,Fd,Ré)

and the proof of B folious immediately. QED.

186

3.6 Bounds for Working Set Management

Theorems 1-5 give upper and lower bounds on the number of page
fetches required to execute a program in any fixed primary memorg size.
Houever, there are paging algorithms uhich exploit the important program
property of locality by attempting to dynamically allocate various
amounts of primary memory space to a program as it executes. Recall
that, intuitively, locality means that during a given interval of
execution a program addresses only a subset of total addressable space.
Houever, for differenf intervals, the size of this subset may vary.

From this notion of locality comes that of "working sets", and a theory
of primary memory based on this notion has been proposed and extensively
investigated in (01,02,03]1. Therefore, se will extend our definition of

the page fetch function, FFp, to include working set memory management.

In order to incorporate the page working set concept into the
methodology we adopted in Chapter 2 for presenting paging algorithms,
recal! the follouing definitions. Assume that:

Q= I(A,B,..}] is a finite set of logical pages.

P =p',p?,....p' is a page trace with ple Q.

Mp'c Q is the contents of Mp at time t.

F=¢,f,...,f is the page fetch policy.

R=r',r2,....,rt is the page replacement policy.

A paging algorithm based on the page working set principle is defined as

fol lous.

187

a; Up(B,T) = ¢
b. Mp'= Wp(t,T) and [Mp'| = upl(t,T), B <t <l
e, fl=¢ ifple Uplt-1,T) =Mp™', 1 <t <L

d. f'=p' ifplelpt-1,T =M, 1 <t <L

e. r'=UWplt,T)-Up(t-1,T); note that {r'} <1, 1 <t <L
Thus, ue see that under a page working set strategy, the contents of
primary memory at time t, Mp', is simply the working set, Wp(t,T), and
that the amount of primary memory allocated to a program expands énd
contracts as the working set size up(t,T) -expands and contracts. A page
reference at time t, p'. causes a page fetch into primarg memory if
and only if p is not in the working set at time t-1. Note also that a
page is removed from primary memory at time t if and only if it is in
the working set at time t-1 and ft.is no longer in the uorking set at

time t.

. From the above discussion, we observe .that the number of page
fetches required by a program during its execution using the page
working set memory management technique is uniquely determined from the
page trace, P, and the working set parameter, T. Therefore, the
definition of the page fetch function, FFp, underipage working set
memory management can be expressed as a function of the following
parameters:

FFp = FFp(IM) | = up(t,T),N, Ma,STa,lplt,T)).

188

The parameters in this definition of FFp for working sets are
identical to those previously presented for the page fetch function,
FFp, except for tuwo instances. The first parameter, uwhich denotes the
primary memory size, is equated to wp(t,T) to illustrate that the size
of Mp varies with the gize of working set. The other instance is
strictly notational, i.e., we have replaced the fetch and replacement
parameters, F and R, with Wp(t,T) to illustrate that the F and R
policies are those defined for working set memory management. We could

have used Fu and Ru, but uwe think that Wp(t,T) is simply clearer.

We can also extend the definition of the sector fetch function,
FFs, such that it denotes the number of sector fetches uwhich occur in a
virtual memory system during the processing of a sector trace under

gsector Horking set memory management.

Consider a program whose behavior is modeled by a sector trace, ST.
Then the sector working set at time t, Hs(t.Tl, is defined to be the
distinct set of sectors referenced in the sector trace, ST, during the
time interval (t—T,Tl; The number of sectors in the sector uorking set
at time t is defined to be the sector working set size and is denoted by
us(t,T). The maximum value of the sector working set size for a given
sector trace is denoted wus(t,TImax. Note that wus(t,TImax < 7. Let:

a. Program = {a,b,..}, a finite set of relocatable sectors.

b. ST =S',52,...,8', a sector trace with S'eb Program.

C. H;g Program; the set of sectors in primary memory

1089

at time t,
d. F = ¢1,62,...,f, the sector fetch policy.

e. R =r',r?‘.r" » the secter replacemsnt policy.

Then the sector behavior of a-program using sector serking set wemory
managewent is defined as:

a. Ws(®,T) = ¢

b. Ms'= Halt,T) and (Me'| = weit,T), B8 <t <L

c. fl=¢ if Sle Uslt-1,T) =ts™!, 1 c t gL

d. =5 ifS'eUst-1,T) =M, 1 <t L.

e. rlaeUslt, TI-lstt-1,T), 8 < t ¢ L‘.

Thus, the contents of primary wewory at time "tb s the sector sorking set
at time t, Ma(t,T), and a sector referenece at time t ceuses a sector
fetch if and only if S'# Us(t-1,T). Note that the set of sectors that
are generated by the secter uorkiﬂgse‘*t strategy to'be in primary memory
at time t is Ws{t,T), no matter what the sizes of the individual sectors

are‘

The sector fetch function, FFs, for ‘thp sector norking set strategy
' 'baconés.

FFs = FFs({its! | = wstt,T),5T,Nstt, T,
Me observe, as before, that the value of the sector fetch function, FFs,
uwhich is the number of sector fetches required to ,ﬁrocesa a sector

trace, is uniquely determined by the ST and the Hsit,T) paraweters.

110

The notion of charactérizing the local behavior of a program in
terms of its sector working set has tuo pétential applications. The
first is to utilize the time varing sector working set to identifg the
sectors which should be clustered together in order to minimize page
faults. This application turns out to be very usoful and is diséusned
in full detail in Chapter 4, The second is to find upper and louer
bounds on the paging behavior, FFp, of prograns using the page uorking
set strategy in terms of the sector behaV|or. FFa. using sector uorklng
set memory management. This approach proves successful for the upper
bounds but fails for the lower bounds. Even though the approach fails
to produce louer bounds, Part A of the follouning theorem points out an
interesting relationship that can exist betusen the number of page
fetches and the number of sector fetches for programs using sorking set

memory management.

3.6.1 Louer Bounds for Working Set Management

Recall that us(t,T)max is defined to be ihe maximum value of the

‘sector working set size for a given sector trace..

Theorem 7
Given any tuo-level virtual memory system V, with page size N,
primary memory size |Mp'| = up(t,T), using paged uworking set mewory

management Hp(t,T), and sector trace STa, then for any partition, Mla, of

111

the relocatable sectors into logical pages of the program where each
page contains k or feuer sectors, the minimum nusber of page fetches,

given by FFp(iMp!| = wpt,T),N, Ha,STa,lplt,T),

~A. is not louer bounded by

FFa(|Ms'| = us(t,k, T},ST = STa,Us(t,k, 7)) and
" k% kz

B. is not louer bbounded by FFs(iMs| = kx T,5T=STa,Fd,Rjp;) but
K

C. is louer bounded by FFs([Ns] = k= dslt.T)uax’ST = STa,Fd,Ro),
— e .

uhere the value of thg sector fetch functloh,_FFs,'ig the number of
sector fetches which occur in a tuo-level virfual menory system V', uith
primary memory size [Ms|, with the samwe sector trace ST=STa, using

~ sector working set management in Part ﬁ. using demand fetch, LRU -
replacement in Part B and using demand fetch, optimum replacement in
Part C. The value of k; and k, are any arbitrarily large integers
greater than 1. (The value of f; is as previously defined. énd SS is
the sector size vector.) The value of us(t,T)max is the maximum value

of us(t, T) over ST.

Part A of the above theorem states that there are sector traces
such that the number of sector fetches required to process the sector

trace is arbitrariiy larger than the number of paﬁa fetches required to

112

process the corresponding page trace under a good sector ordering.
Moreover, it states that this is even true when the mindou size of the
sector uworking set is made arbitrarily large and the resulting number of
sector fetches divided by an arbitrarily large constant. We claim that
this is counter-intuitive, because a} if the sector working set windou
size uere simply kT, then the sector working set could contain the same
number of sectors as those contained in a page working set of size T3
and b) dividing FFs by k alone would account for the fact that as many
as k sector fetches are required to bring a page of information into

primary memory.

Proof of Part A:

We need to shou that there exists a set of parameters such that

FFp(|Mp' | = wp(t,T),N, I,ST,H, (t,T)) < FFs(jNs' | = us(t,k, T),ST,Wslt,k; T))
k*kz

Let:

T =2

ky ,ko = any fixed arbitrarily large integers.

m> kT

n >k x kp

k =2

Program = (abxy), a set of 4 relocatable sectors
each of gize S, where S = N/k.

ST = ({ax)" (by)™)" be the sector trace.

Il =il{ab), (xy)} where page A = {a,bl and page X = ix,y}.

113

P = ((AO™ (A™)" = (AX)Z™ is the page trace.
Up{B,T) = Ws(B,k, T} = 8.

a. Now, it is clear frow the definition of Wptt,T) and
P = (AX)Z™ that |
FFp(IMp' | = wp(t,T), N, T ST, W (£,T}) = 2 for atl m and n.
b. Nou, to evaluate FFs. | |
ST = ({ax)™ (by)™)" implies FFatiMs' | = ustt,k, T},ST,Hs(t,k; T}) = &n.
Proof:
Part 1.

Consider the substring r’eférence pattern (ax)®. Observe that the
first reference to this substring occurs at tines t = l+ami for
i =8,1,...,n -1, UWUelB &k T) = & by definition.
wslt,k, T) = lo,yl for t = Lsbmi i = 1,2,.0.,m = 1.
This is true because for each of these ti_-ga, t, the last 2m references
uere to b or y. Since 2w > k; T, only b and y can be in Welt,k; T);
and since ki T > 2, both b and y must be in Welt,k; T).
Hence, for each of the n occurrences of the substring (ai)'" in the
sector trace, exactly tuo sector fetches are required to bring a ‘and »
into the working set, uhere they stay while processing the remaining

references in the substring, since k; T > 2.

114

Part 2.

Consider the substring reference pattern (byl™. The first
reference to this substring occurs at times t = 1+m(4i-2) for
i =-1,2,..,n.
The Ws(t,k; T) = {a,x} for‘t - 14m(4i-2), | = 1,2,....n. since at each
of these times, t, the last 2m references were to a or x. Since'
m>k; T, only a and x can be in Ws{t,k,T}); and
since k; T > 2, both a and x must be in Us(t,k; T).
Thus, for each of the n occurrences of-the substring tbyl™ in the
sector trace, two sector fetches are required to bring b and y into
Hs{t,k, T), and moreover only tuo are required since kT > 2.
Therefore, FF3(|H3'| = us(t,k, T),5T,Us(t,k; T)) = 4n.
Nou,
FFs/(kxky) = &4n/(kxky) > (4kxk,)/kxk, = 4 > FFp = 2

and this proves part A of Theorem 7.

What causes this strange behavior in the number of sector fetches?
Is it true for only strange and rare sector traces or could it be
expected to occur_in'mang common sector traces? We claim that this
behavior could occur in many sector traces. In order to provide souev
insight into this claim, consider the sector trace ST = a9 oy oz ,
where a; ={(ax)" {by)")" and «;, o3 represent any long

sector reference strings. The proof of part A shous that the ratio

115

(FFs/FFp) > k, for the substring az,'uhere k, can be made
arbitrarily large by choosing n sufficiently large. Therefore, the
ratio (FFs/FFp) can still be wade artitrarily Pafge for fixed a; and
a3 by simply making n sufficiently large. A generality of this brief
argument says that, vhety a sect&F.fruce»hag any substring consisting of
tight embedded loops, the-nunbar'of’geé%nr fetches may become much
larger than the corresponding nuwber of page fetches. One explanation
of this phenomenon is as feltows: tight inner loops (i.e., (bx)™))
droun out the beﬁefit gained by making the sector uindow size large
(i.e., the value of Ws(t,T) becowes ibs} if mw> T}, while the outer loop
causes the sectors in the inner toops to be fetched over and over. In
contrast, the paged ﬁorking set having a sual1'uind§u size, relative to
m, is able to contain all the sectors in the»énbedded loops li.e., {ax},
{by}) throughout consecutive cycles of the outer. loop, if at least one

sector from each inner loop is grouped into the sawe page.

From the above discussion, ue observe that the page working set can
contain‘m0re of the wost recently referenced sectors than the sector
working set, even uhen the latter has an arbitrarily large windou size.
We can eliminate this condition by redefining the sector working set as
follous. Recal!l that the sector working set, Us(t,T), has been defined
to contain the set of distinct sectors refersnced in the last T
references. |f ue modified the definition of Hs(t,T) such that it
contains the set of T most recently referencgd séctora. and if we choose

T to be k times the page working set window size, then the page working

116

set could never contain more of the most recently referehced sectors

than those contained by this sector working set. Houever, this ne&
definition of the sector uworking set is equivalent to demand fetch, LRU
replacement in a memory of fixed size equal to k times the pége working
set window size. Thus, a plausible conjecture is that the number of

page fetches under a page uworking set strategy could be lower bounded by -
the number of sector fetches under demand fetch, LRU replacement in a
memory size as described above. Houwever, Part B of Theorem 7 states

that this conjecture is not true.

Proof of Part B.
He have to shou that there exists a set of parameters such that

FFp(jMp'| = up(t,T),N, Ila,STa,Wp(t,T)) < FFs(|Ms| = k*T,ST = STa,Fd,Rgy)-
K

Let:
Program = {a,b,c,d,e, f,g,hl, a set ofA
‘8 relocatable sectors of size N/2.
k = 2
N = tuwice the sector size.
T = 3.
ST = (acd bef bgh acd aef b) be the sector trace.
IST| = 16.
Ha = {i{a,bl}, lc,d}, le, fl,.ig,h}}, uhere page
A = {a,bl, page B = (c,d},etc.
P = (A BB ACC ADD ABB ACC A) be the resulting page

trace.

117

Wp(0,T) = M2~ 8.
IMs| = kaT = 6.

Simulation of paging bekavior to get FFp gives:

P = ABB ACC ADD ABB ACC A
Fu = AB® 9CO 808 888 oCP 9
Hp{t,T) = ABB ACC ADD ﬁﬁB ACC A
AA BAA CAA DA BAMA C
B C b B
Icontents ofﬁﬂp(t.fl immediately before Gth

reference.
Thus, FFp = Z'8, 14} | = 6 page fetches.

Simulation of sector behavior gives;
ST = acd bef bgh acd aef b
F = acd bef 8gh acd Sef b
M = acd bef bgh acd aef b
ac dbe fbg hac dae f
a cdb efb gha cda e
acd def bgh hed a
ac cde ftbg ghc d

a acd efb bgh ¢

118

Resul ts:
FFs = Z'8] = 14 sector fetches.
FFp = 6 < FFs/k = 14/2 = 7, QED. . -
Houegér; if>ue‘change the.LRU replacemént élgorithi of Part B to the-
optimum replacement élgorithm. then the value of FFp under page uofking
set management can be lower bounded. This louwer bound is given by Part

C of Theorem 7.

Rroof of Part C.

Note that INp'I = up(t,T) < us(t,Timax < T.
a. |
FEpUIM,] = wp(t,T),N,a,ST,,Up(t,T))

> FFp* (IMp)} = u, (t.T)mn,N,Ha,STa,Fd,RLmJ),
since Mp'= Up(t,T) ¢ Mp' , by definition of Wp(t,T) and the
definition of Mp' under demand fetch, LRU replacement; that is,
Mp't aluays contains the set consisting of the Iﬁp’l = us(t, T)max
most recently referenced pages, uhile-ﬂp' contains the set consisting
of the up(t,T) most recently referenced pages.

b.
FFp’ (IMp"'| = wg (t,T) ., ,N, Ma,ST, ,Fy,Rpy)

> FFs(IMg | = kwug (t,T) . ,ST = ST, ,Fy,Ry)
K

by Theorem 1, and this praves part C of Theorem 7

Corollary to Theorem 7, Part C.

FFy (ML | = w, (£, T),N, Ta,ST, W, (t,T))

> FFg (M| = £, (ug (£,T),

_N,S8),5T = ST ,F4 R) - A,
F, (2.N,551/2 |

119

wuhere A and f, are defined as in Theorem 5.
Proof.

We know from the proof of Part C that °
FF, (IMp' | = w, (4, T),N, Ma,ST, Up(t,T))
> FFy (NG | = uy 14,T) gy, N, Ha,ST, ,Fu.nm,)

and applying Theorem S to FFp’ provas the corollary |nued'atelg.

3.6.2 Upper Bounds for Working Set ﬂénageacnt

An upper bound on tha~nuuhervaf*paga tetches for virtual memory

systems using the page working set stratcgu‘is given in Theorem 8.

Theorem 8
GiQen any tuo-tevel virtual -e-oruﬁsgsten ¥, uith page size_N.

pr imary memory sizeziﬂp’[;‘up(t,Tl. usingbpqge uorking set memory
management Wp(t,T), and any secter trace STa, then for any partition,

Mla, of the relocatable sectors into logical pages, where each page
" contains k or fewer sectors, the maximum number of page fetches given by
the page fetéh function, FFp, is upper bounded by

FFp(itp' | = u, (t,T),N, [la,STa,Hptt,T)) s-FFs(tﬂs'l = u,(t.T).ST;Hs(t.T)).
where the value of the sector fetch function FFs is the number of sector
fetches which occur in a tuo-level virtual memory system V', uith

primary memory size lﬂs'l = usit,T), the same sector trace ST = STa,
using sector working set management Ws(t,T).

Proof:

Let:

Q

Ha-lﬂ,

ST = x‘.xz,....x

P = p',pz....

‘SI ,Sz ,--..Sm’

128

= {set of relocatable sectors

of the programl.

» I ,..., NIn} be any partition of Q

such that |IIj] < k,

1<

A

L

n.

be any sector trace, where

x!' e Q, 1 <t <L.

.pL be the page trace, uhere

p'=j if x'e Hj.

Mp' = Upft,T) be the set of pages in memory

of FFp at time t.

Ms'= Ws(t,T) be the set of sectors in memory

Fp

Rp

Rs

of FFs at time t.

i r A L
T L

1 2
rp,rp,....r%

policy of FFp.

A LR

I 2 L
Fgalgrese,lg

FFs.

= demand fetch policy of FFp.

= working set replacement

= demand fetch policy of FFs.

= working set replacement policy of

Suppose at time t, in the FFp model, that p' = j, the page]

containing the set of IIj sectors, is referenced. Then at time t, in

the FFs model, x'=ais

the sector referenced, where a ¢ I1j. HWe need

to shou that I, Jfh| < Zh, |¢).

Case 1.

Suppose p' € Hp“'- Hp(t-1,T); then f; - ¢.

a. 1f x'e Ms"' = Us(t-1,T), then £} = B and |£L] = |#}].

121

b. If x'¢ Ma*' = Hslt-1,T), then f = tal « Ue{t-1,T) and

11 < 141 |

Case 2. Suppose p's Mp"'= l’ip-ﬂ--l,ﬂ: then £, =ijl.

a. If x'e ﬂé"',- Hal(t-1,T), th'eh 'f:_ -‘tﬁ = Nstt-1,T) and

ey 1 = 181,

b. 1§ xte Ms™! = Us(t-1,T), then f\ = & and

{£51 > [t} 1. This condition illustrates the only way that page
fetches can exceed sector fetches. However, if ue shou that

ple Up(t-1,T) = > xle Wsit-1,T), then case 2b can never occur.

Let ple Upl(t-1,T), and a‘smhnte Heit-1,T). Since x'e Us(t-1,T),
there exists a time t° in the interval (t-1-T,t-1) such that

xt =t Let p' = k be the page referenced at time t fn the

page trace P. We knou that x'e Tk, since sectors are not allowed to
cross page boundaries. We also kmow that ple “Mt-l.f) because tﬁe
window wize is T for both tlve page aorﬂ-imf ut Up and the sector working
set Ws. But this contradicts the assumption; therefore

' £ us(t-1,T). |

Hence, ZL-,',, If:,l < !l;.,, lf“ and the theorem is proved.

122

CHAPTER 4
INTERSECTOR REFERENCE MODELS

4.1 Introduction

In the previous chapter, ue presented upper and louer bounds on the
number'of page fetches uhich could occur in a virtual memory system, for
a given program reference behavior, over any restructuring of the
relocatable sectors into logical pages of the program. The next phase is
to develop and present practical téchniques for restrﬁcturing a program
to achieve good locality of reference for the program in virtual memory
systems. The task of program reorganization for virtual memory systems
Hill be separated into two logical parts. The first part is to develop
automatic techniques for identifying the dynamic intersector reference
behavior of programs executing in virtual memory systems. The second
part is to provide cluétering procedureé which utilize the intersector
reference behavior to rearrange the relocatable sectors of a program into
its logical pages such that good locality of reference exists in the page
trace of the restructured program. The basic idea of the second part is

to assign the most strongly related sectors to common pages.

In this chapter, ue address the problem.of intersector reference
models. In the next chapter, automatic clustering procedures are

presented, and finally, in Chapter 6, the results of applying these

123

methods to real programs are investigated and compared with the

theoretical bounds.

4.2 Intersector Reference Models

It is knoun that a program's page reference patterns have a strong
effect on paging perfornanée tn'vir%uai~iensrg systems. It is atso knoun
(H1] that the sector reférence<behavior‘h*”aangicungon programs, such as
compilers, assemblers, editors, etc., proves tﬁ be renarkéblg insensitive
to the input data in rather tfarge duuafns; For example, the s{udfes‘of
Hatfield and Geraid {Hll revealed that‘th§~graups'of‘sectors which wuere
used frequently together in the assembly of one program turned out to be
essentially the same as the groups of sectors which were used frequently
together in the assembly of another program. The basic differerce
betuween assemblies uas that the groups of sectors which were used
together for short input programs were siupfg used together more often
for long input.prograns.. Supported.bg these enptrical observations of
Hatfield and Gerald, we decided to characterize the reference behavior of
a program by its sector trace and to base our practical restructuring
methods on this reference behavior. vHe will elaborate on the souﬁdness
of this decision in Chapter 6 when we compare the paging performance of
real programs over program structures-derjved from different sector

.traces.

124

Another important reason for basing restructuring methods on a
sector trace is that the results of the last chapter may be used to
compare the paging behavior of a restructured.program uith the

theoretical best and uworst paging behavior for that sector trace.

Given a sector trace, our objective is to specify the strength of
the intersector references such that a clustering procedure that gfoups
the strongly connected sectors together into logical pages produces a
program structure that tends to minimize the number of page fetches. We
begin by presenting Hatfield and Gerald’s [HG] intérsector reference

model for defining the strength of connection between sectors.
4.2.1 The HG Intersector Reference HModel

The HG intersector reference mode! consists of a symmetric matrix,
H, showing the strength of connection betueen the sectors of the program

to be reorganized. Let:

Q= 15,,5,...,5m be the program of m relocatable sectors;

ST = S'.Sz.....SL be a sector trace of the program.

Then

H = [Hij} for i,j = 1,2,...,m, where Hij = Z%,kCi,j,t),

125

‘where k{i,j,t) = 1 if 5'=i and8™ = j, or § =j and "' -i;
and kii,j,t) = @ otheruise.

Thus, the value of Hij is simply the number of times that sector i
‘referenced sector j pius the nuwber of times that sector j referenced

sector i in the sector trace.

Using this intersector reférence model, Hatfield and Gerald uere
able to find improvements in the number ﬂ*vpagg'fefches on the order of
tuo-to-one to ten-to-one by clustering sectors with large Hij values into
the same page.. This is the same as clustering sectors into pages such
that the value of Hij ie small for i and j in dif%erent pages.

Even though these results are quite impressive, the values of Hij In
the HG intersector reference model do not contain any iﬁformation about

- the length of the time interval betueen successive references of sector |
to sector j. Hence, the strength of connection, Hij, betueen sector i and
j is the same for large time intervais and short time intervals.

However, paging may depend quite heavily on the length of these time
intervals. For example, assume that sector | references sector j 189
times (Hij = 188) in a sector trace of 208,808 references. Nou let’'s
consider tuo different plausible examples of hou these references could
occur. First, these references could oceur uith short time intervals
betueen them such that all 188 references occur uithiﬁ 588 successive
references of the»sector trace. Second, these'réferences could occur
uith some long time intervals betueen the; such that 18 of these:

references could be found in each 28,888 successive references of the

126

sector trace. Even though the strength of connection is the same for
these tuo examples, the tendency for a reference from sector i to sector
j to cause a page fetch uhen they are not in the same page can be

considerably larger in the second example.

Fur thermore, the tendency of a reference from sector i to sector j
to cause a page fetch is related to such local ihformation as the time
elapsed since the last reference to sector j and the number of distinct
sectors referenced since the last reference to sector j in the sector
trace. [f the time is short since sector j was last referenced, and
little virtual memory space was used during that time, it is probable
that sector j is still in primary memory and a neu reference uwill not
cause a page fetch. If the time and space traversed between references
to j is large, it is likely that a page fetch uwill occur unless j is
grouped into the same page as the referencing sector or some recentfg
referenced sector. We uWill nou present tuo intersector reference models
which have potential for identifgihg and incorporating local sector

reference behavior into the strength of connection betueen sectors.

4.2.2 Morking Set Intersector Reference Models

The sector working set, Ws(t,T), uwill be used to define the strength
of connection betueen sectors for a given sector trace.

Let:

127

Q= 15, S;,...5m be a program of m-relocatable sectors.
ST = §',52,...5' e a sector trace -of"‘*;tm_ program

where S'e Q.
P =P ,P?2,...P' be the resulting page trace of the

program where P! is the page referenced at time t.

1fS' = Sj is the sector referenced at time t, then ue define
P'= Psj to denote the page referenced at tiwe t. Psj is to be
interpreted as the page containing sector j. He have adopted this

notation to make the folfowing discussion wasier to understénd.

‘Recall that the sector working set, Hstt,T), is defined to be the
set of distinct sectors referenced in the time interval t-T to t of the
sector trace. Similarly, the page working set, Wpft,T), is the set of
distinct pages‘heféfenced~in‘fhe~tiﬁe kn®irwfi 1-T to t of the page

trace.

FACT 1.
Let §'= §j ¢« and let Sj ¢ Halt-1,T). Then P!« Psj ¢ Hp(t-1,T)

iff Sj ¢« Psi for some Si ¢ Ws(T-1,T).

The proof of Fact 1 follous immediately frowm the definition of
Up(t-1,T), which is the set df dintinct paggs in the sequence
Pst 'L PstT ... ,Ps"! | and the definition of

Us(t-1,T), which is the set of distinct sectors in the sequence

128

Sf-l—T's"—T ,’...,S*_l .

Fact 1 states thai. when sector j is refgrenced'at time t and sector
j 18 not in the sector working set, then the page referenced at time t
Hill be in the pageluorking set if sector j is .grouped into a page uith
any one of the sectors in the sector working set. Furthermore, it states
that the page referenced at time t will not be in the page working set if
sector j is not grouped into a page With one of the sectors in the sector

working set.

FACT 2.
Let S'= Sj and let Sj ¢ Ws(t-1,T}. Then P'= Psj e Up(t-1,T}."
Fact 2 also follous immediately from the definition of Hs(t,T) and

Up(t,T).

Fact 2 states that, when sector j is referenced at time t and sector
j is in the sector uworking set, then the page referenced at time t will

be in the page working set.

FACT 3.
We want the entry Wij + Wji in the intersector reference model to be
the number of page fetches which uill go away if sector i and sector j

are grouped into the same page.

129

Using the above three facts as a basis, uwe present the procedure
for constructing the intersector reference model, W = [ijl, for i,j =

1,2,...,m. At each instant of time, t, for 1 < t <L, do the follouing.

Step 1. If S'= Sj and Sj & Ws(t-1,T), then increment Wij by 1 for all

Si e Ws(t-1,T).
Step 2. If §'=Sj and Sj « Ws(t-1,T}, then increment Wjj by 1.
‘Step 3. I1f S' = Sj and Sj € Ws(t-1,T), then no increment is required.

Simply stated, the above procedure works as follous. If sector j is
not in the sector uorking set when it is referenced, then increment its
connectivity strength with all the sectors in the sector working set.
Moreover, if sector j is in the sector uorking set when it is referenced,
then do not change the. strength of connection betuween sector j and the

other sectors.

We observe that the value of the intersector strength becomes
Wij = Zh kti,j. b,
where k(i,j,t) = 1 ifS'=5j ¢ WUs(t-1,T) and Si € Ws(t-1,T},
1 ifS'=5j ¢ Wsl(t-1,T) and i = j,
B otheruise,
Note that Wij + Wji is the number of page fetches which will go away

if sectors i and j are grouped together in the same page. The sum of the

diagonal elements of the intersector reference model, ZTd Wjj, is

130

the number of sector fetches uhich occurred for the sector uorking set.
This will also be the number of page fetches for the page working set If
no sectors are combined together in pages. The number of page fetches

after combining only sectors i and j will be I, UWjj - Wij -MWji.

FACT 4.
I1f exactly two sectors are grouped into each of the n logical pages,
then the number of times a page is referenced and not found in the page

Horking set is given by

M- 2 Wij +Mji forl kg n.
i, jePk
i=j
Fact 4 follous directly from the construction of Wij, since WHij +
Wji is the number of page fetches which are eliminated by grouping i and
j together in the same page, and since grouping i and j together does not

affect the value of W, + Wy, for grouping any other tuwo sectors

k and | together in a different page.

Unfortunately, we cannot extend Fact 4 to handle the case uhen more
than tuo sectors are allouwed to be grouped into a page. This occurs
because the matrix, W, does not contain enough information to determine
the number of page fetches which uill be eliminated by grouping three or
more sectors into a page. For example, Hjj is the number of fetches of
gsector j. Wij and Wkj are the number of times that sector i and sector

k,respectively, uere in the working set wuhen a fetch of j was made. The

131

problem is that sectors i and k both may have been in the sector working
set at the time that.a reference to‘j caused a }atch. Let the number of
vsector fetches of sector j, which uill be resoclved by grouping sectorﬁ i,
k, and j together intoc a page, be denoted by Rikj. |

Then,

MAXMij, Wkjl < Rikj < Wij + Wkj.

We should point out at this time that the above relations can be
utilized in a clustering procedure. Suppose sectors i, j, and k are
grouped'togethér into a page. Then the unresoived sector fetches of i,
j» and k, denotgd by U’ijk, is the number of page fetches of this page
uhich uill occur if no other sector is grouped with i, j, and k.

But

U'ijk < MWii + HWjj + Wkk - MINIRikjl - MIN [Rijk] - MINIRjkil.
Note, also, from Fact 4, that

U'ij = Wii + Wjj - Wij - Wji, for the case of tuo sectors in a page.

Therefore, a clustering procedure could dynamically determine a louer
bound on the number of page fetches which could be resolved by adding

another sector to a page.

Since the value of Wij depends on the window size T of the sector
working set Ws(t,T), we need to elaborate on hou one selects a "good

value" for T.

132

For real programs, uwe measufed the improvement in paging per formance
for restructured programs as a function of T. That is, ue computed the
“intersector reference model W for various values of T, and for each W we
restructured the program and computed its paging performance. The
detailed results of these experiments are presented in Chapter 6.
Houever, the significant characteristics of these results are as follous.
For a given program, the best improvements in paging performance, as a
function of T, occur for a rather large banduidth of T values. For
example, values of 1888 < T < 5888 produced essentially the same and the
best improvement in paging performance of certain programs. For all
programs tested, the bandwidth of T values that resulted in the best
improvement in paging performance uas several thousand instructions;
houwever, the location of this banduidth of T values in the set of all T
values varied from program to program. A serendipitous observation of
the correlation betueen the banduidth of good T values and the "knee" of
the parachor curve of the sector fetch function, FFs(|Ms},ST,Fd,Ro),

produced an interesting empirical result.

The parachor curve is .a graph of FFs(Insl.ST,Fd.Ro)'versus the
amoun{ of primary memory |Ms| available for'execution. A typical |
parachoer curve for FFs is shoun in Figure 5. The value of FFs is a
monotanical ly decreasing function of |Ms]. For most observed programs,
there is a threshold region at uhich;

a) if the amount of primary memory is decreased further, the number of

sector fetches increases very rapidly, and,

133

b) if the amount of primary memory is increased further, the number of

sector fetches decreases very 51ou+g.

Thia threshold region is depictaﬁ in Figure S and is calied the knee
of the parachor curve. The values of {Ms| in the knee of the parachor
indicate hou:mang sectors are regquired to be in the primary wmemory to
maintain a “"reasonable™ level of performance. :

Let the average sector working set size be denoted by u, (T) and be
defined as,
ug (T1=(1/0)-2h, ws(t,T)

Now e present ‘a method which identifies values of the windou size T

for use in the construction of the Intereector reference model UW.

Experimental Result:

For all the programs we tesfeﬂ. the banduidth of T values uwhich
resulted in the best improvement in paging»psriornpnce cofresponds to
those values of T for uhich'fhé<awerage'auctorzuurklng set size ug (T)
uwas equal to
a) some value of {Ms| in the knee of the parachor curve of
FFs(|Ms|,ST,Fd,Rao), or to
b) some value of [Ms] slightiy smaller than those values of |Ms| found in

‘the knee of the parachor curve.

This experimental result uas particulerly handy in our research,

since ue had already computed the parachor curve of FFa{|Ms|,5T,Fd,Ro)

134

FFs T

2 __ FFs (|Ms],ST,Fd,Ro)

Yalues for W (T)

» |Ms|

FIGURE 5.

Parachor Curve of FFs {|Ms},ST,Fd,Ro)

135

for use in establishing the !ouer bounds.

If the windou size, T, is very small, for example T=1, then the
value of Wij is much larger than the number of page fetches resolve& by
grouping i and j together for most memory sizes. On the other hand, if
the value of T is very large, for example 25,880, then the value of HWij
is much smaller than the number of page fetches resclved by grouping i
and j together for most lemofg sizes. Houever, if T is such that the
average uorking set size is in the knee of the parachor curve, then the
value of uij represents the inte}sector aqtivitg_nhen'the'progranbhaa
just'enough space to axaﬁute efficiently., This cofresponds to the
intersector activitg'that we want to represent in the intersector
- reference model, W.

In addition to the above intersector reference mode! based on the
sector uorking set, ue decided to investfgate the potential of the
follouwing model. Let the intersector reference, H', be a m x m matrix

defined as follous:

W ij = Zh,kti,j,t) for i,j =1,2,...,m,
uhere k(i,j,t) =1 ifS =5j ¢ Walt-1,T) and Si ¢ Wsl(t-1,T);

8 otheruise.

The value of W'ij is the number of times that sector j uas
referenced uhen sector j and sector i uere both in the sector working
set. Therefore, if the value of Wij is large, then Si and Sj were in

the sector working set together many times. Note that W’jj is the number

136

of references to sector j uhich will not cause a page fetch. In
contrast, Wjj of the previous model is the number of references to sector
j which uill cause a page fetch unless Sj is grouped with some Si.
However, W’ij does measure the tendency for sectors.i and j to be found
in the sector uworking set together. Clustering procedures which group
sectors into pages uith large W’ij values will tend to reduce the size of
the page working set and hence increase the locality of the restructured

program.

We conclude with a feu comments about the intersector reference
models based on the sector uworking set, Ws(t,T). The HG intersector
reference model, H, is a special case of the intersector reference model,
W. They are the same uhen W is computed from a sector working set uith
Hindou size{_T, equal to one. The notion of using sector working sets to
define the strength of connection betuéen blocks has been investigated-
concurrently but independentiy of this work by Masuda [MB] and Ferrari
[F11. HMasuda’s use of block working sets is quite different from this

Hork, while Ferrari’s is similar in some aspects.

4,.2.3 LRU Stack Intersector Reference Model

The "LRU sector stack" will be used to define the strength of

connection betueen sectors for a given sector trace.

137

Consider demand fetch, LRYU repiaceﬁm on a sector trace,
ST = 5',5%?,...,59',...,5', over a set of m-relecatable sectors.
From Chapter 2, ue know .that LRY satisfies the inclusion property, i.e.,
Ms' (1) c Ms' (2) ¢ ... g Me' (') = Ms' tn'al) = Ms' tm'42) -...
uhere Ma' {j) is the contents of the sector memory Ms at time t when the
size of Ms is j sector frames (i.e., [Ms! | = j), and m is the nunbér

of distinct sectors referenced in the seguence g! .32 sees .S' .

Because of the inclusion property, the primary memory contents Ms!
at any time t and for all capacities can be represented in the follouing
terse and useful way. HWe order the d‘isﬁmt set of sectors in the
sequence S',5%,...,5' into a list called the LAY sector stack which
is defined as SS'= SS' (1),55' €2),...,56' (&) where
SS' (i) = Ms' (i)-Me' ti-1), Note that
n';

.

Me' (i) = 55 (1),SS' (2),...85' i} for i
iss' (11,55 (2),...55' (')} for &

<
>

The LRU sector stack has no entries at time t = 8. The top of the
stack is defined as SS' (1), while the bottom of the stack is defined as
sst (m').

The LRU sector stack, just after sector reference S! at time t, is
simply the list of the set of »' sectors of the program ordered
.according to recency of usage; i.e., SS' k) is the kth most recently

used sector relative to S'.

138

The position of sector j in the stack just before sector reference
S', at time t, is defined as the sector stack distance and is denoted
by A'j. Fur thermore, A'j = w if Sj has not been referenced. Thus,
A'j-{k ifSS! (k) =Sj. 1<k en

o otheruwise

From the definition of stack distances, ue observe that st - Sj
will cause a sector- fetch under demand fetch, LRU replacement uniess
A'j < |Ms| uhere [Ms| is the number of sector frames in the sectored

primary memory.

Nou, tuo facts are presented which relate the sector stack distances
at time t uith the parameters of a paged virtual memory system using
demand fetch and LRU replacement on the page tréce'

P = p‘.pz.....,p'....,pl in a primary memory of |Mp| page frames.
The page, p', referenced at time t must contain the sector st,

referenced at time t.

FACT 1.
Let §'= Sj, and let a'j > |Hp|.. Then p'e Mp' i€ Sj is

grouped into the same page With some Si uhere ali < |Mp].

Proof.
Note that a'j > IMp| states that the sector stack distance at time
t to sector j is greater than the number of page frames in Mp.

Suppose Sj is grouped With some Si, where ali < iMpi. Then the sector,

139

Si, s among the |Mp| most recently referenced sectors. Therefore, the
page containing Si must be awong the Ml west recently referenced pages,

since we are assuming that the secters are swaller than pages.

FACT 2.

Let S'= Sj, and let A'j.s IMp). Then p'e Mp'.
Fact 2 follous from the argmnt applied to Si in Fact 1. HWe caﬁ use
Facts 1 and 2 as a basis for defining the strength of connection betueen
sectors. Fact 2 states that, if S'= Sj and A'j < |Mp|, then Sj wuill
not cause a page fetch; hence, for such references,' the strength of
connection betueen S} and the other sectors need—lnﬁt be incremented.
Houever, if a'j > |[Mp}, then Sj uill not cause a page fetch when it is
grouped with any sector Si with a'i < |Mp|. Fcr the latter case, the
strength of connection betum Sj and a1} Si uith a'i < [Mp} will be

incremented by 1.

Nou, we define the intersector reference model based on the LRU

sector stack distance as a m x m matrix, U, uhere
Uij = Z4,V(i,j, t) and

1 i¢S'=5j and a'j > D and a'i < D;
V@i,j,t) = 1 ifS'=Sjand atj>0andi = j;
8 otheruiase. :

148

If the value of D is one, then the intersector reference model, U,
'is the same as the intersector reference model of Hatfield and Gerald.
Houever, we got the best results (feuwest page fetches after
restructuring) with values of D equal to the number of sectors, |Ms],
corresponding to the high side of the knee of the parachor curve
FFs{|Ms|,ST,Fd,Ro). Figure 6 shous the typical shape of FFs as a
function of |[Ms| and the range of the values of D which gave excellent

results for all real programs we investigated.

One explanation which provides some insight into why the values of D
corresponding to the knee region of FFs produce reasonable values for the_

strengths of connection betuween sectors is as follous.

If D is very small, say 1, then the strengtﬁ of connection betueen
tuo sectors, Uij, is proportional to the number of page fetches only when
the paged primary memory has one page frame. Houever, most large
programs uill not execute efficiently when allocated one page frame. If
the value of |Mp| for efficient execution is much larger than D=1, then
the strength of connection Uij for some i and j may not even be loosely
proportional to the number of page fetches resolved when they are grouped
together. For very small values of D, Uij may be excessively larger than
the number of page fetches uwhich are resolved by grouping i and j
together; for very large values of D, Uij may be excessively smaller
than the number of page fetches resolved when i and j are placed

together. Values of D in the region of the knee of the curve represent

141

the intersector activity when the program has just enough space to
execute efficiently. This is the intersector activity that uwe want the

intersector reference model to measure.

142

FFs 4

“ = __. FFa(|Ms]|,ST,FD,Ro)

Knee Region

IMsj

FIGURE 6.

Parachor Curve !llustrating Yalues For D

This empty page was substituted for a
blank page in the original document.

143

CHAPTER §
CLUSTERING PROCEDURES

5.1 Introduction

The purpose of this chapter is to present the automatic cluétering
methods which were used in conjunctfon with the intersector reference
models to restructure programs. The experimental.results which shou the
effeét of these clustering techniques on the paging performance of

restructured programs are presented in Chapter 6.

5.2 Clustering Procedures

The clusfering me thods bresented }n this chapter'mag be~applied to
any of the intersector reference matrix models of Chapter 4. 'Hence, we
will denote any of these intersector reference model§ with the.generic
€C = [Cijl. 1In those cases uhere a particular intersector reference

model is needed, the notation of Chapter 4 uill be used.

We know of no efficient procedure to produce and prove the optimal

partition of sectors into pages to maximize the sum of the intersector

144

connections Cij within all pageé. ngaral clustering procedufes based
an heuristic approaches are presaﬁteq in this chapter uhiqh have the
follouing significant propert-ied. ‘First, they are completely automatic
that is, these procedures are not based on manual or 'egeball’

reorder ings. Secbnd. all.these procndureb*prnduped;restructured
pragrams uhich shoued substantial inpfovﬁhgnfa in their paging:

per formance. Third, these clustering pwocﬁduree are quite fast..

The technique of the follouing clustering procedures is to take an
intersector reference model of intersector hnnd’strengths'and cluster
relocatable sectors into pages such that the sum nf‘thé sector bonds

uithin pages tends ‘to be maximized.

5.3 Nearest Neighbor Me thods

In this section, we present several hierarchical methods uhich
cluster the nearest tuo clusters under a specified bond strength

definition one after another.

Given any tuo clusters of relocatable sectors, Gx and Gy, the
intercluster bond is denoted by Bix,y). Several intercluster bond
definitions are given below; then a clustering procedure is defined

over the intercluster bonds,

145

In the following definitions, the intersector reference matrix,
C = [Cijl, is assumed to be symmetric. -If.the intersector reference
matrix is not symmetric, then each occurrence of Cij should be replaced
uwith (Cij + Cji}/2. The notation |Gx| denotes the size of cluster Gx }n

bytes, and N denotes the page size in bytes.

A. Constrained Nearest Neighbor Bond

The Constrained Nearest Neighbor bond, CNN, betueen any tuo

clusters Gx and Gy is defined as

Bix,y) = Max Cij : ieGx, jeBGyl when |Gx] + |Gy} < N.

undefined when |Gx] + |Gy| > N.-

B. Constrained Farthest Neighbor bond
The Constrained Farthest Neighbor Bond, CFN, betuween any tuo

clusters, Gx and Gy, is defined as

Bix,y) = min {Cij: ieGx,jeGyl uhen |Gx|] + |Gyl < N;

~undefined when |Gx| + |Gy|>N.

C. Constrained Average Neighbor Bond
- The Constrained Average Neighbor bond, CAN, betueen any two

clusters, Gx and Gy, is defined as

146

Blix,y) = (1/n,) Zyg, Zug, Cij uhen [Gx] + |Gyl < N;

undefined when |Gx| + |Gy} > N.

Here n,, is the number of Cij > 8 with i € Gx, j ¢ Gy. Note that n,, is
the number of arcs betuween Gx and Gy, and if is not the sum of the.

values on these arcs.

0. Constrained Average Neighbor Weighted Bond

The Constrained Average Neighbor Heighted bond, CANH, betueen any

tuo clusters, Gx and Gy, is defined as

Bix,y) = n % (1/n,) Zig, Zeg, Cij uhen 1G6x| + |Gyl < N;

undefined uhen |Gx|+|Gy] > N.

Hence,

Bix,y) = Zig Zxgy Cij when |Gx| + |Gy| < N.

A clustering procedure is now defined for use uith any one of the

above definitions of Bix,y).

Firagt, choose any one of the above definitions of Bix,y). Secbnd.
partition the m relocatable sectors of a program into exactliy m
clusters, uhere each cluster contains one sector. Then, at each'step'in
the clustering process, the nearest tuo clusters are combined to form a

new cluster. The nearest two clusters are defined to be the two

147

clusters Gx and Gy which have the Iargesf value of Bi{x,y). When the sum
of the size of the tuo clusters becomes larger than the page size in the
clustering process, these tuwo clusters are not considered to be
connected; that is, their bond strength is undefined. The process

comes to an end when neu clusters cease to appear.

When the above clustering procedure is applied to the Constrained
Nearest Neighbor bond definition of Bix,y), it will be referred to as
the CNN procedure; when applied to the CAN definition of Bix,y), it

will be referred to as the CAN brocedure. etc.

A1l of these clustering methods are computationally fast, easy to
implement, and they tend to group the sectors uwith the strongest
intersector strengths, Cij, into the same page. Hence, they tend to

minimize the interaction of sectors clustered into different pages.

The CNN, CFN, and CAN procedures are variations of clustering
procedures which are uidely uséd in the field of muttivariate analysis.
The Constfained Average Neighbor Weighted bond, CANW, procedure uas
developed in this reséarch. In fact, we experimented uwith several
weighted versions of the CNN, CFN and CAN procedures. Houwever, the CANW
procedure consistently produced program structures which required feuer
page fetches than the program structures produced by the CNN, CFN, and
CAN procedures or by any of the other ueighted versions ue examined.

One explanation for the success of the CANW procedure is that at each

......

148

step it combines the tuo clusters which have the most total intersector

connections between then.

In the above Constrained Neighbor bond dafinitions, CNN, CFN, CAN,
and CANU, the constraint {6x|-+ |6y] <N insures that the size of a
cluster never exceeds the page size. Hpuéver. natural clusters of
sector§ mag in reality be larger or smaller than a page size: It is of
courae conceivable to ‘uake clusters covering several pages uithout any
consideration of page sizes and to assign each of them to several
contiguous pages. In order toievatuafe the merits of allouwing clusters
to become any natural size, we experimanted u}th
a) the Unconstrained Nearest Neighbor bond, UNN,
b) the Unconstrained Farthest Neighbor bond, UFN,
c) the Unconstrained*tveragm?ﬂeighbor‘bond.‘Uﬁﬂ.‘and
d) the Unconstrained Average Neighbor Weighted bond, UANW, |
where UNN, UFN, UAN, and UANM are defined to be exactly the same as CNN,
CFN, CAN, and CANQ,'respectivelg. uith the exception that the constraint
|6x] + {Gy] < N is not present in the bnéonﬁtrainad cases. That is, in
the uncon.strai-ned cases, clusters way be combined independentiy of their

sizes.

The clustering procedure for the constrained clusters had to be
modified slightly in order to be applicable for the unconstrained
clusters. The clustering procedure for the unhconstrained clusters is as

“followus.

149

Choose any one of the unconstrained definitions of Bix,y).
Partition the m relocatable sectors of a prograﬁ into exactiy m
clusters, uwhere each cluster contains one sector. Then, at each step in
fhe clustering process, the nearest tuo clusters (i.e., the tuo uith the

largest value of Bi{x,y)) are combined. Now ue will define uhat we mean

by combine.

Let the tuwo clusters which are to be combined at any step of the
clustering process be denoted by |

Gx = 5%,,5x5,...,5%; and

Gy = Sy,,Syz,.-.,5y;,
uwhere the cluster Gx is defined to be the ordered list of i sectors, and
the cluster Gy is defined to be the ordered list of j sectors, The
combination of the Elusters Gx + Gy is defined to be the ordered list of
i + j sectors

Gx + Gg = Sx,.sz....,Sxi,ng,ng,...,Sgi.

Since each cluster starts out with one sector, the above definition
of combining tuo clusters insures that the relative order in uhich
sectors are clustered is preseryed. This is important in the
unconstrained case, because the clustering procedure ends uhen all the
clusters which are connected are grouped into one giant cluster, which

could be the uhole program.

158

Note that the order of the sectors in the congtrained clusters is

not important, because a constrained cluster uill aluays fit into a

page.

S.4 Hatfield and Gerald Method

The Hatfield and Gerald clustering procedure can be applied to any
intersector reference matrix model, C » [Cij}. The HG clustering
procedure is defined in detail in [H1] and is briaflg’sunnarized belou.
Let

E = [Eijl, i, =1,2,000,m (m is the number of sectors),

uhere .

Eij = -Cij uhen inj

. Cij + 2m uhen i = j.
The inversebmatrix of E is calculated, then a rou in the inverse is

chosen, and a set of sectors in that row are clustered into a page, and

the process is iterated until all sectors are assigned.

We thank Don Hatfield for providing a copy of his restructuring

program for use in our restructuring experiments.

151

5.5 Sector Interchange Procedure

The sector interchange procedure, SIP, is developed in this
gection. The SIP begins with the set of m relocatable secto;s of a
program partitioned into n blocks. That is, assume that a partition, II,
of the set of sectors, 15;,5,,...,5m}, making up a program is given.
Let Il be denoted by
m= i, ,0,,...,lInt where |[Ij| is the number of sectors in the j-th

block of II.

The blocks, IIx, of Il may represent the logical pages of a program,
uhere the sum of the sizes of the sectors making.up a block of [1 is less
than the page size, or the blocks of II mag'represent natural clusters of
sectors, uhere the sum of the sizes of the sectors making up a block may

be greater than a page size.

The basic strateqy of the sector interchénge.procedure, SIP, is to
reassign sectors to blocks of Il by exchanging tuwo sectors of different
blocks when the exchange provides a positive contribution to the sum of
the sector connections within blocks. [In order io be more precise, We
need to define a few terms. Let

€ =1ICij] be a égmmetric intersector reference

matrix for i,j < m, and
P =15,,5,,...,5m denote the set of sectors

making up a program.

182

Definitions:

The complement of 1Ix is denoted ~{Ix and
S[Ix = {llj € MM ¢ MMj = Hx}

Let Si ¢ Tlx; then the intrablock
bond of sector i, Si, uithrbluék x is
defined as |
Bli,IIx) = Zk,, Cij

Let Si e [Ix and Si & My; then thé interblock
bond pf.sector i with block Hg is defined as
B (i, Myl - Ziny Cij

Let Si ¢ IIx; - then the interblock bond "ofb sector
i With atl other blocks is defined as
Bli,~MIx) = T, Cij

Thé quality of the bond for the ith sector is defined as
a, (i1=B(i,Mx) - Bli,~lix), uhere Si € Hix.

The guality of a sector partition Il ia. |
defined as

0,, = :Sifp O (l]

The goal of the sector interchange ,proced.are, SIP, is to maximize
the quality O, by interchanging sectors between blocks of the
partition. We nou present an efficient method to find an optimal
assignment of sectors to blocks under the cun-str-aivn-t that each
"interchange consists of exchanging a sector of one block with a sector

of another block.

153

Lemma 6
Let Si ¢ lIx and Sj ¢ My. 1f Si and Sj are interchanged, the net
gain in the quality Q,, denoted by A Q, (i,j), is given by

aQ, (i,j) = 64B(j,0x) - B(j,Oy +B(i, 0y - Bli,Ox) - 2Cijl.

Proof:

Let Si e MIx, Sj e Iy and lIx, My ¢ M. Nou, interchange sectors Si
and Sj uwhich produces the new partition II’.
a 4, G,j) =Q, -0 = Zgep q, (k) - Igp q, (k) = Zge q, (k) - q7 (k).
Let A qfk) = q, (k) - q; (k).

Nou ue consider 5 cases.
Case 1. A qlk} = 2(Ckj - Cki) for all ke IIx, ki

Case 2. A qlk) 2(Cki - Ckj) for all ke My, kej.

[}

Case 3. 4 qlk) B for all ke ~(lly + IIx)

Case 4. A qli)

B(j,lOx) - B(j,Iy) - BEj,Mx + My - 2Ci j
- BGi,Ix) + BGi,My) + BGi,Mx + My)

Case 5. A qlj) = B(j,lOx} - B(j,My) + B(j,lx + My) - 2Cij

- BGi,Ox) + BGi,My) - BGiLIx + MMy).

154

Nowu,
aq, Gi,j) =2 qlk) + 2 A qlk) + A qli}) + A q(j)

keTmx kemny

k=i ko j

= 2B(j,l0Ix) - B(i,lIx) - Cijl
+ 2B, 0y - B(j, Oy} - Cijl + A qfi) + A qij)

a Q, G,j) =480, Ix) - B(j,My) + BGi,My) - B, x) - 2Cijl.
QEo.

Nou we present a Lemma which permits us to quickly select the Sj and Si

for exchange.

155

Lemma 7:

If a0, (i,j) is positive, then q, lil+q, (j) is negative.

Proof:
qli} = BGi,lIx) - B(i,-Mx)
= Bli,lx) - BUi,My) - B(i,~(Mx+My))
similarly,

a, {(j) = BUj,My) - B(j,0x) - B(j,~(lx+y))

From Lemma B,
A Q, Gi,j) = 4B(j,0x) - B(j,MMy + B,y - B(i,Mlx) - 2Cijl. Hence,
a 0, ti,j) = -41qg, (i) + g, (j) + BCGi,~(lx + My)) + B(j,~(x + ﬂg)) + 2Cijl.
But B(i,~(lx + MMy)) + B(j,~(Ix + Hy)) + 2Cij > @, and
A Q, (i,j) >8. Thus q, (i) + q, (j) < B.

Geo.

FACT 1:
The maximum value of A O, (i,) = -4(q, (i) + q, (j)).

This fact follous directly from the proof of Lemma 7.

FACT 2:

IfaQ, (i,j) > 08, then (i, j) must be an element of the
Interchange set, 1,, where
Iy= 10, j) ¢ q, Gideg, (j) < B, i,je P}.

This fact follous immediately from Lemma 7.

156

Nouw ue iteratively define the sector interchange procedure, SIP.
, We assume that an initial partition, I°, and an intersector reference

matrix, C, are given.

The operations performed in the kth pass are these:
a. Compute the set lnx-|
b. Select a pair (i,j} such that

A QHK" ti,j) >a0 i {u, v} for

n*
all {u,v) e Ipk-i

c. If A OIIK.” (i, j} > 8, then interchange sectors i and j
of "' to get M*, and go to the (k + 1) th pass.

If aQpkr (i,]) <8, then stop with n-! .

The SIP has to terminate at some pass k, since. Cij is finite. If it
terminates on the kth step, then m*! s optimum in the sense that |
no pairuise interchange can increase the value of an-l. This is
obvious, since IIIK" contains all the possible candidates (i, j) that
could possibly make A Clnx-l positive, and since at termination

a ﬂnxd (u,v) < B for all (u,v)e an-l- ‘

In each pass of the previous algorithm, by keeping the list of
sectors in the set lnx-l sorted and using Fact 1, the a’lgoriihm can be

made much more efficient.

157

The sector interchange procedure, SIP, is particularly useful when
one has a partition, [I, where the blocks of [I represent natural clusters
of sectors. Another application of SIP is in the evaluation of breaking

up huge sectors into smaller parts by reprogramming.

An ongoing reseérch project betueen the author and Don Hatfield of
IBM is to evaluate,the potential benefit of reprogrammiﬁg and then
restructuring a very large data base system. The rationale for
reprogramming is to divide the very large sectors (over 18 pages {ong)
into relocatable subsgctors and then restructure the neud program.
Theorem 1 can be used to predict the theoretical best paging performance
if the large data basé program dere broken up intu‘exactlg k sectors per
page. Then, given an intersector reference matrix and a partition, II,
of k sectors per block, the sector interchange procedure, SIP, can be

used to restructure the program.

5.6 Intercluster Bonding Method

The purpose of the intercluster bonding method is to identify
natural clusters of dense sector interactions., This task is
accampl ished by permuting the rous and columns of an intersector
reference matrix model in such a way as to group the numerically larger

matrix elements together.

158

The definition of the intercliuster bond measure is given first,
then we illustrate the capability of this measure to cluster the larger
matrix elements together, and then ue present a fast approximate method
of permuting the rous and columns of a given matrix such that the

intercluster bond measure tends to be maximized.

Given a symmetric intersector reference matrix C = [Cijl for
i,j = 1,2,...,m which represents the intersector activity betueen the w
relocatable sectors of a program, ue define the intercluster bond

measure, ICB, as

ICB(C) = E";‘_‘ m;.| Ci j (C’i-l,i + Ckl,j + Ci,]-l +C;J.|)
where Co’i = Cmd,i = Ci,o = Ci,md = B by definition and Cij > a.
We point out that the bond strength betueen two nearest-neighbor

elements of C is their product.

The intercluster bond measure, ICB, is defined so that a matrisx C
that has dense clusters of numerically large elements uill have a large
ICB when compared uith the same matrix uwhose coluﬁns and rous are
permuted such that numerically large elements are more uhiformlg
distributed over the array cells. In order to illustrate the
sensitivity of ICB(C) to the degree of clumpiness of the large values of
Cij, ue present the follouing tuo simple examplies. Example 1 shous the

same matrix with 5 different row and column permutations. HMatrix Cg

159

which has the largest intercluster bond measure contains tuo
noninteracting clusters. One cluster consists of the sectors a and c;
uhile the otﬁer cluster consists of the sectors b and d. The fact that
matrix C; could be reordered to produce tuo noninteracting clusters is
not readily apparent even for this simple example. Example 2 shous a
slightly more complicated matrix. Matrix Cqjof example 2 is |
characterized by a block checkerboard form, uhere the blocks of sectors
along the main diagonal representvthe primary sector clusters and the
of f-diagonal blocks indicate the intercluster interactions. Matrix Cg
which has the largest intersector bond measure of Example 2 has the same
set of primary clusters as Matrix C, but it differs from Cqs in that

the clusters uwhich interact the most are ordered adjacent to each other.
The intercluster bond.measure, ICB, tends to be maximum when the most
strongly intraconnected sectors are clustered togéthef and the most
strongly interconnected clusters are clustered together. Ne.call ICB
the intercluster bond measure because it tends to cluster the

intercluster connections as uwell as cluster sectors. .

In our experimental studies, sector orderingg which produced the
largest values for the intercluster bond measure provided as good as or
better improvements in the paging performance than any other program

restructuring method tested.

Example 1:

a b C d
alle B 18 8
b %) 8 8 8
c |18 B 18 4]
d %) 8 8 8

T 0w

a

Cl matrix

ICBI(C,) = B

b C d

108
18
8
%]

18
10
8
B

0o Qo W=

[s e Sl v I}

Cy; matrix

ICB(C,) = 656

QoToo

19
19
9
(%

18
19
B
B

e Je o B Jasl

oo S

Cy matrix

1CB(Cg) = 1312

0OQT W

QT oo

168

18 8 18 2}
8 8 8 8
8 8 2 8

18 B 18 8

Comatrix

1CB(C,) = 256

a b d C

18 B B 18

18 8 8 18
B 8 8 8
8 8 8 (%)
Cq matrix

ICBIC,) = 912

161

Example 2:

18

D et @D
[N N -N. . -K. -]
-y

T ITONONEDN

-t
TrToOODO®

— -
RNV~ D®
DR 000 E W -
VDO Tt O
-

[SIS g~ A

10
19

a
b

OT O O« C

ICB(C,) = 1548

ERND®~N
D000~ DOo0
T ROOTOO®
= —
TP OoOTO®
- L
- e N DR e
000 e D00 et
T OO TOIO®
m—f]

ST OoOTOS®
—t L]

T O OLOLOwTD

2
ICBIC,) = 1560

c

TrToOoROI/IOD

= -t
Q= ONND
OO et O ND
T T OO0

-l —
DN ® it O

TNV~ D

| soooroo e
-l

SO0~
— — B

TLOT O OL W

3
ICB(C;) = 1864

(M

162

\Y]
=3
e}
Qa
Q
-
Q
T

all8 18 ©® @ &4 &4 8 1
b|18 18 8 8 &4 4 @ 8
c|® ©® 8 8 8 8 1 1
d| 8 ©® 8 8 @8 8 1 1
e| 4 4 8 8 18 18 @8 @
f| 4 4. B @ 18 18 8 8
g/ @ B8 1 1 8 8 7 7
h|1 @ 1 1 8 8 7 7
Ca

ICB(C,) = 2776

ajle 10 4 4 B 8 8 1
b|lo 10 4 4 a 8 '} %}
e 4 4 18 18 %) 8 7] ")
f 4 4 18 18 B 8 B B
c 8 B B %] 8 3 1 1
d %) B 5] %) 8 8 1 1
g/ 8 @8 @ @ 1 1 7 7
h 1 %] 2 0 1 1 7 7
Cs

ICBI(Cy) = 3536

Note that the definition of ICB may be decomposed into the tuo

parts as follous:

ICB{C) = ICB(CR)+ICB(Cc), uhere

1C8B (CR } = E'?_, 2";.| Ci j (Ci-l,i + Ciol,i)

ICB(Cc) = 2",-‘_, Z",‘_, Ci j (Ci,j-l + Ci,]0|)

The value of ICBI(Cy) is the sum of the row bonds and the value of

ICB(Cc) is the sum of the column bonds.

163

Property 1:
The values of the rou bonds, 2""_1 Cij(C-,_l‘, + CMJ)

. are not affected by any permutation of the m columns of C.

Proof:
Let ={ A (1), A (2),... A (m)} denote any permutation
of the m columns of C producing the neuw matrix
D=0 j1=(C,,q 1.
Then, for any 1 < i < n,
1 CijCiy+ Gy ?= T Ciagy Cipap + Crpp? -
This is clearly true, since i is fixed over the summation of all j.
Thus, for every term in the summation on the left,
CijlCy; + Ciy;), there must be a value k, 1 <k g m,

such that

Cij(Ciy; + Curd = Ciago Ciojpgo + Citpma) -

Property 2:
The values of the column bonds, E7,; Cij(C;; + C,;,)) ’
are not affected by any permutation of the m rous of C.

Proof is the same as that of property 1.

164

Property 3:

ICB(Cq) =ICBACE) for symwetric matrices C.

Proof:

[CB(CQ’ ’“i'-l) vi'-l Ci j(ﬁi_u 4{:;‘1., ,

T T ' CjiCy, .*‘Ci,iol)

"‘i‘"‘ 2’?,, Cij (ci,’_| _+Ci,)ol)
-1CB{Cc}.

Property 4: _
The contribution to ICB{(C) from any row. is only affected by the tuo
adjacént rous. The contribution to ICBIEY from: any column is only

affected by the tuo adjacent columns.

Property & is obwvious, since the contribution to ICB(C) from any
m

rou i is I, Cij(C,; 4Gy,) and from any

column j is ZIT,; CijlC,, 4+).

From properties 1 and ,2 the wmaximization of 1CB(C) over all column
and rou permutations reduces to tuoc separate optimizations. One is for

the rows, ICB{(Cq), and the other for the columns, ICB(Cc).

From properties 1, 2, and 3, we knou that the row permutation which
maximizes ICB{Cp), is the same as the column permutation that

maximizes ICB{Cc). Thus, all ue need to do is find a row permutation

165

that maximizes ICB(Cp), then reorder the rous and columns of C

according to this permutation to maximize ICB(C).

The problem can be stated formally as follous:
Let A =0 (1), A (2),..., A (m] denote a permutation
of m columns of C producing the neu matrix
0=00ijl = G, 1.
Maximization of the summed column bonds ICB(Cc) is given by,
Max over X of Z%, 2%, Dij [0, + D],
uhere A fanges over all m! possible permutations.
This may be transformed into a quadratic assignment problem for uhich
optimal and suboptimal algorithms have been published [G3]. These
suboptimal algorithms were not used, since they are too time comsuming
for large m, i.e., they require operations uhich'rise uith the fifth

pouer of the matrix size.

Nou we define a suboptimal method which exploits the
nearest-neighbor feature [M5] of property 4. This method is much faster
than the optimal methods and is believed to produce near optimal
orderings. The intercluster bond method is as fol lous:

A. First compute and save the set of intercolumn bonds for all pairs
(i,j) of columns, i.e.,
2% CixCy forall 1l ci,jem i=j.

B. Pick one of the columns arbitrarily, put it into a list, and set

166

k=1.

C. For each of the remaining m-k columns, compute the confribution to
the intercluster bond measure for each of the k+l possible positions to
the left and to the right of each of the k columns already placed in the
list. Place thé column that gives thevlargest incremental contribution
to the intercluster bond measure in its best location in the list.

D. If k=m, stop:; otheruise, increment k by 1 and repeat step C.

When the above procedure terminates, simply order the rous and

columns of C in accordance uWith the list of columns.

Property 5:

The time for the execution of the clustering process in step C
3
grous as m° .
To see this, note that

m.lk+l) (m-k) = m/B + m¥/2 - (2m/3).

The intercluster bond method .will cluster the sectors into disjoint

groups if this is possible.

167

CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Introduction

The purpose of this chapter is to report on an experimental study
of the paging performance of programs. The objective of this study is
to evaluate the practical restructuring methods developed in Chapters &
and 5. The evaluation consists of two basic parts. First, the paging
per formance produced by the different restructuring methods are related
and contrasted with one another. Second,'the impfovements in paging
per formance produced by the practical restructuring methods are compared
uith the theoretical best and uorst improvements as given by the bounds

in Chapter 3.

We have performed experiments, using the IBM System/368 Mode! 67 at
the Cambridge Scientific Center, on compilers, assemblers and a large
data base program. The results of a specific example uill be presented
in detail. MWe have chosen as an example the restructuring of a highly
modular compiler [A3]. This example is selected because ue have
experimental results for all of our restructuring methods applied to
this compiler. The author and Don Hatfield of IBM plan to publish the

" results of using some of these methods to restruéture a "large data

168
base” system as soon as our results are completed.

This compiler has & phasea. Phase 8 is a very small root phase
which simply has Phase 1 read in, and, when Phase 1 is over, has Phase 2
read in, and, when Phase 2 is over, has Phase 3 read in. Each of the
phases is a separate overlay in the sense that they do not share any
address space. Therefore, we may think of Phases 1, 2, and 3 as three
separate programs. There are between 78 and 189 relocatable secto;s per
phase. For each compilation, ue computed three distinct sector traces.
One trace was for Phase 1, one for Phase 2, and one for Phase 3. In
particular, from the time that a phase uwas loaded into the address space
until its subsequent removal, a full instruction trace of all references
to the relocatable modules of that phase uas recorded. This instruction
trace and the load address of all the relocatable sectors {(modules) are

sufficient to compute the sector trace.

In order to compare the effectiveﬁess of the different arrangements
of sectors into the virtual address space, LRU and OPT paging simulators
uwere developed for a single user paging against himself. Input to the
gimulator was a sequence of page requests generated from the full
instruction trace and a neu ordering of ;ectors into the address space.
A modified version of the one pass OPT algorithm by Palermo and Belady

(B6] was used as the OPT paging simulator.

169

When sectors have been assigned to pages, one problem remains.
What to do about page boundaries? Holes in pages can occur if sectors
do not fit evenly into pages. For most real programs, we have tuo
alternatives. First, ue do not aliou sectors to cross page boundaries,
which may cause empty space uithin the pages. Second, We pack sectors
one after another into the virtual address space, leaving no holes but
allouing the sectors to cross page boundaries. Hatfield {H1] has

reported on the relative success of the latter approach.

For our experiments, we packed sectors one after another into the
virtual address space, leaving no holes betueen the sectors. That is,
given a partition Il of the sectors in blocks, ue placed the blocks of
the partitions into the virtual address space one after another. The
unconstrained average neighbor weighted bond, UANW, procedure was used
to automatically order the clusters for insertion into'the address

space, unless the clustering procedure produced ordered clusters.

The next few sections report on the results of the restructuring
experiments performed on the different phases of the compiler. The

basic structure of these experiments on each phase is as follous.

A. A full instruction trace is recorded and mapped into a sector
trace.

B. An intersector reference matrix model is constructed ‘from the

sector trace. '

178

C. A clustering procedure, based on a particular intersector
reference matrix, is used to partition the relocatable sectors into
blocks.

D. The resulting ordered blocks of the partition are inserted into
the address space one after another.

E. The paging performance of the restructured program is simulated
using LRU replacement (sometimes OPT replacement is used). Ue
chose LRU replacement because so many contemporary virtual memory
systems use some form of this algorithm.

F. The theoretical upper and lower bounds on the paging

per formance are computed by applying the methods of Chapter 3 to

the sector trace of step A and compared uith the performance found

in step E.

In order to identify the parameters of the page fetch function,
FFp(|Mp|,N,M1a,STa,Fd, Rz), which are associated uith each curve

in the following graphs, these conventions are presented.

1. |Mp], the size of the primary memory in pages, is used as the
horizontal axis of the graphs. Iﬁ addition to the values of |Mp],
the horizontal axis is tagged uwith the memory size in K bytes
(K=1824),

‘2. N, the page size in these experiments, is 4896 bytes.

3. A partition Il of relocatable sectors into clusters is denoted

by [Ix or [y for ease in interpreting the results in the follouing

171

figures. [Ix is used to denote a "bad" partition, i.e., one which
tends to maximize or produce a relatively large value of FFp. Iy
denotes a "good” partition, i.e., one which tends to minimize the
value of FFp.
A particular value of [ly is denoted by specifying the intersector
reference matrix and the clustering procedure which produced it.
For example,

Iy (W, T=2508, CNN)
is defined to denote the value of Ily which is computed from the
Working set matrix, W, with a windou size of T=2588, using the
constrained nearest neighbor procedure, CNN.
The intersector reference matrix models used to specify a

particular [y will be identified in terms of the follouwing symbols:

W = outside working set matrix model
W= inside working set matrix model
T = windou size of uworking set model
= LRU sector stack matrix model

sector stack distance

T o <
]

= Hatfield and Gerald matrix model

The clustering procedures used to specify a particular value of Iy

uwill be one of the fallowing:

172

il

CNN = constrained nearest neighbor

CFN

)

constrained farthest neighbor
CAN = constrained average neighbor

CANUW = constrained average neighbor uweighted

UNN = unconstrained nearest neighbor
UFN = unconstrained farthest neighbor
UAN = unconstrained average neighbor

UANW = unconstrained average nejghbor ueighted

HG = Hatfield and Gerald method

SIpP sector interchange procedure

1CB intercluster bond me thod

it

As another example,
Iy (U,0=28, 1CB)
represents the partition named Ily when it is computed from U, with D=28,
using the ICB procedure.

In the presentation of thesé experimental results, We chose to
denote the program structure in terms of Il instead of the sector
ordering 50, because the clustering procedure is clearer uhen stated in
terms of Il. Houever, the reader should be aware that the blocks of the
partition are alloued to cross page boundaries in order to eliminate
heles in the address space.

4. A particular value of S0Ta will be denoted by SOT,, SOT,, and
S0T5; for the three phases 1, 2, and 3 respectively. Furthermore,
SOTia, SOTib, etc., uwill represent the sector trace of the ith phase

from input program a, b, etc, when the distinction is important. For

173

example, S0T, a denotes the sector trace of Phase 2 from input program
a. Note that all of the sector traces in the simulations are ordered
pairs (5,0) uhere S is the sector and 0 is the offset referenced. This
is necessary because we are allouwing sectors to cross page bbundaries.
5. The fetch and replacement algorithms are denoted as before, i.e.,

Fd, ngu, RO, etc.

In order to find a [Ix that tends to maximize the value of FFp. we
investigated random sector ordérings. sector orderings based on sector
sizes, lexical orderings (i.e., alphabetical on some character in the
sector name), and sector orderings produced by the following procedure,
called BAD. Take the list L of m sectors, ordered according to their
position in the address space under a good program structure, and do the
following to produce a partition [Ix of the m relocatable sectors into n

logical pages.

1. Take the first n sectors of L and put each of them into one of
n separate |lists.

2. Take the next n sectors of L and put each of them into one
of the above n separate lists.

3. Repeat 2 until there are no more sectors in L. Then,

4. the collection of the n separate lists becomes [Ix.

I't turned out that all of the above methods of generating [Ix usually

produced a [Ix that caused the value of FFp to be very large.

174

6.2 Restructuring Phase 1

Throughout this section we use the same sector trace, SOT,. In
section 6.5 ue compare the results of program restructuring over several
sector traces. Our results support the claim of Hatfield and Gerald,

"many commonly used programs are rather insensitive to input data."

Houever, ue did attempt to choose a program for tracing that
contained most of the features of the language and that uas relatively
long. That is, this program wuas not trivial. The‘sector trace of this
program contained 7,521,285 references. Moreover, |s0T, |=2,081,827,

|S0T; |=3,859,636 and |S0T, |=1,668,542.

The value of [Ix is fixed for Figures 7-14 and represents the
program structure B, which occurs when the.sectors are arranged in the
address space according to their size. Even though the structure
broduced by the BAD procedure resulted in slightly more page fetches for
most memory sizes, we selected [Ix based on the sector lengths (calld
B,) because this represents a plausible method of loading sectors used
by some operating systems. The choice of [Ix is used as a basis for
itlustrating the actual improvement in the paging performance which can

occur for real programs uhich are restructured according to some My.

175

- 6.2.1 Constrained Procedures

The curves of Figures 7 and 8 and the lower.curves, labeled C, D,
and E, of Figure 3 shou the ratio of the page fetch functions
FFp{IMp|,N,Mx,S07T, ,Fd,Rpy } and
FFp(all,N.ﬂg.SUT,,Fd,RLm,) as a3 function of primary memory size
|IMpl in pages and as a function of IIx and Iy where My is constrained.
[ly is constrained when the blocks of My correspond to the clusters
produced by any clustering procedure and the size of these clusters is

constrained to be less than or equal to the page size.

These figures reveal that the orderings of the relocatable sectors
into primary memory can have substantial influence on the paging
per formance of virtual memory systems. Moreover, they illuétrate that
substantial improvements in paging performance occur over a relatively

Hide range of primary memory sizes.

72
69
66
63
60
57
54
51
48
45
42
39
36
33
30
27
24
21
18
5

176
A= Ty (U,D=20,CFN)
B Ty (w,f = 2500, CANW)
C=> Ty (W,T=2500, HG)
D= Ty (W, T=2500, SIP)
N = 4096 Bytes
lsoT,|=2,001,027
TTx =8B,

[A

5 10 15 20 25
20K 40K 60K 80K 100 K

FIGURE 7 FFp(IMpl, N, Trx,SOT,Fd, R _g,)/FFp (IMpl,N, TTy,

SOT,,Fd, R, gy) vsIMpl FOR PHASE | OF AED COMPILER

69—
66—
63
60—
57
54|

51—
48|
45
42
39
36|
33(—

177

A= TTy (W, T = 1000, CANW)
B= Ty (U, D=15, CNN)
C= Ty (W,T=1000, CAN)

D= Ty (W, T=1000, HG)

N =4096 Bytes
|soT,1=2,001,027
TTX = Bl

FIGURE 8 FFp (IMpl, N,TTx,SOT,, Fd ,R g,/ FFp (IMpl, N, TTy,
SOT;, Fd, R g) vs IMpl FOR PHASE | OF AED COMPILER

5 10
20K 40K

178

The degree of improvement in paging performance shoun in these figures
{(i.e., 7-8) is significantly larger than any previously published
improvements obtained by restrgcturing. One rationale for this is that
the intersector reference matrix models based on the working set aﬁd the
LRU stack distances capture the intersector aétivitg upon uwhich paging
depends. That is, the value, Cij, of the entry in the intersector
reference matrices used in these expériments may have a strong tendency
to be proportional to the numbef of page fetches uhich uill go auay if
sector j is grouped uith sector i. In particular, note the improvement
in paging performance depicted by curves E, D, énd C of Figure 3, uhich
use the HG clustering technique on the sector uworking set intersector
reference matrix. This improvement is about tuice as much as that
reported by Hatfield and Gerald [H1] when the same clustering procedure
is applied fo the HG intersector reference model. Recall that the HG
intersector reference mode! is the same as the sector uorking set model

when T=1.

721
69—

66|
63—
60—
57—
54|
51
48—

179

A= Ty (W, T=1000, ICB)
B= TIy (w,T=2500, ICB)
C= TTy (W,T=1500,HG)
D= TTy (W, T=2500,HG)
E= Ty (W, T=5000,HG)

N =4096 Bytes x/
IsoT,| = 2,001,027 / '
TTx =B,

| |

5 10 S 20 25
20K 40K 6 OK 80K 100K

FIGURE 9 FFp (IMpl|, N, TTx,SOT,, Fd, R _gy)/ FFp (IMpl, N, Ty,

SOT|,Fd,R ,) vsIMp| FOR PHASE | OF AED COMPILER

180

6.2.2 Unconstrained Procedures

The unconstrained clustering procedures presented in Chapter 5
cluster the relocatable sectors into natural clusters uithout any
constraint on the sum of the sector sizes making up a cluster. To date,
no work has been reported in the literature which incorporates this

rather simple idea into clustering procedures,

The curves identified by labels A and B of Figure 9 shou the
improvement in paging per formance which occurred when natural clusters
uwere formed. These natural clusters were produced by the intercluster

"bond method, ICB, using the sector working set intersector reference
model. These curves illustrate that natural clusters can provide
significantly better improvements in the paging performance than the

improvement provided by the constrained clustering techniques.

The curves of Figure 18 (except curve D) shou the improvement in
paging performance for several unconstrained clustering techniques. The
curve labelied 0 in Figure 10 shous the improvement in paging

per formance provided by the existing compiler structure.

72—
69—
66—
63—
60—

54—
51
48 |-
45—
42 |-
391
36}
33—
30—
27
24—
21—

15—
12—

o,
— "

181
A= Ty (W, T=2500, UANW)
B=> Ty (W, T =2500, ICB)
C = Ty (U, D =15 UANW)
D = Ty (Compiler)
N =4096 Bytes
IsoT,1=2,001, 027
Tx =B,

'~ 5
- o
1

| l |

J

FIGURE

5 10 15 - 20
20K 4 OK 60K 80K

10 FFp (IMpl, N, TTx, SOT,,Fd, R o,

25

100K

VFFp (IMpl,N, Ty,
SOT,Fd, R g,) vs IMpl FOR PHASE | OF AED COMPILER

182

Recall that all these improvements are relative to the program structure
[Ix formed by arranging the sectors into the add;ess gpace in order of
their sizes. Curve D shous that the existing compiler structure is
substantial ly better than that provided by Ilx and significantly uorse

than any of the unconstrained techniques.

Figure 11 shous the effects of the unconstrained average neighbor
weighted bond procedure UANW on.the paging performance as a function of
T for the working set intersector reference model W. The significant
characteristics of the curves shoun in Figure 11 is that the
improvements in paging performance are relative|g the sahe over a broad

range of T values.

Note the tendency of the curves in Figure 11 to peek in the center
region of the primary memory sizes. This tendency is due primarily to
the following tuwo "principles” pushing a curve together from both sides.
The first principle is that for small values of |Mp|, one clustering
method "cannot Win" over another method. The second principle is that
for large values of |Mp|, one clustering approach "cannot lose" over
another approach. However, in the middle range of the values of |Mp]|,
there may be enough primary memory available.to contain most of the
sectors referenced close together in time when they are clustered
together into groups. Note that in this region there can be tuo levels
of clustering for good structures. The first level is that sectors are

clustered together by the clustering procedure. The second level is

183
72 —

69— A= TTy (W, T =1000,UANW)

%8 B> Ty (W, T=25000, UANW)

63
C= Ty (w,T=5000, UANW)

60
57
54| |soT,|=2,001,027

N= 4096 Bytes

51~ TTx =B,
48—
45—
42—
39
36—
33—
30

24—
21 1~
18—
15—

12—

I l l | I

5 10 15 20 25
20K 4 0K 60K 80K 100K

FIGURE I FFp (|Mp|,N,TTx,S0T, , Fd, R_gy)/FFp (IMp|, N, Ty,
SOT|,Fd,R _ gy) vs |Ms| FOR PHASE | OF AED COMPILER

184

that clusters are clustered together by the paging mechanism.

6.2.3 Theoretical Bounds

‘In Figure 12 the performance for the best program strﬁcture, i.e.,
the one produced by My(W,T=2588,UANW), is compared uith the theoretical
best performance given by Theorem 8. Observe that Table 3 precisely
defines the parameters for the curves shoun in Figure 12. Curve B shous
the ratio of the page fetches experienced bg the program under the
structure produced by My(H,T=2508,UANW) to the theoretical l|ouer bound
on the page fetches. That is, curve B depicts
FFp(|Mp|,N,y,S0T, ,Fd,Rpy) /the Louer Bound. This ratio can
never be less than one and would bé equal to one when the theoretical
best performance occurred for a given program structure. Figure 12
shouws several significant characterisfics. The perfbrmance produted by
the structure My(W,T=2588,UANW) is relatively close to the lower bound
for large regions of primary memofg size. Furthermore, it is close to
the louer bound in the primary memory regions of lou paging rates. ‘This
latter fact can be seen by observing the curves in Figure 13. Curve D
of Figure 13 shous the number of page fetches for the structure
ﬂg(U,T=2509.UANH). and curve A shous fhe theoretical louer bound for . the

number of page fetches over all Ily.

185

69H See Table 3 for notation
66— A%FFD (TTX,RLRU)/FFD (Try, RLRU)

63 B=>FFp (TTy,RLRU)/Theoreficul Min. FFp

60— C=> Theoretical Max FFp/FFp (Trx,RLRU)

57 .
541
5/~ E=FFp (Ty,Ro)/ Theor. Min FFp

D= FFp (TTx,R gy)/FFp (TTy,Ro)

48— TTy (W,T=2500,UANW)
45— TT'x =B
42— N =4096 Bytes

39— |soT,| =2,001,027
36|

33
30

24|
21
|8
15
|2~

E
9l
6}

0 5 10 15 20 25
20K 40K 60K 80K IOOK

FIGURE {2 Comparison of Actual and Theoretical Ratios of FFp
FOR PHASE | OF AED COMPILER

186

| Graph A is:

FFp(|Mp| oNo“vaOTl oFdoﬂlRU),FF"”ﬂp'vaHU-SOTl deDRLRU)

Graph B iss

FFp(itp|,N, Ty, SOT, ,Fd,Rg) /FFs{|Ns] = f,

Graph C is:

FFs(|Ms| = |Mp|,SOT, ,Fd,Rgy }/FFp{itp],N,Iix,50T, ,Fd,Rypy)

Graph D is:
FFp({Mp|,N,Nx,S0T, ,Fd,Ray } /FFp(|tp],N,Ily,S0T, ,Fd,Ro)

Graph E is:

FFp{|Mp],N, Iy, 50T, ,Fd,Ro) /FFs(|Ms| = f, (|Mp] N,S5"),50T; ,Fd,Ro) - A
%, (2,N,581/2

where [Ix = Bl, My, T = 2580,UANH), N = 4896 Bytes
|SOT} = 2,881,827

Note that FFs{|Ms} = f, {|Mp],N,SS") SOT% ,Fd,Ro) - A
f‘,ﬂ"(z.'n"-,§§)/z R

shoun in B and E above is the louer bound of FFp given
in Theorem 6. - :

Note that FFs{(|Ms| = |Mp],SOT, ,Fd,Rpy)

shoun in C above is the upper bound of FFp given by
Theorem 3.

_ Table 3
Paraweters for Curves in Figure 12

187

Curve B of Figure 12 indicates that the lower bound may be loose
for very small values of |Mp| or that the structure Iy(UW, T=2500,UANU)
does not cluster sectors very well for small values of |Hp|.‘ The
conjecture is that the louer bound may be loose for very small values of
IMp| since this phenomenon is observed in all of our experiments. This
is not a serious practical drauwback, because even for the !ouer bound
the paging activity is prohibitively large for very small |Mp|. Since
the lower bound is valid over all replacement algorithms, ue compared

the ratio of the performance of the good structure [y using OPT

replacement to the lower bound. This ratio is curve E of Figure 12.

Curve C of Figure 12 illustrates the ratio of the theoretical upper
bound given by Theorem 3 to the bad performance. The bad performance is

the number of page fetches produced uwith the structure IIx.

The upper bound is relatively close to the "worst™ performance
resulting from the structure [Ix for most values of |Mp]. For large
values of |Mp| the upper bound is not very tight. The upper bound QIII
be tight as long as the sectors uhich are clustered into a page are
never used together when that page is in Mp. Houwever, as the size of Mp
increases, it becomes more and more difficult for this condition to be
satisfied. Hence, the upper bound grous very rapidly for values of |Mp|
approaching the length of the program. Houever, for values of |Mp|] in
the region uhere the program would probably be run, the upper bound is

reasonable.

188
Figure 13 shdus the number of page fetches given by:

A. the louer bound.

B. the upper bound.

C. ‘the bad structure, ﬂx.‘

D. the good structure, HylH, T=2588,UANN) under LRU.

E. the good structure, TylH, T=2588, UANM) under OPT.

Figure 14 is s'mplg the values for curves A, C, and D of Figure 13 shoun

at a much larger scale,

In summary, Figures 3-14 shou that the paging performance may vary
by a factor of 12 to 3B for large regions of primary wemory size |[Mpl.
This occurs when the unconstrained clustering procedures are used in
conjunction with the sector working set and the LRU stack intersector
reference matrices; that is, for Ily(l, T=2588,UANH), Ty(W, T=258@, ICB)
and Ny(U,D=15,UANW). The use of c.iusturiag'procedures uhich cluster .
sectors into natural clusters can produce progrén svtructures which
require significantly fewer page fetches than required by program

structures based on constrained clustering procedures.

189

60k Q 0 Q
X A= FFs (IMs| =f, (IMp], N, 5S*)SOT*Fd,Ro) -4
55l f, (2,N,SS)/2
B =FFs (|M5|=|Mp|,SOT|,Fd1RLRU)
50k—- O
C =>FFp (IMp|, N, TTx,S0T,Fd, R o)
D=FFp(IMpl. N, TTy, SOT,Fd, R _gy)
45k ’
E=FFp(IMpl, N,TTy, SOT,, Fd, Ro)
40 k[— TTx =B,
Ty (W,T=2500,UANW)
3B kl— .
7 N = 4096 Bytes
|SOT|I= 2,001,027
30k— x Q
25kH—
20k}—
| Ski— 5 B
Q) Theoretical
\) ° /Wors?
| Okl— c™ v . g Case
4 D 0)
A E ‘ a
5kh——-T \x “ & &
heoretical, > 2
Best X~x 32 >
Case | R =T W W
0] 5 10 15 20 25
20K 4 0K 60K 80K IOOK

FIGURE 13 Total Page Fefches vs |Mp|
FOR PHASE | OF AED COMPILER

199
6.0kr—

A, D, and C are the

5.5 ki— same as in Figure

5.0k

4.5k |-

4.0k +—

3.5k}~

3.0k~

25k—

20k [

1.5k |—

| .Ok [—

0.5k—

1 | 1 -~

5 10 5 20 25
20K 40K 60K 80K I00K

FIGURE 14 Enlarged Scale for Curves A,C,and D of Figure FOR
PHASE | OF AED COMPILER

191

6.3 Restructuring Phase 2

Figure 15 shous the results of restructuring Phase 2 over sector
trace S0T,, where |SOT, |=1,660,542. Table 4 precisely defines the
curves of Figure 15. The bad order [Ix = B, for Phase 2 is computed by
the procedure BAD, uhich is compared to the order produced by
MMy (U, T=2508,UANW). The curves of Figure 15 may be interpreted similarly
to those of Figure 12 of Phase 1. The variation in the paging
per formance of Phase 2 as a function of program structure is not és
large as that of Phase 1. Houever, the largest improvement in the
paging performance of Phase 2 occurs when approximately one half of

Phase 2 can fit into primary memory.

192

69l See Table 4 for full complete explanation of curves.
A= FFp (TTx)/FFp (TTy) where TTx =B2 and Ty (W,T =2500, ICB)

664{—
63 B= FFp (TTx)/FFp (TTy) where Tx =B2 and Ty (WT=2500, UANW)
o C= FFp (TTx)/FFp (TTy) where Trx=B2 and Ty = Compiler Order

D= FFp (Ty)/ Theor. min FFp where Ty (W, T= 2500,UANW)
57T E = Theor. Max FFp/FFp (Tx) where Tx=B2

54— |SOTo|=1,660,542

51 }—

48—

45|

42

IO 20
20K 40K 60K 80K
FIGURE 15 Page Fetch Ratios PHASE 2 OF AED COMPILER

193

Graph A‘is:
FFp({Mp|,N,IIx,SOT, ,Fd,Rygy) /FFp{|Mp|,N,Ily,S0T, ,Fd,Ripy)
[Ix = B2 and My(W,T = 2568, ICB)

Graph B is:
FFp(|Mpl|,N,IIx,S0T, ,Fd,R gy } /FFp{|Mp|,N,Ily,SOT, ,Fd,Rypy }
lIx = B2 and Myf(U,T = 2500, UANU)

Graph C is:
FFp(|Mp|,N,IIx,S0T, ,Fd,Rp, } /FFp(|Mp],N,Ily,SOT, ,Fd,Rgpy)

[Ix = B2 and [Iy = Compiler Order

Graph D is:

FFp(|Mp|,N,Ty,SOT, ,Fd,Rygy) /FFs(|Ms] = f, (|Mp},N,55*),S0T, ,Fd,Ro) - A
¥, (Z,N,551772

My, T = 2588, UANW)

Graph E is:
FFs(|Ms| = |Mp|,SOT, ,Fd,Ryqy }/FFp(|Mp|,N,IIx,S0T, ,Fd,Ripy)
[Ix = B2

Table &

Parameters for Curves in Figure 15

194

6.4 Restructuring Phase 3

Phase 3 is restructured from a sector trace S0T; which contained
3,859,636 references. The program structure [Ix ié a random ordering of
sectors into the virtual address space. Program structures

My (W, T=2509, 1CB), My (W, T=2508,UANU) and

My (U,D=28, ICB)
produced substantial improvements in the paging performance over .
fix =B; . These improvements are illustrated in curves A, B, and C of
Figure 16. These curves have the highest peaks of any improvements over
sector orderings that we found. Curve D of Figure 16 shous the ratio of
the paging performance obtained from [Ix to the performance of the
existing compiler ordering. The theoretical lower and upper bounds are

~ presented in Figure 17 in the same manner as for Phase 1 and 2.

Nou ue present a few general comments about Phase 1, 2, and 3. All
three phases indicate that significant.variations in paging per formance
can occur for different arrangements of the relocatable sectors in
.virtual memory. The unconstrained clusteFing procedures, I1CB and UANW,
produced the best proéram per formance over all memory .sizes for all
three phases. The constrained procedures are not shoun for Phases 2 and
3 since they produced the same relative improvement in these phases as
in Phase 1. The theoretical louer bounds.are relatively good indicators
of the best paging performance of all three phases for all! but the

smal lest primary memory sizes.,

72

69
66

63
60
57
54
5 |
48
45
42
39
36
33
30
27
24
21
18
15
12

FIGURE 16

135

A=TTy (W, T =2500, ICB)
B =2TTy(WT=2500,UANW)
C =TrTy(U,D=20,ICB)

D =TT y(Compiler)

N =409 6 Bytes
|SOT,|=3,859,636

TTx = By

l l | | ° |

10 15 20 25 30

K 40K 60K 80K 00K 120K

FFp (IMpl, N,Tx,S0T5,Fd, R g,)/ FFp (IMpIN, TTy,

SOT,,Fd, R_gy) vs IMp| FOR PHASE 3 OF AED
COMPILER

196

72}
x~X

89~ A= Ty (w,T =2500,ICB) 8
66— B3 Try (W,T = 2500, UANW) A
63 = Ty (U,D=20,ICB) ¢
60— D= Try(Compiler)
57— N=4096 Bytes
54| -

[s0T4l=3,859,636
SIr TTx = 33
48}

E=> FFp (IMpl,N,TTy,S0T5,Fd, R o))/ |
45— FFs (IMs| =f, IMp|,N, S5 ™),50T% ,Rop |
42— ~ f,(2,N,S5)72
39l Ty (U,D=20,iCB)
36~ F=>FFs (IMsl = Mpl,S0T5,Fd, R gy)/ |

33 FFp{({Mpl, N, TIx, SOT3,Fd,R g,,)
Trx= B3 |

0 5 10 5 20 25 30
20K 40K 60K 80K 00K 120K

FIGURE 17 FFp(IMpl,N,TTx,SOT, ,Fd, R gy)/FFp (IMp|,N,TTy, SOT,,Fd,
RLRy) vs IMpl FOR PHASE 3 OF AED COMPILER

197

6.5 Effects of Input Data

In order to establish the effect that the input program to be
compiled has on the paging performance, ue conducted the follouing

expefiménts:
Experiment 1:

A. Ue took the above sector trace SOT;, and computed the program
structure IIy(U, T=25688, UANW) .

B. We measured a second program trace SOT,;a which corresponds

to a completely different program and restructured the compiler to
get Iya(l,T=2508,UANW) based on SOT, a.

C. A third sector trace SOT;b was measured, and, based on this
sector trace, the program structure [lyb {0, T=2500,UANW) uas

computed.

All three of the program structures, 0ly, Ilya and Ilyb should tend to
minimize the paye fetches for the traces SUT,, 50T, a, and SOT, b
respectively. Houever, uill the structures specified by Ilya or by Myb

tend to minimize the page fetches for SOT; ? -

198

Figure 18 contains all the information shoun in'Figure 13 for Phase
1. That is, it shous the value of the page fetch function FFp for
SOT, and [y as curve D, and it shows the other curves of Figure 13 for
visual comparison. Curve F in Figure 18 represents the value of FFp as
a function of the same reference behavior S0T, and Mlya. Curve G
itlustrates the value of FFp as a function of the same reference

behavior 50T, and Ilyb.

Therefore, the curves D, F, and G represent the paging per formances
-of Phase 1 of the compiler for a single sector trace and three different
partitions of sectors into clusters. The results of this exper iment
reveal that a good program structure generated from one sector trace is

a good program structure for cther sector traces.
Experiment 2:

Nou we give another experiment. For [ly, Ilya and Mlyb from the above
experiment, ue use the BAD procedure on each Il to get Mix, [lxa, and Iixb
respectively. Then, using the same sectar trace SOT;, the follouing

ratios are computed and plotted in Figure 19.

A. FFp(..,Mx,S0T,,..)/FFp(..,My,S0T,,..)
B. FFp(..,MNxa,50T,,..}/FFp(..,Mya,S0T,,..)

€. Fepl.. Mxb,S0T,,..)/FFpl..,Tyb,S0T, ,..)

193

60k |
A= FFs (IMsl =, (IMpl, N, S SOT}Fd,Ro)-A
55 k|- f,(2,N,SS)/2
B=> FFs (IMsl =IMpl, SOT,,Fd, R gy)
50k |
Ok c= FFp (IMpl ,N,TTx,S0T|,Fd, R 5,
D=FFp(IMpl,N, TTy, sOT,Fd, RLRrU)
45k}
E=>F Fp(IMpl,N, TTy, SOT, ,Fd, Ro)
40k TTx =8B,
Ty (W, T=2500, UANW)
35k — h N =4096 Bytes
[soT,|= 2,001, 027
3 — Q
Ok F=FFp (| Mpl,N, TTy,,SOT,Fd, R gy
Tya (W,T=2500,UANW) FROM SOT,
25k'_ Q Q .
= FFp (|Mp]|, N,TTy,, SOT,Fd, R ru’
okl g Ty, (W, Tp 22500, UANW) FROM SOT;,
B
15k |- U
c¥ .
q > Theoretical Worst
| Okl— A X Q V4 Case
E 0
F . O O
5k p— X . - O e
Theoreﬁcol/?\x\ N4 Q :
Best Case X RN
AR & N S
| R S it
0 5 10 15 20 25
20K 40K 60K 8 OK 100K
FIGURE 18 Total Page Fetches vs |Mp| FOR PHASE | OF AED

COMPILER

72— 200

691 A= FFp(IMpl, N,TTx, SOT,,Fd, R g)/ FFp (IMpl,N,TTy,SOT,,Fd,
66— R_gy) where TTx and TTy (W, T=2500,UANW) are based on SOT,
63

B=>FFp(IMpl, N, TTxq,SOT,Rd, R)/ FFp (IMpl, N, TTyq, SOT,, Fd, R)
60

where TTx, and TTy, (W, T=2500, UANW) are based on SOT,,
57
54|
51 A 1

XI
48 d [T\
45}

C=>same as B except TTxy, and TTy, are based on SOT,,

421 :
39|

36

33| p

30 X

27 /
24 r
21 / c

|81 Y X
15— y
12+ . g F X

> [| I | |
0 5 10 15 20 25
20K 40K 60K 80K 00K

FIGURE 19 Comparison of Page Fetch Ratios for Different Program
Structures FOR PHASE | OF AED COMPILER

201

These ratios are the impfovements in paging performance over the same
sector trace for three pairs of program structures. Each pair consists
of a BAD structure and a good structure. Furthermore, each pair is
constructed from a different sector traée. Houever. the pogsible

improvement in paging performance for each pair is nearly the same.

Experiments 3 and 4:

Experiments 3 and 4 for Phase 2 and 3 respectively are quite
similar to Experiment 1 for Phase 1. The only difference is that, in 3
and 4, the ratios of FFp(.;.Hg.SUTz,..)/FFp(..,Hga.SOTZ,..) and of
FFp(..,Hg,SOT2,..)/FFp(...Hgb,SOTZ,..) are plotted as shoun in
Figures 28 and 21 instead of the magnitude of these values of FFp shoun
in Figure 18. In Figure 18 it is difficult to distinguish betuween the
three curves because of the scale problems. Figures 28 and 21 do away
Hith the scale problems but do not show the reiationship of these values
to the overall picture as is done in Figure 18. From Figures 20 and 21
He observe that a good program structure computed_from one sector trace

turns out to be a good program structure for another sector trace.

3.

3.

—— N

202

o A=FFp(...TTy, SOT,...)/FFp (... TTy,, SOT,, ...)
| where TTy is based on SOT

o Ty, is based on SOTZO

8 1Tyb is based on SOTZD

61—

gf— = Q=0=—Q \9(Y/X\X/ \K‘x X

-~ — _X

2_ B X\X/X Ny

4

'%_||1|14|1111||1|1111111111
S 10 18 20 25
20K 40K 60K 80K 100K

FIGURE 20 Ratios of Page Fetches For TT Based on Different
Sector Traces FOR PHASE 2 OF AED COMPILER

ol A &B same as Fig. 20 except Ty is based on SOT4
- Ty, is based on SOT,,
B Ty, is based on SOTb3

O

8

6

4

2+

o

.8

6

4

2

0 1 i | 1 14 J d | l 1 | - 1 I 1 A | l i i | 1 I

5 10 15 20 25
20K 40 K 60K 80K IO0K

FIGURE 21 Ratios of Page Fetches For TT Based on Different
Sector Traces FOR PHASE 3 OF AED COMPILER

2083

CHAPTER 7

OISCUSSION AND CONCLUSION

7.1 Introduction

This report has presented theoretical and experiuentalvresults
which shou that program restructuring has a significant effect on the

paging performance of virtual memory systems.

7.2 Summary

The problem of restructuring programs to improve their paging

per formance in virtual memory systems was presented in Chapter 1.

In Chapter 2 ue formalized the notion of the page fetch function
and the sector fetch function. The page fetch function models the
paging behavior, and the sector fetch function models the sectoring

behavior.

In Chapter 3 the sector fetch function was used to produce upper

and lower theoretical bounds in the page fetch function over all

284

reorderings of the relocatable sectors into the address space.

Intersector reference modelis based on sector working sets and LRU
stack distances uere developed in Chapter 4. In Chapter 5 several
clustering methods were developed which used the intersector reference

models to produce a restructured program.

In Chapter 6 the effect of program restructuring on the paging
per formance of real programs uas investigated empirically and
theoretically. In particular, ue shoued that improvements in paging
per formance of factors of 20 to 48 is not uncommon for relatively large

regions of primary memory size.

7.3 Further Work

The research reported in this report provides a basis for

additional investigation in several areas of program restructuring.

The work described in this report addresses a problem that is as
hard as the seemly intractable problems studied by Cook [C5] and Karp
[KEJ. Recent work by several people has revealed fast algorithms for
near optimal salutions to some of these problems. The clustering
techniques described in Chapter 5 have been shoun of value for

particular but not trivial examples that occur in practice. It would be

205

of considerable interest to knou to what extent these techniques can be
relied on over all possible sector traces. Can our techniques be shoun
to yield solutions that come mithin a factor of tuo of our lower bounds?
If not, are there algorithms that do come near our |ower bounds?

Alternatively,can our lower bounds be improved?

We did not investigate the problem of sector duplication in this
thesis. We claim tHat the results of Chapter 3 can be applied in a
straightforuard manner to produce lower bounds on the paging performance
when sector duplication is allowed. Another related problem is hou to
incorporate sector duplication into the intersector reference models and

into the clustering procedures.

Another area is the problem of deciding when it is best for sectors

to cross page boundaries and when it is best to have holes in pages.

An ongoing research project betueen the author and Don Hatfield of
IBM is to use the theoretical results of Chapter 3 to evaluate the
potential benefit of reprogramming and then festructuring a very large
data base‘sgstem. This large data base sgstém has sectors which are
over 18 pages long. For example, Theorem 1 can be used to predict the
theoretical best paging'performance if the large data base system is
broken up into k sectors per page. Thus, the problem is to determine
the k that provides the best theoretical improvement and then use the
magni tude of this improvement as a basis for deciding whether or not

reprogramming is advisable.

206

REFERENCES

Al Aho, A. V., P. J. Denning, and J. D. Ullman, "Principles of
Optimal Page Replacement", Jour. ACHM, Vol. 18, No. 1, Jan.

1971, pp. 88-33.

A2 Arora, S. R., and A. Gallo, "Optimal Sizing, Loading and Re-

loading in a Hultu—Level Memory Hierarchy System", AFIPS Qg_i

Proc., Vol. 38, 13971, pp. 337-344.

Bl Belady, L. A., "A Study of Replacement Algorithms for a
Virtual-Storage Computer”, IBM Systems Jour., VYol. 5, No. 2,

1966, pp. 78-181.

B2 Brawn, B. S., and F. G. Gustavson, "Program Behavior in a

Paging Environment", AFIPS Conf. Proc., Yol 33, Part 2, 1968,

pp. 1819-1832.

B3 Baer, J., and R. Caughég. "Segmentation and Optimization of

Programs from Cyclic Structure Analysis”, AFIPS Conf. Proc.,

Yol. 48, 1972, pp. 23-36.

B4 Baer, J., and G. R. Sager, "Measurement and Improvement of
Program Behavior Under Paging Systems", in Statistical

Computer Performance Evaluation, ed. by W. Freiberger

287

{proceedings of a conference held at Broun University, Nov.

1971), Academic Press, New York, N.Y., 1972, pp 241-246.

B85S Braun, B. S., F. G. Gustavson, and E. 5. Mankin, "Sorting in a
Paging Environment”, Comm. ACHM, Voi. 13, No. 8, Aug. 1978,

pp.483-4634.

B6 Belady, L. A., and F. P. Palermo, "On-line Measurement of
Paging Behavior by the Multivalued MIN Algorithm", 1BM Jour.

Res. Develop., Vol. 18, No. 1, Jan. 1974, pp. 2-19.

Cl Coffman, E. G., and L. €. Varian, "Further Experimental Data on
the Behavior of Programs in a Paging Environment", Comm. ACH,

Vol. 11, No. 7, July 1968, pp. 471-474.

C2 Comeau, L. W., "A Study of the Effect of User Program
Optimization in a Pagfng System”, ACH Symp. on Operating

System Principles, Gatlinburg, Tenn., 1967.

C3 Charney, H. R. and D. L. Piato, "Efficient Partitioning of

Components"Proc. SHARE/ACM/IEEE Design Automation Workshop,

Washington, D. C., July 1968, paper no. 16.

C4 Corbato, F. J., "A Paging Experiment With the Multics System”,

In Honor of Philip M. Morse, edited bg‘H. Feshbach and K. U.

208

Ingard, MIT Press, Cambridge, Mass., 1969, pp. 217-228.

C5 Cook, S.A., "The Complexity of Theorem-Proving Procedures”,
Proc. of Third Annual ACM Symp. on Theory of Computing,

1971, pp. 151-158.

D1 Denning, P. J., "The Working-set Model for Program Behavior”,

Comm. ACM, Vol. 11, No. 5, May 1968, pp. 323-333.

02 Denning, P. J., "Virtual Memory”, Computing Surveus, Vol. 2,
No. 3, Sept. 1970, pp. 153-138.

D3 Denning, P. J., "On Modeling Program Behavior”, AFIPS Conf.

Proc., Vol. 48, 1972, pp. 937-344.

F1 Ferrari, D., "A Tool for Automatic Program Restructuring,"”

Proc. ACM Ann. Conf., Aug. 13973, pp. 228-231.

Gl Guertin, R. L., "Programming in a Paging Environment”,

Datamation Vol. 18, No. 2, Feb. 1972, pp. 48-55.

G2 Gilmore, P. C., and R. E. Gomory,"The Theory and Computation of
Knapsack Functions”, QOperations BRes., Yol. 14, 1966, pp.
1845-1074.

H1

H2

I1

J1

J2

K1

K2

209

Hatfield, 0. J. and J. Gerald, "Program Restructuring for
Virtual Memory®, 1BN Systems Jour., Vol. 18, No. 3, 1971,
pp. 168-192.

Hatfield, D. J., "Experiments on Page Size, Program Access

Patterns and Yirtual Memory Performance”, IBM Jour. Res.

Develop., Vol. 16, No. 1, January 1872, pp. 58-66.

Informatics, Inc., "Experiments in Automatic Paging”, Report

RADC-TR-71-231, Rome Air Development Center, Air Force Sgsteus

Command, Griffiss Air Force Base, Neu York, Nov. 1971.

Jensen, P. A., "Optimum Network Partitioning”, Operations

Res., Vol. 19, 1971, pp.916-932.

Jarvis, R. A., and E.AA. Eduard, "Clustering Using a
Similarity Measure Based on Shared Near Neighbors”,

IEEE Trans. on Computers, Vol. C-22, No. 11, November 1973,

pp. 1825-1034.

Kernighan, B. W., "Optimal Sequential Partitions of

Graphs”, Jour. ACM, Vol. 18, No. 1, Jan. 1971, pp. 364-48.

King, W. F., I1l, " Analysis of Demand Paging Algorithms",

Proc. IFIP Congress, TA-3, August 1971, pp. 485-498.

218

‘K3 Kuehner, C. J. and B. Randell, "Demand Paging in Perspective®,

AFIPS Conf. Proc., Yol. 33, Part 2, 1368, pp. 1811-1018.

K4 Kernighan, B. W., "Some Graph Partitioning Probiéns Related to
Program Segmentation”, Ph.D. Thesis, Princeton Univ.,

Princeton, N. J., Jan. 1969, 177 pp..
KS Kernighan, B.W., and 5. Lin, "An Efficient Heuristic Procedure
for Partitioning Graphs", The Bell| Sustem Technical Journal.

Vol. 439, No. 2, Feb. 1378, pp. 291-388.

K6 Karp, R. M., "Reducibilities Among Combinatorial Problems®, -

ions, edited by R. E. Miller
and J. W. Thatcher, Plenum Press, 1972, pp. 85-183.

L1 Lowe, T.C., "Automatic Segwentation of Cyciic Program
Structures Based on Connectivity and Processor Timing", Comm.

ACH, Vol. 13, No. 1, Jan. 1978, pp. 3-6.

L2 Leuis; P. A. W. and P, C. Yue, "Statistical Analysis of Program
Reference Patterns in a Paging Environment®, Proc. 1EEE
Interndtional Computer Society Confersnce, Sept. 1971, pp.
133-134. |

L3

L4

LS5

L6

Mi

M2

M3

211

Lew, A., "On Optimal Pagination of Programs®, University of

Hawaii Information Sciences Report, Honolulu, Hauaii, 1378.

Luccio, F., and M. Sami, "On The Decomposition of Netuworks in
Minimally Interconnected Subnetuorks®, lEEE Trans. on

Computers, Vol. Ct-16,pp. 184-188, May, 1969.

Lukes, J. A., "Combinatorial Solutions to Partitioning

Problems", STAN-CS-72-293, Stanford University, May 1972, 130

pp.

Ling, R.F., "On the Theory and Construction of K-Clusters,"

Mattson, R. L., J. Gecsei, D. R. Slutz, and I. L. Traiger,
"Evaluation Techniques for Storage Hierarchies”,]BM Suystems

Jour., Vol. 9, No. 2, 1978, pp. 78-117.

McKellar, A. C., and E. G. Coffman, "Organizing Matrices and
Matrix Operations for Paged Memory Systems”, Comm. ACM, Vol.

12, No. 3, NarchIISBS. pp. 153-164.

Madnick, S. E., "Storage Hierarchy Systems”, MIT Projeét MAC
Report MAC-TR-187, Massachusetts Institute of Technology,

Cambridge, Mass., Apri! 13973, 155 pp.

14

y

M7

P1

212

Madnick, S. E. and J. J. Oonovan; 'Opuratiqg Systems”, McGrau-

Hill, New York, 1974.

McCormick, J, H. T., Jr., et ai{. *Problem Decomposition an&_
Data Reorganization by a Clustering Technique”, Qperations
Res., Yoi. 28, 1972, pp. 993-1889.

Masuda, 7., et al., "Optimization df'Prhgrau Organization in
Virtual Storage Systems bg-Clusfer knalgois'. unpubl i shed

working paper, 1974,

Miyamoto, 1., "Data Reference Characteristics of Database
Application Praogram”, Nippon Electric Company, Limited, Fuchu,

Tokyo, unpubiished working paper.

Pratt, V. R., "An N LOG N A1gorithn to Distribute N Records

Upttnailg ina Sequentaal Access-File , Cg;nigglig of Computer
Computations, edited by R. E. Miller and J. H. Thatcher.

Plenum Press, 1972, pp. 111-118.

R1 Ramamoorthy, C. V., "The Analytic Design of a Dynamic Look

Ahead and Program Segmenting System for Multiprogrammed
Computers”, Proc. ACM National Conf., 1966, pp. 229-248.

213

S1 Saltzer, J. H., "A Simple Linear Model of Demand Paging

Per formance", MIT Project MAC Report in progress.

52 Spirn,‘J. R., and P. J. Denning, "Experiments with Program

Locality", AFIPS Cont. Proc., Vol. 41, Part 1, 1972, pp.

611-622.

S3 Smith, J. L., "Multiprogramming Under a Page on Demand
Strategy”, Comm. ACH, Vol. 18, No. 18, Oct. 1967, pp.
636-646.

T1 Tsao, R. F., L. W. Comeau, and B. H. Hérgolin. "A Multi Factor
Paging Experiment 1: The Experiment and the Conclusions®, in

Statistical Computer Performance Evaluation, ed. by M.

Freiberger (proceedings of a conference held at Broun
University, Nov. 1971) Academic Press, Nem York, pp. 183-
134.

Y1l VYarian, L. C., and E. G. Coffman, "An Empirical Study of the

Behavior of Multi-programming”.

V2 Ver Hoef, E. E., "Automatic Program Segmentation Based on
Boolean Connectivity", AFIPS Conf. Proc., Yol. 38, 1971, pp.
431-496.

