MAC TR-149

A PORTABLE COMPILER FOR THE LANGUAGE C

Alan Snyder‘

May 1976

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

A PORTABLE COMPILER FOR THE LANGUAGE C
Alan Bayder

This paper describes the smpiemmion ot a compiler for the programming language C. The compiler hes
been designed to be capsble of producing assembly-language code for most register-oriented machines
with only minor recoding.” Most of the machine-dependent intormation used in cods generation is
contained in a set of tables which are vonstructsd. aitommbichlly from a machine doscription provided by
the implementer. In the machine description, the. mmrmmwtmmwm]
mnmmmmmmwmmmmmmm produces intermadiste code. ' The
abstract machine is abstratt in that it is a C machine: its registers and memory sre defined in terms of
primitive C data types and its instructions perform basic C operations. The sbstract mechive is machine-
dependent in that there is a ciose correspondence between the registers of the sbstract machine snd
those of the target machine, and betweer(the behavior of the sbstract machine instructions and the
corresponding tergst machirie instructions or instruction sequences. The Implementer defines the
translation from an abstrect machine program to a turget machine program by providing in the machine
description a set of simple ‘macro definitions for the sbstract machine instructions. In addition, macro
definitions may be provMﬁhMMCMmMWWMMhW

This report is based on o thesis submitted to the Department of Electrbcsl
Engineering at the Massachusetts Institate of Teeknology on May 10, 1974 in
partial fulfillment of the requirements for the Degreex df Bachelor of Science .
and Master of Science. Work reported herein was sapported in part by the Bell
Telephony Laboratovies, Inc., the Netional Science Foundation Resesrch Crant
CJ-34671, IBM funds [or research in Computer Science and by the Advanced
Research Projects Agency of the Departmiant of Defense uwder ARPA ovder we.
2095, ARPA Comtract Number mwn-mm -H ONR Tut Ne. NR-
049-189.

" CHAPTER 1.

m—ree
WN -

,%

22

CHAPTER 3.
3.1

3.2 .

Introduction -

Motivation

Background

Msthod

Modeling the Target Machine

The Intermediate Language

2.1.1 Abstract Machine Instructions

2.1.1.1 AMOPs
21.1.2 REFs

" 212 Keyword Macros

The Machmo Description

2.2.1 Defining the Abstract Machine
222 Defining the Object Langusge

Generating Code for an Abstract Machine

Functions of the Code Generator -
Generating Code for Expressions

3.2.1 Semantic Interpretation
322 Code Generation

3221 Specifying Desited Locetions

3.2.2.2 TTEXPR

3.223 CGEXPR

3224 CGOP

3.225 Selecting an OPLOC

3226 Generating Cade for Sumprm s

3.227 Register Management
3.2.28 Possibilities for Fallure

Conclusions

The Compiler

The Compiled Code
Summary of Resuits
Further Work

REFERENCES
FIGURE 1
APPENDIX |

2.
3.

APPENDIX 11
APPENDIX 111
APPENDIX IV
APPENDIX V
APPENDIX VI

L 3 e

/

The GCOS Control Cards
The Machine Description
Definition Statements

The OPLOC Section

The Macro Section

The Intermediste Langusgs: AMOPs

The HIS-8000 Machine Description

The HIS~5000 C Poutine Macro Definitions
Overail Description of the Compiler

The Laxicel Anstysie Pamme

The Code Generation Phase

The Macro Em ‘Eilﬂlmﬂ'

The Error Message

1. :Introduction |

This paper describes the implementation of a compiler for the programming language C [1,2], an
implementation language developed at Bell Laboratories and a descendant of the language BCPL [3] The
compiler has been designed to be capable of producing assembly-language code for most register-
oriented machines with only minor recoding. Versions of the compiler exist for the Honeywell HIS-6000
and Digital Equipment Corporation PDP-10 computers.

C is a procedure-oriented langusge. It has four primitive data types (integers, characters, and single-
and double-precision floating-point), four data type constructors (pointers, arrays, functions, and records),
and a small but convenient set. of control structures which encourage goto-less programming. An
important characteristic of C is the minimal run-time support needed. Aithough C supports recursive
procedures, C does not have built-in functions, 1/0 statements, block structure, string operations, dynamic
arrays, dynamic storage allocation, or run-time type checking. The only run-time data structure is the
stack of procedure activation records. Of course, to run any useful programs, an interface to the
operating system is required, and a standard set of 1/0 routines has been defined in order to encourage
portability. But the implementation of these routines is optional and separate from the task of
implementing a C compiler which produces code for a given machine.

The compiler described in this paper was designed to be portable, that is, to be capable of generating
code for many target machmes with a minimum of recoding. Whon considering portability, three classes of
machines can be defined:

1. Machines which can support C programs reasonably efficiently: This class of machines depends only
~ upon one’s interpretation of the term "reasonably efficiently." Clearly, all real machines can run C
programs, limited only by some size constraint related to the availability of memory. However, the
following capabilities are desirable: (1) the ability to access the current procedure activation record
and the current argument list in a reentrant manner - this will require one or two base/index
registers depending upon the calling sequence, (2) the ability to reference via a pointer variable -
this will require another base/index register or an indirection facility, (3) character addressing, (4)
integer arithmetic, and (5) floating-point arithmetic. Not sli of the above capabilities need be present
in the target machine; however, the more that are missing, the more interpretive becomes the
execution of a C program. For example, the HIS-6000 is word-addressed; thus references to
character variables are interpreted by a small run-time subroutine.

2. Machines for which the compiler can produce reasonably efficient code: This class of machines is
clearly a subset of the first class; the size of the subset is again determined by one’s definition of
reasonable. The better the correspondence between the target machine and the machine model
implicit in the compuler, the better will be the object code produced. On the other hand, if the
correspondence is poor, the compiler may be able to produce only threaded code or instructions to
be interpreted by software. .

3. Machines which can support the compiler itself: Because the compiler is written in C, one may think
that this class of machines is identical to the second class of machines; however, there are added
restrictions which must be made in order to run the compiler on a given machine: the word size of
the machine must be sufficient to hold all values used by the compiler; any implementation restriction
on the size of procedures or data areas (as would be likely on the IBM S/360 because of addressing
deficiencies) must not be such as to prohibit the proper execution of the compiler (this includes the.
ability of the compiler to compile itseif). In addition, there are operating system and configuration
restrictions: the memory size available to a program must be sufficient to hold the phases of the
compiler; file space for the source of the compiler must be available and affordable; the 1/0 routines
used by the compnler must be implemented. This class of machines is not a subset of the second class
of machines since the compiler does not use all of the features of the language, notably floating-point.

This paper concentrates on the second class of machines, those for which the compiler can produce

-6-

reasonably efficient code, given the restrictions of the first class of machines, thoss which can support C
programs reasonably efficiently. Thus, throughoul iivs paper, the:term - "mething independence” will
gonerally refer to the sbilily of & compiler 1o producs sede for meny achines. - ’ o .

1.1 Motivation

One of the serious problems in the fisid of software engineering is the difficuity of transferring programs
to new machines, This is ceused in large part by the proliferstion of different progremming langusges
and machines and the significant sffort requiced: to implement: s compiler for: any particuler programming
language and target machine.: One spgeoach 10 sclving: this probiem-is to-restrict programming lenguages

~ to a few standardized langusges which sre then implemented: an oll Sirgst machines of -interest. - A

- disadvantage of this approsch is thet it conflicte with the desirability of having. many ' specielized
languages for specislized preblems. Another disadvantage is the fact thet continusl progress is- being
made in the development of pragramming languages 5o thet by the time 2 lenguags is standurdiznd end

widely availabls, it is siready “obsolete.” It is aleo difficult -io achiave compatibility smeng the vericus
implementations of a standerdized langusge. £ven if the standerd lsaguags is well. defined, it is difficult
for compiler writers to restrain themesives from sxiending it and for ussrs te restrain-themesives from
using the langusge extensions. A similer approach to the problem of program transferability is to restrict
the number of target machines for which compilers wust be writien by requiring that sach-naw machine:
be compatible with a- widely-used ewisting meshing. The- shifiing .of progress in vompuler srchitecture
which would result from this requirement is ss undesirable as the stifling of progress in pengranming
languages which would result from sdoption of the previous approsch. In addition, it the new mechines
sre only upward compatible with the old: machines; then: problems may stil vemein with: regerd to
transferring programs from new machines to oid ones. . ' o

An alternative approach to thoss of lsnguage restriction and machine compatibility is to -develop
techniques that reduce the effort required ta write compilers for various combinstions of lsnguages and
machines. Thess techniques may be directed st two subprobloms, that of reducing: the: effort invelved in
writing. one particuler compiler and that of reducing the. otfert. involved in. writing.» femily of reisted
compilers. The develapment of such. teshniques could: have: benefite in addition te-improving pragrem
transferability, such ss making it sasisr 1o implament & new.language or making lsagusges mere widely
available. . : : '

An early effort in this direction was an attempt to devise a universal computer-oriented language UNCOL
(4], which is both langusge-independent and machine-independent, to which all progremming langusges
could be transiated and which ilssif could be trensisted with sccepiebin efficiercy into sny mechine
language. The idea was that ore need write only.one UNCOL-o-mechine lenguage: tramsistor for each
target machine and one source lenguage-to-UNCOL iranslator for esch sowrce language, rather than
having to write one compiler for sach source language-machine lenguage combination. In addition, if
UNCOL were well defined, then the various implementations of UNCOL could be: made compatible, theredy
insuring the compastibliity of the source langusge implementations. Unfortunately, the concept of a
universal language has not led 10 a practical solubion of the problems the: charecteristics of source and
machine langusge independence are incompatible with the nsed:for scceptably: sfficient tramsiation from
UNCOL to machine lsnguage. ‘ SR .

More practical techniques for reducing the effort involved in writing compilers result if one considers
techniques with more limited gosis then those of the UNCOL project. One spproach .is to develop
techniques which reducs the stfort involved in writing one particuler compiler for some lenguege~machine
combination. Exampies of such techniques sre parser gensrators and syntax-directed symbol processors
[5) . Another. approach is .to develop techniques for writing families 6f compilers for many source
languages and ons target machine. An example of such a technique is s compiler writing system with
code generation primitives, such.as FSL [6] The third approach,-and the one which is taken in this work,
is that of the portable compiler, a compiler fer a particular source language which can produce code for
many target machines. It should be noted that techniques such es parser ganersiors, which can.sid in the -
_implementation of a single compiler, can be equally ussful in the implementation of more goneral systoms
such as compiler writing systems and portsble compilers. =

1.2 Background |

A compiler can be considered to consist of two logical phases, snalysis and generation. The analysis
phase performs lexical and syntactic analysis of the source program, producing as output some convenient
internal representation of the program, along with a set of tables containing lexical information and other
information derived from the declarative statements of the program. The generation phase then
transforms the internal representation into an object language program, using the information contained in
the tables produced by the analysis phase. One can confine the machine (object language) dependencies
of a compiler to the generation phase by a suitable choice of internal representation, i.e. one which is
. machine-independent. On the other hand, it is not practical to also confine the source language
dependencies of a compiler to the analysis phase since this would make the internal representation a
universal language. Thus the generation phase of a compiler is both source-language-dependent and
machine-dependent. :

Most portable compilers require that the generation phase be completely rewritten for each target
machine [7,8] This effort may represent only about one-fifth of the effort needed to rewrite the entire
compiler [8] In the case of the BCPL compiler [9}, for example, moving the compiler may require only
three to four weeks under ideal conditions (but otherwise may require up to five months). However, it
would be desirable if the amount of recoding necessary to generate code for a new machine could be
reduced.

One approach is that advocated by Poole and Waite for writing portable programs [10,11]1 They
advocate that before writing a program to solve a particular problem, one define an abstract machine for
which the program is then written. With this approach, in order to move the program to a new machine,
one need only implement the abstract machine on the target machine, typically via a macro processor.
The desired qualities of the abstract machine are that it contain operations and data objects convenient
for expressing the problem solution, that it be sufficiently close to the target machines of interest so that
acceptable code can easily be generated, and that the tools for implementing the abstract machine be
easily obtainable on the target machines.

This technique can be applied to portable compilers by considering the problem to be the implementation
of an arbitrary source language program. The operations and data objects convenient for expressing the
problem solution are then those which are basic. to the source language. With this technique, a compiler
would be broken into two parts: a machine-independent translator from the source language to the
abstract machine language and a machine-dependent transiator from the abstract machine language to the
target machine language. The translator from the abstract machine language to the target machine
language should be smaller and simpler than the conventional generation phase would be; typically, it
consists of a set of macro definitions which map each abstract machine instruction into the corresponding
target machine instruction or instruction sequence. Moving the compiler to a new machine simply requires
rewriting the macro definitions.

The major difficulty with the abstract machine approach to portable software is in determining the
appropriate abstract machine. If the abstract machine is of a high level (i.e., very problem-oriented), then
the program will be very portable but the implementation of the abstract machme will be difficult. On the
other hand, if the abstract machine is of a low level (i.e., more machine-oriented), then, unless it
corresponds closely to the target machine, either the code produced will be inefficient or the
implementation will be complicated by optimization code.

The solution to this difficulty proposed by Poole and Waite is to define a hierarchy of abstract machines,
ranging from a high-level problem-oriented abstract machine to a low-level, machine-oriented, and easy-
to-implement abstract machine. In this solution, the higher-level abstract machines are implemented in
terms of the lower-level abstract machines, and only the lowest-level abstract machine need be
implemented on a target machine in order to transter the program; once it is transferred, higher-level
abstract machines may be implemented directly in terms of the target machine in order to improve
efficiency. While this technique may be useful for transferring particular programs, it is unlikely that it

will be acceptable in practical terms as a compilation technique because of the need for additional
transiation steps. An experiment by Brown [12] indicates thal- one may implement and then optimize &
low-level abstract machine in sbout. the. same time #s .it tekes. 10 implement o bigher-level sbstract
machine and that the. resulting i ns are similacly afficient. Thus an siternalive. eolution is to
use a low-lavel M&tnﬂhhﬁ“ﬁthM&Mw&bmhm
likely to be acceptabls as s compilstion techuique. Ammwwmmmm :

The technique of rewriting the generation pm nqunm thd 2 non-trwul transiator fm the internal
representation to the targst maching. language be. writlen for sach new target machine. Similerly, the
abstract machine qum;kmmunmmmm o the target
machine language be wrilten for aech. new. targst machine; if ressonably efficient cade: is desired. and-the
abstract machine does not correspond very closely toﬂwhrwmdim.ﬁnntm transistor will-slso be
non-trivial.

A more desirable goal for a portable compiler is that it have a genecration phase which can be modified to

produce code for a new target machine by a process: which is lergely sutomatic. -Implicit: in tl;i,;;ool is

the reqmremmt that the m&m process obtain its- Imowbd.. -shout-s hrnt mhm- M 3 (non-

which attacked the prob#om of dncnbing s mdum-d&pmdeni procm (codo genorttoon) ina machim~

independent way. In the SLANG system, source language constructs are transiated into a set of basic
operations called EMILs; the EMils are iransiated info alsalule machine. cade: using:meero definitions and
instruction format d-mm The. Jach is. similar 10, the abatract machine approech in that the EMils

can be considered to. be thmmdnmmmmmummm

generation dw;ﬂmmsm{mmm:aammm - A0 Lailor: the EMIL
program to the target mechine. The EMiLs difier from:the.instructions. dumﬁmm ‘sbetract.
machine in that they are machine-orienied, rather than probiem: (source-langusge) oriented. in- addition,
‘the code generator, does not seem to. know about registers-other then index registers; whicly imphies that

one will not be able to achisve the desired close correspondence betwaen the: sbsiract imeching .and: most

register-oriented machines. Nevertheless, the method of describing ﬂn Mructiom of a machine by

providing simple instruction sequences which. interpret. the : < ¥ 9 N
good compromise mmma-mmmw ,ﬁmmamma
machine and utilizing such a definition in generating code. -

More recently, Miller [14] has amond the problem of camt:uctmg 2 code nmator from a mhmc
description. Miller proposes that a umnlm phase be constructed in two steps. _In.the. first step, the
language designer specifies the lmqg-d-pmm pa:t of the. mm phase. by writing. » set of
procedural machmo-mdqpendgﬂt macro definitions for the operations of the internal representation
produced by the analysis pha». These macro definitions define . the operations of the internal
representation, such as addition, in terms of machine-independent (i.e., lmﬂn ad) primitives, such
as integer addition, which are crested by the language designer. In the second siep, the implementer
provides a description of the targel machine which is used by an sulpmatic code gonaration sysiem
named DMACS (Descriptive Macro System) in order to fill out the mecro. definitions of the first step snd
thereby produce a cade generator for the targel maching, As was the case with- the SLANG system, the

DMACS machine description. defines_the primitive operations. by giving. largat machine code sequences.
which interpret them. In sddition, hmnvog, the permitied. locations. of the opersnds (in terms of their

being in memory or in perticulsr registers) are specifind 23, am!ho corresponding result ocations. Thus.
the primitives can be made to correspond very closely to the instructions of the target machine so that

the code sequences in the machine description mmmhwmolyutq;bwm efficient.

Both the SLANG systom Qnd DMACS are intended to be ngal in that they .are: wm for a
specific source languege. I-bwom. true sallly is difficult to obtsin and the systems do reflect
preconceived notions about source languages. JE3R believed thet, since thers sre much -more significant
varistions among langueges . then m m . pgaghcd implementation of &m for any
intere tiu language requirs s psigontl ; This idea wes
rmmmm«&n?hmwhmm orin

wpacifically for.
“aomubdbyﬂnlmmu

%

seoms to-be s

-9-

convenient for expressing the operations of the source language. On the other hand, DMACS contains no
notion of storage classes (different mechanisms for accessing variables of the same data type) which are
needed for C; the implementation of storage classes is machine-dependent and thus must be defined in
the machine description. In this paper, techniques similar to those used in the SLANG system and in
DMACS are used in the implementation of a portable C compiler.

1.3 Method

The goal of this research is to design a generation phase for a C compiler which can be modified to
produce code for many machines by a process which is largely automatic. Some insight into this problem
can be gained by examining the corresponding, but better understood problem of the automatic
construction of an analysis phase. One common approach is the use of a parser generator [15]. A parser
generator is a program which accepts as input a grammar for a source language and produces as output -a
set of tables which are used by a language-independent parsing algorithm. The parsing algorithm is
supplemented by a set of action routines which are provided by the implementer; these action routines
are called by the parsing algorithm at appropriate points to produce the output of the analysis phase.
The important characteristics of this process are as follows:

1. The analysis phase is divided into two parts, a language-independent part (the parsing algorithm) and
a language-dependent part (the parsing tables and the action routines).

2. The language-dependent tables are constructed automatically from a finite description of thé,language
(the grammar).

3. The analysis phase is “filled-in" by the implementer by providing information in a procedural form (the
action routines).

4. The choice of a specific parsing algorithm determines the class of languages which can be handled by
the analysis phase. ’ ’

The process of constructing an analysis phase can be made more automatic through the use of a compiler
writing system. In a compiler writing system, the action routines are in a sense built-in; the implementer
invokes these action routines from a higher-level description of the transiation. The use of such a system
may involve much less effort than would be required to write a complete set of action routines. However,
the important point here is that the use of built-in knowledge, as opposed to allowing the addition of
arbitrary procedural knowledge, restricts the class of translations (and thus source languages) which can
be handled by the automatically generated analysis phase.

For the compiler described in this paper, techniques analogous to those described in the preceding
paragraph are used in the implementation of the generation phase. The generation phase is split into two
parts, a machine-independent part and a machine-dependent part. The machine-independent part of the
generation phase is a machine-independent code generation algorithm, corresponding to the language-
independent parsing algorithm of the analysis phase. Just as the choice of a particular parsing algorithm
limits the class of languages that the analysis phase can handle (the parsing algorithm is not completely
language-independent), the choice of a particular code generation algorithm determines the class of
machines for which the compiler can produce reasonable (non-interpretive) code. The machine-dependent
part of the generation phase consists of a set of tables produced automatically by a stand-alone program
GT (Generate Tables) from a machine description, which corresponds to the grammar in the construction of
an analysis phase. The information contained in the machine description may be supplemented by a set of
routines which correspond to the action routines of the analysis phase. However, the compiler described
in this paper is closer to the compiler writing system approach in that implementer-supplied routines form
only a minor part of the generation phase. The extent to which the implementer can easily and safely
include such routines in the generation phase represents another factor determining the class of target
machines handled. ‘

-10 -

A code generation algorithm, if it is to be machine-independent, requires 8 mode! of a machine with which
to work. This model may express such notions as memory, registers,. addressing, npontiom. andd
hardware dats types. In the machine description, the implementer defines his: target maching in terms of
this model and also specifies the form of the abject languags. The class of machines for which the code
generator can produce acceptsbie code directly corresponds to the generality of the machine model.

The machmo model used by the C compiler is a C machine: a machine whose registers and momory are
described in terms of the primitive C data types and whoss operations are primitive C operations. The
implemanter models the targat machine in terms of a C machine, produging. an sbelract machine. The
abstract machine may be very similac 10 or very. different. from.the target. machine, depending. upan how
closely the target machine fits the machine model. The code geseration sigorithm, using its machine
model, produces code for the sbstract machine. The “assembly” language of the shetract machine is celled
the intermediate language; an intermadiate language. program, which is in the form of a series of macro
calls, is translated into the target m assembly {anguage using & .set of macro definitions, provided by
the implementer in the machine dnmghan. Alamhlxl was chosen.ower machine. lsnguage for
the output of the compiler because it is far essier to ﬁg and produce in & mechine~indapendent
manner than machine code or obpct modules.

The abstract C machine plays tho same role in the C compiler as would a Poole and Waite sbstract
machine. The difference is that instead of there being one fixed abstract machine, there is @ class of
abstract machines, corrmondaq to the variability in the machine madel. This vaciability allows the
mplemonter to define a particuler absiract machine which more closely ressmbles his target smachine.
The resuit is that the transiation from the abstract mechine hngum to the tlrgot machine lmqo
becomes simpler, and more efficient cade is produced.

The process of modeling the target machine is described in chapter two. . A detailed discussion of tho
code generation algorithm is prasentsd in chaptar thres. Canclusions are presented in chapler four.

S ——

~11 -

2. Mocloling tho Ta.rgot Machlne

The codo gmrator s modal of a-machine is an abstnct C mar.h&'io L Mlchha whose instructions porfom
the primitive operations of the C language. The deta types of the sbstract machine are the primitive C
data types icharacters, integers, and single- and double-pracision fioating point), supplomentgd by one or

more pointer ¢tasses which are distinguished by their ability o resoive addresses. The Gesic addressable

unit of the abstract machine memory is the byte, which holds a single character value (characters are the
smaliest C data type). Values of the other sbetract: machiie-dits: typis Gotlpy oh integral number of
bytes, possibly aligned in larger units of memory. The sbetrutt seching Nes & set Of régisters which may
be used to hoid the cperands of the sbstract machine: inslructione. - Escl: ‘sbstrect machine register is
capable: of hoiding values of mmofmmmmmm mm«aﬂm of the
abstract machine are three-address instructions. Each sddrsss may specity - o - miachine-register

or a location in memory; the mechanisme for rmu a mry m'mw lo thll primiﬁw
addressing modes in C.

In the machine description, the implementer describes the hrut mchim h hrm of thh mochino model
by defining a particular abstract machine for which the code generator mwmuwm The
implementer specifies the sizes and slignments of the primitive C deta types and defines pointer classes
as convenient. The implementer definss the stistract: maching ségistérs; Whith gensesily correspond to
those registers of the target machine which sre to be used in thwi evelastion ‘0t sxpressions. The

" implementer also. specifies the registers which may hold valoss of -eathioof the. sbistract machine ‘data

types. In addition, the implementer may specify that any two sbstrect maching registers conflict in the
target machine, meaning: that en!y ond tay hold s valus: st anicone e The Wiplementer defines the
abstract machine instructions in terms of their opersnd/result locations and possible side~effects on other
registers. In addition, the implementar provides a-set dm M ilmbmt the sbstract
machine instructions on the target mechine.

2.1 The Intermediate Language

The intermediste language is the assembly lsnguage of tht ahltrm m Utin; the mformotion
contained in the tables construcled :from the machine descriphion; the:.code ‘geserator producks &
translation -of the source program in the inlermediste: langtugs: - Arcinisrmudisls tangusge program
consists of a sequence of macro calis, each of which is expanied into: One or wors: object language
statements using the macro definitions provided in the machine description. Thou sre two types of
macros in-the. intermediste language: The first: type are ‘wmesroi-which' repe the threw-address
abstract machine instructions. The second type sre kéyword: maties Which éorrespornt to either
assembly-langusge pseudo-operations or instructions implementing the primitive C control structures.

2.1.1 Abstract Ma“skinc Incmoﬁm

The nbduct machine instructions are - thnt-m instructions: M perform “the evsluation of C
expressions. The operators of the abstract: mithine me M-d machine’ opdnton‘
(AMOPs), the addresses are called refersnces: Ws). B

21141 AMOP

AMOPs are basic C operations which are qualified by the specific s aﬂWMltymOffM“”

operands. For example, in the HIS-6000 implerentstion Wuw mm, ondirg to the C
OPQP“OI’ +": . B TR N

+i integer: addition '

+«d double-pracision floating-point lddltcon i
+p0 addition of an integer to a pointer to a byte-sligned objoct
+pl addition of an integer to a pointer to a word-skigned object

-12 -

In addition, there are AMOPs for date movement, data type conversion, and conditional jumps. AMOPs are

represented in the compiler ss an integer opcode with s value from O o 285, The various AMOPs sre

listed in Appendix IL. |
2.1.1.2 REFs

A REF is a C-oriented description of the location of an aperand or the resuit of an sbsiract machine
instruction. A REF may specify either a register of the sbetract machine or s location in memory; the
possible classes of memery references inciude C variables of verious siorage clesses (sulomadic, static,
external, parameter, lemporary) as well as-constents snd indirect raferences. A REF is represented by a
pair of integers celled REF.BAGE andl REF.OFFSET; REF.BASE delermines either o perticuler register or a

particuler class of memery refersacs, REFOFFSET delerminss the:-exect iocation given & specific memory -

reference class. The possible velues of REF.BASE are listed below with their interpretations (actusl
integer values are shown for concretensess; the compiler itself uses manifest constants):

REF.BASE interpretetion

nz20 - register sn {(register riumbers are sssigned to the registers of the abstract
A machine in a predictsble menner by GT) . , :

-1 - an avtomstic or lemporary varisble; OFFSET is the offest of the varisble in the

-2 - an externsl varisble, referenced by name; OFFSET is an internal identifier

-3 - & static {internel) variable; OFFSET is an internal static verisble aumber

-4 - a paramster; OFFSET is the offsat of the varisble or iis atdress in the -

srgument list

-5 - a label; OFFSET is an internal label number

-6 - an integer constant whose value is OFFSET

~7 - & floating-point constent; OFFSET is an internal constant number

-8 = & character string constent; OFFSET is sninternsl string number

ns-~9 - reference indivect through # pointer in-register # (-n ~-9)-OFFSET is. the offest

of the reference relstive (o the pointer

The specific values of REFBASEM mt be nf.,cred to in most macro‘dbfinitiom; the oucopﬁon is the
NAME macro, which-converts a REF into a symbolic address. :

The representation of a three-address instruction in the intermediate language is that of a macro call with
five or seven integer arguments representing the AMOP and-REFs fot the result and the operands of the
AMOP. (Each REF consists of two arguments, REF.BASE and REF.OFFSET; only two REFs are provided in
‘the case of a unary AMOP.) The macro name wsed in: the mesro.call is of 2. special form which spacifies an

entry in a table produced from hmmmbymm'mmm table aniry refers 10 the

representation of the corresponding macro definition from the machine. dascription.
2.1.2 EKeyword Macros '

Keyword macros are those macro calls which, along with the three-address instructions, make up an
intermediate language program. Uniike. AMOP macros whose names are generated by .GT, the .nsmes. of
the keyword macros are predefined, as are their functions. For example, keyword macros are used to
define external variable names and internal labels; 40 specify initial values in storage, and to produce the
function prologs and epilogs. The various keyword macros defined in. the intermediste Janguage are listed
below alonlgl with a brief description of their functions;. a more compleie st of descriptions appeers in
Appendix II1. o h :

. =13-

macro function

HEAD produce header statements, if needed
EXTRN - define an external reference

INT - define aninteger constant

CHAR define & cheracter constant

FLOAT define a floating-point constant

NFLOAT define a negative floating—point constant
DOUBLE define a double-precision fioat constant
NOOUBLE define a negative double-precision constant
ADCONn define 3.class "n" pointer constast . -
STRCON = define & pointer referencing s string constant
EQU define a symbol . c
ZERO define an aresof storege initislized t0 zevo -
STATIC . define astalic variable - -
STRING define the string constants :

ALIGN . . force an alignment of the locetion counter

LN define a line-number symbol :
LABCON define a shel constant

LABDEF define an internal label

IDN transiate an .internal identifier number
into the correspanding :sssembler symbol
" END produce an end statement, if nesded

PROLOG produce the prolog code of a C function -
EPILOG - = produce the epiog code of a.C function .
CALL produce a function call

RETURN produce code for a return statement
GOTO produce a jump to a label expression
LSWITCH = produce:e swilch jump.(list version) - -
TSWITCH produce s switch jump (table version) -

The actual macro names which appear in an intermediate language program sre abbreviations of the
names listed above. : R :

2.2 The Machine Description

The machine description is a "program”® written in a specisi-purpose lsnguage from which is constructed
the machine-dependent tables of the generation phase. The machine description hes two functions: (1) it
defines the particular abstract machine for which the ¢codé:genifator Brodiceé ihtermediste cade, and (2)
it specifies the translation from an intermediste language program to the corresponding object language
program. . e Niath ,

The abstract machine is defined in two sections of the machine description. First, a set of definition
statements defines the registers and memory of the abstract machine. Se in the OPLOC section, the
AMOPs. are defined in terms of their operandfresult locelions. The ‘tranilsfion trom-the intermediste
language to the object tanguage is specified by e set 'of macro*dsfinitione i the’ macro ‘section of the
machine description. More information on the writing Bhs machine WsetViliiti iay be' found in Appendix
I; the machine description used in the HIS-6000 implementation is listed in _Appmdixwl_V.

2.2.1 Defining the Abstraot Maochine

In the mechine description, the implementer first defines the registers of the abstract machine. For
example, the statement e s

-14 -

regnames (x0,x1,x2,x3,x4,8,q,f)

defines the eight abstract machine remstors used in the HIS-6000 implementstion. The registers X0
through X4 correspond to the first five of eight HIS-600Q index registers, the A and Q correspond to the

accumulators, and the F register is a fictitious floating-peint accumuletor which corresponds to the
combined A, Q, and E (exponent) registers on the HIS-6000.. :The faet Mih*?mh!wm in the
target machine with the A and Q registers is specified by the-statement

conflict (a,f){q,f%

The remaining HIS-6000 index registers are not represented in the abstract machine since it was not
desired that they be used by the code generator in the: evshuation of ekpressions; two of those registers
hold “environment pointers,” the other is used as a scratch register-by some of the macro definitions.
There is nothing that requires that the abstract machine segisters be Waplemented as actust machine
registers on the target machine; they may aiso be mhmhd s fimed mym :

For convenience, the abstract machine rqnhn can be uﬂwd m m for oxm in Iho HIS-
6000 implementation, the statement

class x(x0,x1,x2,x3,x4), r(a,q) ,
defines the class of index registers X and the class of aaon& registers R
The implementer also defines the classes of sbstract machino pointers. Pointer elusm are nacessary on
machines which are not byte-addressed since pointers to byle~aligned cbjects will be hendied differently
" than pointers to word-aligned objects. In the m—mmmu-m

pointer pO(1), p1(4)
defines the class PO of byte pointers and the class P1 of word pointers. The: "4” indicates thet the vslue

of a Pl pointer is siways a multiple of four bytes. mMiMMMMWMWdMN%
HIS-6000 is specified in the statement

size 1(char), &int,float), S(double);
A similar statement i§ used to specify the slignment restrictions.
The statement

type int(r), char(r), float(f), deuble(f), p0ir), p1(x) \ '

defines the registers which can hold values of each of the abstract machine data types. For. oxumpb, in
the HIS-6000 implementation, word pomten are held in the index romlors X whﬂ. byte pointers are held
in the genaral regtsters R X -

The definition of the abstract machine is completed in the OPLOC section of the machine dtscrtptbn
where the implementer. specifies the. behavior of the absiract machine nponﬂom in brm of their
operand/result iocations. For example, the lecstion definition ‘

+d:)MI';

specifies that the AMOP ’+d’ (double-preclsnon floating-point additcon) can take |ts fcrst operand in thn F
rezastar and its second operand in any memory location and, under these circumstances, the result is
placed in the F register. The construct on the right in the locstion definition is cellen e .OPLOCS it
comists of three locstion expressions, one for the fint op-nnd, second operand, snd resuit (reading from

-15 -

left to right). A location expression may specify any set of abstract machine registers or any set of
memory reference classes; for example, the location expression

rix

represents the set consisting of the general registers R and the index registers X, and the Iocahon
expresslon

~ intlit

represents the set consisting of all memory reference classes except that of integer constants. An OPLOC
may specify that the result is placed in the first or second operand location. For example, the location
definition

+is r,M1;

specifies that the AMOP *+i" (integer addition) takes its first operand in a general register and its second
operand in any memory location, and the result is placed in the register which contamed the first
operand. This location definition is equivalent to

+: a,M,9; q,Mg;

which explicitly lists the two alternatives. An OPLOC may also specify that the contents of certain
registers are destroyed during the execution of an AMOP; for example, the location definition '

L H q.M-q [‘];
specifies that an integer multiplication destroys the contents of the A register.

2.2.2 Defining the Object Language

The translation from the intermediate language to the object language is specified by a set of macro
definitions included in the machine description; macro definitions are provided for the abstract machine
instructions and the keyword macros. The simplest form of a macro definition is a single character string
which is substituted for the macro call during macro expansion. For examplc, the macro definition for
floating-point unary minus used in the HIS-6000 implementation is

-ud: " FNEG”

This macro definition specifies that each occurrence of a ’-ud’ abstract machine instruction is to be
translated into the assembly language instruction "FNEG™ which complements the contents of the F
register. The macro definition for *~ud’ is closely related to the {ocation definition for *-ud’, .

-ud: f,,1;

which states that the operand is found in the F register and that the result is placed in the F register. A
.macro definition for an AMOP can assume that the actual operand/result locations appearing in an
abstract machine instruction satisfy the constraints specified in the corresponding location definition; at
the same time, a macro definition must produce correct code for all combinations of operand/result
locations allowed by the location definition.

A macro definition for an abstract machine instruction can refer to symbolic representations of the
operation and the operand/result locations by using the character sequences 0 (operation), #F (first
operand), *S (second operand), and #R {(result). These character sequences are abbreviations for calls to
an implementer-defined macro which converts an AMOP opcode or a REF into the desired object language

-16 -
representation. For um the macro definition for *+° Mcpt sddition) in the HIS-6000
implementation is

+: - ADaR a5"

if the first operand location (which is also the result locetion) is the A register and the second operand is
an external variable "X", then the code produced by this macro definition is

ADA X

which adds the contents of "X" to the A register. A macro definition cen siso contsin chumator strings
whose inclusion in the expameion of a mecro call is conditional upon the locations of the operands and/or
result. An example is the HIS-6000 macro definition for ‘«‘MM)

<<:

(intlit,): " oFLS = %o(s’S)"

(,~intlit,): * LXLS *5
oFLS 05"

which produces different code sequences depending upon whether or not the second operand (the
number of bit-positions to shift) is an integer constant. A macro definition may include refersnces to the
arguments of the macro call using the character sequences 0, el, .. #9; & macro definition may. include

embedded macro cllls,wchuﬂn *%o(#"ST" in the lntmwupb,whicbrmtbmﬂ the integer
constant.

A macro definition may also be specified in the form of a C routine. C routine macro definitions are used
when processing is needed which is beyond the capabilities of the simpie mecro scheme so far described. .
C routine macro definitions may define giobal veriables, perform erithmetic and logics! ‘operations, and
select code sequences on conditions other than operand locations. by the pressnt implementstion,
however, C routine mecro definitions are urisbie to interact with the code generstion sigorithm. In the
HIS-6000 implementation, C routine macro definitions are .used to transiste REFs into GMAP symbols, to
translate the source lsnguage representations of identifiers and {Mm;w constents into GMAP; to
define character string constards, and to buffer characters while defining storege for varisbles (GMAP
does not have a byte location caunter, as ammmmmmx 'ﬂncm&hm
definitions used in the msmmmmmmwmmv. e ,

-17 -

8. Generating Code for an Abstract Machine

The most interesting part of the compiler is the code generator since, unlike most code generators which
produce code for a fixed target language, the code generator of the C compiler is designed to produce
code for a class of abstract machines.

3.1 Funotions of the Code Generator

The code generation process consists of three fairly distinct functions. First, there is the generation of -
intermediate language statements to define and initialize static data areas and constants. Second, there is
the translation of source language control structures into labels and branches. Third, there is the
transliation of source language expressions into sequences of abstract machine operations.

The C compiler is designed to produce assembly language code for conventional machines; thus, the
intermediate language statements for defining and initializing static data areas directly correspond to
assembly language statements which define symbols, define constants, and align the location counter. The
only complication is that the code generator must use the size and alignment information from the machine
description in order to specify the sizes and alignments of data areas. More information and redundancy
could be added to the intermediate language in order to accomodate a larger class of target languages;
see [16] for examples. Another possible improvement would be to emit segment speclfymg instructions
so that the output could be segregated into different segments according to whether it is code, pure data,
impure data, or uninitialized data. .

The process of translating source language control structures into labels and branches is rather
straightfoward. The only complications come when emitting conditional branches which test the value of
an expression; these problems are covered in the next section.

3.2 Generating Code for Expressions

The generation of code for expressions is the most difficult part of the problem. The code generator
must generate a correct sequence of abstract machine instructions to carry out the indiceted operations.
The operand and result locations it specifies in the abstract machine instructions must conform to the
location definitions provided in the machine description. Moreover, the code generator must keep track of
the locations of all intermediate results and correctly administer the abstract machme registers and
temporary locations.

The generation of code for expressions is performed in two steps, semantic interpretation and code
generation.

8.2.1 Semantic Interpretation

The code generator receives expressions in the form of syntax trees whose interior nodes are source
language operators and whose leaf nodes are identifiers and constants. Thus, an expression can be
considered to consist of a "top-level” operator along with zero or more operand expressions. The first
step in the processing of an expression consists of translating a tree in this form to a more descriptive
form whose interior nodes are AMOPs. This translation involves checking the data types of operands,
inserting conversion operators where necessary, and choosing the appropriate AMOPs to express the
semantics of the source language operators. The selection of an AMOP to replace a source language
operator is based primarily on the data types of the operands. For example, on this basis, an addition
operator may be translated into either integer addition, double-precision floating-point addition, or one of
a number of pointer addition AMOPs. However, it is useful o be able to choose AMOPs also on the basis
of what is provided in the machine description. The basic idea is that of defaults. If the semantics of a
particular AMOP can be expressed in terms of a composition of more basic AMOPs, then the AMOP can be
left undefined in the machine description; the code generator can use the equivalent composition of
AMOPs instead. The advantage of having optional AMOPs is that the implementer need define one of

-18-

these optional AMOPs in the machine description only if his definition will result in sufficiently better code
than will be produced using the equivalent composition of more basic AMOPs.

An example of this technique is the handlmg of a class of C operators celied assignment operators. An

example of an assignment operator is *=+', where “L =+ R” is defined to be the same as "L = L + R" except .
that the expression L is evaluated omy once (it may contasin. ;idrcthm). Congider an expression-

"L =op R." If the corresponding abstract maehino assignment operator is defined in the machine
description, then the source langusge as nt operator is translated into thet asbstract machine
operator; otherwise, the expression "L «op R* is converted to the MM form "L = | op R, except
that there is only one copy of “L™ having two pointers to it (a fiag is set in the root node-of "L" 50 that

later routines will recognize this fact). Therefore, a particular sbstract machine assignment operator. need

be included in the machine déscription only if the code sequences it generates are better than the code
that would be generated by the equivalent assigmm exprgssion. An’ exsmple from the- HIS-6000
implementation is the abstract machn mutar e (mhcqg addition~ nt) wtli&h is- transisted
into an add-to-storags- instruc . The corr P4 opsretor "=ed’ is not

defined in the machine dwcriimoam mmwdmcu uumotion exists on the
machine,

Other examples of opttoml AMOPs which have been mplcmmtod are the pointer comparison operators
for pointers other than class. PO pointers (the default is to convert to the: "grestest comman denominstor”
pointer class for which the operation is impiemented) and the test for null/non-msl pointer apersters (the
default is to convert the pointer to-an integer and test for equelity finequatity th 07. Other wmﬂm
candidates for being optional AMOPs mmmmm “w oR

9.2.2 Code Generation

The second step in the processing of an expression is the gsneration of o sequence of sbstract machine
instructions to carry out the evaluation of the expression. This tode gomahon is performed by a set of
recursive routines, some of which will be described in this section. The operation.of the code.generation
routines is basically top-down. When a call is made 10 generate.code to-evsluste an exprassion, » set of
desired locations for the result of that evaluation is also specified. This. Mmmon, slong: with other
available mformahon about the operands. of the: top-level operator of the expression, is used to choose
one of the OPLOCs from the tap-level operator's location dafinition in the machine -description {location
definitions are described in section 2.2.1). From the chosen OPLOC and, possibly, the desired-locations for
the result of the expression are derived sets of desired locations for the operands of the top-level
operator. Recursive calls are then mads to gonerate code to pvaluste the operands-into: these desired

locations. Next, an abstract machine instruction is emitted for the top-level operation. Finally,. if

necessary, abstract mschine instructions are omiﬂod to move the rnut of tho cxpnuion to an
acceptable location.

3.2.2.1 Spcoifylug Desired Loocations

A set of desured result locations is- specified by a structure called a LOC. A LOC structure has two integer
members, LOCFLAG and Locm The pmlbb vajues of LOCFLAG are lisbd below along. with their

interpretations:

-19 -

LOC.FLAG inhrprombn

0 the “result” is the internal label specified by LOCWORD (used only for
conditional jump AMOPs)

1 the result is to be placed in a register; acceptable registers are specified by
one-bits in LOC.WORD (bit 0 corresponds to register number 0, etc.)

2 the result is to be placed in memory; acceptable classes of memory references
“are specified by one-bits in LOC.WORD (this field is used only to select registers
for pointers in indirect references)

3 the result may be Ieft in any location acceptable for values of the particular
data type

Note that a particular memory location'is never specified as the desired location for a result; rather,
classes of possible memory locations are specified. .

For convenience, if the LOC passed to the top-level code generation routine specifies that the result is
desired in a register, then all registers not capable of containing the particular data type of the
expression being evaluated (as defined in the TYPE statement of the machine description) are removed
from the LOC. Sumlarly, if the LOC specifies memory reference classes, then all indirect classes where the
pointer register is unable to hold pointers of the corresponding pointer class (as specified by the TYPE
statement) are removed from the LOC. Thus where the code generator simply desires that a value be in a
register, it may provide a LOC specifying that the resuit may be left in any register.

The removal of “impossible” registers from a LOC is not performed when such an action would leave no
remaining acceptable registers; this situation can actualiy occur in certain special cases, such as return
statements, where an operation requires a value in a register not normally used to hoid values of that
type.

3.2.2.2 TTEXPR

The top-level code generation routine is TTEXPR. The function of TTEXPR is to gonerate a sequence of
abstract machine instructions which will evaluate a given expression and leave the result in an acceptable
location, as specified by a LOC parameter. The operation of TTEXPR begins with the removal of
impossible cases from the LOC parameter, as described above. Then, TTEXPR passes the expression and
LOC parameters to a routine CGEXPR, which generates abstract machine instructions to evaluate the
expression, using the LOC parameter as a non-binding indication of preference. Finally, TTEXPR calls the
routine CGMOVE to emit, if necessary, abstract machine instructions to move the result to an scceptable
location.

' 3.2.2.3 CGEXPR

The function of CGEXPR is to generate a sequence of abstract machine instructions which will evaluate a
given expression. CGEXPR is given a LOC argument which specifies preferred locations for the result of
the expression; however, unhke TTEXPR, this specification is non-binding and is used only where a choice
exists.

The operation of CGEXPR consists basically of testing for a set of special cases and then performing the
appropriate action, which is usually to call another routine which does the real work. The first special
case is where the expression node is shared and the expression has already been evaluated; in this case,
no action need be taken. Another special case is where the top-level operator is a conditional AMOP and
a value is desired (as opposed to a jump, which is the usual case); in this case, a routine JUMPVAL is
called to emit the desired code. The other special cases involve particular top-level operators:

-20 -

indirection, assignment, conditional expression, function call, and the "leaves™ of the expression tree,
identifiers and literals; in these cases, the code generation routine corresponding to the particular top-
level operator is called. Finally, in all other cases, the routine CGOP is called to emit code to evaluate the
expression.

8.2.2.4 CGOP

The function of CGOP is to emit code to evaluate an expression whose top-|evd'.oporator is not one
special-cased by CGEXPR. Like CGEXPR, CGOP is passed a LOC indicating non-binding preferences for the
location of the result of the expression.

The operation of CGOP is performed in six steps. First, a routine CHOOSE is called to select an OPLOC
from the top-level operator’s location definition in the machine description. Second, desired locations for
the operands of the top-level operator .are determined. Third, a routine EXPR2 is called which makes
recursive calls on TTEXPR to emit code to evaluate the operands into the desired locations. Fourth, code
is emitted to save any registers which are specified in the machine description to be clobbered by the
execution of the top-level operator. Fifth, the exact location of the result of the expression is
determined. Sixth, the actual abstract machine instruction for the top-level operator is emitted. .
If the result location specified by the LOC parameter is a label, or if the selected OPLOC specifies that the
result is left in the first or second operand location, then the exact location of the result of the
expression is fixed. Otherwise, a particular register must be chosen from the set of registers specified in
the result field of the OPLOC (the compiler is currently unable to handle OPLOCs which specify a set of
memory references as the location of the result). In the search for a resuit register, the priorities are as
follows: first, free registers which are preferred result locations; second, busy registers which are
preferred result locations; third, free registers which are not preferred result locations; and fourth, busy
registers which are not preferred resuit locations. If a busy register is selected, register contents are
saved in temporary locations as necessary.

For the purposes of finding a result register, a register containing an operand is considered free and a
register containing a pointer to an operand is given lowest priority. A register containing a pointer to an
operand is protected because the implementation of a AMOP may alter the contents of the resuit register
before the operand referenced by the pointer in that register is used. An example is the following HIS-
6000 code for the AMOP "+p1° (addition of an integer to a pointer to a word-aligned object):

LXLO I
ADLXO P

This code loads index register O with the integer I and then adds to register O the pointer P. (The code
for the AMOP includes the load instruction since in general integers cannot be stored in the HIS-6000
index registers as they are only halfword registers.) If the code generated for P leaves P referenced
through index register 0, the load instruction will “clobber” register O before P is accessed by the add
instruction: o

LXLO I

ADLXO 0,0
However, if index reiister 0 is protected, index régister 1 will be chosen instead to hold the resuit,
producing the following correct code: , .

X1 1

ADLX1 00

-21 -

8.2.2.6 Selecting an OPLOC

The purpose of OPLOC selection is to select a set of operand/result locations for the top-level operator
of an expression by choosing one of the OPLOCs from the location definition of the operator in the
machine description. The choice of operand/result locations will affect the amount of code produced to
evaluate the expression, both because of different code sequences which may be produced by the macro
definition for the operator and because of additional loading, storing, and saving operations which may be
required in order to set up the operands and move the result to an acceptable location. A general
solution, taking into account all possible locations of operands and results, is a complex optimization
problem. Instead, a more limited approach has been taken which uses the provided prefersnces for
result locations and available information about the possible result locations of the top-level operators in
the operand subexpressions. For example, if an operand is an identifier, then its location is known to be
a memory reference of a particular class. Similarly, various operators may be defined in the machine
description to always place their result in one of a particular set of registers. Using information of this
sort, plus knowledge about the current register usage, a rough estimate can be made of the number of
additional load and store instructions which will be required for each OPLOC in the location definition;
from the set of OPLOCs, the one with the lowest additional cost is chosen.

For é;(amplo, consider the expression "[+ (J / K)." (For clarity, source language operator symbols are
used in this example to represent the corresponding integer abstract machine operations.) Assume the
following location deflmtions (the OPLOCs are numbered for future reference): '

+: r,r.l; (n
rMi; (2)

M,r,2; (3)

[.ol [r2} (4)
- ‘ r2,r,1 [r3} (5)
r3,r,1 [rd} (6)

ri,M,1 [r2}; (7)

r2M1 [r3} (8)

r3M1 [rd}; (9)

. Here M represents all memory reference classes and r represents a set of general registers consisting of
rl, r2, r3, and r4. The division operator is modeling a machine instruction which produces pairs of results
(the quotient and remainder) in adjacent registers. For the division abstract machine operator, only the
quotient is used; the other register is considered to be "clobbered” by the execution of the operator
Note that one can deduce from these location definitions that both operators always leave their resuits in
general registers.

The generation of code for the expression "I + (J / K)" begins with the selection of an OPLOC from the
location definition of the '+’ operator. In this case, all of the OPLOCs specify the same set of resuit
locations (the general registers); thus, the desired locations for the result of the expression does not
affect the choice of OPLOCs. Instead, the choice is made on the basis of the possible locations for the
operands. In this case, the first operand is a variable I which is known to be a memory reference of a
particular class. The second operand is the result of a division operator which is known to leave its
results in either rl, r2, or r3. On this basis, OPLOC (3) is chosen because no extra operations are needed
to move the operands into acceptable locations, whereas both OPLOCs (1) and (2) do require such extra
operations.

Next, a recursive call is made to generate code to evaluate the subexpression "J / K" The desired
locations for the result of this expression are those specified by the chosen *+' OPLOC for its second
operand, namely r, the set of general registers. However, since the *+ OPLOC specifies that the second
operand location is also the location of the result of the *+' operator, the intersection of that location set
with the set of desired locations for the result of the '+ operator is used instead, if that intersection is

-22 -

non-null. Thus, the following factors are used in selecting an OPLOC for the ' operstor: first, which of
the possible result registers(rl, r2, r3) are desired rasult Iocatsons. second, which. of the -possible resuit
registers are free; and third, which of the ° stors (12, 13,.r4) are frse. In this particular
situation, the possible location of the first opersnd () is . memory rafeconce snd thus.doesnot favor any
of the OPLOCs. Mw«.mmeMkwmmhamy raleronce, favors
OPLOCs (7), (8), and (9).

In addition, when selectmg on OPLOC from a focation definitian, certain OPLOCs .may be rejected entirely
because they specify conditions which can not be met. For g;m\ph,qf an OPLOC specifias (sither directy
or indirectly through an aperand iocation) that the result is left in a_ragister,.but. the result is desired in
memory, then that OPLOC will be rejected if a wmanM The OPLOC is
rejected because, given a value in 8 rqwtor, the m rmul method by which the code gonerator can
make that value into a memory roform is by saving it in a newly aliacated temporary location. (Recall
that a specific memory ‘location is not provided for the result, only set of mﬂﬁb my reference
classes.) Similarly, if the result will be in W and is desired. in memory, that OPLOC. will be
rejected if there are one or more 0$S _memory rm m whwh m not acceptable
result locations; this is done because the codo gonersior is not capable of transforming s memory
reference from one class to another. Similar checking.is performed.on the operand.jocalien specifications
in the OPLOC: if an operand is requirad by the OPLOC to be in memary but not aif non-indirect memory
reference classes are allowed, then that OPLOC will be rejected if thMn ot guseanteed
to place its result in an acceptable memory location or if it can place its result in a register but
temporary locations are not asccaeptsbie. Thess restrictions silow location definition o contsin extra

OPLOCs which apply only in specis! cases since such OPLOCs will mumm tho:podal '
'cmshold

An example of how the OPLOC selection method can be utilized in the writing of 2. machine description is
the following definition of the *+pl’ AMOP (addition of a inleger to a pointer to e word-sligned objoct)
taken from a hypotheticsl HIS-6000 machine description (tiw described ORLOC selaction .

imptomtdﬂthtmmm%mmmmwum 'ﬂbmm&r :
executing the *+p1° operation in the genersl case is

LXLO I
ADLXO P

where | is the integer in the low-order half of a word in memary and P is the pomhr the h@h
half of a word in memory, mrg;maihumamnubﬁmmuwxmmut OPLOC for
code sequence is .

MM,x;

However, if both the integer and the pointer must be computed into registers (which occurs frequently in
referencing elements of an array), the integer and the pointer must first be stored into temporary
locations befors this code sequence can be applied. Therefors, using the given eod- sequence under
these circumstances results in mvt object code. The desired code is

ALS 18
STA TEMP
ADLXO TEMP

which shifts the integer in the general registar into the N&h—ordar helfward, stores it into a temporery
locahon,mdadds it to the poinh?infblmdtx ro;g;tor mmw%%mh

x,r;l:

-23 -

In the case where the pointer is in an index register and the integer is a constant "n", then the desired
code is .

EAXO n0
with an OPLOC of
x,intlit,1;

The described OPLOC selaction method allows all three OPLOCs to be included in the location definition for
*+p1°. In particular, it guarantees that the third OPLOC will never be selected unless the second operand
is an integer constant. ‘

3.2.2.8 Generating Code for Subexpressions

After an OPLOC has been selected, CGOP calls a routine EXPR2 to make recursive calls on TTEXPR to
generate code to evaluate the operands of the top-level abstract machine operator. The LOC arguments
passed to TTEXPR in these calls are taken from the operand fields of the selected OPLOC and, in the case
of operators which place their result in an operand location, the desired locations for the result of the
top-level operator. If there are two operands, EXPR2 makes sure that the two operands will not require
the use of the same register (for example, by using a register to hold both one operand and a pointer to
the other operand); this is done by checking the LOCs for "overlap® and removing certain possibilities. In
addition, EXPR2 evaluates first the operand which is more complicated on the basis of the sizes of the
subtrees for the two operands; this tends to reduce the number of saving and restoring operations
performed. In the course of generating code to evaluate an operand of a binary abstract machine
operator, it may be necessary to use the register containing the already computed value of the other
operand or a pointer used to reference it, in which case code is generated to save the contents of this
register in a temporary location. Thus, after generating code to evaluate both operands, EXPR2 calls a
routine RESTORE to generate code, if necessary, to restore the saved value to its original register.

3.2.2.7 Register Management

The status of the various abstract machine registers with regard to register allocation is contained in an
array of structures called REGTAB. Each element structure of the array represents the current state of
one abstract machine register. An element structure consists of two members: UCODE, an integer
indicating the current use of the register, and REP, a pointer to the subexpression tree whose value is
currently in the register. The possible values of UCODE are listed below with their interpretations:

UCODE Interpretation
0 the register is free
-1 the register contains the value of the expression pointed to by REP
-2 the register has been marked "do not use unless necessary” for the purpose of
finding a register for the result of an AMOP; aithough the register contains a pointer
to one of the operands of the AMOP, it is free in that it may be selected as a last

resort without having to save its contents.

n>0 the register does not directly contain a value, but there are "n" conflicting registers
containing values which must be saved before this register can be used.

The routines used in register management are described below:

-24 -

Register R, which must directly contain the value of an expression, is made

CLEAR(R) -

available for use; its current value is not saved.
ECLEAR(E) - The register associated with the expression E, if any, is CLEARed.
FREEREG(W) - A register from the set specified by W is made svsilable for use; the

contents of registers are saved if necessary,

GETREG(W1,W2) - If possible, an unmarked register from the set Wl is made available for
use. Otharwise, if possible, an unmarked register from the set W2 is made
available for use. Otherwise, a marked register from the set W1 is made
availsble for use. Within sach set, free regisiers ere thosenin preference
to. busy registers; if . busy ragister is chesen, its contents.are saved.

MARK(E) -lfthoxpmamEanndnmthmmmm
: pointer is marked "do not use uniess necessary.”

NBUSY(W) - Return the Wﬂwmmﬁ set W,

NFREE(W) - Return the number of free registers in the set W.

RESERVE(RE) -mmasmwmmmumma ‘Register R
must be aveilable for use.

RESTORE(E) - lfthaudmotthmmni(mamhtbsmdmmoct
rafmmﬂhsbnnswdham«ymntkfmwh!h
“originsl register.

SAVE(R) WRuMwammbymhMﬁm
registers .are necessary.

UNMARK(E) ~ Undo & MARK.

The following is s typical scmsat calls made byCGeruuwmo!Mfw muprmni
whose top-level operator is a binary operater m operancs -OP1 end m: :

OPLOC=CHOOSE(ELOC) choose an OPLOC

EXPR2(0P1,0P2) recursively generste code to evaluate
' ‘the operands into acceptable locations

ECLEAR(OP1) _ make-aperand registers avaiisble for

ECLEAR(OP2) - the result

SAVE(s) ‘Seve "dobh.rod" registers, if sny

MARK(OP1) mark registers used to hoid poiﬁftrs

MARK(OP2) to operands

R=GETREG(s,*) - select a result register

UNMARK(OP1) unmark any marked registers

UNMARK(OP2) |

RESERVE(R,E) reserve result register

8.2.2.8 Possibllitiu for Falilure

The code generator can fail in two ways: (1) it can reach an impossible situation and announce a compiler
error, and (2) it cen unknowingly gensrate incorrect code. Examples of impossible situstions are (1)
discovering that there are no acceptable OPLOCs in the location definition for an ope¥stor, (2) being told
that the result must be placed in a register from the empty set of registers, and (3) discovering that an
essential location definition or macro definition of an abstract machine operstor was not provided by the
implementsr. The most likely couse of a feilure is an incorrect machine d-cripiion. Examples of errors

-26-

which can be made in the machine description are (1) an OPLOC specifying thet both operends must be in
the same register, (2) an OPLOC specifying a set of memory reference clessss for the result focation, (3) »
macro definition containing errors, and (4) a macro definition which doas not saticipste s particular
operand or result location, or combination thereof, sliowdd by .the lacafion definition’ or otherwise
essentisl (in:the ‘case of move operations which must be Capable 81 wovifig Wmpng registers and bejween
registers and memory). Some of these errors could be detected By (he program which processes the
machine ‘description (GT). Another possible cause of failurg is an sbatFact' machine with an insufficient
number of registers: Such a machine may require that s register be sed 16 hold both a pointer to an
operand and the result of an operation; as described sbove, this situstion may résult in incorrect code.
Hopefully, abstract machine models of real machines will not suffer from this aroblem. Of cours
other possible cause of failure is a bug in the code generator itself. It would be inferesting and useful if
such a code generation algorithm could be proven correct, given sensible restrictions on the machine
description and the assumption of cortect macro definitiohs. |

-26-

4. Conclusions

This paper has described the implementation of a portable compiler for the programming language C. The
compiler was first implemented by the suthor in a ssven month pariod on the Bell Laborstories Computer
Science Research Center’s POP-11/45 UNIX sysiem. The compiler wes.then ysed to compile itself, and.the
resulting code moved to the HIS-§000. Another month wes. spent. debwaging. the compiler. until the

version of the compiler Cm onthe W succsssiitl WM This was rw s
significant test of the compiler. ‘

4.1 The Compiler

The major problem with the compiler itself is its spesd. The compiler anpaws to bo more than twice as
slow as other compilers for similer source languages. This siowness is due almost entirely to the use of a
macro expansion phase (a phase not likely to be prosent in ordinary compilers), since the compiler tends
to spend haif or more of its time in the macro expansion phase. The slowness of the compiler seems to
_be a problem inherent in the chosen compiler structure; no amount of mere recoding is likely to
significantly reduce the percentege of time spent in the macro expansion phase. One approach toward
improving the speed of the compiler would be to eliminate non-essential processing such as the
construction and interpretation of cheracter-string representations of macro calis and the rescanning of
macro definitions. The macro langusge could be modified so that the resuit of the expansion of a macro
call would never be needed as sn argument to another macro caill and thus coukl be printed directly,
- rather than returned as a string and rescanned. Given this restriction, the macro definitions could be
compiled into procedures which simply print strings snd call other procedures. These procedures could
be called directly by the code generator; siternatively, they couid bc calied by a procedure which
interprets a suitable encoding of the intermediate langusge.

A second problem with the compiler is its size, in terms of both the amount of file space necessary to
support an implementation. of the compiler and the amount of memory required to execute the compiler
phases. The source of the compiler is about 250K characters, the source of GT is about 80K characters;
thus, the file space required for source, object libraries, and executable files is on the order of IM
characters. Only the size of the code of the code generstor is a result of designing the compiler to be
portable; it is likely that a code generator designed for a specific machine would be much smaller. Other
reasons for the large size of the compiler stem from the particulsr programming techniques used. In
parhcular, keeping the entire tres representation of a function in core at one time during code generation
requires that a large block of storage be ressrved. Also, the use of » boﬂom-up table-driven LALR(1)
.parser seems to result in a larger syntax anslysis phase then would result from using recursive descent,
as does the UNIX C compiler. The large size of the compiler limits the number of computer systems which
can support the compiler. .

Despite these problems, it is believed that were one prepared to make the investment necessary to
implement C on another machine, the size difficulties and related costs would be outweighed by the
relative speed with which one could bring up a working implementation. One could then concentrate on
making it more efficient, having the adventages of a C compiler to work with and the sbility to program in
C. ' '

The least flexible machine-dependent component of the compiler is the code generation algorithm. It is
acknowledged that a clean mechanism for allowing the implementer to tailor the code generation algorithm
through the addition of procedursi knowledge would be an improvement. On the other hand, clinging to
the idea that the code of the compiler will never be touched is unrealistic. A likely prospect for
modification is the code related to the calling sequence since it may be desired to use a system standard
calling sequence instead of the one built into the compiler. Another problem which would be solved most
easily by modifying the code generator is the IBM S$/360 addressing problem. Because a S/360
instruction cannot contain an arbitrary memory address, C external variables must be referenced by first
loading a register with & pointer to the varisble (an address constant) and then using the register as a
base register in the actusl instruction. These ‘actions could be performed by the macro definitions using

-27 -

conditional expansion; however, it would be easier to modify the code generator to handle this particular
case.

The most direct method of moving a portable compiler based on a machine description requires access to
an existing implementation of the compiler. The process of moving a compiler written in its own language
from machine A to machine B is as follows: First, one writes a machine description for machine B.
Second, the machine description is used by a construction program running on machine A to produce a
new compiler which produces code for machine B. Third, the compiler on machine A is used to compile
the new compiler, producing a compiler which runs on machine A but produces code for machins B.
Fourth, the new compiler is used to compile itself, producing a compiler which runs on machine B and
produces code for machine B. This process is called a half bootstrap. On the other hand, the Poole and
Waite approach does not require the use of an existing implementation. One need write only an
interpreter or a translator for a very simple abstract machine language in order to move a program to a
new machine. This technique is called a full bootstrap. In practice, the need for a half bootstrap often
represents a significant obstacle to moving a program,

The full bootstrap method can be used to move a portable compiler based on a machine description as
follows: Initially, a simple imaginary machine is defined as a vehicle for bootstrapping. A compiler which
runs on and produces code for this imaginary machine is then constructed using the half bootstrap
method described above. Now, in order to move the compiler to a new machine, one implements an
interpreter for the imaginary machine on the new machine. This action results in an “existing
implementation” of the compiler, running on the new machine, which can then be used to carry out the
half bootstrap as described above.

4.2 The Compiled Code

Although there are weak spots, the code produced by the compiler is good considering that it is almost
completely unoptimized. It is certainly better than would be produced if the abstract machine were the
typical machine-independent abstract machine with one accumulator and one index register, given the
same complexity of the macro definitions (they do not perform register allocation). Such an
implementation would not be able to take advantage of the HIS-6000s two accumulators or the multiple
index registers, nor would it recognize the fact that byte pointers cannot fit in the index registers.

One of the weak spots in the compiled code concerns floating-point operations. The code generator
"performs™ all floating-point operations in double-precision, issuing single~to-double conversion
operations before using single-precision operands. It is unable to utilize the HIS-6000 machine
instructions which operate on a single-precision operand' in memory and a double-precision operand in
the F register. Since the implementation of a single-to~double conversion is to load the single-precision
operand into the F register, very poor code is produced for single-precision floating-point expressions
(as opposed to very good code for double-precision expressions). One way to handle this situation would
be to implement a general subtree-matching facility for optimization. With such a tacility, the implementer
specifies in the machine description that a particular combination of abstract machine operators (specified
in the form of a tree) is to be replaced by the code generator with a new abstract machine operator; the
new operator is defined by the implementer in the machine description just like any of the built-in
operators. In the floating-point case, one would specify that a subtree of the form (using a LISP-like
notation) - ' . '

(double-prec-add (#1 , single~to-double (#2)))
would be replaced by
(single-prec-add (1 ,%2))

where single-prec-add is a new abstract machine operator which would be defined to be the "FAD"
instruction. This method of subtree-matching can be compared to the hierarchy of abstract machines

-28 -

method in that the new abstract machine operators can be considered to be instructions of a higher-level
abstract machine. The differences are that, in the case of the subtree-matching method, the definition of
higher-level operators is optional (thus there is no multistage transiation when optimization is not desired
or needed) and that the implementer defines the higher-level operators to suit his needs. The subtree-
matching approach to machine-dependent code optimization has been investigated by Wasilew [17]

Another weakness in the compiled code concerns array subscripting. Instead of placing the offset of an
array element into an index register and performing an indexed memory reference, the code generator
adds the offset to a pointer to the base of the array, producing a pointer (in an index register) which is
then used to reference the array element. Thus, the code generator regards index registers only as base
registers to hold pointers, and not as index registers to hold offsets.” One reason for not implementing
the capability of using index registers for subscripting is that this method of subscripting is often not
possible. For example, on machines like the HIS-6000 with single-indexed instructions, this method can be
used only for external and stafic arrays; all other arrays require the use of an index register just to
reference the base of the array. (Actually, one can perform double-indexing on the HIS-6000 by using
an indirect word; however, this was not recognized at the time the compiler was written.) The capability
of using index registers for subscripting could be implemented using the subtree-matching facility
described above; one would test for subtrees of the form

(pointer-add (address-of extern | static), <any>))

and replace them with a new abstract machine operator which would be defined to:produce the desired
code. A more satisfying solution would give the code generator more knowledge about addressability so
that it couid use index registers for subscripting whenever possible, based on information given in the
machine description.

A third weakness of the compiled code is the use of indirection. The code generator only indirects
through pointers in registers; it is unable to utilize an indirection-through-memory facility (except through
a specific location which implements an abstract machine register). Again, a better understanding of
addressing is what is really needed.

4.3 Summary of Results

This paper has presented a technique for the design of portable compilers and has demonstrated its
practicality through the implementation of a portable C compiler. The main difference between this work
and the previous work described in section 1.2 is that in this work, the system was designed specifically
for the language being implemented; it is this restriction which contributes most to the practicality of the
approach. In addition, this work has emphasized the concept of a machine-dependent abstuct machine,
thus tying together the work on portable compilers and program transferability.

The advantages of the technique presented in this paper over the technique of rewriting some or all of
the generation phase ‘are (1) that the implementer can modify the compiler to produce code for a new
machine with less effort and in less time, and (2) that the implementer can be more confident in the
correctness of the modifications. Almost the entire code of the generation phase, already tested in the
initial implementation, is unchanged in the new implementation. This code includes the code generation
algorithm, the register management routmes, and the macro expander. Furthermore, the modifications
which must be made are localized in two ‘areas, the machine description and the C routine macro
definitions. The implementer is primarily concerned with the correct implementation of the individual
abstract machine instructions. The interaction among these .instructions, in terms of their correct ordering
and the use of registers and temporary locations, is handled by the code generation algorithm and need
not be of concern to the implementer. It is this reduction in the complexity of the problem which leads
to the increased confidence in the results of the modification,

The portability of the compiler has been tested by the construction of version of the compiler for the
DEC PDP-10. The initial machine description and macro definitions for the PDP-10 implementation were
written and debugged by the author in a period of two days.

-29 -

4.4 Furthor} Work

Thore are three main directions for further work. One is to dovolop maehim models which will aliow the
generation of acceptable code for a larger class of machiries. Such machine models will have the effect of
reducing the complexity of the descriptions of machines which do not oomhloly GOrrospcnd to the
machine model described in this paper. “With the HIS-6000; fbv only major area of
complexity in the machine description is that of character my desire a machine
model which allows the implementer to describe more convenhshtly W &M stion ot characters on
his machine. Similarly, a machine modol which sliows a better mdnrdondin; of oddussmg would. be
desirable.

_Another direction for further work is to develop mchom-inda int cado ;pmahon algorithms which
will - produce more : efficient ‘code.. In parficuler; the probigh “of’ t gibcition under complex
constraints should be examined. " In ‘sddition; WM% Wiilimentsr to extend sasily and
safely the code generation algorithm through the addition of procedursi knowhﬂe shouid be developed.
Such techniques should allow the compiler to be. modtﬁ.d to m fgr, unanticipated new
machines. S

The third direction for further work is to apply the tochnuuo of portth cgmpnlou to more complicated
and more powerful langusges. The technique d using e meching: 6t tode _generation sigorithm
and a machine description, even aside from portability; resulfs’ in''' Very “cleah and mddular code
generator. It would be interesting to see if this techniqus could reduce. the complexity of code
generators for lerge languages and whether: portabllity cauld stifl be abmm "Without detiroying the
efficiency of the objoct codo

10.

11.

12.

13.

14,

15.
16.
17.

18.

References

Ritchie, D. M., C Referance Manusl, Bell Laborsiories internal memor andum.
Snyder, A, C Reference Menusl, Bell Laborstories internel memorandum.

Richards.u.m A Tool !wcoa\puor antk‘MSyshmPrqrm Proc. $)CC
1969, pp. 557-566.

Strom,J..et.nl.,'Ih Problem of mmmm%mm

== A Proposed Solution,” Comm. ACM 1.8 (Aug. 1968) e 12-18, 19 (Sept. 1388) pp.

9-15.

Feldman, J and Gries, D, *Transiator Writing Systom. Comm. ACM 11.2 (Feb. 1968).
pp. 77-113.

Feldman, J A, “A Formal mewmmmwm-'
Compiler-Compiler,” Coram. ACM 9:1 (Jen, 1966),. pp. 3-9.

Englund, D. and Clark, E, "The CLIP Translstor,” Comm. ACM 4:1 (Jan. 1961), op. 19-22.

Halstead, M. H, Mu—mm Computer Programming, Spartan Books, w«mm&on
1962.

Richards, M, "The Portability of the BCPL Compiler,” Software Practice and E»whm
1:2 (1971), pp. 135-146.

Poole, P. C. and Waite, W. M, "Portability and Adsptability,” MVM Course on
Software Engineering, Springer-Verlag, Berlin 1973, pp. 183-277. -

Poole, P. C. and Waite, W. M., "Machine lndopnndm% Software,” Proc. ACM Second
Symposium on Opordm Systems Principles.

Brown, P. J, "Levels of nguago for Portable Software,” Comm. ACM 15:12 (Doc. 72),
pp. 1059-1062.

Stbley, RA, "Thc SLANG System,” Comm. ACM 4:1 (Jan. 1961), pp 75-84

Miller, P. L.,AutomheCnotoondACndoGommrm mm
M.LT. Project MAC Technical Ropoﬂ TR-85, 1971.

Aho,A.V and Johnson, S. C, "LR Parsing,” mw&z(m 1974),pp 99-
124

Coleman, S. S,, Poolo, P. C,, and Waite, W. M,, "The Mobile Pro;rmming Systom, M.ls.
Sofiware Pr-dm snd Experience 4: l (1974), pp. 5-23.

Wasilew, S. G.,ACompdtrWrKiu smmmwmm
Object smglunc. Ph.D. Thesis, Northwestern University, Evanston, Iiiinois 1971.

Johnson, S. C,, Bell Labontorm internsl document.

$ data cZ,copy

t4 . Sot 8cs Ssy 8er $ma 8st Shm >>8el
8 endcopy

$ break

8 program rihs,onl

8 timits ,18k,,1000

8 prmfl hs,rr,sny/bts
L) prmfl el,r/w,s/%e
8 file er,elr5l

$ file cs,clr,bi

$ data cz,copy

bt5 . 8er Scs >>8el

$ endcopy

$ endjob

-32 -

Appendix I - The H“hhw Jeseription

The forafat of the rschine description Is described in detel in ’ﬂ\.
frontthe HIS-6000 mathing stion ‘given in Appéhd
 writilg a'machine description which whl result iri the'd

The convention of writing syntactic alternatives on upanh lines is uud owhout
1. Definition Statements

The machine description beging with a series-of ‘definition statemerits. ‘Theee definition statements are
dncﬁbodmthouctiombdovhﬂnmmmchmm”f :_ t%mmmm o

1 1 Tha TYPENAHH Bt:tonunt | R
The TYPENAMES statomont dohm the names which are used in tho mm ducﬂption to roprount the

primitive C data types: character, integer, floating-point, and recision m-pdnt. Th. form of
the TYPENAMES shtmnt is o

<typenames_stmt>: typenames (<name_list>) ;
<name_Jist>: <nsme_Jist> , <name>
' <name>

The first name corresponds to the internal type number 0, ﬂ’b acorid With type 1, stc. Because the

intomnl type numbers are ﬂxod in the compiler, the m d‘ et should slways be (equivalent
to) - WA

[

typenames (char, int, fioat, double);

1.3 The IEGN&H’! Statement -

Tho REGNAMES statom.nt defines the names of the lbttm:t mehino rnmom thou ngtston are
assigned internal register numbers (used in REF.BASE, section 2.1. 1.2), stacting with ragister number 0, in
the order in which they appear in the REGNAMES statement. The form oF thé VES statement is

similar to that of the TYPENAMES statement; for example, tho W stqtomnt veed in the HIS-6000
implementation is

regnames (x0, x1, x2, x3, x4, x5; a, q, f)

In this example, all but the F register correspond dlucuy to ac(ual roguter(“un the HLS-GOOO Tegisters
X0 through X4 are the first five (out of eight) index registers, #¥¢ A ‘end Q' ste the two
accumulators. The F register is a fictitious floating-pomt accumulator- which in feamy corresponds to the
combiined A, Q, and E (expenent) registers. The Tact that the F vegistér confl

registers is specified in the CONFLICT ststement, desctibed befow. Only t
whith are to be used by the cade generator’in producing code to evilua
in the REGNAMES statement; registers used only for .mmm
or other scratch-calculetions-performed: within the code for a singl ¥ éhould not be included in the
REGNAMES - statemant. - For -example, on’the -HIS-6000;: lﬁ-u“m registérs’ asre not defined In the
REGNAMES statement: X7, which contains a pointer to the current shd; freme, X6, which contains a
pointer to the current argument list, and X5, which is used as a scratch v by ‘which asccess
characters. .

,,:.‘flw machine registers
ions ‘should be included

Mlicts ‘with the A and Q

ity address calculations,

-34 -

1.3 The MEMNAMES Statement

The MEMNAMES statement associstes names with the various clesses of Bmory uhm as spacified
by negative values of REF.BASE (smclion 2.1‘1.3). Thl fe@m of the ME ahalament ls-wimiter to. that
oftmmﬂwfwm v ‘Mmmaumm

implementation is

memnames (reg, auto, ext, stat, param, label, intlit, tloatiit, stringlit, in0, ixl, ix2, ix3, 4, is, igk

The first nine names rsfer to predefined memory reference classes WNSE Qi~d8 - wﬂ. the
remaining names refer to indirect references through the, ONM machine_registers -defined in. the
REGNAMES statement (REFBASE = -9,-10, ..). The first name “reg” is never Mﬂ mmy sa
placeholder. No name is provided for indirect references thraugh tbe ¥ puitec sinés W ¥ s
not used to hold pointers m,ummwmmdm swnitti nmmmm
positions of the other names in the list. . : ' : '

1.4 The SIZE ‘Statcmt

The SIZE statement defim the sizes of the primitive C m tymm terms of bykl- The form of the
SIZE statement is

<size_stmt>: size <size_def_Jist>;
<gize_def_Jist>: ‘ _Qm_,dqf_!ub <size_def>
<gize_def>: o ’<mtmf> (<type_Jist>)
<type_list>: <type_list> , <type>

- <type>

The integers specify sizes in bytes; the types are the names of primitive.C. suts types m“nﬁ.d in the
TYPENAMES statement) with the wrrupondinc size. FOr Cxalupb. the sm statemant used in the HIS-
6000 implementation is S T :

size 1(char)Alint ﬂoat).s(ddubia)'

All addresses computed by the compiler are in terms of byte addressing; byto addresses are converied to
word addresses for non-character operations by the macro definitions. For example, on the HIS-6000, if

the first element of an integer array begins at offset O in the stalic arsa; then m slaments of
the array are at offsets 4, 8, 12, 16, etc.

1.5 The ALIGN Statement

The ALIGN statoment defines the alignment factors of the primitive C data typos, these alignment fncton
are in bytes. The (byte) address of a variable with an alignment factor “n".must be zero modulo "n” for
example, on the HIS-5000, the (byte) address of an integer must be. a multiple of 4. An alignment fector
must be divisible by all smaller ahq,nmt factors; this allows the compiler 1o assign. addeassue ralative to

a base which satisfies the highest aj _resiriction. The mm&%m ig similer 4»
that of the SIZE statement; for sxample, the ALINGM usedd:in- the-HiS- Jmplameniation s :

align 1(char),alint flaat).&(doubh); : ‘
1.8 The CLASS Statement " ﬁ'

Pl e

The CLASS statement is an optional statement which aliows the implementer to define cflsm of nbstract
machine registers which are used in similsr ways; the register classes s0 defined can then be used in the

~

machine description as abbnmtiom for the corresponding hsh of rmhn. Thn form of the CLASS

_statement is

-35 -

<class_stmt>: class <class_def_Jist> ;

<class_def_list>: <class_def_list> , <class_def>
<class_def>

<class_def>: <pame> (<register_list>)

<register_Jist>: <register_list> , <register>
<register>

¢

The name is the name of the register class, the registers are the names of the abstract machine registers
(as specified in the REGNAMES statement) which make up the corresponding register class. The CLASS
statement used in the HIS-6000 implementation is

class x(x0,x1,x2,x3,x4), r{a,q)
This statement defines the class of index registers X and the class of general registers R.

1.7 The CONFLICT Statement

The CONFLICT statement is an optional statement which allows the implementer to specify abstract
machine registers which conflict in the actual implementation. The form of the CONFLICT statement is

<conflict_stmt>: conflict <conflict_def_Jist> ;

<conflict_def_list>: - <conflict_def_Jist> , <conflict_def>
<conflict_def>

<conflict_def>: (<register> , <register>)

tach register pair specifies twd abstract machine registers such that only one of the registers can be in
use at one time. The CONFLICT statement used in the HIS-6000 implementation is

conflict (a,f), (q,f)
which indicates that the F register contlicts with both the A and Q registers.
1.8 The SAVEAREASIZE Statement

The SAVEAREASIZE statement is used to specify the size of the save area which is reserved at the
beginning of each stack frame. The save srea is generally used for saving registers upon entry to a
function, for chaining stack frames together, and for holding other por-mvocatlon information. The form
of the SAVEAREASIZE statement is

saveareasize <integer> ;

The integer specifies the size (in bytes) of the save area. The save area used in the HIS-6000
implementation is 16 bytes (4 words) long. :

1.9 The POINTER Statement

The POINTER statement defines classes of pointers according to their resolution; these pointer classes
represent different implementations of pointers on the target machine. The resolution of a pointer
corresponds to the alignment factors of the objects to which it can refer; in particular, a pointer with a
resolution of "n" bytes can refer only to objects whose alignment factors are multiples of "n" bytes. The
primary use of pointer classes is on machines whose smallest addressable unit is larger than bytes; in this
case, two pointer classes are defined: one which can resolve only machine-addressable units and another
~ which can resolve individual bytes. By defining separate pointer classes, the implementer allows
computations involving pointers which are known to refer to machine-addressable units to be performed
in terms of machine-addressable units, and therefore more efficiently. The form of the POINTER
statement is

-36 -

<pointer_stmt>: pointer <pointer_def _Jist>;

<pointer_def_Jist>: <pointer_def_Jist> , <pointer_def> .
| <pointer _def>

<pointer_def>: <name> (<integer>)

The names define the names of the pointer classes, the integers are the resolutions of the corresponding
pointer classes. At least one and no. more than four pointer. clesses.mey: hdnﬂmt mm Mc
are referred to as PO, Pl.ﬂmﬂm%mmﬂ MM .

The POINTER statement used in the HIS-6000 omphmntaﬂon is
pointer p0(1), p1(4)
PO is the class of pointers to byte-aligned objects; Pl is the class of pointers to word-aligned objects.

Word pointers can be held and operated upon in the index rmmmmmw in
the general registers and mdurncted through by subroutine.

1.10 The OFFSETRANGE Statement

The OFFSETRANGE statement is an optional statement which defines, for sach pointer clues defined in the
POINTER statement, the range of offsets permitted in- MWM via such & peinter (I.. wsection
2.1.1.2). The form of the OFFSETRANGE statement is ‘ '

<offsetrange_stmt>: offsotra'nge <offset_dofJist> V.
<offset_def_Jist>: <offset _def_Jist> , <offsel. def>

: <offsel_def>
<offset_def>: wnfw_dm_nm> { do_bouﬂd> <tu_bouﬂd>)

where the lo_bounds and hu_bounds are optional mtegers Each offset_def specifies the rme of
sllowable offsets for a particular pointer class; this.range.is the set of integars. not dess. thee:lo_bound .
and not greater than hi_bound. If a bound is not umma.rmhmmhm

corresponding direction. If no range is specified for a.pointer-clins, Tl dely 2are:
any specified range must include zero.

1.11 The RETURNREG Statement

The RETURNREG statement spocmos in-which registers functions returning vaiuss of verious types return
those values. Registers must be specified for types INT and DOUBLE as well as for all pointer clesses
defined in the POINTER statement. The form of the RETURNREG statement is \ : T

. <returnreg_stmt>: returnreg <return_def_Jist> ;
<return_def_Jist>: “<return_def_Jist> , <return_def>
<return_def>
<return_def>: <register> (<type_list>)

The types may be names of primitive C data types as defined.in the TYRENAMES ststement or names of
pointer ‘Classes as defined in the POINTER statement; the corresponding. register is defined 0 be the
register in which functions returning valuas. of thoss types will. mmm m For suample,

the RETURNREG statement used in th- HIS-6000 implemeniation.is
returnreg. q(int.po,pl),‘ f{double);

It is advised that pomto:sofdlcluusboroturmdmth-mmmmnmnmtom
errors caused by mmatcm mmmmmmm :

’
#

~37-

1.12 The TYPE Statement

The TYPE statement defines which registers are 1o be used in the eveluation of expressions to hold
values of the various sbstract machine data types. The form of the TYPE statement is
<type_stmt>: type <type_def_jist> ;
<type_def_list>: <type_def_list> , <type_def>.
<type_def> T
<type_def>: <type> (<register_list>)

ine TYPENAM ‘ct-a‘tmnt or the name of a
pointer class as defined in the POINTER statement; the reghlers ‘sre the sbstrsct machine registers or

classes of abstract machine registers which %bo used to hoid valuss of the correspanding type. For
example, the TYPE statement usad in the HIS-8000 implomentation s’ ~ A ' ,

The type is the name of a primitive C data type as defined in the TYPENBA

type char(r),int(r),float(f),double(f),p0(r),p 1(x)

The registers specified in the TYPE ststement need not include ove) .wgggutor physicslly capable of
holding a particular type; only those registers which the néter desires to use in evaluating
sxpressions of.that type should be. inclded in the TYPE sistemant. In the HIS-6000 exsmple, only. the . -

index registéf{'NK) are spacified for the pointer cissi P. h, the ganesel registers (R) are
capable of holdig such pointers and, in fact, s general ragister. (the Q cagister).is used to hold. such o
pointer ‘when returned by ‘a function call; this was done in order to minimize unnecessary. use of the-

Gonersi registors which ary'relatively fow in number. o

2. The OPLOC Section

In the OPLOC section of the machine description, the AMOPs are defined in terms of the possible locstions
of their operands and the corresponding locations of their results. Each.definition consists .of, a list. of
triples called OPLOCs; an OPLOC specifies a perticular set of irst oprpod locations, secand operand
locations, and result locations. An OPLOC may aiso spécify thaf,on Or-more registers are clobbered by
the exscution of the code for an abstract machine instruction; this ir roan $he code generator that it may
be necessary to emit instructions to save the contents. of the siobbered registers before.emitting: the
abstract machine instruction. The forms of an OPLOC are B

<loc_expr>, <Ioc_px_pr> » <loc_expr>;

and

<loc_expr> , <loc_expr> , <loc_expr> <clobber> ;

where a clobber is a list of one or more register mms i

R

brackets. The focation expressions spacify locations for ih fitét ¢

respéctively. ‘A location expression specifies either s set-of ragisiers. or_a: wt of .mpmory reference
classes; these '&dts may be specified using perticular régisters or memory reference classes along with
the operations of union (T) and negation (~"). The syntax of a'location expression is- -

<loc_expr>: . | <ragister_pxpr>
» <memory_expr>
1
2
<qull> ‘
<ragister_pxpr>: © <register_expr> | Mthr,pipr>

~ <register_sxpr>

(<register_sxpr>)

. <register_name>
~<registor_class_name>

<memory_sxpr>: <memory_expr> | <memory_sxpr>
~ <memory_axpr>
(<memory_pxpr>)
<memory_ref_class_name>
M .

indirect

The negation operator *~* has precedence over the union operator . The location expressions "1" and
"2" may be used only for the location of a result; they specify that the result is placed in the first or
second operand location, respectively. Only the location expression for the sscond apersnd of » unary
AMOP may be null. mmmmvmmmmuamm classes; the
location expression “indirect” represents the set of di indirect memory refersnce. clunc.

The OPLOCs are associated with AMOPs mhediondnﬁdtbmwhieheom&tofomor ‘more AMOP labels
followed by one or more OPLOCs:

<loc_def>: <AMOP_Jist> <OPLOC Jist>
<AMOP_Jist>: <AMOP_jist> <AMOP_jabet>
| <AMOP_Jsbel>
<AMOP_jabel>: - <AMOP> ;
<0PLOC_Jist>: <OPLOC_Jist> <OPLOC>
<0PLOC>

Each AMOP in the list of AMOP labels is associated with the list of OPLOCs; each OPLOC in the list of

OPLOCs represents an acceptable set of opeundlnwﬂ locstions for sach of the AMOPs. For example,
the location definition

+d: ~d: *d: /d: {MSf;

used in the HIS-6000 machine description specifies that the AMOPs for doubh-prwsm ﬂoatms ~-point
addition, subtraction, muitiphication, snd division sl take their first opersnd in the F r”hhr. their second
operand in memory, snd place their rcsult in'the F register. Ancther exsmple s the Iocntiauwiniﬂoa

=< =3 Mag Mas
which specifies that the AMOPs left-shaﬂ-assxgnment and right-shift-assignment both talw thoir first

aperand in memory, their second operand in a general register, and place th-lr result in the other general
register. A third example is the location definition .

iz [i: gqMafa}
which specifies that the AMOPs for intager multiplication and division both take their first operand in the

Q register, their second operand in memory, place their result in the Q register, snd ch.f the contents
of the A register in the process. Note that the location definitions

..39»-

+: rMl;

and

) +it T.M,f,
are ni)t equivalent. The second definition allows lho codc mutor to omn an abstract machine
instruction which adds an integer in memory to an it ‘ WWW and plice ﬂ'ﬁm\m in the Q
register; the first definition requires that the result be pheod In%nﬁhr keining thc fﬁ'st operand.

N

P The OPLOC section of the machine description consists of a m 'd iocotiomdoﬂmtm which define
the AMOPs of the intermediate language. (A small number of AMOPs should not be defined in the OPLOC
kY section, of the machine descriptions.ihese: are iindicuted: wm&) M WW W "o moro
. ﬁ&now:nh@k&mﬁoﬂﬁf:hmm
: "

3. The Macro Seotion

The macro iochon of the machine description contains the .macro definitions for the AMOPs; these macro
definitions ¢xpand into the object-language statements needédido intarpiidt the eofrospondmg #oatéact
machine instructions. A macro definition consists of a list of ANIQP labiile followed by a list of chardéter
string constants. The list of AMOP labels spacify that sbstract diachine inktructions for thesa AMOPSs sre
to be emitted as macro calls which refer to this macro definition. The character strings make up the body
of the. macro definition; they are wrillen out in sequence as thevexpansion ©f 's dorresponding macro call.
The character strings may have eptional location prefines-wihich-test for scepacific:#bt of Jocations of the ,
operands and rasult; a character string with an sitachad dosetion:rieficie Iolutiud By the expafiion of the
macro call only if the. test- spegified hy the. locetion: prafiic sutcasdd: A tharbtliet string mey contiéin
embedded macro calls and references to the arguments of the macro call (see Appendix VI, section 4). ,
The macro.definition. for an AMOP. must: correspond. o the-Jozetien siefinition ¥8p AMeAIMOP in thit correct -
code must be generated for all mﬂmﬁom ammmwﬁmw tﬁo bcathn

definition,
The macro dofmmom can mtor to. the AMOP ond the omna#ruult leutm by usim tho fcllowin;,
abbreviations: .
" abbrevistion oxparion mnini |

0 %n(#0) ~ symbolic representation of operstion

ofF %n{s3,24) symbolic repressntstion of first operand.

*5 %05 ,06) - symbelicrepressietion-of secofic-Sperand

=R %n(n]1,82) symbolic representstion of resuit

»’0 #0 internal representation of aptution

»F L X T internal:repreventation-ol firet eperend

'S 5,96 internat ropresentation ot s o'&?md

*R - sle2 m.mmmmm
Recall that in the intermediate languagt nfﬁﬁon of ‘s abétract’ mtchiﬂo imtruction, the first

argument of the macro call is the AMOP opcodo and !ho following ur;umonts are REFs for the result, first

operand, and second operand (see section 2.1.1.2).' The macro "n" is the. implementer-defined NAME

macro which can return any convenient symbolic representation for an operation or operand/resuit
- location; it is assumed to be implemented as a C routm&,caltod ANAME (see Appendix VI, section 4).

An example of a simple macro definition is the ‘definition for inh@r addition used in the HIS-6000
machine description. The location definition is

+: r,M1;

and the macro definition is
b " ADsR aS"
This location/macro definition of the AMOP +’ expands to produce sssombly -language tht‘omnti such as

ADA - X (exterrel varisble"X)
ADQ 3DL (ierst™3")
ADA 0,2 (indirect through X2)

ADQ. 87 {an automatic or temporary)

A more complicated macro: definition is. used-for the. AMOR i’ (move:integer).. This macro difinition must ‘
be capable of ganerating code to move an integer betwsen s memory lotetion snd:a general: register or .
from one genersi register to. the other. Memmarmmmmmm&mm

thres cases register-to-memary, memory-to-register, and: mm

(r,.M): " ST«F "
(M,r): - o LDeR- eP™
{r,r): " LLR 3s"

The location prefixes consist of lwaﬁm\ expressions: for the first operand, second operand, and resuit.
The operand and result locstions: of a: particular: maere call are compared 16 Wlouﬂowmm in
the location perefix (comparisons: Maﬁmmwmwwm omper
succeed, the corresponding cheracter skiunmduhdmmm o thy rocafl.

The macro section of the machine: dnmphmmy alsod-ﬂwexpﬁciﬂy Mmm may be
keyword macros (see section 3.1:2) or- implemerter-defined macros: which: are: celled in- the: defirifions of
other macros. A named macro is defined by using the name of the mecro in place of an AMOP in the
label(s) preceding the body of the macro defintion. A single macro definition may have both AMOP and
macro._name- labels;. this. is- useful when:it is-dasired: that the defintion of ‘one abistr act machine: instruction
itself contain another abstract machine instruction since the "internal® names used to refer to the macro
- definitions of%u.mmmmmmtmmmm An- exsmple of o
keyword macro. definition in the:HIS-6000 mechine descripbiew-is thet for the:ONTRY mecro:

en: " SYMREF a@"

The argument to the ENTRY Macro is. an ascembler symhol as produced by the IDN-macro (see Apperwdix
1.

The macro section of the machine dvscnptm consists of the reserved word "mtcros"' foliowed by a
saquence of macro definitions. Macro definitions must be provided for most of the AMOPs of the
intermediate language (exceptions ere.indicaled.in Appendix 11) end for all of ths keyword macros of the
intermediate language which are not defined by C routines. Anmwammmmmt bo
defined mcthmmmmummﬁmdthmm S

8-
Appendix II - The Intitnudhk LWMO?S :

The operations of the abstract machine are represented in tho inicrmdiato langusge as three-address

instructions; the operators of these instructions, called ahajract mechine apesators (ANOPs), arm described .
in the tables below. For each AMOP is listed its de (in octal), its symbolic representation in the
machine description, the types of its operands and mgi. qnd»mducrlpuon of the basic operation.
involved. The type entry consists of a list of types for the.f second operand (if any), and
result of an AMOP, in that ordor- the types are taken from M d sbbrevistions:

c. character

i integer

f floating-point

d double~-precision ﬂoltmg—polnt

X any type

P any pointer

p0 class O pointer

pl class .1 pointer

p2 class 2 pointer

p3 class 3 pointer

| a location (the result of a jump)
The following notes are referenced in the AMOP tabies: S :

This AMOP shduld be defined only if the corresp onding pointer clssses are defined.

The definition of this AMOP is optionsl.
OPLOCsshouldnotbospocifhdformm _
This AMOP is used only in the tree ropnnnhﬁqngf_ "
generation phase: chhoddnotmmm_% hing description. _
- This AMOP causes a side-effect on_its:{firs MMmtbomwdm

therefore, sil OPLOCs for this AMOP must specify m - h location oQ the (first)
operand. . o

orw internal o the code

N s~
(I I |

-82-

0000 -ui i unery minus

0001 -ud dd unery minus

0002 ++bi gl - 5 pro-increment

Q003 ++ai i 5 post-increment

0004 ~-bi i 8 pre-decrement

0005 --ai i -] post-decrement

0006 .BNOT i, ‘ bitwise negation

0007 ! X,i 4 truth-value negation
0012 sw ish switch

0013 ++bc i 5 pre-increment

0014 ++ac (3] 5 post~increment

0015 --b¢ X 5 pre-decrement

0016 --ac C,i 5 post-decrement '
0017 &u0 %,p0 address of

0020 &ul xpl 1 address of

0021 &u2 x,p2 1 address of

0022 &u3 x,p3 1 address of

0023 s P 4 indirection

0024 «==0p0 pO,) 2 jump on null pointer
0025 ==0pl1 pl} 1,2 jump on null pointer
0026 weQp2 p2/j 1,2 jump on null pointer
0027 ==0p3 p3/ 1,2 jump onmufl pointer
0030 !=0p0 pO,} 2 " jump on non-null pointer
0031 !=0pl pl) 1,2 jump-on non-mull pointer
0032 !=0p2 p2) 1,2 jump on son-vull pointer
0033 1=0p3 p3,) 1.2

jump on non-nwll pointer

Conversion Abstract: Machine Operators

opcode symbol types notes basic operation
0040 ci ci " ' convert c to i
0041 .cf c,f convert c to f
0042 cd cd convertctod
0043 " .c i ~ convertitoc
0044 if if convertitof
0045 .id id convertitod
0046 .ip0 i,p0 " convert i to pO
0047 .ipl ipl 1 convert i to pl
0050 .ip2 i,p2 1 convert i to p2
0051 .ip3 i,p3 1 convert i to p3
0052 fc fc convert f 1o ¢
0053 fi f,i convert f to i
0054 .td fd _ convert f to d
0055 .dc dc convert d to ¢
0056 di dyi ‘ convertdtoi
0057 .df df “convert d to f
0060 .pOi poi - convert pOto i

0061 .pOpl pO,pl
0062 .pOp2 p0,p2
0063 .p0p3 p0,p3
0064 . pli pli
0065 .plp0 pl,po0
0066 .plp2 pl,p2
0067 .plp3 pl,p3
0070 - .p2i p2,i
0071 .p2p0 p2,p0
0072 .p2pl p2,pl
0073 .p2p3 p2,p3
0074 p3i p3,i
0075 .p3p0 p3,p0
0076 .p3pl - p3pl
0077 .p3p2 p3,p2

convert p0 to pl -
canvert p0-to p2
convert p0 to p3
convert pl to i

convert pl to p0
convert pl to p2

convert p2 to i
convert p2 to p0
convert p2 to pl .
convert p2 to p3
convert p3toi
convert p3 to p0
convert p3 to pl
convert p3 to p2

Pt b it b Gt Puud (b b ek Pumb Ged Pt Pwh ot b

convert pl top3 -

Binary Abstract Machine Operators

opcode symbol types noles basic operation

0100 «i isisl addition

0101 - syl 25 addition-assignment

0102 +«d ddd addition

0103 =+d ddd 25 addition-assignment

0104 - i subtraction

0105 = iyl 25 subtraction-assignment

0106 -d ddd subtraction ’

0107 =-d d,d,d 5 subtraction-assignment

0110 #i yhy multiplication

Olll =% iy 25 multiplication-assignment

0112 =«d dd,d muttiplication .

0113 =xd ddd 25 multiplication-assignment

0114 /i iy o division

0115 =i R 25 division-assignment

o116 /M ddd division -

0117 =/d ddd 25 division-essignment

0120 % iyhyi modylo _

0121 =% iyl 25 modulo-assignment

0122 <« i left-ghift

0123 =<« iyl 25 left-shift-assignment

0124 > Cigigd . right-shift s

0125 =>»> i - 25 right-shift-assignment.

0126 & iyl bitwise AND

0127 =& (AR 25 bitwise AND-assignment

0130 A byl ' , bitwise XOR .

0131 =A i 25 bitwise XOR-assignment

0132 OR iyl bitwise OR

0133 =0R iyl 25 bitwise OR-assignment

0134 && X,X,i 4 truth-value AND .

0135 .TVOR X, X0 4 truth-vatue OR

0136 -pOp0 pO,p0,i ‘pointer subtraction

0137 - X,X,X 4 assignment

0146 = +p0 p0,i,p0 increment pointer by

0147 +pl plipl 1 increment pointer by

0150 +p2 p2,i,p2 1 increment pointer by

0151 +p3 p3,i,p3 1 increment pointer by

0152 -p0 p0,i,p0 ‘ decrement pointer by

0153 -pl pljpl 1 decrement pointer by
0154 -p2 p2,i,p2 - 1 decrement pointer by -

0156 ~-p3 p3,i,p3 1 decrament pointer by

- 45 -

Abstract Machine Operators, continued

opcode symbol types notes Dbasic operation

0160 .cc c,c 3 move character

oi61 g iyl 3 mave integer

0162 ff f.f 3 move float

0163 .dd dd 3 move double

0164 . pOp0 p0,p0 3 move pointer p0
0165 .plpl plpl 13 move pointer pl
0166 .p2p2 p2,p2 13 move pointer p2
0167 .p3p3 p3,p3 13 move pointer p3
0171 ? X,X,X 4 conditional

0172 : X,X,X 4 conditional

0200 m=j il jump on equal

0201 tai ghyl jump on not equal
0202 <i ii,l jump on less than
0203 >i il jump on greater than
0204 <=j skl jump on less than or equal
0205 >=i iglyl jump on greater than or equal
0206 ==d dd,l . '
0207 I=d d,d,l

0210 <«d dd,

0211 >d dd,

0212 <=d d.d,

0213 >=d d,d,!

0214 ==p0 p0,p0,l
0215 1=p0 p0,p0,]
0216 <p0 p0,p0,l
0217 ° >p0 p0,p0,!
0220 <=p0 pO,p0,l
0221 >=p0 p0,p0,l

0222 ==pl piply 1,2
0223 t=pl pl,pl, 1,2
0224 <pl plpl) 1,2
0225 >pl plpl, 1,2
0226 <=pl plpl,l 1,2
0227 >=pl plpl,l 1,2
0230 ==p2 p2,p2, 1,2
0231 l=p2 p2,p2, 1,2
0232 <p2 p2,p2,| 1,2
0233 >p2 p2,p2,) 1,2
0234 <=p2 p2,p2) 1,2
0235 >=p2 p2,p2) 1,2
0236 ==p3 p3,p3,! 1,2
0237 !=p3 p3,p3,! 1,2
0240 <p3 p3,p3,! 1,2
0241 >p3 p3,p3,l 1,2
0242 <=p3 p3,p3,l 1,2

0243 >=p3 p3,p3,l 1,2

Abstn‘et Machine Operators, continued

'npcodo

0260
0261
0262
0263
0264
0265
0266
0267
0270
0271
0272
0273
0274
0275
0276
0277

symbol

++bp0
++ap0
--bp0
-_'po
++bpl
++apl
--bpi
--apl
++bp2
++ap2

. ~~bp2

~-~3p2
++bp3
++ap3
--bp3
-‘pa

types

p0,i,p0
p0,i,p0
p0,i,p0
p0,i,p0
plipl
pl,ipl
plipl
pl,ipl
P2,i,p2
p2,i,p2
p2,i,p2
p2,ip2
p3,i,p3

p3,i,p3 .

p3,p3
p3;

notes basic operation

. pre-increment by

post-increment by

pre~decrement by

post-decrement by
pre-increment by

post-increment by
pre-decrement by
post-decrement by
pre-increment by

post-increment by
pre-decrement by
post-decrement by

pre-increment by

post-incrament by
pre-decrement by
post-decrement by

-47 -
Appendix III - The Intermediate Language: Keyword Macros

The keyword macros of the intermediate language are described below in alphabetical order. Each
section is headed by the name of a macro and its calling sequence; following is a description of the
arguments and the intended function of the macro call.

1. ADCONn: ZAn(NAME) [n=0,1,2,3]

This is a set of macros, one for each possible pointer class. NAME is an object-language symbol
constructed from an identifier by the IDN macro. The expansion of an ADCONn macro should define a
pointer constant of pointer class "n" which points to the external variable or function with the given
name. This macro is used in the initialization of static and external pointers and arrays of pointers.

2. ALIGN: zZAL(N)

N is an integer specifying the CTYPE (an internal type specification) of an object for which the
appropriate alignment of the location counter must be made. The relevant CTYPEs are:

value ctype

char
int
float
double
-9 pointer

O hHWN

The expansion of the macro call should be the pseudo-operations needed (if any) to properly align the
location counter. This macro is used in the initialization of static and external variables.

3. CALL: 12CA(NARGS,ARGP,0,FBASE,FOFFSET)

The CALL macro generates a function call. NARGS is an integer specifying the number of arguments to
the function call; ARGP is an integer specifying the byte offset in the caller’s stack frame of the
arguments which have been so placed by previous instructions. FBASE and FOFFSET are integers which
together make up a REF specifying the location of the function being callod (it may be indirect through a
pointer in a register); these are passed as arguments 3 and 4 of the macro call so that they may be
referenced as #F in the macro definition.

4. CHAR: 1€

The CHAR macro produces a definition of a character constant whose value is the integer I; it is used in
the initialization of static and external characters and arrays of characters. When producing code for an
assembler which does not have a byte location counter (for example, the HIS-6000 assembler GMAP), the
characters produced by CHAR macro calls must be stored in a buffer until either enough are accumulated
to fill a machine word or a macro call other than CHAR is issued; in this case, all macros which may follow
a CHAR macro must first check to see if there are any characters in the buffer and if so, print the
appropriate statement and clear the buffer.

5. DOUBLE: 1D(I)

The DOUBLE macro produces a definition of a non-negative double-precision floating-point constant
whose C source representation is stored in the internal compiler table CSTORE at an offset specified by
the integer 1 (the compiler itself does not use any floating-point operations). This macro is used in the
initialization of static and external double-precision floating-point variables and arrays.

6. END: 1IEND()

The END macro marks the ond of the intermadiate language program. It may produce sn END stetement, if
neaded, or signal that sny processing associsted with the end of the program should be. mud. ,

7. ENTRY: 11EN(NAME)

NAME is an object language symbol constructed from an identifier by the IDN mecro. The expansion of
the ENTRY macro should define the symbol as sn entry point, that is, one which is defined-in the current
program hut accessible to other programs,

8. EPILOG: ‘lEP(FUNCNO,FRAmIZE)

The EPILOG macro produces the epilog code for a C function. The epilog code shauld restore the
environment of the calling function and return to that function. In the HIS-6000 implementstion, these
actions are performed by a subroutine. FUNCNO and FRAMESIZE are integers which spacify the internal
function number of the function and the size in byles of its stack frame, respectively. .In-the HIS-6000
implementation, these integers are used to define an assembly-isngusge symbol whose value is the size in

words of the stack frame; this symbol is uud by mmmwmmmmm :
the stack frame.

®. EQU: IEQ(NAME)

NAME. is an object language symbol constructed from an identifier by the IDN macre; it-is.to be doﬂmd s
having a value equal to tho current value of the location counter.

10. EXTRN: 1EX (NAME)

The EXTRN macro is similar to the ENTRY macro except that it defines the’ symboi fo be .an oxbréal
reference, that is, one which is used in the current program but essumed to be Mind n another
program.

11. FLOAT: 1F{)

The FLOAT macro produces a definition of a non-negative single-precision fioating-point constant; the
argument has the same interpreistion as that of the DOUBLE macro.

12. GOTO: 1GO (0,BASE,OFFSET)

The GOTO macro produces an unconditional jump to a location denoted in 'the source program by a label
constant or expression. BASE and OFFSET together meks up s REF which spacifies the terget Jocation of

the jump; these are passed.as arguments 1 and 2 of the macro cell 0 that they. wwm as #R
in the macro definition.

18. HEAD: IHD()

The HEAD macro marks the beginning of the intermediate language prngnm. It may produce header
statements, if needed, or signal that any initialization processing shouid be performed.

14. IDN: 12I(X)

The IDN macro shouid expond to the object language representation of the identifier whose C source
representation is stored in the internal compiler table CSTORE at an offset specified by the intager X.
The processing performed by this macro may include the truncation of long.names, the replacement -of the
underline character (which is allowed in C identifiers), and the insertion of specisl character(s) to avoid
conflicts between C identifiers and other object language symbols.

-49 -

15. INT: ZIND)

The INT macro produ(:ec_n doﬁnitidnbf an integer constant whose vaiue is opociﬁod by tho integer I. It
is used-in the initislization of stetic-and external varlables snd ervays sid ih & construction of ‘tables for -

16. LABCON: 1LC(N) |

17. LABDEF: 1L(N)

The LABDEF macro defines the location of internal lsbel number N
18. LN: ILN(N) |

The LN macro associates the line in the source program whose line number is specified by the integer N
with the current value of the location counter. This macro may optionslly produce a comment line in the

object program to aid in the reading of the object program, or it may Wtﬁm-numbcrsm to be
used in ponjunction with a debugging systm. o

16. LSWITCH: 1iLS(N,LBASE.LOFPSEYT.IBASE.IOPFSET)

The LSWITCH macro should generste code which' jumps actiording -to- ths velue of the integer whose
location is given by IBASE and IOFFSET (selected from the locations permitted by the OPLOC for the .sw
operation).. This- macro is immediately followed: by: N-(NW0) INT wacros (e ciisdt), which ‘sré immedistely
followed by N LABCON macros {the corresponding febels). -A search ehouid b 1ide: throx h'the case list;
if a match is found, s jump should: be mede'c the isbel delined By the cursespiohiing LASISON macro. ‘It
LBASE and LOFFSET. » 4§ fscmadin i i thiall i

20. NDOUBLE: 1IND(I)

The NDOUBLE macro is the same as the DOUBLE macro axcept- thet the value 6f the defined constant is
made negative. o : T el T e :

21. NFLOAT: INF{)

The NFLOAT macro is the same as the FLOAT macro except that the vsiue of the defined eomhnt is made
negative. : : S : :

22. PROLOG: 7P(FUNCNO,FUNCNAME)

The PROLOG macro produces the prolog code for & C function. FUNCNAME is an integer representing the
name of the function as it appears in the source progrem; its interpretation is the same as that of the
argument of the IDN macro. FUNCNO is an integer which specifies the internal function number of the
function; it may be used in conjunction with the EPILOG macro to asccess the size of the function’s stack
frame. The PROLOG macro should define the entry point name and produce the code necessary to save
the environment of the calling function and to set up the environment of the called function using the
information provided in the function call. In the HIS-6000 implementation, these actions are performed by
a subroutine. The PROLOG macro call appears in the intermediate language program immediately before
the first instruction of the corresponding function. ' ,

23. RETURN: IRTO

The RETURN macro produces ihe statements needed to return from a m to the calling function; in
- general, this macro will result in a transier to the EPILOG code. The returned valus of the fanction is

ioaded by preceding macro calls into the appropriate rnnhr - wmu Mﬂ\i m dﬂm of
the machine description. :

- 24. STATIC: 18T(N,S)

TheVSTATXC macro defines th‘ location of the static verisble whose internal static varisble number is N. S -
is the size of the static variable in bytes. Typically, this macro will diﬁni aﬁ mmb'y |W symbol .
by which the stahc varisble can be referenced.

286. STRGON. I8C(N)

The STRCON macro should generste a character pomtcr which points to the sirihg. constent whose

"internal string number is N The STROON mcro is used in the W!idtaﬂon cf static md external
variables. T

28. STRING:. 18RO

The STRING macro marks the place in the object program where the string. constants shou!d be dﬁﬁmd.
This macro is implemented ss a G royting’ mm M#Mﬂtﬂ Mviﬂ.

27. TSBWITCH: ITB(LOM!MF"IQMJGM;HH

The TSWITCH macro produces an indexed jump based on the velue of thes integer whode location is given -
by IBASE and IOFFSET (selected from the locations permilted by the OPLOC for the sw éiﬂ-aﬂbn). This
macro is immediately. followed by ® soquerce: of -HiI-LD+1 LADGON metras defining thy target Tabuts
corresponding to integer values: from L0 to HL: Values outside this renge silould resiit v Wk‘ﬁ
internal label defined by LBASE snd LOFFSET.

28. ZERO: 1Z(I)

The ZERO macro specifies the: definition of & block of storm iﬂiﬁMhmth‘m n bytes of tm '
.storago area is specified by the integer 1.

-

-51 -
Apponi_iix_ IV - The HIS-8000 Machine Description

The machine description used i in the HIS-6000 implementation is listed below. Much of its complexity is s
direct result of the fact that the HIS-6000 is not byto-tddrnnd. In tho macro definitions, the character
sequence *\n’ represents the newline chauctor

typenames (char,int,float

regnames (xO,xl,xZ,x3.x4.a,q.f); ' '
memnames (rog,auto.pxt,stat,plrm.labol,mtht ﬂoatm,strin;lct,mo.uxl,mz,m&hﬂl.lq);
size 1{char),4(int,fioat),8(double);

align 1{char),a(intfloat),8(double)

class x(x0,x1,x2,x3,x4), r{a,q)

conflict (a,f),(q,f)%

saveareasize 16;

pointer p0(1), p1(4); -

returnreg qint,p0,p1),f(double);

type char(r),int(r)float(f),double(f)pO(r),p1(x);

SwWe) - a,l[x4}
+p0: -p0: +i:-i:&:A: .OR: -pOpO <<; >»; rM1;
+ply M,M,x;
-pl: X1
=+i: =&: =A: =OR: . ' Ml
iz [i: ' o oM
+d: ~d: »d: /d: : £ M5
%: ' aMsiq} - T
=<<; m>>: o ' MagiMas -
&u: ' Mx;
' autoloxtlshtlstrh(mluw;
.BNOT: .ic: .ci: rul;
- -gis ==biz ¥
«f: .cd:.if: .id: - af;
fe: .de: Wfis di: : , tu
fd: : L
df: -ud: o ful;
.ip0: .p0i: . I H
M,
{ipl:.pOpl: , 5
M,x;
pli: plp0: ’ ' Xuls
M,r;
++bi: M,1;
++ai: --ai: ++bc: ++ac: :
-~bec: ——8c: o ' M,a{q}
| . Mala} -
++bp: --bp: _ ' C MM
++ap: --ap: : MMafq}
MMala}
MMx;
=nQ); 1=0; <0: >0: <=0: >=0: ritur;

==p: lmp; <p: >p; <wp: >mp: rh, MM

macros
sw: " TSX5
.Ciz “\\"
.c: '
(auto,,): " EAsR
(stat,): " EAsR
(ia,q): " STA
{iq,,a): " ~ STQ
LDA
(autolshtlindwoct,.)- v
*%if(%o(»'F), ADwR
- TSXS
(extistringlit,):
. LO#R
‘ sRRL
(rr): ” EAsR -
#*RRL
(r,.autolstatlmd‘lnctlstrmght)'
EAXS
(v, auto): EAsF
(rnstat): = EAWF
(rp,autojstat): “Xif(Xo(#'R),
A TSX4
(rostringlit): = - EAeF
_ - TSX4
(r ext): * oFLS
STef
oFRL
{qyia):
*%if(%o(»'R), ADA
TSX4
(a,iq):
“Xif(%o(s'R), ADQ
TSX4
Jis
(rnM)= " ST.F
(M,r): " LDsR
{r,,r) " LLR
ff: :
{(f,M): " FSTR
(M, " FLD
.dd: : '
(M) " DFST
(M,f): = DFLD
(rar): * LLR
(raM): * STeF
LOsR

(Myr): "

SRR

-82-

0,7\n"

- STAT\n"
ADWF %eole’RM\n,)
oFTOC” '

ST w"
27

27
%co(e’R)\n,)

ATOC"
- %eo{eRN\n,)

Qroc”

1

36"

AL I

plpl:
{%x):

(x,M): *

(Myx): *
(x,q): "
(Qux)e *
(M,,q): "
{q.M): "

pOpl:
(rpx): *

(Myx): "

plp0:
(x,r): *
(M,r): ©

.ip0:
(M,r): *
(r,r):

{ipl:
(rox): *
.pOi:
(M,r): °

(rur):

pli:
(x,r): ~

gd: "
df:

.cf: .cd: .if:

Sfis iz ™
fc: de: *

+j:
-is
%i:
fi: %"
+d0

-d: "
sd: *
Jjd: ©

=iy "

ad:

EAsR .

STZ
STeF
LDsR
EAQ
EAsR
LOQ
STQ

EAsR

_LD#R

EA#R
LD#R

ANeF

LD«R

EAsR

LDsR
"W\
EAsR
FLD
ﬂ\\-
L0g
LDE
FNO*
UFA

UFA

ANQ.

AD#R

SBaR

oIv
DFAD
DFSB

DFDV
ASsS

0,sFU"

=Q377,0L"

0,0FU"

0,s3"

oF*

0,0L
=35825,0U

=71825,0U"

=71825,0U -

=Q377,0L"

#S”
iy
#S"
«sS"
«S" .
aS"
aS”
«S"

>>:
Gintlit,):
(~intlit,):

<<;
Gintlit,): *
(~inthit): =

+pl: "

-pl:

-uis

-=bi: *

-ud: °
++bi: "

++ai:

-——ai: "
%)
o) ™

 wFRS

WFLS
XS

LD#R

STeR

LDsR
STeR
#FRS
oFLS

oFRS -
SRef

oFLS

LXL=] |
ADLsR '

QLs
sTQ

SBLeF

LC«R
LDsR
STeR

FNEG® -

AOS
LDsR

 ACS

LDA
LDQ

. STQ

STA

o5

RN LR LR L

LR TR

%o(#'S)"

Xo(w'S)"

o’sﬁ

' Q,.SL

LIAE

-84 -

++bp:
Gx): ™

Gor): ©

--bp:
(wx): *

(or) "™

++ap:
(ox): "
(»alq): *
(»a) "
Gq): " -
-~ap:
(o) *
(»alq): "
(o) "

Gq): "

.BNOT: *

&u:

- (ialig,r):
“%if(Xo(»'F),
(ia,q): "
{iqa): *
(autojstat,,r): "
%if(%o(w'F),

(ext|stringlit,r): "

() ™

&:"
=g
A

832

LD#R

STX5
LDA
LOQ
SBLQ
STQ

STA
ERsF

ADLaF
LLR
LLR
EAsR
ADLsR
EA#R
EA#R

ANsF
ANS»S

EReF

ERSeS
ORSaS

sF
Xo(e'S)/4,81
oF"

of

Xco(#’S)
ofF"

»F

-Xo(#’S)/4,81
oF"

%co(s’S)
of "

. oF

%o(w’S)/4,81
oF"

oF

oF\n"
%co(s’S)
sF"
%co(#’S)
oF"

of '
-%o(#'S)/4,8]
oF"

oF

sF\n"
%o(#’S)

oF”

Xco(#’S)

Xco(wFO\n\\"
36"

36"

%n{»3,0)
%eo(wF\n\\"
i

'F'

iy
oF"
«S"
oF"
#S"

.F-

<mp:

>-p: "

jc:
Gf):
(wr): ®

STAT

p: “Xidn(el)

e

rt: "

ep:
FS

go: "

TRA oR"

CMPafF .45
CMPuf o5

TNZ R
CMPsF wS

TZE 42
TNC oR"
‘CMPsF . a5
TZE 42
TRC R
CMPsF »§

TZE »R

TNC R
CMPafF oS

TRC R
DFCMP «0DO\n"
CMPsR ODL\N"
“%ajc(#0,82)"
SBLeF a8
«FRL 16"
GMAP" .

TRA ~ #0"
-'1- »

SYMDEF - #0"
SYMREF 0"
SYMREF .PRU.G..EPILG..TEW,SWT(:H
SYMREF .CTOA,CTOQ,ATOC,(TOC
EQU ** '
EQU *

TSX0 PROLG
ZERO FSe0"
"=V20/#1,16/0"
TSX1 oF
ZERO - #1/4,40"
TRA EPILG"
TRA EPLG
EQU vol/&"

cpq:
(auto,,): * - EAQ
(stat,): " EAQ
(ia,): ° LLR
(autolstatiindirect,):
Xif(%o(s'F), - ADQ
++bc:
(autojstat|indirect,,):
"Xcpa(0,0,0,#°F)
STQ
LDA
TSXS
ADA
ANA
oxta® DA
STA
~-=hc:
(autoistatlindirect,,):
"Xcpa(0,0,0,4°F)
STQ
LDA
TSX5
SBA
ANA
EAXS
TSX4 -
(oxt,): " LDA
. SBA .
STA
+4+3C:
(autojstat]indirect,):
"%cpq(0,0,0,°F)
: _ STQ
LDA
TSX5
EAXS
TSX4
(ext,): " LDA
LDQ
ADQ

STQ

0,7\n"
STAT\n"
36\n"

Xeo(#'F)\n,)\\"

.TEMP
.TEMP
CTOA
LAL
Qroc*t
oF

=01000,0U
of" ‘

-57-

s i

P
AL EM} o

DO AN YA AT, P AR T, g I T T R T T

-59 -
Appendix V - The HIS-86000 C Routine Maoro Definitions

The C routine macro definitions used in the HIS-6000 implementation are listed on the following pages. A
C routine macro definition is written as a C function returning 8 cheracter siring value. This character
string is “substituted” for the macro call and rescanned by the macro expander; thus, it may ‘contain
references to its arguments and embedded macro calls. Thie -formab parimiiess of the C routine are ARGC
and ARGV: ARGC is an integer specifying the number: et {eheratter-sining) erguments present in the
associated macro call; ARGV is an array of pointers to those arguments.

When the following routines were written, the formatted print routine PRINT was capable of producing
output only onto a file and not into a string in core; thus, where formatting is necessary, these routines
print their output directly and return the null string. Although there are dangers inherent in this practice,
in these cases the effect is the same as if the formatted string were returned and printed normally. The
character sequences *\t', "\n’, and "\\’ represent tab, newline, end becksiash, respectively.

“char stn{]
{I'nﬂ .cﬂ 'f' ﬂnf. .d. .M. I.l'
.‘.dl » Q'ﬂ'usr -..B“..u 1”-
‘bthor'.‘”nf"};
char (sff[]X)

oroMidn,estringmmndanameseausin,

other,aif};
int nfn 18,
lineno O,

mflag O,
packb{4],
packno; ,
char sain(argc,argv) int lrad cher sargv(}
{lineno=atoi(argv[0]) |
packf();
return{".N«0 QU)
}

char saequ(argc,argv) int arge; cher sergv(}
{packt(); '
return(“«0EQU %)
}
char saint(argc,argv) int arge; char sergv(}
{packf(); _
return{"\tDEC\t=0");
} ‘ .
char sachar(argc,argv) int argc; char sargv(}
{if (arge>0) packc(atou(ar;vm}));
return{™\\"); /t conceasl fo&lowmg mwhm */
} _
char safloat(argc,argv) int argc; char sargv(}
{packf(); |
if (argc>0) prmt("\tDEC\tm'.ntoKwMO]»s
raturn(™);
char sadouble(argc,ergv) int lnc; char sargv(}
{ _ .
packf();
if (argc>0)
{print("\tDEC\t"}
l}retwn(adbk(!erthO])));
return(™);

{mnwhum;«mmhmw”. :
asdcon,az. .

-61-

}
char sanegf(argc,argv) int argc; char sargv(}
{packf() : |

if (argc>0) print("\tDEC\t-Xm",atoi(argv[0])
return(™); '
}

char sanegd(argc,argv) infargc; char sargv[}

{

packf();

if (argc>0)
{print(*\tDEC\t-")
return(adbic(atoi(argv[0D)%

return(™)

}

char sastring(argc,argv) int argc; char sargv(}

fauto int if,lc,c;
auto char xcp;

le=O; /s location counter in STRING file ¢/
f=xopen(pname,fn_string, MREAD,BINARY);

while(1)
{packi();
c=cgote(f);
if(ceof(f)) break;
print(".S%d\tEQU\ts\n"lc)
Ic++;
- while(1)
{if (c=="8’)
{c=cgetc(f)
le++;
it (c=='0") c=’\0%
packc(c); :
}
else
{packelc);
i}f (') break;
cwcgetc(f);
lc++;
}
cclose(t);
return("\\")
}

char saend(argc,argv) int argc; char sargv[}

-62-

{packf();
return{"\tEND");
}

char sregnames[] {"XO".‘.'XI',’XZ","XS‘,'XA',"A",‘Q",*}; .
char taname(argc,lrzvl) int argc; char sargv(}
{auto int base,offset;

if (argc>1) offset=atoi(argv[1]) eise offset=0;

if (argc>0) base=atoi(argv[0]); else basew0;

if (mflag) cprint("ANAME(Xd,Xd)\n" base offset);

if (base>=0) retum(regnms{b.o}):

base = -base;

it (base >= c_indirect)
{prmt("%d,!d“,offut/l,bm-c_md&mct);
goto check;

else switch(base) {

case c_auto:
print("%d,7"offset/4);
goto check;

case c_extdef:
return('xl(ul)")-

case c_static:)

print(".STAT+%d",offset/4)
goto check;

case c_param:
print("Xd,6",0ffset/4);
goto check;

case c_Jabel:
print(”. L'ld',offsot);
break; .

case c_jnteger:
if (offset<0 || offset>32000) prmt('-id",oﬂsot);
else print("Xd,DL" offset);
break;

case c_float: :
print("=%s",adbic{offset))y
break;

case c_string:
print(".S%d" offset)
break;

return{™");

check:

if (offset¥X4) orror(GOZS,lmno)s
return(™)

}

(AR R R RS R AN LR LR LA S LA LI R RSN S EL RS S ERIIES
AALIGN - align location counter

=/ _
char saalign(argc,argv) int arge; char sargv[}
{ |
switch(atoi(argv[0])) {
case ct_double:

packf(). ,
return(“\tEVEN"™);
} .
roturn(®\\"%
}

AJC - emit conditional jump
s/ .
char sajc(argc,argv) int argc; char sargv(}
{auto i‘nt cond;
cond=atoi(argv[0])

switch(cond) {

case cc_pq0: return("\tTZE\ts1")

case cc_ne0: return{"\tTNZ\ts1");

case cc_JtO: return("\tTMI\tel1");

case cc_geQ: return{"\tTPL\tel"% .
case cc_gt0: - return("\tTZE\ts+2\n\tTPL\te1");
case cc_Je0: return("\tTZE\ts1\n\tTMI\te1™)
return(™™);

}

char tothcr(argc,argv) int argc; char sargv[}
{switch(atoi(argv[0])) {

case 5: return("Q");

case 6: return("A");

}
return{"BAD");
}

char saif(argc,argv) int argc; char sargv(}

{return(atoi(argv[ol)?'cl":"52');
}

/s PACK CHARACTERS INTO WORDS s/

"packe(i) int is

‘;f;m . . R S R - HER ’*':'3' -

A

-64 -

{

packb[packno++]=i;

if (packno>=4)
{print('\tVFD\tsMWM

wwmmxmmm

?ackno-o;

}

peckf()

\;lhilo(packno!-O) packe(O)

char saadcon(argc,argv) int arge; char ‘"Ml

{packf();
return("\tZERO\t«0");
}

char sazero(argc,argv) int arge; char sergv(}
{auto int ij; '

it (argc>0)
{i=atoi(argv[O])
while(packno && i) {packc(O)i--;}
Cjmiflsi =X 4 _
if (j>0) print("\IBSS\tXd\n",iXx
while(i-~)packe(O).

}
;lturn("\\");

char ssidn(argc,argv) int argc; char sergv(}

{auto char scpl,cp2;
static char n[7}
auto int ic;

. if (arge>0) S '
{cpl = &cstore[stoi{argv(0D}
cp2=n; -
for(im0si<6si++)
{c = scpley
it (c ==’) cm'y
tcp2++ -

}
'sz .‘l\o!
return{n);

}
return(™);

}
adblc(i)

{auto char *cpl,*cp2;
static char buf[30];
auto int c,flag;

flag=FALSE;
cpl = &cstore[i};
cp2 = &buf[0];

while(c = xcpl++)
{if (c =="F)
{flag=TRUE;
c ='D%

}
if (cp2 < &buf[27])
Cp2++ = ¢;

if (!flag)
{xcp2++ = D%
Cp2++ = 0%

*cp2++ = *\0%
return(&buf[0])
}

- 65 -

- 66 -
Appendix VI - Overall Desoription of the Cmpl-lor

The compiler consists of four major phases. First, the lexical analysis phase (C1) transforms the source
program into a string of lexical tokens such as identifiers, constants, and operators. Second, the syntactic
analysis phase (C2) parses the token string and produces a tree representation of each function
{procedure) defined in the source program. Third, the code generation phase (C3) transforms the trees
produced by the syntactic analysis phase into an intermediate language- program consisting of a sequence
of macro calls representing instructions of the particular abstract:machine defined by the implementer.
Finally, the macro expansion phase (C4) expands the macro calls, producing an object langusge program
as the output of the compiler. In addition, there is an error message editor (C5) which is invoked last in
order to format any error messages produced by the other phases. The phases of the compiler are
invoked in sequence by the control program (CC). The control program communicetes with the various
phases by passing as arguments to an invoked phase s set of character sirings representing file names
and an option list; the invoked phase returns a completion code which indicates whether or not any
serious or fatal errors occurred during the execution of that phase. The verious pheses communicate
with each other using intermediats files.

The lexical and syntax analysis phases may be run sequentisily as described above, or, where a system’s
program size restrictions permit, may be combined into a single phase, thus eiiminsting the use of an
intermediate file. This option is implemented through the use of compile-time conditionsls. The remsinder
of this chapter will assume that the two phases are separate. = o '

1. The Lexical Ana.lyds Phase

The lexical analyzer reads in the source program and breaks it into a string of tokens such ss identifiers,
constants, and operators. The lexical analyzer also interprets compile-time control lines which aliow one
to include source from other files and to define manifest constants. The lexical analyzer produces output
onto three intermediate files: the TOKEN file, which contains the string of tokens, the CSTORE file, which
contains the source representations of identifiers and floating-point constants, and the STRING file, which
contains character string constants. The TOKEN file is passed to the syntax analysis phase; the CSTORE
and STRING files are not used until macro expansion. In addition, the lexical analyzer may write error
messages in an internal form onto the ERROR file. A token is represented by a pair of integers called the
TYPE and the INDEX of the token. The syntax analyzer performs its analysis on the basis of the token
TYPE; thus most operators have a distinct TYPE, and there are separate TYPEs for identifiers, integer
constants, floating-point constants, and character string constants. The INDEX is used to distinguish
particular identifiers or constants; for example, the INDEX of an identifier is the index of the source
representation of the identifier in the array of characters written onto the CSTORE file.:

The main routine of the lexical analyzer consists of a loop which calls a routine GETTOK to return the
next token in the input stream and then writes the token onto the TOKEN file. This loop also contains
code to interpret compile-time control lines. GETTOK obtains input characters from a routine LEXGET
which contains the logic to switch the input between the primary source file and “included” files. Except
when processing character string constants, GETTOK translates the input characters using a translstion
table. On GCOS, this transiation maps lower case into upper case, tabs into blanks, and carriage returns
into newlines. This table would be changed when moving the compiler to s system using other than the
ASCII character set. GETTGK partitions the character set into the following character classes:

-67 -

1. letters

2. digits

3. apostrophe ()

4 quotation mark (")

5. newline

6. blank

7. period (.)

8. the escape character (\)

9. invalid characters

10. characters which are unambiguously single-

character operators (such as *{")
11. characters which may begin a multi-character
operator (such as "<’ which may begin <=")

GETTOK uses the character class of the current input character to determine its actions in analyzing the
input string.

2. The Syntax Analysis Phase

The syntax analyzer accepts as input the token string generated by the lexical analyzer and produces

output onto three intermediate files for the code generation phase: a tree representation of each function

defined in the source program is written onto the NODE file; a symbol table containing declarative

information about identifiers is written onto the SYMTAB file; and information regarding specified initial
values of variables is written onto the INIT file.

The main routine of the syntax analysis phase is a table-driven LALR(1)'parser. The tables are generated
by a parser-generator YACC, written by S. C. Johnson [18] The input to YACC is a BNF-like description
of the syntax of C, augmented by action routines which are to be invoked by the parser when particular
reductions are made. YACC analyzes the grammar and produces a set of tables written in C which are
then compiled into the syntax analysis phase.

The tables produced by YACC represent instructions to the parser to test the TYPE of the current input
token, to shift the current input token onto the stack, to perform a reduction and call an action routine, or
to report a syntax error. When a syntax error is discovered, the parser writes error messages onto the
ERROR file which give the current state of the parse. It then attempts to recover from the error so that
any additional syntax errors in the program can meaningfully be reported. The parser attempts a
recovery by popping states from the stack and/or skipping input tokens in various combinations. A
recovery attempt is considered successful it the next five input tokens are shifted without detecting a
new syntax error. If a recovery attempt is successful, error messages are written which describe the
recovéry actions taken and parsing is continued. If a successful recovery cannot be made within a limited
region of the input program, the parser ceases execution after writing an error message.

The following C program illustrates the compiler’s response to a syntax error, in this case unmatched
parentheses:

int ¢;

int f(file)

{if ({(c=getc(file) != 0) return(-1);
return{0);

}

The first error message, listed below, gives the state of the parse when the syntax error was discovered,
followed by a cursor symbol °_, followed by the next five input tokens. The next error message indicates
that the parser was able to recover from the error by skipping the next two input tokens. The resulting
program, aithough syntactically correct, is meaningless. Therefore, in order to avoid extraneous error

-68 -

messages, the code ganeuhon phese and the macro expansion phase are not executed aﬁor syntax
errors have been detected.

3: SYNTAX ERROR. PARSE SO FAR: th_d.f_llsb <funct|on del>
<block_head> IF (<e> _RETURN (-~ 1)
3: SKIPPED: RETURN (

The following program also contains a syntax error due to unmatched parentheses; however, since there
are no more right parentheses in the statement following the point. whlu the error is. dnhchd: the
parser recovers from the error by deleting the unfinished IF clause. .

int c;

int f(file)

{if ((c=gotcifile) == 0) cm-l
return{c);

}

3: SYNTAX ERROR. PARSE SO FAR: <ext_def_list> <function_dcl>
<block_head> IF (<e> _C = - 1 ;
3: DELETED: IF (<>

The followm; program is an example of a syntax error from mun parser could not recover within its
sllowed limits; thus, after skipping input tokens up to this limit, the parser gives up.

int c; . :

int f(file) . ' s
{if ((cmgetc(file) 1= 0) c = 1, , : '
else ¢ = ;. ‘ -

return{c) :

}

3: SYNTAX ERROR. PARSE SO FAR; th_dof_ltsb <funchon_dcl>
<block_head> IF (<8> _C = 1 ; ELSE
3: SKIPPED: C=1; :

- 4: 1GIVEUP :

8. The Code Generation Phase

The code generahon phase performs the following operations: (1) allocates storage for (determines the
run-time locations of) varisbles, (2) performs type checks on Oparands and inserts conversion operators
where necessary, (3) translates the tree representation of expressions into a more descriptive form with
AMOPs, (4) performs some machine-indepsndent aptimizations on expressions, (5) emits macra calis. to
define names which may be refersnced by other programs (ENTRY symbols) and to declare names which
are assumed to be defined in other programs (EXTRN symbois), (6) emits macro calls to define and
initialize variables, (7) emits macro calls to execute the control statements of esch function defined in the
source program, and (8) emits macro calls to evaluste expressions.

The code generation phase reads the NODE, SYMTAB, and INIT files produced by the syntax analysis
phase and writes an intermediate language program in the form of macro calls onto two intermediate files,
the MAC file and the HMAC file. The HMAC file contains the macro calls dofmmz ENTRY symbols and
EXTRN symbols which are produced last by the code generation phase but which, in some_systems, may
be required to appear at the beginning of the assembly language program. The MAC file contains the
remainder of tho mtqrmodiato hnguaga program,

The main routine of the code generation phm consists of a call to a routmo SALLOC, which sllocates run-

-69 -

time storage and emits macro calls to define and initialize variables, followed by a loop which reads in the
tree representation of a single C function from the NODE file and generates code (macro calls) for that
function, followed by a call to a routine SDEF which emits macro calls to define ENTRY and EXTRN
symbols. ' v

The generation of code for a C function begins with a call to a routine FHEAD with the name of the
function as an argument. FHEAD emits a PROLOG macro call which defines the entry point and produces
code to set up the proper run-time environment. FHEAD then allocates storage in the run-time stack
frame for the automatic variables of the function; storage is aliocated for automatic variables in order of
decreasing alignment requirement so that no space is wasted in the stack frame. The stack frame is
assumed to be aligned according to the strictest of the alignment requirements of the various C data
types (usually that of double-precision floating-point). A save area of the size specified in the machine
description is reserved at the beginning of the stack frame,

The call to FHEAD is followed by a call to the routine STMT to generate code for the compound statement
which is the body of the C function. The generation of code for the body of a C function occurs on two
levels, the statement level and the expression level. The generation of code for statements is handled by
the routine STMT which takes one argument, a pointer to a subtree representing a C statement. STMT is
actually a very short routine which makes recursive calls to itself for the branches of a STATEMENT_LIST
node and calls a larger routine ASTMT if the specified node is an actual statement (as opposed to a
statement list). The purpose of splitting code generation for statements into the two routines STMT and
ASTMT is to minimize the amount of stack space used while recursively descending the statement tree.

Following the call to STMT to generate code for the body of the C function, the size of the stack frame is
adjusted to be a multiple of the stack alignment and an EPILOG macro call is emitted. On the HIS-6000,
the EPILOG macro defines an assembly-language symbol whose value is the stack frame size; this symbol
is referred to by the code produced by the PROLOG macro which allocates the stack frame.

4. The Macro Expansion Phase

The macro expansion phase expands thé macro calls on the HMAC and MAC intermediate files using the
information on the CSTORE and STRING intermediate files and places the result of that expansion on the
output file. The macro expander is not a general-purpose macro processor; in particular, there are no
built-in macro calls for defining macros or for handling local or global variables. Furthermore, the total
number of characters (after any macro expansion) in the argument list of a macro call is limited to 100.
The maximum allowed depth of nested macro calls is 10.

The macro expander processes a stream of characters terminated by a NULL character. Within this
stream of characters, the characters %', *#’, and ’\’ have special significance. The *¥’ character indicates
the beginning of a macro call, which consists of the *¥', followed by the name of the macro, followed by a
(possibly null) list of character string arguments separated by commas and enclosed in parentheses. The
*#’ character is used within the body of a macro definition to refer to the arguments of the macro call; the
character sequences ’s#0° through 9’ refer to arguments O through 9, respectively. The '\’ character is
an escape character. The special interpretation of a character such as °%’, °#", °) or ;" is inhibited when
that character is preceded by a °\’. In addition, the character sequences °\t’, "\n", "\r’ are used to
represent tab, newline, and carriage-return, respectively. A '\’ character followed by a newliine character
results in both characters being ignored; thus a macro which expands to a backslash will swallow the
newline which followed the macro cail in the input file. (A macro call in the input file which expands to
the null string will leave a blank line in the compiler output; this is generally a sign that the implementer
has not completely specified the macro definition for an AMOP.) The backslash character itself is
represented by ’\\"

The normal operation of the macro expander consists of copying characters directiy from the input stream
to the output stream. When a "%’ is encountered, the name of the macro and the arguments of the macro
call are evaluated and collected in a buffer; this evaluation may itself involve the processing of embedded

-70 -

macro calls. The mput stream is then switched to the body of the macro dcfmmon and normsl processing
is resumed. When a "#” is encounterad, the argument number is read snd the input stream is switched to
the corresponding character string argument of the current macro call, which is stored in the sssociated
buffer. Normal processing is then resumed. The input stream operates in a stack-like manner in that
when the end of a macro definition or an argument string is reached, the, lnput stream is mtqmd to its
previous state. When end of file is reached on the HMAC l,lb,mo input stémam is wﬂchod to the MAC
tile; when end of file is reachod on the MAC file, macro expansion is hrmimhdi

There are three types of macros which are handled by the macro expand-f F’rst, there are the macros
representing three-address abstract machine instructions, which are. produced bj{ the code mntor
while processing expressions. These macros are defined only in the machine descripfion; the macro calls
are of a specisl form which directly specifies the internal number of the corresponding macro definition,
as assigned by GT. For example, the macro call X3 refers to macro definition number 3. Second, there
are the keyword macros which are produced by the code generator Mmhile processing function. definitions
and statements. These macros may be defined either in the machine description or by C routines; the
macro calls specify the macro names as given in Appond%x 1L Finally, there are the macros which are
created by the implementer and used within other macro. dafinitions. These mecros may be de either
in the m?mMmzmmwbycmnmmmocdkmfxﬁumomu ofined by the
implementer

A macro which is defined i in the machine description is specified as a list af one or more. character stnng
constants, possibly with associated location prefixes for conditional expansion. Such a macro definition is
implemented as a list of pointers to the cheracter string constants ng with associaled integers
representing the conditions specified in the location prefixes, if he lists are accessed through an
array MACDEF, produced by GT, which is. indexed by the infernal macro. o nition assigned by
GT to each macro definitien in the machine description. As. mentioned above, a mecro call representing a
three-address abstract machine instruction directly specifies the macro definition number, Other macros

defined in the machine description sre represented in a table produced. hy. GT which Mdn the. macro
names with the corresponding macro definition numbers.

Macros defined by C routines are. represented in a table provided by Ehp implementer which associates
the macro names with the corrssponding C functions. This table consists of an array FN of pointers to
the character strm; macro nms. an array FF oi pnm;ors 10 the. comumﬁm C functions, and an
implementer to specify the- C macro definitions in the moc?%m dngcnp!) and let El' construct BFN. N,
and FF; however, this was not done because of the lexical dmcuﬂm associated with inclu&ﬂg C source in
the machine description. ; _ _ , »

The macro expander is implemented as two levels of get-character routines. The lower level routine,
GETCI, returns the next character from the current mput source wtuch may be either the input file
(HMAC or ‘MAC intermediate file) or a character string in ‘memory. If it is a character string, it mey be
part of a definition of a macro specified in the machine dgscnphon, an af;umnt of the current macro call,
or the resuit returned by a C routine macro definifion. The current stale of the ir stream is kept in a
stack of structures called input control blocks {ICBs) GETCL. uses the fop 1CB on stack to.determine
the source of the next chanctor. The members of an ICB structure are l;sfdbofow with thair nmnim

-71 -

F a flag indicating the type of the current input source (the input file, a macro
definoq in the machine description, or a character string)

LOCP if the current input source is a macro defined in the machine description, this is a
pointer to the current position in the list containing the pointers to the character
strings which make up the macro definition

CcP if the current input source is not the input file, this is a pointer to the next
character in the current character string

ARGV[10] an array of pointers to the character string arguments of the current macro cail

BASE[3] the REF.BASEs of the result, the first operand, and the second operand of the
current macro call, used when computing conditional expansion

A NULL character indicates the end of a character string or end-of-file on an input file; thus if the current
input character is NULL, GETC1 updates the current state of the input stream by advancing LOCP or by
popping an ICB off the stack or by switching the input file from the HMAC to the MAC intermediate file.
GETC1 returns the NULL character only upon end-of-file on the MAC intermediate file.

The higher level get-character routine is MGET, which implements the '#’, *¥’, and °\’ conventions. MGET
begins by calling GETC1 to obtain a character. If the character returned is a backslash, then GETCI is
called again to obtain the second character of the escape sequence and the appropriate action is taken:
If the escape sequence is '\t’, "\n", or *\r’, then the character is taken to be tab, newline, or carriage
~return, respectively. If the second character is a newline, then it is ignored, and MGET returns the result

of a recursive call to itself. Otherwise, the second character is returned as the value of MGET (thus it is
protected from special interpretation). .

If the resulting character is not a ’# or a "%, then MGET returns that character directly. A %’ followed
by a digit results in pushing a new ICB onto the stack pointing to the appropriate character string
argument of the current macro call. A °#’ followed by °0", ’F’, °S", or 'R’ (see Appendix I, section 3) resuits
in a call to the C routine ANAME (which implements the NAME macro) with the appropriate arguments.
When a "%’ is encountered, the macro name is collected and the arguments are assembled into a 100-
character buffer. The macro name and the arguments are obtained by recursive calls to MGET so that
embedded macro calls are expanded; the result of expanding an embedded macro call may include commas
or right parentheses without interfering with the argument structure of the macro call being processed.
If the macro name is an integer, the correspondingly numbered macro definition from the machine
description is used; otherwise, the macro name is looked up in a hash table containing the names of all
defined macro names. If the macro is defined in the machine description, a new ICB is pushed onto the
stack with LOCP pointing to the beginning of the list of pointers to character strings which represents the
macro definition. Otherwise, if the macro is defined by a C routine, the C function is called and an ICB is
pushed onto the stack which points to the character string returned by that function; thus references to
arguments and embedded macro calls in the string returned by the C function are processed. MGET then
resumes normal operation by calling GETC1. Note that the effect of a call to an undefined macro is to
replace the macro call by the null string; no error messages are produced by the macro expander.

The main routine of the macro expander consists of initialization, inciuding the setting up of the hash
table, followed by a loop which calls MGET repeatedly and writes the returned character onto the output
file; this loop terminates when the returned character is NULL.

6. The Error Message Editor

The error message editor is invoked as the last phase of the compiler to read from the ERROR
intermediate file the error records written by the previous phases and to print error messages
corresponding to those error records. The error message editor allows variable data, such as identifier

TR

-72 -

names, to be included in the printed messages. In addition, error messages of arbitracy length can be
constructed from a sequence of error records; the error message editor sutomatically bresks long output
lines so that all output linps fit within a fixed page width.

An error record is a structure containing seven integers: an error number, a line number, and five
arguments. The error number selects a basic error message string which contains the fixed text of the
error message and optional indicstors for including variable data An indicator is a two-character
sequence beginning with a *X’; the character foliowing the ¥ dafines tha intecpratation af the varisble
data which will replace the indicator when the string is printed. The varisble data is specified by one or
more of the arguments in the error record. The arguments are assecisted. with the indicatars. from.left to
right; arguments are used as nesded according to the interpretations specified by the indicators. The
various indicators are listed below with their interpretations: '

Xd print the next argument es a decimal integer

%m print the string in the internsl compiler table CSTORE which begins at the index
speciﬁed by the next argument . :

%n print a string representing a node (operator) of the internal representation produced by
the syntax analysis phasa, as spacitied by the next srgument S

%q print a string represanting the tnmmd or nonterminal tyn\bd associated with the
parser state specified by the next argument _

%t print the source representation of the token whose TYPEqnd INDEX are specified by
the next two arguments » ‘

XX print a’¥

Only the arguments which are referenced by the basic error message string are specified when an error
record is written; the values of the remaining srguments in the record are undefined.

The line number field in the error record associates a line in the source. program with the error which .
produced a particular error record. If a line number is given (LINENO > 0), it is printed out on » new line,
followed by a colon, followed by the text specitied by the error record; ohherwise (LINENQ <= 0), the text
specified by the error record is printed on the current line. Thus an arror. message cpnsists of en initisl
error record containing a line number followed by zero or more error. records without line. numbars. In
this manner, an error message of arbitrary length can be consiructed. .For axsmple, the message giving .
‘the current state of the parse when a_syntax error has been discovared (see section 2) is censtructed
from the following basic error message strings: ‘ ‘

“SYNTAX ERROR. PARSE SO FAR: "

® %q" (for each state on the parser stack)
- (represents the input cursor)

" xt" (for each of the next S input tokens)

The syntax analysis phase can produce these error mé#sgges without. counting the symbolé in the

message or knowing their lengths because the error message editor takes care of breaking long output
lines. » '

In addition to selecting a basic error message string, an error number roprmﬁfs the severity level of
the corresponding error: : . :

error number severity

1000 - 1999 error
. 2000 - 3999 . serious error
4000 - 5999 fetslerror
6000 - 6999 ' compiler srror .
A fatal error or a compiler error will terminate the current phess, and no remaining phase (except the

error message editor) will be invoked; in addition, s compiler_error. message s automaticelly preceded by
the string . ’ AT N ,

"COMPILER ERROR" | R
A serious srror sliows the current phase to contmuoomutmbulil}rmw (sxcept the. srror

message editor) are skipped.

The error message editor writes its output onto the standard dutput wn wmgh is normally the user’s
terminal in a time-sharing system or a line printer in s batch system. dwever, when the ‘compiler s
" submitted as a batch job by a time-sharing user, this output is redirected onto an error listing file. This
is accomplished by passing the argument ">>8el” to the error message editor which indicates that output
to the standard output unit is to be appended onto filecode EL (the error listing file). Redirection of
standard input and output is a (not necessarily portabie) festure of the C run-time system, rather than of
the compiler itself. ‘ :

8. Invoking the Compiler Phases

The mechanisms for invoking & phase of the compiler, passing arguments to it, end returning a completion
code are operating system dependent. In general, the control program will be rewritten for each system
on which the compiler runs; on some systems, the control program may be replaced by a set of job
control cards (see Figure 1 on page 31). The source of the compiler phases need not be changed,
however; the operating system dependencies associsted with the invocation of a C program are isolated
in two run-time routines, the startup routine and the exit routine. The startup routine receives control
from the operating system, establishes the C run-time environment, and calis the C routine named ‘MAIN.
It is the responsibility of the stertup routine to tske the cherscter string srguments, which may be
provided by the operating system or written on a temporary file, and arrange them as an array of
character strings which is then passed as an argument to MAIN. The exit routine EXIT is called upon a
return from MAIN; it may also be called directly by a C program. The exit routine closes all open files
and returns control to the operating system. EXIT has one optionsl srgument, a return code, which it
communicates to the control program as a completion or sbort code or by writing it onto a temporary file.

On UNIX, a phase of the compiler is invoked by calling the system routine FORK, which crostes a new
process, followed by a call in the new process to the system routine EXECL, which overwrites the process
with the desired phase of the compiler and passes it a list of character strings as arguments. The old
process waits for the execution of the compiler phase to finish by calling the system routine WAIT, which
waits for the process to die and returns its completion code. ’ _

On GCOS, two methods are used to invoke a phase of the compiler from the control program, which runs
in time-sharing. The first method uses a routine SYSTEM, a C~callable interface to the system call CALLSS
which can invoke any time-sharing subsystem (program). The cheracter string arguments are passed in
the system teletype buffer (using the system call PSEUDO) so that to the invoked program it appears that
it was invoked by a command typed at command level with those. arguments. The completion code is
stored (using the system call CORFIL) in the first word of the core file, a ten word buffer provided by the
operating system for communication between a user’s subsystems. The disadvantage of running the
compiler phases in time-sharing is that the compiler phases, being large programs, can take a very large
elapsed time to run. Thus this method is used only for the error message editor which prints error
messages on the user’s terminal. ' , ‘

-74 -

The second method uses a routine TASK, a C-callable interface to the TASK system call, to submit &
program as a special, high-priority batch activity. The elapsed time for s TASK activity is. typically much
lower than for the same program run in time-sharing. The character siring argumants are. wrilten onto a
temporary file which is read by the startup routine when in'batch. The comigtibn code is handied as
follows: if there is no argument to EXIT or the argument is 0, EXIT tersinsies normelly and TASK will -
return a status code of 0. Otherwise, EXIT aborts with the complation code 8¢ the sbort code; the sbort
code is then returned in the status code by TASK.

The compiler phases cen also be invoked as normal GCOS batth activities by the sequence of control
cards shown in Figure 1.. When these cards are submitted, IDENT and USERID cards are inserted at the
beginning of the deck and the charscters 's’ and "X’ are replaced by the user’s identification and the basic
component of the source file name, respectively. Thus if the user is 'S’ and the source fiie is *B/TEST.C’,
the assembiy-language output will be written onto the fils "B/TEST.G' and the error messages will be -
written onto the fils "B/TEST.E. The generation of the conirol cards shd the submissicn of the batch job
is performed by a time-sharing progrem (command). As the turn-around time for a normal ‘bateh job can
be quite long, this version of the compiler is used only far thase pragrams which are 100 large 10 compile
using the other version of the compiler. R _ LT ' _

