MINIMIZING THE NAMING FACILITIES REQUIRING PROTECTION
IN A COMPUTING UTILITY

Richard Glenn Bratt

September 1975

The research reported here was sponsored in part by  Honeywell
Information Systems Inc., and in part by the Air Force
Information Systems Technology Applieations Offiice  (ISTAO), ' and
by the Advanced Research Projects Agency (ARPA) of the Department ,
of Defense under ARPA order No. 264t which was monitored by ISTAO
under contract No. F19628-74-C-0193. ’

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139




I would 1like to express my gratitude to my thesis
supervisor, Michael D. Schroeder, for his helpful suggestions
and guidance throughout the ‘conception and execution of this

thesis.

Thanks are also due manyVOthe? members of the Computer
Systems Research group at M.I.T.'s Project MAC for their helpful
comments and suggestions. In particular, I would like to oxtend
my thanks to Doug Wells and David Reed for their help in
isolating two prdgramming bugs in the ioitial implementation of

the design presented in this thesis.

I would also like to take this opportunity to thank my
girlfriend, Claire, for her kind help and gentle understanding

during the past months.

This research was perforned in bhe Computer Systems
Research Division of Project Mkc, an M I T.‘i Interdepartmental
Laboratory. | It was aponsored in part by Honeywell Information
Systems Inc., and in part by the Air Force Information Systems
Technology Applications Office (ISTAO), and by the Advanced
Research Projects Agency (ARPA) of the Department of Defense
under ARPA ordor ‘No. 2641 which was monitored by ISTAO under
contract No. F19628-74-C-0193.




MINIMIZING THE NAMING‘FACILITIES'REQUIRING PROTECTION
IN A COMPUTING UTILITY® L -

by
Richard Glenn Bratt

ABSTRACT

This thesis examines the various mechanisms for naming
the information objects stored imn a general-purpose computing
utility, and isolates a basic set of naming facilities that must
be protected to assure complete. control over ussr interaction and
that allow desired interactions among users. to occur:in a natural
way. Minimizing the protected naming facilities consistent with
the functional objective of controlled, but. natural, user
interaction contributes to defining a security kernel for a
general-purpose computing utility. . The security kernel 1is " that
complex of programs that must be eorrect if control on ' user
interaction is to be assured. T I T

The Multics system i3 used as a- test case, and its
segment naming mechanisms are redesigned to reduce the part that
must be protected as part of the supervisor.. : To show that :this
smaller protected naming facility can still support the complete
functionality of Multics, a test implementation of the.design is
performed. The new design is shown %o have a.significant impact
on the size and complexity of the Multics supervisor.

%*This report is based upon a thesis of the same title submitted
to the Department of Electrical Engineering, Massachusetts
Institute of Technology, on July 7, 1975 im. partial - fulfillment
of the requirements for the degree of Master of Science.

-3-



ACKNOWLEDGEMENTS
ABSTRACT

TABLE OF CONTENTS
LIST OF FIGURES

Chapter I1: Introduction

E| Brief Statement of the Problem and Result
2 Related Work

3 Background

4 Plan of Thesis

Chapter II: Name Space Management in a Computing Utility
Basic Informetion Storage and ?raﬁeettwu Model

Globsl. Machine~Oriented Nawes

Global User-Orissted Nawes

Local Maphine~Driented ﬂuﬁza

Local Descriptors

Local ﬂser-Orienteﬁ wumea

Summary

MR N
A G

‘-
L)
.
.

-
.
.

Chapter III: A nodeﬂ of the ﬁulties Syntmn
3.1 Storage System Model -
3.2 Information Protection N@ael
3.3 Address Space Model
3.4 acfcren@e !amm Space u@del

Chapter IV: ﬁedesign of the Saeurdty xzrmni S
o M Dependence on the aaf%reace Nane Hanager
4.2  Seurce of the Dependence :
4.3 Removal of the Dependence: '
'4.3.1  Overwiew of the Design
§.3.2 Details of the Design
4.4  Removal of Pathname Processing

X

b 4,1 Parameters to Ring Zero
4.4,.2 - Links
4.4.3 Internally Generated Pathnames
4.4.4° Error Conditions
4.5 Summary of the Design
Chapter V: Redesign of Non-kernel Functions

1 Reference Name Manager Design
2 Pathname Resolution
3 Interface Ceu@atibility

Chapter VI: Implementation
6.1 Plan. : '
6.2 Impact on System Conplexity
6.3 Impact on System Perfornaace'

-l

E

- ' i
NI OEWN

@ OINN LN AVIVIUNIWT 5 o EWW wwgmaaaa
= O NOOA VTWNHOONRNWWO R WS EE NOBWY BN

o Qo O
Qo O I



Chapter VII:

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:

Appendix F:
Appendix G:
Appendix H:
Appendix I:

T

Conclusion

Multics Known Segment Table

Proposed Known Segment Table

Proposed Address Space Manager Interface
Example

Size of Programs

Performance Data

Ring Zero Interface Complexity Data

The Address Space Manager Programs
Unimplemented Address 8pace Manager Functions

I.1 Reserved Switch
I.2 Copy Switch
I.3 Transparency Switches

BIBLIOGRAPHY

91

94
96
97
98
100
102
104
107
125
125
126
127

128



Figure

baoq:

List of Figures

Global Machine-Oriented Names
Global User-Oriented Names
Local Machine-Oriented Names
Local Descriptors

Local User-Oriented Names

Action of Initiate_ for Directories

Page

19
23
27
29
32
63



- dotroduction -
1.1 Brief Statement of the Problem and Resylt

This thesis investigates the elaaa.of:eomputing'utilit&
mechanisms’ that. deal with naming infovnat1§n=objeetsywithin a
‘computing utility. Our gbal is to Tundéré%and the various
functions played by name spaces in coutemﬁbbary ‘éomputiﬁg‘
utilities and to decide which -of these fuﬁctions mu;t be
protected to assure oomplete.cohtrol over user interaction. The
Multics system, which is a sophiaticated~aompuﬁing utility, will
be used to test the validity of our conclusions. (1) We will
find that Multics protects several mechanisms that ‘we elaim need
not be protected to assure conbnol-e?cnsusch'1nteraetion.~”To
substantiate our claim we will present a rgdasrgnvbf‘ﬂultics~that
allows these mechanisms to be unprotected without~saorifieing the
ability to control user interaction. - The pesultins reduction in
the amount of code,that must be protected to assure control over
user interaction contributes to defining a security kernel for

, Multies.

(1) The Multics system was developed as a prototype computing
utility by Honeywell Information Systems, Inc., '&nd M.I.T.'s
Project MAC. A complete bibliography of the Multics system may
be found in [M2]. -

-7-



1.2 Related Work

The Multics system [Ct1, C2, M2, 01, S3] is an example
of a sophisticated state«of-the-art computing utility,. As part
of a general investigation into how one goes about the task of
certifying the security of large systems, the Computer Systems
Research Division of Project MAC at M.I.T. 1is attempting to
produce a certifiably secure version of the Multics system, by
redesigning Multics to minimize the eollection of programs that
must be c¢arrect to assure tomplete control  over user
interactions. As a result, this collection of programs, the
Multics security kernel, has been steadily deereasing in size and
complexity. A recent masters thesis {Jt] describes how a Multics
security kernel that does not include a dynamic linking mechanism
was developed. This thesis reéortsfthe results of another effort

to reduce the size of the Multics security kernel.

1.3  Bagkaround

A computing utility is any computer system, or network
of intereonnected computing systemé, that provide general
computing services to a community of users. Among the most
important services provided by coﬁputing utilities are facilities
that allow users to share, store, retrieve, and process
information., To facilitate the manipulationvvand sharing of

stored information, computing utilities must support a multitude

-8~




of name spéces. . These name sSpaces, - which - maintain a
correspondence between a collection of‘names and the information
they denote, provide organization of the collections of

information processed in the system.

We find many name spaces at allv&ayelszof a computing
utility. The base computers on which & computing .utility runs
implicitly employ a name space that maps:awﬂanﬁof;integer\names
(actually a set of representations. of intadena%fcalled addressées
into a set of words of computer memory. Simtlafly;;direct access
mass storége devices such as magnetic disks-and drums define a

name space that mags-physical.atobhggdaddnéaééa%into=freedrds of
bits. At a higher level, most dQﬂpﬂ&enJutiiiﬁics support a name
space that allows:its users to denote files - dﬂj information by
character sthing names such as "thn's;fiie". aDétailed analysis:

of most systems reveals many other exambleégofeanme spaces.

We have stated. that‘ a computing tatilit.y -provides
information processing. .services to 33commuaityidf users. Since
we have not placed any restrictions;ubon éhe composition . of this
user community, we must assume that:these users harbor ill will
toward each other or toward the cempugingaﬁtilityfaitaelf. :This
ill will can manifest itself in any of three ﬁays;f~A malicious
user might attempt to use, modify,,oeapnevqnttpthepS"from using
or modifying information - in the.computingnutiliby. Even in a

computing utility shared by a non-malicious user community, one

-9-




user might  accidently compromise another user's information or

ceomputation,

Any general computing wtility must prevent such
uﬁdesirable interactions between its users. To this end it must
secure its . users :against unsuthoriged use, modification, or
denial of wuse of .the information' they process in the computing
utility. This requires that the’computing~utili£y implement an
authorization - mechanism that- allows - those user-information
interactions that are to be  permitted to ' be specified. The
information supplied to- the  system through this authorization
mechanism must then be used by an access control mechanism that
intercepts all wuser~information 4interactions and verifies that

they are authorized,

The presence of access authorization and control
mechanisms in a computing utility does not prima facie secure its
users from harmful, uncontrolled interactions with other users of
tée,‘computing utility. It hust ‘be established that these
protection mechanisms do indeed perform their intended task
without error. It further must be eStﬁblished' that these
information protection mechanisms cannot be subverted, damaged,
or .circumvented. = Only then may users of ﬁhevcémputing‘utility
process sensitive, irreplaceable, -or timely information with

reasconable freedom from fear for its security.

-10-




We  identify that subset of the mechanisms of a
computing utility which must be correct in- order' to guarantee
the security of the information contained in. the compﬁting»

utility as its seéurity kernel,

Clearly the task of establishing the correctness of the
security kernel of a computing utility. must  increase
monotonically with its size andvéomplexity. For this reason it
would be advantageous to know which computing utility“mechanismé
need be included ih the security kernel for iﬁtrinsic reasons. A
mechanism - has an intrinsic need to be inéludkd in the security
kernel of a computing system if and only if it ccan be used by one
computation to influence another . computation.  The access
authorization and control mechanisms of a computing utility are
the two most obvious examples of mechanismé.thét'muSt be included
in a security kernel. If a computing utility snépgrts a shared
name space for identifying stored informéiion, then this
mechanism, by virtue of its commonality, '&lsn- allows one
computation to influence anotherA and hence must be considered

part of the security kernel of thefeohputing-ntiiity;

Mechanisms that have novintrinsic need to be prbtected
often are included in the security kernel of a system., Common
reasons for incorporating a mechanism.in the securiﬁy.kernel of a
computing utility when it has no intrinsic need to be: protected

include the desire to protect the mechanism from damage, the

-11=




desire to minimisze cross doﬁain ealily, -and the¢ need to protect
the mechanism Beocause some-secarity kersel ‘méchanism happens to
depend wupon its corréect- operstion.. The: motivation behind
including a 'me@haaism in the seédurity ‘kernel of a computing
utility when $t B@s no security-related need to be protected must
be carefully anslyzed; as the inclusion of the mechanism in the
security kernel éontributes' to the complexity of the security
kernel. Removing the medhanism: from the. sedurity kernel would
have the advantage of ‘lessening: the ‘task ‘of establishing the
earreetnesa~of'ﬁhe~acduriby kernel.  .This: th&sis Wwill -evaluate
the need for*eaﬂhfaiwthc'ma}opwnamawapcaéa supported by a ‘typical
computing utility to be ineluded in fts:seécurity kernel. We will
use the knﬁwledgaf-tﬁws -goeumulated: to sfmplify the Multics

security kernel: - e Mo

144

In €hapter II1: we.;apresenif a ‘model . of. a computing
ubility.  This ‘model pays partieular ‘attention to those
mechanisma that are involved inm naming information stored in a
computing utility} We begin by defining~ a very simple
infcrmatian~sterage'aad;}proteetion‘ model.-; Through successive
e@hancement of this model we érrive at a model that we feel
represents the: e¢essence of nameaspacennanagéaéne>infafconteMporary
computing utility. As we add esch new nameAQpace to our model,

we consider .its: basic raison -d*&tre, the ’advantéges and

-12-~




disadvantages it provides over the previous “model, and most
importantly its impact upon which name’ spaces in theé model must

be protected as a part of the security kernei. =

Chapter III begins our case study of name space
management in Multics. We identify  the ‘major name spaces
maintained by Multics that deal with naming stored information

and establish a correspondencé betwesen these nameé spaces and the

name spaces of our model.  Having ~established this

correspondence, we attempt to varify’ tﬁﬁﬁ”fdﬁly the naming
functions identified in our model ' as ‘sécurity’ ‘sensitive are

implemented by “the,nultiesfsecubity keﬁneffw*Tﬁis”invéétigétiéﬁ

=

reveals that the Multics refererce nameé spite; a ‘name space used

in resolving inter-procedure ‘referéﬁQGSf”ié 1m§1edénted’1n'tﬁ€'
Multics security kernel although 1t-ﬁas ﬂ6*iﬁfb1ﬁs1é‘need‘“ib be
protected. (1) The reasons behind this flaw‘in the modularity of

the Multics system are investigated.,

In Chapter IV we develop a design  that removes

reference name management from the security ‘kernel of the Multics
system. In so doing, we also remove several Tunctions related

to the management of the Multics global naming hierarchy from the

Multics security kernel. The most nbtable of these are that

function which allows the security kernél to name segments by

(1) The research reported in this thesis is based upon the M.I.T.
Multics system of December 1974, Multics system 24.2.

-13-



hierarchy pathnames and that  funetion which allows multiple
paths in the Multics storage sysjem bierarghy to designate the
same object. In the course pf remcviggfthese-functiona from the
security kernel, our design drastiecally changes the Multics
security kernel inggpfgce._,iinaily,@nc,.diacggs .the - impact of

this design;upangpha gecurity. kerpel. .

Chapter V  discusses the implicatioess of our security
kernel design‘upeh,éode(runn$ns outaide of-the Multies  security
kernel, We diacusa, the .prineiples. imvolved in.designing a
reference name manager which runs:outside os;ihafnulties security
kernel. In the;@burseﬁ,ofi this. .presentation. we .. uneover an
important ,conaiﬁsryt;ogf in moving.amy . module out of the Multies
security  kernel. ;Spegifié&&ly; «Mylties  security  kernel
erCedure§ are ggaranﬁeed %0 . run . %o complefdon angce invoked.
This alldws them;to makgfassuno;ipn$%§ﬁatmqu&§;be invalid were
they to be executed in the interuptable environment outside of
the security kernel. Following this -discussion, we show how the
functions of  pathname resplution, Tg}ldw;tﬁ)r#&é»é‘system link
processing may be” 1mplemented,_outaide of . the Multics security
kernel. Finally, we . discuss the need for simulating the old

security kernel interface..
In Chapter VI we discuss. thengﬁﬁﬁltS‘ of a test

implementation of.the security kernel we have designed. This

test implementation allowed 'us to “measure of the impact of our

-1l




design upon the_complexity and performance of the Multics system.
We report this data along with a desoribtibni of our test

implementation.

We have included nine ﬁPPQndicés*7iﬁ' this thesis.
Appendix A details the structure of the data b&ééﬁfér the Multics.
24.2 address space manager and referenéé‘néme”maﬁaéer.‘ Appendix
B shows the impact of our design upon the strudture and content
of this data bése. Appéndii CVSummariies‘ﬁﬁeinéﬁ:5éddﬁess space
manager interface proposed in this thesis. In appendix D we
present an example of the use of this new interface. - Appendix E
summarizes the impact of this thesis upon the size of the Multies
security kernel. 1In appendix F we report the details and results
of our performance. comparison between Muitics'systém\zﬂ.z and our
test system. Appendix‘G*summarizes“the“eftebtfdféGﬁr thesis upon
the complexity of the Multics security kernel interface.
Appendix H presents the programs of our rédéaién&d‘address space
manager for the reader's perusal. Appendix I diséusses'several
functions supported by the Multics system.:24.2 ‘address space
manager that, fof the sake ofvsimplicity? were not considered in

the body of the thesis.

15~




In this chapter we will develop a model of a computing
utility. Qur emphasis will be upon the roles played by name
spaces in contemporary computing utilities., This model will be
developed by adding successive layers to -a central model of
information storage and protection. After we add each successive
mechanism or name space to this model, we will present a graphic
representation of the current state of the model. Each node‘in
these illustrations will represenﬁ a elass of  names. The name
space binding one group of names - -to another group of objects or
names will be represented by an undirected line. If a name space
must be protected to control user  interaction, then the 1line
representing it will be constructed from the symbol "+", If the
name space need not be protected it will be represented by a line

composed of the symbol ". ",

Some basic notion of information storage and protection
must be at the heart of any computing utility model. In our
model the basic vessel of information storage is a gegment. In

theory, we do not restrict the amount of information a segment

=16~




may contain. In practice, the amount of information a segment
may hold will be bounded by a cOﬁbination"of hardware and

software limitations.

Segments will also serve as our basic unit of
information proteetion. - We xrequibéf~'th§£“fﬁinjﬁﬁkinformatioﬁ
protection must apply uniformly to all ihforﬁatibﬁfstored within
a: segment. We will choosevan‘aceesa*'ebﬁtﬁoifiiiétﬁ‘(ACL) based
information protection - seheme “for our modéi. The basic
motivation behind this choice is ‘thét”“nulticéi';éur ‘test ‘case
system, uses an access contpélylist*prdﬁectiéﬁﬁﬁchéﬁé. |

We assume that an acéeSS*céntrdlfliSt is associated
with every segment. - This access  aontrol '1ist  ehcodes the
authority of each principal in the computing(utility to use db
modify the contents of the associated segment. (1) We will
further assume that the compwtingfufilityfsupﬁoﬁts“ﬁhe necessary
principal authentication and access autWorfzation mechanisms for
maintaining the contents of access ' control Iists., We require
that at some point in referencing any segment, its associated

access control list be used to m&diate' that ‘reference.

(1) We assume that the reader is familiar with sueh computer
Science concepts as access, capabilities,_dpmains,wprocessea, and
principals [S4, F1], RN T T A o ‘

-17 -



We will hame a segment and its acceps control 1list by a
name that is unigque within the system. This name, which we will
call a wunique ddentifier (UID), will be pompeet, fixed length,
and of high information density, -The mnique jideatdifier naming a
segment and d4ts -aecess contrel- liet will be assigned when the
segment is ecreated and may never be: changed. - Once assigned, a
unique identifier will be\validwﬁﬁﬂﬁall-miuea “3f we allowed a
unique identifier to be reused -‘after -the segment it names is
destroyed, tned.vthat identifier would not uniguely identify a
segment. It-wou;d be difficult, if not impossible, for a process
to distinguish beﬁweenwdifﬂenqut:sesngmba;@exiab&ng» at. mutually
exclusive pointa in time, named. by the same unique identifier.
(1) |

It ahou;d,be.noted that we have purposely excluded the
pqssibility of ‘having . more ﬁhga;gma;gm&aﬂgﬂiﬂnnﬁéfi&r bound to
the same:object. Tba~reason for th;agdaQtnm:ngsdwta.deuarmxne if
two segments are idgntigalﬂ, 1f we guarantee that no two unique
identifiers are bound to. the sane- objept, &henfﬂe can: decide if
two segments are identical by comparing their unique identifiers.
Lacking this guarantee, it is not. clear how a process could

decide if two segments were the same segment. (2)

(1) A discussion of the need for computing systems to ‘support
unique identifier pame spaces. may be feanﬁ in Fabrg [F1]

(2) By equal we mean the lisp concept of eq [M&]
-]18-~



Due to their compact size, unique identifiers are well:
suited to efficient implementation and nanipulation‘by cOmpUting
hardware. .We will assume, for the monen£,~ bhat*_aceeSs control
will operate during the translabienﬁ'ofﬂ;dniqne identifier to
object. Certainly this requires- that the anime spaces that
associate .unique idenbifiers with 6bjeebs andfﬁheir aSsoeiaﬁed
access control lists'be protected;‘vJOtherwiseaﬁzi'procQSS "could
circumvent the access control mechanksmsvoﬁﬁbneﬂsyStem”ﬁy causing
the wunique identifier associated with. any seégment to name an
arbitrary access control list or‘eq&tﬁalentiy,?ﬁaUSing the unique
identifier associated with any access control list to name an
arbitrary segment; - It is therefore neeausaryﬁth&t the security
kernel exercise complete control over t&e ’uniqueu identifier to
access control list and unique identifier to segment name spaces.
Since the security kernel must force these two name spaces to
correspond, we will‘trpat.them as a singleffant;ty; Figure 2~1 
illustrates this“prptected~ binding wm&pping;uniﬁueﬁidentifiers

into segments and their access control 1lists.

<UID> +++ <SEG/ACL>

Figure 2-1: Global Machine-briented Names

2.3 Global User Oriented Names

From the point 6f view of a human user, the unique

identifier name space which we have definedkfob naming segments

-19-



has four major inherent disadvantiages. The Tirst disadvantage is
that humans are poor at dealing with high information density
namges. Second, since unique identifiers must be assigned by the
system and not the haer, they can have no mnemonic significance,
Third, the bdinding or meaning of a unique identifier cannot be
changed. The final disadvantage in the wusage of unique
identifiers by humans is that it is Often convenient to allow
multiple names in a name space to denote the same object. In our
model we have precluded the possibility of -having two unique

identifiers name the same segment.

For these reasons, any viable computing utility must
support a user-oriented name space. Tdeally this mname space
should bind arbitrary length, yserﬁsubyliéﬂ_tharacter string
names to unique identifiers. In practice, some wupper bound is
often placed upon the size of usérﬁsupﬂiieﬂ nhames. In any
reasonable computing utility this restriction must not force
users to use difficult-to-remember non-mmemonic names. To
pﬁbmote and encourage information sharing, this name space
should be sharable by all processesAin the computing utility. If
this were not the case, then one user who wished to share a
segment with another user would ha§e ﬁo Eommunieate the wunique
identifier of that segment to the other user. A shared
user-oriented name space eases this communisation problem by
allowing users to identify sggmenta in  interpersonal

communication by human-oriented names.

=20~




A well known weakness,of-such~a-~stmpre; unstructured,
global name space, which results from ‘the nedd for a name space
to define a function, is that two users m#y"ﬁuﬁfiﬂame different
segments by thé' same name. ‘If',One: user nﬁﬁes ‘a segment
"square_root_program", then . no otherluSerimayﬂuSG thiS' name for
another segment. Perhapsrthe-mosbLaevereuhuﬁiSastation”df”this
problem is that a dser may not choose az name _for a segment

without knowledge of every name in the globalznaﬁe'sﬁace.(

Another cdnsequeneefnof the»wglobaléscbbe of the name
space we are defining is that it provides a path -of user
interaction. One user ~misht'.iatentionally ‘modify a name to
unique identifier binding that another userawns“fdepending upon.
This constitutes an‘uneentroiledlmalieioua<usgﬁ%&ﬂﬁéﬁaction since
it allows one process to cause ano&hor’pééaess*térrefehenag‘the-
wrong segment. This in turn may cause an unsuspecting process to
fail or compromise the .integrity or:'security of sensitive
information to which it has aceesa; It is: therefore apparent
thatvthe ability to change a global»ﬁsernorionted name space must

be regulated by the security kernél.

One simple adthofizatiéﬁ ééhehe a' compgting utility
could adopt for its‘globai»usér;ﬁfiénted hgme s§ace is to allow
only the principal who created a name binding to modify that
binding. Unfbrtunately, éven ‘suchf'a’ pbiﬁikive authorizatiﬁn
mechanism is an unwieldy éxtension-tb thé ﬁhs;rpéﬁﬁfed?hame spagé

we have défined. Such an eitension would requiré that every name

-21=-




binding in the name space have an associated principal name used
to authorize modifications of Sthat name bindfng. If the name
sSpace were sﬁruc&ured into meawingful dollections of name
bindings, then a more natural authorizat¥fon scheme based on
controlling a proeess' ability o modify any of a related

collection of name bindings could be empldyed:

Hierarchical name spaces, such -~ as the user-oriented
name spaces found in the Multies [B1, 01} and UNIX [R2]
time-sharing systems, provide a powerful and natural solution to
both the naming confliet and autherization - problems outlined
above. Since ‘mcct name  spaces found in eéontemporary computer
systems, such as bhewubiquitouc*'ﬁwauitv&l"'f&ié*systém’[HBJ, may
be described as degenerate fixcdudepﬁkwfnié?&reﬁies; our model

will support a hierarchical global usersoriented name space,

Bierarchical name spaces provide their users with a
powerful organizational mechanism. - This mechanism encourages
logically related name bindings to be collected in a single
directory or directory sub-tree af th«'hicrareﬁdcal name space.
For instance, each user could place name blndings he creates in
distinct sub«trees of the hierarchy. Naming conflicts within a
given directory are easily avoided by locally restructuring the
hlerarchlcal name space so that the conflicting name bindings
occur in differenb directories. The directory structure of a

hierarchical name 3pace can also serve as the basis for a simple,

-22~




flexible mechanism for controlling the modification of _the name
bindings in the hierarchical name space. The ability to use
and/or change the name bihdings’in'a‘directory can be specified
by an access control 1list on ‘that directbﬁy.i'Ahthorization
control may also be delegated by alldﬁing the access control
lists of a directory to specify which principal may modify the
access control lists of its sub-directories. 'Figube 2-2 extends
our model to include both human-oriented and machine-oriented
global name spaces.
USER ORIENTED  MACHINE ORIENTED
NAMES - NAMES -
CPATHNAME> +++++++444444 CUID> 4444 <SEG/ACL)

Figure 2-2: Global User-Oriented Names

2.4 Local Machine Qriented Names

At this point our : model _provides twoﬁ very powerful
mechanisms for namidg information. ~ One mgchanism allows any
segment in a computing utility to be denoted by a compact,
fixed-length, unique 1dentifieh. ‘,The other 'naming mechanism
allows segments to be named by arbitfary lengpq"Qharacter string
names indicating the positioh’of>a segqeﬁpyin a}ngming hierarchy.
In common to both of these‘meehqnisﬁs.is the fact that their
scope is global; they are shared by all usérs of‘”the computing
utility.

-23-




An. obvious implication of the scope of a unique
identifier is that it must be c#ﬂ&bke -af -w@gresem&ing as many
distinct aegm#ata‘ as the computiag utility could create
throughout its éutira life. Because the set of segments existing
at any one time will be a small subset of all segments that have
ever existed or will ever exist, our unique identifier name space
will be sparsely populated. For large systems with long
lifetimes, this unique jdentifier name space will also be quite
large. Economics demand that such large, sparse mappings be
stored in a compact form requiring more sophisticated accessing
methods than indexing by unique i&@ntifiar vglée;. This need for
sophisticated retrieval methods in conjupctiom  with the large
potential size of the unique identifier to segment mapping tables
suggests that this name 3space is difficuls to implement
efficiently. As a result, contemporary computing hardware
provides a name space for addressing segments that is much
smaller and denser than the globa1 uaiqﬁe‘ide$tifier name ‘space.
The increased é:ficiency of represantation and mapping of this
name space is achieved by "restridtiné the ‘scopé of the

machine-oriented segment identifiers.

The local 'machine-oriented‘haﬁé spaeé in our modei is
patterned after the Multics ﬁgkgggg ﬁgmggg name> space. Like
unique identifiers, segment nuﬁbers‘éfe compéét, fixed-length,
machine-oriented names. Unlike 'uniQQé 'idehtifiéhs, relati?ely

few segment numbers are supported (1) and segment numbers are

-2~




locally dense so that simple, efficient hardware translation
techniques can be used. Since Segments°ﬁillsbe identified to the
base level of the computing utility by segment number, we will

call a segment number name space an address space.

Theﬁe are many possible  choiees fob‘ the scope of
segment numbers. A cooperating ‘éolleétidh‘bf pbocesses could
- share a common segment number address space. Segment numbers
could be private to a process, shared by hli'dbmains'in that
process. Conversely, the scope of a'segment number could be a
domain. It is even possible tovimaginé alsisfem in which the
scope of a segment number is temporally restricted. The choice
of which of these or other posaiBIe'SchéMeéﬁfér‘iiﬁiting‘tﬁe‘
scope of segment numbers is appropriate for & given computing
utility depends upon both the hardware on which it must run and
the desired patterns of interaction within the coﬁputing utility.
The larger we allow the scope of a name space to be, the greater
the cost of tranglating names in that namé sp§cé. ‘Convérsely,
the smaller we make the scope of a name ‘spaCe;"the“fewer the

naming needs it can satisfy,

If we desire inter<domain communication to be
efficient, then it would be inappropriate to restrict the scope

of segment numbers to a domain. Were this done, segments could

(1) Multics supports a local, machine-oriented name space of
about four thousand segment numbers. -

-25-




only be named in inter~domain cemmunication by unique identifier
or, worse still, pathname. Since these names are not directly
usable by the base level hardware of the cemputing utility, they
wouid have to be mapped by the receiving domain into its segment

number address space before the segment named could beu
-referenced. By simllar reasoning, if inter«process comtunication
occurs with high frequency in a partioulaer computing wtility then
that computing wutility might choose to share a segment number

address space among. a group of cooperating processes.

The choice of the scope of segment numbers represents
an engineering 1trade-off. We must limit the scope of segment
numbers so that‘théy may be}egfieiqn&lz~impsemgnted in hardware.
Additionally, the smaller the scope of a segment number the less
its need to be protected. If an addreas - apaee5,is local to a
protection domain, then it may be freely manipulated by that
domain without compromising security. 1In  opposition to the~
efficiency considgrations that weigh in favor of reducing the
scope of segment numbers is the desire .to nakeu'the - gcope of a
segmentv number . as large as possible so as to make communication
between different computer systems, processes, domains, and
moments in time as efficient .as possible. The desired
characteriéties and resourees_availablg to each computing utility
must be careful;y evaluated to determine the largest group of
interacting objéets that can share an address space with;ut

making the address space unacceptably large.

26~




Routine communication between the@\senurityt kerﬁel
domain and other protection doﬁains in a computing utility should
probably, for performance and modukar-prngrémming reasons, be
performed by using segment numbers to denote segments. This
requires that the ability to~manipulatgﬂtne-segmént number name
space we have just defined be controlled: by the security kernel.
This need for the security kérnelxto.@ontralfthévmanibulation of
an address space would not arise if address spaces did not span
protection domains. The reader should take note of the fact that
since segment numbers do not have global scdpe, our global
user-oriented name space canpot bévinploaanxed“by»,binding names
to segment numbers,  Figure 2-3 extendafour*modelﬁto include the:
protected binding of segment numbersnte~segnents?and their access
control lists. We also 1ncludea.aw proteesen3Qb1nding between
segment numbers ahd unique identifiers. This binding allows the

identity of a segment named by a segment. number to be

established.
USER ORIENTED  MACHINE ORIENTED
NAMES . - - . NAMES '~
PER-SYSTEM CPATHNAME> +++++4¢4+4++ <UID> +++ <SEG/ACL>
: + +
. ‘ R +
PER-ADDRESS SPACE . <SEGNO>
Figure 2-3: Local Machine-Oriented Names

-27-




Economics require that we refine the segment number to
access control list and- segment stranslations - depicted by our
model. These tremslations must be perforimed uwpoh every refetrence
to a segment. It 4is thus essential that they be efficiently
implemented. Im light of current ocosmputing technology, these
translations must be performed in hardware 1if we desire our

computing utility to be economically Teasible.

Contemporary computing hardware supports neither the
ability to address arbitrary amounts of. stérage nor the ability.'
to perform the necessary access coatyol 1ist - search - upon every
reference to a segment. To solve these prodbiems one frequently
finds two high-speﬁd, hardware look«agside memories aiding the
processors that implement a computing utility. One associative
memory maps a segment number and domain» identifier into a
hardware interpretable representationﬂofkthe domain's access to
the segment specified by that segment numﬁéﬁ;‘ We will call the
entries in this associative memory protectios descriptors (PDS).
The other associative memory maps a segment  number into an
addressing descriptor (ADS) that allows the hafdware'to address

the representation of a segment,

The processors we have described look up the address of

a segment in théir-addressing descriptor associative memory and

-28-




validate their authority to reference the segment with respect to
the appropriate protection descriptor found in their protection
descriptor associative memory. When one of these‘descriptors is
not found in its associative memory, avhardﬁare fault will be
recognized. At this point software may intervene and take the
appropriate steps to load the necessary descriptors and restart

the faulted program,

Clearly the security - kernel . must control the
manipulation of the protectibn, descriptor and addressing
descriptor name spaces. This is negessary since there exists a
one-to-one correspondence between addressaing descriptors and
protection descriptors which must be maintained to  preserve the
integrity of the system's access control mechanisms. Figure 2-l
refines our previous model by supplanting the protected segment
number to segment and access control 1list mapping by the four

protected mappings described above.

USER ORIENTED MACHINE ORIENTED

NAMES -NAMES
PER-SYSTEM <PATHNAME> ++++++ <UID> +++++++ <SEG/ACL>
+ + +
+- L + +
PER-ADDRESS SPACE <SEGNO> + <ADS> + +
+ +
+ +
PER-DOMAIN SPDS> ++t+t+4+++4+4+++

Figure 2-4: Local Desecriptors

-29-




We have seen that efficiency comsiderations require our
model to support a limited-soope, machine-oriented name space.
It is only natursl to consider whether there would be any
advantages in our model alsc swupporting a user-oriented name

space of limited scope. The answer is, quite emphatically, vyes.

Like the segment rumber name space we have defined, a
useriorieﬁted name space of local scope would be easier and
faster to sedrch than its global counterpart. But more
important, it would provide a private name space that could be
manipulated arbitrarily without worrying about interactions with
processes outside of the scope of the name space. This latter

ability is necessary in providing modular programming facilities.

It 1is clear that a program should not code into itself
the unique idenﬁifier or even the pathname of another program,
such as a square root program, thﬁﬁ it wishes to call. This
premature binding between modules would require that the first
program be changed and recompiled if a new and better square root
program was added to the  computing utility. The caller of a
square root program does not, in general, wish to be bound to a
particular square root program. If the choice of which routine a
procedure is to call can be delayed until the cail is made, then

we gain much flexibility.

-30-




We call a name that one program. uses to refer to
another program -a reference m»[01]»«1f~-i‘tsmea'ning is only
defined in relation to a local neme space. Such a local
user-oriented name space is called a refenenOeiname:spaoe. One
way to implement a space of reference names is to maintain a list
of reference name to segment associations to1]. Another
mechanism for realizing a referenoe name space, found in many
contemporary computer systems [J1 11], involves searching an
ordered_ list of specified.dinedtonies,woailed=searoh'nules; to
resolve inter-program references. (keference nanes;provide a very
useful mechanism for combining separately oonoeived subsystems
and testing new subsystems all of whose components have yet to be
written by allowing reference name to segnent binding to be
defered until the components of a suhaystem-‘ere,‘combined for

execution.

In our model, each domain will have a'priveterreference
name space. This minimizes the problem of naming confiicts and
allows each protection domain to operate without regard to the
reference names used in other domains. A further advantage of\
per-domain reference names is that they need not be explicitly
protected or controlled by the security kernel Since reference
names are private to a protection domain, each domain may freely
manipulate its own reference name spaoe.' All that is required is
that the reference names of each protection domain be stored in a
segment accessible to only that proteotion domain.} If referenoe

names spanned protection domains, it would be necessary for a

-31-



security kernel mechanism to control the manipuiation of
reference names to prevent one domain from exerting uncontrolled
influence over another domain through the manipulation of
reference names. ’Figure 2-5 shows the relationship of the
unprotected reference name space %o the other name spaces

deseribed so far.

USER ORIENTED  MACHINE ORIENTED

NAMES - "NAMES
PER-SYSTEM SPATHRAME> ++++++ <UIDD> +4+4++++ <SEG/ACL>
+ + +
» > : T + +
PER-ADDRESS SPACE <SEGNO> + <ADS> + +
. . + +
. -+ ) -+
PER-DOMAIN <REFERENCE NAME> .. ++ <PDB> ++4++4+4+

Figure 2-5: Local User-Oriented Names

2.1 Summary

In this chapter we’have investigated%,the ‘basic roles
. played by name spaces in a t?bical coqpqting;utility. Of the
eight name spaces we have described, oniy the per-domain .
reference name space méy be excluded from the secyrity kernel
without jeopardizing the ability‘ of the computiqg utility to
control user intéractions. fhe cbitical difference between the
reference nahe space, which can be uncontfolled, and the other

seven name spaces we have considered, which must be controlled,

-32~




is that the reference name space 1is not common to multiple
protection environments. Since it cannot be used by one
protection domain to exert influence over another protection

domain, it need not be implemented in the security kernel.

-33-



Before approaching the spcpif@c problem of defining a
security kernel for the Multics system éhat does not support
unnecessary name space management mechanisms, we will present a
detailed model of the Multics system and #how its correspondence
with our general computing utility model. Our Multics model
contains four components: a storage system model, an information
protection model, an address space model, and a reference name
model. These models will contain sufficient detail to allow the
reader who is unfamiliar with the implementation of Multics to

comprehend the important details of the design we will present.

3.1 Storage System Model

The Multics storage system (1) manages two distinectly
different types of objects calleg(‘seéuents -and directories.
These objects are organized into a single system-wide tree
Structure that 1is known as the storége system hierarchy. This
hierarchy implements the system's ' human-oriented global name
space. The 1internal nodes of this hierarchy are‘directory

objects. Each directory object is itself composed of a named

(1) A more complete description of the Multics storage system
than will be presented in this section may be found in Organick
[01] and Bensoussan [B1].

-34-



collection of entries, one for>eabh‘iﬁh%diatéli’inféﬁior segment
or directory in the hierarchy and one ‘for-'each 1ink in the
directory. Links are psuedo-objects in the hierarchy that allow
an object to.appear to reside at seve?ﬂl~disﬁ1nc€"’nodeé in the
hierarchy. To accomplish this,'-the”aiﬁectofy‘entry”df a link
contains the pathname of another obféét’ﬁf'fidk’id the  hierarchy
that is to be considered as the target object of the link. The
directory entry of a segment or.diﬁtéfﬁﬁY‘?6Ejé¢t”fC6ntains many
important attributes of the object. &mdﬁg“thtﬁe”ﬁ%thibhtes are:
a system-wide unique identifier,’a-bolTeeﬁion ‘6f ‘human-readable
names for the ‘objeét' that are unique Within ‘the directory, an
access control list, and a file map for the “objeet that allows

the system to access the objeef.

Each directory in the Multics hierarchy is stored in a
separate segment. Many advantages aéérhé”*?¥%ﬁ, supporting a
hierarchical name. apace*fwhbse57direétor1%s"a?efiﬁpleméntéd“ih’
separate segments. These advantages 'aré closely interrelated.
First, since each directory contain%fohly*aﬁénili‘fraétion of the
total. name bindings represented by the hiebéibhy, it may be
searched much more quickly than a corresponding” single segment
implementation of  the whole hierarchy. 'Fihdiﬁg"a name in a
hierarchically organized name space requires searching only those
directories defined by the prefixes of thé name. In general,
this will represent a substantial““éavingé*[Inf search time.

Second, the component names in a direetory may be viewed as’

-35-




uniform, unstructured names. Finally, the names in a directory

can be relatively small and yet still be unigue.

Aa ueAhéxe mentioned, a praotical egmpuhing utility
cannot assume. that all users will be benevalent with respect to
their manipulation of a .global, shared bhame space. We must
assume that aoma‘uagnw through malice or agqoident, will attempt
to delete or modify name bindings that other users are depending
upon. If this glohal name space is to be useful, théa users must
be able to control or at laash,knouguhagm&x;change the name
bindings that are of interest to them. ”Canﬁpailing who may read
thé name bindings in a partioulaifdiree;pryvof a shared name

space is also desirable since the names in - a . directory might

themselves constitute sensitive information.

Since segments are the basie unii of access control in
Multics, it is only natural to contrel the. mapipulation. of the
names in a directory by the Multies segment access control
mechanisms., Inié approach is quite attraetive since it allows
the name bindings in a name spgée« to be .protected without
introducing any new, special purpose access. comptrol mechanisms.
The access contrplﬁlist of a directory specifies which princibals
may_,read and write itg representation. In this way, the normal
access control and authorization.:«mqghanisns ~ of Multics
automatically provide a certain degree of ocontrol over the

manipulation of names in its hierarchical name space. Multics

-36-



actually provides finer accesé .control on directories than is
afforded by its hardware enforced .access control mechanism by
encapsulating directories and a set of system-supplied procedures
which manipulate direetorieg in a pboteated subsystemr[81]. The
procedures in this protected subsystem, whioh~nn§t be a part of
the security kernel, exercise control over the use and

manipulation of the name bindings‘in a direetony.

If we assume that the nootvdirectory-of the hierarchy
is its own parent, then every objact'in the Multics storage
system has a unique parent directory. Furthermore, since the
hierarchy has the structure of a tree and names of directory
entries are unique»within that directory, we can specify an
arbitrary object in the hierarchy by'an~ondered list of entry
names. Such a specification is called a- pathname. - The first
component of a pathname names an entry within the rqot directory,
and each additional name specifies an entry within the directory
specified by the list of names that preceeded it, By convgntion
we take the name of the root to be the.null;name, and we write

the pathname a, b, ... q as >a>b>...>q.

A leaf node of the Multics hierarchy can be either an
empty directory, a 1link, or a segmeht. Segment objects, which
are implemented directly by the Multies hardware, are primitive

objects in which progr&ms»and data are stored.

-37-




In our general caomputinig utility model a directory
entry consists of onie name t6 unique idenitiffer mapping stored in
a directory of the ussersorierited hierarchicéal name gpace, The
issue of where to store the access control 1ist and other
attributes of & segment or direédtory, which was not addressed by
our general model, was resolved in Muiﬁics by merging this
information with the entriés of its hnierarchical name space.
This scheme has three important conseguences. First, because a
directory entryvcontains the attributes df’tﬁé‘éﬁgmeﬂt it names,
no two directory entries in the hierdrchy are allowed to describe
the same segment. (1) This requires that an eéntry contain all
synonyms of the object it desecribes. In “‘6ur general computing
utility model this was not naéessary‘sineé ﬁﬁere wWas no penality
associated with allowing multiple entries (single name to unique

identifier mappings) to denote the same object.

Second, the unique identifier to Segment name space of
our general computing utility model exists in Multics only as a
collection eof individual mappings scattered throughout all
directory segments in the hierarchy. This renders the task of
locating a segment given its unique identifier prohibitively
expensive. However, Multics does use unique identifiers. to
facilitate the determination of whether two objects denoted by

different pathnames are in fact the sdme object.

(1) If this rule were not obeyed, then the system would be faced
with the error-prone task of maintaining identical, but separate,
copies of the attributes of a segment. '

-38-




T TR R L g [T

Third, because the access control list of an object 1is
stored in the object's superior directory,'it‘is not possible to
have the access éontrolvlisﬁ*bnfthat object aﬁﬁifﬁgte”aecess to
the object independent of the access control- lists ‘on the
object's superior directories. To see that this'is true all we
need do is consider the following - scenario’ of a process
attempting to. reference ‘ar*segment%?t'A%éuﬁ%"%hét' the "access
control 1list of the segment ‘specifies  that the' process is
authorized to reference the 'segment, but <that the segment's
directory entry resides in a directory to which the process has
no access. The system is faced with a paradox.” If it allows the
process to reference the segment, then it must allow the process
to use information 4in the segment's: directory entry. But the
process is not authorized to use information in the directory
containing the entry. ' Thus, 1f“chei§ystehipérﬁits,the'prbcess to
reference the segment, then 1t must vfolaté the authorization
specified in the access control list &f*the &ontaining directory.
Conversely, if the system does not periit ‘thé process to
reference the segment@ then it must violate the authorization
specified in the access oontrol 113%**5?““the”<segment. This

dilemma will be discussed in detail in the next chapter.

-39~




3.2

The active agent of - computation:: in Mudtics is a
process. A process may execute &nstructinnngihA any : of eight
protection domains,¢aumberedmfrom 0 to 7. Theae domains have the
property that a process'. access rights:;to objeets . in the storage
system while executing in domain n are a subset - of its  access
rights while executing in  domain- ne1. -Domains that are so
constrained have been named rings {82]).  To 4identify the user on
whose ,beha;f & . process - is executing instructions, the system
associates with each process an unforgeabile peincipal name. ' This
access conirecl name is used to-establish a . process' rights to

access directories and segments in the storage system hierarchy.

Associated with each. segment and -directory in the
storage .system ‘hierarchy is an aoness control list which, in
conjunction with the access control name and :ring of execution of
a .process, completely . determines . the .access  rights of that
process to the object. The access control list in the directory
entry of an obJeet’:enches. the . .-access 'moede or rights each
principal 1is hom‘haie to - the -asscciated wobject in a given

protection ring. (1)

(1) In the current Multics implementation both a segment's access
control 1list and 1its ring brackets must be considered to
determine the access rights of a principal to the segment in a
given ring. Since this level of detail is unimportant for our
purposes, we will imagine that a segment's access control list
alone is sufficient to determine access.

=40




When a process attempts to reference a ‘segment or
directory, the system evaluates the process' access modes to the
target object. Conceptually, this inVOlves’Searchiﬂg the access
control list of the objecﬁ; This information is used to validate
the process! right,bo-perfdrm a given‘operation%uponithe segment
or directory. In the case. of evaluatiugz*a@éess‘ to segments;
Multics relies upon the hardware associative memories described

in our general model to make access validation efficient.

For segments the valid acceés modés'aﬁe ‘ read, write,
gnd execute, These acceas modes are enforced direcﬁly by the
Multics hardware. The. valid access  modes for directories are
status - the right to read the éttributesvdr-theﬁentries in the
directory; modify -~ the right to change the - attributes of the
éntries in the directory; and append:x the right to add new-
entries to the directory. = Directory 4“a¢déss “modes are

interpretively enforced by the Multics-semuflty kernel.

Links, which are not full fledged 6bJeets in the
Multics hierarchy, are not given ~an “acéess: control 1list,
Instead, access to read the contents of a link is granted to any
process that has status permission to the -link's containing

directory.

41




The process of a.  narmal user executes in protection
ring four. This allows the process .to .access only those segments
and directories to which it has non-nyll accaess in ring four or
some higher -numbered ning. .In order taxaecessna'storage system
obdactv.aqgessih;aa&q the proaqess anly .in. rings .numbered lower
than four, a. user process must enter an appropriate lower ring.
This may be done only by calling a procedure which is designated,
by its access control list, as a gate into that ring. When such
a gate procedure 1is called, the process enters the inner ring.
By virtue of .its having entered an .inner ring, the access rights
of the .process may increase. fﬂhah the process returns from the
gate procsdure, it reenters its previous ring: of -execution and '
relinquishes the acceas righta it gained oh entry to the lower
ring. To put testh inte this protectidm meshanism, ' the - storage
system manager  will not allow awgaoceés to create a gate into a
~lower ring than ;hefring the. process 1s<ﬁurrigt1y executing in.
This insures .that Qn;xxproeadurpa&aazhotizbd?tourun;in an inner

ring may create gates into that ring. (1)

The Multics .syatem ‘takes . advantage ‘of this ring
protection  mechanism to RPQteqtfita;aeaupitywkeﬁnel programs and
data bases from tampering hk non«kernel prdeedures., - This is
accomplished by‘ setting the access control lists of security

kernel procedures 3and data bases to indicatg that they may be

(1) More complete descriptions of the Multiecs protection
mechanisms may be found in Saltzer [83], Sechroeder [s2], and
Organick [01].

2



accessed only by processes exocutkng,in.proﬁedtidn ring zero.
Entry points in the security kernel which- -are :callable by

non-kernel»procedupes are declared to be gates:into ring zero.

3.3 Aﬂﬂz&a&.&nﬁssgnaﬂsl

The Multics system associates an address space with'
each process [B1]. The function served by this address space is
to brovide' a :mapping  from a . small se¢'o£‘virtual:addresses,
called segment numbers, that cah bevdirestlye~£éanslatéd by the
Multics‘ hardware, .onto the‘vmuch ;srser scgybfzobjeets in the
Multiecs hierarchy, Thisﬁsegment number. address space corresponds
to the local machine-oriented name apace-defined in our general
computing utility model. 1In the Multica system every process has

a potential address space of several-thousand segment numbers.

The binding éf_ a segment number to a storage system
object, which incorporates a storage asystem .object into an
address space, 1is called initiation. - The effect of initiating a
storage system obgegttis, to make . the - representation  of that
object appear directly addrgssable,bynhhe~handwar¢eof>theiuultics
machine,  Since Multics relies upon addressing and protection
descriptors, such as those described in our - computing utility
model, to implement hardware refereaces: to - segments, only a
fraction of the hardware segment number to segment mappings

implied by a process! address space need exist at any given

-43-



instance. A2 in our computing utility model, ‘the Multics
security Xkernel handles faults oavsed by attempting to use
missing -descriptors by  reloading the wissfng addressing or
grotection descriptor and restarting the faulted process., The
unbinding of a storage system object from a ‘segment number, which
removes the object from the process' address space, is called

termination.

Qur  discussion may have 1lead the reader to the
conclusion that a process may have several segment numbers bound
to the same storage system object. Abtuﬁily, ‘this is not
permitted by the address space manager. During the initiation of
an object, the address space manage?\lbeates'the direCtéry entry
of the object from which it fetches the aystem-wide unique
identifier of the object. This {dentifier 1is looked up in a
per-process tabie (1) that maps unique identifiers into segment
aumbers, If the unique identifier is found in this table, then
the object is‘alreadyAin—the address space of the process. This
being’the case, the initiation primitive returns an indication to
this effect as well as the segment number that is bound to the
object. This scheme has several advantages. First, it helps a
process conserve its segment numbers - a very scarce resource.
Second, it permits a process to ‘test the identity of two objects
in its address space by comparing the segment numbers assigned to

(1) See appendix A.
-l



these objects. Finally, it simplifies the management of the

Multics virtual memory.

3.4  Reference Name Space ugggl‘

We héve}assértedlfhat léééi uéer;briehﬁed name . spaces
in a computing utility need hot be part of its security kernel.
This claim not withstanding, the Multics supérvisdr implements a
reference name space for every ring of evéry proéeés. These name
spaces provide a‘ mechanism for mﬁpﬁing‘chabacter string names
into segment numbers and'viée versa., In ‘the éﬂrrent Multics
iﬁplémentation only segments may be assigned reference names.
The security kernel itself does not use reference names for
normal segmenté. It does however misuse its'unique ability to
assigh reference names to the segments with whieh it ihplements
directory objects. (1) ’Specifically, the Muitics supervisor uses
the reference - hame manager to associate the hierarchy pathnames
of initiated directories with the segment numbef,of the segment
containing the representation of the’direetory.‘ Aslwe willl see
in the next chépter, ‘this presents problems when directory
objects are renamed. This problem will be discussed in great

detail in the ensuing chapters.

The address space manager and reference name manager

share a common data base in the current Multics implementation.

(1) In non-kernel domains directory objects are sealed and may
not be accessed as segment objects. ’

-45-




This combined data base is called the Known Segment Table and is
documented 1n appendix A. The reader who is unfamilar with the
structure and contents of the KST 1is urged to review this
material. Additional 1information on the Multics reference name

manager may be found in Organick [01] and Bensoussan [B1].

-6



Chaptepr. IV
Design

Thé Multics designers recognized the advantages of
building a computing utility on tbp of;a.cen:ralysecurity,kernel,~
As a consequence,  Multics is more-fortunate\thah:mos; existing
computer systems as regards its -securability. B&, eénstruction
most modules of the Multics system are not permitted to.execute
in protection ring zero. This bulk of code. .is thus prevented by
the Multics protection mechanisms from tampering with those
programs and data tba;igpe,only‘agggsaip;g frbﬁ,proﬁeetian ring
zero. These protected programs constitute the Multics security
kernel. AlthOugh the portion.of the Mu;;ics,aupeévisor that lies
outside of the security kernel dwarfs,the»secﬁrity kernel in
comparison, the modules of the Multics.security kernel are still
quite numerous as well as complex. - The- objeect modules of thef
Multics security kernel presently represeat approximately one
hundred and = fifty thousand. machine dinstructions. These
instructions implement in excess of two hundred user callable
functions as well as a host of implicit system services such as

demand paging.

We will present a redesign of the current Multics
security kernel that will enhance its certifiability by reducing
its size and number of external interfaces. -As. a side effect, we

will also improve the modularity and coding of the area of the

U7




B RN SR e s N G e A

system we will investigate. Our dasign will eliminate the need
forv the Multics security kernel to support reference name
management. This requires that we carefully redesign and
remodularize ring zero so that it is independent of the reference
name manager. This is necessary since:a security kernel must not
depend ﬂpon”the‘caérectness¢of procedures outside of the kernel.
Before getting into the details of our design, we -will
investigate the reason behind ring gerpls curreat dependence on’

the reference name manager.

While <there does not appbaf*tg*bg tny intrinsic need
for the Multies security kernel to 'support reference name
management, its removal from ring zero is compilcated by the fact
that the Multics eddress space manager uses the facilities of the
reference name wanager to’ maintain an asdociation between the
pathnames of directories it has iniﬁia%%@fin & process and the
segment numbers of these directories. The iﬂﬂ@%ﬁslspace manager
uses these assoclations to avoid having to  repeatedly resolve
identical directory pathnames into segment numbers. Since the
security kernel must not depend upon a mechanism outside the
security kernel, it is neoessary to decouple’ the address space
manager from the fefereﬁce name Hanager before the latter can be

removed from ring zero.

-48- -




The dependence of the address ‘space manager upon the

reference name manager manifests ~‘itself “th'" " thé " recursive

procedure find_ which the addréss ‘space manager uses to resolve

directory pathnames - into "directory segmedt’ ' nimbers. This
resolution is necessary since the hardwﬁfééﬁaze”éf"thé system
only iﬁplements references to storage syStem objects'iby segment
number.  When find_ is invoked to'déteriiie-the segment ‘number
for a directory,'it calls the beferepce name manager to map the

pathname it is ‘given, interpreted’as~a réference name, into a

e G LA O

segment number. If the pathname is“a “reference ‘fiame ‘known ‘in

ring zero of the ‘process, “tHen".find_“péfirns’the assoclatéed

segment number as the .segsedt Humbér 6f €he diredtory. (1) tf

the pathname is:not a“knownirefereﬁeeinaméf5€ﬁ€n find_ splits the

pathname into a pathname of tNe parént directdry ‘of  the ‘targét

directory and the directory'entry name of the target directory.

It then calls itself recursively.to.obtain- a -segment - number for

the parent directery, . Using ‘this Segment aﬁhbe“jto réfererce ' ‘the

parent . directony,va find_ ° a%teur%s fritiate” the ‘targetf

directory. If it succeeds, 1t calls the reference :name, manager.

to bind the pnthname1 of bhe Vaﬁget'directory, as a referenoeT

name, to the segment ﬁunﬁ%? assfghed to’the tahget directory.,'.d?

s ’?!’ R R B . v

(1) As we will see 1ater, this ‘can teuse’ probrems since thiﬁf;
segment  number may no'longer be bound'to the df?ﬁvtory specifiga,w
by following the.pathname’ rind“‘ﬁﬁa gﬁ#ﬁnﬂs%%p b? %tep through .

the directory hierarchy.
«4ga



This thesis suggests a radipal change in the ring zero
address space .manager.  The esseptial result of this change is
that find_, as described above, need gno. longer be called by ring
zero. This allows both. find_ and reference. name: management to be

removed from.ripg zere. . . . . CEER g AL R

~ One of the. basic. .goals. ef thea!uulﬁies<proteetidnv
mechanism is that a .process .should. be. upable to .detect the
- existence of .a storage system.abject.te which. it has no access.
(1) A second .basic QQ%lxQf&tbqwﬂulhbﬁgﬁareheetken ‘mechanism is"
that the access .gontrol .list of.an-object should be:the sole

specifier of access. to the object. (2} = . . - .-

LR
e

R LA IR

(1) We will consider that if a progeas .has access to . the ‘parent
of an object then it has sufficient access to determine the

exigstence of the abject. .The reason for ithis wild. Be- discussed-
later. o ’ ‘ - ' :

(2) This goal was not originally embodied in the Multics design.
Originally a. procesa' . access .to an .qhject was.&: function of three -
different access "control lists., The first list was part of the
directory entry of the gbject and . gornssponds o to. the .access
control ' 1ist we Tnow ~have. The second 1list was part of the
object's parent and was common to all entries in the directory.
The 1last 1ist was a one per system master access control list.
The result was a very complex access evaluation . mechanism that
allowed an unwary user to increase a principal's access rights to
an object by removing that principal from one access control list
when his intention was actually to deny the principal access to
theaobjeet.’“Thefcbmyrﬁfiti”KT“fETATﬁiﬁﬁ%ﬁigm 8o confused users
that  many of them did not attempt to use the system provided
protection mechanism. .With the ecurrent. Multdes -design a . user
neeﬁé_'bnlyﬁZreviéy“'pggtaggsgﬁ'Qﬁﬁtradfliaﬁsta:daterﬁiaa,whoihas>‘
access to a given segment. : LS SRS LSS S T

-50- -



These goals have made‘thewdq;qpmingﬁken -of . whether .a
process should be permitted to initjate.an arbitrary directory
quite difficult. This difficulty stems from the fact that the
access control list of an object and its physical storage map
reside in its parent. Since we wish the access controel list of
an object to exercise complete control owver access to that
Oﬁject,vwe must permit a process to initiate ~.all superiors of
accéssible segments indepehdent .-of access to these supariors. -

But this violates our second goal.

Hultics’attemptg,tp_rggoAgg%&ne,gaqfligtﬁputlined above-
by not perw;tping{g process running- og;a&dpggof;wring .zero  to
initiate a directory.‘ Since a:prégegsipanaotgread‘the:aceeas;=
control list of a Segment until its parent is known, the system
still must permit pro¢e§ses.v‘ub;lg exeéptinswghsring;zero, to
initiate directories that they may 99£>havq ;he@ﬂrighﬁ to know
exist. By causing the in;tia;;onﬁof%the§¢4ggpggior<direetorias/
to'égcur in»# single, indivisible ring zere ,cgli, the system
could, in priqciple, prevent secupity .leaks..  This.could be
accomplished by terminating those intermediate ..directories that -
had to be initiated only to find that the process -had no access. .
to the terminal segment, before returning ,ﬁo«ethe_ caller.
Unfortunately, Multiqg sy;tem‘zu.z,gqqs‘thgd@}qew -As ‘a result, -
any process can determing,_the.~existenqg.ﬁaf;¢any' postulated
directory by attegpting to initiate..gnyhyanbibrarily; named -

descendent {which need not exist) of that directory and -observing

-51=




how many segment numbers weére allocated by ring zero. This is

poasible because &ll rings share a common addreas space.

It would ©be relatively easy to correct the
implementation flaw in the Multics addred® Space manager pointed
out above. ~ Howewer, the system ‘would ®tiYl have to be very
careful to avoid compromising informatich. ' Fbﬁ”éi%mﬁié; “suppose
a  process filled up 1ts address space tntentionally and then
called ring zero to initiate >secretdx. I¥ rihg zero was not
very careful, it might cause the process to die due to its
inability to find an unused segment humber to bind to Ssecret, if
and only if >seeret existed. This would aliow the ~existence of
>secret to be inferred by whether or not the process died.

The inability of a process to iAitiate directories in
outer rings directly Has led 'to :ﬁiﬁy"'"ﬁeéaiésél§ " complex
mechanisms for manipulating direstories. ' In addition, it has
forced us always to refer to dirééﬁoéiéé”éﬁyjEﬁééhﬁa&e"1n the
security kernel interface. Not only ‘is this inefficient, but it
has. led tojrxng,,zéro's'”daﬁendéﬁce"&poﬁ” find_.  If we could
initiate directories directly outsidé rifig fersc, then the ring
zero interface could take a segment number insteéad of taking a
pathname as a  directory apecifier.” “Since ring zero would no
longer need to call find_, it ‘could move out of ring zero, along
with reference name management, without'caﬁﬁrcﬁiﬁiﬁg the security

of ring zero.

-52-



4.3 Removal of the Dependence

We propose allowing directortes 'to fbe'In1tiated by'

processes executing in all rings. As was noted earlier, the
basic problem to be solved 1is that ‘of deciding whether a
process should be,alloked to initiate a diéecﬁbh&”to which it has
no explicit access. (1) There are essentiélly four schemes for
making this decision. The first SOheme‘1nvolves‘reéognizing that

if the access control list of a' ‘directory “1is to completely

express access to that directory, théhfwé“muSt?méke‘éxbiiéit the

now "hidden" permission to initiate a directory if some

descendent of the directory is accessible to the process. The

obvious way to accomplish this. is -to fInVént,Yg  new directory

access mode. called "initiate™. 'This'médé;woﬁid.allow the named

principal to initiate a direétory and to usé the information 1t

contains that is relevent td‘.adééasiﬁ35 descendents of that

directory. This makes the decision of whether or riot ‘a  process

should be allowed to initiate a directory quite simple. If the

process has non-null access to thé ‘directory, then it may

initiate it. Otherwise, it may not.

RS ST Tr

(1) The reader should note that we are ignoring, for the purposes.

of this thesis, the possibility of solving 'thé ~problem outlined

above by removing the attributes of a segment from the directory

hierarchy. ‘Removing the 'attributes of ‘4 segmerf from {ts parent

directory, which may be the best long term soclution, seems very
attractive but requires a fairly extensive overhaul of the
system. This thesis will investigate less drastic solutions to
the directory initiation problem which do not disturb the
Structure of the Multics hierarchy. v

-53-




This scheme does not mept  the: goal that: the access
control list of an object completely;@gggggg;ghighﬁgwqgoases may
access that . object.  While explicit initiate permission is
P§9b39k¥aa~WQPkﬂhlﬁﬁﬂolU§i°ﬂ» and its .simpliedby ~is appealing,
aépption Qf/mgggg a solution would . produce a quite noticable
change in the system's _tunctiopaligﬁgﬂf.He“;chgmse~wte; explore -
al;ernativez, solgtigng_,»thgt“,_maigtgingﬁxagwicunrenhw.aystemts
funetionality, Sy

A way. to maiahain the currgnt functionality of. Multics
using . expligit , initiate ,permission;.. . i#8 . tewicouple.. the access
°°?F?9l list on an,@bject wigh. the access pentrod: lists on all
supgrior ‘directories, .sp:.that when a.precems is given access to
an object. it is also given ii@itiat%K'&ﬁ@ﬁﬂ&&;iiagxali : superior
directories of. tpg&x,ebdﬁct,}j»thagfa;agxgne@aiaabaeauantlvvia
de&}ed,§°Q¢§§w¥?fin;??39¢$’»Fh@w?e?¥€}&¥¢¥$rsé&@n33&:;romovsgwanyu
initiate  pergission that .the. precegagwhgdg to- the. superior
digggtgries#of the object .and that . resylsed..selely from its
having. acgess to ~khe. objeet.  .Reterminipg,-wbieh initiate
permissions Should be. remgved :is .vepy.. giffieu%t, -potentially
requiring that the entire directery hierarchy.be- oxamined.

A second way to decide wheﬁher a process may initiate a
directory is to searoh the hierapehx au&&reﬁ rqeba& at-that
dineqtqpy:: If the p;geess paa nqn~au¥k*%@0Q§$ &0 aay member xof

P

-5y

BRI T .



this subtree ;hcn:the.procees should be . allowed to initiate the
directory in question. Naturally,. this .scheme . is far teo

inefficient to consider seriously.

A third"'method'WOf:”decidiné1vwhe£her.ﬁe process may
initiate a directory is to require non-null’ access' to the
directory. This scheme has the diSadvantage, shared by the first
scheme discussed, of preventing the acoess control 1list of a
directory or segment from being the sole arbiter: of access to
that directory or ‘eegnent"" In order to initiate a segment, a
process would need non-null aocess” to‘ the superiors of that.

g e TE
PR

segment.

We propose a fourth solution\ to the problem of
initiating directorieé. Instead of. worrying about whether or notﬂ
a process has the right to initiate a directory, let us allow all
processes to initiate any directory -vwhether or not it exists.“
The key to this scheme is preventing the process from detecting
any difference‘between”anlinitiaied7directorfgfheﬁpooeeﬁnot exist
and an initiated direc£Ory that exihisﬁght‘thhétthe“kproceSS has
not proven its right to know exists. How this is to be done
will be discussed later. | CT B o

The ring zero address space manager interface resulting
from this approach ‘seems quite natural. Ring 'zero -no‘ longer

concerns itself with pathnames. Instead, it accepts directory

segment numbers for directory specifiers. To ailow this scheme”

-55-




to bootatrap itself, we will defitie the segment number of the
parent of the rodt to be zero. Inttiation of segments and
directories will be controlled by the procedure initiate_ that
will atcept & parameter specifing whgth&r a segment or directory

is to be 1lnitiated,

The rationale behind distinguishing directory and
segment initiatlan is that a process usua;;zahas"a preconceived
idea about the type of the object it wighes to initiate. When
reality does netvsupport,this preconceived idea, the process is
usually in error. .Forcing the process to make explicit the type
of object it 18 expecting allows ring zero to immediately catch
many such errbré, preventing a.carélesy-gpacpss from bumbling
aloqg thinking all is well only to die when %tiattempts to access
a directafy as a segment or vice vérsa. Natﬁraliy, it would be a
sacurity viblation:for the kernel pchpppprt aftype>yiolation to a
process that has no right to know whether ;he directory or
segment named anfgallybexists. If a segmenﬁqer_directory should
be undetectable to a process, then the security kernel must treat
it in a manner conSiétent‘with thévtype speg}fled in the initiate

call regardless of its actual type.

To complete our new ring 2ero address space manager
interface we must define a new termination primitive. This
primitive  will accept two arguments, The ‘first, argument
specifies thé segment number to be: términated. The final

argument is a status code. It should be noticed that this

-56-



primitive may be called with either a segment or directory
segment number. 1In the case of terminating a directory, one
constraint is enforced. Since the system requires that a known
segment's parent also be known, terminate_ will not terminate a

directory with known inferiors.

4.3.2 Details of the Design

So far everything seems rosy. This scheme seems to
remove many functions from ring zero and to simplify the ring

zero interfacé in the bargaih. Where 1s'thevhitch? Do we get all

this for free? The adswer is, of course, no. - We have glossed:

over one iﬁportant point. 1In order to - decouple . directory and

segment initiation we .must be able to successfully cloak the
physical initiation of directories from . a process' detection
until it has established its right to know of the existende of
the directory. As was pointed out earlier,  this need for

deception is  intrinsic to the hierarchy  structure and

functionality of the Multics system. While this design makes the

system's need to deceive the user more obvioué, it 1is not

responsible for the required deceit.

We will call a directory detegtable if a process has
established 1its right to Kknow that the directory exists,
Detectability may be estaylished either by having ﬁon;null access
to the directory, by having non-null access tovits pafept, or by

establishing the detectability of an inferior of the directory.

-57=



The reason that non-null access -on +the  parent-of an object
establishes its deftectzab,il.ih‘y‘. is that either' status, mwodify ‘or
append permission to a directory is sufficiént to allow a process
to detect if ‘a 'postulated entry: ia that directory actually
exists. It should be noted that the detettabilfty of a directory

is dependent on the process' history and the ring of execution.

A directory is detectable by a process in rings zero
through the highest»ringutnwwhteh~«it€iéﬁs&iéétecﬁﬁﬁlf”“initiated
seme  member of tlie tree rooted-at that @irestory.  This Highest
detectable ring .number -of a 'directory ‘is‘kept fr “tts KSTE. (1"
We  will not attempt to reset this fielid- eﬁourf a oﬁee ‘detectable
directory subsequently bécome undeétectable. ' ‘Not ‘“attewpting to
reset the highest detectable ring fieXd ‘in the ¥STE of #n objfect
when it becomes undetectable to the process mikes 'sérnise since the
syatem has already admitted the ‘existende Gf the ‘diréctory to the'
process. . The pbocesserOuld% have ‘‘stored™ this '”infbfmﬁtiﬁﬁ*
eksewhere, so it would be of 1little use bo~dnhy the“existehce of
tne directory. The record kept in the X5T of %he tiexistence of
the directory . ‘uiilf*naturally‘ vanish wheh~‘ﬁhe difeetory is

T
i

terminated or when the process is destrﬁyeﬁ

We must prevent a proeess from detecting any difference
between an initiated directory that does not exie;,;agd;wgg*

initiated existing, but nundetectable, directory.‘ If_e;proqess‘x

(1) See appendiees A and B.

-58-



could detect a difference in these *two casesvfthen it could
establish the existence of any poétulateﬂﬁpath in the hierarchy.
This would constitute a ‘clear violation of security. To
accomplish this -means abandoning the curranﬁ‘dneéﬁo-oﬁe‘mappidg'
that exists between occupied segment ndmbéﬁSV and initiated
segments and directories. '‘Although we will ¥¢ill only allow one
segment number to be bound to a segment, wenmustliallow multiple

segment numbers for the same-directory;'f

The reason for this dichotomy between segments and
directories is simple. Since the aceess control 1ist of a
segment completely controls the rig#t4to'iniﬁiate‘thé£ segment
there is no need to allow a process to  initiate 'a segment to
which it has- np« access. This allows usfto;hiﬂeAthe physical
existence of a segment from a proceasfthatihas*no:right "to kndw
of 1its existence by returning the ambiguous status code "noinfo"
in response to an initiate request. This simpieﬂmechanism fails
for directories sihee we must always allow a prddeéa to initiate
an existing directory in case 1t~haswae@essft0'aoué¥ inferior 6f'
that directory. This forces us to return more ‘than one segment
number for a directory in some cases '‘in order to prevent the
process from detecting the existence of physically initiated but

logically undetectable directories. = . . .

There are two characteristics ~ of  Multies that
necessitate our abandonment of the current‘ohe-po—one mapping.

between direétory Segment numbers and directories. First,

-59-




directories can have multiple entry names. - If: initiate_ returned
the same segment .nuaber for:twe different: uﬁtﬁy ‘hames within a
given directory, thﬁn the pracess- woukd ‘know -thHat “these ~names
both named the .same dineoteay.atﬁh&aacd$ne£6dwce;afxnames woultd
establish the existence of the directary (if bhe directory difd
nq§5 exi§Q,w then ; how could 1t -have ‘two names?). To prevent the
coincidence of multiple .names on a dimhbtﬁvy“fﬁﬂh'*ﬁevéiling‘"fﬁé”
existence of the directory, we must return ‘s new segment number
if a process reinitiates a directory that is - still undetectable
with a. new. . name.  Inwuf3Qtj$we“ﬂ&ii”é?iﬁ“f&tﬁ*n a new segment
number if it tries to initiate an undetectable directory with the |

same.name twice, . If we returned the sahe segment numbeér, then ih~

order for directories that do:not- physically &&iif'%b‘éppéaﬁ the

Same Lo.thg. user rimg,-ring zero would haveé'to remembér the name
of every phoney directory. This %s'a ‘needless - “obMplication of

PG Z@FO. s

. The .second .characteristic .ef Multics ' that forces our
abandonment, of the one-te-one mapping between -directory segment
numbers ﬁandwdigagtoniago1s¢£hatmthn:nasm@ﬁtﬁﬁ@ﬁbers-o?‘a'pﬁdceSSA
are a f;nipe,neéourcgﬁshanédwamqngta&lhprbtbbﬁﬁéhi?Iﬁgs“of?‘thaf(
process. . As we have commented earlier, ths finite size of the
Multics shared segment number address space allows ‘one rihg to
detect the number of segﬁent nunbera being used by all other
rings. This makes it necessary to assign a new .segmentk.number

whenever an attempt is made to initiate an undetectable

~60-



directory. This segment number must not be shared with another
ring so longras the directory remains undeteotablé.‘ The need for
assigning private, per-ring segment numbérs to undetectable

directories may be. seen in thevarguhentrthﬂt follows.

Assume the system returned the same 'segment number when
asked to initiate a directory in two different rings. Assume
also  that the directory is undetectable in the upper of the two

~rings. What is the system to do whenfasked to unbind the ségment
number from the directory by the upper ring? It cannot unbind
the segment number and return it to the list of'free'Segmeht
numbers since a lower ring 1is wusing the ‘Segment number,
Unfortgnately the ring that reqdqsté&%the‘Syétémvté terminate the
segment number can detect ~ﬁhetbonf or ﬁoﬁ*thé?syStem~actua11y
beturned the segment number to the free list so the system cannot
Just pretend to hanor tgi»tepmtnatton requést. 5'If ‘the segment
number is not fﬁéedithqn tﬁa Eing can-deduge  that ‘some other ring’
has the directory initiated. By an argument similar to the one
given in the préviousvparasraph thevring,can'conéludé;'“from the
coincidence of two ringg.having_hherd&nactnry~iﬁitiaﬁeﬂ,*hhat the
directory actually exists. Since segment numbers are a scarce
resource, the system cannot take the-easy . out -of not allowing
undetectable directories to be terndnatedgd: AS a result,
initiate_ must assign.a new segment number whenever it initiates

an undetectable directory.

~-61=



o

Ihe reader should note that we have ignored, up to now,
the problem of preventing a process from distinguishing between a
non-existent dinectary and an existegt but ‘undetectable directory
through observation ag¢€auakm%&aaofﬁseaenewspdeﬁ effects such as
the time required to initiate or terminate a directory. It 1is
hard to prediot &n advance of 'installation in the standard system
what sort of second order effects might be obsérved. The plan is
to investigate thia problem : following ~-actual installation.
Timing differencee can be easily- hidden dy imsebting extra code
in the shorter path, .. Other  differences also probably are

disguisable.

| ‘This scheme. will 'mererily allow s preocess to initiate
vast trees..of directories that do-not #it#t,  7Phese directories
will be indistinguishable from real undétectablé  directories.
The potential -multiplieity _ofﬁ:augucut»ﬁﬁnﬁeﬁé‘fcr'directdries
implies that if we .compare two directory 'ségwent numbers and find
them to be not equal, then we canpot doncludé ‘that the objects to
which they are bound are not one and the:seme. ' Since processes
running outside ring zero cannot ocurrently obtain ‘segment numbers
for directories, no user code .can -be - affeeted by this new
restriction.'”To allow processes to-: quickly determine if two
segment . numbers are bound to the same objest, the system should
support a;funcﬁionVtargnapadag«aﬁaesﬂ:ﬁtﬁnﬁmbeiﬂihto the wunique
identifier of the object to whieh it is bBourd. Naturally, this

function must return an error if the object is not detectable to

-62-



the process. The system must - al8¢0°  dssure that if a process
attempts to reference through any' diFectory pointer in ‘an  outer
ring, it will get the*ahmé*hé%%hsfiiéiitﬁﬁﬁﬁﬁﬁﬁihéb‘o%”nbﬁ'ﬁﬁé
segment number it reférenced eerrés%onﬂ%d to® &% peal’ “6r“7bﬁbﬁe§

R

directory_

Plgure . 4-1 . summarizes ‘the- ‘actions "performed by
initiate_ when mapping a aireétary ‘intea’ proeeas' address spaoe.
The reader shouLdfnobe~that”faJ”t&rget*”ﬁﬁfeéﬁ within &' phoney
directory is. eonsidered a priorf undeteetable ‘and a non-éxistent o
target object is considered detedtable” UY% a”:proéess if the'
process  has ' non-null access té thé*dﬁﬁ%ﬁinihg”&?ﬁectory; The!
abbreviation "hdr" used in figure U-1 Wtands Por the contents of
a KSTE's highest deteotable ring fiéld. " We Havé omttted the case

where . the target is a 14nk as'this ‘cise wWiTY'be’ disbussed 1ater.1

target is detectable in ring of caller ~ " "~

« .target exists in hierarchy

+ » .target already has a segment humber ‘-~

. return‘vélucs R B ihte%naizététe‘

<.« .istatus eoda,aasnent number] - - ““”ﬁar,f“"f" |
-------------------------- ----"‘°‘!'"?"fffff'?”’?'???‘?u.-
0 - ={ Pno_info" | new } R '

i1 0 =! "noentry" | none | . - o
1.0 0 1 iinew " F% ping-of caller |

i1 1 1} ‘"known" | old imax(hdr,ring of caller)|
—————————————— ‘¢o----‘-o-—--d--a-.ﬁ‘ﬁ-&gdn-—-‘-b-—nup-——t—‘

WL

Figure 4-1: Action of Initiate_ for Directories

-63-




Iwo possible objections. we cam.pee to.this.. scheme are
tpat it can potgntially,4uxgteﬁsaannat«aumbsxwﬁahd»it'requires

inspecting the parent's.access. control . iist.- A close.examination

of figure &-1 ‘indicates.that.there are.only-two- ways: to- assignf

multlple segment numbers to a directory. The first waywis«té;

reinitiate an undetectable directory. The second is to initiate
a phoney direectory,. Neither of.theag-gperations showld occur in
normal oparasign._ﬂthey,cou;d,fhew¢¥9£iz&risggigs;amﬁwatteupt, to

use a misapellqd pathagae.,’1a~aoatrekseh&sgarohbes; the: outer

ring variant of find_ .. <ould terminate ;thee&raghnecﬁari&s*’tﬁ&t”
might be phoney if the terminal segment could not be initiated.
This would prevent a habitual - misspeller frem  cluttering his
address space. . It seems that with.this eddisrion & process would

be obliged fe?;?ogvu?& of its way. in order to clutter its address

space.  If that is what it mants fine. Even: if a process wastes

all its segment numbers, it ecan recover by toﬁuinating no longer
needed segment numbers. = R T S O A X

The apparent .inefficency. 9£,~inaanstiag -the. . access
control list Qf the parent of a direetogy dyripg. its initiétion
is not serious  since it is naaaal&y nﬁ&mrséﬂiﬁad Galy when a
process has null acceas to ‘an: objecﬁﬁ and haaj ne; prcviously
established. detectability for that gbject is it necessary ‘to
1nspect the aeeess eontro; list of tbe pansnt. (1}

(1) In fact, the frequency with which a process initiates a
directory to .which it has has no acoess.is low enough in Multics
‘that our test implementation does not check to see if a process
has previously established detectability for a directory to avoid

—6‘!-.




In Multics system 24.2 the address space manager and

the reference name manager share a dita base’ (1) ‘The address

space manager takes advantage of 'its ability to access the

reference namefmaﬂager'S'daﬁi“baéé'by13céhﬁiﬁ§“tﬁé per;r1ng,"péfc

segment number, 1list of befeﬁehdgf6Eﬁibkk%pf*3f'tﬁé“béferénéé

name manager to determin%’whtch'rings”*bf'”ﬁ"'B}6bé§§*'are still

using: a particular segment number. This Infbfmafibﬁ“is useaﬁng*

prevent one ring;fromstermiﬁatidﬁ a segment’ nmumber that is still

in use by amother ring. (2) Only if all ‘rings that’initiated the

object have terminated it, can the segment number be unbound from

the object. Thus, we have the concept of initiatihg'an object in

a particular ring rather than the concept of initiating an object

globally in all -rings of & proéess. This schemé is desirabie

since all rings share the address space of 'ségmeht numbers.

inspecting the access control ‘I18C of "THe parent of the

directory. 1If the process has null access to

directory.

(1) Seevappendix A. - o

(2) Since the ~address space zgqa&gggquﬁgﬁtgge; nee . Of
' for ‘a “Segménit ‘Number to detec

reference names in a given F{n

we .always . check ““the ‘priodéss' ' acoess to

a -
i

e g

directory, .then

‘the ‘parent of the

that the ring is still using the segment number, the current
initiation primitive must call the reference name manager to give
a segment a reference name in the appropriate ring each time the
Segment is initiated. The current initiate interface supplies

the address space manager with-a reference forthis purpose, A
more complete description of the relatiogg

space manager and reference namés I By¥t
Organick [01].

—65-

hip pe’t‘%ggp the address

&y be found in

_presence  of .



Since reference namea.willanogioagerl~be kept in the
KST, some new mechanism must be invented to supply information
about which rings of a process are still using “a ‘given segment
number. - This is easily: accomplished 'by adding an eight bit
field, called rings, to each KSTE. If the i th bit( 0 origined)

in this field is on then thé correspsnding rihg ‘has the segment

number initiated. ~This allows ring zerd o detéct when a segment

number may.bewphysieally”ﬁen&iﬂaiéd;fﬁhéﬂebY“ﬁfé#eﬁting one bing'

from terminating a segment or direétory that is being used by
another ring. (1) '

Our  termination primitive marks-the segment number it
1s given as free in 'its. caller's ring ‘of  execution. If the
segment number 1is initiated in no. other rings and its inferior

count is zero, then the segment number is unbound from the object

and its KSTE is placed on a list of free KSTEs. It should be

carefully noted  that the “termination - primitive terminates a
single segment - number; it only removes. an object from the

oS

fit number for the object

process' - address space 1f the last ség
is terminated. The reader should notiée that bécause initiate

always assigns a private ' segment number when a directory is

undetectably initiated, terminate_ neéd not worry about revealing

the existence of gn;uﬂdatnetabieﬂddrectorydf»

(1) Appendix B summarizes the oqntent of the known segment table -

as we have redefined it.

=66~



4.4  Removal of Pathname Processing |

Ring zero's ability to resolve a“vﬁéthnéme into a
segment number ‘has bgen»severely'iipaire&'6y56uﬁ design. This
ability, which was embodied in the ring zero 'procedure find_,
depended upon riﬂg ‘iero's ability to call ‘the reference name
manager. Specifically, find_ depended ‘on” thé reference name
manager to maintain an association between pathnaties of objects
and the segment number bound to the 'objécﬁi‘\ F6rtunate1y, this
association was only used to make find;‘mdré~ngicient.ﬁ As a
result, we could redefine find_ in such a mannér’ that it would
still operate correctly but would not take advantage of such an

association between pathnames and segment humbers.

To maké‘~find_ independent of ‘the reference name
manager, all we would need to do is bédefine:find; to inspect the
pathname it was given to see-if'itfépébifiéﬂ“théfrébt}‘i.eﬁ Tnym
If it did, then find_ would initiateé 'the root, and return its
segment number. (1) Otherwise find_ would strip off the last
component of the pathname and call itself recursively with the
pathname of the parent of the target object to get its segment
number. Given this segment number, find_ would ¢all inftiate to

initiate the .entry: named by the component which was previously

(1) The system treats the root ‘directory as-a special case. The
location of its physical object map as well as the regst of the
information that would reside in its directory entry, if it had a
parent, 1s embedded in the programs of the system. This
guarantees that the root may always be initiated.

-67-



removed from the pathname. For example, if find_ were called
with >a>b 1t would call itself recursively to get a segment
ngmber for >a. It would then call jnitiate _to get a segment

number for the object named b in the directory Ya. -

While the procedure we have deacribed is correct, it
appears to be quite inefficient. This inefficiency suggests that
we should either. g.;v,e find_ a new associative z:mem:tmy or move it
out of ring zero1§ovthat it can gace.agaiawuaa»hhe,neferencevname
manager. Since giving,find“wa,neuiassociattve;memofy would add
code to ring zero which has no protection reason to be -in the
security kernel, hhis alternative is untenable.. Our approach

will therefore be to remove. find_from ring zero.

The actual removal of find_ - from ring zero is, of
itself, trivial. In the outer rings it can access the reference
name manager directly once again. It can alsc access our new
initiation prim;tive,thpough.g atgndardvgateﬂinto»eing zero. The
problem isAthag‘ng@ereus_prggrams in.ring zero depend upon find_
to map pathnames into segment numbers. .Unfortunately, they
cannot be allowed to call.our_new find_ in the:outer ring. To do
so. would jeopardize the security of ring zero. :To get ourselves -
out of‘this dilemma, we uiil,have to remove almost all - uses of
pathnames from ring zero. This in itgglf ”repreéents a
substantial simplification of ring zerQ.- To»aanuaplish ‘this task

we will consider the four ma}or uses of ﬁaﬁhnamaa~in ‘ring zero;

-68- .



4.4.1  Parameters to Ring Zero

The ‘firstvclass of pathnames .used.in ring zero that we
will consider conéists of those pathnames that were passed into
ring zero as an argument to a E,s,s.f:.,e‘:.,ypro‘.c::{e%:li!u‘,ce.‘..v This class
represents the méjobvuseof;pagpnaggg in ring zero.  Fortunately,
it is alSo the eaﬁ;est class to remove £rqm,mniggfszemq; Since
find_ now resides in thenogten,ring;,yg wil;im&kgﬁthe“outer ring -
responsible for translating all pathnggea;,&h§&~ are currently
passed into ring zero ;ntq__seamens;ngpbars;upywe will thgn~
redefine}all ring zero gates i;hat.ngggs;t hpa;hnnmés as object
specifiers tox_é§éept sggpgntfJhuhbersi»;s;~a§gect ‘specifiers

instead.

4.4.2 Links

‘Thq’secondxc;qsa}of,paqgngﬁgﬁ,gsqq'@n;g&ngmzero are the
pathnames contained in links, Maggfrihgdgchmnnggnams,-uhnn they
discover that thg.object_thgy_arg_go act. y@on,jis‘—a.rlink, are
defined ’to aét'instanqunthe target of the link. An example -
of a ring zero function thatv;s»gefingd thgqlgbwf,this; rule is -

the segment initiation pr;pitiyefw(1)g,Wg-pnoppge:that,primitives

(1) To prevent a process from causing ring zero, which is masked
against interupts,_frogdlopr;ngﬁingggiggtp};?fg@@gﬁing a:circular
chain of 1links, each program that follows links keeps count of
the number of links it tpaveggeaﬂquingﬁgaog imvocation: If this
number exceeds a certain system-specified threshold, then the

computation is aborted. '

-69-



which are defined to follow links return a status code indicating
that a 1link has been encountered as well as the contents of the

link itself, upon discovering that thelr target is a link.

This schewe requires that 1inks beé readable iﬁ the
outer rings whieﬁ' ratses the question of what, if any,Aaccess
control should be placed on reading links. The approach taken in
Multics system 24.2 is to make iihkﬁ'éf?ectifﬁly4ﬁéadable by any
process that has non-null acuess té'the~§§rﬁiﬁél' target of the
link. This scheme has an inherent seburity Flaw and is therefore
unaceeptable., If some process can guass the pathname of an
existing link to whose target the process has access, then it can
prove the existence of the parent directories of that link by
initiating the target object ;hrvugh the link. To éliminate this
security flaw wé' could place agcess 'oontrol lists on links,
thereby explicitly naming those processes which may read the
link. The complexity of sudlk & mechanism Seems unwarranted when
weighed against its benefits. The only access control on the
tafget object of the link that is guirﬁhtoéd iﬂ‘speeified by the
access control 1list of that object. Ady dccess control 8pecifiéd
on a link may be avoided by r@f&?eﬁaihg.lthé ﬁarget objeét
directly and thus serves only to protect the ednténts of the iink
itself.

The reasons that access to 1imks must be controlled is

that the existence of a 1link implies the existence of its

-h?O-Q



superior directories and suggests th§ existence 6f its target.
We have chosen a simpler mechanism for controlling access to
links which, although not as comprehensive as a mechanism that
associates a private access control 1ist with éaéh',link, meets
both of the needs for protecting links. We’donéidéb a link to be
part of 1its containing directory, - readablélpniy by processes
having status permission 6n that direcfory}i\Thisischeme‘has the
virtues of being  simple,‘ easy to 1mplement,v;hd plugging the
information hole that uncontrolled access t67’11dk§ provides in
system 24.2. While this scheme does make 6ﬁe‘éiésé of currently
' legal uses of liﬁkg illegal, this restriction does not seem too

severe.

To illustrate thé‘ scheme we have proposed, we will
outline the redesign of 1link processing 'by the ring zero
initiation primitive. When initiate;‘fencddntebs a detectable
link, it will return the link and avstétus dddéithat informs thé'
outer ring procedure that a 1ink was encountered. (1) The outer
ring procedure m#y thgn try the new path specifiéd by the link.
Since this is»happeningiin an outer ring, we need no longer have
a standard interpretaﬁion of links. 'Sincesiihk'prOcessing will
be done in the user ring, the process may‘intebpret links in any
manner it chooses. Why not let links contain‘rélétive pathnames,

offsets, or even arbitrary character strings? A linkfmight even

(1) As we have mentioned earlier, if an undetectable link is
encountered while attempting to initiate a directory, the system
must treat that link as an undetectable, phoney directory.

-T1=



specify a file residing in anpther computer system. The
i@portant point is that while the kernel may be the keeper of
links, it does not interpret them. Naturally, the restriction on
link depth, which was 1ntendéd»to‘kesp ring zero from getting

into trouble, vanishes.

4.4.3  Interpally Geperated Pathnames

In a few cases, ring zero generates and uses pathnames
1nternally. These generated pathnames constitute the third
general class of uses of pgthgames in ring zero, We will further
partitioh this class into those pathnames that are generated only
during system iniﬁialization and those pathnames that are

generated during,aorngl,syaten cperation,

During the initialization of the Multics system, the
need arises to 1ﬁitiate on the order of one  hundred of fewer
segments. The reason the system mug;‘ipitiateqtheae segments is
of little intéreat to our thesis. We observe that since system
initialization is an infrequent opgratiQpi{haperully once a day
or,iess) and thg’number;of pathnames - to -be. .resolved is quite
small, we need‘nctrfeel\remoraela; proposing a very inefficient
mechanism to pesolve these pébhnamas.A In fact, as ﬁhe;reader has
undoubtedly guessed, we propose thah these pathnames be resolved
by. calls to the inefficient version of find_ that we described

earlier,

#)

-72-



In the case of pathnames generated‘by ring zero ' during
normal system operation, we cannot be quitg»so cavalier. Or can
‘we? In fact, we can. A careful examinaticn‘dr“rint zero reveals
that ten is a reasbnable upper bound on ‘the number of generated
pathnames that must be resolved ‘in ring zerd in the 1life of any

given process.

In fact, these internally generated pathnames are so
restricted - that ﬁe“ have no need to even call our inefficient
find_. Since they all are of tree depth at'ﬁoat;ftﬁree and all
components of these pathnames except possibly the last component
are constant for all time, we couldvexpandgthe code of find_ in
line in the programs that use these pathhames. * For example, if a
program needed to initiate >pdd>my, then it would first initiate
the root. Then, giﬁenwthe/segment'numberjcf the1rbbt; it would
initiate pdd. Finallyﬁ.given the segment number of pdd, it would
initiate my. | | e

4.4.4  Error Conditions

The vlast and perhaps 4gostv ﬁroqplesome >class of
pathnameé used in Eing zero are patﬁnames thqtya;e ﬁggd to report
error conditioné. There exisf nuﬁerqus 1n;§ég;estin} the systém
where a prbcedure'Adetects an ihéonsistgné§‘§p erpor condition
associated with some[Seghent or"directory.“ Fdr} instance, the
system may detect an unrecoverable error while reading the

contents of a segment. Another example would be the detection

=73~



that the doubly threaded 1list which chains the entries in a
directory together 1s misthreaded, -In error :cornditions such as
these, the system writes a m&ga&ge £nta_the aystem log explaining
the problenm. -Ih&a message = often contains a pathname that was
generated from the virtual addreas of the segment or directory in
which the error occured. While the exact algoritha for
generating a pathname from a virtual address 1is of little
interest to us, this algorithm did depend upon the reference name
manager's ability to map a directory -segment number into a

pathname of the object it was. bound to.

Since we have argued that ring sero must not call the
outer ring name space manager, we pusi propose . a2 .new algorithm
for mapping a segment number intc:;:pathnanc;' Many schemes are
possible. However, since the error conditioms we are talking
about may be presumed to be quite rare, we will suggest a very
simple, but inefficient, algorithm. This algorithm relies- on the
fact that any virtual address may be mapped, by the known segmept
table, into the virtual address of its diréétbry‘ehtry. A name
for the segment can be found in the directory entry. This name
is the last component name in a valid pathname:df the objeét. To
get the other componénts of é pathname of the object, we
recursively apply this teéhnique to the #i;tual addfess of the

directory entry which is, of course, withih the parent directory.

T4



4.5  Summarv of the Design

This - cnapter hes presented a design that allows
directories to be initiated ‘in all’ rings.‘ As a consequence, the
need for the Multics security kernel to maintain reference names
has been eliminated. The key feature of this design is that the
security kernel maintains, for each process,d the‘ illusion that
any postulated directory exists unless the process has sufficient
access to prove otherwise. This permits the_security kernel to
allow a process to initiate a direcfcry'to which"it has no'access
without disclosing'the‘existence of thatgdirectcry;‘ The address
space manager interface: presented in this design is summarized 1n
appendix C. Appendix D contains an example cf the use of this

interface.




As a result of our design, the interface to ring =zero
haé been modified quite extensively. We have eliminated three
major functions that wére Supported by the -0ld ring zero:
reference name management, pathname = resolution, and ’storage
system link indirection. If the non-kernel portion of the
Multics supervi;or is to use‘thege seryiéeaaor provide them to
the users of the system, then we must design modules <capable of
providing these services that run outside of ring zero. We have
albeady explained, to a degree which we hope 1is sufficient to
convince the reéder,v how the last fgnctieaﬁmay be trivially
performed by outer ring modules. In this chapter we will discuss
the important issues involved in resolving pathnames in the outer
ring and designing an outer ring referencé name 'manager., In
addition, we will address ourselves brieflyvto the problem faced
by user programs that depend upon now obsolete ring zero

interfaces.

5.1 Reference Name Mapnager Design

We have seen that the Multics reference name manager
provides four ‘primitive functions on name spaces. These
functions provide a process with the ability to: bind a name to

a segment number, unbind a name, determine the segment number

-76-




that a name 1is bound to, and obtain a list of the names bound to
a segment number@. Actually,‘the,Multinnﬂreferehbe“'hame manager
provides a‘ larger set of functions, However, the additionai
functions all>‘can all be expressed in*-téfha"*bf“.the" four

primitives we‘have(deacribed.

It is not our intention to actually design a'refeééncé’
name manager. We trust that the reader~will’%%6§pt'our:asbuﬁadce
that it can be done and that it is in faot sbbaightforward We
must however, comment on one: consideraticn‘ﬁhatvtheﬂdesign'Of an
outer ring reference name manager must’reébgnize. ‘When the name
Space manager resided in ring zero it was obérating in an
environment in which it was suarantesd to: run: to completion once
invoked. An outer ring name space. manager is not "afforded this

luxury.

Executing in the outer'ning'envirdnn&nt,‘the reference
name manager may be stopped at any instant. This of little
consequence except when it is- stopped by the Multicé:”quit”

mechanism. 1In this case, the system \suabends“'the* process!

current computation and then restarts the process. The prpcess"'

may then reinvoke the reference name manager and. at a later time
‘resume the Suspended computation having potentially totally

rearranged the reference name manager's data base,

-T77=



Luckily the system provides a mechanism that allows a
process to inhibit or "mmsk" qui%*siﬁﬁnli;' By‘uasking quits on
éntrancé to the reference ntae.ﬁ&&tyer'an&'ﬁhmask1n§  quits upoh 
exit the probleam can be -eliminated. ietually,‘it is highly
unlikely that the entire computation performed by the reference
name manager need be masked. We should des1gn the reference name
manager So that it has as small a ®&ritical™ section or sections
as possible. . Insotnsf,uorda,fwa'ahauld*fry*ﬁﬁ‘fsoIAtdy'the code
that might malfunction if it were not masked against quits. We
can then mask and unmesk quita~only~wh§n :we’feﬁ%ér‘ and exit a

critical section.

Before leaving the topie of name space management, we
should comment. on -one comrsequence of “aliswing processes to
1nitiate direétories directly. This abilityiailowg a procesé'td
use,thé reference name manager to bind an arbitrary name to a
directory. One -immediately obvioﬁSTﬁse*of‘thiS“new faéility is
to replace the current special purpose mechaénism that identifies
a process' per ring working ”dtreotﬁry tﬁ&“seéréhrdirectOries
[01]. All we need to do is bind the appropriate name, 1i.e.
ﬁworking_ﬂir"v or "search_dir_n" to the corrett directory segnéét |

number.

-78-




5.2 Pathname Resolytion

We have commented that reference names are 'per ring.
This prevents programs ~executing %in one fiqg from causing
programs executing in anothér ring to .malfudcﬁion by tampering
with shared reference naﬁes. As a‘result,,riqé(rqur could bind
the name "sqrt" to one procedure and ring one could bind the same
name to an entirely different prééedure. While.this multiplicity
of name spaces pef process 1is desirable for  protection and
modular programming reasons, it partially defe#ts find_'s purpose
in wusing the reference name manager to bind pathhames to segment
numbers. Since each ring has a different»name;spage, associating
the pathname >a>b with segment humber 401 in opg, p1ng will not
help another ring resolve' >a>b. The ’reault. 13 that many
redundant pathname resolutiona will occur and, many name spaces.

will contain identical entries,

We suggest thét find_ not wuse the reference name
manager to associate pathnames with segment numbers, 1In fact, it
was never correct for it to have done’ 80, A name space just
associates an arbitrary name with a segment number. However,
pathnames are not just arbitrary names, Consider, for instance,
what happens when we remove the name b from tne directory >a>b
and then add the name b to the directory »>adc. The result of
this change in the environment is external to the reference name

manager and yet it has invalidated a mapping the reference name

=79~



manager was keeping. The pathname >a>b ne longer refers to the

object that is bound to segment number 401, but the reference

name manager has no way of knowing this.

There are potential advantages to binding pathnames to
directories once per process, as is done in Multics system 24.2.
Consider the problem of installing a new version of a
multi-component subsystem, such as the Multics ”rL/I compiler,
while Multics is running. In Multics system 24.2 we could store
the components of the compiler in a single directory. To install
a new version of the compiler all we would need to do 1is build
the new version in a brother directory of the current compiler.
When the new compiler is ready for installation all that would be
necessary is to exchange the namee on‘the”neu':and old compiler
directories. 'Processes that had alreedy started to use the
compiler would remember the segment number of the old directory
ae the compiler directory and would ccntinue to use the old
compiler and satisfy new dynamic linkage faults to components of
the compiler from the old directory. In this way a process
always gets a consietent'copy of'the-compiler. A process tnat~v
had not yet used the compiler would initiate thei directory’
containing the new compiler when it attempted to invoke the
compiler, It would then remember tnie new directory as the
compiler directory and satisfy 311 linﬁage'faults'for pieces of
the compiler from this directory;

-80~




If a process does not: 'freezeﬂ a direotbry sub-tree, as
is done in system 24.2, when it initiates that’ dzraetory, then 1t~
becomes very difficult to do  on line | installations of
multi-component . subsystems. A process could e;slly get half Af
an oldemult;-compghpnt_aubgystem-andwhakraasr’aifnew ‘version of
that subsystemf.wgegxfaa«enl&ne ins;alxatiQnfetﬂtﬁemsubsyétem*rs'
done. On the other handi'a:aroeeeseatﬁenvﬁan¢s$ﬁdfﬁee*the"adﬁdai’
hierarchy, not‘a_"fnozen*7imaee oﬁw*ﬁbe* hiereré&y. ©our - design

allows a pfoceSS to cheese betwaea ‘these two . dI&%rnaeives by“

He sussest thgt the. . ayatea enuppiisd find opt for*
-8olving the "directory renaminsfproblem" nathhr than ‘the: "online -
1nsta11etion,ppob1en!, fThemaaaiestv-nﬁgnuseﬁattﬂkettve‘»apprbucﬁ“
to solving the directory renaming problem 1s”£o not alloﬁ»find_
to use a pathname, . seanent number asao&datirb> membry "Instead,

| find will always reeurse to the root: whnmmresblwing a!pathnémé

While this might seenaunattaaetive for effieienny reiaons direct -
’ measurement of the i%paet -wa,auohzna_\aegegev.qupon~’ system

performgnee nevqa;ga§ag§ agstem;threughpatstaidienly-be&degredéd“’
by a small fractiom. of a pergent..-In addition, ot .proposed

address space manager will drastically ' neduce ﬁhe number - of -

pathname resolutions .that -oceur :-within the system.‘ Tﬁiéf'-

reduction in pathname reselutione ahoulée renﬁer;-the- difference’
between find_'s . having .and. ROV  having a pathname associative

memory almost immeasurable. This slight performéﬁce degradation

-81=




seems a amall price to pay fer the elimination of the directory

[SRTEE T
PR AN

- .The fimal.topic we wish to gisculs $a this’ éhapter is
that -of . compatibility. -A basic redpensibili€y of ény computing
utility is to.mimimize :the effeet of tntermal’ oManged  upon 1ts
user community. If a major change must bé mede ‘in the interfaces

between user written programs -and-the system; ‘or “frr the semantics
4 Both the‘nw

of these. interfages,  then 'the sSystéw munt #Eppés
and old interfaces for a sufficiently long period of time to
allow ‘userq;&cvﬁenw&rtﬁgneiﬂmpﬂdgr&ihﬂfo?ﬁ§¥7&h€?ﬁ%ﬁ‘iﬁ%erfaees.
A suitabiewaﬁaaune-aﬁaantsz~pun§oa;aésﬁ%sﬁxéfﬁaaéiéﬁ”pﬁﬁbabfy”“be“
measured in months. on even years;: not Wours, days, or weeks,

We have -made  substantial veh&agéi'kto“\the~ring zero
interface .and. thus must  address the ~ compatibility  issue.
F6r§gpately,:1toiaaqu¢;¢;sxspit'tcvp&%safiéﬁéaﬁﬁitibility without
keeping the old fﬁndﬁ$and~nﬁlaaindiaéd?33£§i¢ae§4manigers;"This‘
isipqﬁsible;far:aycarcésoanﬁe-E&?ﬂﬁ,%ﬁi?éinﬁiﬁﬁuiaté the old ring
zero interface bi%intgrpoaing a;rzns@f&urkﬁroéééﬁﬁé‘ between the.
caller. . of _an¢GB§OLQﬁ6*Eing;2Qréf%ﬁﬁ@ﬁfﬂéé“anajbﬁ?’ﬂ&ﬁ ring zero
~interface. Second, it iagﬁcasiblewﬁovfﬁﬁ&rpoé&**Suéh simulation
procedures between the user ~and the mew ring zero interfaces
without recoding or even recompiling aﬁfﬁﬁaéﬁéﬁﬁﬁgnéma;v ”

PRV (TR S RIEY B SR SIS S

82~ -




Consider how we would simulate the old interface to
initiate. The outer ring. interposing procedure would call the
outer ring referenée name manager to map the' pathname directory
specifier of the old inteﬁfibe;intbitheééﬁﬁﬁ%ﬁfﬁdﬁﬁbér required
by the new interface.' It would then call the new initiation
primitive. If bhis returned a link, ' the buter ring 1nterposing'

gL

procedure would start over: again.

This simulation procedure would® be ' d1ffichlt  to’
implement 1if it were not-for the fact that Maitics now has an
interposing procedure on all calis to- Ping zéro; fThis“'prbéeaﬁFé
is a ring four transferwveeeori%hat*ﬁcrﬁaliilﬁﬁéﬁsfer37tﬁé?cails
~ to the appropriate ring gero-gate. (1) 'Tﬁis*ﬁbéﬁﬂfeﬁ vector can
be modified so as to call an appropriate interposing interface

simulation procedure for the interfaces we have changed

RIS A AN

(1). This transfer vector, which 'was dikbus¥ed in a previous
masters thesis by Janson [J1] has not yet been installed in the
current Multics system.

-83-



A We have coded a test implementatiom of the essential
féaturesiof our design. This test implementation, which is based
on Multics system 24.2, was undentaken for four major reasons,
First, a working implementation of  owr ideas serves as an
existence proof of the basic claim of our thesis. Second, a
working implementation helps us demomstrate the. practicality of
our design. Third, the actual task of implementing our design
helps insure that #e have not neglected any important details in
our design. Finally, a test implementation of our design helps

us to quantify the impact of eur design upon:-the system.
6.1 Plan

We have indicated that our new design requires an
extensive overh#ui of ring zero. The pervasiveness of the
médifications necessary to riné zero is largely a result of the
removal of pathnames from ring zero. While the removal of
pathnames from éing zero is essential to our design, it is a time

consuming, straightforward, and intellectually unrewarding task.
Instead of undertaking this drudgery,‘we have devised a

scheme that allows the essential ideas of our design to be

implemented while avoiding most of the uninteresting work. The




implementation we will describe does not affect any code outside
of ring zero, nor doés it affect the syhtax or seméntics of the
interface to ring zero. As a result of this feature, our test
implementation provides the first step in an«orderly transition’
from the current Multics system to the system we have described.
The implementation we will describe ‘could ' be ' immediately
installed in the standard Multios system without substantfally

affecting users.

What we elected to do'-waS'JtoL'&hpIewéht"dur new
initiation, termination, and name space management primitives
inside ring zero. We then reimplementeq,}ihside?ring"zero, the
old initiation, termination, and'namawap:@b+man§g@ﬁ§nt‘@rimitives
using our new primitives. This scheme alldwed us to cohcentrate
upon the key issues of our design without gettiﬁkf%bggedfébwhi'ih
the mechanics of eonverting thirty or more: large éomplex programs

from using pathnames to not using pathnanes.“

The stnenghh‘ of this approach.is that the modules in-
ring zero may be slowly‘weaned away from using: pathnames or now
obsolete interfaces. Also, by supplying “gates to our new
primitives, users of Multics can sﬂaa&vceﬂvartiﬁé*ﬁhefr"programé”
to take advantage of the new ring zero interface. “When ring zero
has been completely converted, all we -need dof is throw away the
code that implemented . the old primitivas in  term§ of ' the  new

primitives and move the reference name manager out of ring zero.

-85



| Reducing the complexity of s system certainly increases
its certifiability (D}, B2, D3, k1, -N1, -P1]. f In order to
substantiate the  hypothesis that our.design results in a system
that is .more certifiable thas Multics system 24.2, we will 1look
at two measures of the complexity of the security kernels of the
two systems. These measures are the difference in size of the
old ring zero aﬁd our new ring zeroc and the difference in the
number and complexity of gates into the 'odd ring ‘wero and our new

ring zero.

Appendix E summarizes the sdize cobparison data between
the old ring zero aad - owr mew risg zere. ' As it reports, the
address Space manager was reduced im’ size: by ' seventy-seven per
cent. lTh;sncagreapoﬂdﬂgtQ~aftno~gadfagh;&£ap§r“¢ent reduction in
the size of ring 3efo.j»in fua&,;ﬁthadﬁveta’ayiée:hanaQEr*that
ve designed‘waa'sﬁvsnall that we have prtﬁeuted it in appendix H
fér«théfreaden‘to Flruﬁﬁ;:,ih&afsiztﬂble?éedﬂéﬁgoﬁfin the size of
the . adqress spaeéananagar'&avqu&tlaeae¢t¢¢81§§5aﬁd*suhstantiates
our claim that we have produced a more.:certiftable ring zero.
What is even more encouraging is-that while this figure is in
itself aubstantia;,fxgﬂe&ky;rqynesenﬁ& &iﬁu?ﬂ&aii‘iﬁglémentétion.
Several moangg' in riaggzqu.aceeﬁﬁthﬁﬁunﬁlﬁhnﬁacafand segnent
numbers as storage system ~§hdsnh ~tpeﬁitie;s£~~“1n a ‘complete

implementation of our design many of these modules would only

-86-



e e T e e g gl T < "“J‘»"&%"”@M%‘f el R T 0 e e T e e e

accept segment numbers. This wonl&-allhn“thjvhhde,"that -handled
the pathnames in these modules to be thrown out of ring zero,

further deereasing its eomplexity. E

The old-ring zgro.aupportpfngqutpéth@ﬂﬁhundred"gAtesf“
Our design zolﬁéc;yf removes .the becessity orﬁhgéingwgaﬁééiihtbg
ring zero which call the.reference name maaageaﬁfﬁxt also removes:
a whole class of : gatea that-allow an. objeot to be ‘‘speaified- by
pathname. = Many. gatqa into the old ring zerd c&ua 'in pairs.: ‘One
gate would. apecify the target - objeqb by~zl¢gmcnt ‘number, “The"
other gate would speeify the - tareet objeot by pethﬁame. ‘With the
ability to initiate directories. in the : ,ouﬁern rings, ‘this
multiplicity of gates becomes unnecessary. As a resvlt ‘only the
gates that takezaeggsgqnt:numberdammrnhgée¢n~sﬁsﬁifierwfwould‘*&e*
retained in - the . ring . zero of«a~cﬁnb1%taftﬁ@&éﬁéﬁ%@tion*bf'bﬁﬁ
design. When we add up the number of gaﬁes theat a  full
implementation ofﬁ our design‘would remove fbom‘the current ring
zero 1nterface, we ' find . Ahat we waunlal remove ubcut TFive per cént
of the @gates. ln addition te reductng thefnunben“o? gates into -
ring zero, wewhav5wsignificantlym&1upt££&adzvﬁ&ﬂtntérfade'to<OVer'“
fifty of themgatgﬁythat_gu;t remain’ in ~wing “zeéroi (1) 'This
reduction in intertacs;gonpaaaity also a%nd%;breﬁibiilty*%o”oﬁ%*“
claim that we.have made rink~:z¢rmq'iaadaéh%ﬁéé~¥nﬁltiési‘ more -
certifiable.. = = s hnse s ag S L

(1) See appendix G. -~ . oG o.oenoeraes

-87-



To help assess the iﬁvuaﬁaivf our: design upon the
performance of the Multics system, we developed a small benchmark
that tests the speed and paging behavior of the most used system
functions that ou?: design affedted, - THis benchmark was run on
both Multics system 24.2 -and our 't&st‘"i'fimﬁléﬁen’tﬂﬁiot‘i. - The
results. of .these runs ‘indicated - that thé viFtual epu time to
initiate and -then, terminate dn object deepped from 11.002
milliseconds in the standard system to 10.226 sillissconds in our
test system, & . reduction of Jdﬁgﬁt“%ﬁeﬂ?*édﬁé. 1) This’is
especially gratifying since the b&ﬁtﬁtﬁé&é*isﬁaee manager Qe
implemented was not in the Ieast optimised fo¥ running speed. In
addition, our test implementation wss unfairly penalized by
having to converse with our bernchmark through & simulation of the

0ld interfaces.

. We attribute this speed up to many factors; not the
least of which 4is the fact that we yﬁeiﬁly simplified the
structure of the known segnment table. We alsd makée the somewhat
immodest elaim that our initiatien, termination, and reference
name”managementlprimitives were sinylyf@@éet~béttéf‘than those in
system 24.2. But this is not surprising; most’ thimgs are done

better the second time around. It should also be noted that the -

(1) A description of our benchmark as well as a brief SUQmary of
the performance data can be found in appendix F,. o o

-88-.




smaller and less complex a module is, the easier it is to program
that module efficiently and correctly. Unless a programmer can
hold all of the relevent details and specifications of a program
in his head at one time, it is very difficult to perform global

optimizations or simplifications of the program,

Our working set performance data indicates that our
system referenced two more pages running the benchmark than
system 24,2, This did not come as much of a surprise. One of
these extra page faults resulted from splitting the code of the
reference name manager and address space manager apart and the
other resulted from splitting apart their shared data base. We
anticipate that when programs are converted to use the new
interfaces directly the extra page fault that was caused by
splitting the code apart will be compensated for. We expect that
since our code is smaller in total, by eliminating the simulation
code we will decrease the working set by a least a page. This
Wwill make up for the extra page fault caused by splitting the
reference name manager and address spacé manager apart. The
increase in working set due to splitting apart the known segment
table cannot 1in itself be avoided. However, this increase in
working set is only on the order of a half of a page and is

independent of the combined size of the new data bases.

-89-



We have not really put much effort into the performance
arguments above, Qe feel that £h¢ performance data which we have
reported above is aot.'iﬁwfact, a good measure of the performance
of a full implementation of our desigr. We claim that there is a
hidden performance factor whigch ‘will easily’ swamp out the
performance effects we have been discussing. Fortunately, ﬁhis
hidden ;perfornancé factor ia in our faver, The effeet to which
we are alluding will not be seen immediately but will slowly
assert itself. This effect has te do witbi@he,grédual conversion
of major supervisaqr and user programs to use segment numbers as
directory ~spec1£iehs. - 3ince pathname resolution ‘is fairly
expensive (even when find_ is given a pathname - segment number
associative memory), the use ~of segmant ﬁuﬁb%ps as directory
specifiers will save an~avarage:yrooeawaajautsﬁdhtialamount'df

computation.

-90-



We have argued that referehce‘namefﬁahagéﬁenilneed"\hbf
be supported by the security kernel of é computing utility. 1In
particular, we have demonstrated a transformation on the Multics
system that removes refarenee*némefmanigéhéﬁt“ffom7its secﬁfiti
kernel. Our deaign has.Purehepssimﬁiifiéd*thé}ﬁMUTtiés“'seéuﬁiéy
kernel by allowing directories t8 b8 inftfated ‘outside of ring
zero, and removing the canoeptlof»a*étcrigeEEySEém'link from ring-
zerc, In the process, we have répafﬁeﬁtéﬁ‘inﬁéféﬂﬁ‘seéﬁritwaiéﬁv
in the current Multics design that allowed  processes to deteot
the existence of objects in the storage systeh hiérarchy to which
they had no access. This flak~resﬁ§¥éd“fr65’havihg insufficient
access control on links and from ring zebo‘s fallure to terminate:
undetectable directories. Finally, we have- providad a solution
to ‘the problem of clearing find 's pathname aSSOciative memory
when a directory is renamed. . - S -

We have used a-technique iﬁQOUﬁ'reaésignféf the Multicé
system that we feel deserVQS‘*Special“*mentidﬁ._ "This techhiqﬁé
involves construeting a careful lie to maintain the éééufityvof a
piece of data. .In our ocase, we*donSﬁrdcté&lé"éécdrity kernel
that lies about the existence of a directory until the caller
proves its right to know of the existence of thé*difectory. This

lie, which was actually quite easy to maintain, prevents a

-G1-



process from detecting directories that should be undetectable by
pretending that all possible pathnames correspond to an existing
directory unless the process has sufficient access to the object

specified by the pathname to prove otherwise.

We’havelimplgupnteg,and t@&tﬁd;&hﬁ»key:~points "of our
design. = This implementation . has shown that our design is both
simpler and more efficient than Multies 24.2.:. More details of
our design than were presented in the body of the thesis may be
foﬁhd in the appendices that -follow. In.particular; appendix H
piesents the a§tqal programs of the address space manager

d%signed in this thesis.

In conclusion, we would lxkg'to}noie three observations
we made while designing a new address space manager for Mdltics.
First, our address space. manager, which is: far simpler than the
current Multics address space manager,  plso 1is more efficient
than ﬁhe current address space hanager.ﬁ;ihe complexity of the
current addreas spéce manager cost Multies both space and
performance. (One is tempted to believe that, in general,
complexity aned to improve  performance is frequently
counterproductive.) Second, because Multics  is an existing
system, the functionality and use patterns of the Multics address
Space manager were thoroughly understood :uh§§~=we ‘began our
re:éarch. A large part of the simplification achieved is the

direct result of insight: extracted by observing the existing

-92-




implementation of these mechanisms. Finally, we noticed an
impressive threshold effect. As our design progressed it got
simpler and simpler. At a certain point, when our design was
simple enough so that all of the relevant details of the design
could be considered simultaneously, our design underwent a
further drastic simplification. This simplification was only
discovered when the mechanism became simple enough and small

enough to be kept in the head of one designer all at one time.

-93-



LIRSS

~The main  data base for the Multies system 24.2 ring
zero;address~andgre£arencevnane mansger- is the Known Segment
Iable. -.whef.Esx;ia%aaﬁetupvaeisaf,ﬁiﬁghxeﬁeiﬁégment;‘\ngiééily'
it contains three items. F&Bat; 1t contains ‘an array of KST
Entries. KS?Es are . iad&x#é- by segmént nusiber and contain all
per-process infornation necessary for ‘the proper care and feeding
of the segment or directory associated with the indexing segment
number. Secoaﬂ;:itrcontains a haah cpded napping from the space
of Unique Inentifiers 6h£o the Space of s&gmeﬁt numbers, or
equivalentlyvtue.sﬁécé of KSTEs. This mapping'provides the means
of locating vthe KSTE of an already initiated segment should it
subsequently be initiated by a different name. Third, it
contains a hasn aoded mapping from the space of names onto the
space of segment numbers. This assaciation is mainly of wuse to
the dynamic linking mechanism. The current contents of a KSTE

apd their major usages are given in the following table,



KSTE Field

forward pointer,
backward pointer

unique identifier

name pointer

inferior count

‘parent segment number

gntry offset

directory switch

- .Use

These pointers are used to chain
the KSTE onto 'a 1ist’ of free KSTEs
when it is not in use,

The unique identifier of the
segment “'is ussd " to validate UID
hash searches and to properly
identify the corresponding
directory entry after an on-line’
salvage.

This pointer chains together a list_
of the reference names associated
with #this segment or directory.
Stored with each. reference name is
the number of the rink in’ uhich the”
nam~ ‘@ known. :

The inferior count records “the
number. of inferiors of a directory,

“‘that'are in the process' address

space,  This information is used to
prevent - a directory from being ,
terminated while it has 'known' ‘sons.,

This ‘entry recOrds the segment
number: of this segment's parent.

«It 1s’used at segment fault time to
‘help: ~ locate this segment's

directory entry. It also is used.
to translate sognent ‘“fumbers ‘into
pathntﬁes.

‘This ‘entry, which records the

offset of this segment's directory
entry within its parent, is used in
conjuction with  parent segment
number to locate the segment's
directory entry.

This flag, which is set to indicate
that the segment implements a
directory object, is used to
Special case access setting for
directories at segment fault time.

-95-



Our redesigned KST has been simplified and contains only two

components: a KSTE array, and a UID hash table. The contents of

each KSTE and their major uses are summarized below.

KSTE field

forward pointer,
backward pointer

unique identifier

inferior count

entry pointer

directory switchf-

rings

highest detectable ring

Use

Used to thread KSTE onto free or
hash elass list as required.

Unehanged (a phoney directory will

‘have a uld = 0).

Unchanged.

A peinter to the directory entry

for this segment.
Unchanged.

An eight bit field  containing one
bit.  per ring. Whenever ring i has
this segment number initiated then
bit 1 of this field is on.

. A number that specifies the highest
-ring in which this process has

established its right to know of

- -the existence of this direectory.

~96-




The proposed ring zero address ‘space marnager interface is as

follows.

initiate_ (dirsegno,ename,dirsw,link,segnd,code)

dirsegno segment number of the parent (input)_

ename entry name of target (imput)
dirsw ~directory switch (input)

link © 1ink (output) - ;
segno segment number of target (output)
code status code (output)

possible status code values'

error_table_¢$segknown --- segment already known to process

error_ “table _$invalidsegno --- parent is not a directory

error_ table _$noinfo ---,insufficient access to return any
information

error_ table _$nrmkst --- no more room in known segment table

error_table_$no_entry --i entry does not exist

error_ “table $wrong_type -=-- entry 1is of the wrong type

error_table_$1link --- entry 1s a link

terninate_(segno,code)

!

segno segment number to be terminated(input)
code see #above: .

possible status code values: .

error_table_$invalidsegno --- segment number is not bound to
an object

error_table_¢$infent_non_zero --- can't terminate due to
active inferiors

error_table_$known_in_other_rings --- can't terminate due to
segment number being used in other
rings _

-97-



APRENRIX.D.
Examplg -

To help clarify the ideas. presented in this thesis,
let us consider the following scenario in which a process tries
to initiate the segment »>a>bd>c>d>e>f in ring four. We will
assume that directory e and segment £ do not exist and that the
process has no accéssato a, b or d, and append permission to ¢ in
rings zero through four.  We have pig3§§h£d below a
representation 1of'this path through bheﬁh;gia%éhy along with thé

process' access rights to each object inin&nstﬁéur;s

"root" <e= stétus‘
' ’ L
{== null
(== null

<-- append

) T - ~

(== nuii:i

To simplify mattérs,we will ignore the existence ‘6£ the outer
ring reference néme manager and we will assume that we are
operating in a vibgin envirbnment. What fol;oh#uig'how the. outer

ring find_ would proceed in this case.

-

-98-



step

step

step

step

step

step

step

step

call initiate_(o;""}1711nk}segnq_o£_root,eode)

The root directory will be initiated, its detectable
field in the KSTE will be set to four, and a status
code of zero will be returned. (all processes have
status permiasion tq the roat .directory) @

call . PSS RS I TR C A NEETIE N .

initiaté;(segnb_ofﬁroot;"a",1,link,segno_of_a,code) )
The diﬁécfory';ﬁiii”bé'1ﬁifléﬁga;”i£s‘déiéctable field
in the KSTE will. be. set to.four, end a:status: code - of

zero will be returned.

11 1ﬁitiate_(sé§36_d£_é,as";i;iiaﬁ;gegnb;bf;b,codé)k

‘The directory will be initiated , its detectable field

in the KSTE will be set to.gero, and .tha. status code
noinfo will be returned. \ '

_'11”initiéte;(segno;éf;b;“é",1tiink:éégh6.of;c,code)

“The directory will'be initiated, its detectable field

in the KSTE wil] .be set to four, and 8 zero status codé

will be ‘returnéd. In = addition this 4initiation
establishes the process' right.to.gnoy.of .the. existence.

of ‘superior directories at ileast in rings zero through

four. This is reflected, in this.case, by setting the -

- detectable field in the KSTE of >a>b to four.

call'1niiiéte_(segﬁo;d£_é,ﬁd5;1;ifhk;segdo;ot_d;che)
The directory d will be initiated, its detectable field
in the KSTE will be set to four, and & zero status code

‘will be returmed., ’

call initiate;TSeghd_of;d;“B%,1}iihk}éegnb_bﬂ_e,eode)
The non existent directory e will be assigned a KSTE
which will be marked as phoney and the status code
noinfo will be returned. o

call 1n1t1ate_(segno_oﬂ;e,"r",0,11nk,sggno_of_f,code)

No KSTE will be assigned and the status code noinfo
will be returned.

call terminate_(segno_of_e,code)

The segment number assigned to e will be released on
the grounds that e may not really exist.

-99-




APPENDIX E

In this appendix we summarize comparison déta between
the size of the Huitica system zu.zraecurity,kernelfand the size
of our proposed Hulticg»seeurity'karnpi.,”Hevhave only included
déta fob the major nfogréms that’wﬁrglaffkbted by our design. As
a basic measure of the size of a procedure we have chosen the
- number of words of text in its Multics object code module. This
corresponds roughly tovthé number pf»machine 1nstructions in the
module. We notice that in most cases the procedures in our
systém are markédiyvsmaller then” the;t_ eéunterparts in system
24.2. Our reducticn‘ of;fthe sgcurigﬁ‘kegnel by 3345 words or
about two and a half per cene'may\ndpfggpé¢r apectacuiér, but the
reduction in size«éf the addngss'gﬁaegﬁmgnaggr jis,‘Seventy-seven
per cent. This has.substantiélly reduggd the complexity of the
security kennel.‘,The reason wé can make thiskcl§1m~is.that while
the reference néme‘manager-in aystemféﬂ}zfia not;that large, it

is complex far out of proporpion to its size.

-100-



old procedure

find_
makeknown
kstsrch
kst_man
makeunknown
initialize_kst

initiate

kst_entry_ check

size new procedure
791 128 find_entry
732 - 164 makeknown_
440 103 kstsrch
45 34 get_kstep
1044 123 terminate_
667 82 initialize_kst
698 288 initiate_
112 88 kste_info
84 kste
86 validate_segno
4529 1184

-101-



In order to measure the change in overall performance
between our system and Multics system 24,2, we developed a
special benchmark program. This - benchmark nas designed to
evaluate only the most eommonly'nsed features thnt-ne nodified in
our design: segment initiation, reference name management and
segment termination. Specifically, our benchmark called the old
ring zero initiation interfaee (1) to initiate a segment and give
it a reference name. It then used the terminate by segment'
number primitive "of the old interfaee to terminate the segment
and unbind the reference name.i This ,was repeated one hundred
times. The virtual cpu time in microseconds to complete the
benchmark was then divided by one hundred to obtain a normalized
'performance timing datum. The total number of page faults for

the run was also recorded.

~ The benchmarks for both systems were run on December
10, 1974 within ten -minutes of each other on a dedicated
computer. The standard Multics system used was designated as
Multics system 24.2. Our test system was identical to system
24,2 except‘askit:implemented our design. Three runs were made
on each system.i The first run served only‘to cause dynamic

linking to occur and to bring the pages that our benchmark

(1) The old ring zero interfaces were simulated in our system.

~-102-



touches 1into primary memory. The!a#eond run, which took no page
faults, was us%d’t°a9b$iin5Qurxziﬁias;33&335(4555Mu1tics syétem
24.2 averaged 11002 microseconds for each iteration of our
benchmark. Our test implementation was aetuaiiy seven per cent
faster, taking 10226:microseconds: pep inteépation. ‘The final run
was made after the contents of primady-memory wéré 'flushed. THIS
run established .the  size of the workfag seét of our benchmark
since each page touched while running our -‘benéhimark produced a
missing page fault. The wdrking set of our benchmark in Multics
24.2 was five péges. Our. test .implementatidn had a working set

of seven pages.

(1) Prior testing had shown that multiple runs of the benchmark,
under identical conditions, produced times within one hundredth
of one per cent of each other. As a result one timing run was
all that was required.

-103-



This ’appendix lists briefly the changes we have made
iﬁ the ring zero interface of‘.Huinie;« system 24.2, We havev
excluded fron«tﬁigdappendix the changes we have made to the ring
zero address,apade;ntnnga &atgrfﬁee as these .changes have  been

documented in appendix C.

hes_$chname_file
hes_¢$fs_get_path_name
hes_$delentry_file
hes_$fs_get_ref_name
hes_$fs_get_seg_ptr
hes_¢$status_minf
hes_$terminate_file
hes_$terminate_name
hcs_¢$terminate_noname
hes_$truncate_file
hes_$set_be

~-104-



hes $add acl entries 1
hes_$add dir _acl éntries
hes_$add_dir iael- entrtes
hes_$add_ iacTe“eﬁtrigswj“
hes_$del_dir_tree ™ -

hes $delete acl _entriés
hes_$detate dir- a&i;eggrlgs

hes_$deleta dif {ael.
hes sdeléte fdéfe
hes_$gét _atthoe ™
hes_$get_be_author
hes_$get_ dir _ring brackets
hes_$get_max_length
hes_$get_ .ring_brackets
hes_$get_safety sw

hes $set user_effmode

hes SIist acl

hes_ _$1ist_dir _acl

hes $list dir iacl

hes $list inacl

hes $quota move

hes $rep1ace acl

hes $replace dir_acl

hes $rep1aee dir inacl
hcs_$replace_inacl
hes_$set_copysw

hes sset dir ring_bracketa
hes_$set_max _length

hes $status
hcs_tstatus_long
hphcs_$add_acl_entries:
hphes_s$add_ dir_ _acl_entries
hphcs_ $de1ete acl entries
hphes_ $delete dir acl_entries.
hphcs $vep1aee acl
hphes_$replace_dir_acl
hphes_$set_act

hphes_ $set auth
hphcs_$set_bc_auth
hphes_$set_dates
hphes_$set_dir_ring_brackets
hphes_$set_ _ring_brackets
hphes_¢$status _backup_info

@fjﬁi‘i.es ‘
_eftricy”

-105~



hes, $append branch
hes_s$append_branchx
hes, $appead link

~ hes_ Qqu@tqmgnt
hes_$star_
hes_$star_ list_

hphes $quota reloaé |

hpagg_tquqta..&et
hph¢s_$aalvage dir
hphéa star_no_acc_ck

-106- .



We - have claimed that the address B3pace mahager we
designed is simple, small and easy tb*c%?%i?yliin substantiate
this claim, we are including in this appendix the source code of
our address Space manager for the reader's' perusal. These
programs differ from the actual programs that ran in our trial

Multics system only in a few minor details. (1)

We will divide this appendix into three sections. The
first section contains a declération for the KST. This
declaration is used by programs that contain aikﬂtinclude kst;"
statement. The second section‘cohtains the PL)Ifsourde programs
that constitute the address Space manager, Finally, the third
section describes the calling seéuence and 'fUneﬁionality of

system modules called by the programs presented in section two.

The baseno and ptr PL/I builtin functions used in the
programs in this appendix are non-standard PL/I‘fuﬂctions used in
Multics to manipulate pointers. A Muitics pointer'may be viewed
as a pair of integer values. The first compbnent'of a polinter is
interpreted as a segment number by the Multiésvhardware. The
Second component of a pointer is interpreted as a word offset

within the segment specified by the first component. The baseno

(1) See appendix I.

-107-



builtin function constructs a pointer to the first word in a
segment given a segment number for that segment. The ptr builtin
function constructs a pointer from the segment number in its
first argument, which must be a pointer, and the integer offset

which is its second argument.

-108-



/s J9TJTIUSPT anbrun

/s KJ3ue JTIP 03 uun

A :ﬁ

/s 3unod acm:@on uoas&uﬂ«

q pasnun
/s UOYIMS omh 03094 TP
/s mc

Td oapm»ooauv e an
/w UMOUY ST juaWBSS STUI YOTUM UT €
/s 918X Jo aaqunu »noluon

/s J493utod T1aJ pJaemyorq
/u J993uTod 194 pJBRMIO]

/w UOT3BJIRTO9pP Lujue ICY
/s AJjue 04 Jdsqutod

/e 91q®3 ysey pIn

ISTT 9dJy
/s 38X Aq paqyJosep Jaqunu »:onmmm 1sayf Ty
/s 351 AQ pPaqTJOSap Jaqunu jusmBes 353MOT

/s UOT3eJRTO9D J3peay SN
/s jusuias 38}

“

a/

.uo:uumukmemv un PT

Appv a«n pOXT] jungoJuy
nMV “139.-Resnun

1) 31q Asayp

Amv UTq PIXT} Jpy

‘(8) 31q sButd

‘(LL) utq paxyJ ouBes

L) 319 dq 2
mmvv»ﬂa dy NV

‘paudire (daysy) paseq aisy | Top
taqd daqsy Top

.mumx qmﬁa (Basyyty: mun:oav.hpuco 2
Treun Ampw uﬁn Aan £

2L yse ﬁs 2
‘paudtreun Am_v uﬂa dq ‘dJ) €

ISIT 994] 2

‘urq paxyj Besysty ¢

utq uuxwm dasmot 2

‘(($8as738%) uppe) peseq paudyre 38} | Top

{3x9 ¢8as 98y TOP
dTId JANTONI NIDIE &/

N NNNNN N N

/8 = - - 11d ToUT 38y - - -

-109-



u»auwwwaﬁawu«na.uco
Lo b ‘PUs

: : _ ' = ouSee (]
H(((F) &aqua‘qen) Jppe ! (3STT 903" 3sX) Jppe) ul

498X epnyout §

[3 ¢ 9
. $(a3d ‘agd) Aajue qxe ur¢peIJYR
‘(Li) uIQ POXTJ (T ‘Fesudry «wun:Oﬁv 1P
, | . . /s
38} Aq paqiJosep Jequnu judwdes qsaydiy - - - mp.w ulq pext) PBasysyy
15X £q pPaquOsap Jaqunu JusmBes 38IMOT ~ - - (i) UTQ poXTJ BasmoT

_ {(BasydTy ‘Besmor) 1SN 9ZTTETATUT JTeO :FHVSH
I8} UTBJTA B PTING O3 UOTYBZITRTATUT $S300ud Butanp payred S 38X 9ZTTeTITUT

s/

{(BasydTy ‘Besmor) oouad
138 IZTTBTITUT

-110-



’T@r“\;&s v: £ e

S b

‘pousTTE (9€) 37Q ‘(LL) UTIQ PaxIJ cc:wﬁaa (2t) avyd nM»_

fasy uoswocﬂu

£((SE) UTQ PAXTI ‘(1) IFQ ‘(41) UJq PexLy ‘(1) 319 ‘paudire (9f) as; .uumw aguao x3

3} Sa3ue 3 on:c« uvn 93ep’ ww»
q pext Ade: J8YD *dad
=Mn woxﬁwv gwgo oucapnewmun Bt

Amm” :ap PaxTs Ixa Awa»a;mcogzmMWNa &o&uo

(a3d) suanida ((Li) UTg paxy
( m mmw

- - MH» a1qe] JouJad ‘aype —J0JJdd ‘oudas ITBAU uoauo
‘AajqusToug a1qe] JoJdJ3 ‘IENWIUEITQRY JOJJIR c:o:x on admnaa &eanc oucﬂo uu aoaawv

. L) aTuF 2 M»rv uzq m uﬁu AT
¢ uy 9139y
| a«~.wﬁaﬁ=ﬁﬁw«uu
(Q) aruy una-an

“(a304) 93 n.~mw

1op

Top

/s ad43 Buoan wmn uﬂ aaeﬁno aﬁﬁ&&u —— wqmanwsm RLam
o»cwaﬂv e j0u 87 jusJged —-- uﬂvnaoc . wlOa JO
Lonasc unonwcn JuaJed PITRAUT —w= mWomva QR MO IS
MIT € ST K1y ity

I€TX9 q0U £30p LIJUD =-- Aajua oug
mmp JUSWIaS UMOUYN UT WOOJ dJOW OUu — A

. ik PRy FRNENR;

COﬁumncoucﬁ Ue uJaniad 03 $8I00B JUITOIJJNSUT ——= O, £ ‘10115
ssao0udd 03 cso:x Apeout® (LJIORDSITP J0) willA_Mq\, R PR
.nasﬁamwuﬂamw; ek, Hnannon

- (3ndano ovoo‘naucan -r= 1y
(3nd3no) aw&nwpﬁuo Lﬂnwza FUIMPIR w o mv ﬂpg aww
(3nd3no) um«ﬁ - o Myl
(anduy) A103084tp ® § ud JT. &un e «. q :ngﬁu
mu:an ) @3eI3TUL ow A307094Tp Ut AJd4ue’ JO ewmeu e (
(3ndut) ouoon«v jusJded JO J3qQEUNU JUINBIE ~~~ npwvcﬁn%mwwuu o un

$(9po0 ‘oufas ‘NUTT ‘msJuIp ‘sweua .ocmoaav IBIITUT. ]8O .n wa
*90ovds ssaappe numoonn Y3 o3jut 309(qo ayy dew Aryenjoe 03 parred €1~ uMouy
uayy prreA sy jsanbag ay3 JI *uojysanb uy 303(qo 3y3 @3®I3ITUT 03 34 ﬁ&
§ JOTTBD €3] S3IBPT[BA ATUO a[npouw sTyj °oduds esaappe _8s900ud ® ojur
peddem aq 03 309{qo ue sMoTTE zOﬂz: 9388 0u4az BUtJd Y3 §7° 93BTITUT <(=--

s/

! (9pooTe ‘ouBasTe ‘NUTT B ‘NSJTp B ‘oweus e ‘oudende) ooad :T93eT3TUT




.vaoo .mAAﬁaauoom .quuun .zn&ﬂv ‘uﬂsnéacv

.MwnhpIMconz
3maﬁv<wA0powuﬂvu

.Ax:aﬂa wanmu no&nvv muoo :n:ums

{ (AaquoToug a1qey . J0JdJdD ) mvoo

. . Mﬁ.
¢(91qyssaooe_ ‘pIn mwcon (

£(apoo ‘urt ‘de ‘pIn ‘s
. f (03
.Amﬁnﬂm»wOOﬁc PIN

‘ (JTpeR3oU$ BIqR
.ﬁocwmmvwam>:ﬂ« a1qey Jo

WYy 9Jueyo qued JITIBO JNO /
/e /s S3jusmniuge qndus hnoo "\

{Tegeratur pud

.cuswoa tJITT8A 0 uJaniad
uaurw 134 pud
.uwﬂﬁuo o¢ uog 03 om

baﬁﬁmuagu ‘pnt .af NI T
Mnmu JOJJd) 9POT UJM3IJ: A
| MSJID 3 Aucoauon

LOANuEL =

1=
:n:aon Hﬂso cwn» htucuuﬂc mhwumm

nuvouw -9P0S™ =n=~ou Hﬂua muﬁa
ﬂ000ﬂ ﬁﬁﬂ_ ,0ﬁ
R R
i :mwwu; u,

| ouguo: ownau TJ04J9 = BD
dAq ‘omeus .an Juy acaaanjw ﬂ
top asTe

:monﬁ 9Tqey noguov 8poo”_uJnyad TIeO ISTR
wcocn Aonwonav 43deseq) N¥W T1eo uayj ,
MEJTD JT USYY
PIN Asuoyd =.pr-asn JT
9 JOJJd) IPOD cnsuwn T1Ee0 uayjy :maﬁv 95N IJ1T
JJ3) 8poo udn3ad TTED uayy M ) 1inu = deasd J3
.Aocmwnnv ssnuygousa lwnwmv dojsy

et - A

J MBJ

uocmwnwm ® = ouBasd
/s

“ W

-112<



H(SE) WIE pakES T
¢ d ¢ 'y
Amu .Auwmv Mww
“1e)

- “(SE) BTA POXTJ X3 (OJUTOU$ TR, JOMIB. ‘UAQ

(andut) quaged s3T J0 309fQq0 Y3 07 S0

LU taex qenouty

~ tuTiTInG (438

€ (1 g paaty

s/

qns ,m,ﬁmﬁ, .35.« ‘ousseq) TP
, M_.. X ,,,,mi.u?m«oﬁx

37q ‘pauBy u&%w uﬁma %uﬂmo%mm

nyea ((Ll) uiq BeXiz) Kasus: yme degsy qe
T pexts w suingea () Laame: 3 aedirelit op
R SRR R ,u nﬁm g
5 Hewty N o
44} wpavpexty epoo
(,,Mh»w@aﬁ‘*oaaawunoun

6 “UIQ- poxt) ouBes
(44) AR

‘pauBtTR(9f) in -PYRFAIqud

sv-4agd:de  Top
/s

(andqno) apoo sn3eys === Ammwcﬂn PaX1}- 8poo

o8 swy nn»oo&nomwoaoo —— Mw

(3nd3no) 30afqo Muw 03 puEnoq Jaqunu qu

(3

11Q 9TQqIssa00R

$ --= (Ll)UTq paxy] oules

¥) AJ0308JTp ® &1 908{q0 JI 198 -~ (1)37q_ssayp

(andut) 308fqo ayy Jo JOTJTIuUapPT onbyun ~-- poudiTe Mmmmwmn pPIN LJa3us

(3ndut) youeuaq € 309(qo 8y3 03 J

-——= aqd do

{ (3poo woﬁnﬁnnuooc ‘oufies ‘meJTp ‘pin Aaque ‘de TumouNdNem TR0 :FHVSH

*saanpeooad Buy
pessed squamnBae jeyy aJns
*JuTynoaxa €T 3T ATTYA parJIpow o

J J83N0 03 ITQISE
9q 03 SJITTEO 3
q q0U [IIM Sjuswn

B J0U 8J% ~umouxeNew 09
m&nvhﬂsuon uotTydunsse STY]
uuznuﬂnuﬂuwnuuolannn

Jeyzany 91 .uczn«mnnunc usaq Apeedie sey perJioasds jusmBes ayj 93BIATUT

03 YBTJ _SE5800J
§37 O3UT (mMsITp Aq patJyoads)

AJ0%034Tp JO 3Jud

3Y3 3BY3 Sauwnsse I[npow STYJ 9oeds SEIJIPPR § JOTTEO

o¢ e sdew Tumouexbm (~--
s/

$(9pod ‘31qyssa00R ‘OUBIE ‘MSJITP ‘pIN Adqus .nmvlbonn

T uMouNadNEw




(L

/s SJOoTJadne Jo apy ajepdn 5/
/s Buta gsdoad uy umouy se aysy NJew g/

/w 3ISY UT TTTIJ w/

LI EA
/@ UNOD JOTJBJUT §_ 3uaaed ucouoaunmﬂc\

/s SSETO UsSEey O3UT FISY PesJy3 a\
/s TISY MdU B 33BO0TTE ISNW 5/

/a JISH 37qe310939p ® sey Apesare 309{q0 g/

¢ (dhajue-3q8x)

{l+qunodjur" ownquo dagsxd =

{Tuncunsiee: pue

é_ﬁ
ouaseq) ueuﬁuw doysy 108 = deysn yeus
() TInu = diajue’ e 38N FY
*8uta = oa-x_

{(JpU-9agsn ¢ Buta) oﬁm op :vp»
‘Quia = () ‘{+BuF- .uwaﬁ.s.a% .53%

‘pIn Aaqua = pr-eqs
ﬁanb n»&p:wavunm

qUNOD nﬁ a3
) ouaseq) vuxquv

a

.Aaopnx .nnnuaav uvnmu,ﬁﬁwo

fuanysd udyy o 8pod JT

£(9poo_‘dagsy .ocmvnw a>gonmgwu»nx ERE D)

foJutoud BTqey JOJJd = 2pOD taysg s1qyssadde, JY
fop 870
{pus

touBas-ajsN = oulss

funounBase¢ aTqe] JOJJd = JPOO
«+ 0P Uayj

) TInu = da3sy JT

{(deysy ‘dysey ‘arqyssadoe ‘pn »m»cowosuununx ma
1

$() 998¢19AaT

/s

—1’1'4-}-



e s/
o “mmx”ovsaocm )
‘uTaTINg (J3Sqns ‘TTnu ‘paxtl ‘ousseq) Top
e e Co H(GE) UTq PAXTS 9%e qUISEPITEAUTE ATq¥L douds ToO
“Ammv‘nwn POXTJ X3 Ao&omlcoq1u=ou=ﬁ&l@a%ﬂ%kuowwmvmw hﬁwmw‘muwlnwwflo ;MWWMM&MH&OLucV Mow
‘ (aady.-cutnges ((L1) WY POxT) Ls

T

B

. o m:, ..,' eoﬂﬁﬂ .Hov
f(LL) mwm%ai% ouBes
AL .Q..; oo . ATy % —
s(GE) uIq pexi) epod_e
“{ mm nﬁﬁwuﬁﬁauhbhwon ® 10D
R R ¢ e
sB8uTJd J3Y30 UT pssn Buraq Jaqunu juswFes 09 NP IJBUTWIIY 3 UBD --- SBUTJL JOG3o UL UMO!  OIQRY_JoJJd
S SJOTJIJUT SATIOR 03 3Np IJBUTWIVY 3 UBD —=— OJSZ UOU JUOJUT _oTqe)_JodJas
. 309({q0 ue 03 puNOq 30U ST JAQENU AUSWBIE =——- o:wonvﬁambnn a1qe] JoJJd
m iganTeA 3poo sn3ey8 ITqIssod
(3ndano) 8pod JoJddd ~ - - (GE) ulq pPaxXYJ 9pod
juamdas ay3- Jo Jaqunu JuaNbes - - - Mppwcﬁn paxt] ouldas
(8poo ‘ouBes) TajvutmJag TTEO :FQVSH
*8uta uotT309904d § JaTTeO 3Yy3 uy asn uy J9s8uof
Ou se pajJem ATaJauw ST FISY oyl °PajoauliodsTp 30u ST Jaqunu jusmBes
‘ ays3 :ouu ute3qo 30U Op SUOTITPUOD 3saYy JI °JusmnBJe YOS paAdasad ay3 4Aq
g PaTjTo8ds se Tood pPaAJ9sad JO 33JJ 3Y3 07 PAUINIII ST Jaqunu quomBas onwamnu
i punoq sB8M 3T yOTUM 03 3093fqo om» WOJJ poOj09uuoOSIp ATTe0184AUd ST Jaqunu juamlas
3Yyj uayj sBuUTJ JOaY30 AQ 38N UT 40U §T Jaqunu jusuBes Y3 pue sJI0TJ9JUT
ou 8®y FISN ay3 JI °punoq seM 3T YoTum 03 303fqo wm» WoJJ Jaqunu jusmBas ®
PutqQuUn 03 §53004d ® SMOTT® UYOTUM OJ8Z Butd Ojuf a3ed ayj $T “9jeuTWwIRy] (——-
‘ s/

i : {(apoo e ‘oulesTe) ooud :Te9qeuUTWISg

-115=



/s Tood 8aa3 ut 938} 37s0dasp 4/

/s UNOD JOTJIJUT &, jueJed JUSWRIOSP
/a OJ9Z UOU JUNOOJUT JT oaun«snwp u.cuo
/a BuTJ Jsyjoue UT 93BUTWISY 3 UED 5/

/s BUTJ STU3 UT uMmoudUn 3New

Te881 ST [IBO 9Jns ajew
/s W8Y3 om:mso UBD JOITEBO JNO O
/s Sausungus p:mcﬁ Jo sanTeAa Adoo

sqearRIey pus

wnua»eﬁ

.mvoo n:» uwuw

TuaN3ad

u 9
.Aaummv Tq poxt epoa” nu»x»q Top

snivae) smpe

LYY S

: {1=3unooJur 998 ¢~ dey + 3tnoo, i
.AA .Aatuﬁd 9918% ¢~ Qsﬂu: OCOQ& poxty) m&nE& ﬁ

/
' . , - .Mv uu:ﬂ
s/ {(oaeZ cOQJdcoucﬂ«voan 2 aohuﬁu

{ (8ButJd asyj0 uy umoung erqes hmhnmg
w =

4 =
a/ Qulu .Av u&ﬁﬂﬁbw Nﬂﬁh
{ (OUBISPTTRAUTS 91qe] J0JJdd) 3J0QE TTED UaYyy
() TTnu = @aysy Jt
/ { (ouBes) asnurgoulas ouuwAﬂlb = dajex

/

2 ua
(1 ‘1+8uta @»&ﬂ«g.@& w punnwu

L Bl
~

OMMMO oF

s3J0Qe

/s

~116~



‘youasqsy pus
fyogqum pus
$(Qu0u) uanjlag

[}

N .gu
$(Qulu) UINYBa UBYY Qu0, = (JPY - L ‘2 + Jpy ‘sPurd-a3sAn) J3sqns JI
- fupycesy = Jpy asTa
*(Buts ‘Jpy-eIsA) Xew = Jpy USY}
oﬁnﬁnnooou.mw

i (Buta =¢ Jpy-a3sy | wanﬁnncocmw 2 uﬂ,oanxsa;uﬂuﬂuﬂ

: . : <((1) 31q) suamiau () ooxd ‘yojem

Hignaau

0 Tina = deaay

o »Aau.a»nxu.no»nuw wwnnuuaouww
$(qO0u =, dj-e3ex) T}

]

*((((1 ‘useUPIN*3SX) UOTEUSWTP ‘(PTN) PIXTJ) POW) USEY PTN-3eX) Jppe. = de3ex o -
- tas opniopng
£((€) uiq pexyy) n:u:www,ﬁ~,»uwcmhwn«;wwwwwuuwﬁ
UT3TTINQ (UOTSUSMTP "powm_ ‘[inu uquxj umvv
‘aqd amm ‘ I
s u ] APy ‘Sura
(£) upg bolid {Ipd  vrd) =
‘PoUsTT® (gE) 31Q PTN TOP
/n

(andano) 1Tnu asy? punoy JT mamu:vv&ﬁwou ay3 o»‘&uanwog‘hlij_upa dagsy
. _ (Ind3no) pJoa pedJy3 SEBTD YS®Y Y3 03 JajuTed ---- a3d dysey
(andut) jueaed s37 40 308fqo ouu 03 §§8008 Aue SWY 92004 IYY JT 908 === ( H»ﬁnon«nnooom

(3Indut) Jo3 peyodgees 308{qo0 jo py enbjun ---- podBfre (9£)37q PIN
f(degex ‘dysey ‘oTqTeseds® ‘pIN)yodelsh 1ies
(e .»ouﬂnoamwua»a oa,ujuy. 343 Jo 308(q0

328483 3y} 03 §53008 SBY JBITRO 9yj JT ATuo Butyoywm Se Yons wy3TJOBY FUTYoI¥m Jaxwem B asn
uwmoo,sa&npnx,.nnoam»&rnonaow»o&n J0J AJ®SS909U 30U UIYM q09(q0 UR O SIP@INU quauBas
a1dy3Tnu ButuBysse jo asuadxs agy 3y ‘PajeTITUT Joqunu jJuduBas ayy aAvy Kew wcﬁ&f&b,;aa ou (¢
. PUB ‘ButJ s J9TTRO Y3 UT 9[qR30919D 8Q ISNW JIqUNU JuD ay3

‘(pIn £q pPatJTIuUSPT uownwcunno 3084400 Y3 03 punoq aq snum &wanWQacunuuu ayy (i

(9J8 JOqUNU JUeWBOS UGATS ® UJNYaJ 03 YoJasis) JOJ pautnba SUQT1FPUOd ayjf

‘punog aq yojew B TIMM mamu 9y3 03 punoq 309(q0 9y3 JO IDUSIELTXS 3U3 128318P 0} AUITJ €37
PaysTIqeIsd sey ssa00ad ayy JT ATuQ °*pJom pesdys nuuwo UYSey Y3 pue PaJysap . ayy o3
SJ33juTod SUIN}dJ pue BTQE3 YSEY JITJTIUSPT onbrun 1SN 6y4 E9UDIRIE YOJIBQIEN (---

s/
{(dagsy ‘dysey ‘aTqrssedoe ‘prn) ooud :yousysy




/% SUTBUD 9IBUTEISY 4/

$998) pue

. . _ fuanqad
t(deysy (38Y¥1 924J-q8)) JPPR) UT$PESJY] TTBO
touBos 9Aes = ouFos-ayey

$Qu0u = (938X) oadsun

"ocwnnaoun¢ = oullas” sAee

¢(dazexn) Lajue

fuanged

‘ 0 ﬁbg
unsoa;uann._unuﬁopuwmwnx
. aouumwwMMMMuax;uw,ﬂ>ww‘
(4379871 00y 35% .Mausv Ippe) u»m‘u,amwwx
fasmIug T TqRY JOLIR = apod
QuOu = 42T 0843 367 33
nAmvmo .noanxawocwanv Lajue
383 spntiouy §
£(GE) UTQ DPOXTJ 3X0 ISAMIUGTOTQNY JOJJS  TOP
‘UTATING. (o9dsun ‘u3d ‘Jppe) Top

) uﬁwuam £a3ue 3Xe 3nofpusdys
(a3d ‘a3d) AJque 3xe uigpwsays Top

* (L1) utq paxTy (QuBasaAws ‘oules)
(4€) UTQ PaxXTy 9pod” TOp

19043

SIAJISAL

(and :ovgsnaﬂv_auanx ay3 03 uduT , wwm
(andano) aaqunu ucveaun | = = {Li) urq pexyJ ot
 $(deqEX) souygesy [I¥O OV
1T aa3 Mﬂa Qo3u0 v»nmﬂhsu s o»nmuomm

‘ « ; /
3ndyno) IPOd JOUIR - - - u 8x ovom
.W.MAJo&uth s
a8

- n
Jajutod LAuqua 48} ® no>ﬂw JoqENu JuamBes B SISUJ I3IJ$08R (~-~

[ ] $ :
: (epoo‘dajex‘ouBas) sAdasaagRIEN TTED
1STT 994] 3Y3 WOJJ 938N © muomguxo w>nmnog opnxmmmmm

sJdoqunu quawdas BuTAJasad pue Bulaady JO suoT3oUNy Sy3 saprAoad 93y

s/
{() ooud :a38y

~-118-



f{dagsy 983 pus
{(((ou3ss) Aujque-qsy) Jppe) uJIn3ad
umﬁv TInd) uanjsaa usyy
JasyBty- 48y ¢ oulss ! H9sSMOT*3S¥ > ouBes JT
SUuT3TING (Jppe ‘{Inu)
‘(LL) utq paxIJ oudss Top

{18 apnTout ¢
/%

mwwm e 03 J9jurod ---- uad dagysy (7
Jaqunu juswsas syj3 ---- (,|)UTq paxtJ oudas MP
{(oulas) daysy 188 = daqsy :a9vS(
dLSY P93EBTOOSSR 9yl 07 J83uUTOod B 03UT Jaqunu quowdss B S94BISUBI] dogsy 388 «¢---
&/

{(J4ad) suuanjzaoua (ouBas) ooud :dsysq 398

-119-



fouBas 39EpPTTEA PUD

. f1eAd pua
$(de3sy) . wamjad.
peulisseun J
Tnu £ ddreR

$(() TTnu) uanyad udy3 (qu0u = (dAajuecagsy) ooawwszw i
dogey . .

£(() TTNU) wmyda qon»,ﬁwcm

f(ouBes) dagey 308 .3 e .
RPN - FOXITK - o
S meww;w»w; BESRTCEIY N
£ (aad) nmwummeAmcwnw fajus. tosnuTt
!((Quiu) TOAS) Udnged
$(aad) ummmuwmwamnuuwM.uhwuﬂ . ieedl

‘mamunxuvw:womﬁm.
R - fupTing (oedsun ‘irnu) Top
m.aguav_wﬁnaoa A:.: uﬂn_,vunw& »uumo ‘axe degen 308 Top
t(Ll) UTQ Paxtj ouBes Top

o o /s

(andqno) daaex ayg 03 Jejuyod = ~ - aqd dogsy

(3ndut) JegENU JUIWBSE ~ - ~ (L]) UTQ PaxXTJ oudes

_ mvonwwmw ssnutgoudas eqepTrEA = de3sxy :@EDYSH

109 qo ue 07 punog ST Jaqunu qusmBIs Y3 2vUL 09 SHOSYD IENUTOUBIE 298PTICA (=~=

umocuonw so.Jgoudos oqupyTea = dejsy :3HVSH
wwnumﬁnwnascucaawonunuunueuOpmxoonooosu»oﬁwu»vumvﬁﬁm>Annn

*paudangaJd ST Jaqurod TTNU 9Y] USY3 UTBJQO 30U SBOP UOTRTPUOD PIjBIS 3yl JI

*SPTIOY SUOTFFPUOT JEBTNOTIJIed ® JT 99§64 PIajRIOOSSE onw 07 Jajurod B suanjaJd LIjue yoeg
SUOT3OUNJ UOTIEPTTRA 336} TnJasn ATTeJaud8 sapraoad ouBes s4epITeEA

Y4

‘() oouad
tousdsT93epITRA

-120-



.oac« 9783 puo
.ah us h d ah :m Aa il e
2983301 oc«n nuco ouBasy: Auqus* Jd u ca¢ o8 jue
A 33 n qQ ( q 3 »nxy w uonuquznc a .owwoav »uw“u
, .»on«uo youwvaq 93 epdn
fuanyad
{0 = apoo
.n&&uaw ELT ] :onnonuan
‘{pue
‘. fuangeu
- .hnaneoc» oandu JoJJa . =z omoo
- : 2 _ 0P ueyy
Av aﬂnﬁ = &»nocb aex J1
- :PTTe3eN. = pIn
: 2 i - ‘pus
.J .casvou S
.obmonu.mﬁgn.: NHDR« .uo.ruo = omoe
nu = nuaux a
aoaucnv au:nﬂ»ocuompwwmaﬁ~.> naﬂanx

) L a o w $98% apnIouTy -
SD s e e Hagd) suanied ((LL) @ woﬂd Kaqge asnuT$ouBeE 93uUPTIRA 0P
s (GE) aba mxrs e ﬂmgwcwon nmnaahwoauo L mmwavﬂﬁa»mwg 91qe3 Jodue) ToP

 tpeuBSyre n
«p 11 M“Mv MHD pPT

.vcnu«na (8t) 31q 398j J0 youwaq
na dyoueaq

‘(SE) uIq pexy) apoo
,AM,V utq pextJ oumwu ToP

/s

PR L8

ey

asnuzo ovoo ns» a nilummc«auo evoo
Auzan:ov ucouua cﬁ uooﬁno Jo soznbn umapwnwuw %m¢VA»ﬁw 98] Mmmanann
_ A m»@nasov Jajugod youedq =-——- a dgouruaq
_;nosnasnwa»ounno om» JO 401J33uepT en .nlul paudire ( uwncmas

(3ndut) 308fqe ay3 $0-asqunu 3u 8 -=== (L) =ﬁa

- 1(3983 30 gouvaq “ouses)’ »unuuo sonanp qauens«ou=dnwaau 1780 .uuqma

- *AJOJ08JTP U] UTUITA {ouwdq 9Y3 JO

Jo UOT4BO0T MaU ay3 309T30d 03 938 U3 UT Jejujod ogy sajepdn 3T

*£J03004TP ® UT AJqus UB DOAON SBY JOFRATES JUTTUO By}

Jey3 S80TI0U 37 usyM wogske o173 ou3 Aq POTT®O ST 3983J0 UOURIQ 938pdngojur o38N (~--

.onoo .nnocuan pPIn .onmun oJuy 918y TI®0 .mb«ﬂp

"YouBdq PaJISdp 3. m»uooa pue £107004Tp U0 aYy3 ¥o01 O3
vons ST UOTJEWJIOJUT STYL °‘Youedq € 300{qo 8y3 Jo sEJppe ayj3 Se [IoM sE
Jaqunu juawBss ® 03 punoq 399(qo dy3 JOo pIn ay3 SUJINQdJ OJUT 998N (-

s/
{(9poo ‘dyoueaq ‘pin ‘oulies) ooad :0JUT 938N

-121-




-—=> get_brahch_info

This file system routine is called by initiate_ to get
the attributes of a named entry in a directory. If the caller
has no access to the named object (if it exists) or to the parent
directory then the status code error_table_$noinfo is returned.
The reader should note that-get_branen_infq*must read the access
control 1list of the directory containing %he‘named entry if the
entry does not exist or if the .process has no access to the
entry. To locaté the access control 1list of the containing
directory, get_branch_info must call the kste_;pfqvmodule of - the
address space'.manager, a recursive inv&eation df the address
space manager.

Usagei call get_branch_info (psegno, ename, type, uid, ep, 1link,
code) ; » S ‘
psegno fixed bin (17) --- directory segment mnumber (input)
ename char (32) aligned --- pame of entry in directory (input)
type fixed bin (17) --- type of the object: (eutput)

0 -= no entry o SRR

1 -- segment

2 -- directory '

. 3 == link "~ '
uid bit (36) aligned --- unique identificr19f%obgect.(output)

ep pointer ---'pointer to the entry ofvtﬁawéiﬁec<f(ou§put)
tput -

link char(*) varying --- contents of the limk (ou
code fixed bin.(35)w-;; error code (Qvtput}-f i

-122~



~==> thread$in

This routine adds an element to a two way linked 1ist
of elements. The first word of each eYement contains the

necessary forward and backward pointers,

Usage: call thread$in (where, what);

where pointer --- pointer to an element in the list after which
the new element is to be threaded.ﬁ

what pointer --- pointer to the element to “be threaded into

the list.

-=-=> thread$out

This routine threads an element out of a two way linked

list built by thread$in.

Usage: call thread$out (what);

what pointer --- pointer to the element to be threaded out of
the list.

-==> level$get

This routine returns the validation level of the
calling procedure. In all cases considered in this thesis the
validation 1level of a process is equal to the number of the ring

in which the process was executing when it called into ring zero.

Usage: ring = level$get ();

ring fixed bin (3) --~ validation level of the process.

-123-




---> disconnect

This routine
process' address space
that segment number in

table.

Usage: call disconnect

segno fixed bin (17)

physically removes a segment number from a
by zeroing the segment descriptor word for

the process' virtual address translation

(segno);

--~ segment number to be disconnected.

~124-



In our discussion of the Multics address space manager
we omitted three mechanisms that it currently  supports. These
mechanisms, which are non-essential to our design, were omitted
to simplify our presentation 'and avoid confusionf In this
appendix we will briefly describe these mechanisms and show how

they fit into our design.

I.1 Reserved Switch

The Muitics initiation and termimation primitives take
a reserved switch argument. In the case of initiation, this
switch specifies, if set, that the caller wishes to specify what
Segment number to bind to the object .when it is initiated.
Naturally, ring zero must check that the caller has in fact
reserved the segment number. When the ring Zero initiation
primitive is called without the reserved switch 'set, then ring
zero chooses a segment number from a list-iuvmaintains of free
segment numbers. This segment number is: bourst to the object and
returned to thevcaller. In the case-of termination, the reserved
switch specifies whether the freed.  segment number is to be

eligible for assignment when a free: segment.number is needed.

-125-




The reserved switch must eclearly remain a protected
security kernel mechanism in our new address space manager. Were
this not the case, one protection domain could cause another
protection domain to malfunction by using a segment number that

the first protection domain had reserved.

I.2 Copy Switgh

During the process of 1initiating a segment, an
attribute in its directory entry called a copy switch is
examined. If the segment has the copy attribute, then a copy of
the segment is made and this copy is made accessible to the

process instead of the original.

We can use the mechanism of reflecting information out
to an outer ring by setting a status code to remove copy switch
processing from ring zero. This is possible since the current
initiation primitive takes an argument that allows a process to
bypass copy switch processing. Together with the fact that no
ring zero procedurés or data bases have their copy switch set,
this insures that the protection mechanisms of the system do not
depend upon thé segﬁent,copy on initiation facility. To take
advantage of this, our new initiate primitive will not process
the copy switch. Instead, it will always initiate the target

segment and return a status flag indicating whether or not the

segment's copy switch was set. The outer rings can then worry

~-126-




about creating a copy of the segment, terminating the original,
and returning the segment number of the eopy if the eopy switch
was set. This allews the eeneept of ;- edpy suitch to move out of

ring zero.

I.3 Insm:smuum_u

When a segment His initiated in the current Multics.
system, the address space nanager sets two switches,‘ called the
transparent usage switeh and. the trannparent modification switch,
in its KSTE. These switches determine whetner this process'
usage and modificatien of the sesméntx is to- be detectable to
other processes in the system. These transparency switches have
no influence upon our design exoepb»tht¥ 'in an- implementation of
our design (as in our test implementation) these switches would
be kept in the KSTE of a segment and the addness’ space manager
would retain the two lines of eode froa the o@nvenﬁ address space -

manager that sets these suitehes.

-127-




B1
C1
Ce

D1

D2
D3

F1

J1

I

L1

M1

M2

M3

Bensoussan, A., Clingen, C.T., and Daley, R.C., "The
Multics Virtual Memory:: Comcepts and Design," CACM 15,
5 (May 1972), pp. 308-318. N
Corbaté, F. J., J.H. Saltzer, and C.T. Clingen,
"Multies -- The First Seven Years," AFIPS Conf. Proc.
40 (1972 SJCC), AFIPS Press: Montvale, N.J.

Corbaté F.J., and Vyssotsky, V.A., "Introduction and

‘Overview of the Multics System," AFIPS Conf. Proc. 21

(1965 FJCC), Spartan Books: Washington, D.C.

Dijkstra E.W., "Complexity controlled by _hierarchical
ordering = of function .and -variability," Software
(P. Naur and B. Randell, eds.), NATO.

Scientific- Affairs Division:.  Brussels; January ¥96¢,

Dijkstra E.W., "The structure of the "THE" -

mzltipgqgranming, system,® “CACH 11, 5 (May 1968), pp.
341-346. ,

Dahl, 0.J., Dijkstra, E.W., and Hoare, C.A.R.,
arugtyred Programming, Academie Press: New York, N.Y.,
1972. _

Fabry, R.S., "Capability-Based Addressing," CACM 17, 7
(July 1974), pp. HO3<412, = RS

Janson, P.A., "Removing the Dynawic ‘Linker from ‘the
Security Kernel of a Computing Utility," MIT Project
MAC Technical Report TR-132y %974, ¢ S e

IBM, "IBM 0S Linkage Editor", IBM Systems Reference
Library, GC 28-6538, January 1972.

Liskov, B. H., "A design methodology for reliable

software  systems," AFIPS Conf. Proc. 41 (1972 FJcCC),
AFIPS Press: Montvale, N.J.

Mills, H.D., "On the development of large reliable
programs," eding of ithe JIEEE Svmposium on
Computer Software Reliabilitv, 1973. B o
M.I.T. Project MAC, Introduction to , MIT
Project MAC Technical Report TR-123, 1974,

Madnick, S.E., "Design Strategies for File Systems,"
MIT Project MAC Technical Report TR-T8, 1970.

~-128~



My

N1

01

P1

R1

R2

S1

S2

S3

S4

W1

W2

g e e e SRR o D S RN e

McCarthy, J., Abrahams, P., et al.,

: , Lisp 1.%
2_%s£§mmgz_§ Manual, MIT Press: Cambridge, Mass.,
19 50 y )

Naur, P. and B. Randell (Eds.), Software Engineering,
report by the NATO Science Committee, Garmisch,
Germany, 1968. ' '

Organick, E.I., The Multics Syatem: An Examination of
its §;_ng§un§ MIT Press: Cambridge, Haas., 1972.

Parnas, D.L., "A technique for software module
specification with examples,"™ CACM 15, 5 (May 1972),
pp. 330-336.

Rotenberg, L.J. "Making Computers Keep Secrets," MIT
Project MAC Technical Report TR-115, 1974,

Ritche, D.M. and Thompson K., "The UNIX Time- -3haring
System," CACM 17, 7 (July 1974), pp. 365-375. '

Schroeder, M.D., "Cooperation of Hutually Suspicious
Subsystems in a Computer Utility," MIT Preject MAC
Technical Report TR-104, 1972. :

Schroeder, M.D. and J.H. Saltzer, "A Hardware
Architecture for Implementing Protection Rings, CACM
15, 3 (March 1972), pp. 157-170.

Saltzer, J.H., "Protection and the Control of
Information Sharing in Multics,"™ CACM 17,. 7 (July
1974), pp. 388-402.

Saltzer, J.H., and M.D. Schroeder, "The Protection of
Information in Computer Systems," ' IEEE Proc., 63, 9
(Sept. 1975), pp. 1278 - 1308. o

Wirth, N., "Program Development  by Stepwise
Refinement," CACM 14, 4 (April 1970), pp. 221-227.

Wirth, N., Syatematic 22282!!&1&&
Prentice-Hall Englewood Cliffs, New. Jeraey,'1973.

-129-




This empty page was substituted for a
blank page in the original document.



CS-TR Scanning Project
Document Control Form Date: !l /1 1£ /15

Report # _LcS-TR-156

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
jﬂ\ Laboratory for Computer Science (LCS)

Document Type:

Technical Report (TR) O Technical Memo (TM)
O Other:

Document Information  Number of pages: /30 (139-imsces)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or [0 Single-sided or
X Double-sided X Double-sided
Print type:

O Typewriter [ oftsetPress [ ] Laser Print
[] inkJet Printer Kumm [] other:
Check each if included with document:

[0 DoD Form [0 Funding Agent Form O cover Page

0 spine [0 Printers Notes O Pphoto negatives
O other:

Page Data:

Blank Page Sty pese rmes:_FoLlowy NE LAST PAGE 129

Photographs/Tonal Material ey page numbes:

Other (note descripion/page number) .
Description : Page Number:

T MAGE MAP! ( [-130 ) UpHED TITLE FAEGE (l'/iTJumBLﬂNk
(131 - 134 ) S ancodTRo L TRETS 3>

Scanning Agent Signoff: .
Date Received: /| / /4 1SS Date Scanned: It/ | /35 Date Returned: 130 435

Scanning Agent Signature: Q\AM/,AA/ 7’\/ 4&’&/

Rev 9/04 DSALCS Document Control Form cstrform.vsd




Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94




