A SECURE AND FLEXIBLE MODEL OF PROCESS INITIATION

FOR A COMPUTER UTEILETY. -

Warren Alan Montgomery

June 1976

The research reported here was supported in part by the National Science
Foundation, through a graduate fellowship, in part by Honeywell Information
Systems Inc., and in part by the Air Force Information Systems Technology
Applications Office (ISTAO), and by the Advanced Research Projects Agency
(ARPA) of the Department of Defense under ARPA order No. 2641 which was
monitored by ISTAO under contract No. F19628-74-C-0193.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE : MASSACHUSETTS 02139

Acknowledgements

I would like to thank some of the people who helped in this research. I
would 1like to thank professor Saltzer, my thesis supervisor, for help in
defining the topic wnd guidance throughout the . projeot. -Many of the members
of the Computer Systems Research group gave helpful suggestions as the ideas
for this thesis were beginnisg to form. Ken Pogran and Doug Wells of the
Computer Systems Research group, and Paul Green of Honeywell Information
Systems provided great assistence in the design and debugging of the test
implementation. Professor M. D, Schroeder, and Dr. D. Clark provided many
valuable suggestions on drafts of some of the sections of the thesis. Most of
all, I would like to thank my wife, Carla, for inspiration throughout the
project, for help in preparing the thesis, and for patience during three long
years of graduate study. . ‘

I would also ltke to thank the National Science Foundation (NSF) for
funding for graduate study under the NSF Graduate Fellowship Program.

This research was performed in the Computer Systems Research Division of
the M.I.T. Laboratory for Computer Science. It was sponsored in part by
Honeywell Information Systems Inc., and in part by the Air Force Information
Systems Technology Applications Office (ISTAO), and by the Advanced Research
Projects Agency (ARPA) of the Department of Defense under ARPA order No. 2641
which was monitored by ISTAO under contract No. F19628-74-C~0193.

A SECURE AND FLEXIBLE ‘MODEL.QF:PROCESS INITIATION
FOR A COMPUTER UTILITY#

by

Warren Alan Montgomery

ABSTRACT

This thesis demonstrates that the amount of protected, privileged code
‘related to process initiation in a computer utility can be greatly reduced by
making process creation unprivileged. The creation of ’prqcesses can . be
‘controlled by the standard mechanism for controlling edtﬁy to a domain, which
forces a new process to begin execution at a controlled looation.(Login of
‘users can thus be accomplished by an unprivileged creation of a process in the
potential wuser’s domain, followed by authentication . of the user by an
unprivileged initial procedure in that domain. '

: The thesis divides the security constraints provided by a computer
utility into three classes: Access control, prevention of unauthorized denial
of service, and confinement. We develop a model that divides proceas
initiation into five independent fuhbtidme: ~ Priceess '~ oreatidn, ~ dodaln
changing, resource control, authentication, and environment initialization.
We show which classes of security oconstraints depend “oh '~ esch of these
functions and show how to implement the functions suoh that theae are the only
dependencies present.

: The thesis discusses an implement&tion of process inftiation for the
Multics computer utility based on the model. The major problems encountered
in this 4implementation are presented and discusaed._ ‘We show that. this
implementation is substantially simpler and more flex¥bie'than “‘that -used in
the current Multics system.

This report 1s based upon a thesis of ‘‘the sade t1tle ‘submitted to the
Department of Electrical Engineering and Computer Scionce, Hasaaehusetts
Institute of Technology, on May 13, ‘1976:°4n" pPartIal TulFi1lment of the
requirements for the degrees of Master of Science and Electrical Engineer.

-3-

SECTION . PAGE

ABSTRACT : : 3

TABLE OF CONTENTS : b
LIST OF FIGURES 6
CHAPTER 1. INTRODUCTION 7
1.1 The Problem o ST 7
1.2 Method of Attack | . - 8
1.3 Results ‘ | A, 3 T 0w
1.4 Thesis Plan I T BERY:
1.5 Related Work : : C | 13
CHAPTER 2. A MODEL FOR PROCESS INITIATION . = . s
,2.1 Security Goﬁls- | ‘ 1 : o | S .’<15
2.2 A Layered Security Kernel o = 20
2.3 A Model for Process Initiation ' et - 22
CHAPTER 3. AUTHENTICATION : | ERECT 21
3.1 Properties of Authentication Mechanisms | 27.
3.2 Authentication Forwarding 3§ﬁ
3.3 Example of our Authentication Scheme 36
CHAPTER 4. RESOURCE CONTROL 39
4.1 Issues of Resource Control) .; 39
4.2 Primitive Operations for Resource Control ’ k2

4.3 Limitations‘on.ﬂesquree Control Poiicy_ o 46

wl

4.4 Limitations on Security Constraints

CHAPTER 5. MECHANISMS FOR AUTHORIZING DOMAIN CHANGES
5.1 Introduction to Domain Changing
'5.2 Four Mechariisms for Authorizing Domain Chariges
5.2.1 Exact Specification
5.2.2 Paftiél Specification
5.2.3 Last Component Specification
5.2.4 Appending Specification
5.3 Domain Changing and Confinement =

5.4 Evaluation of Domain Changing Mechanisms

CHAPTER 6. THE TEST IMPLEMENTATION
6.1 Brief Introduction to Multics
6.2 The Implementation

©.6.3 Evaluation of the Test Implementation -

CHAPTER 7. EVALUATION AND CONCLUSIONS
7.1 Comparison of the Model to Other Schemes
7.2 Summary of Conclusions

7.3 Areas for Future Research
APPENDIX A. DETAILS OF THE IMPLEMENTATION

REFERENCES

46

48
48
49
50
54
58
60
63
68

70
70
75
88

93

93

- 99

102
103

123

Number

Table 2.1

Figure 5.1

Table 5.1

Figure 6.1

Table 6.1

Table 6.2

Figure 7.1

FIGURES AND TABLES

Process Initiation Functions in the Security Kernel

Domain and Domain Gate Objects in a
Hierarchical File System

Examples of ACL Term Matching

A Typical Process Initiation

Impact of the Model on the Number of Lines of
PL/I Code in the Kernel

Impact of the Model on the Number of Programs
in the Kernel

Hierarchical Process Creation for
Mutually Suspicious Subsystems

-6-

Page

26

56

61

77

90

90

98

CHAPTER 1

INTRODUCTION

1.1 The Problem.

This thesis is concerned with process initiation in a computer utility.

Process initiation consists of all those functions that are pehformed to

support the creation of processes. In the Multics ‘computeb utility, these

funct

1)

2)

3)

4)

5)

ions are:
Process Creation: The addition of a new process to the set of»prooesses
being managed by the system,
Resource Control: The assignment of resources . {(CPU cycles, memory
pages, and the use of I/0 devices) to a npew-process.
Authentication: The identification of the user who will control the new
process.
Domain Changing: The assignment of a Prinecipal ID, whiéh will ’bgl used
in determining the process’sracéess to objeéts in the fiie system, to a
new process. | |
Environment Initialization: The initialization of Qéchanisms needed to

support the computation performed by the new process.

As can be seen from the above list, process ‘initiation includes-a widé

variety of functions. Some of these functions -must e&nforce security

constraints, while others are unrelated to security. In the Multilcs computer

Chapter 1 ‘ Page 7

utility, and in man¥ others, the mechanisms that implement the functions that
we include in process initiation are poorly .organized and heavily
interdependent. This interdependence not only makes all of these mechanisms
more difficult te prove correct, but-alsc makes the security of the computer
utility dependent dh a larger set of mechanisms than the minimum set that is
necessary to implement the desired security constraints,

The primary goal of this thesis is to devise an organization for the
mechanisms that implement process initiaticn that is simple and minimizes
unnecessary dependenciles. New mechanisms will be developed to pehform some of
the functions listed above in thet organization.

A second goal of the thesis is to produce an organization for process
initiation that can easily be ‘used for any situ&tioh'in which processes must
be created for users. Processes are a 'powerful tool for structuring
computation and a process initiation mechanism that 1s simple and inexpensive
encourages the use of processes. An implemeéntation of prooess initiation for

the Multics computer utility will be used to test the: proposed organization.

1.2 Meth gg of Attgck

We will be most interested in reducing the number of mechanisms on which
the security of the computer utility depends, and in reducing the complexity
" of those mechanisms. We extend the notion of a security kernel [Se75] to a
kernel with several 1ayers Each layer is responsible for enforcing a
different set of sechrity constraints. All ‘of the‘mechanisms that must
funetion correctly to enforce a particular set of constraints :are inside of

the kernel layer for that set,.

Page 8 : Chapter 1

The principle of least privilege [Sé75] is used as a guide to,deteﬁmine
the functions that are 1mp1emented’ in each kerne;:ﬂlayer. This bripéiple
states that each mechanism should be given quy;those privileges needed to
perform its function. Thus, each kernel layer should contain only those
mechanisms needed to enforce the security cpnsﬁraints_for'wh{ch that layer 1is
responsible. The principle of leastVpéivilgga'ﬁﬁreduees unnecessary
dependencies. f »

Another important structuring technigue used 1n ’this thesis 1s to
implement each function with a small progrgm Jpg@uie, ‘énd‘ to_‘minimizg .the
interactions between modules. By clearly:defining:thezfﬁngtién'performéd'by
each such module,‘we make each module easy to verify. By minimizing' thg
interactions between modules, webmake the structure of the system simple and
thus easy to verify.

An important goal of this thesis is the minimization of common mechanism.
By this we mean making the set of mechanisms on whith all users must depend as
small as possible by removing mechanisms that don‘t need to be shared and by

simplifying those that remain. Such common mechanisms must be included in the

security kernel. Any mechanism that a user need not depend on need not be

certified, as a user who is not satisfied that such a mechanism is correctly
implemented can avoid using 1it. ‘The structurea“gréqented for process
initiation in this thesis has very little mechanism on which all users must

depend.

Chapter 1 Page 9

1.3 Results.

‘This theéis demonstrates that the security kernel of a computer utility
cén bé simplified 67 ﬁaking‘prOOeba creatioﬁ'unpriviléged. The authorizatibn
for process creation is provided by the ddmﬁiﬁ’cﬁangihé mechanism, which
forces a new prdééas to begin execution at a 'céﬂtbolled location. An
dnpfivileged prdcesa can fhus be usedyﬁomereaée a érdcéis for a potehtiai user
in that user’s domain. Authentication of the user is performed by an
unprivileged initial procedtre iniihét'abmaiﬁ. The remainder of this section
describes these results iﬁbsémewhgf‘greAteﬁ’detailj

A security"kebnel with three léyers‘is used in the thesis. The layers

provide:

1) Access Control: Restrictions on the‘ operations that‘,pbocesses can.
perform on objects.
- ... 2) Prevention of Unauthorized Denial of Service; A guarantee that each
user receives a fair share of the available resources.
3) Confinement. A guarantee that . informstion. stored . in the comouter
utility is released only to users who are .authorized to see that
information.

The thesis partitions prbcess"initiationVCinté kthé‘ five functions

mentioned above: Process efeéiio;: ;é;;u%éé:ébﬁirbllﬂauthentication. domain
changing: and environment initialization. Each function is implemented in the
kernel layer that provides the least privilege required to perform that
function. The thesis qonsiders three of the functions (domain chanzinz.

authentication, and resource control) in detail.

Page 10 Chapter 1

The domain changing mechanism for process initiation, ‘which_ cgntygls a
newly created process’s access to objec;sﬁimugt per{ppp gisﬁmilap funqtion to
that of mechanisms used to control the calling of protecteq subsysgems. The
desired characteristics for a domgin cbang;ng'ggchggism_gnap_will serve both
purposes in an access control list orignted ,3y3§§¢1 ,§9°h as Multics, are
presented and discussed. We_preSentlggvera; doma;q:qhénging_mechanisms,tht
can be used for both purposes. |

The thesis shows that authenticgtioq can be p§mqved' from the access
control and denialv of service layers 'éf thg kggne}{/‘This removal can be
accomplished by allowing eéch user to hselecgu:h;s_ own rauthengiqagion
procedures. The thesis also shows how aythen;iégtiqnﬂgan be_remqyed from the
confinement layer by allowing different authgnticgtgqn mechghisms ;o)gﬁqrd;the_
release of different pieqes‘of confined infofmatiép;_‘ |

The thesis also presents the concégt}of;authgnpicatign4forwar¢ing. wn;ch
allows information obtained through authenﬁication}to,be shgred in a secure
way. Authentication forwarding is a natural model £or ‘dealing :twith
authentication information. Authentication Aforngﬂing allows processes to
make use of authentication procedures performgd bysthe sxsgqmrwithout forciqg
every user to be dependent on the correctneéswof such procedures. | |

The test implementgtion of = process _;Rigiagigﬁ done for the Multics
computer utility demonstrates that the functionality of process initiation
provided by Multies can be achieved with a much simpler stpqctuve:than that
currently used. The implementation also makes the sqp,of programs that must
function correctly in order to enforce a part;cu}§g secur1ty,constraint much

easier to distinguish.

Chapter 1 Page 11

1.4 Thesis Plan.

The'first three sections of thisiohspter have provided a brief overview
of the work done in this thesis.? rhé remainder of'thisiohapter discusses
previous work in the areas of oomputer security and prooess initiation.

The second chamter presents the model for eonputer proteetion mechanisms
that is used in this thesis.‘ This mtdel is used to define more precisely the
notion of a layered security kernel, ?"d to define clearly the layers used in
this thesis. The ﬁive.functions of prooess initistion:are described, and each
function 1s assigned to a layer pf ‘the kernel aceording to the privileges
required to perform that function.

Chapter three considers the probiem' of vsuthentiostionn We show that
authentication falls outside the aoeess control and denial service layers of
the kernel in our protection model, and show how to remove authentication from
the confinement layer. We present the concept of authentication forwarding.
and discéuss the funotions thatnxmustA be performeo by an authentication
forwarding mechanism. | k |

Chépter four considers the proolem of resource control. We discuss the
issues involved in performing resour#e oontroi:néndehon how many policies of
resource control can be implemented‘b$ progrsms executing in an environment
that does not provide”privilegesitnat would allow tnose programs to violate
“the constraints provided by the aceess oontrolllayen:\ |

Chapter five presents four mechanisms’for autnorizing domain ohanging.
‘ﬁroperties of donsinﬁchénging mechanisns desirsbieyfonéorocess initiation end
protected subsystem oalling'are diséussed}: The sdGSntsges ‘and ?disaduantages
of each of these mechanisms are evaluated. before choosing the mechanism used

in the test implementation.

Page 12 | Chapter 1

Chapter six discusses an implementation of proceg;dvinitiation for the
Multics computer utility. A brief description of Multics is presented, with
special emphasis on the properties of the current process 1initiation scheme.

We describe an implementation of process initiation for Multics based on our

model, and show that that impiementation i§.89p§ngt;§}lyAsimpler,thgn,the ppe
currently used. A more detailed deséripﬁion;oflthe }%blemangatipnmpppears in
Appendix A. | S N

Chapter seven evaluates the usefulness of_;pg ‘model in structuring
process inltiation. The model is compared with two e;mﬁon‘process initiation
schemes 1n three situations in which. a process is created. The chapter

summarizes our conclusions about the model and discusses topics for further

research in process initiation.

1.5 Related Work.

This thesis dfaﬁs heavily on previous"wobk on ‘computér protection
mechanisms. Tﬁe concept of protéction domains introduced by Lampson [Lé?”]
forms the basis for the access control scheme used by this thesis. The desién
of a confinement mechanism for the thesis~was 1nfluenced‘by much previous work
on the confinement problem [AnT74,Be73,La73,RoT4,Sc75.Web9]. The domain
changing mechanisms of Jones [Jo72] and Schroeder [Se72] strongly influenced
the design of the mechanisms for authorizing domain changes in the thesis; A
study of these two theses first lead to the idea that process creation could
be made unprivileged.

This thesis 1s part of a research effort described by Schroeder [Se75] by
the Computer Systems Research group of the M.I.T. Laboratory for Computer

Science to simplify the security kernel of the Multics computer utility. The

Chapter 1 N ~ Page 13

Multics system [Or72] is idéal for such study because 1t contains
Sbﬁﬁistiéated habdwlne'gﬁd'softwa}; brotectioh mechahisma. Some recent theses
[Br75,JaT7i] havé:éhnwn that varidﬁé funéﬁibns >cou1d bg removed from tﬁe
security kernel. 1‘0£her ’wé}k [Be?j;ﬁé?ﬁ,ﬁu?ﬁ]. has démonstrated that the
Schrity\kernel can be sUbstéﬁiiaiiy si&piified‘by'structuiing the functions
that it performs. This thesis shoﬁS‘tha£ some of’the funections of process
initiation can be remeved from the khrnel, and presents a structure that

51mp11f1e5“those that remain.

Page 14 ' ‘ v _ Chapter 1

CHAPTER 2
A MODEL FOR PROCESS INITEATION

i

In this chapter, we show how to perform process initiation in a secure

computer utility. First we define more precisely what is meant in this
thesis by “secure". by defining‘three security goals Ue then examine briefly
the mechanisms used to enforce those security goals to see how they interact
with process initiation We show that the security goals can be enforced by a
security kernel with three layers Finally, we examine each of the five

process initiation functions and show in which layer of the kernel each

function should be implemented

2.1 Securjity Goals.

In this section, we define three security goals for a computer ’utilitjé

1) Access Control - The control of the operations’thatvcan be performed on
objects in the computer utility. _

2) Prevention of Unauthorized Denial of Service - A guarantee that
authorized operations can actually be performed

3) Confinement - The prevention of the release of information stored in a

computer utlility to users not authorized to see that information

Chapter 2 Page 15

Accegs Control.

As stated abeve, the goal of access control is to provide control of the
operations that can be performed on objects. Such control allows the user or
users responsible for an object to.protect the integrity of that object. To
provide access control, we use the concept of protectdon domains [LaTi].

Each process in the computer utility is associated with a protection
domain by a gggggggrggmgig _ingigg a binding made in a system-wide context
The domain of a precess determines the operations that that process can
perform on objects in the computer utility The domain of a process

represents the authority responsible for the activities of that process.

The details of how the operations that. a .process can perform are
determined from the domain of the process are not important in this chapter
We can imagine that there is a two-dimensional matrix, which for each domain
and object specifies the operations that a process in that domain can perform
on that object. - In chapter five, we consider access control mechanisms in
greater detail.

In order for such an access control mechanism to provide protection for
objects, the association of a process with a domain nust be controlled If a

user could obtain control of a process in any domain then the access control

nechanism'could not deny that user’the’use of any object This th351s refers

R
Wil

to the problem of authorizing changes in the process-domain binding as domain
ghanging.‘ Domain changing is described in greater detail in a 1later section

of this chapter and in chapter five

Page 16 Chapter 2

Prevention of Unauthorjized Denjial of Service.

The goal of prevention of unauthorized denial of service 1s to keep one
user from interfering with the use of the computer utility by other wusers.
One common example of denial of service occurs when a user can exploit a flaw
in the operating system of the computer utility to ceuse the computer utility
to fail. Such a ‘failure denies service to‘all useps;whilevtne system 1s
restarted, and may cause work in progress at'tne time or, tne failure to be
lost.

Many less severe examples of denial of,service exist. In,eome computer
utilities, one user can capture ; sufficlently large percentage fof the
avallable computing power or memory, that the use of the»syetem by other;psers
is impaired. 1In this thesis, denial of service generally refers to the denial

of the right to use a process.

Confinement.

Simply stated, the goal of confinement is to proride control over the set
of users who are allowed to observe a piece of information in the computer
utility. (1) Confinement has been used to prevent the release of classified
military information [We69] Confinement has also been used to protect
proprietary information that must be read by an uncertified program [RoT741].

There are two definitions of tne} confinement problem: message

confinement and total ggggigggggt. Message confinement [An74] consists of

preventing the transfer of confined information” to unauthorized users through

(1) The term "piece of information" can represent a wide varlety of ‘things.
It can mean .the ‘contents' of 'an object such as a file, or the’ name of an
object, or even just the presence of an object. Any of these may oonvey
information that may need to be concealed from some set of users, '

Chapter 2 Page 17

the operations perf®rmed on objects. Total confinementiconsists of preventing
‘the transfer of cofifined infcrmation to unauthorined users through any means,
‘however slow or obscure. (This »inclndes tne corert channels of Lampsen
[La73], which transfer information through the observation of the use of
shared resources.) The mechanisms discussed in the next section are intended
to provide message confinement. In order to provide total confinement, the use
of shared resourcea‘mnst be controlled ao.as ‘to block information transfer
through covert channels. Several researchers have prcposed mechanisms to
achieve confinement in a computer utility [An74 Be73 Ro74 Web9] These
mechanisms all tag the objects in the computer utility with some indication of
the confined infcrmation that they represent and use the tags to restrict the
distribution of information to users. There are two ways in which the tags

have been used to provide confinement:

1) The high water mark. [Ro74] In these mechanisms. each operation that
modifies an obJect and may add confined information to that object
changes the tag of that object to reflect the confined information that
could have been transfered

’2) The *-probert;. [Be73] In these mechanisms an operation that modifies
an ‘object“ fs not aliowed unless that object 1s already tagged as

containingvany confined information that the operation could add.

For this thesis. the second type of mechanism is chosen. Rotenbersg
[RoT4] snows how the changing of the tags that occurs with the high water mark
mechanism can 1tself be used to convey confined information. It therefore
seems extremely difficult to achieve total eonfdnement with a high water: mark

mechanism

Page 18 Chapter 2

The . model of confinement used in this thesis tags each object, process,
and user with a confinement set. A confinement set is a set of confinement
attributes. Each confinement attrigute is used to represent some class of
information, such as a military security classification, or a proprietary '
project. The confinement set of an object identifies the confined information
that that object contains. The confinement -setof a process indicates the
confined information that that‘processiis allowed’ to observe. The confinement
set of a user représents the informaticn. .that the user may ‘observe. Three

rules are used to enforce confinement:

1) A process is allowed to perform an operation that observes an object
(1i.e. one whose outcome depends on the contents of the object) only if
the confinement set of the object is a subset of that of the process

2) A process is allowed to perform an operation that modifies an object
only if the oonfinement set of the object containsvthat of the process

3) A process can direot the output of an object to a user only if the
confinement set of the user contains the confinement set of the object

and that of the process.

These rules taken together enforce what is refefréd to:elsewhere as the
#.property. (1)
Process initiation interacts with confinement ‘in several ways. The

process initiation mechanism must assign a confinement set to each newly
1

,,,,,

(1) Some mechanisms use a level and catégory set, similar to a ‘military

classification, to objects, processes, and users. [We69]. By using one

confinement attribute- for each” “level and ed¢h categdry, thé mechanism

presented above can be made to enforce the same constraints as a level and

category mechanism. ‘The above mechafiism was’ chdNén' “becafiSe thé rules (the
*_property) are significantly simpler with this approach.

Chapter 2 ' ~ Page 19

created process. This assignment must be done in such a way that confined
infobmation is not meleased. The process initiation mechanism must also
prevent the use of process creation as a éignalrtc transmit information to a

user who is not authorized to sce\that inforhation.

2.2 A Layered Securjty Kernel.

The set of mechanisms that must function correctly in order to provide
security is known as the .gecurity kernel. One design goal for a secure
computer utility is to make the set of mechanisms in the kernel small and
simple, thus making the kernel easier to verify. The notion of a security
kernel can be extended to a kehﬁcl with cchrai laye;a.”Each icyer of such a
kernel includes ‘all of the programs ﬁcedec‘to'ehfobce a different set of
security constraints. | |

| A kernel with multiple layers is uséful because it indicates:cléarly the
mechanisms capable of violating each security ccnStbaiht; The Specifications
for each layer of the kernel need not includewahy icdiccéionvthat that layer
does not violate the security ’constrainté providcdtcf lcﬁervlayers. This
reduction in specification simplifies the task of‘verifyicé the kernel.

In this thesis, we .choose three kernel layers corresponding to the three
security goals deseribed above. The innermost layer of the kernel provides
access control, the second layer prevents denial of aservice, -and the outer
layer provides confinement. The layers were.chosen to minimize the number of
mechanisms that fall'iﬁ each layer.

The access comtrol layer is placed below the denial of service layer
becaﬁse the dehial ‘of service 1ayér,'céﬁ,make,bctter,hse of the functions

provided by the access contéol‘layer than vice versa. The dghiai of service

Page 20 Chapter 2

layer must provide some form of acceﬁs control in obqer'tq_keep the actions of
users from interfering ‘with each other. The’aécess céntrol.layer need not
prevent denlal of service. (1) Thus if the‘acgéss contrél‘ layer - 1s placed
below the denial of service layer the denial of ~Service layer can be
simplified, as it can make use of the‘aqcessléontrol‘ prévided by the lower
lﬁyer; For this réaadn, we place the access control layer below the denial of
sérvice layer. |

The confinement .layer is piaced above the»denial of‘service layer fqr a
similar reason. The éonfinement layéf must p;event sdme:types of denial of
service. A denial of service cannot be allowed'to convéy confined 1nforma£ion
in violatioﬁ of the ‘-property; For thig reason, we plaée the deqial of
service layer below the confinement layer. |

The layers chosen in this thesis are by no means the only cholce
possible. Other researchers [Be73] have chosen to place at the core of the
kernel a layer ;hat coptains a simple access control mechanism that enforces
the %¥-property for operations. performed on objects (message confinement).
This layer does not enforce total confinement, as actions such as denialx-of
service can still be used to convey confined information in violation of the
*-property. These so-called covert channels ([La73] can be used very

effectively in many computer sysatems.

(1) Interruptions of the processing done by the access control layer (either
through denial of service or through failure :of ‘the hardware) must not result
in the failure of that layer.

Chapter 2 Page 21

2.3 A Model for Progess Initiation.

We now descv&he a model for”.process iniéiaﬁion mechanisms. Such
mechanisms change the set of processes; the séh of dohains, andv the
process;domain binding' We. want the modei to be as general as possible, sSo
that it can easily be used for any situation in which processes must be
created. | | S | {

Our model separates process initiation into: five functions° process

cregtion. domain ggggg;gg; £g§gugce contrgl gthenticg&igg and envir onment
initialization. In this chsptef, we discuss briefly what each of these

functions does, and: in which of the kernel layers previously discussed each
mechanism lies. Later chaoters consider some of these mechanisms in qreater

detaill.

Process Creation.

Process creation .consists. of creating- an. initdal process: state. - A
process state describes: the charseteristics of a:prmcess. A process state
contains: the domain . of the process; the confinement set of the process. ‘the
execution point of the process,;. the mschine registers of the process, and‘a:
description of. the: address space of: the process.

Because process creation alters the process~domain .binding, it must be
performed within the kernel layer that provides access control. A second
reason for'including proceas creatlon in the kernel layer for access control
is that each process may at some point in its lifetime execute functions
inside the access control layer. If the process state of such a process is
not correctly initialized by process creation, then that process'may not be

able to perform those functions properly

Page 22 . Chapter 2

Domain Changing.

Domainvchanging in this thesis really means the euthogigap;op‘JQf domain
changes. The process creation mechanism actually makes ﬁhe domain changes by
altering the processédoﬁain binding aceordiegbto inetpueﬁions reeeived from
ﬁhe domain changing mechanism. Ihe bfegleqlof‘guthorizing,domein changes has
‘been extensively-studied; Schroeder-[Sc12],“§mong others. concludes that a
domain‘ changing }hechenism must insure theé the,{iret pfoeegqre executed by a
process that enters a given eomaiﬁ is an acceptaele initial‘procedure for that
domain. This is the only function that the domain changing mechanism -must
perform in order to prévide.access controt. (1) ' Chapter ‘five dicusses the
details of controlling domain chanting.

The domain ohanging function must be performed in the kernel layer that
provides access control. The domain changing furiction ~needs to alter the
process~-domain bindiné. and thus could violate access control constraints'if

oy

not correctly implemented.

Resource Control.

The resource control function assigne the'reseurees necessary to begin
the exeeution of a process; In the Hultics,eemputer qﬁi;;py,jtheeeyresources
consist of CPU eYcles end memory pagee, as welleas the e@e;ee:‘of whether;'er
not te allow a procese to be createdrat a;l. The assignment of resources to
processes 1; made aqcoreing to a resegroeh‘control poliey ‘that attempts to

insure that each user receives a fair share.

i

(1) The initial procedure . can control the computation performed by the
process, and thus prevent misuse of access rights or resources avallable to
the domain. :

Chapter 2 _ Page 23

Resource control clearly lies within the kernel layer for prevéntion of
unauthorized denial of service. The resource control mechanism can deny a
‘user the riéht tb create a procéss ’bﬁ requing to a;locate the neéded
resources. In thé'deSign of many currentivSystems;’ the resoﬁrce control
mechanism also lies within the kernel iayér that'ﬁro;ide;.écceés control. in
'chaptér four, we show how the resource éogérol fﬁnctidﬁp can ’bé impleﬁe;téd

outside of the access control layer, thus Simplify1ng that layer.

Authentication.

An authentieation mechanism is responsible for determining the identity
of a user. If a user can control the operatlons .performed by a. process - {by
communicating with a command interpreter exeouting in that process), then thé
user must be identified to insure that he is authorized to use the. domain of
that "process. In the Multics qqmpuben_ﬁti;ityl a process that is created to
serve a user has an initlal procedure that calls a command processor to give
the user control of the process. The identity of the user is determined
through authentication before the process is ereated .

In chapter three, we show how to remove authentication from all three
layers of our security kernel. This removal is aecomplished by allowing each
user to choose his own authentication mechanism. An error in one user’s
authentication mechanism is no more sérioué than én erer in any other program
that that user chooses to cali. Eaéhvﬁge;vcén bfbtéét himsélfﬁfrom‘faiiurés
of the authentication mechanisms of other"ﬁseré. ’ChgﬁterAthrée describeé how

the three sets of security constraints can be provided without depending on

authentication.

Page 24 Chapter 2

Envirghgent Initialization.

Enviroﬁment initialization consists of the initialization of kmechanisms
that support the execution of a process. In the Multics system, envifonment
initialization includes the creation of certain working storage segments for
the process, the initialization of error handling for the process, and the
initialization of stream I/0 for that process. Environment initialization is
performed by the igitial procedure of a process, and the procedures that it
calls.

Environment initialization requires no special privileges because all of
the functions that it performs ahe local to the process beihg created.

Environment initialization need not be included in the security kernel.

Summary .

This chapter has presented a brief description of the five functions that
are 1included in process initiation. Each function has been_ assigned to a
layer of our security kernel based on tﬁ; privileges required to accomplish

that function. Table 2.1 summarizes these assignments.

Chapter 2 Page 25

Table 2.1

Process Initlation Functions in the Security Kernel

Fugct;gh: K Layer:
Process Creation Access Control
Domain Changing Access Control
Resource Control ~Denial of Service
Authentication (none)
Environment Initialization (none)
These assignments were madé only on the basis of least privilege. The

implementation ‘described in chapter six shows fﬁat each of the functions can
actually be implemented in'thé layer éhown above, without undue Acombiéxity.
Such an implementation insures that each kernel layer contains the minimum
number of process initiation functions.

The next three chapters of this thesis explore three of these functions
(Authentication, Resource Control, and Domain Changing) in greater detail.
These chapters describe mechanisms that can be used to provide those functions

in the kernel layers shown above.

Page 26 Chapter 2

CHAPTER 3

AUTHENTICATION

This chapter discusses how authentication is related . to process
initiation The chapter begins with a discussion of the properties of
authentication mechanisms These .properties shape the attitude toward
authentication that is taken by this thesis We show that authentication need

not be performed by the security kernel We alsc present the concept of

A

au hentigatig _gzggrgigg which can be used to allow the sharing of

information obtained through authentication Authentication forwarding can
reduce the number of times that a user must undergo authentication, by
allowing the information obtained from the user’s first authentication to be
shared among the processes with which he must communicate

In order to discuss authentication a model of how users communicate with
a computer utility is needed For this purpose we‘adoptv the concept of a
sggggg. We use a stream to represent a two-way communication channelwr We
refer to the user who communicates with the computer utility through a stream

as the souggg of that stream The time during which a user is communicating

with the computer utility will be refered to as a sgggigg

3.1 Eroperties of Authentication Mechanisms.
An authentication mechanism is a mechanism designed to determine the

identity of an unknown wusér. ‘'Such mecharisms usually require the user to

Chapter 3 Page 27

produce some plece af data (password, encryption key, etc.) that must match a
value kept by the @omputer utility. Protection mechanisms enforce security
constraints withimn a computer utility, while an authentication mechanism can

~ be used to identify users for the processes executing on the computer utility.

YT T AT
SR ANS A I S §

Three important properties of authentication mechanisms are:

wox Fpadtug wod esnEgLe il Pl ‘
1) No authenticaticn mechanism is perfectly reliable. An authentication
i GilEw omobyad oot

mechanism identiftes a user by a sequence of bits (password or encryption

i 3 sesn b g
Eew G Isgnng vl

"key) supposedly tnown only to that user. Becauae any user can produce such
Pioeadue 30t wars el celaadd elnd v nedsd £ Jood 00ile
a sequence. any such nechanism can be fooled into misidentifying a user.

Lo cowngag onis oM Degeed wriagoss and o v e il 0
2) A security conscious ucar can alxzys devise an authentication mechanism
e o owoelie ST AR Te o ok Wit on REERnE)

that is more rexiable than a syatcn/providad authentication mechanism.” The

kS - E -~ oy 4
climsiiaosius Lnobtpobinsilus ehasronidts

“‘probability that a user will be able to fool an authentication mechanism by

; CETuE DR D S omak & dedt aamly Tio coaomdi wns
guessing the password or key decreases as the length of the passwond or key
=4 o dsunt Sannitus dealt s reen sdd meat bealsido aocldrgantuel adld aiilw i
1s increased Thus a security conscioua uaer can obtain greater

Y

R F AR ATE Ve wd o doldw d3tw nospaoos 01 RuomE osR

reliability by using a longen pasaword or key, at the expense of having to

DT e S ey wod Do elen g Lsordacitoasftys sageads oL anhopn
remember more intormation

L i SUE O daons aw L seogart alis o aen Chebann U vrllay e ST

3) Each use of an authentication ueehanism rele&ses information that aids an

Ry SO ORISR S Y aw-owd & Josasdgedn of mesais o avy T i
imposter in determining the paasword or key. In general, the stream

grizaey oot ek PRy owwdgoamon At 84w ssdpnbmsmmen offw cpoar owill Ll arly
through which a user communicates with the computer utility passes through

Wik ten g P oegeny Ak i niioih sty edl Lmsaade el o o2 @t
some insecure channel (such as a telephone line) that an intruder may be

Aoed heastey od Llbw gdilbo wsiuamon a0t Al

able to monitor. Encrypticn based schemes are less vulnerable to such

monitoring than password schemes e ! iisul gotdesiinailn s 1 gmi ool

-4 . Ihese thrse Jproperties influence. the way in.whioh this thesis deals with
authentication. Points one and two suggest that i1t 1s not necessarily

Lo

ﬁgééﬁﬁai ‘ ' éhapter”3

desirable for all users to rely on one system-widereuthentication mechanism.
Such a mechanism cannot be guaranteed always_to make oorrect‘ identifications,
and no metter what mechanism is used, a better one aiways‘oen be found.

Point rtwo suggests that different users‘ might want to use different
authentication mechanisms. Different users have different security
requirements and thus some users might be willing to spend a zreat deal (1n
terns 5: extra communication. extra computation, and the overhead of
remembering more information) to insure that they cannot be impersonated All
of the users of the computer utility might not want to pay the cost of the
security requirements of these few.

Point three suggests that authentication should be performed oniy when
necesoary. Thus the results of authentication should be remembered s0 that
each new process or domain that encounters a stream does not necessarily have
to perform authentication. Authentication Forwarding is introduoed to provide

this memory.

Authentication and Security.

In this section, we examine how authentication‘nust be used to enforce

the security constraints of our three kernel layers.

1) Access Control.

The innermost layer of our kernel is responsible for providing protection
for objects in the computer utility. The definition of the security provided
by: this layer of the kernel was carefully chosen to avoid the notion of a
user. This layer of the kernel insures that objedts can be accessed only by
authorized domains. This ceonstraint can be enforced without using

authentication to identify users.

Chapter 3 ‘ Page 29

By ensuring that a process can enter a domain only through a contfolled
initial procedure, we allow the ihitial'procedd}e to guard the domain. The
initial procedure can authenticate a user before allowing that user tsrcontrol
the process.

In many computer utiiities each user is authenticétsa: soon after he
contacts the utility. An authenticated user is then allowed to change the
authentication hroeedure to be used for futupe sessions (by changing his
password,) and to‘speeify from his terminal the operations that the computer
utility will perfovm for him during the current session. In the organization
used in this thesis, a user who contacts a computer must choose an initial
domain. He then must satisfy whatever authentication mechanism is used by the
initial procedure of that domain. Even after successful authentication. the
initial procedure may impose limits on the operations that will be performed
for the user,. |

The organization used in this thesis allows a user who requires ai high
degree of security to specify his own authentication procedure in the initial
procedure for the domain that he will use (as will be shown in chapter 5). It
also allows for limited service users, a concept that has proved useful in{

current computer utilities.

2) Denial of Service.

Whether or not authentication is required to prevent unauthorized denial
of’service depends on whether the utility guarantees service to users, or
whether it guarantees service to domains. If a computer utility guarantees
each user a fair share of the avallable resources, users must be authenticated

to insure that one user cannot monopolize the. resources of the computer

Page 30 Chapter 3

utility by requesting services from many terminals simﬁltaneously. Doma}ns
can be guefahteed a falr share of the eveilable‘ reepﬁrcee by 1@pesing
restrictions on the resource use of proceesee; The resoerce eontrollee»peed
not be aware of the’fact that some of'the precesses are pepfofming_ operayions
on behalf of the users of‘thevcompﬁter ﬁtility

The initial procedure of a domain can be used to allocate the resources
guaranteed to that domain to users, much the same as the initial procedure is
used to insure that the access rights granted to that domain are not abused
The Multics computer utility uses a resource control scbeme that assigps
resources to processes based on their principal ID.‘ Ae we ehow 1n’chapter
six, this resource control scheme can be implemenfeeibwithout .releieg on

authentication.

3) Confinement.

Authentication 1is required in some form in order to achieve confinement.
Ihis is because the purpose of confinement is to prevent a Eﬁg{lfrom*obtaiﬁing
information that he is not entitled to. There are several ways in - which
authentication ocan be incorporated into the -mechanism that enforces
confinement.

One way to provide confinement is to authenticate ‘each user who contacts
the computer utility and to 4nsure that each process with which the user
communicates has a confinement set that is smaller - than < that of ' the user.
This scheme has the disadvantage of 'system-wide ' ‘authentication schemes
mentioned before, namely that 4t does mnot allow different authentication
mechanisms to be wused for different. users*iiﬁﬁiﬂifferén%'seoﬁrity ncddgg

Because different confinement attributes proteet different informatiocn, it 1is

Chapter 3 Page 31

likely that some of that information is more valuable.than the rest and
thebefore a user should be forced to pess a nore rigorous authentication
before gaining access .to sucn infornation.’ Tne following scheme allows
different authentication mechaniems to be need to obtain different confinement
attributes. - | ‘

‘Each terminal that contacts the computer utility isﬂinitialy assigned an
empty confinenent set; A process that wishes to communicate with a terminal
may discover that it cannot do so because the confinement set of the terminal
idoes not contain the confinement set of the process. | The process must call on
an authentication mechanism to identify the ueer at the terminal After the
authentication mechanism has identified the user, it changes the confinement
set of the terminal to include the confinement set of the authenticated user.
Each authentication mechanism 1s only authorized to supply some of the
possible . confinement attributes, So that different authentication mwechanisms
can be used to grant different confinement axtrﬁbutes.iv

. This scheme also has the advantage that the responsibility for devising
-and maintaining the = authentication mechandsms can be distributed among the
users who wish their information to be protected by confinement. TheuGOmputenv
utility need only provide some means of .allocating +the confinement set
attributes and eatablishing the authorized authenticstion mechanisms,

The major disadvantage of the above soheme is that a user with a large
confinement sets may have to be. authenticated several times during the same
session in order. to obtain access to all of the information that he needs.
Current applications of confinement mechanisms do mot tend to have users with
large confinement, sets. Also, a user rarely needs accéss to all of the

information that he 1s potentially entitled to in any one session. Making it

Page 32 : Chapter 3

awkward or costly for a user to obtain access to all of the 1nformation that
he could potentially see may have the beneficial effect of encouraging each

user to obtain only the privileges that he needs for his current task.

Encryption.

Much recent work on authentication has been devoted to the developement
of authentication mechanisms.basedv on encryption. - Such .schemes have the
advantage over passwords that the sensitive identifying information (password
or encryption key) 1is not sent through. the. stream, and thns~1s 1ess-§ulnerable
to being stolen. Some of the protocols require thntxaaohfprocess that talks
to a stream know thevencryption kay'for‘thatnstnaami«rThe scheme developed by
Kent [KeT6] usea,cne key for authentication-and one .key -%to. provide .secure
communication through the stream once authentication has been performed. The
second key must be known by each process that eommunicates: with the stream.
The authentication forwarding mechanism described below is well suited for the

distribution of such keys.

3.2 Authentication orwgrg;gg

We say‘ that a process that relies’ on :a previonsly performed
authentication to determine the identity of the source of a stream is using a
rwarded ggtgggtiggtign Thus in most computer systems, where a system-wide
mechanism authenticates users when they first contact the system, each process
relies on a forwarded authentication (from the system-wide mechanism) for the
source of the stream from whieh it draws commands.‘
Forwarded authentications are a very common phenomenon outside of the
computer utility. Identification cards represent forwarded authentications.

Anyone who determines the identity of a person from an identification card (or

Chapter 3 Page 33

driver’s 1license wr credit card) is actually relying on the authentication
performed by the issuer of the card. Unfortunately. identification cards can
be lost, stolen; or forged. éoruarded authentications maintained inside a
computer utility can be protected, making them unforgeable and unstealable.

There are two facts that any process using a ' forwarded “authentication
. must know: - The olaimed identity of the wuser:, #wnd the ‘muthentication procedure
used. Both - of -these facts & can ' be .provided bY allowing a process that
performs authentication ‘to record zecurely the %dentity 'determined for the
user. In order to allow the authenticatton méchanism used to de determined,
sufficient information to islentify the author of eath Forwarded authentication
must also be. recorided, - With our - model, tive ' necessary’ information "is the
process, ~domain;'and7yrouedune:thatfsece?dedﬁtheE%esﬁit*bfiénzauthenticatiOn,
and: the time of recording. This information allsws’ a ' process that uses a
forwarded - authentication -to:ddentify the 'authéntieation mechanism used, just
as the distinctive format of an identification card allows the issuer ' of the
card to be identified.

Identification cards sometimes become invalid | due to‘changes in the
information that they contain In the computer utility. ‘a” change in ntheﬂ

source' of a stream invalidates previous authentications forﬂthat stream The

computer utility cannot always detect each case in which the source of a

i

F o et o T R
s 3 R IeT R I

stream changes (1) In the case of streams with finite lifetimes, such as

Rt e D NS [ETRRIEE ¥

telephone or other network connections, the oomputer utility can detect when a

user 's stream has been disconnected and should forget any authentications

(1) One case in which.:it ‘s difficult: to -deteot i chdnge 'in “'the source of a
stream occurs when a user walks away from a terminal and a second user takes
over without either one informing the computer utility of the change.

Psgeﬁéh' Chapter 3

performed for such a stream: The authentication forwarding mechanism should
delete the forwarded- authentications for a stream when that stream is
disconnected. A stream can be disconnected and reconnected between the time.
when a process performs an authentieation and the time -when that process
records the authentication, leading to an incorrect forwarded authentication

One solution to this problem is to have the computer utility maintain a
count of the number of times that a stream has been connected. The process
performing authentication can then obtain this connection count before
performing authentication and present the connection count 7 to the
authentication forwarding mechanism along with the forwarded authentication.
The authentication forwarding mechanism eanktheﬂ~obtuin,tha¢ounrent conneotion
~count in order to determine whether or not the fcruarded ~authentication is
valid. The connection count is used as thexeventcountswof Kanodia and Reed
(KaT6].

A forwarded authentication for a stream is useful only to the processes
that can read from or write to that stream. _It'therefore'seems desirable to
allow only those processes that can read or write a streem -to -read the
forwarded authentications for a stream. We also allow only those processes
that can read from a stream to record forwegded authentications for that
strean. These restrictions allow the computerlutility‘to limit the resources
expended in"keeping forwarded authentications, by 1limiting the number of
authentications kept for each stream, without .allowing one process to
' monopolize these resources by recording forwarded authentications for streams
that it canfiot use. The above restrictions are not necessary for security
reasons, because ‘the information recorded with a forwarded authentication

identifies the author of that authentication and pvewents forgery

Chapter 3 , Page 35

We must, however, keep authentication forwarding from becoming a coyert
channel for confined information. This can be done by assigniﬁg a confineﬁént
sét to each forwarded authentication and forcing the reading of forwarded
authentications to obey the "-property. Each forwarded authentication is

given the confinement set of its author. (1

3.3 Example.

The following section shows how processes are created for users of a
computer utility using the ideas on -muthentication of this chapter. The
scheme described 18 compared with a wmore commonly used scheme for
incorporating authentiéation into process creation.

A user who contacts a computer utility for service 1nforms the computer
dtility of his identity. Based on this identity, the computer utllity selects
a domain in which to create a process to serve the user. The computer utility
may or may not authenticate the user to verify his right to use the requested
domain, perhaps by demanding a password. If authentication is performed, then
the result of that authenticatién is recorded as a forwarded authentication
for the stream that represents the user’s terminal. A process is then created
for the user, beginning execution in the chosen domain in one of the valld
initial procedures for that domain. It is the responsibility of the initial
prqcedure to determineé whether or not to serve the user. This decision could

be based on the forwarded authentications recorded for the user’s stream.

(1) An alternate scheme would be to give ‘each forwarded authentiocation the
confinement set of the corresponding stream. This scheme would not work well
for a system in whieh the confinement sets of streams changed, such as the
authentication scheme described above where a stream gains confinement
attributes after its source 1is authenticated.

Page 36 Chapter 3

If the wuser deslres access to confined information, then he must make
contact with a process with the desired confinement set (either by specifying
that his initial process be created with a non—null conf;nement set, or by
asking his initialiprocess.to try tolchange its eonfinement eet or give his
Stream tovsome process with the desired confinement'set). Such a procese will
discover that it cannot communicate with the user, and must select one or more
authentication meehanisms to call on to 1dentify the ‘user, depending on the
attributes that the confinement set of the user’s stream is missinz Each of
these authentication mechanisms in turn records forwarded authenticatiOns for
the user’s stream; and some of these mechanisme may rely on anthentications
forwarded from others. |

We contrast .this scheme with the authentication seneme used in mosat
computer systems today, which uses'a‘system-wide authenticat;on meehanism to
identif& each user who contacts the syetem. _An authenticated user can tnen
create and control processes‘in any domain that hevis authorized to use;

Notice that the scheme presented in this chapter oen be made to Dbehave
like the more common echeme (by performing authentication for all users who
contact the computer utility, and having all initial procedures make use of
the forwarded authentication from the system-wide mechanism). Thus a user who
does not require a high degree of security need not generate nis own
authentication mechanism and can instead rely on the systemewide mechanism. A
highly privileged domain, however, can be guarded by an arbitrarily secure
authentication mechanism.

One of the most important differences between our scheme and the more
commonly used one is that the process that responde to a user who contacts a

computer utility (called the 1listener, logger or monitor, in some combuter

Chapter 3 v Page 37

Systems), needs no special privileges in order to creape processes for users.
We therefore can remove this prbceas from the security kernel. This pfocess
generally executes complex programs, because it must be capable of dealing
with several users cdncurrently. and work with a large variety of ports on the
computer.

Notice alsoc that several procesées can be used to wait for users to
contact thé computer utility. Different processes can be used to respond to
different types of streams (telephone connections versué netﬁork connections),
and thus the complexities of dealing ﬁith a particular tybe of stream can be
isolated in one process. A utility with parallel processing capability may
also want to make use of multipleiprocesses to increase the rate at which new
users can be handled. \ |

In chapter six, we show how this authentication scheme éan be implemented

for the Multics computer utility.i Chapters six and seven summarize the

advantages and disadvantages of this scheme.

Page 38 A Chapter 3

CHAPTER 4

RESOURCE CONTROL

This chapter discusses how resource contrél “is related to process
initiation: We begin with a discussion of ‘the issues involved in controlling
resource ‘use in a ocomputer utility. We then present a ‘set of operations
through which the use of resources in the computer utility can be 'ébntrdlled.
and show that the use of these obeﬁétiohﬂ édn not violate access control
constraints. - The -chapter concludes with & discussion of ‘the kinds of resource
control policies that can be implemented using our set of operations, and the

security constraints that can be violated through the use of these operations.

4.1 Issues of Resource Control.

A resource is a service provided -by the ‘computer utility. Thus resources
can include physical devices ' (1¥he printers, card readers etc.), abstract
devices (virtual processors, memory pages, etc.), or'{eveﬁQ‘bbograms*”(hatrix
inverters, etc.). This chapter is most concerned with the resources needed to
initiate a process. In Multics, these resources are the process itéelf} and
the CPU cycles and memory pages needed to execute_&phei 1nitial procgdgrgf
Resource control consists of the distribution of re;éﬁrqea fo broqesges, and
recording the_use of résources by prqqesses‘for acqounting.

In this‘section. we ppesénf sqﬁe of tﬁe\iagpeg}iﬁvolvegin the control of
resource usé in a computer util}ty;‘ These }ga;es. gp}de__tﬁe way 1in which

resource control is included in the model of process initiation. We consider

Chapter 4 Page 39

two issues: The distinction between mechanism and policy and the general

scheme of resource aontrol used (hierarchical or central).

Policy and Mechanism.

Recent research [Jo72,AnT4] has stﬁeséed the importance of distinguishing
policies from the mechanisms u;ed to 1mplement those policies inslde a
computer utility.. The separation éf mechanism - .and - polioy 1s particularly
important 1n the area of rescurée control, singe different resource control
policies may be appropriate for different resources of the same system.
Different policies hayk also be needed . for different _usérsu~ A flexible
resource control mechanism can implement a wide variety of policies.

This chapter is most concerned with the interface betwsen mechanism and
policy. The interface should be chosen. s0 that the mechanism can be
implemented with a‘_small, simple, and easily verifiable set of program
modules. At the same time, thﬁ interface ahdﬁId.aﬁ§§S§é'a.ﬁid; #aviéty of
resource control policies,. without allowing, the wvilolation of aoocess control
constraints through. the use of the operations prowided by the interface. Such
an. interface allows the removal of the most complicated and variable portion

of,neaouree-éantnql (the policy) from the access,. contpols layer of the security

kernel.
Resource Control Philosophy.

Two common apprbachés’ to resource eontroii are (the hierarchical and
centralized systems of controi. In the déﬁtraliQEQISysf;m,?thére is é central
authority known as the resource ggggzgllgg that iSk'GesponSIble for the
assignment of resources to all’pboeesbes;' Inyéhé’ hie}érchical seheme, (éaéh

process is responsible for fulfilling thevresource neédé of the prdcesses'that

Page 40 Chapter 4

it creates. Thus eagh_.processv;acyg as ’resour09; 9qgtro1ler for 1its
descendents.

The hierarchical system has tge advaqtagg that the creator of a process
has more knowledge of thgygntiéipétgd resource needs of ngp‘proqegg than a

‘

centralized resource controller, and thus can make a better decision of the

resources to assign. .The hierarchical»ﬁyg;gmu§s algp quitg’flgxiblebbepause
each process can implemeﬁf its own pplicy 9f¥fe$oufce conyfolf

However,‘the‘hierarqhical Scheme reggiyééiphét‘eaoh process that creates
processes pefform resource control. Thigydupligaﬁéoh makes it difficult to
add a new type of resource, because gevepé}lglgoéiﬁhyg méy_ngeg\td be mggified
to deal with the new resource. Inv-the‘ucéntral scheme, gq}y$ the ggntral
_resource controller Aﬁeed be modified to add ;a’mﬁegmnyype‘:ofﬁ regource.
Duplication of mechanisms also 1ncre#ses fhe chénce of error.

The hierarchical schéme does not respond well -te §¥&6$5h034w4th%<errﬁtic}
time-varying resource requirements. Resoiurdes assigned to meet a ‘Sudden
demand by such a process may have to pass through ‘reséurcé ¢biitrol algorithms
in several processes. -These algorithfs’may be tnwilling or unable t& méet
su¢h a demand.

‘Anothér disadvantage of the hierarchical scheme 1is ‘that 1t"does' not
provide for a process and 1ts creator to be mutually ‘suspicious. Each process
must ‘trust its creator to assign thé resources that thafrbﬁoéess needs. 1In
turn, each process must trust its descendeqts ‘qog- tglvqastq_ phg;h .aasigned
resources By not performing the désired task. The centralized Scheme does not
share this difficq;ty. as each process 1§n 439394¢n§,°ﬁ}¥ on the,central

mutually suspilcious, because nelther must depend on the other for resources.

Chapter 4 Page 41

1

A fourth problem with the hierarchical scheme is that it does not
interact well with confinement In a computer utility with hierarchical

control the resouvces that a process assigne to its descendents can be used

as a covert comnunication channel to pass“cbnfined 1nfornetion.' In addition,

each process can signal information to ita creator through its use of the
assigned resources.’t Both of these channels are difficult to block with the

hierarchical resouvce control If neither of the channels is blocked then
each process must he assisned the same confinement set ;s 1ts creator, so that

£ o o

neither channel oan “be used to violate confineuent.A Such an assiznment of

WRE BARUEOS0 | pluna iow 3 :
confinement sets would force all’ processes to have the same confinement set.

Sl

Because mutual suspicion and confinement are ‘both considered 1mportant in
witibn: eTe] : L

’this theais, ‘we choose centralized control.
9&2*254ﬂl§1¥$»925£3$388§ gor. Rgaoupoe Convrel .. v .-

.i#n. this section, .we present.and disgyss.a, set of.prisitive-operatiens
that enable a .ogntralized. autharity.-to -perfapm. .pesource oontrel. . These
operations .form the. -interface heiween machanism.and paligx;dia_eussed«-ahove-t
We show that the operations do not allow the resource controller. to . violate
aggess . control canstraints, but de:allow.the resouras controller -to implement
a Wide variety of resource ¢ontrol polloles.i: (. s:ooo. -

We_use the following set of primitive aperafions.for resource control:

1) The resource controller will be allowed to control the distribution of

Bl wiltomr i ean

" resources to all processes
i”él The ﬁesouﬁéé'cdhtfaiiéé will oewislioweda”to'ﬁmoniton"the use of sll

" resources by all processes.

Page 42 Chapter U4

3) The resource controller will be allowed to observe a fixed set of
parameters of a proposed process initiation (such as theminitial

procedure or domain), and veto the creation of a process.

4) The resource controller will be allowed to destroy any process

The first .of these operations is cle&r2y>ﬁeeded3to implement a resource
control policy.. Different types of ‘contfél are & feeded ‘for ' ‘dif‘Perent
resources. - Some resources, - 'such ‘as ‘line printers or" ‘dard ‘readers, are
assigned to a process for a relatively long ‘time peffod (minutes at léast):
Primitive operations .-that - allow the resource controller ‘‘to assign such
resources to processes should be provided. Some resourcés; fsucth ‘as the'‘usé of
the CPU or memory, must be rapidly -swdtcHEdiamohg’ﬁrocesses'in”order to
provide rapid response to requests from users. : A “small, ‘simple, and fast
control mechanism 41s . generally provided For ‘iuch*resources.*The resource
controller: controls the. distribution of-such*rdsourcesﬁbyfspséifying to this
control mechanism the set of processes in contention for' the resource and the
priority. of eaeh process, : | R

The second operation allows the resoures: eontroller ' o observe the
resource use of each process even if the actual assignment of resources is

- i
made by a lower level mechanism (as in the assignment of CPU cycles and _memory
pages described above). This primitive allows the r:source controller to :
record resource use for accounting N |

The last two operations allow the resource controller to control the
total number of processes. Each process may consume space _in tables that

yo :

contain the state of that process, and the amount of_such space may be

limited. The performance of algorithms for multiplexihg the available

Chapter 4 | Page 43

processors‘ and meﬁoby among procesSea dégbades as the number of processes
1hcreases. The resnﬁrce control policf‘of'thé cdﬁpdter_utility mﬁy therefore
dictate that the numﬁerkof processes be limited. Anot;er reasoﬁ.for limiting
the number of processes is to pfovi&e goodvr;;bénsé’toraudden changes in the
-resouree requirements of progesses. If the resources are divided among too
many processes, it may be diffiault for the nesource ocotfnitroller to gather all
the resources needed to meet a large demand by one process. -Thé resource
controller is allowed to observe certain charaeteriastics of each process that
is created, so as to have somoybabis.for-dscidﬁn;.whn&her or not to allow the
areation of that process. S e
We now show that none of the four . operations allows the resource
controller to violate the acceas .control oonstraints of the kerneli. This
property allows ‘a” n§aourQe controller tha;Aadepands only. ot the above
operations -in order .to perform control. to b?rimnizntnted outside of the access
control layer of the kernel.
There are three ways 1n which one of our primitives might violate the

constraints of the agcess: contro)- layer: ...

1) It might perfdbm an 6peration not authoriieﬁ ;by thé access control
mechanism. ni o ‘ o - | |

2) It might alter the process-domain bih&igg;

3) It might change the relationship that éééérmiﬁés the ’épérétions ’that
each domain can perform on eacbvbbj;ct:iflé the case of Multics. the

. : R
access control lists.)

Page 44 ' Chapter 4

-

The first of the primitives controls the assignment .of resouroes to
processes. The primitive does not alter the process-domain binding. nor does
it alter the set of operations that each domain is allowed to perform It
therefore does not violate the constraints of the access control layer (1)

The observation of reaource use clearly cannot alter access control
information. It may, however, allow the resource controller to observe the
objeots being used by a process even 1if the domain of the rosource controller
does not authorize the resource controller to see those objects. This does
not violate access oontrol 83 no process can be cpnpelledﬁto;give away.
information in this manner. It does, however, allow the . resource oontroller
to‘ violate confinement uhich is one reason that the resource controller is
included in the kernel layer that enforces confinement.

The resource controller can change the processgdgnain. binding by
rejecting a prooess creation request, or’by destroyingba;brooesa. The change
does not, however, allow the resource controller to gain unauthorized access
to objeots. | |

Thus the four operationa do not allow the resource controller ‘to violate
the access control oonstraints of the kernel lhey ;9°',;h9“°V9Fs :give_ the,
resource controller knowledge of the,resource use ofiall prOoesses, and total
control of all resource allocation. lhese ebilitieséallggiaﬁuide variety of

resource control policies to be implemented.

(1) We must be very careful, however, that ‘resource assfgriments do not affect
the functioning of the access control layer. 1In a system with a distributed
Supervisor, the withdrawal of resources ‘may stop a process that is modifying
access control information, and may leave that information inconsistent.

Chapter 4 o Page 45

4.3 Limitations on Besource Control Pollev.

There are limitations on the beéoﬁéce control poliéies that can be
implemented with these primitives. As noted before, tﬁé resource controllér
does " not know the didentity of the useéa'whd‘contrdliﬁhé proceaséé of ££e
é¢omputer ufility.!' Thus the iesourée cdﬁtrbller eénnot base | resource
allocation decisions on the knowledgewa which néeruvill éontrol the process
that receives the resources. We::suggé;ted éhflier’fﬁhgi- the resource
coniroller use the initial domain of a prbcé#s.to détermihé'the resourcesrthat
the proceﬁs will receive. This seems;a satisfactory sﬁbstitute in most cases.

We have also made no provision for the resource controller to find out
the detﬁils of the computation being perfdrmed by a pfocess;’ Allowing the
resource controller to observe more about the executibn of a proeeés makes 1£
more difficult for a process to conceal the contents of the objects that it
uses from the resource controller. Such observation may be needeé in order to
implement some resource control policies, such as a policy that g;ants higher
priorlty to a process when that process 1s performing certain tasks.(The
barameters that the resource controller is alloﬁed4£oﬁbﬁsérvé ﬁﬁeﬁ’the pfocess
is created may help the resource controller to determine thé task that a
process performs, but they do not aliow the reéaugéégcoﬁtroller fo distinguish

among several tasks performed in the same process.

4.4 Security L;g;ggg;gn_.

There are also limitations on the security constraints that can be
enforced without certifying the resource controller. Although we have shown
that we can remove the resource controller from the kernel layer that

implements access conytrol. it 4s gclear that the four ~opez',atima give the

Page 46 : Chapter U

resource controller the power to deny service, and thus must be in the kernel
layer that prevents denial of service. We also saw that the operations allow
each process to transmit information to the resource controller, and that the
resource controller can transmit information to any process through the
resources that it allocates. Because. of these information channels, the
resource controller must be certified not to violate confinement

A less obvious problem 1s that of revocation. The ability to revoke
access to objects may be very 1mportant to the functioning of a computer
utility. A denial of serviee can preveﬁt a process from revoking access.
Although this does not violate the access control constraints (the right to
revoke aceess is not. guaranteed), it may cause inconvenience to the users of‘

1

the system.

Summary

We have shown how a centralized sclieme of resource control ocan be
implemented with four priﬁitive operations. ‘These dﬁeratibﬁ$ allow a wide
variety of resource control policles to be implemented. The primitive’
operations do not allow the resource controller, which implemerits thé resource
control policy, to violate access control constraints, Chapter six shows how
the complicated resource control policy of the Multics computer utility can be
implemented in this manner. This implementation substantially simplifiés the

access control layer of the kernel.

Chapter 4 : Pagg 47

CHAPTER 5
-MBECHANISMS FOR. AUTHORIZING DOMAIN ‘CHANGES -

This chapter considera meoh&nisma to ‘authorizev domain changes in a:
computer utility. The chapter assumes a liat-oﬁieated implementation of”
‘access control, such .as that of Multica [0r72] The meehanisma diseussed use:
the. access control nochaniam of the computer utility to authorize domain-
changes. Each meehanﬁsn 1s evaluated for use in authorizing process:

1

1nitiation and for use 1n ‘the’ calling of’protacted subsystema.

5.1 Introduction.

The domain changing- mechahismr needed in process initiation performs-
s;milap functipns to the mechanisms gggdq¢s-boxaﬁthovizerthe%caalingrof‘a~
protected subsystem. We therefore desire to have one mechanism that will
serve for both purposes..

_ The mechanisms - to be described all - make: use of tuo special types of
objeets in the coﬁpn;er utility, . domain objects . and: domein ggte objeets.
Access to a domain gate object is required in .order to:.create a .process: or:
call a protected subsystem, while access. to.a domain obssc@x ds: required: for:
the creation of domain gate objects. These special. objects are used: because:
the access control mechanism of thefcompqter utility can be used to authorize
domain changes, Jusﬁ as it is used to authorize operations performed on other
types of objects. There is a unique identifier for each domain that we refer

to as a Domain Identifier (Domain ID). A Domain ID is used to designate a

Page 48 Chapter 5

domain in the same way that Saltzer uses a Principal ;Qvtp;gggigngtengﬁ;domain
(5a75). Each Access Control List gonsiétg of a list of pepms,iAQL tebma)vthat
sbecify a Domain ID and a set of access rights. Q,anqg§ai§$aoceaa rights for
an object are determined by the ﬁerm of the“ACthqr‘the objaqtfthapfpa;ches
the Domain ID of ‘the domain of the process. The matching algorithm used
depends on the partieular domain changing mechanism used.

The remaindgr pf this chapter dggqripesYfpur”pQthpigpsl@ojcpntrol dbpgin
changing. These mpchanisps gepn§§eni a. nupber{ inwaygwtq,contrqlVdpﬂgip
changing using the access eontpql megpani;pglgf the rcqmpu@er, utility. They
inclpdg mechaniams gesignég‘ for prpcesq_.ipitiggiqg @99 those designed for
ppoteétéd subsystem calls. Includgd‘in‘thi§ﬁsg§?o£,nggp§pi§ma:arer mechanisms
similar to those used by Jones [Jo72] and Schroeder [So721to gﬁybqrigc domain

changes.

5.2 Four Mechanisms for Authorizing Domain Changes.

"I have named the 'four'mééhﬁhismsﬁfo'bétbﬁesenﬁed'Ex&cﬁ"SpécificatiOn.
Partial Specification, = Last ' Component Sbe61?162£1o:i, "and Appending
Speciffcation. Exact Specification 1is the Sinmplest df the four mechanisms.
Partial Specification is slightly more complicated, but can be uséd to
implement authorization schemes that .allow ‘several authorities to share
responsibility for a domain, such as the scheme uaed in the Multics computer
utility [0r72] Last Component Specifi;;tion ia similar to. the mechanism
presented in Schroeder’s- thqais ‘to contral tnq,‘ggodtion_'aqd,,calling,.of,
pfétectéd subsystems. [Sc72] Appending’Sﬁé@it{é@ti@h,}bfg:ﬁuchgﬁpre;5gh6r§1’
mechanism that allows the entire call history of a . progess ta be 'gged-,in

determining the access rights of that ph°95§§9,“’f1:

Chapter 5 'Page 49

5.2.1 Exact Specifigdtion.

The ' first meghanism for domain entry control to be discussed #ili be
referred to as Exact Specification. Each domain change 1s authorized By a
domain ‘gate objeot. A domain gate object specifies a Domain ID and an initial
procedure. A process mékés a call to a procédﬁréﬂihugﬁoﬁhar'domaiﬁibywééiling
the "domain call" primitive (an oparatien provided by the security kernel) and
passing it the name of a domain gate object. (13‘ If the proceas " has "call"
access to the domain gate object, the domain of the process is ohanged“byﬁﬁhe
kernel to that specified by the domain gate and the ‘proéess? executes the
specified initial’ proeedhbe " To create a process. one must call the process
creation primitive pasaing 1t the name of a domain gute object to which the
oaller has "create" access. ‘ i o

The "call" and "create" accesses described above are determined froﬁ'the'
ACL of the domain gate. (2) | ») |

The creation of new dqmain gates is coptrolled hy the domain objects.
Each domain object specifies a Domain ID. A progess may create:-a domain gate
byaqaxlins the "create gate" primitive, pasaing.it the name of a domain object
and the nage' of an initial procedure. The. process myst have "oreate gatea™

access to the specified domain object,

(1) If an attempt to call the gate directly resulted in an error condition,
then the computer utility could detect attempts to call domain gates and .
invoke the domain call ‘primitive automatically. This scheme is similar to
dynamic linking. The calling procedure could then call the gate just as it
would call any proceédure in the same domain.

(2) As noted before, the ‘initial procedure for a domain can be used to guard
the access rights and resources of that domain, . Therefore, the "call" and
"create" access rights are unnecesssary, and only serve as a convenience. The
important function of the domain gate object is to bind together an initial
procedure and a domain.

Page 50 Chapter 5

The creation of domain objects must be controlied,,since any process with

access to a domain object can create new gates for the domain. that is

specified by that objects. This control can be accomplished by allowing.the

creation of a domain object only if the Domain ID specified Dby vthat domain
object has not been previously used.

It is important to understand tne‘systen,of control heins«aqplqyad'in
‘this mechanism as it is oonmon to all tne mechanisms' discussed in this
chapter. This system of control is very similar to that used by Schroeder
[Se72] to control the ereation and calling of protected .8ubsystems. The
creation of new domains is an unprivileged operation, as any proceasais
allowed to create new domain objects, while the creation of gates into a
particular domain is under the control of the domain obJect for that domain.

Notice that access to a domain gate object is sufficient to use a domain
gate, Access to a domain object is not required. Thus we cannot, through. the

ACL of a domain obJect, revoke the right to use domain gatpa that werc created

using that domain object. Adding to the ACL of a. domain objegt is in soae |

sense non-revokable. This non-revokability is true of all of the domsin
changing mechanisms discussed by this chapter. Ve ‘ceuld provida some
mechanism to destroy all of the domain gates created from g particular . donain
object. Because domain gates cannot be freely transferred or- duplicated, as

can capabilities, it is easy for the computar utility to locate . all of the

domain gates that were created using a particular domain abject.

Exact Specification could be used for both. calling and process

initiation, as it is capable of authorizing a domain change between any tHo
domains. It also seems relatively easy to implement vIQSEP are;,hqweggr,.two

disadvantages to this mechanism that make itylesa suitable.

Chapter 5 Page 51

Using Exact Specification, a process that hasy“create_gates" access to a
domain object can use the corresponding domain by creating ‘getes 1nto that
domain. Thus in the case that‘there is a single“authority%responsiblekfor a

‘domain “that authority can use the domain obJect to control the use of the
domain. Several computer systems, including Multics. allow two or more
'independent authorities to share responsibility for a domain. ‘The .use of a
~domain in such a system requires the indcpendent approval of all of the
authorities that share responsibility for that domain. An example from the
Multics -computer utility Ashould'helpiillustrnte‘the use of snch a system of
N U S AP ET. . - : :
In the Multics domputer ‘utility, Principal IDs (Domain IDs in our
terminology) nave*ﬂé@rsbn“”éha“é%dﬁaci“Eéiébﬁékisyﬁ"fié*Ere;tiSH of a‘process
with a particular Principal ID requires the independent approval of both the
user ‘who corresponds to the Person component and the project administrator of
the project ‘that corresponds to the Projeot component.of that Principal ID
The Principal IDs “‘that’ eppear “in Access Control Control (ACL) terms are
allowed to contain (ILE components that match any value of the corresponding
aéémponént in a’ Principal ID “of a process. IThus the term "Jones ' . read"

Vo ireal

grents read access to any process that has “a Principal ID with e Person
aémporent of ‘*Johes™. ” s ””) -
Such 'ACL terms are frequently used to aliow all of the users of a given

project to use a particular program or data base, or to allow a user to have

acdéss to his private dats’ while working on any project.' In order to preserve

the meaning “of such’ terms while using Exact Specification to control domain
changing, we must carerully control the creation of a domain object with a

Domain ID that matches a previously created Domain ID in any component. For

Page 52 . Chapter 5

example, we could not allow the creation of a domain obJect with a Domain ID
of "Jones. new" if the Domain ID of "Jones. old" had already been used This is
because the domain "Jones new" can gain access to objects through ACL terms
with a Domain ID of "Jones #" and therefore the use of that domain must be
authorized by the person corresponding to "Jones" |

The above problem can be solved by allowing“ only a trusted system
administrator to create a domain object that specifies a Domain ID that
matches a previously existing Domain ID in some component. This solution.
however, overly restricts the way 1n which users may create and use domains,
and forces all users to trust the system‘ administrators. The §artial
Specification mechanism to be discussed later provides a.better way to allow
several,authorities~to,share responsibility for a Domainz

A second difficulty with the Exact Speeification mechanism is- that 1t .
does not provide the proper control for thefcallingnof proteotedv subsystens.
When a process makes a call that changes 1its domain -of execution, the called
domain must have acocess to the arguments of the eall in ‘order perform the
desired function. This access should be.. revoked ' when the called domain
returns, so that the caller can be assuredvthat:thewcalleerwill not read or
modify the arguments at some later time. In addition, the -callee should have
Some way of verifying that the caller has access to the arguments of the call,
So that the caller cannot trick the callee into reading or ‘modifying some
object to which only the callee has acceas.

A domain changing mechanism intended for the calling of protected
subsystems should require that‘the callee and caller share some access rights,
thus providing some means to pass arguments, Exact Specification and Partial

Specification do not enforce such a requirement. Several researchers

Chapter 5 Page 53

[JoT2,RoTl,Sc72] present mechanisms designed specifically to deal with the
problem of passing arguments.betwéen domains. Any of these mechanisms could‘
be combinedeith Exact Specification or Partial Spgcification to form a domain
changing mechanism, by using the argument passing mechaqism to control access
to arguments of o¢ross-domain calls, and.using the A¢L‘mechanism to control
access to other objaets.} The’ Last Cqmponentﬂ Specifiggtiom and Appending
Specification mechanisms diséussed later in this chapterbboth provide partial
solutions to the problem of argument passing that may be significantly easier

to implement than the mechanisms of Schroeder and Jones.

5.2.2 Partial Specification.

The second mechanism for authorizing domain changes will be termed here
Partial Specificatibn. Pomain IDs: for this mechanism have-a fixed number of
components with implied meanings, just as did the Prineipal IDs of the Multles
computer utility described above. These aomporients represent thé independent
authorities responsible for each domain. A dom&in object in this mechanisnm
specifies one component of a Domsin ID. A Domain gate specifies a complete
Domain ID and an initial procedure as before. Domain gates are created by
passing to a kernel primitive the name of a procedure and ‘a list of names of
domain objects. Each of these domain objects must specify a different
component of a Domain ID, and all of them talken together specify the Domain ID
of the gate to be created. Domain gates are used 1ln ereating processes and
calling subsystemg a3 before. New domain objects that specify previously
unused Domain ID components can be created by calling the "create_domain®

primitive.

Page 54 Chapter 5%

oS R R L e s

Figures 5.1a and 5.1b show one way to use this mechanism to implement the
pattern of authorization used in the Multics computer utility as described
above., The figures show how the domain and domain gate objects could be
maintained in a hierarchical file system, sueh that each such object is under
control of the proper: authority,L” Dogg&n IDs have two components,
corresponding to Person and Project. Domain IDs specifying the Person
component are of the form Person.¥, while those specifyint the“ProJect
component are of the form ® Project. A Project is oreated by creating a
domain object that specifies component of a Bouain ID.wﬁxnew'user can be
reglistered by creating a domain object that specifies the Person oonpanent
The ACL’S on these objeets determinb who may use them. The following
abbreviations are used for access rights in ‘the figures:

s - (status) Allows a process to obtain‘ 1n§ovnation about the objects
contained in a directory. -
a - (append) Allows a process to create more objects in a directovy.

m - (modify) Allows a process to modify infornution An a’ 'dlreotory ’

(including the access control 1ists for tne objects i that directory)

Notice that the domain Locksnith.Sysﬂdmin is given modify access to the
directory ">Users". This access allows a process executing in that domain to
obtain access to any of the objects shown in both figures (hy modifying ACLs)

The Locksmith. SysAdnin domain will have special uses,las shown later

Chapter 5 : Pasé 55

Figure 5.1a

| Domain and!Domain Gate Objects in a Hierabchical File System

'kRooi
 Usersqfd. . | Locksmith.SysAdmin sma
. . .".. s
?'.' s Persons
Joney/. AgJomes.%. create_gates:
PiAdmin.Projl sma | o \Proj1
#Proj1 s ’ p

P&admin.2r031‘ereu£§;g§té$« ;? Proj1

Jones.* create_gates.
“Jones.* sma | ‘ Jones
4 ..'ijl_ g' r—— < .
Key: . . .
— ACL

Directory

<:i::>>——» Domain Object
D/n'omain Gate Object

Page 56 Chapter 5

Figure 5.1b

Domain and Domain Gate Objects in a Hierarchical File System

Users
Proj2 /. 'ReAdmin.Proj2 sma -
) - % Proj2 s
2Admin.* create_gates VR
Jones.* (none)
roj2
% Proj2
JOﬂes.’ sma P \ Jones -
% Proj2 s - .
Jones.* call,create §. . gate _
Joﬁes.PﬁoJZ
\1istener_ .

In Figure 5.1a, Jones has been glven freq;gqeaa;-tg?DPOJQQt«ProjI, as he
may create new gates into it from any domain with a Domain ID with his name as
Person component. These gates can be ~ereated by ‘passing the objept

">Users>Persons>Jones" and the object ">Usera>Proj1>Proj1" to the create gate

primitive,

Chapter 5 ‘ Paga,57'

Figure 5.1b shows the hierarchy below the Proj2 directory. Although
Jones cannot crea&é new gates into Proj2, he may enter the domain
ﬁJones.Projaﬂ‘ by using the gate ">Users>Proj2rionesd>gate”. This gate had to
be created from the domain "Locksmith.SysAdmin®, as this is the only domain
that has "create_gates" access to the domain objects required to create the
gate. The procedures of "Locksmith.SysAdmin" would presumably not create such
a gate without the approval of both Jonesﬁégd_”tggi(ggministrator for Proj2.
The power of the Locksmith.SysAdmin domain should be uaed carefully.

Notice that 1f at'ahy future time the administraébr for Proj2 wishes to
allow Jones to create gatés to the projact;_he can do so by modifying the ACL
oh the object ">Users>Proj2>Proj2®, without any help from Locksmith.SysAdmin.

Partial Speciﬁication'models the authorization scheme currently used in
the Multics gpmpgtggxgt§lity quite well. ;t Ia'nét significantly more complex
than Exact Specification, and therefore'ShQGId'be‘élmost as easy to implement.

This mechanism, however, has the sane~dnaub§ek forhsqbsystem calls as
Exact Specification. The calling and‘called‘démain' are 'néﬁ constrained to
share access rights, so that-Soth«the caller and the callee Aust take special
action in passing the arguments»dflé call, and both must bé aware of the

domain change produced by the call.

5.2.3 Last Compoment Specification.

The third mechanism to be discussed T will call Last Component
Specification. This mechanism cannot be used to authorize domain changes
between any two domains, and therefore 1is not suitable for use in authorizing
process initiation. The restrictions made on domain changing by Last

Component Specification do, however, make it a more attractive mechanism for

Page 58 Chapter 5

authorizing protected subsystem calls than the first two mechanisms considered
in this chapter. As before, Domain IDs have a fixed number of components.
Domain and domain gate objects specify only the last of these. (1)' A call to.
a particular gate oauses the domain of the calling process to be changed. The
Domain ID of the process following the call is rormed by replacing the last
component of the Domain ID of the calling domain with the component speciried
by the gate Thus if a process exeouting in the domain &"Jones Proj1 home"
made a call to a ga as its component the process would begin to execute the
initial procedure of that gate in the domain "Jones Proj1 editor" New domain
objects can be created as before as long as they do not specify the same last
component as previously created domain objects. “ - | -
This mechanism is very similar to that proposed in Schroeder s thesis '
[Se72] for controlling the calling of protected subsystems. : The last

component of a Domain ID can be used to specify a protected subsystem that
could be changed by calls during the life of a process.> The other Azomponents
of a Domain ID can be used to specify attributes that remain constant
throughout the life of a process such as the Peraon and Projectﬂcomponents of
Multics. All of the subsystems called in a single process are exeouted in
domains that share some access rights (all acoess rights that can be obtained
by the process through ACL terms with nEn ag their last component) . Although
this does not totally solve the argument passing problem discussed before, it
does help somewhat by guaranteeing that all of the subsystems in one process

share some access rights.

(1) We could allow them to apecify any one ‘component. . :The ' speocification of
only the last component will, however, be adequate for the intended use of the
mechanism and simplifies the description.

Chapter 5 v Psge 59

5.2.4 Appending Specification. |

‘\The last mechanism I will refer to as Appending Specifioation This
mechanism is not well suited to process initiation. as it cannot authorize a
domain change between any two domains. The domain and domain gate objects
sﬁeoify qQnly one cumponent of a Domain ID as in Last Component Specification.
The Domain ID of the target domain of a call is formed by appending the
component specified by the gate to the Domain ID of the calling domain A
return causes the 1ast component of the Domain ID to be dropped Thus 1f a
process in the domain "Jones.Proj1.home" made a oall to a gate specifying
"editor" as 1its Domain ID, the domain of the process would Dbecome
"Jones.Proji.home.editor”. | | | ‘

We can see that Domain iDs can have different numbers of components with
this ‘Scheme. We therefore need to augment the rules for matching of Domain
IDs and ACL terms.to specify what happens when the Domain IDs being matched
are of different lengths. | | | '

The component "##% has speclal significance in ‘our " matching algorithm.
and 1is used to allow an ACL term to match Domain IDs of various lengths.
Before comparing the Domain IDs of the process requesting access and the ACL
term, the matching algorithm checks to see if the Domain ID of the ACL has a
component of "##n_ Tf g5, and if the Domain ID of the process has at least as
many components as that of the ACL term, then the nidn oomponent is replaced
by one or more "#" components so that the Domain ID of the term and that of
the process have the same number of components. If the Domain ID of the ACL

term has more components than that of the process, the the "##% component is

Page 60 » : Chapter 5

deleted. We allow each ACL term to contain at most one ~"##w component. (1)
If the Domain ID of the ACL term does not have a n®#n component, or if it has
more components than that of the pchess;'thenmthe"fbllbwingi two rules may

apply.

1) If the Domain ID of the Process 1is lppgeb than that of the ACL .;erm;
then they do not match.

~2) If the Domain ID of the ACL term is longer thaq‘ that 6f the ,procesé.

then they match only if all‘of,thev"extrgrﬁcomp§pen£s of the ACL term

are "&n,

Table 5.1 illustrétesvthese'matching rules.

Table 5.1

Examples of ACL Term Matching

| Proc ggg’ bgga;n D
ACL term ID { a.b.c.d % a.b.c E a.b.d 1' e
] 1 i) ‘)
a.tt] _match SMLM{ no |
. " J_match | no I Ju; U - T

A process can grant access tovan:ybqqct about tp:belpassed_by a call by

putting a term with the Domain ID of the domain about to be called followed by

(1) Allowing more than one "##" component makes the —matching algorithm much
more complicated, and makes it difficult for a user to see which Domain IDs -
match a given term.

v -

Chapter 5 Page 61

".#%" on the ACL of the object. In this way, the object will be accessible to
.the subsystem to be called and any subsystems‘ghat it calls. The ACL term
need not be removed following the call, as all of the domains that it matches
can only be reached by calling the same subsystem again. Thus in a sense the
Appending Speeifiéatibn mechanism automatically revokes actess following a
call.

This control of access to arguments is made possible by the way in which
Appending Specification assigns a protected subsystem to a domain. Using
Exact Specification or Partial Specification, each protected subsystem is
assigned to one domain. Any call to a particular subsystem always enters the’
same domain independent of the domain of the caller or the process in which
the call is made. Thus using either of these mechanisms, the caller must
grant access to the callee prior to the call and must later revoke that
access. With Last Component Specification, the domain that a particular
Subsystem enters depends op that process it is called in, but not on the
subsystem that makes the call. Thus some objects remain accessible to a
process throughout the.life of thé process.'anqvéah be used as arguments to a
call with neo speqial handling. Hith-gppen&ing Speéification. the vdomain in
which a protected subsyﬁtem executes deﬁendélén~the aﬁS$§atem that called it.
This allows very precisé specification of the access rights to be given to
each invocation of a protecﬁed subsystem. | ‘

There are, ho;ever. some undesirable effects of not assigning a
particular subsystem to-the.same domain at each call. AS each subsystem can
be invoked in several domains in each process, Appending Specification will
tend to use more domains than the other mechanisms. Each domaln requires a

certain amount of local storage for local variables. In addition, in a system

Page 62 Chapter 5

that performs dynamic 1linking, such as the Multics computer utility. the
'processor time required to 1link a subsystem in each domain may become
expensive. | o | | -

In addition to the economic objections to not assigning a subsystem to
one domain always, one might argue that the environment that is provided by'
Appending Specification is more difficult to program in. One can have objects-
that are accessible only to one subsystem (by using ACL terms of the form
**.subsystem), only to one person or project (Person '*. or # Project.") : or
'only to one invocation (by specifying the exact domainvof that invocation in
the ACL term). A user must be very careful in deciding the access that he '
desires for the working storage of the subsystem. Current programming
langueges do not provide an easy way to specify ali of ;the bpossibie storage‘
classes. For these reasons, while Appending Specification is the most natural
‘of the‘ four mechanisms to use for the calling of protected subsystems, it

!

might not be suitable for all computer utilities. | h | |

|
i

5.3 Domaln Chaneing and Geufinement.

In this section, we discuss two espects~ofedmmein changing in.a ‘computer
utility +that provides confinement. He—firat»ﬂ@ﬂ!id@:ihou to use the :domain
changing mechanisms of the computer utility to control the -assignment of
confinement sets to processes. We desire to control the oonfinement set that
a process recelves because that confinement set partiallv.{determines ‘the
objects that the process can read. In some applicationsrof confinement

mechanisms to military security, the'confinement setbof the :process ‘may be

the only form of access control.

Chapter 5 o Page 63

IR e Lty G T e e

To control- the confinement set received by e newly created _process, or
newly called protected subsystem, we ineclude in the domain gate object the
specification of a confinement set The confinement set assigned to a newly
created process or newly called protected subsystem must be contained in the
confinement set specified by the gate that was*used for process initiation or
calling In addition, we requirevthat the confinement set specified by a gate
be a subset of that ofithe creator of that:éate. These two rules insnre that
the assignment of a confinement set to a process is properly‘authorized. They
do not, however, prevent the domain changiné mechanism fnon releasing confined
information. | ﬁ - |
We now consider how to keep our domain changing mechanisms from being
'used to release confined information. ’ Lampson [La73] suggests that the
‘obannels that can be used to transfer confined information be enumerated, 80
ithat they can be individually closed In this aection we enumerate the
channels provided by our four domain changing mechenisms, and suggest ways to
prevent these channels from being used to release confined information.
With each of the four mechanisms, there are six operations that could be

ugsed to release confined intornstion:

1) ﬁomain object creation.
2) Domain gate object creation.
3) Process initiation.
§) Calling of protected subsystems.
5) Deletion of domain obJects, or dcmain gate objects
6) Modification of access control information for domain objects or domain

gate objects.

Page 64 - A . Chapter 5

We now enumerate the channels produced by these six operations.

Domain creation can be used to transmit 1nf6rmat16n in twd ﬁays:

la) The domain object created could carry oonfined information
1b) The Domain ID used could carry confined information and could be observed

by other processes attempting to create domain objects.

The first ,of these channels can be effectively blocked by forcing the
creation and use of domain objects to follow the -property. We assign tov
each domain obJect the confinement set of the creator of that domain object,
and require that a process have a confinement set that contains that of the
domain object in order to use that domain object to:cveate~gétes..(1)-

The second channel is more difficult to close, as all of our mechanisms
depehd on the fact that the Domain ID in a particular domain object is
different from the Domain IDs in all other domain objects.' One pqssiblev
solution is- to partition the space of poaaible Domain IDs among the péssibie
confinement sets. We require that the Domain ID given to a new domain object
be a member of the set of Domain IDs assigned to the confinement set of the
creator of thét domain object. This can be done by 1nclud1ng some designation
| of the confinement set of the creator in the Domain ID. Partitioning the
Domain ID space among confinement set; in this manner prevents the observation
of the use of a Domain ID by a process with a cohfinemenﬁ set not equal to
that of the user. Thus the use of a Domain ID cannot release confined

information.

e

(1 If‘;;.t'hmdgmimdnﬂidomimmtmptxmumgés wepts: dmoa mmnhmmnﬁu:
system,::ihen: the:: confipement:- et of- 1 thesdirscbony: bontainings a. domadn’or:
demaie- jggte »ean be:psed: {0 WW“GQ“EfNMlSVJ(JC banubosdnt taz “gastenltaos

CIisnnads Jamvon posn osIss s 1o BRO wpD
Chapter 5 Page 65

e T \% Tt !

Gate creation presents one channel for the release of confined

JAnformation.
2a) The gate that 1s created could carry confined information.

This channel can be closed in the same manner as the channel described in 1a
above was: by enforcing the #-property for the creation and’the use of domain
gates. (15‘ |

| Process initiation presents an additionalﬂ chanpel for the release of

confined information:

3a) The gate chosen for process initiation can convey information, even if the

- created process has no means of communicating with its oreator.

To block this channel, we must reduire that the c¢reated process have a
confinement set that contains that of the'creatorf ‘fhere is no way to prevent
tﬁe gate chosen for prbcess 1n1£iation from conveylng iﬁformation. On the
other hand, our mechanisms provide né w;y for thé creator to obtain
information about the‘created brocess; Thergfore. there is no reason to force

the confinement sets of the creator and created process to be equal.

(1) Note that the confinement set assoclated with a gate in order to enforce
the *-property is different from the confinement set specified by the gate.
The confinement set specified by a gate was intreoduced earlier to control the
assignment of a confinement set to a process oreated with that gate. The
confinement set introduced above controls the use of the gate, and prevents
the use of a gate as a covert channel.

Page 66 - ’ Chapter 5

o BT

The calling of protected Subsystems presents two possible oommqnication

channels:

4ha) The caller can pass information to the callee by the choice of a gate for
the call.
4b) There are a number of ways in which the callee might be able to pass

information to the caller.

The first of these channels can be bloeked in the aame manner as channel
3a above. This means that performing a call to a protected subsystem bwill
hever cause the confinement set of a process to decrease,

The problem of keeping a vsubsysten*from releasing information to its
caller is shared by al} calling mechanisms. wLaﬁpsan ELa73]5$hows some subtle
ways in which information can be released in this way. Rotenberg [RoT74]
Studied this problem in detail and propo&ed é,pavtial_solution.: .This * thesis
does not discuss the probiem furthér. . |

The deletion of domain objects and domain gate - objects, and the
manipulation of the ACLs of these objects are: operations - that_'mbdify tﬁe
directory that contains the obJect being deleted or the ACL being manipulated.
Thus the confinement set of . that directory - is used to control those
operations. [Be73]‘

From the above discussion, we see that our . mechanisms for authorizing
domain changes do not violate econfinement. An examination of the methods used
to prevent the release of confined information reveala; however. that it is
impossible to create a gate that crosses confinement sets (1.e. one that is
accessible to a process with a cohfinenenﬁ set thét is different from that

specified by the gate). As with ‘other types ot-objécts in a computer utility,

Chapter 5 : ' : ~ Page 67

tﬁe confinement sets of domain objects and domain gate objects may nee§ to be
changed by some trusted authority in order to make the system usable. Such
M"declassification" is needed with existing confinement mechanisms: {Ro7u;Be73]
as well, The intervention of a trusted authority (person) is needed because
programs lack the»judgenent needed to decide whether or not the object being

declassified conveys confined information.

5.4 choosing Domain Chapging Mechanisms.

Of the four domain changing mechanisms that hafe been presented, we see
that none serves well both for authorizing process initiation "and oprotected
subsystem .calls - We . have alreaéy-suggésted one method of obtaining a domain
changing mechanism that performs both functions: by 5ombiﬁing' Partial
Specification with an argument panaing<me§hanism similar to those of Jones and
Schroeder. Such mechanisms, however, are not easily implemented in existing
computer systems.

A second way to obtain a domain changing mechanism is to-combine two of
our four mechanisms. Using Partial Specification for process initiation, and
Last Component Specification for calls, we pbtain a mechanism that performs
well for process initiation, and providés some help in passing arguments.
These two mechanisms can easily be combined. Such a combination does not
provide the argument passing capabilities of the mechanisms of Jones and
Schroeder, but is significantly easier to implement.

Another combination of domain changing mechanisms that is particularly
attractive 1s that of Exact Speeification for process initiation, and
Appending Specifieation for calls. With this combination, all processes are

initiated in a domain with a one component Domain ID. Additional components

Page 68 Chapter 5

are acquired by making calls to gates specifying those components. This
scheme allows each authority responsible‘for a particulan‘domain to validate
attempts to enter that domain with the initial procedure for the gate that 1s
used to obtain the component corresponding to that authority. With Partial
Specification, all authorities must agree on a aimgle initial procedure to be
used in validating attempts to enter a domain. This scheme, however “has all
of the above mentioned problems of the Appending Specification mecbanism |
The varlable length Domain IDs (whioh cause substantial complexitv in the
implementation of Appending Specification) could be eliminated by restricting
the depth of calls, and thus the number of components that a process can
accumulate;' The current Multics implementation of ACLs allows only three
components, and would require substantial modification to increase that
number. Three components ‘are not enough to implement the Person and Project
authorization of Multics. and allow the coexistence of mutually suspicious
subsystems in a single process.‘ At least four components (Person. Project
and one for each subsystem) would be required. Any change in the number of
components would also require the modification of the ACLs on objects
currently stored by Multics | A- | a
Because of the problems mentioned above for Appending Specification. and
because Appending Specification would be very difficult to implement for then
Multies computer utility, we have chosen to use the combination of Partial
Specification and Last Component Specification for the test implementation
This choice was ~made primarily based on the characteristics of the Multics.
computer utility, and should not be taken as an indication thatmthis choice is

inherently superior.

Chapter 5 , Page 69

CHAPTER 6

- THE TEST IMPLEMENTATION

6.1 The ﬁg;tigs _1g§§m ' ;

In this chapter, I describe a test implementation of process initiation
for the Multics computer utility, based on the model of this thesis The
chapter begins with a brier discussion of the functions performed by the
present implementation of process initiation for Multics, continues with a
desoription of the test implementation and concludes with an evaluation of
the test implementation For this discussion It is assumed that the xeader
has’ some familiarity with access-control-list based protection schemes,
segmented virtual memory systems, and multi~leve1 security systems ‘No
‘detailed knowledge of Multics is assumed | | B

The Multics process is implemented as an execution point in a segmented
virtual -address space. The segments are organiZed in a hierarchical file

bl
system. Each reference of a process to a segment is validated by three access
control mechanisms | the Access Control List (ACL) mechanism, rthe Ring
mechanism, and the Access Isolation Mechanism (AIM)

The ACL mechanism implements a list oriented protection scheme with
multi-component Principal IDs The two currently used components stand for
Person and gjgc) two independent authorities that must authorize the
creation of a process The ACL mechanism is hierarchical in that

modification of an ACL for a segment or directory is controlled by the ACL on

the directory that contains that segment or directory.

Pagev70 ’ : Chapter 6

The ring mechanism provides 8 protection rings within each process The
sets of segments that can be read or written in these rings are linearly
nested, with ring 0 being the largest set. The pring mechanism 1s used
primarily to protect the Multics operating system. |

The AIM mechanism implements a multi-level security system that.attempts
to prevent the flow of information from a high classification to a 1lower
security classification. The technique used is to prevent operations that
spread information, as in our model of confinenont.nechanlans.‘ The security
classifications used are a combination of a level snd a compartment within a

level.

Process Initiation in Multics.

There are three types of processes created by Multies:

1) Interactive processes, which are created to serve a user at.a terminal.

2) Absentee processes, which perform a series‘ofﬁoperations for a user from
a previously generated script. o

3) Daemon processes, which perform system functians and- communicate with -

the operator.

All of these processes are created by a privileged process known as-: the
Initializer. (The Initializer is one of the Daemon processes and is itself
created when the system is initialized.) I will now discuss briefly how each

of the five functions of process initjation are performed by Multies.

Process Creation.

Processes in Multics are created by the Initializer process executing in

ring O. A process is created with the Principal ID and initial procedure

Chapter 6 Page 71

specified by the Indtializer. A directory for the process in which temporary
segments for the pgrocess will be kept. and several segments in that direotory
that will be needed to support the process are created at the time that the

process 1is created.

Resource Controil.
The following resource control activities take place during process

initiation in theeoarrentfnultics implementation:

1) An account'to fund the activities of the new process i3 located.

2) The Initializer determines whether or not the new process will overload
the system and degrade service to other proocsstst

3) The scheduling parameters, whict determine the rate at which a process
consumes CPU and memory resources, are determined for the new process.

4) The mechanism that monitors the CPU and memory usage of all processes 1is

informed of the newly created process.

All of these activities take place in the Initializer process in the current
implementation. Additional resources may be given to a process after it has
been created, but such resource allocetions will not be considered here as

they are not part of process initiation.

The concept. of a domdin corresponds most closely with’the access rights
defined by one Principal ID on Multics. There 1is no aingle mechanism on
Multics that oontrols the Principal 1D given to a new process This control
is. accomplished by a complicated set of programs in the Initializer process

that decide the 1nit1a1 procedure and Principal ID of the process to be

Page 72 ‘ Chapter 6

created. An interactive process can be created with a given Principal ID only
if a user who is authorized to use that Principal ID and has satisfied an
authentication performed by the Initializer requests such a process. An
Absentee process can be created with a given Principal ID only if an Absentee
request is received by the Initializer from a process with that Principal ID

A Daemon process with a given Principal ID can be created at the request of

the operator.

Authentication.

As noted above. the Initializer must authenticate interactive users in
order to determine which Principal ID to assign to the processes that are
created for interactive users. This authenticstion is accomplished by a
password check Presentation of a correct password entitles a user to obtain
a process with any Principal ID with the Person component that is
authenticated by that password.v Each proJect has a project administrator who
is responsible for controlling access to that project The project
administrator maintains a list of users who may use his project This 1list

provides the authorization for the project component

© The standard initial- procedures “for Interaetive,”ﬁbsentee, and“Daemon

processes .perform the following environmentﬁinitialization“functions:‘

1) Initialization of the error condition handling for the process.
2) Attachment of the terminal channel or Absentee script to a commandb

processor.

Chapter 6 ’ - Page 73

The proposed removal of the ‘dynamic linking and name space management
algorithms from the aecurity kernel of Multics would add the initialization of
these meehanisms to. environment initialization. [Ja75 Br75] In addition to
these activities, one function of environment initialization is currently
performed by the Initializer. before a process is actually created The
Initializer creates a home directory for a prooess ir auch a directorr does
not already exist. The Initializer creates the directory, because the process
itself does not in general have sufficient acoeas rights to do so,
Sggggrx.

| As can be seen from the descriptions above, !the meohanismsu of prooess
initiation for Multios are highly interdependent. Resource control domain
changing, and authentication are all performed bf‘the same set of programs in
the Initializer prooess, and all use the same data bases (a list of authorized
users and their attributes. a list of authorized projeets and their
attributes, and the lists of authorized users for each projeot) At least one
part of environment initialization is also performed by the Initializer
process and makes use of the same data bases.

In redesigning process initiation according to our model, we attempted to
keep these mechanisms separate, while maintaining the functionality of the
current implementation wherever possible. 'al«e.were»tvr.?,alt'*t:icmiar:'tyi‘nterested,~ in
showlng that process initiation for Multics ean be implemented in a
multi-layered security kernel as argued in the earlier chapters of this

thesis.

Page T4 ‘ ~ Chapter 6

6.2 An Implementation of Process Initiation for Multics.

In the' test iﬁpleméntation; each 6f the five functions of process.

initiation is provided by a small‘program module thét exeéutes 1ndepehdehtly
of the modules that provide the other four functions. A ﬁixth module 1s used
to coordinate the édtivity of the other five. Veibegin with' an overview of
the functions performed by each module, and a brief &eséfiptiénkof how the

modules interact to perform process initiation. Later sections of this

chapter discuss.the implementation issues in eachvofAthé hoduleé.' Appendix A

contains a more detailed description of the programs in each module.
The process creation function in the new implementation 15 ‘the same as
that of the ocurrent implementatidh._‘ Process creation is performéd by the

Initializer process in ring 0 as before.

Resource control in the test implementation is also Veéy'similar to that

in the current Multics implementation. The"fouﬁ resource control functions

described before are performed in the Initializer process. The brogramé
providing resource control in the test implementation have been simplified by

the removal of code that interpreted input frdm uéer terminals: ’

The partial specification meehanism'deSétibed 1n chapter five is used to -

control domain changing. It 1s implemented as a type manager for domain and
domain gate objects, and provides functions‘that Ereate ’and‘ ihterpret these
objects. Domain and‘domain’gate objects are implemented as segments that are
accessible only in rings 0 and 1. (Thése ﬁili"be :refefrea to as ring 1
segments). |

In the test implementation, authentication is the responsibility of thé
initial pfooedure for a domain. The logger, which initiates processes fdr

interactive users, authenticates each user who contacts the computer utility

Chapter 6 Page 75

for service and records the result as $r4f§ywarqed authentication. The

Vstandard initial proceduré for interactive processes ~uses, the forwarded
authentication to determine whether or not the user is authorized to use the
process. Avsecurity conscious user can write his own initial procedure, with
whatevér authentication mechanism he desires.

Forwarded authentications are also stored in ring 1 segments. They are
manéged by the authentication forwarding mechanism. The authentication
forwarding mechanism restricts access to the forwarQed aqthentications for a
stream to those processes that can read or,write that stream.

Environment initialization is performed byk the 1initial procedure - as
before. In addition to the functions described earlier, the standard 1nitia1
procedure also scans the forwarded authentications as noted above.

In addition t§ the above modules, there is‘ a coordinator module that
coordinates process 1initiation. The coordinator serves as an interface
between modules, which allows the modules to function independently. The
coordinator‘ gathers information from the resource contrbller, the partial
specificatioh mechanism, aﬁd the process that requests process initiation (the
creator). The coordinator distributes this information to the process creation
module and the 1n1t1§l progedure for the new process. The information is held
in a protected data base while»prooess initiation is in progress.

Figure 6.1 illustrates a typical process initiation,

Page 76 | Chapter 6

Figure 6.1

A Typical Process Initiation

Creator’s Process Resource Controller s Process

Creator

aéaburcemControlier

call
o cal-l
signa ,
(Ring 4) (Ring 4)
P—- - —.' —————— .-.“ - o - i . . -
Coordinator . .
signal
Authorization of) ST
Domain Changing call
(Ring 1) , (Ring 1)

Process Creation

(Rinng)

Ring .0

Chapter 6 Page 77

Process initiation begins when a process that wishes to create a process
{labeled the crgator in the figure) c#lls on the coordinator module. The
creator passes to the coordinator two data structures and the name of a domain
gate .object. One of these data structures describes the process to be
qreated. and the other contains information to be used by the initial
procedure of the new process in performing environment initialization.

The coordinator then calls the gomain changing mechafnism, passing the
name of the domain gate specified by }the creator. The domain chaneing
mechanism determines whether or not the creator has "create" access to the
specified gate, and if :so returns thé name of the initial procehure and Domain
ID of the gate. |

The coordinator récords the initial procedure and Domain ID in a
protected data baSe, along with the two data structures passediby the creator.
The coordinator then sends a message to -the resource controller (which
executes in the Initializer process) that specifies some of the
characteristics of the process to be created (including the 1nitial procedure
and Domain ID). The coordinator ihen waits for the resource controlier's
reply. |

If the resource controller approves the creation of the new process, it
calls on the coordinator to complete process initiation. The resource
controller passes to the coordinator a data structure containing paramefers
for the mechanisms that schedule the use of memory and CPU cycles by the new
process.

The invocation of the coordinétor in the resource controller’s process
combines the information supplied by the resource controller with that

obtained from the creator and the domain changing mechanism, to form a

Page 78 Chapter 6

description of the process to be created. This description is passed to the
process creation mechanism The invocation of the coordinator in the resource
controller s process signals the completionhiof process oreation to the
invocation of the coordinator in the creator ‘8 process o |

The above overview leaves many unanswered questions about the functioning
of the modules. Later sections of this chapter describe each module in

(e

greater detail, and consider the implementaticn issues in each module

Process Creation.
The process creation module .for. the. test .implementation was taken-

directly from the current Multics implementation.,. . The setfofvfunctioas
performed by the process creation module of. the ecuyrrent 1mplementatione-wes

exactly the desiredpset, . , i

' As noted before, the current Mnltics implementation does‘not contain a
mechanism to authorize 'thev use 5f:"a domaint The Partial Specification
mechanism described in chapter five was used for this purpose in the test
implementation. Partial Specification was chosen because it models the two
authority authorization scheme used in Multics very well.. It alsc required no’
changes to the existing ACL mechanism, as Appending Specification would have.
nor did it require that the "ACLs of objects already in the Multics} hierarchy
be modified. The domain changing mechanism of the test implementation adopted
the strategies discussed in chapter five to prevent the release of confined
information by domain changing. ‘ R |

The module that authorizes domain changes is small and simple. and relies

on the Multics ACL mechanism in order to perform the authorization.

Chapter 6 Page 79

t

-Domain aﬁd domtin gate obJeets are represented:by ringpl segments in the
Multics hierarchy These segments are similar to those used to implement
other extended type objects, such as mailbcnes and nessage segments H‘Ihe
Access Control List assoclated with a ring 1 sezment _ determines which
processes can read or write that segment while executing in ring 1 Thus, the
ACL mechanism can be used tomcontrol the availability of domain and domain
gate objects to processes, just as it was in our description of Partial
Specification in chapter five.

The domain changing mechanism thus: prévides operations to create or
delete domain-and: domain gate objects, whiléisécess control for these objects
is ‘performed by the access control- mechanism - for segaenis.' Choosing to
implement domain and domain gate objects has the disadvantage ‘that each domain
or domain gate object must be allocated at least one page‘§36§§9£bits)jo§
storage, while in faot each domsin object requires only 720 bits and. each
domain gate requires 1260 bits.‘ The inefficient use of storage was tolerable
for the test implementation, but - may be a severe problem in a system that
supports a large number of domains

A second responsibility of the domain changing’mechanism is to insure the
uniqueness of the Domain IDs in the domain objects._’For this _purpose, the
domain changing mechanism maintains a data base that contains all of the
Domain IDs in use (contained in domain objects) The data base is protected
by a lock to prevent simultaneous updates that could cause duplication. The
data base 1s implemented as a linear‘list of partially specified Domain IDs,
corresponding to the partially specified Domain, IDs that are used in the
domain objeots. The linear list representation‘was chosen because searches of

(RS X 1]

the data base 'are infrequent (because domain creation is infrequent) and

Page 80 ' _ ‘ Chapter 6

because the linear search i3 much simpler and presumably easier to verify
correct than nmore efficient searching procedures. IR

Domain 1IDs are never deleted from this data base, so that they cannot be
re-used. This means that the Domain ID data base is constantly growing 'as
more domains are created. The growth was not e‘sexare-aroblem in the test
implementatibn, because the amount of spa¢e required for each- Domain ID is
small (56 characters), and the ereation or-deletion ozwdouain7objeets is
infrequent. |

We need not maintain in the Domain ID;data base any Domain ID that' does
not appear in a domain object, a-.domain gate object, or-an ACL term.- The
aéstmment of such upused Domain - IDs to . mew domain objects” cannot - cause
confusion. Thus the : file syatemscouldubzwneniodtﬁalkpqScenned to determine
which of the Domain IDs in the Domain ID data hase wire actually . 4in use, Such
a check opulqvbe inoqngorated:in the ‘program that secans the file _system to
verify the integrety of the file system. }

In order to implement the multiple authority authorization scheme of
Multics, domain objects specifying only they~ferannwncnuponegt-~or only the
Project component are used. A project doua&n'phaect.bykconvenhion is kept in
the project directory for.that project. Thus the project administrator for a
project can control the use of the project by'modifying‘the;ACL-otxthe~doma1n
obJec;,for that project. The pereon domain ob;en;-“pnnsentra. more difficult
problem, because the hierarchical aceess control of Multics makes it difficalt
to give each uger exclusive control over the ACL.of his dannin cbject.: In our
implementation, the person domain.objects are all-kept in a single directdry;.
(>udd>persqns). Each has an ACL that allows . paly: the - eorrssponding 'ueerfs:

processes to create gates. Modification osathevAﬁLiofna;persan-douaineobjeot‘

Chapter 6 - Page 81

" requires administrative acﬁion. This use of the domain chgnging mechanism 13

illustrated by figures 5.%1a and 5.1b -

the atiop.

The test implementation provides authentication forwarding as described
in chapter three. and connections made through the’Arpa Neétwork. |
. Chapter threga notes .that eaeh ‘forwarded ‘authentication should bé
accompanied by identifying information, so that the user of a forwarded
authentication can identify its duthér. Ous impleMentation 6f authentication
forwarding records-the ‘Principal 1D, ring nuiber; and ‘process ID 'of the author
and -the time of ‘reeording.for eashforwarded authéftiéatidh. The Principal ID
and ring number: tdentify the domain iof the #UEhér, while the process ID and
time form a unique index for :the forwarded authen¥ication: 'Although it would
be desirable ' to : record ‘the 'procedute that ‘produted each forwarded
authentication, fhiS_information cannot ‘be':whtained. - (A - Multles procedure

cannot reliably identify Ats:oadlerii) -0 o sl dawrsansis
The .fowar;dedﬁ;‘i'ffa;uthents!cwﬁions;-f are ‘stored - A1’ ring 1 segments, so that
access to forwarded authentications: san be controlled.One’ such ségment is used
for ‘each: Arpa Network Soocket or ' Iveal terminal ' thannel 'that actually has
fonwarded: authentioationsg. " o v7 oo it ol a0 ang
- The: use of -one: segment> for: ‘eadh -chanhel -allows' the forwarded
authentications for .each channel to:be -managed: indépendently “of those’ for
other channels. - Thus -’ profess-oannot: interfere With the use of forwarded
authentications for anhy channel th&tﬂthatfpr%évés*c&ﬁ*ndt use. FEach forwarded
authentication requires approximately 2000 bits:of astorage. Thus, up to: 5000

forwarded authentications can: stored fov: eaeh ehafinel:

Page 82 Chapter 6

As noted in chapter three, only those processes that may use a stream
should be allowed to read or record forwarded authentioations for that stream
Control of forwarded authentications isb accomplished ‘in the test
implementation by checking the aocessibility of the stream before fecobdiog or
reading forwarded authentications. The accessibility of a stream is checked
by requesting the connection status of j that - stream ’ The“ Multics
implementation denies status information about a stream to processes that do
not have access to the stream. | ‘ |

Three strategies were adopted to insure that forwarded authentications

always refer to the current connection of a stream.

1) Each process that has access to -& stream pay -delete “the forwarded
authentications for that stream.

2) The forwarded authentications for a stream are automatically deleted
when that stream is disconnected. | o H |

3) A scheme similar to the oonnectiOn ooont soheme‘ described in ohaoter

three was implemented.

~ Any process that believes that the forwarded authentications for.a stream
that the process has been using are no longapagvalidt,psng thus . delete thopse
forwarded authentications. The second. strategy above dnskres that a forwarded
authentication never refers to a previous connection: of a: stream.

The connection count is not implesented,exactly;as,described in chapter
three. This 1s because we do not want to maintain comnection -counts -for
channels not 1in use, as. there are many suchwohannais;o Instead, the time at
ugich the last call to connect a channel was -made 1is ysed :as 'the oonheotion

count of that channel. The time is expressed with sufficient precision that

Chapter 6 : Page 83

two connections cannot be made to tne same channel et the same time. The use
. of‘ tne time of connection as the connection oount avoids the necessity of
_ P Y
maintaining information for channela that are not connected. ‘
| The implementation of forwarded authentioationa very closely follows the
description of chapter three. The proérams tnat implement_tforwarded
xauthentications are all small and simple - |

Authentication Forwarding 1s used to allow the initial procedure of an
interactive process to make ~use of the »standard system authentication
'mechanism. The logger process authentioates each user who contacts Multics.
and records the result as a forwarded authenticotion. The initial procedure

of an interactive process chooses whether or fot to belleve - the forwarded

authentication.

Bgoéurge Control.

The resource controller for the teot‘impiementgtion was adapted from
current Multics implementation of process initiction) The Multics resource
controller was adapted to communioate with the coordinator module (described
 later) rather than with a terminal chantiel, Absefiteé request, or the operator.
This change did not affect the‘funct!on performed by thé resource controller,
but merelyvchangeq its source of” infofmation:

A second series of ohanges was made to make the resource controller
reject a process creation ’nequeet~ that contained unscceptable parameters,
rather than attempting to correct those parameters. This cﬁange‘was made
primarily because the resource controller caﬁnot“<er some parameters, ''such
as the initial procedure and domain of a new process. ThiS chinge does not

alter the resource control ¢onstraints enforded by the résource ‘controller.

Page 84 ' . Chapter 6

The resource controller makes use of three privileged operations in order

to implement resource control constraints.

1) The resource controller is alloued~to.npmiter‘thevcfﬂwand,»memory; usage
of all processes.

2) The resource controller can destroy_any.procesar S

3). The resource controller determines. the - scheduiing _parametersa‘swhioh

- partially determine the rate at Hhiehmproessses CONSUME IE30Urces.

These operations do not allow the resouroe ”controller to violate accesa
control constraints as shown in chapter M ” B o |

'The Multies resource controller implements a very complex set of resource
control constraints which are designed to. give each user a fair share of the
computing resources of Multics. The fact that this complex set of constraints
can be implemented with only the above three operations suggests that our
model can be used for many resource control policies.

The resource controller is a very complex set of programs | Some of this
complexity arises from the fact that the resource controller has been adapted
from the current Multics implementation which had other responsibilities in
addition to resource control. A great deal of the complexity. however. is
inherent in the nature of the constraints being implemented. It is clear that
removing this oomplexity from the access control layer of the security kerhel
will result in a simpler certification of that*iayer. B
Env;ggggggt Initigliggtign.

In our mooel:v each. domain is responsible for initializing its

environment. Environment initialization for a domain is performed by the

Chapter 6 ' _ ~ Page 85

initial procedures> for that domain. rand therefore is under control of the
authority responsiile for that domain' An initial procedure for interactive'
processes that performed environment daitialﬁzationfuasiwritten for the test
implementation. This initial procedure is intended as & demonstration of
environment initialization in our model. o

.The .initial procedure performs all of the environment initialization
functions mentioned above (initialigzation of error*hahdling*and“attachment of
the terminal stream to the command prooessor) In addition it checks the

R

forwarded authentications for the source of the stream that represents the

FERTTR AN

terminal channel. The forwarded authentications are checked to insure that the
T e

identity of the source of that stream had been verified by a trusted
authentication procedure, and that the authenticated user corresponds to the
Person component of the Principal ID of the new process The procedure that
was implemented trusted any process with the same Prineipal ID as that of the
new process, and also trusted the logger process.v ‘ ‘

o The environment initialization performed by this initial procedure is
very simple and straight forwarded Notice that any desired authentication
check could have been 7 made, rather than relying on the forwarded

%

authentications.

The Coordinator.

' The coordinator gathers information from the domain changing mechanism;
the resource controller and the process that requests process initiation (the
creator). This information i1s combined to form the parameters given to the
process creation module and to the initial procedure of the new process The

coordinator allows the creator, the domain changing nechanism. the resource

Page 86 Chapter 6

controller, and the new process all to funétion';nerendently. Several
strategles are adopted by the coordinator in. o}deru ?o iﬁsure this
independence. | | | | | “ |

Each parameter produced by the coordinator 1s derived fboﬁ the
information presented to the coordinator 1n/a well defined ﬁanner. Thus the
domain 'changing mechanism is given‘control of éhe érinéipaliiD. ring number,
and initial procedure for the new pr&cess;tthe resourcé conﬁroller ié given
control of the parameters that determine tha‘vabs'ét~whioh'the.neuﬂpnOOess can
use CPU and memory resources, and the creator is allowed to pass additional
parameters to the new‘prooass-such as information about the task that that
process is to perform. |

As can be seen from figure 6.1, ﬁhe¥eoondinatnm,gathers information 4in
both the creator’s process and the resource controller’s process. The
creator’s and the domain changing mechanism’s inputs to .process initiation are
copled into a ring 1 data base before the resource controller is notified of a
process 1initiation attempt. Thus process initiation ocan be completed even ‘if
the creator’s process is destroyed before the resource controller acts on the
request.

The resource controlier 1s given a limited time tqiact on each request
before the request will be aborted and the information related to it purged
from the - ring 1"data base. The time limit’inﬁures“that the -coordinator will
not have to keep a request indefinitely. It also insures that the resource
controller cannot cause oonfusion by delaying a process initiation attempt
until the task that that process was to perform is no longer relevant,

A unlique index 1s given to each procesa“initiétion request so that the

resource controller and the coordinator do _not become confused if two regquests

Chapter 6 v Page 87

aée made for processes with similar characteristics or 1if the resbﬁrce
controller attempts to respond to a requeét that the coordinator has giﬁen up
on and aborted.

The coordinator is a large program, but is simple in sthucture. The size
of the coordinator is primarily due to the number of parameters that ﬁust be

generated from the available information.

6.3 Conclusions on the Iest Implementation.

This chapter has shown how process initiation was implemented for the
Multics computer utility. In this section, we compare this new implementation
with the current implementation of process initiation for Multiecs, to see the
advantages and disadvantages of our model.

Three advantages of the model are immediately apparent. The first of
these 1s the reduction of the amount and complexity of the programs in each
kernel layer. In the current Multics system, any program executing in the
Initializer process could potentially create a process with any desired
initial procedure and Principal ID. Thus all of the programs that execute in
the Initializer process must be consldered to be in the innermost layer of the
kernel. These programs include not only all of the process initiation
mechanism, but also other complicated programs such as those that handle the
scheduling of Absentee requests and those that implement the Telnet and FTP
protocols of the Arpa Ne’cwor-kf Also included in the programs executed in the
Initializer process are numerous programs that had been removed from 'ring 0
with the intent of removing them from the security kernel. In our
implementation, the set of programs in each 1layer of the kernel is well

defined and in each case smaller than the set of programs that are in the

Page 88 Chaptef 6

Initializer process in the current implementation. ‘ _

‘Tables 6.1'and 6.2 show the impact.of> tne .model on‘ ﬁhe size oflvthe
Multics security kernel, bcth in terms of lines of PL/I code and in terms of
the number of modules. The tables include all of the modules related to
proecess initiation, and all other programs that are only included in the
kernel because they execute in the Initializer process. The figures for the
kernel layers are cumulative. (i.e. The figures for the Denial of Service'
layer include those for the Access Control layer, and the figures for the
Confinement layer include both the other layers.) . :

The first 1line of each table shows the current” size‘of the kernel
Because Multics currently has a single kernel layer that implements all of the
security constraints, only one number is shown. The _second .line .represents
the size of the kernel layers as measured in the test implementation. These

wf

figures show a great reduction in the access conrol layer, because many of the
programs in the Initializer process need not be included in tha;\layer.

The test implcmentation did not:take full advantage of the simplification
that could be achieved by making process initiation unprivileged. Many of the
functions performed by the Initializer process in the test implementation do
not need to be performed there. The third 1line of Tables 6 1 and 6 2
estimates the size of each kernel layer in an implementation that took full
advantage of the model of this thesis, by removing all unnecesaary programs

from the Initializer process, and by recoding those that vremain to remove

functions not related to resource control.

Chapter 6 . Page 89

Table G.i

" The Impact of the Model on the Number of Lines of PL/I Code in the Kernel

Unprivileged Acgess -~ Denial of - Confinement
Control Service
Current Multiecs S e
Implementation . 150 <—-!O-—-av—-~ 12000 S 4 A - >
The Test Implementation 1150 8% 10050 10050
A Full Implementation -
of .the Ideas of this , . o L _ :
Thesis 6600 - 825 3500 3900
Table 6.2

3

' The Impact of the Model on the Number of Programs in the Kernel

.. Unprivileged . .- .Acoess - Denial:of Confinement

Control Service
Current Multics , C G :
Implementation 3 <-~—~—q—-o’--—— 47 v--—-—-—-—m—->
The Test Implementation 5 8 w3 43
A Full Implementation
- of the Ideas of this . :
Thesis 17 8 23 27

A second advantage of the model is that every process can request the

creation of a new process, whereas only the Initializer can create new

Page 90 Chapter 6

processes in the current implementation. This limitation is the reason that
functions such as the Absentee system and the Telnet end FTP protoeols of the
Arpa Network must be implemented in the Initializer process.v This can result
in a substantial reduction of the kernel. as approximately 3000 lines of PL/I
code are used in the ourrent implementation to provide these runetions These'
functions, and any new function requiring the creation of processes,,need'not
be performed in the security kernel in an impiement;tionﬁof srooeeoﬁinitiation
based on our model. AR | B

A third advantage of the model 1s that the authority responsible for a

¥

domain can control the use of that domain through the initial procedure of the
domain. The mechanisms for suon‘“oontrol'arewieee abbarent ‘in the current
implementation. | | : i M :
The test implementation does, however. have several disadvantages. ‘ ﬁe
have already noted that the implementation of domain and domain gate objects
is very wasteful of storage. At the time of this investigation the M I T.
Multics system had approximately 2000 usera and 250 projects, and would
require a total of perhaps 5000 domain and domain gate objecta.‘ These obJects
would ocupy about 51 of the available permanent storage space. | vThe etorege
requirement could be substantially reduced 1if the'domain and domein éete
objects were supported by the mechanism that implemente directories. The data
contained in a domain or domain gate objeot could be placed in the directory
containing that ob ject, thus elininating the need to have a Hhole segment to
hold the representation of such objects Such an implenentation would add
some complexity to the programs that implementﬂidireotories. dne,to the

problems of maintaining the large central data base

Chapter 6 _ Page 91

The implementation of fovwarded authentications also makes poor use of
storage if eaeh stream has only a small number of forwarded authentications
This 1nefficiency‘is*tolenable, because ﬁew streams are conneetedl to. Multies
at any one time, and forwévded authenéications nged'be maintained only for
connected streams. |

The iﬁplementaﬁion baséd on the model ig sl;ghtlyvslower than the current
Multilces 1mplemen£abion. of process initiétion; Each process initiation
' requires about .1 CPU seconds morerin our ;Qplementapigq. The extra time is
due to the time requiped to‘merge the daﬁa Stfpctures ;nqﬂthe time required to
format and transmit the‘message to the resource controller.‘ The total time
required for process initiation on Multics is approximately 4 seconds. (Mo;t
of this is spent by the resource oontroller) The test implementation is thus
not significantly slower than the current Multics imple@enpation of process
initiation.

The hierarchical access control structure of Multics is in some ways
ineonSistent with the acce;S'control needs for domain and'domain gate objects.
This inconsistency Igads to diffiéulty ;n_modelling eiaqfly the» authorization
scheme used 1in Multics. _ 7 .)

Overall, the model has substantigliy sim?iified the 1layers of the
security kerﬁel and provided some additional funcﬁionglity at tbe cést of
using more sﬁoragé and CPU time, and of_fbroing ﬁsers'tﬁ bevcareful of the
effects of hierarghical access control. Beéause security is an important coal
of the Multlcs system, this cost can be justified. The following chapter will
evaluate the model in the more general context of its use for any computer

utility.

Page 92 Chapter 6

CHAPTER 7 .

EVALUATION AND CQONCLUSIONS

In this chapter, we eQaulate our model as a whole and draw some
conclusions about its usefulness in'stbuctﬁrihé ﬁbéoeaﬁJiﬁiﬁiétibn. We ‘beéin
with a comparison of the model with two~otbgr”pgchss inipiat;onwschemggﬁ
Following thisvcompérison,,we summarize = the pcogqlﬁg;ong‘ugbout“ the model.
Finally, we discués topics for further reaearch. in the area of progess

initiation,

7.1 Comparison.

In this'section. we compare our mOdelkwith‘two common schemes for process
initiation: A hierarchical scheme, such as 'thaff'used in the CAP syétem
[(Wwa73], and a scheme with centréi‘ control such ‘és'lﬁhe current Multics
implementation of proéess initiation. ‘These are the most ééﬁmonl& uSed
schemes in >current computer systems. We'eoibéré the ease wiﬁhlwhiehfthéSé

three schemes can be used to create processes in the following situatioﬁs;_f

1) Creating a process to act for an interactive user at a terminal.

2) Creating one or more processes to carry out sone panallpl processing
" algorithm. |

3) Creating a process to execute a subsystem that 1is mutually suspicibus

with its caller.

Chapter 7 _ . Page 93

In the hierarchical scheme, each process assligns a subset of its
resources and a subset §f its access rights to each process that it creates.
Each process 1s totally dependent on its creator for resources and access
rights. Each process 1is destroyed whefi iﬁs 'creﬁtor is destroyed. In the
centrally controlled schemé, oﬁlﬁidheJﬁroéésézisfailowed to create processes.
This pr;vileged process,contro;s comglete;y&§p§ access rig@@s and resources

granted to all'proeesses. The privilegag procg;gkpgvgyyterminates.

Process Creation for Interactive Users. -

The ~creation of processes for interactfve users was extensively studied
in chapter three. ‘Both the model and the centrally dontrolled scheme handle
this situation well. The model, however, offers mobe flexibility than the
centrally controlled scheme. With the model, different processes 93“H9§$ used
to create processes for ﬁsers -of different terminals. Ihisfcéﬁasiiity is
useful if the proﬁocols used ;o ta}k t°,u¢if£§§?“t @ggpiqﬁlg:(age diffgrent,
These logger processes need not pgncert;figg!cogr?gt in order to achieve the
secqrity‘gqals of the qompupgr uti}ity. qurhpngl g;squallows, a sggurity
conscious user to protect himself against malfunctions of most of the process
initiation mechanism. | 7

The hierarchical scheme of process initiation can also easlly be used to
create processes for interactive users. The process that responds to requests
for processes from interactive users' (the” Ydgeér process) must. however,
manage all of the.resources required by those users and must be given access
to all objects needed by those users. The’hierarchical scheme is not readily
extended to allow more than one process to create processes for users, as is

our model. The hierarchical scheme does not allow the security conscious user

Page 94 ‘ Chapter 7

to protect himself from the logger process, because the 1ogger has complete

control of the resources and access rights of user processes.

Parallel Processing.

The hierarchical scheme of process creation handles the creation of
processes to perform parallel processing for a single user very well. Once an
initial progess has been created for anﬁlntoraotivo user, thatvproeess,oan
create additional processes for thebuservtOpperFOrm parallel:processing.- The
resources and access rights assigned to the !userfs-flrst process can be
distributed among these processes as needed.

The central scheme requires that each proeess be created by the
privileged process. The privileged prooess may not provide the resources or
access rights needed by the user, as 1t has less knowledge of the task to be
performed than does the user's initial procese;\ The oentral'sohene does,
however, provide a better opportunity to control the total number of prooess
in the computer utility. As noted in chapter four. such oontrol is needed to
insure that the resouroe controller can respond rapidly to demands for
resources. Most current computer systems impose limits on the totel number of
processes. | | | V ‘

The model shares some of the. drawbacks of bthe_oentrel scheme, but -
provides somewhat more flexibility than that scheme."Like the oentral soheme.
our‘model has one central resource oontroller thath is .responsible for all
resource allocation. ’Ae before, theb'centralraresource allooator‘ must
participate in each process creation, and may not provide exactly the desired
resources. The resource controller can, however, oontrol the number of

processes 1n the computer utility, as in the oentral soheme

Chapter 7 Page 95

Access rights in our model, however, are nbt under Qontrol of a central
authority. The domain changing mechaﬁism proiides breci#e control over the
creation of processes, and over the assignment of access rightsﬁto_-orOcesses.
Thus the use of parallel processes by a user can be controlled by controlling
access to the domain and domain gate objects for that ‘user’s domain.. The
availability of parallel processing to a user may also depend on the task to
be performed, as the initial procedures specified by the gates into the user’s

domain may restrict the tasks that the user can perforn.

Mutually Suspicious Subsystems.

Thé profecﬁion of mutually suspicious sﬁbéygtems is one »of the‘ most
interesting and difficult computer ﬁrotgct;pn problggs.} Sch;oeder presents a
mechanism that allows mutually suspiqious subsystéms to coopgraté in a shared
process. This mechanism does not guafantee each gubsys@em‘a’fair share of the
resources of the pbocess, and thus one suﬁsystem may denf_service-to others in
the same process. By providing separate proceéses foflsuch subsystems, we can
eliminate the pfoblem of denial of service.

The model of process initiaﬁion of this thesis is ideal for the creation
of processes to execute mutually suspicious subsystems. »The domain changing
mechanism allows the owner of a subsystem to éontrol‘the cal;ing of that
subsystem,.while the central resource control mechanism alloﬁs the resources
of the» caller and callee to be separatély managed. Thus neither the caller
nor calleé need trust the other.

In the centrél scheme, all ‘processes ‘are’ created’ by the privileged
process. Thus each création of a ﬁrocess for‘a‘protectéd subsystem involves

commdnication with the privileged process. The privileged process must

Page 96 ' ’ Chapter 7

implement some control over the creation of processes for protected subsystems
similar to that of our domain changing mechanism. There must also be a secure
communication mechanism that allows eaéh process. to eommunioate requests'for
processes to the privileged process. Ail protected:subsystems must trust the
privileged process io ‘provide the‘correct'acééésvbiéhté ;;d'reéourcés. The
central mechanism allows the caller and callee to be independent, 'as does
model. - | |

The hierarchical scheme for process initiation is'the'most difficﬁlt‘of
the three to use for the creation of a process for a protected subsyétém.
Because in the ‘h;erarchical scheme a process is totaliy dependent on its
creator to provide resources and access rights, a process cannot directly
create a process‘fdr a subsystem with whiéh 1tﬂisuhutually suépicious. Each
process must‘instead appeal to some process ihat thq subsystem to be executed
trusts. '

Figure 7.1 shows a process hierarchy includin%vtwo pr6cessesvthat are
mutually suspicious. . Subsystem X (in process 3) could not_directly create a
process for subsystem Y, because they were'mutua11y~suapiciGUs. Subsystem X
had to locate a process that both it and subsystem f‘truateg~(process 1 in‘the

example) to create the process for Y.

Chapter 7 ' N Page 97

Figure 7.1

Hierarchical Process Creation for Mutually Suspicious Subsystems.

Process 1

Process 2 Process §

Subsystem Y

Subaystem X

As with the central scheme, secure communications are needed, and each
process that creates processes for protected subsystems must implement some
control scheme. If only the process at the top of the hierarchy creates
processes for mutually suspicious subsystems, then thls scheme reduces to the
centrally controlled scheme. The hierarchical and central schemes for process
initiation are both more awkward to use for the creation of processes for

mutually suspicious subsystems than the model of this thesis.

Page 98 Chapter 7

72_asl.u_isas_hgstm._9§sl

In this section we summarize the advantages and disadvantages of our
model. Some of these observations have been discussed at length in other
sections and are only briefly mentioned here. | »

As can be seen from the preceding section, the model handles the creation
of processes!for interactive users and for mutually suspicious subsystems very
well. It provides more flexibility than the other‘tuo schemes considered
while forcing users to rely on less of the process initiation mechanism of the
computer utility. The model performs less well than the hierarchical scheme
for the creation of processes for parallel processing. The model does.
however, provide contro] fhat the hierarchical scheme does not. The resource
controller of the model can easily control the total number of processes so
that it can respond rapidly to changing resource requirements and the' domain
changing mechanism can be used to control the tasks for which each user may
use parallel processes. - | |

Another benefit of our model is that it separates the mechanisms that
perform the five functions previously identified' Process creationL domain

o

changing, authentication, resource control and environment initialization.

e b

This separation allows each function to be implemented in a small programv'
module, independent of the other functions. The structure achieved by using
small independent modules is easy to verify. and easy to modify)

The model also shows the security constraints that can be violated by the
programs that implement each function. Thus we can clearly See which of the
modules must be certified correct in order to achieve‘the security goals of a

“5

given system In the test implementation for the Hultics computer utility, we

Chapter 7 | : Page 99

saw that the size® and complexity of the programs that must be certified to
achieve the security goals of Multics are both reduced in the implementation
based on the model. |
Another benefit of thebmodularisation of the model is that it allows any
process to create processes. Unlike the hierarchical scheme, the setsb of
resources and acceds rights of a process are not restricted to be subsets of
those of the creator'of that process.> Thus any application that reouires the
creation of processes can easily be implemented in a computer utility using
our mode1; without mbdifying the process creation mechanism, or& the security
kernel. | R : - |
One of the primary drawbacks of the model is the problem of maintaining
the domain and domain gate objects for the domain changing mechanism in an
efficient manner. In our test implementation we chose to use very simple
management techniques that wasted a large amount of storage Objects with
small representations are inefficiently supported by current hardWare
technologyt This forces the implementor to abandon the hardware protection
mechanism for small objects ir they must ‘be ‘efficiently‘ implemented.
Providing equivalent protection in software greatly increases the size and
complexity of the programs that manage such objects Newer hardware
organizations, suchias that of the CAP processor [Ha73], make better provison
for small objects. \ ’ T
A second drawback 1s that the controlsvprovided by the model over process
initiation may be somewhat awkward to use. We saw in the test implementation
that the hierarchical access control mechanism of Multics made it difficult to
give each user complete control of his home domain | Each user must be very

careful in creating domains and gates. TheA accessibility of’all of the

Page 100 ‘ Chapterv7

directories above a given object must be considered in‘ determining the
accessibility of that object. : A |

The initial procedure of a domain must also be carefully-coded to ensure
proper use ‘of that domain The authentication forwarding mechanism allows the
initial procedure to trust a central authentication mechanism to ensure proper
use of the domain. Our model achieves a smaller and simpler security kernel
by allowing the user to protect himself. Thus there is a greater probability
that the protection facilities of the computer utility will be misused and not
‘provide the desired security constraints.

Finally, the argument that authentication and environment initialization
can be removed from the security kernel in our model is somewhat deceptive
Clearly, in the test implementation the security of the entire system »depends

on the authentication and environment initialization performed‘by the initial

procedure used to enter the Locksmith domain. (The existence of such

privileged domains forces all users to depend on the programs that execute in
those domains, much as the security of the entire system is dependent on the
compilers iand editors used to produce the programs of the security kernel

The privileged domains are infrequently used. and auditing the use of

privileged domains may be sufficient to provide security.

Chapter T ' Page 101

7.3 Iopics for Further Research.

This thesié leaves several problems ln the area of process inifiation
unsol&ed. In this section, we briefly descfibe those problems.

Our model identifies five independent functioné_»of process initiation.
Theytest implementatién demonstrates one way in which tﬁese fiye functions can -
bé coordinated to perform pfocess initiation;; We did_hoﬁ explore extensively
other organizations. (One such organization’wouldvrequire ifhat ~each ‘process
begin execution in the domain of 1ts.ereator. All_domainichanges would be
accomplished by cross-domain calls. Such an organizgtion méy‘ provide an
implementation of process initiation that ig even siméier thah that éhosen for
the thesis.) | | |

This thesis did not consider many qf the proplems associated with
allowing users to create processes. We did not presgnt_ a resource control
scheme to insuré that receives a fair: share of the available resources,
independent of the number of processes that he 1is using. The resoqrcg»control
ﬁechanism of Multics does not provide: thié guarantee.: ‘Devéloping such a
resource eontrdl scheme, and aeﬁonstratiné that it can be impléﬁented in ouf
process initiation structure wouid be an 1ntefe$ting resea;ch\pyoject.

The thesis presénts a novel authentication scheﬁe ‘fér confineient
systems. The test implementation did not test some of the ideas presented.
In addition, it 1is not entirely clear how this scheme interfaces with
autheptication mechanisms based on encryption. A recent masters thesis [Ke76]
investigated the use of encryption in providing secure communication channels.
The protocols developed fit well with the authentication scheme of this
thesis. Some further work may be needed, however, to bring together all of

the ideas about authentication in these two theses.

Page 102 Chapter 7

| APBENDIX A -
DETAILS OF THE IMPLEMENTATION

This appendix presents a more - detailed description - of.. the test
implementation than is given in the text. . The appendix 4s organized in
sections, each section devoted to one of the fupetioms of process. initiation
discussed in the text. Each section describes the programs that implement the
corresponding function and the data structures -that. .are "used by : those
programs.

Each of the programs described is a PL/1 procedure, - possibly with
nultiple entry points. The function performed by each entry point is briefly
described, along with the function of the entire program. The contehts of:the

data structures are described, but not the detailed format. . -

Appendix A Page 103

Process Creation.

Programs:

hphes_$create_proc:

This 1s the entry to the programs that actually create processes. As
stated in the text, ‘this funetion of process initiation was taken from
the current jimplementation. This program takes two data structures as
arguments, crepte_info, and pitmsg. The oreate ! thfo ‘structure describes

the process to be areated and is described below, while the pitmsg
structure is not used during process oreation and “is passed to the
programs ‘that perform enviressent imitialization. The pitmsg structure

~:wWill therefore be described in the enviromment taitialization section.

St '3

eriahe info.. '
The create_info structure contains the following: 1nfbrnation'

Prineipal ID for the new process,
~Initial and higheat ring numbers for process,
AIM clearance for process,

Maximum AIM clearance for proceas (not respecting the limit requested when
the process was created), .

Audit checking flags.

Process ID for new process (half specified by oreator and half filled in by
process creation),

Process 1D and trouble report channel,
Pointer to and length of the pitmsg structure for this process,
Record quota for storage in the process directory for the new process,

Location and maximum length of the linkage offset table, combined 1linkage
segment, and known segment table for the new process,

Scheduler work class for this process.

Page 104 ‘ Appendix A

Environment Initialization.
Programs:

user_init_admin_: .) C e o
This 1s the first program that gets called in the user ring in a newly
created interactive procesa. It is .an: asmembly ' ianguage -program- whose
only function is to call user_real init_admin_ and process_overseer_.
These calls are performed because the first program called:in & . process
cannot return until the process terminates, and therefore leaves a frame
on the stack for the life of the process. As . much ..af:; the - work . of
environment initialization as is possible is done in programs that can
return and thus release their stack:-frampes.: . . - . - R R

user_real_init_admin_: - :
This program obtains a pointer to the pitmsg structure for the . progess.
(This structure was placed in the process directory by process creation).
The program also initializes the process’s commundcation: okanel to the
user that requested the process, and finds the system process_overseer_
program, or a user Specified precess nyerseen, - ussr.yealiwit:adwmin_
also establishes error handlers for certain error conditions that are
handled by the same programs - thronghout. . the: Yife - of the. process,
user_real_init_admin_ makes use of the information in the pitmsg data

structure that 1is described below. . . PR E~% HR

process_overseer_: e G S T R
This 1s the standard initial procedure for interactive processes. It
first establishes a handler for. any. error;cenditiens. . .thes -occur. during
the 1life of the process and are not handled by other progzams.; Then, it
scans the list of forwarded authentications for the communication channel
of the process. If an authentloation.that..was: performed -either by a
trusted system procedure, or by a process with the same Principal ID as
that of the new process can be found, and if that authentication
identifies the correct user (the one who matches the first component of
the Principal ID of the new process), then execution proceeds. Otherwise,
the process is terminated.

If the authentication check is successful, then process_overseer_
prints the system message of the day, and executes the users "start up"
commands. process_overseer_ then calls the command listener to wait for
commands from the user. '

Appendix A : Page 105

Qgta Structures:

pitmsg
The pitmsg structure contains the following 1nformation°

Proeesa Cype (interaotiva, abnantee or daemon),
Home director'y,
. Process creationztine,

Login time (may be different from above ‘1f several Pprocess are created for a
session with :one user),

vLogin line,
Name of terminal ehannal,

}W~I/0(module needed to use terminal channei,
}AIM access olasa of: tefminal eﬁannel
System control attributes of this proceeo.
Load control 1nformation for this proceas.

‘Summary of previous usage of the proceases account (supplied by the resource
: controllér?,

Additional 1nfornation for absentee processes.

Page 106 Appendix A

dm_ is a gate used to call théfébbgih apd q6pgin gQﬁéi@b&ect managers.
Below 13 a 1ist of the entries to dm;<agd;ihg,pvbkrgn§ thatethey call.

entry ‘ program called
dm_$create_domain domain_manager_$create domain
dm_$create_gate | domain mapsger_Ycregte gate
dm_$interpret_domain domain_manager_$interpret. domain
dm_$interpret_gate domain_manager_$interpret_gate
dm_$delete_domain doma;n_paggggg_jdglp§q~gg¥a4n,Q o
dm_$delete_gate - domain maniger $delete gate
dm_$add_dom_acl_entries domain manager_$add_dom_acl_entries
dm_$add_gate_acl_entries- domain_manager 2q*ggtgﬁgc§*ggtr;g§ﬁ,”
dm_$delete_dom_acl_entries domain_manager_ $delete dow acl entries
dm_$delete_gate_acl_entries domain_mgggggg;':g;egg‘(;ﬁg;ggi:gnt{ies .
dm_$1ist_dom_acl domain_ggqggg§;§§1§§4§$ﬁ§§c1Mif‘ T
dm_$1ist_gate_acl domain_ manager_$1ist dom scl.
dm_s$replace_dom_acl domain_manager_ $réplace_dom acl
dm_$replace_gate_acl domain_manager $replape gate acl =~
dm_$make_process initiate_process_$iniftate process
domain_manager_:

This program is the manager for objects of ‘type domain, and domain gate.
The program has several entry points th&t allew thé creation, deletion,
and access control list manipulation of these qbjects. The program - uses
the domain, domain_gate, and dqmqinglisg“gtpﬁgtg:py described below.

>domain_managép;Qcﬁeéte_gomain:

This entry point creates a domain object. The entry point takes the
directory pathname and entry name desired for the domain ‘object to be
created, the desired ring number, and the desired Principal ID. The
Principal ID is checked to insure that it does not duplicate a previously
specified Principal ID in any component. For - this purpose,
domain_manager_ maintains a 1ist of all Principal IDs ocurrently in use in

~ the domain_list data base. .- If the Principal ID is acceptable, then a

segment 1s created in the specified directory with the specified entry
name suffixed by ".domain". This segment is accessible only in ring one
and contains the domain data structure described below.

domain_manager_$create_gate:

This entry point creates domain_gate objects. It takes as arguments, the
directory and entry name for the desired domain gate, a list —of domain
objects that determine the Principal ID of the gate, a ring number, an-
AIM authorization for processes created with the gate, and the name of an
initial procedure. If the set of domain objects correctly specifies a
Principal ID, then a segment is created in the desired location with the
desired name suffixed by ".domain_gate", This segment is accessible only

Appendix A Page 107

in ring 1 and is used to contain the domain_gate structure described
below. The gate specifies the given initial procedure, the maximum of
the caller’s ring, specified ring, and the ring contained in each of the
specified domain objects. The AIM cleaprance specified by the gate is the

-~ minimum of ‘the caller’s clearance, the. specified clearance, and the
clearancds of all of the domain 6bjects.

domain_manager_$interpret_gate,

domain_manager $1nterpret domain:
These entry points return the information contained in domain and domain
gate objects, provided that the caller has the proper access (p for
gates, and ¢ for domains)

domain_manager_$delete_domain, domain manager _$delete_gate:
These entry points deléete domain and domain_gate objects.

domain_manager $add dom_acl_entries,

domain_manager_ Qaddﬂgate acl_entries,

domain_manager $delete dom_acl entries,

domain_manager $de1ete~gate acl entries.

domain_manager_$1ist_dom_acl,

domain_manager_: $lis% _gate_acl,

domain_manager_$replace_ gate acl,

domain_manager_: $rep1ace dom_acl:
These entry points perform ACL manipulation for domain and domain gate
objects. = They have similar interfaces to . the. entries in hes_ that
perform ACL manipulation for segments, ,

create domain,‘ create gate, delete domain, delete_gate, status, domain.

status_gate, list _acl_domain, 1ist acl_gate set_aocl_domain, set_acl zate
These are all entry points to a program that 1mplement$ user commands for
manipulaging domain and domain gate obJecta. They uill not ‘be described
in detai o

Page 108 Appendix A

Data Structures:

domain:
The domain structure is used to implement a domain object, and contains
the following information.

Person component of Principal ID for this domain (¥ me&narunspecified).

Project component of Principal ID for this doméin (* means unspecified),

Ring number of domain,

Creation time of domain.

domain_gate: S : \ o
The domain gate structure is used to implement domain gates and contains
the following information. . , , _

Person component.of Pﬁincipﬁl ID of the domain of the'gate,

Project component of the Principal ID of the domain of the gate,

Ring number of the domain of the gate, ’ |

AIM authorization specified by the gate,

Initial procedure of the gate,

Flag indicating whether or not the initial procedure should be called before
the I/0 attachments and static condition handlers of the process are
initialized (before user_real_init_admin_ i3 called). .

domain_list: L ‘ o
The domain_list structure is used to keep a record of the Principal IDs
currently in use. It has a header that.contains a lock and the numsber of
entries. Each entry contains the following information:

Person component of the Principal ID,

Project component of the. Principal 1D,

Pathname of the domain object that specifies this Principal ID.

Appendix A ' ' | Page 109

thentication F .
asm_ B | . o
asm_ 1s a gate used to access the authentication forwarding mechanism.
Below 1s a list of entries to asm_ andrthqlprogrqqstthat they call.

entry program called

asm_$tty_assert assertion_manager_ $tty_: assert
asm_$tty_read_assertions assertion_manager_$tty_read_assertions
asm_$tty delete_assertions assertion_manager_$tty_ delete. _assertions
asm_$ncp_assert assertion_manager_ $nop_assert '
asm_$nep_read_assertions assertion_minager_$nop redd_assertions
asm_$ncp_delete_assertions assertion_manager iﬁﬂg;ﬁﬁiete assertions
asm_$priv_net_assert assertion_manager_$priv_net_assert

hes_, net_, netp :
These are the gates through whioh the primitives that manipulate local
terminal channels and ARPA network channels are reached. Several entries
in these gates were changed to call’¥®ntries fh r?tﬁy instead. This is
done to maintain the index data bases used by r1tty » and to notice when
these channels are connected and disa%nneetda. The following entries
were changed:

entry ' program ealled
hes_$tty index ritty_$tty_index
hes_$tty_order ‘r1tbyf$$%y order
net_$ncp_activate ritty_$ncp_activate
net_$ncp_connect oo ritty_$nep_connect
net._$nop. order : - ritty_$ncp_order ¢ o
netp_$priv_net_activate ‘ 'r‘t*t%y &priv mﬁ: actwate o
assertion_manager_:

This program manages forwarded authentieations. It does so by
maintaining a segment for each channel connected to the system containing

_ the forwarded authentications for that' oha#hél.” 'The format of these
segments 1s described by the assertion_seg data base. These segments are
kept in = the “directories”’ >aystem contioi 1>assértions>tty_seg, and
>system_control_1>assertionsdncp_seg, and are accessible only in ring 1.
There are three entries to assertion_manager_ for each function, one for
local channels, one for network channels, and one for privileged
manipulation of network channels.

assertion_manager_$tty_assert,

assertion_manager_$ncp_assert,

assertion_manager_$priv_net_assert:
These entries record forwarded authentications. They take as input the
name of a channel, the asserted user name, and an uninterpreted string of
"extra" information. They call entries in ritty_ to translate from the

Page 110 Appendix A

name of the channel to the index for the channel needed to determine the
state of the channel. The state is then obtained in order to insure that
the caller has access to the channel and that the. .channel is still
‘connected. If these conditions are met, the forwarded authentication,
along with -information identifying its author, 48 . recorded in the

assertion_seg for the channel.

assertion_manager_}tty_read_pssertions,

assertion_panager_}nop_pead_gssertions,

assertion_manager~$priv_pe;_pead_assert1ona: , S .
These entries extract the forwarded authentications for a channel. They
take the name of* a channel, and convert and verify it as above. If the
channel is accessible, as many forwarded authentications as will fit in a
list supplied by the caller of assertion_manager_ are returned, along
with a count of the total number of forwarded - authentications present.
If the verification of the specified channel reveals that the channel is
disconnected, the assertion_seg for that channel. is deleted, .and an error
code is returned. ' ; .

assertion_manager_}tty_gelete_assert1ons,
assert1on_manager_}ncp_delete_aasert1ons. S
assertion_manager_}priv_pet_ﬂeleté,aésért10ns:
These entry points delete the forwarded authentications . for a . channel.
They are provided to allow any program that detects that such
authentications are no 1longer valid to delete . them. The same
verification procedure 1s used as before, 'and the appropriate
assertion_seg 1is deleted. :

ritty_: o
This program serves two purposes. Firat, 1t maintaina data bases to
translate between channel names and channel indices. Second, it notices
requests to connect ¢hannels and calls assertion_manager_ to delete the
assertion_seg for any successful attempt. It maintains two data bases,
>system_control_1>ncpxs, and >system_control_1>ttyxs, that are described
below.

r1tty_§get_xtyx,-r1tty_§get_pcpx: ,
These entries obtain the index for a channel name. If the named channel
is not known to the system, an index of 0, which is invalid, is returned.

ritty_s$get_tty_name, ritty_s$get_socket_num: :
These entries return the local channel name or network socket number of a
given index. If the index is invalid, an invalid name or ‘socket number
is returned. :

ritty_s$tty_index,

ritty_$ncp_activate,

ritty_$priv_net_activate:
These entries record the index assigned to a channel name. They call the
supervisor to obtain the index. :

Appendix A Page 111

ritty_ntty_order, ritty $ncp_order, ritty_¢$ncp_connect:
These entries check for orders to eonnect _channels. If such an order is
made, the assertion seg for the ehannel is deleted by a call to
asseértion_manawer . -

Data Structures:
ncpxs, ttyxs:
These two data bases are used to maintain the 1ndex mapping. Each

contains a lock, a length, and a list of entries giving the name for each:
index currently im use.

assertion_seg: o

An assertion_seg 1s maintained for eacb ‘channel with forwarded
authentications. = Each asSertion_geg contaigs a lock, the number of
forwarded = authentications, ~‘followed by a 1list of forwarded
authenticatlions. Each forwarded authentlcation contains the following
information.

Time of recording of this authepticatidn;

Principal of the pecording procvess,

Process 1D of the recording pﬁocéSs.

Ring number of the recording process,

Authenticated user name,

Extra, uninberpreted information supplied by the author ‘of the forwarded
authenticationb

Page 112 Appendix A

Res ¢ _Control

Eiograms::\:'””

F P I A L T TR

user _process manager L
The current implementation of resource control for Multics was adapted ;o
run . ag...the.. resqurce eontrollqgvh of.;. -new, 1gp emgagat on.
user_process_manager_ acts as the roaouroe eanirollor for the new
implementation. It calls on the resource aontrol _programs of the old
implementation to perform specific resourge oontrol fungt;gga, .Soma. of

_ those . programs . .are . briefly . desgribed .. In. . this. seotion.
usen_pcaceag_gana;ar ’ and all of . the. Qggggg gggggggs ,éri bbg _resource
controller. nake use gf a data@ggge ouz e apaven. | qb;e.1 _ 1§,tab1e
contains ‘entries for each process éaaorihpﬂ that, pre oeds’ . rggource
limitations and allow the resource oontrollcr to obtain ‘the ‘resource
usage statistics for that process. In eddition, aogg\o: the programs
make use of the system gdministrator s table (SAT v, PRESER. nagogftable
(PNT), and project éefinition table (PBT) lese data bases contain
resource control parameters for projects, usprs. and specific
user.project combinations. S e o .

user_pnoccqq4n§n§ ; :upq‘;nit, B I '
This entry infgﬁdf Zes the reaoque ’EFEOI ;t ga;;qwtbg oﬂprddnator
for process initiation to establd itsel “the resource control
process and to abort any process initiation attenpts in ppo;rcas,

& .,,-,:N;“‘ Hrhy

; user_process man;ger Supmﬁpequegt" R e
This entry point responds to a rédheat to erogte} a préceas It
establishes an entry in the answer_table for the. néﬁ'proeasa, and ‘calls
on other resource control programs to verify that. ;p@rg s an scoount to
fund the progess. and to begin scoountine prog S?Q and_memory
usage by the new process, - !%gptgallx,, fhgbéoqg.>1patcr s _called to
finish the creation of the new proceass. o)

.user_process_manager, $upm_event: o o
This entry point reaponds to events relevant }o n,prbﬂoﬂﬁ &fﬁﬁr that
process has been oreated. It is invoked when measages are recieved from
a process’s trouble report event .channel, - uhieh are_used {o. report -
processes that. havg;bgeong .damaged .. Qr .have,; larpl ated. ;h i3 also

»finvoked .vwhen ot r.:resoyrce.. . cqgtrqilgr progrtna £ # 5o tnru;nate a
process. If the A M rules allpu, NSSL. PO qrvqr@g,qsasagas
that it recieves for a process to the trou e report channel specified by
the craator of that process, ‘.

lg_ctl_ éf ‘ RN e Apn |
This module locates the entries in the sn‘ PHT, and PD‘I’ data “bases' that
apply to a particular process. It applies &hp,;;q;tr gnupd in these

entries to determine whether or mof. gaga ' : ideratipn™ will
be oreated. It also maintains a “base | pegses can read

that contains a 1ist of all currently exeouting pﬁd&éa&es. 1g_p%1 calls
load ctl_ and act_ctl_ in order to insure that the proposed process . will
not. ovarload the, system and. that it hqg.an,aagpun& tq,;und.;ts gru ahd

Appendix I D A o A Page 113

v;:x

memory usage. There are two entries to lg_ctl_: lg_ctl $upm in, which
is called by user_process_manager_ to check a process before it s
created, and 1g ctl_$logout, which records the termination of a process.

loaq_ctl_: ' - SRS
This program limits the number of procésses on the system at any one
time. ST PR e syste

load_ctl_ $ldad ctl N ‘ A ‘
© ' This entry point is cdlled by 1g_pt1 ‘for each requést to create a
" process. It decides whether or not to allow thé -new process to be
~ created, and whether or not to p?eempt existing processes far the
proposed new process.

‘ load ctl. $unload. ‘
This entry point 15 ealled to record the terﬁihaticn of a provcess.

aect_ctl_: . - ’
This program records the resource usage of all processes. The resource
usage information for a particular process is maintained in the PDT entry
corresponding to the person and project of* ﬁhaﬂ g?ecééses Principal ID.
There" are seveﬁal entry poiﬁtb ‘to act cti

act_ctl_$check:
This entry point checks to see that a valid account exists for a proposed

process. It also checks that the account fbr & pronosed process is not
yet ‘out of funds. .

act_ctl_$open i acesunt: ‘ o ' o
This entry pbint opens an “account for updates._ It must be called before
account for a process can be 1n1t1ated. B .

act_ctl_$cp | : |
This entry point instructs act_ctl_ to begin monitoring the resource
usage of a process. Erft iR : !

aect_ctl $update. : i
This entry point updates the resouree ‘Usage statistics ‘for all processes
being monitored. It is called perioﬁically in ordar to keep reeords up
to date in’ the event ef a system failure R

act_ctl_g$dp: - :
This entry point informs act_ctl_ that a process has terminated and that
it should no longer monitor,that process.

" act_ctl_! $close account: R .
This entry ‘point closés an account and makes it unavailable for updates
until it 13 re-opened

epE: | S | "
" This program constructs the create_info and pitmag structures for a
process. It fills in the resource control control items in both

Page 114 Appendix A

structures from information available in the answer table, SAT, PNT, ‘and
PDT entries for that process. :

Data Structures.

answer_table:
The answer_table contains one entry per proceas. and is used to record
information about that process. It also has’ a héader that contains
miscellaneous 4nformation and will not be described. Each answer. _table
entry contains the following infppmgpion.

A state, that indicates whether the entry is free, in use by process
initiation, or used by a process that has already been oreated,

The sizes and locations of the 1linkage offset table, combined linkage
segment, and known segment table for this process,

The trouble‘réggr;‘eéent chabne;,

The process ID of the proceSs;

The time at which the request for this procésa was rqeeived,

Miscellaneous attribﬁtes of this process,] |

A pointer to the PDT entry for this process,

The scheduler work class for this process,

The person and project components for'this"pfocess;_‘ j

The name of the initial procedurg_fqr th;a_procesa.

The time of the last accoﬁnting update 6f this process,

The C?U and memory usage of the process up to thé“laat“updaté,

The time to wait before preempting this pﬁoeéiﬁ“fbr‘anoﬁhbr;

SAT:

The SAT has a header that contalns parameters used by load_ctl_ to _
determine how many users to allow on the system. In addition, it has one
entry per project that contains the following information: :

Project name, |

Pointer to PDT for that project,

Number of users authorized to use this project,

Maximum number of such users,

Appendix A « Page 115

Miscellaneous limits on users of that project,
Default load_ctl_ parameters for processes from that project.
_PNI.

The PNT is a 1ist of all’ of the users who way use Miltles. It has one
entry per. user, that eontains the. fol; “1qg Ain rugﬁ;cﬂ. o _

AIM authorization for this user and all his proceasea.

5
LR

*~Kudlt flags for this uper and nis 'processes, -
~User name.

PDT:
There is one PDT data structure for Qgch project. Each PDT contains
entries describing the users who may vse tha % project and charge to its
account. Each of these entries has the followipg Sormat:. .

L T peFEs RIS il SN

Name of user, . . . i e

Number of processes that the uSerwﬁggggﬂt;%”gg;a;

e s

Miscellaneous limits on the uqqnigyppongpgsﬂxii,‘

Limited initial procedure for uaer (Qqn bg ggagified by the,. project
administrator to 1limit the user ‘s resource conanmption This does not

force the user to use that inifial prosedure, hut, denies him the . use of

the project unless he doesy,

Default home directory (used ohly 1f process creator dbesn t specify a home
directory), , o . e .

AIM authorizatien for user’s processes, .

Summary of the resource usage of the user in the project. . .

Page 116 ' Appendix A

Coordination.
Brograms:

proc_creat_: S L
proc_creat_ 1s a gate used by the resource -controller to call the
coordinator for process initiation. It 4s aqcessible. only to valid
resource controller processes. Below 1is a 1list of the entries to
proc_creat_ and the prograns that they aall. ' ,

entry ' program called
proc_creat_$initialize ; 1nitiatq‘procgbﬁgﬁininiai1ze :
proc_creat_$notify initiate_procesa_$notify
proc_creat_g$create inttiatg_prnnssa;ﬁereate

initiate_pracess_:
initiate_process_ is the program that providea Qoorﬂination among ‘the
‘modules .of pracess initiation. -‘Thisprogram asaembles create_info and
pitmsg structures, to be used in creatisig a jprocess, from -data supplied
by the domain changing mechanism, the rescurce gontrgller, .and the
process that requested provess initiation. . There sre.four entry . points
to initiate_process_ that are desoribed below. :

initiate_process_$initiate_process_: ' ; '
This entry point begins process initiation. . I%t..can be called by any
process (through the dm_ gate) and takes three angumonts. -a. orsate_info
structure, a pitmsg structure, .and the name: of a domain_gate: object. The
entry - point dm tintgrpretdgate is.‘called Lo detsrmine whether or not the
calling process has "p" access to the gate:, and to extrdct: the Principal
ID and initial procedure from the gate. The supplied pitmsg and
create_info structures are then copied to a- frotected segment ' so . that
they.. cannot be ohanged while the resource .gontroller decides whether or
not to allow the process to be created.. .Paramelers from these structures
needed by the resource controller ape . then placed in .a pr_rq . data
structure and sent to the resource controller. k&hrough the use of the
Multics message_segment facility).
initiate_process_ then waits for a negsgge from the resource
controller, or a timeout. Because initiate_process_ executes in ring 1,
thlis effectively blocks the creating process until the resource
controller is -finished. This blocking reduces the chance that the
creating process will terminate before process initiation 1is complete.
(The implementation recovers from such an occurance, but it is unpleasant
and clearly undesirable.) The signal sent by the resource controller
contains an indication of the success or failure of the attempt to
create a process. On receipt of the signal, initiate_ process_ returns to
its caller. If the creation was successful, then the creating process
must send a signal to the created process in order to begin 1its
environment 1initialization. A new process is blocked until it receives
such a signal so that the creating process can pass resources (terminal
channels in particular) to the new process before environment
initialization is attempted. If the creating process does not send such

Appendix A ' Page 117

a signal, the resource controller will do so eventually to prevent the
new process from staying blocked I1ndefinitely. initiate_process_
maintains a 1ist of all pending process initiation in the pending_preates
data structure described below.

initiate process_$create:

This entry point 13 called Dby the resotree controller to finish the
creation of an approved process. The arguments to this entry point are a
create_info structure, a pitmsg structure, and the index of a process
initiation request. The pitmsg and e¢reate_info structures supplied by
the creating process for the specified request are found and compared
with those supplied by the resource controller. All of -the entries that
represent information supplied to the resource controller in the pr_rg
measage must match. This wmatohing 43 done to keep the resource
controller from becoming confused when requests are timed out by the
creating process, and because some of the resource controller programs
replace unacceptable parauoters in a proocess coreation request rather than
rejecting the request. The resource comtrol attribtutes are then taken
from the resource controller’s pitmsg and oreate_info data structures and
placed in the structures copled frowm bhonelaupplied by the creating
process. Mhphcs_$create_proc is then oalled to ‘treate the specified
process. If the creation 1s sucoessful, then a sighal 4s sent to the
creating process. .

initiate_process_g$notify:
This entry point 1s used by the resource controller to abort an
unsatiafactory - request for process initiation. It takes as arguments an
error code and a request index. The evrror ovode 1s - signulled to: the
creating proness for that request.

initiate_process_s$initialize:
This entry 1s -used by the resource dontroller to initialize process
initistion. It mborts all pending requests for processes and establishes
the calling process as the resource eontréller (so that the siznals will
be sent to ﬁhe proper process).

Page 118 . Appendix A

Data Structures:

pending_creates:

The pending creates data base is used by 1nitiate_procees_ to keep track
of process creation requests that have been signalled to the resource
controller and are awaiting approval. .-It has a header .that contains the
following information: ' :

A lock to prevent simultaneous access,

The process ID of the resource controller for signalling,

The next index to use for a brocess creation request,

The location of a directory in which to keep pitmsg structures.

pending_creates also has one entry per pending requeat These entries
contain the following information:

A flag indicating whether or not this entry is in use,
The time at which this request was made,
The index of this request,

An event channel to be used for signalling from the resource controller to
the creating process,

‘The process ID of the creating process,
A copy of the create_info structure supclied by the creating procesa with

attributes obtained from the domain_gate replacing the corresponding
attributes supplied by the creating process.

pr_rq: ,
This data structure is used to pass a request for process creation from
the creating process to the resource ocontroller. It ocontains the
following information:
The index of this request,

The trouble report channel specified by the creator (the resource controller
forwards trouble reports to this channel),

The process ID of the creator,
Principal ID desired for the process,

Home directory for the process,

Appendix A ' » - Page 119

Initial procedure for the process,
Initial and highest ring numbers for the process,

Requested AIM authorization (minimum of authorization in the domain gate and
the authorization requested by the creating process.

Page 120 Appendix A

Te n Ha
rogr :

dialup_:
This program oreates processes for uaeva uaing hhe TELHET protocoi of the
ARPA network to use Multics. It is. . included im ~this - -desoription of
process initlation as an example of how the proceas 1nit1ation meehanism
can be used. 2 P

dialup_gattach: ' e -
This entry causes dialup to use a network virtual terminal channel The.
number of such .channels . in use at. .omece determines. the : number::of
simultaneous TELNET connections that can be supported When a new TELNET
connection 1is made to Multics, one -of the : unused virtual terminal
channels is selected to.be used for that connection.

dialup_$dialup_: '

This entry point is called uhenever a. lixn&fiennt ‘event: occurs for a
terminal channel. dialup_ sends a greeting message to newly connected
channels, and waits for a response. The response is: parsed . as . ia -login
line and the name of a gate to be used to create a process is determined
from that line. Additional information-ia.the login linp:4is used to:fill
in create_info and pitmsg structures for a process. dm _$make_process is
called to create a process, and. if sueocessful, control of the virtual
terminal is granted t6 the new process before the new process 1is
awakened. : - :

dialup_$process_event:

This entry point is called when a message is received from the trouble
report channel of a proceas created by dialup_. One of four possible
actions 1s taken, depending on the contents of that message. The
terminal channel can be hung up (if the process terminated voluntarily).
Another process can be created for that terminal (if - the message
indicates that the previous process was damaged). A new greeting message
can be printed and a new login line accepted. Or, an error message can
be sent to the virtual terminal, if the trouble report message indicates
some error, or is invalid.

Appendix A _ ' , : Page 121

Data Structures: -
ntbl: ‘
This structure is used internally by dialup_ to keep track of the virtusl
terminal channels surrently in use. s By éhasf‘one**encry for ~each’ such
channel sthich enntains'the,foalouins intdﬁhat&dn
Terminal name (of the form netxxx).
Terminal state (dﬁalup expected login 11ne expected, or hangup expected)
‘»Precess state (no process, pvaeea& being ereated.'prbcess~executing),
- Bvent channel for terminal channal eveﬁte, ~
Trouble report channel for process, ”
‘ Error code for’ operatiausrpe@fbrmed f%r %ﬁia ehtnnel,-_ if,:
" Index for thds euannel,k Lo
bPerson and Projnct fqn this ehannel,

' Home directory'(teken from 1ogan line), L2

Gate name.

Page 122 ,) Appendix A

References

[AnT4] Andrews, G. R., "COPS - A Protection Hechaniamnfor ‘Computer‘ Systems,"
Computer Sci. Teaching Lab., Univ. pf_wgghg,e$echniqa1 Renpnt;73e07-12p
July 1974. L ' Lo '

[Be73] Bell, D.E., and L.J. LaPadula, "Secure Computer Systems: A ‘Mathematical
: Model " The MITRE CorpOration MTR-ZBH?. !bl i, Houember. 1973 '

[Br?S] Bratt R G., "Minimizing the Naming Facilities Requiring Protection in
a Computer Utility," M.I.T. Project MAC.Technical Report, TR-156. 1975.

(BH70] Brinch Hansen, P., "The Nucleus uf° a” Hultiprogramming System "
Communications of the ACM 13, 4 (April 1970) pp. 238-241.

[(Di68] Dijkstra, E. W., "The Structure of the 1HE Hultiprogramming System._
Compunications of the ACM 11, 5 (May 1968), pp. 341- 3u6 ,

(Hu76] Huber, A. R, "A Multi-process Implementation of a P aging System, R H
'~ Thesis, M.I.T. Department of Electrical’ Engineefing an “Computer- Scienee.
June 1976.

{Ja74] Janson, P. A., "Removing the Dynamic Linker from the Security Kernel of
a Computer Utility,“ M.I.T. Project HAC Technical Report, TR-132, 1974,

[Jo73] Jones, A. K., "Protection in Programmed Systems," Ph.D. Thesis,
Carnegie-Mellon University, 1973. :

[Ka76] Kanodia, R.K., and D.P. Reed, "Eventcounts: A New Model for Process
Synchronization," (to be published).

[Ke76] Kent, S. T., ”Encryption—Based Protection Protocols for Interactive
User-Computer Communication over Physically Unsecured Channels," S.M.
Thesis, M.I.T. Department of Electrical Engineering and Computer Science,
June 1976

(La69] Lampson, B. W., "Dynamic Protection Structures,” AFIPS Conference
Proceedings 35, (1969 Fall Joint Computer Conference,) pp. 27-38.

[La73] Lampson, B. W., "A Note on the Confinement Problem." gggmgg;ggglggg of
the ACM 16, 10 (Oct 1973), 613-615. '

[LaT74] Lampson B. W., "Protection," QOperating Systems gxig 8, 1 (Jan, 1974)
pp. 18-24,

[0r72] Organick, E. I., The Multics System: An §;§m;ggglgg gg Its S;zuggurg,
M.I.T. Press, Cambridge, Mass, 1972.

[Re76] Reed, D. P., "Processor Multiplexing in a Layered Operating System,
S.M. Thesis, M.I.T. Department of Electrical Engineering and Computer
Science, June 1976. : ‘ '

References _ Page 123

[Ro74] Rotenberg, L. J., "Making Computers Keep Secrets," M.I.T. Project MAC
Technical Report TR-115, 1974. o :

[8072] Schroeder, M. D., "Cooperation of Mutually Suspicious Subsystems in a
Computer Utility," M.I.T. Project MAC Technical Report, TR-104, 1972.

‘{5075] Schroeder, M. D., "Engineering a Seeurity Keérnel for Multies,"

Proceedings, Eifth W on mmmmm;ss. November
1975, pp. 25-32.

[Sh75] Saltzer J. H. and M. D, Schroeder. *"The Protection of Informption in

Computer8 Systems, _gggggg;ngg of inﬂ ;§§§‘§3. 9. (September 1975) pp.
1278-1301

[Ha?3] Walker R. D. H. "The Structure of a Well Protectgd Computer " Ph.D.
' Thesis, Univerﬁity of Cambridge, 1973) .

{(We69] Weissman C. "Security antrols in the ADEPT-50. Timewsharing System."
- A'.f,~”‘” rob g 35. (1869 Fall Joint, Computer Conference)
pp. 119-133. :

Page 124 References

CS-TR Scanning Project
Document Control Form Date: M-/) 195

Report # <5 -Tp~l67

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
K Laboratory for Computer Science (I_.CS)

Document Type:

KTechnical Report MR) [0 Technical Memo (TM)
[0 Other:

Document Information Number of pages: /4 (131 n)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
B Double-sided j&Double—sided
Print type:
\g\TMﬂ [] offsetPress [] Laser Print
[] inksetPrinter [] Unknown O other:

Check each if included with document:

O poD Form O Funding Agent Form O coverPage
] spine E\Pn'nters Notes O Photo negatives
O other:

Page Data:

Blank PagesSwey sge numben:

Photographs/Tonal Material ey pege numbes:

Other (nots descripioniage numben.
Description : Page Number:

TmaGE mae(1-13Y) untep TITLE €ace gL~ 134
(1205 - 129) 5S¢ apennital Pl STn's wis TREVS(F)

Scanning Agent Signoff:
Date Received: /4) 1 95 Date Scanned: _17/49¢ pate Returned: _I / 1T 196

P M .
Scanning Agent Signature: ‘CQU’&»

RNWDSILCSWWFMM.M

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the ML.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

