MIT/LCS/TR-164

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

David Patrick Reed

June 1976

The research reported here was sponsored in part by Honeywell Information
Systems Inc., and in part by the Air Force Information Systems Technology
Applications Office (ISTAO), and by the Advanced Research Projects Agency
(ARPA) of the Department of Defense under ARPA order No. 2641 which was
monitored by ISTAO under contract No. F19628-74-C-0193.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139

ACKNOWLEDGMENTS

A very large number of persons and organizations deserve my thanks for
helping me complete this research. I am sure there are some who I will forget
to mention, so let me apologize in advance for any omissions.

Professor Schroeder, my thesis supervisor, contributed a great deal of
time and effort to help me develop and clarify a large set of ideas. I am
especially grateful for the quick turnaround he has given the many drafts of
chapters I have given him in the last hectic weeks of thesis preparation.

Professor Saltzer and Dr. David Clark provided much inspiration along the
way, and helped crystallize a number of the ideas in the thesis.

Raj Kanodia, Bob Mabee, Doug Wells, and Bernie Greenberg helped by
providing a sounding board for my early ideas at innumerable luncheon
discussions.

Phil Janson and Doug Hunt have helped me understand the issues involved
in structuring an operating system. Phil’s work on abstract type structures
especially helped in the development of some of the central ideas in the
thesis.

Bob Frankston has taken the time to read several of the drafts of my
thesis, and has been very helpful in designing the implementation of some of
my ideas.

The CSR Volleyball Crew has helped me keep in shape mentally and
physically through all the trials of thesis preparation.

The final two people I would like to thank are Lynn, my spouse, and
Colin, my newborn son. They both have put up with my non-stop pace during the
last days of the thesis. Without their love and understanding, I doubt if I
would have succeeded in finishing the thesis.

This research was performed in the Computer Systems Research Division of
the M.I.T. Laboratory for Computer Science. It was sponsored in part by
Honeywell Information Systems Inc., and in part by the Air Force Information
Systems Technology Applications Office (ISTAO), and by the Advanced Research
Projects Agency (ARPA) of the Department of Defense under ARPA order No. 2641,
which was monitored by ISTAO under contract No. F19628-74-C-0193.

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM *

by

David Patrick Reed

ABSTRACT

This thesis presents a simply structured design for the implementation of
processes in a kernel-structured operating system. The design provides a
minimal mechanism for the support of two distinct classes of processes found
in the computer system —- those which are part of the kernel operating system
itself, and those used to execute user-specified computations. The design is
broken down into two levels, one which implements a fixed number of virtual
processors, which are then used to run kernel processes, and are multiplexed
to provide processes for user computations. Eventcount primitives are
provided, in order to provide a simple unified interprocess control
communication mechanism. The design is intended to be used in the creation of
a secure kernel for the Multics operating system.

THESIS SUPERVISOR: Michael D. Schroeder
TITLE: Assistant Professor of Electrical Engineering

*This report is a minor revision of a thesis of the same title submitted to
the Department of Electrical Engineering and Computer Science on June 14, 1976
in partial fulfillment of the requirements for the degree of Master of
Science.

ACKNOWLEDGMENTS

ABSTRACT
TABLE OF

LIST OF FIGURES

CONTENTS

TABLE OF CONTENTS

1. Introduction ...eeeeeecees

Brief Statement of Problem and Results

Example System

Abstract Types ..
Layering of Abstract TYPES ceiceevescassocscsonccsncnses
Related Work

Plan of Thesis

® 006 0680 000 00000000 e COEPO PRSI OIERSOEDROGEITTET TS TOEDN

DI R I R A I I R I B A A SR B A I

of Processor MultiplexXing ..cceveeverecseceenncnnononsecsnenansnnneoes

Definition 0f ProCceSSOr ..eieeeecessecscesssesscsssaassssnsnsnsnans

Definition of Process

L I I S O R I A N N I A O R R R R N A A S I R R B B A)

Processor MultipleXing ..eveeesosscassscccasonscnsonnanes
Processor Multiplexing Model

2.4.1 Centralized Control of Processor Multiplexing
2.4.2 Distributed Control of Processor Multiplexingceeeeeee
2.4.3 Comparison of Distributed and Centralized Control
Processor Reconfigurationeeceeosesasoscanscassanssnesannnsne

Interprocess Control Communication ..

The Virtual Processor Stopped Stateieeecessssessocscasccssas

Summary ..

3. Multiple Levels of Processor Multiplexing in a Layered System

The Cache Management Pattern of Type Extensioncccevceeeeeces
Building Two Levels of Virtual Processorsc.ceee.. cecesansaes
Disentangling Virtual Memory from Processor Multiplexing
Use of Processes as Abstract Type Managerscceeseececcncases

Two Levels of Scheduling
Problems of a Processor Hierarchy ..
3.6.1 Efficiency of Multiple Levels of Scheduling

3.6.2 Protection of Low-level Type Managers from Level 2

3.6.3 Cross=-level Interprocess Control Communication ..
3.6.3.1 Level 2 Advance and Await Algorithms .

3.6.3.2 Inward Signalling ceen

3.6.3.3 Outward Signallingeeeeesceaesensne
Summary ..

s e s 00 0000

~N SN

11
15
17
19
21
25

29

30
32
33
36
38
40
42
44
49
57
59

61

62
66
70
71
79
80
80
82
84
86
87
87
90

4. Level

.1
.2

3
.4
5
6
.7
.8

4
4
4
4
4
4.
4
4
4.9
4
4
4

.1
.1
.1

5. Level

6.2

1 Virtual Processor Interfaces

Level 1 Virtual Processor Interface ...
Limited Supply of Level 1l ProceSSOIrS ...cveeesecscccscnssssoanses
Multiprogramming of Real Processors Among Level 1 Processors
Execution States of Level 1 ProCeSSOrS ...eeceesccsncccascansanss
Scheduling Controls ...cevieeceseesascssoscssoscscssascassosscsasnsansnssns
Changing the Bindings of Level] ProceSSOrsccvicceccencsanes
Interprocess Control Communicationccececececerecceneaccasens
Special EventCoUntSiseesesccceacrsasescsasscsessscsssssssescans
Fault Interfaceciveevsecvncescsscccnenns

0 Processor Interrupt ..ceeecessees

et e s s s s s nesss s

¢ 5 88 8 8500080000000 08sTEIELILETIETTS

1 Processor Reconfigurationeeeecscecesccsossssassscssncnnas
2 Parameter Passing To Level 1 Processor Operationsceeveee

1 Processor Implementation

Overall Structure of the Implementationcveveeeeeccccacnncns

Hardware Architecture ..

5.2.1 The Processor Control Processor
5.2.2 General-Purpose ProCeSSOrSsceesceccsssosscsncanasacas

DAata BASE@S .eievscesestscnsoscccsoscssssssosncs

Operation of the Processor Control ProCessSorcecuieeccesnses

GPP operation ..eciesececccaccconcsasns

Implementing Level 1 Processors on Traditional Hardware
Simulating the Processor Control ProcesSSOr ...e.evseescscsssssans
1/0 Devices That Send InterTUPES eceevestvececesosossososssnnnssnns

SUMMAary ..coevececesnces

2 Processor Interface and Implementation ...ccicecevrrcecacesnans

Level 2 Processor Interfaces ..eeveeesscoscccs
6.1.1 Creation and Deletion of Processors ...

6.1.2 IPCC Interfaces ...ceeececvoscas

6.1.3 Processor InterruptsSceecceoscnaccns
Structure of the Second Level Processor Managercceseeccccccs
6.2.1 Level 2 Data Bases
6.2.2 Processes of the Second Level Managerccccceseosscese
6.2.3 Eventcount Implementation

6.2.3.1 Advance ...

6.2.3.2 Await

6.2.4 Scheduling Policy

TR R A A A A B A N IR)

e e s s 00000 s 00 ses e

6.2.3.3 Set_processor_interrupt .
6.2.3.4 Outward Signalling «..ceeneeenen

91

92
94
95
96
99
100
102
104
105
107
108
109

113

114
118
119
120
127
130
139
146
146
149
150

151

152
153
155
157
161
163
167
171
171
173
175
175
176

7. Using Level 1 Processors in the Operating SyStemeceeeeeneenaeenennn 181

7.1 Permanently BouUnd PrOCESSES .ueu'eeenesnssnesaeeoessessnsnnnnnees 182
7.2 1/0 Device MaNagemMent . .u.eeeeseeneenenensensanennnensonsosnsnnas 183
7.3 Kernel Type ManagersS 85 PrOCeSSES .uvveseeeenesnononneeanoaneneas 187
7.4 Explicit Recognition of Parallelism in the System Design 190
7.5 ResUlting SErUCEULE 4t ttieennnnneusseeeesennnasososnannnssoeass 192
8. Conclusions and Suggestions for FUrther ReSearcheeeeeeeeessenasens 195
BB IOGRAPHY it ittt ittt ieetraeeeoneesoeenaessenoeenssesnnnssncsannann 201
Appendix A: Summary of Level] Interface .uo.veeeeeeseeeeeeseeecnnennennns . 205
Appendix B: Summary of Level 2 Interface .eeeeeueeeeeeeeeesesnonnnesonannee 207

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

OOV UUVNE ST WWWWWERRNRNNDNDNDE -

e 82 e e e o ® ¢ & a s * o e
VP WNFHFONOUEWNHWNRFRFOMEREWNROOWMEREWN N

LIST OF FIGURES

: Removing Mutual Dependenciesvveeecceccccanss

Type Extension Hierarchy for VM Objects .esececeeniniinnnnnnns
Multiplexing 2 Real ProCeSSOIS «ceoessscscssscscsossnconscscacsna
Processor Multiplexing LOOP sececveesssancscnccscscocsonasanss

Processor Reconfiguration States ...ieeecccccene

Processor Multiplexing Loop with Reconfiguration

Processor Multiplexing Loop with IPCC

Processor Multiplexing Loop with Stopped Stateececcceces

Cache Mgmt. Pattern for Page Objectcoccv.n.

Cache Mgmt. Pattern for Virtual Processorsceceecccececns
Two Level Processor Hierarchycciiececcrsncecccnnen
Two Level Processor Multiplexing LOOPp «cicceessenccsscssscnonsse
Permanently Bound Type Manager Processescece0.n
States of Level 1 ProCeSSOT ..ceeeceecscsassssssnssansossanscas

Level 1 Fault DAta .eeeeesossosevsnsssanccssssasasnsanscs

Processor Communication in Level 1 Implementation

: Level 1 State DAta3 .seeececcesssssssscssasescsessassssssssssscssss

Priority Queue and Await Table tesssesasnsscsrssesansse
Hardware Communication Pathsecerensecassrsnccesecncencssse
GPP Internal Memory tesesscseasanassseseraans

Level 1 Processor State BloCK ..ecevesvssoscesccsccssssacans

Basic GPP CYCle iuvvreesscenosenecssostnsnonsasoscossncnsssnsns
PCP Algorithm Flow Chart ...cceeevecescsccenccccncnns
GPP Responses to UNBIND and INVOKE-LEVELLcicecccecancens
Processor Interrupt Modelcieveeecnoervseoncnccnccccccnns
Processors and Data Bases of Level 2 ..cceeveencsrcncancsosnns

: Level 2 Processor Table Entry ..eecerercacsncasne

Await Table StTUCEUIE .ceeeeeccocvecosssasaassossssossescsnassesnsscnse

Actions of the Binder/Scheduler and Unbinder ...

13
19
34
37
45
46
55
58
63
65
67
69
78
97
100
106
115
116
120
121
124
126
132
141
158
162
164
166
168

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Chapter One

Introduction

A major goal of current research on computer systems is ensuring the
correctness of operating system software. Although many complex operating
systems have been designed and built, the best that can be said of these
systems is that they seem to work correctly. It is not yet possible to prove,
or otherwise ensure, that a complex operating system such as Multics [19]
works correctly —- in fact, specifying what correct operation means in the
case of systems like Multics is very difficult. One important part of
specifying and proving the correct operation of a éystem like Multiecs is
simplifying its design to a point where its operation is easily understood. A
clear understanding of the basic operating system mechanisms and

implementation techniques is a prerequisite to achieving this simplification.

The research reported here is an attempt to understand the impact of

processor multiplexing on the design and operation of an operating system.

The processes created by processor multiplexing serve two purposes in the
design of an operating system. First, they are used to isolate user-specified
computations from each other in order to prevent unpredictable or undesirable
interactions. Second, they can be used as a tool for structuring the
algorithms of the operating system itself. A clear understanding of the

design and implementation of processor multiplexing mechanisms that support

-9 - Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

these purposes is a necessary part of the understanding needed to simplify and

structure the design and implementation of,gperating systems,

The research reported here is'part of a project to design a security
kernel [28] for the Multics operating system. Ihe ggcg;ity»ke;nel of an
operating system is a part of the operatipgﬁsystem thag, if correct,
guarantees that the operating system as a whgle‘gnfqrcgs_constraints on
information fl&w that prevent unauthoxized release (to users) of information
stofed in the system. 1In Multies, individualvuser computations gre isolated
from each bther as distinct processes executing on distinct virtual
processors. This isolation is used as a tool for comtrolling the propagation
of information within the system; consequently, the processor multiplexipg
mechanisms that implement the virtual proceqsors,must"be_part‘of the security
kernel of the system. By simplifying the mechanisms of processor

multiplexing, the security kernel is made simpler and easier to prove correct.

The security kernel also can be simplified by structuring it as a set of
loosely coupled processes. Consequently, a simp;ehprqgesggr,multiplexing
mechanism that enables the construction of the kernel as. a set of processes

contributes to the goal of kernel simplification.

~

Chapter 1 - 10 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

1.1 Brief Statement of Problem and Results

In virtual memory operating systems such as Multics [19], TENEX [l], and
VM/370 [8], the management of processors and the management of virtual memory
cannot be considered separately. The processor multiplexing algorithm calls
upon virtual memory management functions to perform such operations as loading
into primary memory the environmént description (1) of a process so that a
processor can execute the process. The virtual memory management algorithm
uses various functions of processor management in order to obtain resources to
run, and to organize the mechanism processes use to wait for pages to arrive

from secondary storage.

The initial goal of the research described in this thesis was to
disentangle this mutual dependency. The first step has been described by
Huber [10]. He has developed an implementation of part of the virtual memory
system of Multics that runs in special processes created by the operating
system. By slightly extending his work, the virtual memory algorithms can be
built so that they need not use features such as interrupt masking and
busy-waiting, which interact strongly with the operation of processor

management.

(1) In Multics, the environment description is the descriptor segment.

- 11 - Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

In order to completely disentangle virtual memory management from
processor management, however, the dependency of processor management on the
virtual memory must be removed. The major Sburcé‘ofvthisfaéﬁéﬂdéhcyvis"the‘
need for processor management to load and unload per-process data bases that
‘must be in primary memory-while ‘the process is exaciting on a processor, but

are too latge and too numérous to be pefmanertly resident in pfimafj‘méﬁéry;

To remove the mutual dependency begweeq:pgchgsqgdgu%giplexing and

virtual memory, processor multiplexing is done at two levels, in the design

proposed in this thesis. The first level of processor multiplexing does

short-term multiprogramming among a small set of processes. The per-process

data bases for these processes are in primary memory. ‘is‘fj;st>;eygl thus

simulates the existence of a small number of virtual processors that
subsequently will be called level 1 processors. Since at level 1 all
per-processor data bases are in primary mémory, there 1s no need for Yevel 1

to depend on the virtual memory managéﬁent'tfgﬁfithﬁs;

The second level multiplexes these lével;l prppgs;grs to crggteilevel 2
virtual processors ﬁha; are usé& tovrun’ése;iprocggseS: }exgyaz is
responsible for loading thé ber—ptocess dq;akbases‘;pthpriggpy qemyryrwhep a
process is loaded into ;he levei 1 processor. Level 2 thus dgpenqs on the

virtual memory algorithms.

The virtual memory algorithms themselves are built out of special

processes, called kernel processes, that are permanently loaded into level 1

Chapter 1 -12 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

processors. The second level of processor multiplexing does not multiplex
level 1 processors running kernel processes, so kerael'processes are not
dependent on the second level of processor=mulbiplexihg;-‘By this strategy,
the dependencies between processor multiplexing and virtual memory management

have been changed from that shown in figure 1.la, to:that -shown in figure-

Itiplexing
(level 2)

Processor ... - Virtual Virtual Y

'ultiplexina Memory

- (a) . R s (BY
Figure 1.1
Removing Mutual Dependencies

The two-level structure has other advantages. It allows elimination of
. ERRE et BEE

interrupt—driven code from the I/O device management part of the system.

Instead of running 1/0 device management at interrupt time, I/O devices can be

managed by from high—priority kernel processes running on level 1 processors,

thus isolating and simplifying the control structure of such algorithms.

- 13 - Chapter' 1

L e TR T E - - BRI -t

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

-The interactions of processor reconfiguration with other functioms of the
operating system have beem limited also by:this structure. Only the first-
level of processor multiplexing need.be cognizant of the number of physical
processors on the system. Additions: and deletions of physical processors can
occur at any time,-except when processors-are in.the middle of switching from

one level 1 processor to another.

Since the second level of processor multiplexing only deals with user
processes, it is possiblc.to allow-its scheduling policy to be modified by an

administrator of a particular system installation, without interfering with

the actions of kernelcprocesses. Thus the opetating syqten can be‘designed to

operate correctly, without having to constrain the-schedﬁling policy for uSer

[3 sl =

processes. ' ‘? : RERTE Y

A final result of the\research described in this thesis is a single

unified interprocess conttol coamanication mechanism suitable for use at all
levels of the operating system?- This mechanism is an implementation of the
eventcount model proposed by Kanodia ond Reed [12]. Sincé this mechanism
encompasses the capabilities;of~néstnkoowoo;otenptoeeéé control communication
mechanisms, it is flexible enough for all operating system and user
interprocess control communication.r In addition, toe virtual nemory isr

adequate for storage and protection of eventcounts. The processor

it

multlplexing algorithms do not have to implenent special objects for the

purpose of interprocess control communication.

Chapter 1 - 14 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The proposed design is described in terms of abstract types. Janson [l11]
has provided a structure for the virtual memory of Multics based on an
abstract type structure. This mode of description is quite natural for
discussion of the modularization of a computer system, and causes the
intermodule dependencies to stand out. I have extended his work a little bit,
to deal with the problems of multiplexing processors to produce new abstract

objects called virtual processors.

1.2 Example System

At times in this thesis, it will be useful to talk about an example
operating system. A very simple system, modeled after Multics, will suffice.
I will consider an operating system that provides a large number of user
processes that can operate in a shared virtual memory. The virtual memory is
composed of segments, built out of fixed-length pages. The data contained in
pages resides permanently in a set of records on disks. The data is accessed
by a demand paging algorithm that brings the coutents of disk pages into
primary memory as desired. Several hardware processors provide processing
power for the system. 1In order to allow the processors to access the memory
using virtual addresses, each processor has a hardware address translation

mechanism, called a map. (1) The map is loaded with a set of (virtual

(1) The map consists of some hardware like the Multics address appending
hardware, and some data that is interpreted by the map hardware such as the

- 15 - Chapter 1

_ PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

-address,primary memory address) pairs, so- that: if the map 1s presented with a
virtual address that is the first component-of a pair; it will give back the

second component as the actual primary memery-:address to access. If a virtual
address is presented that is not in the map, the précessor will stop'executing
the current imstruction, forcibly. transferring- control to a predefined address

called the fault handler.

Processor multiplexing in this system Qililué dcne at‘twe levels, forithe
reasons discussed earlier: The first level of processor multiplexing creates
a set of virtual processors that can be used either to run processes directly,
or to produce the next level of processors by a second level of processor
multiplexing. This second level -implements the processors for user processes,

called user virtual :processors.

1/0 is done from primary memory buffers accessible to both the generel
purpose physical processors of the system; and.to special purpose I/O
processors that actually perform 1/0 I/O processors communicate status
information back to the general purpose physical proceseors through special
buffer areas called mailboxes, and send interrupts in‘order to get their

attention.

Multiecs descriptor segmeat and page tables.: The-data can reside in primary
memory, and may be shared. by several processors.at once.

Chapter 1 - 16 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

1.3 Abstract Types .

An abstract type is a class of objects in the. system for which there-is'a
defined set of operations. The diffenence:betseen an abstract type and the
classic notion of type is that the user of an abstract type need not know the
representation of the object, or the algorithms‘used to implement operations

defined on the type. Further, the only operations allowed to be performed on

the objects are specified by the definition of the type.

The concept of abstract type is .quite-attractive for thestructuring ‘of -
large systems because the actual implementation:of .a type of .object is hidden
from the algorithms that make use of the.type,: This resslts-in:the kind of
structuring prescribed by Parnas’s "information hiding principle" [21], for
decomposing a system into modules. Further, abstract types fit naturally into
the structure of an operating system since a major job of an operating system
is to multiplex a set of physical resources to ptoduce a set of virtual

T

resources that can be vieWed as objects of abstract type. I will show that

this is exactly what happens in processor multiplexing.

An abstract type consists of a set of objects and a set of operations.
The set of operations defined on the objects of the abstract type is
implemented by algorithms collectively called the (abstract) type manager.

Only the type manager algorithms are allowed to manipulate the representation

- 17 - Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

of the objects. The type manager may be actually implemented as a set of
closed subroutines, or as a process (or set of processes) to uhich'messages
may be sent, or as macros (open subroutines) which are expanded into-the code
of programs using the abstract type. It is important to emphasize this point,
~because I will show later-that it is sometimes useful to implement type

managers using one.or many of these techaiques.

In the example system, there are several objecta that can be viewed as

having abstract type. A disk block for example, is ~an object that ‘has two

defined operations - read—block which reads a block of data out of the disk
block returning a string of bits of fixed size,'and write—block which takes a
string .of bits and moves it into'the disk. A word in viftual memory is also
an abstract object. Two operations that can be carried out by instructions in
user processes are read-word, which obtains the conterits of a word named by a

particular virtual memory address, and write-werd, which takes a bit string

and stores it in the ohject specified by a particular wirtual memory address.

Processors, both real and virtual, can be viewed as objects of abstract

type. Viewing processors as objects that can be controlled by operations on

‘*—».

the processor objects is basic to the structuring method I use in this,thesis.

Chapter 1 - 18 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

1.4 Layering of Abstract Types

The abstract type idea clearly furnishes a ugeful way to view the wirtual
objects seen at the external interface of an‘operating system, but for the
design of a large operating system the abstract type idea is equally important
in structuring the internal implementation of the system. Janson [11]

discusses how thlS structuring might be applied to a system 1ike Multics. For

segment
type
manager

segment
page table
manager

segment
VTOCE
manager

Figure 1.2
Type Extension Hierarchy for VM Objects

example, see figure 1.2, which shows the hierarchy of objects out of which the
virtual memory of the example system is builtm Eaeh ef the circles in the

figure shows a type manager, labeled by the type of object implemented The

- 19 - Chapter 1

PROCESSOR MULTILPLEXING IN A LAYERED OPERATING SYSTEM

arrows between the circles indicate that objects of the type at the tail of
the arrow are represented in terms of objects of the type at the head of the
arrow. (1) At the bottom, the physical storage objects of the system are’
shown. Pages, fixed size blocks of virtual storage, are implemented from
these basic objects. Then out of pages and core blocks that hold map data,

segments are built.

This is an example of using type managers 1nside the system for the
structuring effect alone, since the lower level abstractions of the system are

not visible to the user of the system. The use of abstract types at these

levels, though invisible at the system iuterface;*is still quite important
because of the information-hiding effectvotfthe%txbe interfaces. Because the
only module allowed to manipulate objects'of,avps;tigular type is the type
manager, the effect of Q,P&xt}cular‘algorithgiin,somevtygsfnanager can be

localized.

It is relatively simple te understand each. psrt of a systam'structured in
such a hierarchical manner. Each class. of objects 1s iﬁﬁlemented in terms of
a small set of other types of objects;? In order to understand the
implementation of a particular class of objects, one need only consider the

behavior specified for objects of that class and the behavior specified for

(1) The representing object participates in this representation either as a

storage container for ebjects, a mapping functién to translate the external
name of the abstract object into the names of objects in its representation,
or as an agent to perform the operations that implemént the abstract :
operations on the object.

Chapter 1 - 20 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

objects in the classes used in the representation. It is not necessary to
consider the implementation of objects used in the representation. Thus the

implementation of each abstract type may be considered separately.

In this thesis, processor multiplexing at two levels is described in
terms of abstract types and type managers. The abstract type structure of an
operating system is used to show the interdependencies between modules of the
operating system. The interdependencies between processor multiplexing and
the rest of the operating system are shown clearly in this model. The

problems resulting from these interdependencies can thus be discussed easily.

1.5 Related Work

There are several classes of related work. First of all, there is a
large body of literature on concurrent processes. Second, there is some
literature which talks about the implementation of concurrent processes by
processor multiplexing on various systems, including Multics. Third, there is
a growing body of literature on the use of abstract types to structure system
design, and some recent work applying these ideas to hierarchical design of
operating systems. Finally, the use of processes within the kernel of an

operating system has a small body of associated literature.

It is not worthwhile to list here all possible references to literature

on concurrent processes as a model for parallel, asynchronous computations.

- 21 - Chapter 1

PROCESSOR MULTIPLEXING IN ‘A LAYERED QPERATING-8YSTEM

The work of several authors in the application of these models to operating
systems problems is directly relevant; other work on the: modeling of parallel
computations is not specifically related to the work in this thesis. Dijkstra
[{6] defined the notion of a sequential process, primarily as a mechanism for
dealing with simultaneous activities. Dennis {5] among others has described
the utility of the process concept in guaranieeing that independent
computations do not interfere with each other." Saltzer [25] has described how

processes can be used as a way of controlling the allocation of processor and

memory resources to users of a computer system.

Actual implementations of the process concept also abound, so again I
will only touch the high points. Saltzer [25] also outlines the basic
algorithms of processor multiplexing. Rappaport [23]) describes an‘early
version of the Multics process implementation in his thesis, and discusses
many of the engineering tradeoffs involved in its design. The Virtual Machine
concept implemented in IBM's VM/370 (formerly CP/67) operating system [17] is)

also a form of the process concept.

.Work on abstract types and their use in structuring systems is
progressing rapidly. - SIMULA [4] and CLU [13]- are programming languages that
include abstract type definition as basic structuring tools. - Liskev: [14] is’
currently investigating the structuring of programs using abstract types. ' The
Hydra operating system kernel [30] is designed to support abstract types that
can be used to build operating systems. Janson [11] has investigated the use

of abstract types in structuring the design of operating syatem kernels, and

Chapter 1 - 22 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

described the cache management pattern of. type extension that is extended to

processor multiplexing in this thesis.

The area of literature closest to the topics‘discussed in this thesis
describes the use of processes to structure the kernel of an operating system
Dijkstra s THE system [7] was the first kernel in which the process concept ‘
was introduced at a low level in the kernel. Unfortunately, there is little-
reference in the available literature on. the: THE system to show how processes
are actuallyﬂusedoin1thepkernel,, Unlike the design proposed-here,. the process.
implementation is at a lower level in: the THE sys;em‘thsartheqvirtual memory.
Consequently, the per-pracess data must remain permanently loaded into. primary
memory, so the number of processes allowed ig severely. limited. Dijkstra.
proposes the idea of structuring an operating system into- medules in.a -
hierarchy.based on frequency of use of the woduleg.: Ia.the design proposed - .

here, the two levels of processor muyltiplexing, satisfy this criterion. .

Brinch-Hansen [3] has described an operating system for the RC4000
computer that uses processes communicating via messages to structure the
kernel. Sturgis [29], in describing the CAL TSS system,nshows how processes V
are used to structure the kernel of that system. Rowe, of the University of
California at Irvine, [24] has described a distributed operating system where ‘
processes are used as building blocks to make up the kernel, and where control’
of the communication paths among the processes is used to provide‘reliability.~
Huber [10] has described how processes might be used to simplify the structure

oy

of part ‘of the virtual memory implementation in Multics, and has made .use of a

-.23 - Chapter:1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

primitive version of the kernel processes designed in this thesis. “Hoare [9]
has described the implementation of a virtudl memory systéem as a set of

processes where each page is assigned a process -- nbile tnis is probably not
practical as a way of implementiné a virtnel’memotxrintetface,_Bonetheless‘it
suggests sevetalrpotentially practical weyo ofvimplenenting a virtual memory

system.

More recently, at SRI a structured design for the kermel of a complex
operating system was completed. In this design, déscribed by Neumann et. al.
[20], processes are implemented at a low level; and then enkanced at a higher
level. This idea is quite similar to the design distussed in the present
thesis, but unfortunately the SRI design is only a specification and does 1ot
incorporate any notion of a reasonsble implementation -- or even what the =
algorithms executed by the implementation- might be. - The SRI design is
concerned only with structuring of the 3y8ten;;ﬁ0t'ﬁith the performance costs
or efficient implementation of their design. Bredt and Saxena [2] have
described the algorithms of a layered systemhsimilar to the SRI design where
two levels of virtual memory implementation are interleaved with two levels Of,
process implementation. As in the SRI design itself a framework is provided
for a two—level process implementetion, bnt ineorporating snchrfeatures es
multiple reel pfocessors, interprocess 1933F¥9ét9’;§94 variable echeduling
policy is iénored. They do not discuse<the:étoblen deeetibedilater in the
thesis as theroutward signallingAptoblem, uhich seeneitodoe an inherent

problem in a layered operating system design. Another problem with their

Chapter-1 - 24 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

paper is that they do not take into account the other uses to which processes
might be put in an operating system, such as I/0 device multiplexing, and the
peculiar requirements imposed on the design of processes by those

applications.

1.6 Plan of Thesis

The material presented in the rest of the thesis falls naturally into
three parts. The first part, covered in chapters two and three, will discuss
the issues involved in the design of a process implementation at an overview
level. The second part, covered in chapters four, five, and six, discusses
the functionality of the proposed design and describes a particular
implementation for the Multics operating system. Finally, chapter seven
discusses the effect of the design in simplifying the rest of the operating
system, and chapter eight summarizes the thesis, suggesting areas of further

research.

Chapter two specifically covers the basic model of process implementation
used in the thesis —- that of multiplexing a relatively small number of
functional processing units (either actual hardware processors or software
virtual processors) among a larger number of processes. I define several
terms, including processor, virtual processor, and process. The model
developed in this chapter will be used as the basis for the model of processor

multiplexing at two levels, and to describe the design proposed in chapters

- 25 - Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

four, five and six. In addition to processor multiplekxing, processor
reconfiguration and interproeess control commundication are incorporated in the

model.

Chapter three develops the two level processor multiplexing sttucture. I
show how the implementation fits the cache management pattern of type
extension described by Janson [11]. I also model the actions”ef- the"
implementation in terms of the model developed in chapter two. Three problems
that can result from this structure, having:to do with efficiency and
interaction betwoen the levels, are ‘déscribed~dnd thétr solutions are shown to-

be: possible within the struecture.- A

Chapter four begins the discussion of the actual design. It contains a

complete description of the interface presented by level 1 virtual processors.

Chapter five completes the discussion of level 1, by discussing
implementations that can achieve:the level 1 interface efficlently on"a
computer system such as Multics. A new hardware architecture is proposed to
simplify the control of proqeasor'moltip%axing: Maohaa;aaa for a%molat;ng’
this atcﬁitacture onraAmore conQentional;agoo%teotatopataloaacrioed,Ato sboyv

that level 1 can be bullt on more conventional systems.

Chapter six describes the interface and fmﬁléﬁeﬁtation of level 2
processors. The functifonality of level 2 frocedsors differs from level ‘1;
these differences, such as administratively varfable séheduling policy, -
creation and deletion of level 2-procedsofs; proeessor interrupts, and eutward
signalling eventcounts are described.

Chapter 1 - 26 =

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Chapter seven shows how an operating system is built on the basis
provided by level 1 processors. The use of level 1 processors within the
operating system to provide resources to abstract type managers and to I/0
device management is described. The advantages of using processes running on
dedicated level 1 processors inside the kernel of the operating system are

briefly described.

Chapter eight summarizes the work done, attempts to give an indication of
the difficulty of integrating an implementation into the present Multics
system, and the benefits deriveable therefrom. It also discusses how closely
the initial goals of the project were met, and the impact of the general
approach taken in this design on future development of kernel-based operating

systems.

- 27 - Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

- 28 ~

Chapter Two

Model of Processor Multiplexing

In order to understand how two levels of processor multiplexing can work,
one must thoroughly understand what processor mﬁltiplexing does. 1In this
chapter, the concepts of process and processor are carefully defined. From
this basis, a model of processor multiplexing is developed, showing clearly
how real processors can be multiplexed to provide multiple virtual processors

for the execution of processes.

Along the way, reconfiguration of processors and interprocess control

communication are incorporated into the basic processor multiplexing model.

In the next chapter, the model of processor multiplexing is extended to
two levels of processor multiplexing. To enable the extension to be made, the
model developed here incorporates the idea of a stopped virtual processor

whose state can be manipulated.

- 29 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

2.1 Definition of Processor

In this thesis, several kinds of processors are discussed Tnese
entities are all called processors because they share certain properties. To
make certain that ny assumptions are understood I take the trouble to define

processors here.

The basic function of a processor is to perform .a.sequence. of operations
on objects in its environment. The environment of a processor is a set of
objects; For example, the environment of a physical processor is that portion
of memory that it can access through 1tsMaddress mspping hardware; Typically
the environment- 18 specified by an object, snch;asythecﬂnlpics.descriptor
segment, that -in turn names another ehject. - T..shall assume that- the objects
that specify enviromments can be shared among sexeral. processors,:thus giving.

the processors identical accessing environments. (1)

A processor has internal memory, called its state, that it uses to pass
information from one operation to the next. The processor determines the next
operation to perform by interpreting an instruction, found in the processor’s

environment by an instruction pointer that is part of the processor state.

(1) This does not imply identical access permissions, however. The access
rights specified in the environment specification are interpreted relative to
‘the domain of execution (part of the processor state), as in the Multics
descriptor segment.

Chapter 2 - 30 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The environment specification used by the processor is named by a value in the
processor state. Also included in the processor state is the name of the

current protection domain in which the processor is executing,

Each operation performed may modify the contents of the processor’s
internal memory. 1In particular, it chéngés:fﬁé-iﬁéfruétibn pointer to select

the next instruction to be interpretad.

As én object of&absqféct type, a processor may bgwpquvof the environment
of other processors. The operatiqgs_that can:be;perfqgmeqﬁpn a processQr
object are: loading a new state into the processor, extracting the current
state from the processor, causing the processor to run, and\causing the

processor to stop.

A processor can be a physical object, such as the Honeywell 68/80 CPU
that is used to implement Multics. The processor registers comprise the state
of that processor. The environment of the processor includes all of the

primary memory that is accessible through the processor’s descriptor segment.

In this thesis, two other kinds‘of processors are described. These
processors are virtual processors -- meaning that they have no direct hardware
manifestatioﬂ. Instead, they are simulations of processors, achieved by using
physical processors to interpret the instrqctiqgg to be‘ggecuted by ;he

virtual processor.

-~ 31 - Chapter 2

PROCESSOR’ MULTIPLEXING IN A LAYERED OPERATING SYSTEM

2.2 Definition of Process

The word process has been used in many. senses in the literature of
computer science. Usually, it has been qsed,to,rg@egﬁtqjoqg;qf;tuoi;hings -
a virtual processor as defined above, or what is called a process in this

thesis. I make a careful diéfinctién in Ehiggfﬁe§1§>béfweéﬁ iﬁé ﬁéanings of

the words process and processor to avoid confusion.

A process is the sequence of actioms ;akgp by some Processor. . In other .
words, it is the past, present, and future "history" of the states of.the
processor. Each processor, be it virtual or physical, has one associated
process for the duration of its existence. Tﬁué;”thé;prdcésé éésdtiéted-with
a physical procesébr is thé'sequénce-Of dperatiéﬂ; thaiﬁﬁgﬁeugeen éérfdrﬁed:by

that processor since its creation and that will be performed up until its

destruéiion.

The act of IAgginé in to a compute£ system can be viewed AS‘creatiﬁg‘a
processor for the user. The user can then cause éﬁis’érocésébr to perform
opefations on his behalf. The history of these bper#tiéns will be calleditﬁé
user’s process. If there-is bﬁt;bne pﬁysicai ptoééssbr in tﬁé’computet
system, it will carry out the operations of all of the users’ processes. The
process associated with the physical processor is thus a merging of the

operation sequences that make up the users’ processes.

Chapter 2 - 32 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Quite often, the words process and processor can be used interchangeably
-~ this is the source of the confusion between the words. For example,
consider the modification of a particular file by a processor. This can also
be said to have happened as part of the process (in the process) being

executed by the processor.

The majer difference between a process and a processor is. that a process
is a sequence of actions while a processor is an actor. A processor’is'an
object in the computer system and subject to operations that may be executed
in the system, while a process is just a view of the actions taken by the
system that can be imposed in retrospect. A process results from the actions

of a processor.

2.3 Processor Multiplexing

The two levels of virtual prbcesso?s in the design are created by a
technique called proceéessor mqltiplexing, Thisj;echnique originated in the
first multiprogramming co@putér'sttems as a'ﬁéf of achieﬁing more efficient
use of scarce processor resources. Saltzer [25] has modeled.the mechanisms of
processor multiplexing in his Ph.D. thesis. I will recapitulate the basic

issues here.

Processor multiplexing is the simulation of a number of distinct virtual

processors by a smaller numbeér of real processors. Each of the virtual

- 33 - Chapfer 2

PROCESSOR MULTIPLEXING IN_A LAYERED OPERATING SYSTEM

s

processors executes a sequence of operations in time. These sequences are
actually performed by the real processors. The many processes of the virtual
processors are actually merged. together, creating the processes of the real:

processors.. : T P,

The result of any one of this merging is that théjopefaiions of any ohe
of the virtual processors are carried out in the same: temporal sequence that
they would have been, had the virtual processor been.real.. Successive - .
operations of the same virtual processor may be separated by a gap of time
during which operations of another virtual processor are-being executed by the
real,processors. Successive operations of.a yirtual: processor may also be

Real Processor 1}

v T T T >
) ! Lo
Virtual Processor 1 RP1 i 1RP2 : RP1 <
— >
: ! oy T i
Virtual Processor 2 " RP1 , RP2 : by 1
{ '] | l i :
{ l‘ '| |
Virtual P 3 ; ey 1] ;RP!
irtual Processor 3 -k B
i i) I3
Virtual Processor 4 RP2 | | rRp2 ! jrP1! 1} RP2 >
SR R T o e
1 . f } i
! ! i
Real Processor 2 i ! g - M 1
time
Figure 2.1

Multiplexing 2 Real Processors
executed by different real processors. Figure .2,l shows -how:the operations of
4 virtual processors might be mapped into the-operatioen.sequence of 2-real

pProcessors.

Chapter 2 - 34 -

- ‘PROCESSOR MULTIBLEXING IN A LAYERED OPERATING SYSTEM

-To define a term used frequently in this thesis, a virtuai processor
being simulated by a set of multiplexed real processors is bound to one of the
real processprs whenever its process is being executed by a real processor.
Thus virtual processor number. 'two is bound ta real processor number one during
.the first time interval in figure 2.l. .-More laosely, one can say that a -
process is bound to a processor when that/proceésoimngcarrying out -actions
that are part of that process. A process is permanently bound to a processor
when that processor can only execute operations of that process (the process

is thus the process defined by the sequence of actions of the processor)

There are concrete aspects to this binding. When real processor A is
bound to virtual processor S, processor A{g=internal»memory‘eontainSxS’s
current state. Similarly, processor A aceesses. objects, through $7s
environment. When S is not bound to a real processor, its state is stored in
a piece‘of memory from which it can be loaded later into an real procossor s

internal memory.

In addition.to providing the operations of the real processors to the
:virtual processors, processor multiplexing can ¢reate new functionality. The
virtual processors can execute an operation that-cauwses execution of future
operations to be delayed -until some future event happens. They also can
execute an operation that signals such an event. Such operations are called
interprocess control communication. The wait operation is not an operation
that requires real processor resources =-- it is rather an. operation that

inhibits use of real processor reSOurces by the virtual processor.

- 35 - Chapter 2

-PROCESSOR ‘MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Processor multiplexing also requires'a policy. Given a nuwber of virtual
processors to which an real procéssor may bé bound, at any one time the
processor can only execute ene. The choice of the procéssor to choose is made
by some algorithm, called tﬁe‘procéssaf ﬁnltiﬁlexiﬁg‘péliéy4algot1tﬁﬁ: This
policy algorithm receives ias input the det &f'Pprocessors thiat can be “rur, and

chooses which one is to run-and for how Ionéﬁffﬁﬁ”"'

2.4 Processor Multipiexing Model

In order to discuss two levels of processor muftiplexing, one needs to
understand how processor multiplexing at one Fevel ‘fs done.. In this section,

I will provide a model of this behavior.

I assume;that thé real processors arencaégble of exgcuting all of!the
instruétioﬁs tﬁat appe;r in virtual processors; exéept thoée that qpnttolﬂ
processor multiplexing and interprocess control communication. (1) In some
cases, there will be more than one real processor, although the number of
virtual processors will usually exceed the number of real ptocessors givean. 1
also assume that -a real processor can store the ¢conteats of its private ‘state
memory, and load a new set of values into this private memory from main

memory. The effect of ioading:the~privace'memnry'of'thé real processor is to

(1) In particular, the structure of the eavirommeat description in the real
and virtual processors will be the same, and the addressing mechanisms will be
the same. Since real processors can only directly address primary memory, the
same will be true of virtual processors.

Chapter 2 - 36 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

cause it to interpret a new sequénce of 1nstruétionBISpecif1ed by'the‘nEwly

" loaded state.

Real processors and virtual processors go through the cycle detailed in

unbound
o virtual:
processors

idle
real processoc¥s ‘J '

real processors
executing
irtual processors

Figure 2,2: - '
Processor Multiplexing»Loop

figure 2.2. From therpgin; of yiew of a rga}‘processo??'it is bound to (and
executes) a virtual processorvuntil some time at which it is unbound. . The bo;
labeled "unbind" represents the unbinding of a real processor from its
assigned virtual processor. Unbinding results in placing the virtual
processor state in memory in a pool bfkvirtﬁél'pfoééssbrtétatés.' The real
processor'is then placed in a pool of available idle processors. The "bind"
operation in the figure then takes a real processor from the pool of idle real

processors and a runnable virtual processor from the pool of runnable virtual

- 37 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

processors (selected by the real processor multiplexing policy) and binds the

two together.

A real pracessor bound to a virtual processor enters the unbind operation
under several conditions. The policy algorithm may decide that another
virtual processor should be run by that xealeprocessor, or that the virtual

processor has exceeded its allotmeat of: eeuputihaﬂresources. The virtual

ey .

processor itself might desfte to waft‘nn&il«aome event 18 signalled by another

<~s-

virtual processor.;/ The virtual processor naymbe forgih;y stopped or deleted

o T

by another virtual processor. Tﬁe real . processor ;ight be removed from the

o

system due to a crash Qr reconfiguratign;(tnlhe,discussed later: in this

e
5;} -

chapter). T e }_,.

L
P

T
e e e

In this model, no indication isw;iven that specifies the actual agent
that causes the bind or unbind opetatiens, erxtbe agent that executes the
actual processor multiplexing policy algorithn. Tﬁis is intentional, since in
the design I propose later in the thesis, the agent will vary from level to
level. %ﬁOQEVet,“l would like to dieeuSSWEe;e:tﬁe altetnatiéeeﬁtiat are

bossiﬁle.

2.4.1 Centralized Control of Processor Multiplexing.

One seheme,for;thereontrol/og_progessgrfgpltip;exiggrisﬁbasedlonﬂthe idea

of a central agent. This agent is responsible for. the binding of virtual

Chapter 2 - 38 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

processors to real processors. All binding of virtual processors to real
processors 1s:.caused by the ac¢tion of the central agené, wvhile unbinding of
real processors from virtual processors also-may be controlled by the central
agent. Of course, the virtual processors themsélves have-influence over the
unbinding decision, since a virtual processor that chdoses: to wait or
otherwise gives up- its need for a real processor can gause real processors to
stop running. that virtual proeessor. The: central agent i$%; however,-notified
if such-an-event occurs, so the central agent.interacts-on each binding .and’
unbinding of a real processor.

Tyéicéli& ;he cénéral agént‘;s a compﬁga;ipp car;iéé.éﬁé in‘thé;céﬁputer
system., Cases ;hére thé éentfal ;;enf is a hﬁm;ﬁ ;;e;;;ér éiﬁ this ﬁé&él, but
are not of interest here. The central agent can be viewed as a process, since
it is a sequential computation‘that: performs dbpetratioas én the state of the’
system. The agent cannot, of course, be the process of a virtual processor,
since it must make decisions about virtual processors:whea they are not
running: If the agent unbound itself, then it could mever make the decision -
to rebind itself. For this reason, the centrdl-agent in this:scheme of
processor multiplexing must be permanently executing on.-a dedicated real

processori (1) - N e L Tean

(1) This real processor does not have to be a general purpose processor such
as the ones being multiplexed: It is net multiplexed, and performs a fixed:
function. Consequently it could be a hard-wired processor, or a
microprocessor executing a firmware algorithm. As is shown later in the
thesis, the effect of a dedicated processor can be obtained by cheating a
little bit.

-39 = Chapter 2

PROCESSOR MULTIPLEXING. IN- A LAYERED OPERATING. SYSTEM

Given this coastraint, the central agent may- implement any arbitrary
policy feor schoduling the binding of virtual processors to real processors. .
The implementation of such policies will usually require some kind of -
communication channel between the real procesaorsrand-thgscentral agent. -The-
primary reasen for such a communication channel is that the virtual processors
being scheduled by the agent need to be ablo to-wait for other virtual
processors to do certain things, While the ageat can.reasonably bind a
waiting virtual processer to a real processor, such-a decision is quite/
~ wasteful, since the virtual processor will uobindiitself”immediately. -This . -
would reduce the economic justification for doing processor multiplexing,

since real processor time would be wasted doing non-useful work

2.4,2 Distributed Control of Processor Multiplexing -

An alternative scheme for the control of processor multiplexing is one in
which the functions are accomplished by a distributed algorithm executed by
all real processors. In this scheme, the policy used to-select a new virtual
processor- for a real processor im the bind‘opciation;is implemented on each
real processor, as is the policy used to control which real processors to -
unbind. Through careful coordination, real processors unbind themselves when
they choose to, send recommendations to other real processors to unbind

themselves, and choose uhich virtual pxoceaset to next bind to.-

Chapter 2 - 40 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Please note that in this scheme it is not the case that control of
processor multiplexing is done in the virtual processors being implemented.
If this were the case, the virtual processors could become unbound in the
middle of telling the real processor which virtual processor next to bind
itself to. Often an algorithm, such as that used by the current Multics, is
described as being so distributed among the virtual processors. In fact the
computations of such an algorithm are only executed when the real processor
cannot change its execution point to another stream of instructions (inhibited
mode) , and so are done exactly as if they were ﬁnit operations in the real
processor. 1 assume that the special privileges needed to control processor
multiplexing in each processor are only accessible in a special domain found

in each real processor’s environment.

In the distributed control scheme, it is possible that each real
processor can implement a different policy in assigning itself to a new
virtual processor. Thus, the set of policies that can be implemented is
apparently richer. As noted above, there needs to be a communication channel
between the real processors and the policy-implementing algorithms. In the
distributed case, each real processor must be able to send information to all

other real processors.

In the distributed case, interlocking between different instances of
policy algorithms becomes necessary since real processors may come unbound, or
choose to bind themselves to virtual processors, simultaneously. This is just
one aspect of the general need for harmonious cooperation among the policy
algorithms executed by each real processor,

- 41 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

2.4.3 Comparison of Distributed and Centralized Control

Although no algorithm for control of processor multiplexing,will{match

one of these extremes precisely, it is instructive nonetheless to study the

advantages and disadvantages of the centralized and distributed control

schemes.

The main advantage of the centralized ‘algorithm is unity. Since the
centralized scheme is executed as a process pérmanently bound to one real
processor, it can be described by a single prdgram~tﬁat“mak93:One5decision at
a time. Such a description has an obvious efféct on the ease of understanding

the programs of the processor multiplexing policy, by making them simply

o G

structured. Also, since in dynamic execution, one decision is made at a time,

A -
H

it is falrly easy to model the state transition of bindings of virtual

processors being implemented, since there are no simultaneous transitlons.rlﬁ

Thus the system can be treated as a synchronous system, at least as. far as the

Lo TSy

binding and unbinding of real processors to/from virtual processors is

concerned

The main advantage of the distributed scheme is autonomy. As mentioned

earlier, each real processor can control its destiny relatively independently

of tbe other real processors. The policies implemented by different real

processors may vary. Also, the autonomy afforded by a distributed system can

Chapter 2 ‘ - 42 -~

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

increase the amount of parallel activity possible in determining policy. Thus
the fact that a real processor is busy finding another virtual processor to
execute need not prevent another real processor from doing the same. To the
extent that these activities can be carried on in parallel, and to the extent
that the real processors can execute in parallel, this can be an economic

advantage.

The advantages of each scheme are disadvantages of the other. In the
centralized case, the lack of autonomy prohibits the parallelism afforded by
the distributed scheme. 1In the distributed case, the autonomy makes it
potentially very difficult to understand the interactions of the different

algorithms executed by different real processors,

It is possible, however, to incorporate parallelism into the centralized
scheme to achieve more rapid execution of the central agent. The parallelism
is achieved by implementing the central agent as a group of cooperating
parallel processes (implemented on dedicated real processors) that take
advantage of any inherent parallelism there is in the centralized policy
algorithm. The sequentiality of bindings and unbindings must be preserved in
this case, but the time required by the central agent to perform each action
can be reduced, thus reducing the economic cost due to real processors waiting

to be rescheduled by the central agent.

The distributed scheme, in general, seems to have the greater

disadvantage. I am predominantly interested in simplifying the structure of

- 43 = Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the processor multiplexing algorithms, rethg; than improyingktheir _ -
performance. Performance is an issue, ofreou;se) but the mq;n:gqgl °va§is .
work is to understand the cleareet andreigg}eqngtrgceure ;hat‘achieves}ghgT”
desired effectg, and‘;hep to propose ways oﬁ‘igprov;pg perﬁp:?egge within that

structure if necessary.

2.5 Processor Reconfiguration

For many reasons, 1¢ Lo useful to allgw real processors to be added fo
and deletegefrqm the compute;‘eyscem wﬁ;}e ;t‘istypngégg,; E°‘,Q‘?“P}?}-?$?l-,
processors may be shared betweegrtwq computer systems. ;n ;h;a,egample, one
real processor can be moved from one syetem to the other in order to balance
the computing resources on each Syéfed?tb-tﬁe presented loads. Another
example would be the automatic” deletion of a faulty real processor when the
malfunctioning'is detetted. The faulty processor then can be repaired and
added back to the computer system while the rest of tﬁeISysted*haé continued
to run. Processor reconfiguration ie‘a'requitei“feétﬁreibf'any syéﬁeﬁriﬁet o
hopes to*become'a’cbmpdter’utility'that:ie%iineiubgvikhﬁﬁf iﬁte}fnptton'hll
day.

Schell [27] has developed a medel of grocesso:‘recqnfigu;a;iog. VIn it
the two real processor states, bound (to atvittual processor) and unbound, are

each split into two states (see Figure 2.3), ‘according to a second criterion.

This criterion is whether the real processor is avallable for multiplexing or

Chapter 2 - 44 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

bind
bound & unbound &
available available
unbind
unbind
Figure 2.3

Processor Reconfiguration States
not. In figure 2.3 it is seen that deconfiguration of a real processor
consists of marking it as unavailable, and then unbinding it. Adding the real
processor back consists of marking the real processor available, and binding

it to a virtual processor.

Processor reconfiguration fits nicely into the model of processor
multiplexing. A real processor can be deleted from the system by marking it
unavailable, then causing the real processor to execute unbind, which takes
special action on an unavailable real processor and places it in an
unavailable real processor pool. An unavailable real processor can be added
to the system by causing it to enter the processor multiplexing loop as if it
had just become unbound from a virtual processor, as an idle real processor.

Figure 2.4 shows the revised processor multiplexing loop.

- 45 =) Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING .SYSTEM

unbound
virtual
A Procedsors

) not deleted

unavailible
real precessorsg

real processors .

executing
Yirtual processors

Processor Multiplexing Loop with Reconfiguration :.

At each processor reconfiguration, the policy algorithm must be made

aware of the new state of the reconfigured processor. For example, the policy
being implemented might be an‘assignment of static priorities to virtual
processors such that the highest priority virtual processors are guaranteed to
run when they are runnable In this case, deconfiguration of a real processor
that is running a virtual processor of higher priority than some other virtual
processor that is assigned to a real processor will require reshuffling of the
processor assignments. The policy algorithm must thus be brought into action
whenever a real processorvis deleted. Similarly, when a real processor is
added, the policy algorithm must specify what to do with the new processor,.
The policy algorithm specifies this by controlling the choice made by the bind
operation.

Chapter. 2 - 46 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

A concept closely related to processor reconfiguration is the
initialization and shutdown of the computer system. Luniewski, in his
master’s thesis [15], has discussed how to view most of the tasks of systenm

initialization as adding additional system resources to a minimal system.

Processor multiplexing may be initialized by starting with no real
processors and a set of virtual processors to run. Obviously, this is a
system at rest, with no changes being made to objects in the system., One can
then add processing units, in exactly the same way that processors are added
in reconfiguration, binding them to virtual processors in the processor
multiplexing loop. (1) This reconfiguration proceeds until all the available
processing units are added to the computer system. The system continues to
execute the computations specified by the virtual processors of the system as
this reconfiguration proceeds. The only effect of adding real processors will

be to increase the effective speed of the systenm.

Processor multiplexing can be stopped and the system shut down by
deconfiguring all of the real processors from the system until there are no
real processors left bound to virtual processors. The system will then remain
at rest until the real processors are added again. All of the state of the
system will then reside in the descriptions of the virtual processors, and the

state of the deconfigured real processors will be irrelevant.

(1) With a centralized agent, there is no difficulty in adding the first real
processor (other than the agent, which is expected to always be part of the
system) because the central agent performs additions. 1In the distributed
processor multiplexing case, though, adding the first real processor is
slightly more tricky than adding the later ones.

- 47 - Chapter 2

PROCESSOR ‘MULTIPLEXING IN A LAYERED OPERATING SYSTEM

A system crash that is due to a software detected error is just another
deconfiguration of processors, as far as processor multiplexing is concerned.
(1) In a system crash, all real processors;are“dEiEtedf This view of a
system crash is importanf, since it défines the fact that the state of the’
system is'eompletely represented 1?,:he,vi¥t9§l processer states,'ahd no

relevant information is left in evanescent real processor registers. For_this

reason, if the cause of the crash is repairsble, the system state can be '
restarted at the point of the crash An example of this might be a brief
power—line failure, detection of a parity error in memory that can be

corrected from redundant informstion or other possible system states.

An important facet of processor multiplexing is that the depéndence of
the system on having a particular mnumber of set of real processors can be
reduced to a minfmum. - There is no need for virtual ‘processors to be aware of
reconfigurations of real processors, other:than in terws of the total amount
of processing power that‘can be deligered to the»set of running yirtualta

processors in a fixed period of time.

(1) Obviously, some system crashes cantiot be viewed as deconfigurations of all
processors. Most crashes in the' ‘Multics system,’ hsiever, take the form of ‘
orderly shutdoun of4the system by softwsre. ; e

Chapter 2 - 48 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

2.6 Interprocess Control Communication

It is the responsibility of the computer system to provide mechanisms for
communication between cooperating processes, Tﬁere are really two different
kinds of communication that processes must be able to achieve. There must be
a way for processes to exchange data in some way. This mode of communication
will be called interprocess message communicatioﬁ (IPMC) in this thesis.
There must also be a way for processes to wait for data prepared by other
processes, and for processes that prepare such data to signal that it is
available. This mode of communication is qualitatively different from
communication of data. Since the effect of such communication is purely to
reenable a waiting control point, it is called interprocess control
communication (IPCC). Together, IPMC and IPCC are called interprocess e

communication (IPC).

In a computer system that allows sharing of virtual memory segments
between processes, there is no need for a special interprocess message
communication facility to be built into the processor multipiexing algorithm.
Shared virtual memory segmeunts provide an extremely high bandwidth Aata
communication channel between the processes sharing the segments. The
protection facilities provided by the computer system for shared virtual

memory segments will suffice to handle interprocess message communication.

- 49 - Chapter 2

e B e e ARESATIMROE TS S e TS A T e B

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Further, shared segments are sufficiently primitive that any protocol for
interprocess message communication can be built using them. For these
reasons, 1 assume that interprocess message: communication will be handled

outside of the scope of this thesis.

Interprocess control communication, on the other hand is intimately

- - e
s a [N Said
HIEA A S N -~ -

related to the structure of the processor multiplexing mechanism. The ability

srsto i - ,i,.,
0y e -

of a virtual processor to indicate that it does not need real processor

resources until a particular event happens is basic to the economic advantage

of processor multiplexing. If a dedicated real processor ‘were actually

available for each virtual processor, busy-waiting (1) Hould be an adequate

PRI

interprocess control communication mechanism.

In order to keep processor multiplexing simple;:it is desirable to have a
very simple interprocess control communication mechanism. Saltzer [25] has
discussed the general problem in detail-in*tiis Ph.D. thesis. The essence of
the problem is to be able to communicate to a virtual processor that is =
waiting for an event to happen one bit of informstion that indicates that the
event has happened. The information‘that the event waited for has happened is
stored as a single bit in the memory of the system,-known as the
wakeup-waiting switch. The wakeup—waiting switch is initially off. When the

event occurs, the wakeup—waiting switch is set on. In order to wait for an

event, the virtual processor indicates to the proceasor multiplexing algorithm

(1) Busy-naiting is repeatedly testing the state of a shared memory word in a
loop.

Chapter 2 - 50 ~

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

that it cannot run until the wakeup-waiting switch is turned on, and then

unbinds itself from the real processor executing it,

In Saltzer’s thesis, there is one wakeup-waiting switch per virtual"
processor, which represents the Gurrent event being waited for. Thus, the
virtual processor wakeup-waiting switch is multiplexed to represent many
different events as its process proceeds,7yi;h the requirement that when a
virtual pProcessor restarts after wai;iné, it must clear the wakeup—wgiting

switch for the next wait.

This multiplexing of the meaning of the wakeup-waiting switch of a
virtual processor makes it more difficult to ‘ensure that virtual processors
are awakened at the right time. If virtual processor A ¢an wakeup virtual
processor B, there is no guarantee that the reason virtual procéssor B is
waiting is the reason virtual processor A wakes B up. Virtual processor A’s
wakeup will then be misinterpreted by B, or ighored by B. In thé first case,
B will proceed under the false assumption that the event awaited happened,
while in the secgnd case, B will lose the wakeup (1? gven:;hough it may be
meaningfui to B at a later time; These pfoblems éap be sgripus for system
security, 1if the wakeubs are intended for.a pro;ecﬁed system operation in B’s
virtual processor, because a wait operation executed.ouf;idg of the protected
part of the system can receive IPCC signalsnintended for the p;ogectgd part.

The arrival of an IPCC signal can carry privileged systenm information. An

(1) This is the '"lost wakeup" problem described by Saltzer.

- 51 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

unprotected receiver may either gain unauthbrizéd aécésé fo\privileged
information, or prevent it froﬁ féaching its propér.deéti;atioﬁ. ‘These
occurrences cannot be prevented because B is pultiplexing the meaning of his
wakeup-waiting switch, and so must allow A to wake him up at all times, even

though B waits for A’s event only sometimes,

Another interprocess control communication mechanism is the semaphore.
This 1is quife similar to the mechaniém desctiéed by:S;ltzef, except for the
fact that the semaphore is a wakeup-waiting switch thatyreprésents é class‘of
events independent of the events of interest to one virtﬁal processor. It is
possible to give a semaphore a semantic meaning because new semaphores can be
created for each semantically different class of events. In order to.
implement semaphores in the model, the processor multiplexing algorithm must
be informed of all V operations to semaphores, and must keep track of the set
of virtual processors that are waiting for each semaphore to indicate that the

event has occurred.

Unfortunately, semaphores have several disadvantagés. First, they aré
limited to cases where the occurrence of an event‘wili allow a fixed number of
virtual processors to proceed out of the waiting state. Second, because of
this limitation, the ability to proceed past a P operatioh on a semaphore
automatically becomes a kind of scarce teiource that can be used as a

communication channel among processes that wait on the semaphore.

Chapter 2 - 52 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

This latter pgint is quite importan; in a secure system design. Although
communication of information is inherent in the IPCC mechanism between the
virtual processorkthat causes an event and the virtﬁal processors that await
the occurrence of that event, there is no inherent requirement that virtual
_ proceésors waiting for the same event to occur should have a communication

path among themselves.

For these reasons, along with the need to @gal;wigh synchronization in
distributed systems, K@ngdia and Reed [12] have. developed an IPCC mechanism
that is in some sense more geperal than either sgmaphores or block-wakeup, but
is still very simple. I will,briefly»desgribe the mechanism here, and

indicate how it fits into the model of processor multiplexing.

An eventcount is an object in the system that represents a class of
events that will eventually occur. This class of events is ordered, so that
by the time event N occurs, all events numbered‘from 0 to N-1 will have
occurred. Consequently, the set of events that have occurred at any
particular time can be represented by the num?er of the last event to occur.

This number is known as the current value of the eventcount.

There are three operations which may be performed on eventcounts. One
may read an eventcount to obtain the current value. One may advance an
eventcount. This will increment the current value by one, and serves to
indicate that a new event in the class of events fépresented by the eventcount

has occurred. Finally, a virtual processor may await a particular event in

- 53 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the class associated with the eventcount. This last operation requires that
the eventcount, and the number of the event be specified.' Await will prevent
‘the virtual processor from proceeding antil the current value of the '

eventcount exceeds the number of the event.

The eventcount IPCC mechanism has the useful property that two virtual
processors waiting for events in the same class (thus recorded in the same
eventcount) do not have an inherent intercommunication path. ' The énabling of
one virtual processor to proceed does not automaticaliy disable‘any other
virtual processors from proceeding, and allows broadcasting events to multiple
virtual processors -- a function not eésilj‘aéhiéved using semaphores.
Consequently, this mechanism is more desirable for use in a secure gysten.
Further, the implementation of eventcounts is not inherently more diﬁficult

than that of semaphores.

The eventcount mechanism fits into the processor multiplexing model quitek
simply. The processor multiplexing ldop is modified to have a pool of waiting
virtual processors, as well as a pool of ready—to—run virtual ﬁrocessors.
Figure 2.5 shows this modification. The name of the eventcount and the value
awaited must be stored with the virtual processor state. A special kind of
unbind ope;ation will put the virtual processor in the waiting pool instead of
the ready—to-run.pocl if the awaited eventcount hasn’t yet been advancedito
the awaited value. The advance operation informg the processor multiplexing
algorithm of the new value of the advaqged eyen;gognt,:cgusing,gnybv;rtual

processors in the waiting pool waiting on this eventcount to be moved to the

Chapter 2 - 54 ~

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

unbound
virtual

waiting
virtual
processors

runnable

unavailable
eal processors

real processors
executing
irtual processors

Figure 2.5
Processor Multiplexing Loop with IPCC

ready-to-run pool. In this implementation, the only storage required is the
ability to remember the names and values of eventcounts that are actually
being awaited by virtual processors. A way to search the waiting pool on each

advance operation for virtual processors waiting on the advanced eventcount is

required. (1)

(1) This search can be done in time proportional to the logarithm of the size
of the waiting pool, at least, if a balanced tree scheme, such as AVL trees is
used for searching. If hashing is used, one may be able to do better
(although frequent deletions usually reduce the efficiency of a hash table).

- 55 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

An alternative implementation of eventcounts ﬁédid include in them a list
of the virtual processors waiting for changés to the evéntcount. Along with
the name of the waiting virtual processor would be thg»value waited for. The
await operation would then just add the cuffént virtual pfocessor to the list
associated with the eventcount awaited, and tﬁén unbind the process from its
real processor indicating that it should not.be-run. Wgen the eventcount is
advanced, any virtual processors that are waiting for the new value are
removed from the list, and placed in the ready-to-run pool so that they may be

run.

This latter implementation can require more storage (a list pointer per

eventcount, whether a virtual processor awaits it or not). The first
implementation may have a certain cost due to searching the waiting pool on

each advance operation for virtual processors awaiting the advanced

eventcount.

The first model implementation has the n;ce“property that if a segment
were used to store the eventcount, only the advance-opergtion would have to
modify that segment. Thus, if segments have individual permissions for
inspection of values and modification of values, the segment access control
may be used to guarantee the security of both the IPMC mechanisms of the
system (implemented in segments), and the IPCC mechanisms of the systenm.
Using this implementation thus makes the protection mechanisms of the system
more uniform and simple to understand. Stapping a virtual processor is also

made simpler, because the eventcount itself need not be‘ﬁodified.

Chapter 2 - 56 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

2.7 The Virtual Processor Stopped State

In order to multiplex virtual processors as discussed in the next
chapter, a mechanism is needed to change the state of a virtual processor,
just as there is a mechanism for changing the state of a real processor. In
the model as so far described, the state of a virtual processor is sometimes
kept in the waiting pool, sometimes in the ready—to-run pool, and sometimes in
some real processor. To simplify matters, I introduce a new state of a
virtual processor, called the stopped state. When a virtual processor is in
this state, its private state memory can be changed and examined by other
virtual processors. The stopped state is added by modifying the processor
multiplexing loop to include a pool of stopped virtual processors. Figure 2.6
shows the stopped modification. A virtual processor enters the stopped pool
when some virtual processor executes a Stop operation specifying this
processor, or when the virtual processor stops itself because it has exceeded
a resource limit. A virtual processor can enter the stopped state directly
from the ready-to-run pool or the waiting pool, or it can be marked as
to-be-stopped and unbound from its real processor if it is running. The
unbind operation puts virtual processors in the stopped pool if they are so

marked .

- 57 - Chapter 2

stopped
virtual
processors

waiting
virtual
processors

advance ./ unbound

virtual”
procassors.’ .

delete .idle

deleted réal processors

unavailable ™\ k

real processors add
real processors

© 7 executing

virtual processors

, Figure 7.6

Processor Multiplexing Loop with Stopped State
A virtual processor in the stopped .state can be started again when
another virtual processor executes a start operation specifying the stopped

virtual processor. The start operation puts the virtwal.processor:in the
ready-to-run pool.

One special point should be made here aﬁoﬁt the await operation —- the

virtual processor private memory while a virtual processor is in the waiting

pool looks as if the await operation has not commenced. Thus stopping a

Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

waiting virtual processor, and restarting it later, will cause the await to be
re-executed. Since the await operation is a pure predicate, with no
side~effects, re-execution cannot cause any problems. Re-execution is chosen
in order to avoid having to show in the state of a virtual processor that is
in the stopped state which eventcounts are being awaited. The awaited
eventcounts are forgotten in the transition from waiting to stopped. For
consistency, the advance operation will cause re-execution of the await

operation, also.

2.8 Summary

In this chapter, a number of terms are defined, and a model of processor
multiplexing is developed. This model will be extended in chapter 3 to a two
level processor multiplexing structure. Several important features are
incorporated in the model. The model applies to:

1. Systems having multiple real processors, with small private

memory for state, and a large shared memory with address mapping
hardware to restrict the environment.

2. Systems where processors can share access environments.
3. Systems that allow reconfiguration of physical processors.

4. Systems that allow either centralized or distributed control of
processor multiplexing.

5. Systems that allow the scheduling policy to be altered
independently of the the rest of the operating system.

6. Systems in which the states of virtual processors are altered by
a second level of processor multiplexing.

- 59 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

- 60 -

Chapter Three

Multiple Levels of Processor Multiplexing in a Layered System

In this chapter I explore what it means to do processor multiplexing at
two levels, creating two kinds of virtual processors. To start, processor

multiplexing is described in terms of a common pattern of type extension,

LR

abstract types. This pattern, and the model developed in chapter two, are..

then extended to handle two levels of processor multiplexing.

Having thus described the structure of the interfaces and implementations
of each 1evel of processor multiplexing, I then show how this ‘structure helps
simplify the structure of the operating system. I discuss how the mutual
dependency between virtual memory implementation and virtual processor
implementation is eliminated I also indicate how the level 1 _processors can

be used to execute "kernel processes" that provide processing power to

abstract type managers that are part of the kernel of the operating system.

To close the chapter, I discuss three problems that arise from the two
level structure and appropriate methods ;o“solve them in the context of a real
computer system.’ The first problem is that inefficiency can be caused by
multiple levels of scheduling algorithms. The second problem is that
processor multiplexing can interfere w1th intermediate states of abstract type

managers, violating the hierarchic dependency structure. The third problem is

- 61~ Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

that a mechanism for coordinating the activities of different levels of

virtual processors is needed.

3.1 The Cache Management Pattern of Type Extension

Frequently the basic task performed by a higher level type manager in.

implementing its type out of lower level types 1s cache management. Janson

’.i_«. Lt

{11] has described the basic issues of cache management in a virtual memory

system based on abstract types.j The cache nanagement pattern is ubiquitous in

~a

his design.

R

The cache management pattern invoiyesfcreating a new abstract type that

is represented in terms of two existing types. the cache 22 and the encached

type. The new type created 1is quite similar to the cache type in

functionality.' There are uSually a limited supply of objects of cache type,

SO they are multiplexed among the objects of the new type. The encached type

generally serves the function of providing a relatively large amount of

storage for holding the state of objects of the new type.‘

For example; see figure 3 1, showing the type—nsnagers for blocks of

primary memory (coreblock), records on secondary storage (diskblock), and

pages of virtual memory.: Here, the major function of the page type manager is

Yy
to manage the coreblocks available to it as a cache for the information in

diskblocks. The only operations on diskblocks are read-block which

Chapter 3 ~.62 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

read-word
write-word

read-word
write-word

read-block
write-block

Figure 3.1
Cache Mgmt. Pattern for Page Object

reads the contents of a whole diskblock, and write~block, which replaces the
contents of a whole diskblock. The coreblock has more fine-grained
operations which allow selective reading and writing of words of the

coreblock.

Since the page manager implements fine-grained read and write operations
on the page, the most effective way to achieve these is to implement the page
as a coreblock. On the other hand, there are more pages than coreblocks, so
they must be permanently stored in diskblocks. The fine-grained operations
can be achieved by copying the information of a page into a coreblock, where
the operation is performed. At some later time, the information in the

coreblock can be copied back to disk.

Processor multiplexing can be viewed as just such a cache management
algorithm. Given a group of real processors and a set of memory blocks that
can hold processor states, a new abstract type can be implemented, called a

virtual processor. Real processors are viewed here as objects implemented by

- 63 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED ‘OPERATING SYSTEM

a real processor type manager. The operat}qng_permitted on a processor
consist of loading a state :.into it (bind{ng)&amd;running it, and stopping it
and storing its state (;nbindiﬁg). The vkr&uaiiptocessor type manager
provides four operations, bind, rum, sf;p and unbfhd, that are similar in
effect to the two real procegsdbr ceﬁ;rol operations.jg&ﬁémvirtual processor

has the bind and run;opeta;ions,'and the stop and anﬁgndvbpeiations, decoupled
for simplicity. The stop and'}un operations affect theudée of real processors
in implementing the virtual processors; while . the ‘biiid- and unbind operations

affect the processor states in storage only;'i

Another difference between Qirgual processors and real processors,
however, ié that virtual pfoﬁessbrs interpret tﬁe instructions encoun;éred
during the run operation somewhat differently. For example, there is an
instruction recognized by the virtual processor ‘to mesn ‘await some eventcount.
No corresponding instructionm exists in the real processor -~ await is
implemented by a sequence of instructions on- the real protessor that has the
properties of an instruction to the virtual processdor (once started, it is

completed, and no intermediate states can be observed by virtual processors).

The virtual pfocessor type manager hagra.véry simp%e task —— it just
treats the real processor type objects as céches for processor-states. Figure
3.2 shows this structure. The virtual ‘processor manager’s bind bperatibh is
performed by writing the state of the virtual processor in a memory block
called a processor-state. The virtual processor manager unbind operation 1is

performed by reading the value in a processor-state object. (It is an error

Chapter 3 - 64 -

PROCESSOR MULTIPLEXING IN A LA&'ERED OPERATING SYSTEM

bind
virtual - unbind
\ processor run

bind & run
processorj stop & unbind

read-state
write-gtate

Figure 3.2

Céche'Mgmt. Pattern for Virtual Processor

if unbind is attempted when the virtual processor is not Stopped.):‘The stop
operation ensures that the virtual processor state is not being interpreted by
a real processor. The run operation enables the coptents of a processor-state

to be bound to a real processor and run, using the real processor bind-and-run

operation.

The processor-state objécts: are véryﬁifmitediin the set of;operatiéns‘ '
that may be performed on them. ' Only read'and*write“dﬂétati&hs”are ﬁérfbrmed
by the virtual processor manager. On the other Kand, the Virtual processor
manager uses the real proceasor te execute the state, once the state is bound
to-a real processor. This situation emphasizes strongly the different roles
played by the cache and encached types in adtfbé &éfiﬁéd\bY"a cache manager.
In the storage system example previously described, both the Eoreblbck and
diskblock are quite similar —- both are passive éfofdge‘ébntéinérs, with‘read
.and write operations defining their basic capabilities. The virtual processor

type manager provides, as its primary function, an i§t§fpréterffot an

- 65 - Chapter 3

:PROCE§$0R4MULTIPLEXI§§ IN A LAYERED OPERATING SYSTEM

instruction stream specified by loading;tﬁe“ﬁtq;e of a virtual'processor with
a particular set of values. Thi$ funét#@ﬁéfiiyris obtained by using real
processors to perform the instr;etioqé;fequirgdkby the virtual processors.

The processor-state objects do not;éarticiééte inlihis function; instead they
serve only to hold the states loaded into virtual prA;essors while the real
processors are occupied with cemputatfons on belialf bf’other virtual
processors. Thus the cachg type objects hre'used tp_pefform the primary
function, and are quife similar in capability to the type implemented by the

cache manager, while the encached type objects serve:only ag- storage.

3.2 Building Two Levels of Virtual Processors

As shown in the previous section, processor multiplexing may be seen as
proyiding_a new abstract type of processor, by ngaagingrﬁhefreal processor
type of objects as a cache for processor states,. which. are stored in
processor-state objects while not actually being -manipulated by a processor
obje;t. The set of virtual processors produced by proecessor multiplexing in
this way also can be multiplexed to produce yet another new:.abstract type of-
processor. (1) The solid arrows in figure 3.3 shaw how the resulting type
hiérarchy would look, for two levels of processor multiplexing. The basic

algorithm performed by each level in this hierarchy is similar, with the only

(1) These can in turn be multiplexed, and the pattern can be carried out
repeatedly, yielding a hierarchy of abstract types all of which perform a
processor function.

Chapter 3 - 66 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

level 2
processor
- gtate

level 1
processor

level 1
processor
state

real
processor

» Figure 3,3 v
Two Level Processor Hierarchy

difference being the type of objects that play the role of cache objects and

encached objects.

The model of processor multiplexing developed in the last chapter can be
extended to show how the two levels df'ﬂtdé§§§orfﬁu}tgpléxiﬁgffiffﬁogether.
Just as the bind-and-fun aﬁd stop—aqdfuﬁb?gdiqggfat;ons used’inbthe first
level of proéessor ﬁultiplexing change thefiﬁt;tﬁél mémory of real processors,

so the second level of processor multipléxing use's bind ‘and unbind operations

- 67 - Chapter 3

'PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

to change the states of level 1 proceeeore} }This manipulation is done on
level 1 processors that .are in”theistoppeqietate. The level 1 unbind
operation used in leve1 2 ertracts the.eontents of the internal state memory
of a level 1 proceesor, Ieaving that proceeser idle. The level 1 bind
operation used in 1e§ell2:puts a new state in an idle level 1 processor. In
figure 3.4, the twojieVeisiof'processor multipléxing are exact duplications of
the model. The create and delete operations of the level 2 interface are

analogous to the bind-and-run and the stop—and—unbind operations of level 1.

Although this hierarchy is very'eiegaet; itris not ‘clear whether or not
it is useful. As I remarked in an eerlier'ehepter, thereais no reason to use
processor multiplexi@g if there are éﬁtficieet real processors with the right
capabilities. Conseqoently each_level ofyprocessor multip%exingxin the
hierarchy must be motivated by a lack of e&fficient quantity'of-proeessors at
the lower level, or by a lack of eapability of the lower level processors. In
this thesis, I propose a des;go‘that useéetip;ievels1q£3processor multiplexing
to create a processor hierarchy of three levels: real processors, level 1
(virtual) processors, and level 2 (virtual) processors. There are severai
good reasons for this choice, as opposed to the single level ot proceseor‘A
meltiplexing usually found im operating systems. The.reasons are:

1. It disentangles the interdependence between .the.implementation: of
virtual memory objects and virtual processor objects.

2, The utility of structuring the operating system, particularly
type managers, as a set of copperating processes.

3. The distinction between short- and long-term scheduling policy.

Chapter 3 - 68 -

level 2 _ _ create
interface

waiting v
level 2 *)
processors

idle
" level 1

stopped ™~
level 1Y

processors run

waiting
level 1
processors

advance Ainbsund
level 1

Processors

runnable =

TR A e e v e v e e e e e e e e e e o -

processor
interface

feal processors

unavailable
real processors

real-processors
executing N
level 1 processors

Figure 3.4
Two Level Processor Multiplexing Loop

- 69 - Chapter 3

. PROCESSOR- MULTIPLEXING IN A LAYERED OPERATING SYSTEM

I will discuss each of these in turn.

-
T

'),_";f—

3.3 Disentangling Virtual Hﬁmoty f;ei'Piocessor Multiplexing

T et

As I noted earlier in the example of usigg abstr&ct types to structure

the storage system of an ope:ating 3ystem, there is a'hierarchy of types in

the implementation of the stcfhée system The prngssor—state objects of a

virtual processor abstract type mnhager eguld Bg;inplemegted directly in terms
of any one of these storage objects. »Sinee ptoce;aor multiplexing requires
fairly frequent accessing of procéésor-stete obj%eta, these objects should

have fast access. There shquld also be enough ei ehs cthEn memory objects to

a T
T Tl e

hold all of the processor states cogxespcading to ehe:ﬂanilpser p:ocesses of
Jh""s-.

the system. The virtual neaory objects, e.g. pages ot”heggeegs, ptoviaed by

the system are clearly the objects of choice for :hés“pﬂrpose.

On the other hand, the virtnal memory“manegeaent algorithms benefit

greatly from being" implementedtas procesgesa (») Since g;ecesses require

UES S ‘M

processors, the virtual memory proeesses ;equize eithe: a set of dedicated
real processors, or a set of dedicated viftual pxqgesanrs. Dedieating several

real processors to the virtual meﬁﬁry na983et iS‘excessively expensive with

today’s hardware, so we are encouraged to use vixtual processors implemented

[N

by processor multiplexing to achieve the virtual memory management functions.

(1) See Huber [10].

Chapter 3 : ' - -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Using virtual memory to implement virtual processors and vice versa leads
to a system with cyclic dependencies. This can be overcome by splitting the
implementation of virtual processors into two stages, where the first
implements virtual processors whose processor-states are represented using
primary memory objects, and the second stage multiplexes the first stage
virtual processors and uses virtual memory objeéts to hold the
processor-states. The virtual memory management processes can then be
implemented on first stage virtual processors. This structure has been shown
before in figure 3.3. The dotted line indicates the dependency of the page
type manager on the level 1 processor type manager, which provides processors

to execute page manager algorithms.

3.4 Use of Processes as Abstract Type Managers

Although the common view of an abstract type manager is as a collection
of closed subroutines that manipulate a data base, this view is not
necessarily the best way to view the implementation of abstract types in a
situation where operations can proceed in parallel. With parallel operations,
there must be interlocking of some sort between the different operations on
objects of the type. This interlocking is not apparent from an implementation

of the operations as pure closed subroutines.

- 71 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Let us consider an example in the contéxirof'thé’éxaﬁple system. There
is an abstract type manager whose job it 18 to mulfiplex a connection to a
message-switched communications system such as the ARPANET [16]; Tﬁe>aﬁstréct
objects created by 'the type ﬁanégér are connéétibnéddﬁ'éhicﬁ opéfatiéds éuéh
as create-connection, destroy-connection, sénd:ﬁeSSaée;'andrgécéivé-meséage
may be performed. The type manager musthtéﬁé'the féébo;sibilit} for
sequentializing simultaneous requests on the same COnﬂegiion 6bféct. AV
destroy-connection cannot be allowed to proceed Qimﬁlféﬁeéusiy with
send-message , for example. Since these operations wiil détﬁaily be décom§03ed
into a sequence of operations on lower level objects, such as the Bufféfs, 1/0
channels, etc., there is a possibility of 1né°ffect'6pératlon if‘the‘Steﬁs of

two operations on the same object are interleaved.

One way to prevent such interleaving and achieve sequentiality is to
associate a lock with each objeét, requiring that the lock be set by each
operation before any modifications to the objeét are éﬁtéﬁﬁted, and théfrthe
lock be reset after the operation is compléte. Equivalently, a pfoéesércan Ee
associated with each object to perform all of the opefations on the object ByA
accepting requests for operations that are placed in a queue. The important
thing here 1s that two operations on an object are neVef;performed overlapping
in time. This tactie is not sufficient, however, if opérations on one objeétr
can interfere with operations on other objects. An evéikpfésent.example of
this kind found in operating systems is the need to manage a small set of

resources that are multiplexed among different objects of a particular

Chapter 3 -72 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

abstract type. 1In the example system, assume that a fixed amount of memory
resources is available to the connection type manager for use as I/0 buffers.
When a send-message is executed, a buffer must be allocated to hold the
message while it is being accessed by the I/0 device. Other send-message
operations on diffefent>connections may be attempted simultaneously, resulting
in possible interference between buffer allocation operations. 1In general,
operations on different objects implemented by a type manager that multiplexes
some lower level resource may need to be sequentialized. For this reason,
viewing objects as individual sequential processes is not very useful in

solving all of the problems of objects in the presence of parallelism.

Another possible view is looking at the operations performed on all
objects in the class implemented by a type-manager as a sequential process, so
that no two operations on objects in the class can be performed in parallel.
This view actually can be realized in an implementation of an abstract type
manager by building the manager as a process, with requests for operations
being sent to it through a queue. (1) 1In the example above, the connection
manager would be implemented as a process that performed the actual I/0
operations and buffer management. The obvious disadvantage of this view is
that it sequentializes operations on different objects even when this

constraint is unnecessary. (2)

(1) Or alternatively, by using a single lock to protect all operations of the
type manager. '

(2) Unnecessary sequentialization can be especially bad if an operation on a
particular object can take arbitrarily long to complete, or may never
complete. 1In operating systems, however, operations are usually short, and
must complete.

- 73 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYFRED OPERATING SYSTEM

The sequentiality can be reduced, while retaining the ability to
sequentialize operations on different objects, by buflding the type manager as
a collection of cooperating processes. There will be a single process which
accepts requests for operations and then causes the other processes in the
type manager to carry out the operations in as bétailel a fasﬁion'as pbésibié
under the constraint of correct operation. This view can be applied to the
operation of the page abstract type mandger as has been done by Huber [10].

In his implementation, there 1$Vdne'prdceSB'(fepréééntéa‘ﬁyjthé page table
lock) which accepts requests in a sequential order. ‘iigfﬁéﬂ’cauées other
processes to ¢arry out operatiohs'réquiréd’hy‘thé réqﬁééfgiiﬁ‘a parallel

fashion.

" As noted above, it is possible to implemeni'the'ESQhehtiél brOcesséé
required - to construct such‘anfabstract"typé*mhnagef in two ways. A server
process can always be simulated by code” that 1s’ exééuted 1n eéﬁh requesting
process under a lock. As long as the locking convention is obeyed, there is
no interfefénce between 6pefat10n§l§etformea under” the lock due to parallel
execution. Alternatively, the server process can aétuéliy'bé implemented on a

dedicated processor of its own.

Use of a lock to create a process can reduce the clarity of the code and

create problems that are not found in the process executing on a dedicated

pfoéessor.' An opefation that takes place in the requesting process is not
easy to protect from the peculiarities of the requesting process énvironment.
For example, the requesting process ng'ndt;ﬁéﬁgi&qf€§§§§§t3ééheégiiﬁg

Chapter 3 - 74 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

priority to complete the operation quickly, resulting in delay to other
processes waiting to perform.successive operations. The meaning of the
instructions and addresses in each requesting process may vary, so that the
operation must be specially coded,to'succéssfuily‘operate'in‘environments
where the handling of oserflow%faultsfmayﬂvary,?for‘exémple. "In addition,
each operation must be examined to ensure its termitation, for non=-termination
of one operation can cause.all other operations being carried out under the
lock not to terminate. If the operations are distributed through the'syStem,
it is much more difficult to bring all operations together to inspect them for

termination. It is also less likely that a programmer implementing the

*abstract type will be able to oversee all the operations to ensure

termination.

These arguments suggest it is often much simpler to construct abstract

type managers as processes that execute on their own processors.

In order to use processes for implementing abgtfaét type managers, it is
necessary to have-enough processors to implemént all of‘the*proceSSes.
Sufficent processors caan be produced ‘by multiplexing. At each level in the
operating system type hierarchy, there must be sufficie;t processors available
for each type manager implemented at that level The issues'of using
processes in implementing the storage‘system generalize to the case of other.
type managers in the system. There must be a low~level type of processor to
implement processes for low level type managers. Higher level type ‘managers
will benefit from the additional quantity and capabilities of higher level
processors.

- 75 ~ Chapter 3

Tt T T

. PROCESSOR MULTIPLEXING IN A LAYERED OPERATING: SYSTEM

Many abstract type managers should be dmplemented on lower-level
processor abstractions in order to guarantee more completé control over the
hardware, Inuthe example system, the comnection type manager may need to be
scheduied/rapidly_when,a message arrives, in order to get that message to the
receiving process promptly if necessary. .If such a process were “implemented
_on too high a level, it would be delayedainriES:re'ponéé by ‘the cost of
several ievels of scheduling by different processor multiplexing algorithms.

Consequently, it should be implemented on a relatively lowlével processor.

In a system with two levels of processor multiplexing, most of the

abstract type managers for system objects will be built out of the first level

of virtual processors for this reason.

The type manager processes inside the operating system must always be
capable of servicing requests, if it is required that the system‘not deny _
service to users. For this reason, it should be impossible for the type
manager processes to be put-into a state that will ignore requests for service
forever. Thus, the ahstract type manager process must. always have a
processor. Further, such abstract type manager proceseors must always have

priority for physical processor resources owver -all -user computations.

Consider the example system. If the processors on which the page
abstract type manager is implemented had lower priority than user
computations, user processes that did not require service by the page manager

could effectively deny service to user processes that did require service by

Chapter 3 - 76 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSIEM

the page manager. By saturating the real physical processor resources, user
computations could prevent the page manager from running for arbitrary.periods

of time.

Abstract type managers implemented on virtual proceésors provided by the
first level of processor multiplexing should not be affected by the second
level of processor multiplexing that implements user virtual processors.
There are two reasons for this. First, the second level of processor
multiplexing, which depends on abstract type‘manégérskimplemented on viftool
processors, cannot be allowed to manipulate the! vittual processors of those
type managers. This would lead to a cyclic &ependency where the type manager
process depended on the second level procesoogﬁﬂultipleging algorithm that

depends on the typé manager,. Second, ﬁhe»tYpe maﬁagers:of the operating

system must bevguarénteed seEviceooheod of‘the-user computations scheduled by

the second level processor manager.

A mechanism whereby a process execufing on a virtual processor can attach

itself firmly to its virtual ‘processor is réquired, so that it cannot be

removed from the virtual processor by the. second laxel processor multiplexing
manager. In addition, virtual processors executing abstract type managers
inside the operating system must have priority for computational resources

over the virtual processors executing user computations.

Looking back to figure 3.3, let me emphasize these points. The level 1

processors implemented by the level 1 processor type manager are used in two

- 77 - Chapter 3

'PROCESSOR MULTIPLEXING IN A LAYFRED OPERATING SYSTEM

ways. Some of them are multiplexed by the level 2 processor type manager to
“make lével 2 processors. Some others are used to useaxiﬁ implementing theA.
system type managers, such as the page type manager, the connection type
manager, and the level 2 processor managerJi;eelf, to perform various
manegement functions,Aisolating anqﬁgquegggalizing the,syetem_type manager
operatioqs. These latter leveLrlbgrogesegtg are pegpanently bound -to.the

processes of ;he page manager. ‘Thex_algokhgve acheduling priority over those

level 1 processors used to implemegttLevel_zgp:ocesso;s. The- resulting.

- level 1 .processoxs- | . = . . +level 7 processors

5
e

| I —————d ‘o
I kernel processes | = - ,’ s\(O
' D" R N
| page - L B \’\ ""
manager | - '
permanently _lﬂ>0 process <\O ’

-—*—

bound
level 1
processors

|

o,

A -~Flgure 3.5 °© -
Permanently Bound Type Manager Processes ,

structure is shown in figure 3.5. . -

‘Chapter 3 - 78 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

3.5 Two Levels of Scheduling

There is a natural hierarchy in scheduling policy that is found in many
operating systems. In Multics, for example, there is a short-term
multiprogramming policy that multiplexes processors among a small number of
user computations. The goal of this algorithm is to achieve maximum use of
the processors, and thus maximum throughput in the short-term. Multics also
incorporates a long-term scheduling policy that controls the set of user
computations that participate in short-term multiprogramming. The goal of the

long term policy is to achieve control of the responsiveness of the system.

The scheduling hierarchy is easily incorporated into the two level
virtual processor hierarchy. The first level of processor multiplexing
provides level 1 processors that have a built-in short-term scheduling policy
that is designed to maximize throughput. The second level then provides level
2 processors that have an administratively variable scheduling policy that is

designed to control the responsiveness of the system for each class of users.

-79 - Chapter 3

PROCESSOR MULIIPLEXING’IN'A LAYERED OPERATING -SYSTEM

3.6 Problems of a Processor Hierarchy

- Having mentioned the advantages of -a processor hierarchy, I will now
describe the potential disadvantages of the hierarchy: There are three such
problems. They are inefficiency due to multiple levels of processor
multiplexing, potential interference by ihe'lével 2 scheduler in the internal
workings of: a type manager at. a lower.lewvel, and the neéd for IPCC between

processes implemented at different levels in the hierarchy.

3.6.1 Efficiency of Multiple Levels of Scheduling

Having two levels of scheduling going on at one time can be very costly
in terms of scheduling overhead. For example, if the frequency of scheduling
decisions at the second:level were the same as tﬁe'ftequency’of schedualing
decisions at the first level, and each scheduling decision had a fixed
overhead cost in processor time, then the total amount of'proéessor time
wasted in scheduling decisions would be twice that of a single level

scheduler.

Extra scheduler overhead is not a problem with the two level scheduler,

however. The reason is that the scheduling policy implemented at the second

level makés long-term decisions. Thus the second level decisions are made far

Chapter 3 - 80 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

less frequently than the short-term multiprogramming decisions made at the
first level. Consequently, the overhead of scheduling at the second level
will be insignificant compared to the overhead of the scheduling decisions at
the first level, assuming that decisions at the second level cost the same or
less than decisions at the first level. Furthermore, most of the work done by
each level would have to be done in a single level, anyway. Extra overhead
only arises if the second level duplicates the effort of the first, so that
the same work is done twice, or if the interface through which the second
level controls the first is more costly than that which can be achieved in a
single level design. The short- versus long-term distinction eliminates
duplication of effort. The interface overhead problem is mitigated by the low
frequency of interactions between the first and second levels relative to the

frequency of interaction between the first level and the real processor level.

Although the second level of scheduling does increase the time overhead
of processor multiplexing slightly, another cost is actually reduced by
introducing the second level. This cost is the cost of memory to hold
processor states. At the first level, primary memory must be used. (l) At
the second level, cheaper virtual storage can be used instead of primary

memory.

(1) The major use of primary memory in the level 1 implementation is to hold
environment descriptions. Only level 1 processors that are in use (i.e., not
stopped) need have their environment descriptions in primary memory. Level 2
is responsible for ensuring that the environment descriptions are in primary
memory.

-~ 81 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

3.6.2 Protection of Low-level Type Managers from Level 2 -

. Consider the operations of the page type manéger;jwhose"position~ihlthe‘
system type hierarchy is shown in figure 3.3. ..Operations provided by the ‘page
manager are used by both the level 2 processor implementationiand the level 2
processors that execute user computations, since both use pages for holding
their data bases. Some of .the operations on pages manipulated by level 2 -
processors can be implemented as' subroutines. or' in-lime code (1): that can be
executed by level:2 processors while bound to level 1: processors. If the
designer of the systgg'is not careful, it may-be possible for a level 2 .
processor. to become unbound from its level 1 processer in the middle of

executing the sequence of instructions that implement a page operation.

Having. started executing an operation of. a level below the level 2
processor implemeatation, the process must be/allowed to finish that operation
before it .can be unbeund from the level 1 processor. 1f it were prevented:
from finishing, twg,p;obiems might occur.: :First, the:lewel 2. processor -

manager could modify the private memory (e.g., the instruction pointer) of the

(1) The expansion into subroutines or in-line code of the type manager
operations should; -of course, be .transparent-to the:user:of the system -- he
should not know that type manager operations are actually sequences of
lower-level instructions. Presumably, -the user will be preveated from -
actually writing code to manipulate the. type -manager :data - bases by a run—time
or compile-time protection mechanism.

Chapter. .3 - 82 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

level 2 processor, and then rebind the level 2 processor to a level 1
processor. This modification would interfere with the subsequent correct
operation of the type manager. Second, the level 2 processor manager could
prevent the operation from ever completing, thus leaving the data bases of the
manager in a possibly inconsistent state (e.g., it might have a lock set in
it). Both of these problems violate the hierarchic structure of the system,
since they can cause type managers at lower levels to depend on the level 2

processor manager for correctness.,

Allowing the level 2 processor manager to unbind a level 2 processor in
the middle of a lower level operation can lead to deadlock of the level 2
processor manager, as well. The deadlock can arise because the data bases
being manipulated by the interrupted abstract operation are used in the
implementation of the level 2 processor manager. For example, the interrupted
page manager operation may have set a lock on some part of its internal data
bases to prevent parallel manipulation of those data bases by other processes.
The level 2 processor manager, when it handles the unbinding of the level 2
processor that is stopped, may call upon the page manager to obtain
information about the level 2 processor for rescheduling. The request of the
level 2 processor manager will be forced to wait until the level 2 procéss
being rescheduled finishes the current operation, since the lock is set by the
level 2 process. The process cannot finish its operation until it is

rescheduled, therefore there is deadlock.

- 83 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED‘OPERKTING-SYSTEM

To prevent violations of the type hierarchy and Heaolocks, operations of
type managers at lower levels than the 1eyei‘2‘processor:hanagerJahooid appear
to be indivisible to the level 2 processor’managerii"The le;el é processor
manager will only be able to-unbind d process from;theileveirl processor

before or after, but not during an abstract type”osgrétion.\

In the design, this indivisibility is achieved by having abstract type.
managers inform the level 1 processor manager wheq they start and finish
indivisible operations. Between the start and finish of indivisible
operations, the level 1 processor manager will not allow the leyel lﬂgroeessor
to enter the stopped state. Since level 2 éan only {nspect and alter the

states of stopped level 1 processors, theEQEQired indivisibility'is achieyed.

A very simple method for deciding when an- operation should be indivisible:
at level 1 arises from the hierarchy. All operations of type managers below:-
the level 2 1nterface in the type hierarchy should be in@ivisible.ﬁ If a .type-
manager is below level 2, level 2 uses it and depends on, its correctaess. It -
is a violation of the abstract type model for level 2 to. be able to interfere

with the operations of types that it depends on.. .

3.6.3 Cross-level Interprocess Control Communication

Each level of processor provides its own mechanism for communicating

between computations running on those processors. It will occasionally be

Chapter 3 - 84 =

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

necessary to design the system so that aicoﬁputation:expressed in terms of
level 1 processor operations (such as the page type”manager)’cen gignal a

computation expressed in terms of level 2 processor operations, or vice versa.

Consider the example system of fiédre“3.§;>‘if theipege manager were
implemented as a process permanently bound to ailevel 1 processor, then level
2 processors requesting the services of the psgeymsnaéerFWind‘have tohsignaly
the page manager somehow, and be signalled‘hecklﬁhegetﬁeireddestiis:finished.
The level 1 page manager processor cannot use the_;ﬁpcvprimitives;implementeds
in the level 2 processorktype nanager, because,the,level«Z procegsor manager
depends on the page manager for various services, such as imp@ementing its
tables and moviag the" envircnment deécriptions of level 2 processors in and
out of primary memory. A cyclic dependency would result if the page manager
processor attempted to use the level 2 processor IPCC primitiyes.e On the,
other hand the 1evel 2 processor requesting service ‘must be able to await at

level 2 if the level 2 scheduler is to retain control over the resource. usage
by level 1 processorsr In this case, then, a level 2 advance by the level 2
requesting processor needs to awaken the page manager processor that awaits at
level 1 (an inward signal), and later a level ! advance by the page manager

processor needs to awaken the requesting level 2 processor that awaits at

-level 2 (an outward signal).

What 1s required in general is a way to -perform an-advance operation at
one level that causes await operations in pnogress an the other level to.

proceed,’ just as 1f the advance’ were done at that level I now present the e

- 85 = Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

algorithm for level 2 advance and await, and then discuas how inward and -

outward signalling are implemented. -

3.6.3.1 Level 2 Advance and Await Algorithms

The algorithm for await at level 2, in terms of level. 1l await, is:

1. mark current level 2 processor as awaiting the named .events.
2. do a level 1 processor await on the same eventcounts. (1)

The algorithm for level 2 advance is:

1. do a-level 1 advance on the specified eventcount.

2. mark as not waiting, any level 2 processors whose eventcounts included
the one advanced. This will cause them to become assigned to level 1
processors (if they are not already so.bound), -where they will
discover that the current await immediately proceeds.

It is absolutely necessary to have the computation re—execute the await

[28

instruction at level 1 whenever a level 2 processor that was awaiting at level
1 is reassigned to a new level 1 processor by the level 2 processor abstract
type manager. Re-executing the await guarantees-thathstep 2 of the advance

algorithm works properly.

rad) s o >

(1) In chapter six, I will show that the level 1 await here need not be on the
same eventcounts. T have simplifted ‘the algorithm here because the added
complexity discussed in chapter six is irrelevant to the outward sigmalling
mechanism. - -

Chapter 3 - 86 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

3.6.3.2 Inward Signalling

Inward signalling, an advance at level 2 starting processors that are
awaiting at level 1, works correctly in the levél.z advance algorithm above.
Level 2 eventcounts are implemented in terms of level 1 eventcounts, so that
an advance at level 2 is performéd by an advance at level 1 plus some

bookkeeping to handle processors awaiting at level 2.

3.6.3.3 Outward Signalling

Outward signalling, an advance at level 1 starting a processor that is
awaiting at level 2, is more difficult than inward signalling. While an await
at level 2 is performed by invoking await at level 1, it is possible for the
processor awaiting at level 1 to become unbound from its level 1 processor, so

that it is now waiting only at level 2.

Unbinding from level 1 is possible for await operations that need not be
a part of a level 2 atomic operation. For example, when a level 2 processor
is waiting for a page to be brought into primary memory it can be unbound from
level 1 since the correct operation of the system does not depend on the level

2 processor to actually reference the page after it is brought in.

- 87 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Unbinding a level 2 processor while it is awaiting at level 1 is
desirable for an economic reason. The real processors of the system may not
be used to full capacity if level 1 processors are all-awaiting events. Since
there will be relatively few level 1 processors (since level 1 processors take
up largequountsrof expensive primary.memory), -if :it -is possible to unbind
waiting level 2 processors, itu;g;eegnom%cakiy;gdvanﬁgggnus tao do so.. Short-
waits are not as much of a problem .as long waits, . ..- .-

Basically,’ the difficulty of outward signalling is that the level 1
processor advance primitive cannot know all of the é;ocessors awaiting at
level 2 that are to be awakened when an eventcount is advanced. If the full
economic advantage of unbinding level 2 processors awaiting.level l advances
is to be obtained, the level 2 processor manager should nqt rebind a waiting
level 2 processor to level. 1 before it will be.able to proceed through the
await. Thus, the level 2 processor manager must.be aware:of advances to
eventcounts that are done at level 1 with the.intentios of sigaalling
processors at level 2,

Trven

Detection is not easy, since all evéﬁtcounisiaré ﬁdtéﬁtiai chaﬁnelsxfoff
oucward_signalling. The task may be restg;gggd;sigcg in. any .particular ‘system
only a few eventcounts will be used for outward.signalling. In the example -

. system,‘the;e will be a gixgg set of eventcounts. that:are signalled by eéach
kernel type manager -~ the page manager will have .a-small set of events that
it signals, and so will each other type mansger iathe-operating system. By

structuring the system so that the level 2 processor manager knows this set,

Chapter 3 - 88 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

and can efficiently search it for modified eventcounts, we can solve the

outward signalling problem.

The level 2 await primitive recognizes eventcounts that can be outward
signalled because they are all stored in the same segment. This is a simple
way to design the system so that the level 2 manager need not be changed every
time the set of eventcounts signalled outward by lower level type managers is
changed. Eventcounts in this segment will be treated specially by the level 2
processor await primitive ~- the level 2 processor manager will periodically

poll the value of these eventcounts to see if they have changed.

How frequently the level 2 processor manager checks will determine the
responsiveness of the user processes to outward signalled events. The
checking can be triggered by a real-time clock ticking at a certain rate
(chosen for the desired responsiveness). Alternatively, the checking can be
done every time an eventcount in the outward signalling eventcount segment 1is
advanced in order to ensure maximum responsiveness. This latter strategy
requires a small amount of help from the level 1 processor manager, in the
form of a special eventcount that is advanced by level 1 every time any
outward signalling eventcount is advanced by the level 1 advance operation.
The level 2 processor manager (which is permanently bound to a level 1

processor) can then await this special eventcount,

- 89 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

3.7 Summary

In this chapter, I have shown how two levels of processor multiplexing
can work together. The model developed in this chapter, and the solutions to
the three problems discussed, will be used in chapters five and six as a basis
for a detailed design of a system where two level processor multiplexing is

used.

Chapter 3 - 90 -

Chapter Four

Level 1 Virtual Processor Interfaces

In this chapter, we begin discussion of a proposed operating system
design that incorporates two levels of processor multiplexing, as in our

model. Here we discuss the interface of level 1 virtual processors.

The description of level 1 is divided into two chapters. This chapter
describes and motivates the interface of the level 1 processor. Incorporated
into this interface are many features that are important in a real system such
as Multics. Examples from the Multics system are used to motivate the design.
Chapter five describes an implementation of the level 1 virtual processor

manager.

- 91 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYEREQ

- : i
4.1 Level 1 Virtual Processor Interface

OPERATING SYSTEM

Level 1 processors are quite sﬁmilar to real physical. processors. :They

execute instructions in basically ;@e;same way, have similar internal states,

and have the same address mapping t

p address primary memory.

There are some

differences from hardware processors, though. They can execute several new

operations that are implehented>by
of execution is controlled by the 1

added to or deleted from fhé system

The operations that the level
performed by real processors serve {

operations allow level 1 processors

the level 1 processor manager. Theilr rate
pvel 1 prdcéssor manager. They cannot be

. We deéériﬁe h;éé Ehose differences.

| processor can perform that cannot be .
four different purposes. Some of the

to do interprocess control communication.

Some of the operations allow level

level 2 processors to other level 1

processors to coatrol the bindings of

processors. These operations are

structured so that the level 2 proc

§s0r manager may be built as a central

agent out of several dedicated level 1 processors. Some of the operations are

concerned with virtualizing the hardware facilities of real processors, such

as fault handling. Finally, there are operations to change the hardware

resources being used by level 1, to

Chapter 4

allow for reconfiguration.

- 92 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

To facilitate description, operations of the level 1 processor are
described as if they were subroutine calls. The names of each opératibn will
consist of the prefix "VP1$" to indicate that it is an operation of the level
1 virtual processor manager. The data input and output from the operation are
specified by parameters to the call. Parameters that‘represgnt inpgt values
appear normally, output parameters are un&efscé?ed. In‘the actual
implementation, these operations all act as if they are non-decomposable
machine instructions. Itris not:poséibie to sﬁop a level 1 processor»dqring.
the execution of éﬁe of these operations. Also,.the level‘l operations must
not be interfupted in the middie By a fault. Consequently, each level 1
operation‘ensures that allvof iﬁs paraﬁeters aré in/primar; memory and
accessible to the level 1 processor before performing the required\opera:ions.
If the parémeters are.not in primary memorf; é faulﬁ will be reflected to the‘
level 1 pfbéeésof. The level 1 processoélcan ;hgn handle the fault, and
restart the operation from the beginning. YAccessiné éf parameters is

discussedzmore fully later in the chapter.

There are certain operations that are used only by - the second level
proceséor multiplexor. These operations are specially protected, so that only
the level 1 processors that are used to implement the level 2 processor
manager may execute them. Protected operations will be matrked in the'text‘byr
an asterisk following the parameter list when their calling sequence is

described. . . e

- 93 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

In any case, the level 1 operations -are all internal to the kernel of the
operating system, and can be used only by programs written as part of the

kernel of the operating system.

4.2 Limited Supply of Level 1 Processors

The level 1 processor manager éreétes virtual processors that pgrform">
computations for higher levels in the systém. Tﬁere is a fi#ed, small number
of ievel 1 processors in the system. The limigatioﬁ on the number of
processors arises because level 1 prdcessoré are i@plementedbat the lowest.
level of the system. The level 1 processér states and environments‘are stored
in primary memory. Since priméry memory is-expenéive and éf limited supply,
the number of distinct level 1 processdrs thét can be implemented_iS'limited.
The actual number of level 1 processofs created iﬁ an implementagion will
depend on the available memory, and the need for ievel 1 processors at higher
levels of the system. For a Multics configuration such as the one installed
at M.I.T., with two processors and 384K words of primary memory, I estimate

that about fifteen or twenty level 1 processors will be sufficient. This
estimate is based on two facts. The number of processes actually
participating in multiprogramming at any one time in the M.I.T. Multics never

. exceeds six. Six level 1 processors can thus be allocated to the second level

., processor multiplexor to implement user processes. The remaining nine to

fourteen are allocated to executing kernel processes that manage various

e i
kernel resources such as virtual memory, multiplexed I/0 devices, etc.

Chapter 4 - 94 -

PROCESSOR MULTIPLEXING IN A'LAXEREDVO?ERATING SYSTEM

4.3 Multiprogramming of Real Processdts‘hﬁbﬁg!Levéiﬁl Processors

Unlike physical processors, level 1 processors do not execute
instructions at a constant rate (due tOPthe'faéf’tﬁat;ihE& are iﬁpleﬁenté&‘by
processor multiplexing)..- In order to provide kernel processes with qdiék\ .
response to events, level 1 processors have. fixed priorities for computing
‘resources. Kernel processes that need fast féspbﬁéég such as 1/0 device
service processes, will be bound to ‘high priority léVél”I”procésédrs. User

processes will always be bound to level 1 processors of the lowest'priority.

The simplest way to discuss the efféct of ‘prforities is to describe the
effect of the priority mechanisi on the adsignméﬁt”of‘feéifyfdcébéors f;/ievei
1 proéessors. - Real processors will -always be aasigned’tﬁxtﬁéyﬁighéét pribrity
runnable (1) level 1 processors. If two level 1 proéeﬁsdrs.haVE eddai |
priority values, the one that has been computing the longest will have
priority. This implies that scheduling of proﬁessors of eqﬁai”bfiofity will
be approximately FIFO. It has been the experience in Multics that FIFO
scheduling during short-tetﬁ multiprogramming was the most effective meaﬁé of
achieving good throughput and avoiding thrashing. This choice of ﬁoliéy‘j

implements that experience.

(1) By runnable, we mean non-waiting and non-stopped.

- 95 = - : ML”_‘;

e,

§$'

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

4.4 Execution States of Level 1 Processors .

From outsidg}thg,levelrl.procesgor implementation,a level ! processor is
either executing_(runping>or waiting) or stéppedy';WIthout observing the side
effects of execution, such as changes to shared: membry, it 1is not possible to’
tell whether an executing level 1 processer is actually executing on a real
processor or uo;. As we have.shown,inwchaptérs two and three, the stopped
state of a levgl 1 processor exists to.allow-changing-the binding of the

processor safely.

The level 2 processor manager must change:the execution state of level 1
proégssors }n»9rde;zqgnmpl;iplgxi;heq, Since the lewvel: 2 processor manager
wiil be cqugrgctgdyou;ﬁof‘levelrl processors, -the:kevel 1 processor manager
must provide operations that allow one level 1 processor to change the
execution staterf another. There are two such.operations.

VP1$run (llproc) *
changes the state of the level 1 processor named llproc from stopped to
executing; V;f leroc is already executing, the gperation has no-effect.

VPlsstop (11pfoc) *
causes: the level 1 processor named llproc to stop as soon as possible. If the

level 1 processor is already stopped, the operation has no effect.

Chapter 4 - 96 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The binding of a level 1 processor may only be changed when it is in the
stopped state. A level] processor only entef; the stopped state in between
atomic operations. So that operations op system objects can be implemented on
level. 1 processors as atomic operations, a facility is provided that allows a
sequence of instructions to be treated as an atomiic operation. Executing the
operation T SR

VElSbegiq_gtomiq_operation O
indicates that an atomic operation is te be begun. Once
VPl$begiq_g;omiq;oper&tion is executed, the Yevel 1 pfOcéssor cannot enter the
stopped state. -The operation .

VP1$end_p£omiq_pperaxion O
ends the current atomic operation. Atomic opératiﬁﬁé may be nested in tiﬁe;

the level 1 processor can. only be stopped after the final call on

end atomic
operat on

end atomic
gperation

executing executing

executing
1 p - stop pend-

begin atomlc
operation

~end: atemic -
operation

stop,run

stoppedexecuting

stop

end«atomic_
operation

operation

executing executing
begin atomic nstoppable le begin atomic unstoppable
operation operation
Figure 4,1

States of Level 1 Processor

- 97 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

VPl$end_atomic_operation. Figure 4.1 shows how the actual execution state

changes in response to state'éﬁénging operations.

The operations VPl$begin_atomic_operation and VPl$end_atomic_operation
are similar to a facility already existing in the Multics operating syttéﬁ;
The Multics mechanigm for assuring that virtual processors executing system
coderdo not get pre-empted in the middle of a system operation is to mask the
physical processor from getting timer runouts or~pre-enpt'intérrupté'wﬁile
executing in the supervisor domain. The Multics:mechanism is' flawed, however,
because some code executed in the system domainm is not:part of any kernel
abstract operation. A particular example is the copying of ‘argument values
into the kernel domain from the user domain. The. copying_is done by code
executing in the kernel domain, but accessing user: data structures. It is
possible to put the processor into a loop while exacuting?aﬁi(1ndivisible)

operation in the kernel, by modifying the user data as it-is copied.

Using the proposed prtmitives, the indivisible opezationAHQuld begin only
after copying the arguments. These primitive& allew mueh.more fine—gtained

control of the parts of the system that 1mplgnent indivisible operations.

Chapter 4 - 98 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

4.5 Scheduling Controls

The level 2 manager will be implemented on level 1 processors. In order
to control the amount of real processor time”ﬁsed“by*the level 1 processors it
multiplexes, the level 2 processor manager must be able to stop level 1
processors after they use up a short-term allocation of processor time. This
function must be provided by level 1, since levei 1 controls the allocation of
real processor resources to level 1 processors. Level 1 thus associates with
each level 1 processor the accumulated processor time used since VP1l$run was
called, and a limit on thls usage called the quantum. When a level 1
processor exceeds its quantum of processor time, the level 1 processor manager

effectively calls VP1$stop on that processor, causing it to stop after the

current atomic operation is completed. :

Since level 1 processors exceed their quanta independently of the

execution of the level 2 processor manager, ‘the l@vel 2 implementation needs
some help to know when level 1 processo;sdstﬁp, aed which level 2 processors
have stopped. Each time a level 1 processor stops, a special eventcount
managed by level 1, called the stop eventcount*vis advanced The level 2
processor manager can then await this eventcount to-discover when level 1

processors stop. To let the level 2 processor find the stopped level 1

processors easily, the level 1 processor manager maintains a queue of stopped.

- 99 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

level 1 processors. When a level 1 processor stops, it enters the queue. A
level 1 processor operation,

VP1l$next_stopped (liproc) *
returns the name of the next stopped level 1 processor in the queue, deleting
it fromvthe queue. The level 2 processor manager can use-this operation to

find all oﬁ the stopped processors. = -. ,.~ . T

4.6 Changing the Bindlngs of Level 1 Processors
" The second level processor maneger needs to be able to change the

bindings of level I processors it multiplexes. To provide this function,

there are two operations that allow the internal state of stopped 1evel 1

prbcessors to be extracted and loaded. The state descript1on used in these

CRs

DSEGP

Figure 4.2
Level 1 State Data

interfaces is shown in figure 4.2. The state consists of the values of the
computational'tegisters (CRs), the address of an environment 8pecif1cation

(DéﬁGP),vthe current value of the lnstructlon pointer 1n the environment (IP),

Chapter 4 | - 100 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the address in the enviromment to which the IP will be set when a fault occurs
(FIP), and the amount of resources remaining until the level 1 processor is

automatically stopped for exceeding its quahtum (QIMR)." - "

The operation

HVPISbind (llproc, state, error) *
sets the state of level 1 processor llproc‘trom lts state argument._ The
operation succeeds, and error is set to false lf llprocvis stopped, otherwise,
the operation fails and error’isvset to true. Arleyel llprocessor’may bell,
unbound by the operation | |

VPl$unbind (llproc, state, error) *

that returns the new state of the level 1 processor 1n the varlable state. If
llproc is stopped, error is set to false and the operation succeeds, else

error is set to true, and no data is copied into state.

- 101 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED:-OPERATENG -SYSTEM

4.7 Interprocess Control Gemmunicatiom

The level 1 processor manager provides operations to perform 1nterprocess

i

control communication using eventcounts. At this level, eventcounts are

implemented eimply as primary memory words. In order to allow these

eventc0unts to be shared among several virtual procesaors, each of which has a

different local name for it in its environment, we need a global name for each

e

memory word. It is possible to use the absolute primary memory address for

It A

this purpose. Using the primary memory address would not allow these

eventcounts to be managed by the virtual memory manager, though because the

virtual memory manager can move the eventcOunt from one address to another, or

2

FRCTEN B

to disk. To allow the vlrtnal;memory!manager;to.mo;ebthe pages containing
eventcounts in and out of primary memory freely, the environment description -
for each level 1 processor contains an additional value for each page of
primary memory. This value is the unique name of the page in the virtual
memory as ‘a whole. Given the name of a page within the environment of a level
1 processor, the level 1 implementation can determine both its current primary
memory address (if in primary memory) and its unique name. Level 1 can use
this unique name to name eventcounts in the page, no matter how they move

about in primary and secondary memory.

Chapter 4 - 102 =

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The level 1 processor manager implements the. two operations,

VPl$await (ecl, valuel, ec2, value2, ec3, value3)
and

VPl$§advance (ec).
VPl$await actually allows up to three eventcounts to be awaited
simultanebusiy. .it thus takes from 1 to 3 pairé of arguments (3 pairs are
shown in the calling sequence). The ec arguments are p;sééd by reféfenée;
using pointers in the environment of the caller. The level 1 implementation
performs the translation to uhiquérsysféﬁjﬁidé ngké.VVTﬁéVdéét;tion‘VfISQQait
only returns to the caller after one of'théjeQEhtcbﬁhtsyeél:'écz, or eé3,
exceeds the COrrespondiﬁg‘Gélue specified’as véiﬁél, vélﬁéZ, or value3. A
level 1 processor could simulate the effect of ﬁéitiné on ﬁuiliple eventcounts
by gpawnipg ;hreeﬁsepgrqtg ;eve1;l’p;oggssors to wait on each eventcount
separatgly, then waitggg‘fq;_gng<qf,;hemdto advance a.shared ewventcount.
Spawning processors this way is cumbersome, so it is useful to allow multiple
eventcounts to be awaited simultaneously. The number of. eventcounts that can
be awaitedJis‘limitedrtoutbree:becguse the level 1 processor implementation .
can use only a fixed amount of storagé_to;remembar‘gheﬂeycntcaunﬁsvbeing'
awaited. Three is not a magic number, but seems sufficient for all purposes I

have investigated.

Outward signalling eventcounts are supported specially by the VPl$advance
operation. Whenever an outward signalling eventcount is advanced, a special

eventcount called the outward signals eventcount .is 3lso.gdvanced implicitly..

- 103 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Outward signalling eventcounts are recognized by the advance operation because
they are all implemented in the same virtual memory segment. Thus, by simply
checking the unique name of the eventcouht, outward signalling eventcounts can

be recognized.

4.8 Special Eventcounts

We have already described two special eventcounts that are advanced by
the level 1 processor manager itself: the stopped and outward_signals
eventcounts. There are two other kinds of special eventcounts that are

provided by the level 1 processor interface.

In order to have processes that synchronize themselves in real time, we
provide a special eventcount that is advanced proportionally to real time.
The clock eventcount is advanced once every delta microseconds, where delta is
a reasonably large value, like 50,000. This allows reasonably fine-grained
scheduling of processes that have to deal with real time events, such as

timeouts on communications channels, etc.

In order to provide for processes that control I/0 devices, we need some
mechanism for I/0 devices to signal processes about interesting events, such
as completion of an operation, errors, etc. Messages from I/0 devices are
stored in special regions of memory called mailboxes, but a mechanism for

scheduling processes when interesting events happen is still needed. A very

Chapter 4 - 104 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

natural mechanism is to associate with each device mailbox an eventcount that
is advanced by the 1/0 device (with the help of the level 1 processor manager)
each time a message is put in the mailbox. A device control process can then
simply wait on the eventcount until this advance occurs, then inspect the

message.

4.9 Fault Interface

Certain hardware operations signal errors by causing faults. On typical
hardware processors, a fault is handled by saving the instruction pointer at
the time of the fault and transferring to a special address. 1In creating
level 1 processors, we virtualize fault handling to allow gach level 1
processor to specify its own private fault handlers. As part of the state of
each level 1 processor, there is a pointer called the fault transfer pointer.
Upon encountering a hardware fault, the level 1 processor will save the
processor state at the time of the fault, and transfer control to the fault
transfer pointer. An operation provided by the level 1 processor manager is
used to obtain the processor state at the time of the last fault. This
operation is:

VPl$get_fault data (processor state)

It gets the processor state of the most recent fault. The processor state
returned by this operation is shown in figure 4.3, The data of the processor

state contains the values of the computational registers at the time of the

fault (CRs),'the instruction pointer at the time of the fault (IP), and the

- 105 - Chapter 4

PROCESSOR MULTIPLEXING IN ‘A LAYERED OPERATING SYSTEM

3

CRs

frb o

"IP

FCODE |

Figure 4.3
Level 1 Fault Data

_ type of fault (FCODE). The other data of the level 1 procesgg;nstate,‘sqgh as
DSEGP, QTMR, and FIP, are not kept for faults because the data is constant in

the level 1l processor.

Faulting instructions may be restarted by restoring the processor state

R doa

data using a level 1 processor operation:

VPl$restore processor_state (processor_state)

- If a level 1 processor takes a second fault béfore extracting the fault
data of the first, the level 'l processor managef will crash théiéystem by

deconfiguring all of the real processors, so that theﬂﬁfbblém can be déBugged.

In order to allow extending existing processor instructions in type
managers above level 1 by providing special fault handlers to increase the

effective functionality of instructions, there must be a way for the fau;;

handler to appear to be part of the same atomic operation thgtvcgused the
fault. For this reason, taking a fault in a lgvgl 1 processor implicitly
causes a VPl$begin atomic_operation to be executed. 5o that it is possible to

protect the whole sequence, from faulting instruction to restart of the fault,

Chapter 4 - 106 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the VPl$restorg_processo;_§tate operation implicitly executes a
VPl$end_atomic_operation. The fault handler need not, of course, remain
unstoppable throughout its execution. It can execute VPl$end_gtomiq_operation
in the middle of its execution, as long as it executes

VPl$begin atomic_operation before restoring the state. Such an action must be
performed if the fault taken is to be reflected to a program at a level above
the second level processor implementation. The fault handler that is
specified by FIP in the level 1 processor state must be a program in the

kernel of the system below the level 2 processor manager.

4.10 Processor Interrupt

In Multics, there is a mechanism whereby one virtual processor can cause
another to take a special fault, called a "process interrupt". This mechanism
is used to implement the function of interrupting a computation by hitting the
attention key, for example. In order to implement this in level 2, we need a
mechanism whereby the level 2 procesor manager can cause a level 1 processor
to take a special fault, called the "processor interrupt". We don’t wish this
interrupt to happen during an atomic operation, or in a kernel process.
Consequently, we introduce a mechanism that allows this fault to be set only
in a stopped virtual processor. The primitive

VP1$set processor_interrupt (llproc, error) *

will cause llproc to take a special fault when the level 1 processor is next

- 107 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM .

run. If llproc is not stopped; the operation-does-not- proceed and the error .

argument is set true, otherwise error is set to false. . -~

To cause a level 1 processor interrupt to occur inia 1é§éi'f“§r5ce;§ar
that is not stopped, it must first be stopped then the processor interrupt
must be set and then the processor must be run.. This is a somewhat clumsy)
interface, since VP1$stop does not take effect.im;ediately. Since the |
VP1$set_processor interrupt operation is used only inwthe level 2 mansger, the
clumsiness is not a real serious problem. I hsve chosen this particulsr

interface because it simplifies ‘the design of the level 1 implementation, even

though it makes level 2 somewhat more complex.

4.11 Processor Reconfiguration

Level 1 has to deal with reconfiguration of physical processors. It
provides three operstions for this purpose. The operstion R |
VP1$add_cpu (cpu id) 7‘ o
adds the physical processor named cpu id to the system. The operation

VP1§del cpu (cpu_ id)

deletes the physicsi'processor named\cpq_id from the systen.k”The operation
VP1$crash_s§stemA():

eliminates all physical processors from cﬁé level f nnitipiexor, and forces

one of the processors to execute a special debugging program. The other

processors are made to stand by idle.

Chapter 4_ ' - 108 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The reconfiguration primitives are accessible to all parts of the system
kernel. Outside the system kernel, these operations are not directly usable,
in order to prevent user-written programs from denying service to other

programs.,

4.12 Parameter Passing To Level 1 Processor Operations

All data operated on by level 1 processor operations must be in primary
memory. If an object is not in primary memory, the real'processor will
generate a missing-page or missing segment fault, indicating that the
instruction cannot be performed. The software operations of the level 1
processor behave exactly the same. The data provided as parameters to the
level 1 processor implementation must be in primary memory. If the data is
not in primary memory, the level 1 processor implementation reflects this

condition as a software-generated missing page or missing segment fault.

Two other alternatives to generating software "faults" could have been
used in the level 1 interface. First, the level 1 manager could crash the
system if its parameters were not found in primary memory. With this
alternative the level 1 processor invoking the operation would be required to
insure that its parameters were in primary memory. For frequently executed
level 1 operations, having to wire-down parameters to primary memory by
calling the wire-down primitives of virtual memory can be quite expensive.

The second alternative would be to reflect an error to the level 1 processor

- 109 - Chapter 4

PRGCESSQR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

in some manner other than a fault. Reflecting the érror requires some way to
transfer information back to the level I processor that an error has occurred.
The fault mechanism is such a way, inventing andther mechanism serves no

useful purpose.

The implementation of the level 1 primitives must be able to access the
parameters. Since the level 1 processor itself accesses data in memory
through a map, the level 1 processor implementation must be able to interpret
.the map to find the parameters. The map can be ‘modif{éd asynchronously by the
processors of the virtual memory manager, so éhefe wust be somé way to inmsure
that such modifications do not interfere with the correct operation of the

level 1 processor manager.

The level 1 processor operations operaté Iogica;ly by fitgt dete;miningr
whether the parameteré are in primary memory. lfrnotf,a:fault‘ig>reflggted to
the appropriate faﬁlt handler, which presumably will hgndlgrthe fau1t byf,
noving the parameters inté ptiméry memory. Thertest will be repeated until
the parameters are all in primary memory. (1) Then, the parameters are
accessed to perform the required operation. The data cannot be moved from

primary memory during this accessing. There must be a aspecial mechanism for

(1) Note that the method of accessing parameters used by the level 1
implementation does not generate an upward dependency on’'the virtual memory
mechanism. The specification of the level 1 interface is that it reflects an
error and does not do the operation if its parameters are not in primary -
memory. No matter what the virtual memory manager does, it cannot cause a
level 1 operation to fail to meétr its specification efthet’ by doing the
operation or reflecting an error status.

Chapter 4 - 110 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

handling the asynchronous modification of the map during an operation of a

level 1 processor.

It is instructive to investigate the similar problgm found in the
physical processor instructions. The physical processor operates by
converting the addresses found in instructions through the map into real
addresses, then accessing the real addresses directly during the instruction.
The modification to the map is thus not reflected immediately in the
processor’s accessing, but must wait until the processor stops using the
converted a&dress. The processor converts all addresses to real addresses
before actually accessing the data operated on by the instruction.

Discovering a fault is thus done before the instruction has taken irreversible

steps, so the instruction can be restarted from the beginning.

There is, however, a problem in the physical processor accessing of
memory. The main reason for changing the map is that a page or segment is
moved from primary to secondary memory or vice versa. When the page is moved
to secondary memory, it must be guaranteed that no processor has outstanding
references to it. This guarantee is provided by marking all maps that refer
to the page so that a fault will be generated'when the page is referenced.
However, for a short period of time the physical processor may have a
translated real address that refers to the page. The moving of a page from
primary to secondary memory proceeds as follows: first, flag all maps
referring to the page, then, wait until all physical processors stop using the

translated real addresses they were using at the time the flags were set in

- 111 - Chapter 4

PROCESSOR MULTTPLEXING IN ‘A LAYERED OPERATING ‘SYSTEM

the maps. “Tﬁesértwo*stéﬁé*togéﬁhéfﬁgdéraﬁfeé“fﬁéf“the“ﬁagé can be moved

safely.

For the software partS'bf'thé“IEVEI'I'ﬁt&béﬁéﬁf n‘t‘zma"“ge‘i:,“siiniil::u."'E
mechanism must be provided. ‘THe software parts will first translate the
addresses of parametéfs»uéing”the=ﬁap'fﬁib'the address space of the level 1
manager. The level 1 manager address space cannot be modified by higher
levels in the system. Any faults in accessing parameters are discovered and
parameters are guaranteed to be accessible. THék, the' level 1 ﬁiﬁéger'will”‘
use the translated addresses to reference’ primary memoty. Before thé page
manager can move ‘anything in primary ﬁémofy;*1t’mﬁ§t“fiiéiiflag the hap,'thenlr
wait until any translated addresses being uséd in level 1 operations are done
with. The level 1 processor must have a spegiali@echanism’tq achieve this
waiting. This mechaniéﬁ is a level lhynst:pctipn, 77

VflSpr;pagatq_pap_phaﬁgg O, ”
that céuses the iﬁvoking }eyelrlrp?ocessorngo stop e;ggu;ingifur;her
instructions until all gﬁher proceégo;srggQ}ng tfapg}gfqucopiegtof:agggggggg_;

finish their current level 1 processor opera;ion,;(l)g

(1) In many real processors, transiated primary mesory addrésses are held
between operations in an associative memory built into the processor., In this
case, finishing the'current level I proceasér operatfon is insufficient to ~
guarantee that no translated addresses are being held by the processor.
Consequently; the operatfon VP1$propsgate map cHange alBs has to cause all
associative memories on all processors to be Cleared.

Chapter 4 -112°'=

Chapter Five

Level 1 Processor Implementation

(The reader who is not interested in the details of an implementation of
level 1 processors may choose to skip this chapter, without much loss of

continuity.)

In this chapter, two implementations of level 1 processors on a
multiprocessor, shared primary memory computer system are described. The two
implementations are actually closely related. The first version of the
implementation relies on a slightly non~traditional hardware that uses a
specialized processor as a central agent to control the multiplexing of the
other processors of the system. Within this architecture, the implementation
of level 1 processors is quite simple to describe. The second implementation
shows how, with extra complexity and a small loss of efficiency, the
specialized processor can be simulated on general-purpose processors such as

those of Multics.

The first implementation is not intended just as a basis for developing
the second, however. Adding a microprocessor to the architecture of a system
such as the Honeywell Level 68 to implement level 1 processor multiplexing
would not be at all difficult or expensive. The changes that must be made to
the general purpose processors to implement the binding and unbinding
functions in hardware amount to simplifications of structure; they would,
however, be relatively expensive to retrofit into current processors.

- 113 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The proposed hardware architecture is relatively simple to incorporate
into newly designed multiprocessor systems. Jacorperating the ideas about
architecture described here should be worthwhile in terms of simplifying the

design of multiprogramming operating systems.

5.1 Overall Structure of the Implementation

The level 1 processor implementation follows the model of processor
multiplexing presented in chapter two, using a central agent to control

processor multiplexing.' The central agent is implemented on a dedicated

processor called the Processor Control Processor. It controls the

general-purpose processors (GPPs) of the system by controlling their binding

to level 1 processors. Within the implementation, 1evel 1 processors are

represented by level 1 processor states stored in primary memory. The central

agent is also responsible for implementing the IPCC mechanisms, coordination

T

of level 1 processors with events in I/O processors, and reconfiguration of
the GPPs, since IPCC, I/O events, and reconfiguration may indirectly require

reassignment aof GPPs to a different. set of level 1. processors.. .

Figure 5.1 shows the pattern of communication among the processors in the

system, Level 1 processors are executed on the GPPs. The PCP communicates

o s - S

with each GPP to control its assignments to level 1 processors. The

=

operations described in chapter four that allow level 1 processors to affect

other level 1 processors are all implemented in the PCP. Hhen a level 1

Chapter 5 - 114 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

of

requests

Figure 5.1
Processor Communication in Level 1 Implementation

processor executes one of these operations, its GPP actually communicates a

request to the PCP, which performs the operation.

The PCP actually handles one request from a GPP at a time. Successive
requests are queued. In order to keep the GPPs as busy as possible, once a
GPP has queued a request, it can proceed to execute, without waiting for the
request to be processed by the PCP. In the case of operations like VP1S$run,
VP1lS$stop, and VP1$advance, the GPP proceeds to execute the level | processor
that executed the operation. Other operations, like VPl$await, require that

the GPP not continue executing the level 1 processor executing the operation.

To prevent the GPP from being excessively idle during periods when a
burst of‘requests are sent to the PCP, the function of choosing the next level
l processor to run on a GPP is distributed among the GPPs. There is a shared
priority queue that all GPPs can access containing all runnable level 1

processors in priority order. Figure 5.2 shows this queue. When a GPP

- 115 - Chapter 5

. -PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

priority
queue

mmm—m———m—
l

 Figure 5.2- . .-
Priority Queue and Await Table

determines that it cannot continue running its current level 1 processor, it
will take the highest priority runnable level 1 processor from this queue, and

run it.

The PCP controls the bindings of level 1 procéessors to GPPs indirectly.
The queue of runnable level 1 proecessors is altered b§’tﬁe iészo:feflect any
changes in the runnability of the level 1 processors. KAftet such a change hés
been made, the GPPs must be reassigned. The’PCP*aéédﬁﬁfisheé'tHé réaésigﬁﬁéhf
by determining the GPPs that are imp:ope:ly_assigp?dlﬂanﬁ fqrcing_them‘to
unb ind thehselveé from the current level 1 processor, and reassign themselves

based on the newly altered queue of runnable level 1 processors.

Chapter 5 - 116 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Also distributed in each GPP is the handling of the quantum for each
level 1 processor. Each GPP keeps track of the time it spends executing each
level 1 processor, so that when the level 1 processor quantum is exceeded, the

GPP informs the PCP and reassigns itself to a runnable level 1 processor.

Interprocess Control Communication is centrélized in the PCP. The PCP
maintains a table, called the éwait table (see figure 5;2), that keeps track
of the level 1 processors that are awaiting along with the eventcount némes
and values awaited. An advance operation proceeds by haﬁing the GPP executing
the advance increment the value of the eventcount, then transmit to the PCP
the name of the eventcount and its new value. The PCP then processes this
information by finding all of the level 1 processors that should bé awakened,
and awakening them. The special eventcounts (stopped, clock, I/0 eventcounts,
outward signals) are not advanced by GPPQ, but are handled within the PCP.

The clock and I/0 processor eventcounts are handled by pefiodic polling of
their values in the PCP. The stopped and’outward_pignals eventcounts are

advanced by the PCP, and reflected to the level 1 processors.

- 117 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.2 Hardware Architecture

Although the hardware architecture is slightly different than that of a
traditional multiprocessor computer system,‘I have tried to make the number of
differences as few as possible. The GPPs of the system look very much like
the physical processors of traditional computer systems. Most of the
implémentation of level 1 processor manager is in software. I have chosen a
minimal set of hardware facilities needed to implement the level 1 processor
manager. These facilities are:
1. A mechanism that allows the PCP to interrupt the GPPs.
2. Shared primary memory to be used for communication of data
between PCP and GPPs.

3. A special mode of execution in the GPP used to allow the
implementation of the GPP part of level 1 operations in software
on the GPPs,

4. A special instruction that translates addresses within the level

1 processor environment into a version that is unaffected by
changes made to the environment specificationm.

5. A special instruction that allows the GPP to change its binding

to a new level 1 processor.

These features are discussed in detail below.

Chapter 5 - 118 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.2.1 The Processor Control Processor

The processor coatrol processor (PCP) is a highly specialized processor
that controls the multiplexing of the general-ﬁurpose processors of the
systeﬁ. It need not be a high—speed processor, nor must it have any of the
facilities needed for handling general purpose computations, such as
interrupts, faults, powerful instruction set, large memory, etc. It is

probably best implemented as a microprocessor.

The PCP communicates with the general-purpose processors of the system
through the system’s primary memory. The PCP can read and write primary
memory, although it need not store either its program, or most of its data in

primary memory.

The PCP can also send a Speéial signal, called UNBIND, on lines that
connect the PCP to each individual general-purpose processor. Figure 5.3
shows the communication paths of the system. The UNBIND signal is used by the
PCP to cause a processor to stop doing what it is doing, and find a new level

1 processor to run.

The UNBIND signal is the only interrupt-like operation in the system.
There are no interrupt signals for the PCP, since it operates by repeatedly

polling the primary memory cells of interest to it. The I/0 processors will

- 119 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

UNBIND
1/0
Processor
read read
write write

PRIMARY MEMORY

Figure 5.3
Hardware Communication Paths

communicate with level 1 processors purely through memory. If an I/0
processor needs to send a signal to a particular level 1 processor, it will
increment a memory loqation treated by the PCP as a special eventcount, and
the eventcount will be observed by the PCP and reflected to the level 1
processor. Each GPP is able to send a control signal to each I/0 proceasor to
start it executing, by advancing an eventcount (actually a counter, since it
is not handled by the normal eventcount mechanisms) thaf is polled by the 1/0

processor while the I/0 processor is stopped.

5.2.2 General-Purpose Processors
The general purpose processors (GPPs) of the éystem are much like the

general purpose processors of Multics, the IBM System/370, etc. They all

access primary memory through address translation hardware that is controlled

Chapter 5 - 120 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

by a data base in primary memory called a descriptor segment. Each GPP has a
set of internal registers, some of which are used to perform computational
operations of the level 1 processor, and some of which are used in the level 1

processor multiplexing implementation. The structure of the internal memory

CRs

DSEGP

Ip

FIP

QTMR

L1PSP"

unbind flag

master/slave flag

Figure 5.4
GPP Internal Memory

of a GPP is indicated in figure 5.4, Most items are familiar from chapter

four. The bracketed items are explained shortly. "

The GPP operates in one of two modes, master mode and slave mode. In
slave mode, the GPP is running a level 1 processor. Its insfruction pointer,
computational registers, descriptor segment pointer, and fault handler pointer
are all used in slave mode. The slave mode instructions allow the processor
to access memory through the descriptor segment, perform operations on its

computational registers, transfer, and so forth. One additional slave mode

- 121 - Chapter: 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

operation, INVOKE-LEVEL1l, allows the GPP to enter master mode for the purpose

of communicating with the PCP.

Master mode in the GPP exists so that the level 1 processor operations
that need to communicate with the PCP can ﬂo so. In master mode, the GPP has
access to the data bases in primary memory that are shared with the PCP.
Master mode would be unnecessary 1f all of the leve; 1 processor management
operations were built into the GPP hérdﬁéré; Suﬁ I ?ave attempted in this
design to make the minimal hardware changes qecessé%y for a clean design of
the level 1 implementation. Conéequently, the operations that allow the level
1 processors to communicate with the PCP will‘be software operations run in

master mode,

Master mode executes in a distinct adafessiﬂg.mode from the level 1
processor environment accessed in slave made. The separate environment
protects the code executing in master mode from errors in the level 1
processor environment. Since the level 1 processor enviroament is controlled
at a level higher than the level 1 implemeatation, level 1 cannot depend on
the correctness of the environment in any level 1 processor without causing a

cyclic dependency.

In the master mode environment, it must still be possible for the GPP to
access parameters to level 1 operations that are stored in the level 1
environment. The simplest choice is to have the master mode environment able

to access absolute core addresses directly. An alternative would be to have

Chapter 5 - 122 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

master mode use a different map, but the difficulty of converting addresses in
terms of the level 1 processor map to the equivalent addresses in a distinct
master mode map make this alternative unéttractive. When in master mode,
addresses in code executed by the GPP are interpreted as absolute core

addresses.

The special functionality of the GPP must now be discussed. The level 1
processor state pointer in the GPP is a pointer (actually an absolute core
address) to the level 1 processor statelin primery memory that corresponds to
the level 1 processor currently bound to the GPP. The GPP uses this pointer
to store the state of the level 1 pfocessoi when the GPP enters master mode.
This pointer is also used to store the feult\deta when a level 1 processor

takes a fault.

The format of a level 1 processor state block in memory is shown in
figure 5.5. The level 1 processor state block contains Information that is
available at the level 1 interface, and some that is mot. The current state,
containing computational register values (CRs), ; inseruction pointer (IP), a
fault handler pointer (FIP), a quantum timer fegister value (QTMR), and an
environment descriptor pointer (DSEGP), corresponds to the state information
presented at the level 1 interface by the bind and unbind operations. It alsp
corresponds to the state of a GPP. This is the state that is loaded into a
GPP when the GPP is bound to the level 1 processqr. The fault data,
containing computational registers (CRs), insttuction pointer, and fault code.

(FCODE), is kept here so that the VP1$get fault _state operation can access it,

- 123 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

CRs
DSEGP
level 1 .
1P processor
state
FIP
QTMR
- CRs
level 1
IpP processor
fault
FCODE state
FHH
thread
execution state internal
level 1
atomic operation data
depth
processor assignment
stop pending
priority Vi

Figure 5.5
" Level 1 Processor State Block

The GPP sets the fault state when a fault occurs, and also sets the flag that
indicates that a fault has happened (FHH). If the FHH flag is already on when
a fault occurs, the GPP unbinds itself as if the level 1 processor had
executed VP1$crasb_§ystem. The rest of the data in the state block is not

interpreted by the hardware and will be described in detail later.

Chapter 5 - 124 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

In master mode, there are two special instructions that cannot be used in
slave mode. The first, ACCESS, allows the GPP in master mode to interpret an
address relative to a specifed descriptor segment. This instruction will be
used to allow the GPP to translate data addresses from the address space of a
level 1 processor into the master mod (that is, absolute core addresses).
address space. If the ACCESS instruction enéountefs a missing-page or
missing-segment fault, it will set a condition code indicating ﬁhe fault that
occurred, and proceed to the next 1ﬁ$truction. Thé ACCESS instruction loads a
register of the GPP with the addfeés invthé master mode address space that
corresponds to the specified address in thevspecified descripéor segment. It
also loads into another register the systém—wide unique address, from the map,

of the word.

The other special masfer mode instruction is LOADSTATE. The LOADSTATE
instruction allows the GPP to load a particular level 1 processor state from
an address in the GPPs master mode environment into the GPP’s registers. The
master mode flag is then turned off, and the GPP begins executing the level 1

processor. The level 1 processor state pointer of the GPP is loaded with the

address of the level 1 processor state block named in the LOADSTATE

instruction.

Two other special registers are present in the GPP. The quantum timer
register is a register loaded from the level 1 processor state that contains a
value that is decremented once every microsecond. When the register reaches

zero, it stops decrementing.

- 125 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The unbind flag is set by the PCP‘UHBIND»signal. The .unbind flag is

checked after executing each instruction when the GPP is in slave mode.

A set

flag causes the GPP to unbind itself from the level 1 processor it is

currently executing. The GPP also'unbinds itself from the current level 1

processor when the INVOKE-LEVEL] operation is executed. -The basic cycle of

the GPP is shown in figure 5.6.

W

instruction
opcode

:= IP->word
= ipnstruction.opcode

2

’< branch on opcodej)

i
INVOKE~-LEVELL

© LOADSTATE

-

LI1PSP
CRs,

CRs,
clea

= 1nstruction.addq'
IP, QTR, FIP, DSEGP
:= LIPSP —> .
IP, QTR, FIP, DSEGP
r master mode flag

CRs
]

.req-type
= crash system

.

L1PSP -> CRs, IP, QTR

:= CRs, IP, QTR

"

yes

A’fT;LP h,

(normal igsttuctions)

[IP :=1P + 1 |

Igyeéute instructioq]

[

L1PSP -> fault CRs,
fault IP := CRs, IP
fault "‘FCODE ¢= <fau1t%

:= CRs, IP, QIR

L1PSP -> CRs, IP, QTR

s

T

N AN -
clear unbind, set IP := FIP ‘clear unbind, set
master mode. master mode.

IP ;= INVOKER IP- := UNBINDER
(see figure 5.8) (see figure 5.8)
N W k’ .
Figure 5.6
Basic GPP Cycle
Chapter 5 - 126 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.3 Data Bases

There are four data bases used in thellevel 1 processor implementation.
They are the level 1 processor state table (LIPST), the PCP request queue
(PCPRQ), the await table (AT), and the GPP control table (GCT). The first two:
data bases are accessed both by GPPs and the PCP, sokthe:e is a locking .
mechanism required for each; the AT, howevgr, is private to the PCP, so no
locking is required. The GPP data items are each only written in by one

processor so there is no need for a lock.

The level 1 processor state table congists of an ar;ay\of level 1
processor state blocks. The format of arlevel 1 processor state block has
been shown in figure 5.5. Each level 1 processor state blogk stores all of
the state information about a level 1 processor, along with certain
information used to schedule the assignments of physical processors to level 1
processors. All of the non-stopped level 1 processors are threaded into a
list in order of decreasing priority. The stopped level 1 processors are
either unthreaded, or threaded into a list called the next-stopped queue used
to implement the VPl$next stopped operation. Each level 1 processor state
block has stored in it the state of execution of the level 1 processor; it may
either be running, runnable, awaiting, stopping (a transient state on the way

to stopped), or stopped.

- 127 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The information not yet described in the level 1 processor state block is
used as follows (see figure 5.5). The thread value is used to thread the
block onto the priority queue or the next stopped queue. The execution state
is stored in the execution_state value. If the level 1 processor is running
on a GPP, the name of the GPP is stored in the state block. The atomic
operation depth contains the number of times-a VP1$begiq_atom_pperation has
been executed without a matching VP1$end_ptomic_pperation. The stop_pending
flag is used to remember that the level 1 processor must be stoppéd affér its
atowmic_operation depth reaches zero. The priority is permanently associated
with a level 1 processor, and is used to find the right placé to thread the

level 1 processor into the priority queue.

The data in the level 1 processor state table is protected by a lock
called the LIPST lock. The data in the LIPST will not change while the L1PST
lock 1s set, with one exception. A level 1 processor state block that is
marked in the running state can undergo certain modifications at any tiﬁe.
The stored registers, instruction counter, quantum timer régieter, fault
information, and PCP request type fields may be modified by the GPP running
the level 1 processor at any time while the level 1 processor state block is
marked as running; none of the remaining data may be modified excépt By

locking the LIPST lock.

The PCP request queue is a FIFO queue used to send messages to the PCP,
It is a fixed size block of storage, probably best managed as a ring buffer.

A lock called the PCP request lock prevents more than one GPP from placing

Chapter 5 - 128 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

messages in the queue at the same time. 1Its size should be chosen to minimize
the amount of time spent waiting for the PCP to free up enough space for the
next message, which waiting is done-by busy-waiting in the GPP. The queue

must be at least as large as the largest message placed in it.

The await table is kept:internally to the PCP ahd keeﬁs traék of the
mappings from eventcounts awaitednby level 1 processors to the 1éve1 1
processors awaiting, and vice versé. Its format is unimportant to the current
discussion, as long as it is possiblé to convert an eventcount name and
current value inﬁo a list of the level 1 processors.tb‘awaken, and it is
possible to delete the entries from the table ﬁhat correspond to a particulér
level 1 processor, A simple form of the table might be a list of
three~tuples: eventcount name, awaited value, and level 1 processér name.
However, there are much more effective ways of obtaining the desired

functionality than such a list.

The GPP control table contains entries for each GPP. There are two data
items in each entry. The first is a fiag that indicates whether the GPP ié
avajilable for use by level 1 or not, for reconfiguratiog. It is modified only
by the PCP. Thé second entry is a counter incremente& each time the GPP
finishes executing an unbind operation, either due to an UNBIND signal from
the PCP, or due to timer runout or INVOKE-LEVELl in the GP?;: It is used in
the implementation of VPl$propagate map change; this use is described later

with the implementation of VPl§propagate map_change.

- 129 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.4 Operation of the Processor Control Processor

The PCP has three functions to perform. F;rst, it must manage the
bindings of GPPs to level 1 processors. Secdnd, itrmust do the work of the
requests in the PCP request queue, calling for the PCP to run and stop level 1
processors, add and delete GPPs, enter level 1 processors into the await
table, and awaken the level 1 processors awaiting a particgla; advance.

Third, it must implement the special eventcounts -- the outward_signals
eventcount, the stopped eventcount, the clock eventcount, and the eventcounts

associated with I1/0 processors.

The PCP does all of these things by periodically polling the relevant
data bases, and then performing the necessary actions. Basically, éhe PCP
executes in a loop, first checking the PCP request queue for requests and
doing the ones found in the queue, then checking the special eventcounts
against the entries in the await table to see if any level 1 processors should
be awakéned, then checking the level 1 processor assignment table to make sure
that all GPPs are properly assigned and issuing the appropriate UNBIND signals

to correct any discrepancies.

There are nine kinds of requests that are sent from GPPs to the PCP
through the PCP request queue. Here the data associated with the requests and

: %
the processing done by the PCP are described. A flow chart of the operational

Chapter 5 - 130 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

cycle of the PCP appears in figure 5.7.

- 131 - Chapter 5

PCP LOOP

Y

no

B

et next request from

CPRQ. reqg-type :=

24

- 132 -

request.type
branch on req-type
ir I T . T]
add cpu crash_system run _level 1 processor stop level 1 processor
del”cpu - B deferred_sTop 7y~
set set set LiPST ‘ set LIPST lock
GPC.available] GPC.available lock . 4
on/off for off for all -
GP GPPs branch on execu-
of request tion state of VPl
4 \ 4 request of request
stopped? d
send UNBIND {pend UNBIND ' L
to GPP of to all runnable awalting| running
request GPPs yes stopped
VPl of request’ exec. exec.
execution state state state
t= ruannable i= :=
AJL stopped] | stoppe
rethread VPl 1_4_
into priority elete
queue by priorit AT
entries]
for VPl
of
<§L request
increment
A stopped special
eventcount
hread into stoppe
queue
~ K |
[clear L1PST lock]
N < W & < <
Figure 5.7
PCP Algorithm Flow Chart

Y

special clock EC :=
read time()/delta
2

- for all special ECs,
do post_await as
. above.

set LIPST lock

| L ~— |
wai ost adv e propagate map change ‘“‘Eﬂﬁﬂf—";sni;ﬁ_'"-f_—'
post_await p _advance propagate map_ g A ‘ b eT T

T
e

add EC names
values & VPl
awaiting to

: ~ ' B GPPs avaflable
to all GPPs save ptr = top ol priority
equest |

AT from queue
request
that are for —
EC in request yes
with values <=
value in requesf ¥
clear L1PST lock
set LIPST lock
state = running
r. runnable?
change state of
all VP1"s in alist
i to runnable
delete all AT entries
for VP1's in alist '
clear L1PST lock
if EC in request is
outward signalling, clear LIPST
increment : Iock
outward_signals ¥ ,
send UNBIND|[ptr := next(queue)
to all GPPs
|assigned [| S
Jp below ptr
in queue.
o — | 4 I
send UNBIND to
| _jall available GPPs

assigned to idle
states

- 133 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The add_cpu, del_cpu, and crash_system requests are sent by GPPs
executiﬁg level 1 processors that call on fhe operations VPl$add_cpu,
VPl$del cpu, and VPlscfash_pystem. The add_cpu and del_cpu requests also have
an asséciaged data item, the name of a GPP. The PCP processes these requests
5y;setting the availability flag of the particula;'GPP’to available for
add_cpu, and unavailable for del _cpu, then sending an UNBIND to the GPP. The
crash_gystém request is executed by marking all GPPs unavailable, and

broadcasting UNBIND signals to all GPPs.

The propagate map_change request is used as part of the implementation of
the VP1$propagate map_change operation. The associgted data is the name of
the processor originating the request. The PCB handles this request by
issuing an UNBIND signal to all real processors, except the processor
origihating the request. The rest of the work of the VPlsfropagatg_pap_phange
operation is done in the GPP originating the request. This will be discussed

later.

The run_level 1 processor and stop_level 1 processor requests are sent by
GPPs executing level 1 processors that call on the operationé VP1l$run and
VP1$stop. The associated data with these requests is the name of a level 1
_processor. The PCP processes these requests by locking the LIPST lock,
altering the state of the level 1 processor to runnable or stopped,

respectively, and rethreading the level 1 processor into the processor

Chapter 5 - 134 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

priority list or the next-stopped list. (1) If the level 1 processor is being
stopped, it also must have all associated entries removed from.the PCP await

table, so that the space can be reused. (2) The LIPST lock is then unlocked.

The processing of the stop_}evel_}_processorbréquest is not actually
'quite this simple. If the level 1 processor is either running or is in the
middle of an atomic operation (its atomic operation depth is non-zero), the
level 1 processor cannot be stopped immediately. In this case, instead of
changing its state to stopped, a flag will be set in the level 1 processor
state block’to indicate that a stop is pending. If the level 1 processor is
running, it will be sent an UNBIND signal to ensure its speedy stopping. The
pending stopped flag is interpreted by the GPP at the time of an unbind, and
will cause the GPP to put the level 1 proceséof ih‘fherspecial stopping state,

and then send a deferred _stop message in the PCP request queue.

The deferred_stop message is sent to the PCP under three conditioms. In
an unbind operétion on the GPP, if the pending stop flag is found on in the
current level 1 processor state block, and the level 1 processor atomic
operation. depth is zero, then a deferred stop is sent to the PCP. If the

quantum timer runs out, and the atomic.operation depth is zero, then a

(1) Whenever the next-stopped list has a new level 1 processor.added to it,
the PCP increments the special stopped eventcount, The increment is observed
later by the PCP when checking the special eventcoumts, and reflected then to
the awaiting level 1 processors.

(2) Please recall that éxeéﬁfing VP1l$run on a%stopped level 1 ﬁfocessor will

cause the VPl$await instruction to be re-executed,-so that the: information in
the PCP await table will be regenerated at that time.

- 135 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

deferred stop is sent to the PCP. If the level 1 processor executes a
VPl$end atomic_operation instruction that decrements the atomic operation
depth to zero, and the stop pending flag is on, or the quantum timer has run

out, a deferreq_ptop is sent to the PCP.

The level 1 processor sending the deferred stop message is put into the
special stopping state by the GPP. The data contained in a deferred_stop
message is the name of the level 1 processor being stopped. The PCP processes
a deferred_stop message in the same way it processes a stop_level 1 processor
request, except that it need not chéeck to see if the level 1 processor is

stoppable.

The post_advance PCP request is sent by the GPP executing an advance
operation to cause the level 1 processors awaiting the advance to be awakened.
The actual incrementing of the eventcount is done by the GPP; the PCP need
only search its await table for the level 1 processors to awaken, andrpetform
the awakening. The data sent with the post_advance request is the system—-wide

unique address of the eventcount and the value of the eventcount after

incrementation. The PCP performs this request by finding all entries in the
await table that have the same system-wide unique address with awaited values
less than or equal to the value sent in the post_advance request. It then
locks the LI1PST lock, finding all of the level 1 processors that are named in
the above-mentioned await-table entries. Tﬁe~stat§ oﬁ gach of these level 1
processors 1is changed from awaiting to runnable. When the level 1 processor
is next rﬁn, it will re-execute and find that one of thejeventcpunts has been
advanced, so it will proceed.

Chapter 5 - 136 ~

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The PCP also checks each post_advance request to see if the advance was
on an outward signalled eventcount. If so, it increments the special
outward_signals eventcount (the posting of the outward_signals eventcount

occurs later).

The last PCP request is post_await. It is sent by a GPP to the PCP after
checking the eventcounts awaited in a VPlsawaitbopeFagion, if none of the
eventcounfs>is greater than or equal to the vglue§ awaited. The da;a sent to
the PCP are the name of the level 1 proceésor awaiting, and pairs of
system~wide unique addresses of eventcounts and_awaited values. (1) The PCP
responds to these requests by adding entries to the PCP await queue for each

of the eventcounts.

After processing the PCP»request queue, ;he PCP handles the special
eventcounts. The system’s calendar clock is readiby the PCP and it decides
whether to increment the clock eventcount. The PCP then reads each special
eventcount, getting its current value. rIt then acts as if it receiveﬂ a
post_advance for each special eventcount, searching the await table for
awalting level 1 processors, and awakeﬁing them. The PCP can always directly
access the special eventcounts. There are only a few such even;copnts. Ihey

are the stopped eventcount, the clock eventcount, the“outwarq_gignals

(1) Please note that the limit on the number of eventcounts in a VPl$await
operation is associated both with the maximum size message that is sent
through the PCP request queue, and with the maximum number of entries that can
be placed in the PCP await table. The more eventcounts that a level 1
processor can await, the larger these tables.

- 137 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

eventcount, and the I/0 device eventcounts. These eventcounts are handled
specially in the PCP because the agents that increment the eventcounts do not
use the PCP request queue, and so do not use post_advance requests to reflect

the incrementing to level 1 processors.

The final step of the PCP is to update the assignments of GPPs to reflect
the changes in the level 1 processor states and bindings; This step is done
by locking the LlPST‘lock, and inspecting the assignments of GPPs refleéted in
the level 1 processor states. The PCP then issues UNBIND signals to a seﬁiof
GPPs so that the GPPs will reassign themselves to the correct set of level 1

processors, based on the priority ordering‘ofythe level 1 processors.

The algorithm used to choose the GPPs to unbind is very simple. The PCP
knows how many GPPs are on the system. By starting at the top ofﬂthe priority
queue in the level 1 processor state table, and counting runniﬁg and runnable
level 1 prbcessors as the queue is traversed until as many are found as there
are GPPs, the PCP can find the set of level 1 processors that should bev

running. If any GPPs are running lower priority level 1 processors, they

should be preempted by sending an UNBIND signal., The PCP thus traverses the
rest of the priority queue, sending UNBIND signals to GPPs running any lower

priority level 1 processors.

Chapter 5 - 138 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.5 GPP operation

The way that level 1 processor operations are implemented on GPPs is by
using the INVOKE-LEVEL] instruction. The INVOKE—LEVELI instruction causes ;he
GPP to enter master mode, and to transfer to‘the unbind handler. A flag is
set in the level 1 processor state by the INVOKE-LEVEL1 insﬁruction to
indicate that a INVOKE-LEVEL! has been executed. Tﬂeitype of level 1
processor operation to be performed is transmitted in-.a register, and the
addresses of any data, such as eventcounts, etc., required by the operation

are transmitted through registers.

To simplify the discussion of the unbind operation, we nmust first discuss
the handling of exceptions, such as missing page exceptions, in accessing the
data associated with a particular operation. The data will be accessed by
first using the ACCESS master mode instruction to convert the address of the
data in the address space of the level 1 processor into an address that is
reachable in the master mode address space. If the ACCESS instruction
encounters a missing-page exception, it reflects this in the condition code,
rather than faulting. If a missing page condition occurs, the code in the
unbind sequence will abort the current operation, and update the level 1
processor state to simulate a missing-page fault, moving the current coples of

the computational registers to the fault data, along with the instruction

- 139 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

counter, and setting the fault code to indicate the type of fault encountered.
The current instruction counter of the level 1 processor will then be set to
the fault handler address. The GPP will then proceed with finding a level 1

processor to execute.

If no fault is detected by the ACCESS instruction, then the GPP can
perform the rest of the operation correctly. Having determined the address of
data in the master mode environment, the GPP can then proceed to access these

objects, without fear of encountering faults.

The unbinder that executes in master mode in all GPPs 1is described in the

flowchart in figure 5.8.

Chapter 5 . - 140 -

~ Figure 5.8
GPP Responses to UNBIND and
INVOKE-LEVEL1

bet L1PST lock

\REY

rga-tgpet= curVP’s request register
ACCESS all -parameters for request
getting master mode addresses & UlDs

T

: — I
no exception

¢urVP1’s fault CRs:=CRs
Fault IP:=IP, fault FCODE
:= page fault, IP:=FIP

J

REQUEST
" Npdge 142

stop pending
or QT§=0) and
atomic depth=Q

and FHH not
set?

false

curVPl’s execution

curVPl's execution
state := stopping

clear,iIQSTlipck'

add to POPRY:

deferred stop, curVP1 .

clear #CFR lock LY

LOADSTATE(curVPl)

state := runnable set LIPST lock ¢§) '
—~ ~REALLY AWALTING
w(from page 142)
Y R
find highest priority none
runnable VPl in y
priority queue found
2
urVPl:=highest friorit curVPl:=GPP idle statd
{___ runpable VP 2
7
cur s executilon
L_state := rupning _)
clear LIPST lock
curGPP’ s GPC.codhter
1= GPC-counter»+ 1
curVpel
prog: mt.d
pending an es
atgmic dg th=0 y X .
nd not FHH2A curVP1“s fault CRs := CRs-
fault IP := IP
fault FCODE := processor interrupt]
IP := FIP
: 7
- 141 -

1 288
YAANTIONN

ONIL

BUTJITEME- = ¢
uoIINOIX® 8, [JAIND

91 ased
IVMY 2'1'TV3Y

ummw
ut d01ad 3es

10

PUTq/puT QW
P Anmwu mw
- a3els o
\EOuwha00v

xudu_ 1| | 8ae 90ady
Bxe|. " Uo 3IrIV

.3 sa1n um
ITEA®]80
ED¥dDd o3 ppe

Aﬂ CEYC
- m > ™~
anTeA 8a® mo g)
.wMMulvmp .mu=m>vammom
0¥dDd o3 ppel|:d3dDd 03 ppe
% .
3ep Jine
3o ‘ysdsp Ojwole
Buyjuawaxoap ao
UTJuadWaIdul sB yons)
dISd TdAIno uo 90T °1
I1Sdi1 3°8 worivaado wmaozaad bydod 18 jo8
uhﬁ@ wumum!wommmoquHvuouwou ﬂ
. -I93UT I08S3D BIBp JIney 313§ - -
— . ®8ueyo , - -oad 398 uojjeaado ofmole pua ndo va ‘ndo ppe
dew o3e3edoad poddols 3xau purqun ‘puiq uoiieaado Jjwo3I® urlaq oum ‘uni, 9oueApe uﬁwzm
L i 1 1 1

—ONNU -ba31 uo yo ﬁmun_

/TSI TR

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The basic flow of the unbinder is quite simple. If the unbind is due to an
INVOKE-LEVEL] instruction, the request is handled. Theq, the L1IPST lock is
locked, and the level | processor is checked to see if it should be stopped.
If it should be stopped, the level 1 processor is placed in the stopping state
and a request is sent to the PCP. If not, it is marked as runnable. The GPP
then searches the priority queue for the higheét briority fuﬂnablé level 1
processor. It is marked as running, the‘LlPST lock is unlocked, and the GPP
uses the LOADSTATE instruction to run the level 1 ptocessdr, having set up a
simulated fault if a processor interrupt is to be sent to the level 1

processor.

The qnly exception to this basic flow is the handling of the PCP request
associated with fhe VPl$await instruction. In order to ensure that an advance
operation does not happen and get inserted into the PCP request queue between
the time the eventcounts are tested and tbe time the post_await message is
entered in ﬁhe PCP request queue, the eventcounts are tested while the PCP
request queue lock is locked. The;GPP then decides whether to enter the
post_await message into the PCP request queue or not, and unlocks the PCP
request queue., (1) If the post_await message is entered, ghe levg;,l
processor is ﬁarked as awailting, othérwise, the 1nstructign_couqter is
advanced passed the INVOKE~-LEVELI] instructioﬁ, and the unbind proceeds as

before.

(1) The problem I am solving here is the same critical race Saltzer [25]
describes, which in his case necessitates a wakeup-~waiting switch that is
tested under a lock. The eventcounts themselves serve the same purpose as the
wakeup-waiting switch in this implementation.

- 143 - ‘ Chapter 5

ar

'PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The advance operation is very simple. It simply increments the memory
word of the eventcount, and transmits the new value, and system-wide unique
address (obtained in the ACCESS instrﬁction) through the PCP request queue, in

a post_advance request.

The propagate map change operation 1s fairly subtle in its operation.
The implementation works by causing all GPPs other than the current one to
unbind theméelves, then waiting until they complete their next unbind
operation. To know when each GPP finishes its next unbind operation, there is
a table of counters, one for each GPP on the system. Each time a GPP
completes an unbind operation, it increments its counter. The
propagate_map_change operation is done in three steps. First, the GPP reads
the current values of the counters associated'&ith~eécﬁ other GPP. 'Second, it
sends a propagate map change PCP request. Third, it busy-waits unfil each
other GPP’s counter is greater than the value of the'couhter obtained in the
first step. By the time the third step is completed, all GPPs will have
completed at least one unbind operation after the VP1$propagatg_pap_phange
operation started. ‘Consequently, there will be no copies of absolute
addresses obtained from the maps retained in the processors that were

generated before the VP1$propagat¢_pap_phénge started.

The add_cpu, del cpu, crash_system, run, and stop operations all consist
of transmitting PCP requests of the associated type, with the arguments to the

operations as data.

Chapter 5 - 144 -~

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Several of the'operations, however, are handled without the PCP’s help.
The VP1l$get fault_data operation is done by copying the data from the level 1
processor state block. VPl$restore fault_data cppies its argument into the
current state in the fault state block. VP1$begin atomic_operation increments
the atomic operation depth in the level 1 processor state, and
VP1$end_atomic_operation decrements that value. After doing the work of any
of these operations, the GPP proceeds to finish the unbinding operation

normally, finding the next level 1 processor to execute.

The VP1$bind, VPl$unbind, and VPI$set_processop_}nterrupt operations
operate similarly. They all require that the level 1 processor they operate
on be stopped. Consequently, they lock the LIPST lock, then test to see if
the level 1 processor to be operated on is stopped. If so, the operation is
performed. If not, an error status is stored in the status code of the

operations. The LIPST lock is then unlocked.

The final operation to be discussed is the VPl $next_stopped operation.
This operation just locks the LIPST lock, gets the next level 1 processor on
the next-stopped queue, and stores its name in the return value. The LIPST

lock is then unlocked.

With the exception of the await operation when it decides to send a
post_await request, the instruction counter is always incremented by 1 after
handling a INVOKE-LEVEL1 instruction, before finishing the unbind. This
causes the instruction counter to skip over the INVOKE-LEVEL1 instruction just

executed.

- 145 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.6 Implementing Level 1 Processors on Traditional Hardware

If it is not possible to have a dedicated processof tb run the PCP, it is
still possible to adapt this design to work. This adaptatidn is done by
simulating the PCP on the general purpose processors that are.évailable.
Similarly, mapping the interrupts sent.By I/b devices into increments on
special eventcounts is not difficult. Both these ideas are discussed in the
rest of the chapter, to show that the design can be eagily adapted to
architectures similar to the Honeywell 68/80 system that currently supports

"the Multics system.

5.7 Simulating the Processor Control Processor

The necessary qualities of the PCP for implementing the level 1 processor
design given in this chapter are that it must have its own environment and
state, and that it always must be ready when there are tasks for it to do. It

must also be able to send an UNBIND signal to any other processor.

+
While these characteristics are true of a dedicated hardware processor,
it is also possible to obtain them by other schemes. The scheme used here
will be to recognize that the PCP need not always be executing. When it is

not executing, its state can be represented in primary memory. The same

Chapter 5 - 146 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

techniques that make processor multiplexing possible will enable simulating

the PCP on a multiprocessor architecture, -

The PCP’s state (computational registers, descriptor segment pointer)
will be stored in primary memory in a block called the PCP state block. In
addition, the PCP state block will contain a lock.called the PCP lock, and a

flag, called the PCP-has-work flag.

Basically, we simulate the PCP by attempting to have the currently
executing physical processor load the PCP state and run the PCP whenever the
PCP is given more work to do, such as, for example, when a new request is
entered into the PCP réquest queue. Some other processor may be executing.in
the PCP, however, so the PCP lock is usedrto prevent two processors from
simultaneously entering the PCP. In order to enable-any'procegsor to run the
PCP, each processor must be able to send UNBIND»signgls fo all other
processors. Further, when running the.PCP, there must be some mechanism that
prevents UNBIND signals sent to the current processor from taking effect until

the. processor stops executing the PCP.

The detailed algorithm executed évery time sométhingris enteredrinto the
PCP request queue is as follows. The PCP-haé-wo;k flag is set. The processor
attempts to set the PCf 1qck. If the lock is ai?ead& ;gt, the processor
continues witﬁ what it was doing; presﬁmably it'is executing some version of
the unbind op;ration shown in tﬁe’previbus design; so it continues to unbind

itself. If the processor succeeds in setﬁing the ioék; it then clears the

- 147 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

PCP-has-Vork flag, and loads the state from the PCP state block. When the PCP
processes all of the work currently queued for it, it gives up the processor
by storing its state in the PCP state block, unlocking the PCP lock, and then
checking the PCP-has-work flag. If the PCP—hés-wdfk flag is oh, some other
processor has given more work to the PCP since the current précessor started
running the PCP. Consequently, the current brocessor tries to run the PCP,

and gives up only if it finﬁs the PCP lock alfeady set. (1)

In order for this simulation to work, it is necessary to run the PCP in
this way whenever it must do some processing. bAs we ﬁave seen there are three
kinds of processing that the PCP does. They are handling the PCP request
queue, noticing changes in special eventéounté and handling the clock, and
making sure that the assignments of processors to level 1 processors is
correct with respect to priority assignmenté. Handling the PCP request queue
is simple in the simulation. Wé jusf éhangé the algofithm for sending PCP

requests to always try to run the PCP after placing a request.

Handling special eventcounts is not 80 simple. We would like the PCP to
run relatively quickly after a special eventcount is incremented. There are
three kinds of special eventcounts. The stéﬁped eventcount'is'simple to
handle, since it is ihcremented only by the PCP itself,'so the PCP 1is always
running after incrementing the stopped eventéount. Thé clock eventcount is

less simple. If there is a way to set an alarmclock in the system that will

" (1) The PCP-has-work flag is really a wakeup-waiting switch for the PCP, if
you imagine giving up the processor by the PCP as a block.

Chapter 5 - 148 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

send an UNBIND signal to some processor periodically, then the GPP can always
check the current clock value at the start of the UNBIND handler to see 1f the
PCP should be run. This solution can also handle the,checking of the other
special eventcounts incremented by I1/0 devices, since the alarmclock can be
set to go off with a frequency that gives an optimal rate of polling of the
special eventcounts. The major cost of simulatihg the PCP on the other
processors of the system arises from the need to unbind processors more

frequently to handle the clock,

5.8 I/0 Devices That Send Interrupts

Traditionally, I/0 devices send interrupts to the gsystem to signal the
completion of I/0 operations. Up to this point, we have been assuming that
1/0 devices signalled tﬁe completion of I/0 operatiogs, or other events
requiring immediate attention of a level 1 processor, by incrementing memory
words that the PCP then handled as eventcounts. The PCP then reflected these

changes as advances, detecting them by periodic polling.

If the more traditional method of having the I/0 devices send iﬁterrupt |
signals to the GPPs is used, the incrementing of eéventcounts can be simulated
by having the interrupt handlers of the system do nothing but increment the
appropriate memory words. The PCP will periodically poll these memory words,
and reflect changes to them by awakening level 1 processors that await changes

to those words.

- 149 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Responsiveness is a question here. If the polling frequency of the PCP
is controlled by a clock, as above, in order to get very fast responée to I/0
device signals, the polling frequency must bevvery high. This has a cost, in
that most times the clock forces the PCP to run, there will be nothing for it
to do. Consequently, the best choice is to run the"ciock s0 that it
interrupts the processors only as frequentlf as necessary to cause the clock
eventcount to work., The interrupt handlers, in additionrto incrementing the
eventcount associated with the device causing the interrupt, will attempt to
run the PCP. This choice guarantees that when the PCP 1is run, it has

something to do.

5.9 Summary

In this chapter I have shown how to implement level‘l processors using a
structure based on a central agent. The first‘implemenﬁation is developed
using a dedicated processor for the centéﬁl agent. Then, for an
implementation more suitable for traditional muléiprdcessor architectures, I
showed how the dedicated processor can be simulated without a dedicated

processor on the general-purpose processors of the system,

The simplicity of the implementation in either case derives primarily
from the centralized structure. It is clear in this structure how the

assignments of level 1 processors to GPPs is controlléd.

Chapter 5 - 150 -

Chapter Six

Level 2 Processor Interface and Implementation

The second level virtual processors are used to run user computations in
the computer system. In this chapter, the interface and implementation of
level 2 processors are described. The level 2 interface is quite similar.to

the level 1 interface, with a smaller number of operations.

There are three major differences betyeenﬂlgvel lwgnd leyel 2, however.
First, since level 2 primitives are visible at the perimeter of the security
kernel, protection mechanisms are very important‘toypreyent unauthorized
interference between level 2 processors. The level 2 interface is designed so
that privileged information is not accessible at the interface. The
authorization to use particular level 2 operations is provided by the ordinary

access control mechanisms used to protect stored information.

Second, the level 2 implementation is partitioqed into two parts: a
fixed mechanism for multiplexing level 1 processors, and a policy mechanism
that controls the rate of resource usage by ;he»level,z processors. The
policy mechanism is designed-to be modifiable byﬂanyadg}n;strator>at an
individual computer installation without the need to re~-verify the security of

data in the system.

- 151 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Third, the IPCC mechanism provided at level 2 is more flexible than that
of level 1. The await operation can await a larger number of eventcounts. A
process interrupt facility is provided that is really just a special case of
the await operation. The await operation also takes care of outward
signalling eventcounts. The IPCC mechanisms are complétely protected by the
access control mechanisms that apply to segments containing eventcouﬁté;
there is no need for a special protection mechénism to pfevent unauthorized

interprocess control communication.

In this chapter, the interfaces to level 2 are discussed first. The
overall structure of the implementation then is discussed, and the isolation

of scheduling policy from mechanism is explained.

6.1 Level 2 Processor Interfaces

At level 2 there are two sets of operations that allow control of level 2
processors. The creation and deletion operations manage the set of level 2
processors that are in existence at any time. The IPCC operations allow‘
communication between level 2 processors. These two sets are the only
operations that are provided at the level 2 interface for thé control of level

2 processors.

Some internal interfaces are important because they form the interface

between the scheduling policy and the scheduling mechanism in the level 2

Chapter 6 - 152 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

implementation. These interfaces are discussed later in the description of

the implementation.

6.1.1 Creation and Deletion of Processors

Unlike the first level processor manager, w@igh implements a fixed set of
processors, the second level processor manager allows for creation and
deletion of‘second level ﬁrocessors. This facility makes the assignment of
processors to user computations much simpler -- whenever a user wants to start
some process (as when he logs in to the computer system) he can just have a

new processor created ‘on which to run that process.

Initiation of a process running on a level 2 processor requires
fabricating an environment fér tﬁe processor to execute in, creating a level 2
processor to perform the process, and starting the level Z_prqcessor\running
at a particular point in the environment. In this thes;§, I assume that the
environment is cfeated and maintained outside the level 2 processor
implementaﬁion, by an environment type manager. Aughorization to initiate a
process in a particular environment, with a particular initial execution
point, is handled at a higher level in thé system. Montgomery [18] has
discussed a mechanism for protection of procéSs'initiétion. His mechanism

should be used in conjunction with my design.

- 153 -~ Chapter 6

'PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The process initiation qperatign starts by first verifying the right of
the level 2 processor invoking the kernel process initiation operation to
create a process that starts with the particular initial execution point in
the specified environment. This verification is done within Montgomery’s
model, Then, it creates an environment deécriptioﬂ (suchkasua Mﬁlticsr
descriptor segment) for the specified environment, by calling on the
environment description manager. Inside the seéurity kerhél, it éhen passes
the environment description and initial execution ;oint to the levelri
operation that creates the lével 2 processor and sééfté iﬁyrﬁnning at the

initial execution point.

The level 2 operation that creates and starts.a level 2 processor running
in a particular environment with a particular execution point is the operation

VP2$create_proceésor'(envptr,'Startptf,'schédciass;wgfocnamej
This operation takes a name of an envirdnment (envptr), a point within the
environment to start executing (stértptr), and arséhédulingﬂcléss
(schedclass). It creates a level 2 prdcéséor th#t i; ﬁ;med‘érbcﬁame, and
starts it running at the:initial executibn\boint. ;The‘;che&class parameter is
information passed to the Schéduling poliéy mech;nis; of tﬁé level lerdcéssor

manager to control the rate of resource déage of the created processor.

Protection of level 2 processors from destruction is also at a higher
level in the security kernel of the system than level 2., The level 2
operation used to destroy a level 2 processor is

VP2$destroy_processor (procname, envptr).

Chapter 6 - 154 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

This operation destroys the level 2 processor named procname. The level 2
processor is not destroyed until it becomes stopped at level 1, so that any
kernel operations in progress will complete. VP24destroy_processor does not
return until the processor named procname is destroyed. The environment of
the processor is not destroyed by this operation.l The environment ptr
(envptr) is returned so that the higher levei process termination operation

can destroy the environment,

6.1.2 IPCC Interfaces

IPCC among level 2 processors, like IPCC among level 1 processors, is

done using eventcounts. Eventcounts are implemented as words in virtual

memory segments. Protection of eventcounts is accomplished by using the
virtual memory protection mechanisms. An advance operation requires that the

level 2 processor executing the advance have both read— and write—permission

to the eventcount, while an await operation requires only read-permission.

Since segment protection is used to prevent unauthorized release of and
interference with (modification of) information sent through the interprocess
control communication mechanism, ensuring various security policies is
simplified. To confine a level 2 processor from transmitting information to
unauthorized receivers through both eventcounts and segments, one only has to
restrict the set of segments it has write-permission to. 1f the set of

segments it can write cannot be read by unauthorized receivers, then the

- 155 ~ Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING ‘SYSTEM

confinement is assured. IPCC using eventcounts does not introduce a new
information channel from the confined processor, since sending information via

eventcount IPCC requires advancing eventcounts, and thus modifying segments.-

Similarly, a level 2 processor can be protected from unauthorized
interference with its IPCC, by preventing unauthorized level 2 processors from

having modify-permission to eventcounts that it awaits.

The await operation at level 2 has new functionality over the level 1
await operation. First of all, it allows waiting on outward-signalling
eventcounts. Thus, the eventcounts that can be awaited By levei 2 await
operations are those that are advanced at level 2, and those that are in the
set of specially handled outward-signélliné efeﬁtcéunts (advanced at level 1).
Second, the number of eventcounts éﬁat can be simulfanéously awéited is not
restricted to a small number in levelfi.‘ g levelxizprocessor can‘await a
large number of eventcounts simultanéously. Tﬁé difference inrthe nqmber of
eventcounts that can be awaited reflects fhe co;t of stofage Qsed iﬁ the level

1 and level 2 implementétions.

The operations on eventcounts at lé;éijé are:
VP2$await (ecl, valuel, ecé, value2, ...) |
and o
VP2$advance (ec).
VP2$await waits until qu is greater ﬁhan orbequ;l £o vélqu, for éome pair of

arguments n. VP2$advance advances the eventcount gpecified. VP2$await

Chapter 6 - 156 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

requires read permission on all of its parameters. VP2$advance requires both

read- and write-permission.

6.1.3 Processor Interrupts

A common feature of many operating systems is to alloy a process is to
receive a pseudo-interrupt when certain external things happen. For example,
a user of Multics can, by hitting the attention key on Hié terminal, interrupt
the program he is currently running. The hahdlep fo: this interrupt reads
commands from the terminal, allowingbtheruser to inspect the state of the
program, modify its environment; ahd debug the ﬁrogram. ThéAuser can thus
Stop a runaway program, which might be executing in an infinité ioop, and

debug it,

One way to model this proceésor inteftupt mechaniém woﬁld be to assoclate
two level 2 processors with the user’s combﬁtation. See figure 6.1. One of
the level 2 processors, called the slave procéssor,,runs the user’s program,
while another, called the control proceésor, waits for thé attention key to be
struck. The attention key being struck advances éﬁ>eventcoﬁnt associated with
the attention key. The control'proéeSSor then proceeds pést the await, and
causes the slave processor to stop (assume, hypothefically,‘that a level 2
processor stop operation exists). Then the control .processor can read
commands from the teletype and execute them,,tovdebugAthe sﬁopped slave

processor, The slave processor can then be restarted (using a hypothetical

- 157 = Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

user I slave
program processor

loop:
await(attn...ﬁ‘s
stop(slave)

attention
key

control
rocesso

run(slave)
goto loop

Figure 6.1
Processor Interrupt Model

level 2 run primitive), and the control process can go back to waiting for the

attention key to be struck.

Directly implementing this model of processor interrupts is quite costly,
since at any one time half of the level 2 processors are either awaiting an
attention key to be‘struck, or stoppéd. ‘Furthe;, some mechanism would be
needed to insure that the control processor is bound to a level 1 processor
whenever its slave procéssor is.> Otherwise, when the control processor needs
to run, to stop the slave processor quickly, it can be held up if there is not
a free level 1 processor to run the control prﬁcessor. However, this”modgl is

useful in inventing a simple processor interrupt facility at level 2.

Instead of stopping one processor and'staiting another to read commands,
the processor interrupt facility simply forces a fault to occur in the slave

processor. The fault handler in the processor, upon determining that the

Chapter 6 - 158 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

fault was a processor interrupt, will transfer to a processor interrupt
handler. This processor interrupt handler can be thought of as a potential
control processor that is awaiting some condition to dccur. .When the
condition occurs the control processor is created, the slave processor is
stopped, and the processor interrupt handler is executed in the control

processor,

The conditions under which the processor interrupt handler will be
entered are specified as if the processor interrupt handler were actually
executing an await operation on a set of eventcounts. fhus; there is an
operation that a level 2 processor can perform, called

VP2$seq_processoq_interrupt (ecl, valuel, ec2, valﬁez, ..;)

The effect of this operation is as if a level 2 processor were created in the
same environment, that begins by executing a VP2$awaiE operation on the
eventcount-value pairs specified, and after the await returns, calls the
processor interrupt handler. (1) When the handler returns, the stopped level
2 processor will be restarted at the point where it was stopped by the
interrupt. While the interrupt handler is executing, the stopped level 2

processor cannot run.

(1) The processor interrupt is initially received by the fault handler set up
in the level 1 processor. I assume that this fault handler determines the
fault type and reflects it to a set of higher level fault handlers. The fault
handler for each type of fault can be changed through an interface that
controls the level 1 fault handler called the fault manager. The program to
be called upon a processor interrupt is specified through the fault manager
interface.

- 159 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Once the handler is entered, the interrupt conditions are reset, so there
are no interrupts during the time the handler is deciding what to do to handle
the interrupt. The handler reenables intet:upts by calling
VP2$set_processor_interrupt again. At any particular point. in time, either no
handlerris set, or one has been set. Attempting,to use
VP2$set_processor_interrupt to set up two handlers that are invoked under
different conditions causes the new handler to completely supersede the old

one.

In order to interrupt a process, then, one need merely advance onerf the
eventcounts specified in the call to VPZ$segﬂprocessog_;nterrupt, Having the
level 2 processor itself specify the conditions under which it is to be
interrupted allows protection by the access control on eventcounts against
malicious attempts to send interrupts. Further, programs running on the
processor can be quite flexible in choosing the set of conditions that cause
processor interrupts. The clock eventcount, I/0 eventcounts, or any level 2

eventcount can be made to cause an interrupt.

Chapter 6 - 160 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

6.2 Structure of the Second Level Processor Manager

The level 2 processor implementation is based on a relatiseiy centralized
processor multiplexing algorithm. The multiplexing of levei 1 processors
among level 2 proceSSOrs is done by two dedicated level 1 prscessors, called
the unbinder and the binder/scheduler. A third dedicated level 1 processor
handles outward signalling of eventcounts. Not ail of the work is done by the
dedicated level 1 processors, however. ihe'creation and deletion operations
are distributed in the processors that do ihe;iniciation and termination of
processes. The IPCC operations are distributed among the level 2 processors,

to some extent.

There are four data bases shared among the parts of the level 2 processcr
impiementation. They are the level 2 processor table, which contains the
state of each level 2 processor, the level 2 await table, which keeps track of
all of the eventcounts being awaited by level 2 processors, the level 2
reschedule queue, which is a list of level 2 processors that are candidates
for rescheduling, and the free level 1 processor list, that contains a list of

level 1 processors that can be bound to level 2 processors.

The processors and data bases of the level 2 implementation are shown in
figure 6.2. The binder/scheduler processor executes in two domains. In the

binder domain, the mechanisms for binding level 2 processors to level 1

- 161 - Chapter 6

. PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

level 1 processors
multiplexed by level 2

free level 1 processors y* inﬁerrupt
set

binder/ \ S rescheduliag}
scheduler queue

3 levelf 2 »

Drocessor) level 2
‘PLOCEsSsors

executin
- state 3 at Tof- 7
table level 1
Figure 6.2

Processors and Data Bases of Levei 2
processors are found. The scheduler domain is a less privileged domain that
implements the particular scheduling policy fér the level'é prbceséors. 'The
scheduler domain can call on a small set of primitives to control the actions
of the binder domain. These primitives are discussed later in this chapter.
They are designed so that the scheduling policy may be wiitten without

compromising the security of the system.

Chapter 6 - 162 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

6.2.1 Level 2 Data Bases

Before describing the actions of the level 1] processors that make up the
level 2 implementation, I describe in mbre detaii‘rhe four level 2 data bases.
All of these data bases are protected by avéingle iock; called the level 2
processor lock. Waiting for the level 2 proc;asor lock to be unlocked is done
by awaiting the level 2 lock eventcount rharfis édvancéd (using VPl$advance)
each time the lock is unlocked. To ensure thar-rhe level 2 operations

operating under the level 2 processor iock aognot deadlpck, level 2 processors

accessing these data bases must do so ﬁhilefunétoppableiat level 1.

The level 2 processor table is a table containing one entry for each
level 2 processor that exists. Its function is similar to the function of the
level 1 processor state table. The data of the ievelnzrprocessor table is

stored in a virtual memory segment.

Figure 6.3 illustrates the format of a level 2 processor table entry.
Each entry of the level 2 processor table contains a state description of the
level 2 processor in a format suitable for calling Lhe VP1$bind operation.
Some of the data in this description is in a different form, however. The
pointer to the environment descrlption is not a primary memory address at this
level, but a name that can be presented to the environment description manager

operation that places the enviromment description in primaryihemory. In

- 163 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

CRs

IP

FIP

environment level 1
descriptor state

quantum
allocated

execution
state

delete
pending

interrupt
pending

pre—~empt
pending

awaited EC ' - '
list \

interrupt EC ,
list -1

1
l
|
[
I
!
|

await
table

. P—\H‘—

.
-

o e e - ——)

r
|
i
I
|
I
i
.

private EC

another

resched. queue level 2 .
thread - processor

table entry

resource -usage
statistics

Figure 6.3
Level 2 Processor Table Entry

addition to the state description, there is a value that represents the

execution state of the level 2 processor -- running on 'a level 1 processor,

Chapter 6 - 164 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

runnable, awaiting some eventcounts (and not bound to a level 1 processor), or
queued for rescheduling. Also in each entry are three flags that control ‘the
action taken by the unbinder ~- delete pending, processor interrupt peading,
and pre-empt pending. The level 2 processor table ;i;e has two pointers to
lists in the aﬁait table, one forrawaited evantcounts, and one for processor
interrupt eventcounts. A private..eventcountwie stored inieach processor
table entry to be used in the await operation described’shortiy. »Associated

with each entry is a set of resource usage statistics maintained for use by

the scheduling policy in making decisions. -

The await table is primariiy a’mapping”fromieventcodnt”names to level 2
processors awaiting those eventcounts. Given an eventcount name, and a value,
one can inspect the await table and find all level 2 processors that should be
awakened when the eventcount is advanced to the specified value. A suitable
representation for the await table is shown in figuter6.4. The await table
consists of an eventcount map that converts an eventcount name into a list of
await table entries. Each entry on the list contains a‘value awaited
Entries on the list are sorted in increasing order of value awaited, s0 that
the set of entries less than or equal to the current value of the eventcount
can be found efficiently. Each entry aleo containsia pointer to a level 2
processor table entry that indicates the‘processor that is interested in this
particular value of the eventcount. A flag in the entry Indicatés whether the
entry corresponds to an eventcount being- awaited' by the level 2 processor, or

to an eventcount used in,VP2$9et_pr6cessor;interrupt.“"T&nhlly, all of ‘the

- 165 -~ - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

table indexed
by eventcount name

- - e o~

list sorted by increasing value

eventcount value value
name S
interesting -] interrupt/ interrupt/ ‘
value list ™~ awalt swait
outward sig- | next value T next value o’
nalling thread —\\
) - level 2 : level 2 N
| \ \ I~ processor processor -+
‘ ! B) .
! ! next entry next entry .-,
for processor for processor
level 2 | . et i -
processor
~table
entry another
value
entry
Figure 6.4

Await Table Structure

entries for a particular processor are threaded ineo two lists, one for

awaited eventcounts, and one for processof interrupt eventcounts. All of the #
outward signalling eventcounts are alsd listed together in a spgcial list,

used by the level 2 processor that handles bﬁtward signals. The await tgﬁle

&

is stored in a virtual memory segment.

The rescheduling queue is a list of level 2 processors that are
candidates for rescheduling. The level 2 processor table entries each have a

thread pointer that allows level 2 processors to be threaded onto this list.

Chapter 6 - 166 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Associated with the rescheduling queue is an eventcount that is advanced each

time a level 2 processor is added to the queue.

The free level 1 processor list 1is justya»list of the level 1 processors
that are free for the binder to bind level 2 processors to. Level 1
processors are added to the list each time level 2 processors are unbound from
them. Binding a level 2 processor to a level i processpr is done by selecting
one of the free level 1 processors on the 1list, and binding to that level 1
processor. An eventcount is associated with the free level 1 processor queue.

It is advanced each time a level lfpropessorfiSpraced in the free queue.

One other data base is used in the impiementation, but 'is completely
private to the scheduler domain of‘the*binder[schednler$proceSsor. It is

called the scheduler queue, and is disciissed in the description of the

scheduler.

6.2.2 Processes of the Second Level Manager

The three processes that are part of the 1§§e1 2 manager run on dedicated
level 1 processors. Each of these processes perfqrms one particular class of
operations, waiting for a particular event to happen, then interacting with
the level l implementation and the level 2 data bases to perform its function.
They are implemented on distinct processors for two reasons -— their operation

is only 1oosely coupled, S0 it would add complexity to try to specify the

- 167 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

order of their operations, and the tasks performed by each of these processors

can proceed in parallel to a reasonable degree.

The binder/scheduler and the unbinder processors implement the bind and

unbind operations of the model of processor multiplexing described in chapter

multiplexed level 1
processors running
level 2 processors

ree level 1
Drocessors

| rescheduling
queue

stopped
_level 1
processors

schedule

pending
interrupt

binder/
scheduler

awaiting deleted

scheduling
queues

level 2
processor

level 2
processor

awaiting

using level 2 using
VP2$create processors VP2§delete
processor processo

Figure 6.5
‘Actions of Binder/Scheduler and Unbinder

two. Figure 6.5 illustrates the actions of the binder/scheduler and the
unbinder. When a level 2 processor is stopped at level 1, due to exceeding

its quantum or an explicit VP1$stop operation, the unbinder processor awakens

and determines what to do with the level 2 processor. It uses the

Chapter 6 - 168 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

VP1$nexq_§topped operation to get.the name of the level 1 processor, and
translates this into the name of the level 2 processor that is stopped. If
the level 2 processor table entry for the stopped processor indicates that a
delete is pending, the unbinder performs the deletion. If a processor
interrupt is pending, and rescheduling has not been explicitly requested by
the scheduler, the unbinder uses VPI$sét;pr§céséop;inferfﬁpt‘andvVPi$run to
cause the processor interrupt to happen. IOthefwise, the level 2 processor is
unbound from the level 1 processor, and placed in the reséheduling queue‘if it
is not waiting, and marked as queued for reééhéddiing.‘ If the level 2' |

processor is waiting, it is marked as éwaiting.

The rescheduling queue is the means by which the binder/scheduler is
informed of processors to be rescheduled for level 1 processors. The
binder/scheduler is driven by two conditions -~ the availability of free level
1 processors noted in the free level 1 prbcesé;f:iigt,'and‘the arrival of hew
level 2 processors to be rescheduled. These conditions are sigﬁélléd By |
advances of eventcounts associated with each QUeue. Vit takes each néw level 2
processor that arrives in the reSchedulihg'queue;‘and‘egférs thisvprécessor
into an internal data base called the scheduiing‘qﬁéue. As level 1 procéssors
become free, the binder/s¢heduler chooses the beét caﬁdidétes frém the

scheduling queue, and binds them to the free level ltprocessors.

The binder/scheduler can also enforce scheduling policies that require
pre-emption of level 2 processors from level 1 processors before their quantum

is exceeded. Pre-emption of level 2 processors bound to level 1 processors is

- 169 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

achieved by marking the level 2 processor table entry as having a rescheduling
requested, then using VP1$stop to stop the level 1 processor. When the level
1 processor stops, the level 2 processor will be placed in tﬁé rescheduling

queue by the unbinder.

The binder/scheduler does not see level 2 processors that are awaiting
eventcounts. As part of doing the corresponding advance, the level 2
processor is queued for rescheduling, from which queue the binder/scheduler
can extract it. TIf the binder/scheduler pre-empts a level 2 processor that is
awaiting, it will be unbound from the level 1 processor it is ruaning on, but
will not be placed in the rescheduling queue until the corresponding

eventcount is advanced.

The third processor of the level 2 processor manager is the outward
signaller. The outward signaller’s job is to periodically poll the outward
signalling eventcounts that are being awaited by level 2 processors. It uses
the list of outward signalling eventcounts in the await table to find out the
names of all the outward signalling eventcounts being awaited. It uses the
outward_signals eventcount to control the frequency of its polling, as I noted
in chapter three. When the polling of outward signalling eventcounts
indicates that a levelVZ processor should be awakened, the outward signaller
awakens the level 2 processor, just as if the outward signaller had

incremented the eventcount itself.

Chapter 6 - 170 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

6.2.3 Eventcount Implementation

6.2.3.1 Advance

The level 2 advance operation increments the eventcount by calling on the
level 1 advance operation. By using level 1 advance, level 2 solves the
inward signalling problem. Any level 1 processor that is waiting on the
advanced eventcount is awakened by level 1. After using level 1 advance, the
level 2 advance operation determines the level 2 processors that must be
awakened (if awaiting) or sent a processor interrupt (if the advanced

eventcount is part of the processor’s processor interrupt condition).

Finding the level 2 processors affected by an advance and performing the
required awakening and setting interrupts is done by an operation that is
internal to the level 2 implementation, called WAKEN. The WAKEN operation
takes the name of the eventcount and its current value as input. WAKEN then
uses the await table to find all level 2 processors that are to be awakened
and interrupted. The WAKEN primitive is also used by the outward signaller

processor to reflect all of the outward signalled eventcounts.

- 171 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The level 2 await operation actually waits by using the level 1 await
operation. Since level 2 can await a large number of eventcounts
simultaneously, some method must be used to reduce the number of eventcounts
awaited at level 1. The reduction is accomplished by associating with each
level 2 processor a private eventcount that is advanced by the level 2 WAKEN
operation to actually awaken the associated level 2 processor, The level 2
await operation actually waits at level 1 by awaiting a change to the private

eventcount of the waiting level 2 processor.

The WAKEN primitive actually awakens a 1e§e1 2 processor in three steps.
First, all of the await table entries on the awaited eventcount list for the
level 2 processor are deleted frdm the await table. Further advances on the
private eventcount are prevented, since no await table entry for the processof
will be found. Second, it advances the private eventcount. If the level 2
processor is bound to level 1, this will cause it to run. Third, if the level
2 processor is not bound to a level 1 processor, its state is changed to
queued for rescheduling, and it is threaded ontolthe rescpeduling queue SO

that the binder/scheduler sees it.

The WAKEN operation also causes processor interrupts to happen. Await
table entries that are to cause processor interrupts are spécially flagged.
The WAKEN operation causes the interrupt to occﬁr in.tﬁree steps. First, the
list of await table entries associated with the level é prdcessot interrupt is
deleted from the await table. This prevents further interrupts from being

set. Secbnd, the level 2 processor table entry is flagged as having a pending

Chapter 6 - 172 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

processor interrupt. Third, if the level 2 processor is currently bound to a
lgvel 1 processor, the level 1 processor is stopped, using VP1$stop; and
otherwise, the level 2 processor is marked as queued for rescheduling and is
placed on the rescheduling queue. If the processor is ruaning at level 1,
~when it stops the processor interrupt will be set by the unbinder processor.
Otherwise, when the binder/scheduler binds the ptocessor*toklevel 1, it will

use VPl$sep_processoq_inte::upt to set the interrupt.

6.2.3.2 Await

The level 2 await operation worke by locking the level 2 processor state
lock, then checking the eventcounts and obtaining their system—wide unique
names. If any of the eventcounts is greater than or equal to the
corresponding value, the procéssor state table is unlhcke&, and the await
operation returns. (1) Entries are méde in the>await tabie for each
eventcount-value pair, and the current;value of the level 2 processor’s
private eventcount is obtained.“Then the sﬁate table 1ock ié unlqé?ed, and
the level 2 proceésbr exeCufes a VPl$await on the privéte éventcount, for the

next higher value of the eventcount.

(1) If a fault (other than a fault handled transparently below level 2, such
as a missing page fault) occurs while accessing any eventcount (such as no
access to read the eventcount),; the state table:lock is unlocked and the fault
is reflected. When the fault is restarted, the lock will be relocked, and the
await operation starts from the beginning again.

- 173 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED.OPERATING SYSTEM

A processor interrupt can occur during the await operation at level 1.
It is desirable to allow processor interrﬁpts-to occur during level 2 awaits,
so that a user can interrupt his program if by mistake an await is executed
that never will finish. The interrupt handler can await also. Because the
interrupt handler shares the same awaited eventcount list and private
eventcount at level 2, there must be séme‘wéy'that the interrupt handler can
be allowed to use level 2 await, while ensuring that when the interrupted

await is restarted it works correctly.

To solve the problem of the interrupted await, I modify the basic level 2
advance and await algorithms slightly. Essentially, the effect of my
modification is that restarting an interrupted await causes the await to be

re-executed from the beginning.

The WAKEN primitive, in interrupting a level 2 processor that is awaiting
(it has an associated await list) does two extra things.r First, the await
table entries for all eventcounts on the interrubted processor’s awated event
list are deleted from the await table. Secéna, the private eventcount of the
interrupted processor is advanced. Advancing the private éyentcount ensures

that the level 1 await operation in the level 2 await will return.

The level 2 await operation must check the eventcount and value
parameters a second time after the level 1 await returns, because the level 1
await can return for one of two reasons now. One reason, of course, is that

the level 2 await is over -- in this case, one of ‘the eventcounts will be

Chapter 6 - 174 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

greater than or equal to the awaited value, and the level 2 await operation

will return to its caller, The other reason is that‘the await was interrupted
by a processor interrupt. If none'of the eventcouote is greater than or equal
to the awaited value, the await must be restarted by re-entering the events in
the await table, getting the private eventcount value, and awating the private

eventcount at level 1.

6.2.3.3 Set_processor_interrupt

The VP2$set_processor_interrupt operation works similarly to await. The
state table is locked, and each eventcount is checked and its system-wide name
is obtained. If any eventcount .exceeds its corresponding value, the state
table lock is unlocked, and the processor- interrupt pending flag is set. The
level 2 processor then executes a VPl$stop operation on itself. (1) If every
eventcount is less than the corresponding value, then the processor state

table lock is unlocked and the set_processor_interrdpt’operation returns.

6.2.3.4 OQutward Signalling

As noted briefly above, the outward signaller handles outward signalling

eventcounts. Whenever a level 2 processor awaits or sets an interrupt

(1) Rather than simulating the fault, the mechanism in the unbinder is used to
cause the processor interrupt for simplicity.

- 175 - Chapter-6

PROCESSQR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

condition that involves an outward sigﬁalling eventcount, that eventcount is
threaded onto a special list in the await table, called the outward s@gnalling
list. The outward signaller periodically takes this listrof eventcounts and
obtains the values of all outward signalling eventcounts on the list. Then,
it uses the WAKEN interface to céuse the 1evé1 2 processors interested in the

outward signalling eventcounts to wake up or be interrupted.

6.2.4 Scheduling Policy

In a real computer system installation, there are many requirements on
the the allocation of resources to individual user computations over time that
cannot be predicted in advance by the system builder. Consequently, the
system builder would like to provide for some flexibility in the resource

allocation policies he builds into the system.

For this reason, the second level processor manager would like to provide
an interface by which the administrator can control its reésource allocation
policies. The most general mechanism is to allow the administrator to write
the program that makes the scheduling decisions for the second level processor
manager. In the second level processor manager, this mechanism is provided

for in a clean manner.

Chapter 6 - 176 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

We would like the policy mechanism to be modified by the system
administrator only in such ways that are safe. It would be unreasonable if by
introducing a slight bug in the resource allocation policy, the system’s data
integrity and security could be compromised. Consequently, it is necessary to
encapsulate the administrator’s policy control'progrém'in an environment of

the least privilege necessary to do the tasks iequired.

Obviously, the resource allocation polfcy mechanism can, if malicious or
incorrect, deny resources to computations that can legitimately proceed. By'
allowing the administrator to write such a program, then, we place the

capability for denial of service in his hands.

Through denial of service, or slowdown of gervice, of course, the
resource allocation policy has a subfle channel of commﬁnication with all of
the processes it controls. This4éan lead to Qnauthorized release of
information. However, to ﬁse these subtle channels requires much more than a
simple mistake on the administrator’s part. So assuming the administrator is
not malicious, we can provide a degree of proéection ggainst unauthorized

release of information through this path.

The mechanism provided is implemented as a domain in the binder/scheduler
processor, called the scheduler domain. Encapsulated in the scheduler domain,
which only has access rights to call certain 1eye1 2 processor management
primitives will be the scheduling policy4algorithm. The scheduling policy

algorithm will await an event of interest, such as the availability of a free

-177 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

level 1 processor or the arrival of a new level 2 processor in the _
rescheduling queue. The policy algorithm will then incorporate the new
knowledge into its policy and make scheduling decisions that it will
accomplish by calling on an interface that causes selected level 2 processors

to be bound to free level 1 processors.

There are three basic pfimitives available to the resource allocation
policy process. The first one, schedule, allows the process to name a level 2
processor to be bound to a free level 1 processor and to specify a quantum of
resources. The level 2 processor will be assigned to a level 1 processor if
there is a free one, and the quantum for the level 1 processor will be set -
from the specified value. The second primitive, next-rescheduling, extracts
the next level 2 processor from the rescheduling queue, It retufps the name
of the level 2 proceésor, and a summary of its resource usage information on
which a scheduling decision can be based. The third primitive, pre-empt,
allows the scheduling policy to pre-empt a lével 2 processo; already bound to
a level 1 processor. The pre-empt primitive marks the level 2 processor as
having a pending pre-emption, and if the level 1 processor is bound to level 1
it uses VPl$stop to stop it from running. The unbinder processor notices this
flag, and puts such a processor in the rescheduling queue. The flag is reset

when the processor is placed in the rescheduling. queue.

Very simple checking ensures that the policy algorithm does not make
incorrect use of the level 1 and level 2 processor resources. The schedule

primitivé makes sure that a level 2 processor of the specified name exists and

Chapter 6 - 178 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

i1s not currently assigned to a level 1 processor. It ensures that the
important data bases associated with the level 2 processor environment
description (e.g., descriptor segment) are in core to make sure that the level
2 processor addresses memory correctly.. It also ensures that the process is
runnable and not waiting for some eventcount implemented at level 2.
Similarly, the unbinding of a level 2 processor and deallocation of in-core
resources, etc. is carried out outside of the domain of the scheduling policy

algorithm, in the unbinder processor.

With the 3 operations that the scheduler domain uses to control

scheduling, it can implement almost any policy, without the possibility of a
bug in the policy algorithm interfering with the operations of the level 2
processors being controlled by the policy (except by denying service). This
is accomplished primarily by storing the sensitive data about processes being
scheduled outside the domain of the scheduler. The sensitive data contained
in the level 2 processor state, etc. cannot be read or modified by the

schedule, next-reschedule, and pre~empt primitives.

It should be noted that the resource allocation policy process runs in a
level 1 processor, rather than a level 2 processor. This is necessary, in
order to prevent the resource allocation policy from having to schedule

itself.

- 179 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

- 180 -

Chapter Seven

Using Level 1 Processors in the Opera;ing System

The level 1 processors provided by the level 1 processor manager are very
useful tools for structuring the kernel of an»oberating éystem. They can be
used wherever a scarce resource is multiplexed among a group of users of the
system to control the multiplexing. Level 1 processors can be used to manage
multiplexed I/0 devices, the virtual memory, and even scarce resources being

managed by the abstract type managers of the kernel.

The isolation of environment and control point that level 1 processors
provide can be very useful in ensuring that parts of the system execute with
the least privileges necessary to accomplish the task. Putting I/0 device
management in level 1 processors rather than interrupt handlers that execute
in any level 1 processor environment is an example where'using level 1°

processors can reduce the privileges needed by parts of the kernel.

Using concurrently executing level lgprocessors to implement uncoupled or
loosely coupled algorithms also simplifies épecification uv” the kernel. There
is no need to specify a particular order of operations where that order is
irrelevant to the tasks of distinct modules. Overspecification of the system

can lead to extra complexity, possible deadlocks, and more difficult proof.

- 181 - Chapter 7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Finally, using level 1 processors to perform a particular task in the
kernel assures that there is always an agent capable of performing a task when
it needs to be done. VFor example, a viftual processor dediééﬁed to handling
missing page faults generated in I/0 processors will allow the 1/0 processors
to deal with virtual rather than real memory, and thus simplify the task of

interfacing user computations to I/0 devices.

7.1 Permanently Bound Processes

Processes that implement parts of the kernel ;lgorithms are best
implemented as computations that run on dedicated level 1 processors. There
are a fixed, relatively small number of such processes. These processes
manage shéred resources, and can cause bottlenecks in the system resulting in
denial of service to users if they are not .scheduled properly. Most such
processes provide functions that must be correct in order for the second level
of processor multiplexing to work. For these reasons, the processes used in
the kernel of an operating system with two levels of processor nultiplexing

will pérmanently bound to level 1 pfocessors.

Chapter 7 - 182 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

7.2 1/0 Device Management

In traditional operating systems such as Multics, the operations of
asynchronously running I/0 channels are controlied by interrupt handlers.
Such interrupt handlers are invoked on thé:feéi processor, and execute in the
environment of whatever process was.exeéuting‘on'thehproéessor at the time.
This has two bad effects from the point of view dchohtaining the effect of
bugs in the system. First of all, the interrupt handier, which may be quite
lengthy, has access to manipulate ahything in the environmentléf the
interrupted process. If the‘interrﬁﬁt handler has a bug, it may inadvertently
read or modify data that is not felévant to the réasoh‘forvtﬁe interrupt. The
interrupt handler thus has mbré privileéé thén neédéd for its‘task, and
violates the principle of least privilege [2€fty Just as the ihtérrupt handler
has access to the data of the process, it also. has control of the execution
point, and may arbitrarily delay the 1nte;rupted process, although the process

may perfectly reasonably execute on another processor..

The other problem is that the existence of interrupt handlers forces
complex structures in the non—ihtérrhptﬂcddé bf ﬁﬁéjsysteﬁj First-éf‘éll,>all
processes must execute in eﬁvironménts that havé:éufficient accéss privileges
for all of the‘ihterrupt handlers of the system. ‘Thié isfihé other sidékéf

the violation of £he'priﬁ¢i§1e of’leastjprivilege mentioned above. All

- 183 - . Chapter 7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

processes thus possess privileges to access a large number of shared data
bases that they normally would have no need to access. This large amount of
shared data is potentially a shared information channel between processes, at
least, and may contain information, such as typed passwords in I/0 buffers

that can contribute to sabotage of the system if misused.

The parasitic nature of interrupt handler control points also forces
pProcesses to use unnatural control structures. Since the interrupt handler
has no state of its own, it cannot wait for another process to complete its
action. Waiting could cause a deadlock if the process waited for is the one
that the interrupt handler is executing in. For this reason, all processes
that interact with data shared with interrupt handlers Must never lock such
shared data unless provision is made to make sure the interrupt handler does
not intérrupt.the process doing the locking. This requirement makes handling

of I/0 require unreasonably complex algorithms.

For these reasons, it is quite'useful to associate kernel processes with
each I/0 device. A device’s kernel processor can await the eventcount
advanced by the device to determine when the device needs service. Only the
kernel process associated with a device need have privilgges to manipulate
that device’s buffers, mailboxes, or other‘device specific control data. This
reduces the privileges available to ordinary processes running user
coﬁputations. Further, the kernel device process need only have privileges to
resources that are needg& to do the job Qf‘handling>the.dqvice, The kernel

device process need not access any user data; its interface to the user can be

Chapter 7 - 184 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

through a single shared queue object. Thus both the ordinary process, and the
computations associated with handling a device have reduced privileges 1f the

1/0 device management is implemented in a process.

The control structure of the device manager and user can also be much
simplified. The simplification results from the fact that the communication
is now symmetric; both the user and the device manager are running on
different processors, and each can communicate with and wait for the other in
the same way. No process is held up from executing because it handled the
interrupt even though there are free processors. Further, independent device
manager processes can be executing simultaneously, whereas in the interrupt
scheme, this is hard to achieve without increasing the complexity of the
interrupt structure of the system. Using level 1 processors for device
management can succeed in smoothing the load of device management over all

processing units available to the systen.

The performance implications of running I/0 management algorithms in
level 1 processors are likely to be good. The difference between running a
computation at interrupt level in a real processor, and scheduling a level 1
processor that has a higher priority than some currently executing level 1
processor, is that in the interrupt scheme, the state of the running process
is stored and reloaded once per interrupt. In the process oriented scheme, in
order to get the device manager to run, the process state must be stored, and
the device manager’s state loaded; when the device manger reaches a waiting

point, its state will be stored, and the old process’s state reloaded. Thus

- 185 - Chapter 7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

there will be twice as much saving and loading of states in the process

scheme.

If this were the only effect, there would obviouély be a performance
degradation. However, there are other effects that very likely will balance
or overcome this defect. First of all, the device manager process now has a
state that the interrupt handler had to encode in some way in its associated
data bases. This state specifies what the haadler is to do next, so it is not
necessary to program the device manager: to interpretively determine the
meaning of the most recent I/0 signal. 1If taken advantage of, the state
information can replace the information used by the device manager to keep:
track of what it is doing. Another jmprovement is that complicated, expensive
locking and masking algorithms need not be used in the process scheme for
communication between the device manager and the user computation. Such
algorithms require both computation time, and memory resources in the kernel.

Consequently removing the need for such algorithms can improve performance.

In sum, then, if the cost of saving and restoring a process state is
comparable to the cost of maintaining the state of the I/0O connection between
interrupts, then there probably will.be a net performance gain resulting from

removing complexity from kernel algorithms.

Chapter 7 ' - 186 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

7.3 Kernel Type Managers as Processes

There are a similar set of problems assoeiated with the implementation of
kernel type managers as subroutines callable by'user processes, We have

discussed these in chapter three, but I will mention them briefly again.

First of all, without a domain mechanism that allows the user computation
and kernel to be mutually protected, a kernel type manager executing in a
user’s process will have access to all of the user’s data. It thus operates
with more privilege than necessary. If the type managers of the kernel are
all protected frqm the user but there is no domain mechanism within the
ke;nel, the kernel domain in any user processor must have access to all data
needed by kernel type managers available to that process. While it is
possible with domains torrestrict the accessibility of such data, and to
restrict the access rights of abstract type managers to user data, having the
kernel type managers execute in each user process still requires that each
user’s address space contain all of the domains in the kernel. If the address
space 1s maintained in a per-process object such as a descriptor segment in
Multics, then many copies of the same data will exist and must be kept up to

date.

- 187 - hChapten 7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

By structuring the abstract type managers in separate processes, each
abstract type manager need only have in its environment those objects with
which the manager must transact. This both simplifies the structure of each
abstract type manager’s environment, and eliminates the need for a separate

domain construct, with its additional complexity of implementation.

Implementing the kernel type managers in separate processes can lead to
simplification of the part of the kernel that manages the environment
descriptions of processes. When kernel type manageré are implemented in a
distinct domain of a process that executes user algorithms, the operations
that the user code uses to manipulate its environment description must ensure
that the manipulations done do not interfere with the part of the environment
used by the kernel type managers. Thus the kernel algorithms depend on the
environment manager, so the environment manager must be at a vefy low level in
the kernel. By separating out the kernel type managers into separate
processes, they may be executed in fixed environments that are not manipulated
by the environment manager. The environment manager can then be implehented

at a higher level in the kernel.

Implementing an kernel type manager in a separate process also protects
the execution point of the kernel type mgnager,from the resource controls on
the user processes. In chapter 3, we have discussed how this can help
guarantee that the kernel'type manager never stops executing in the middle of
an operation. The proportion of the time during which an ordinary user

process cannot be interrupted can thus be reduced.

Chapter 7 - 188 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

A reason that we have not yet discussed for putting kernel type managers
in separate processes is to provide the facilities of the type manager to
computatiohs executing on dissimilar processors. Suppose we have several
kinds of specialized processors on the system for vérious éunctions such as
handling special I/0 channels, or performing spgcialized computations such as
Fést Fourier transforms or associative searches. A simple way to pass data to
such processors is through shared data objects in the virtual memory. To have
a very specialized processor perform the virtual memory operations itself upon
encountering a missing page or missing segment fault is probably impossible or
unnecessarily complex. The part of the kernel type manager that actually
handles a missing page can be easily invokgd by such a specialized processor
if the page fault handling is implemented in an independent, dedicated virtual
processor. If it is normally done by code in each ordinary process, then some
special case mechanism must be used to handle page faults in a specialized
processor, with the result that the special cése mechanism may not interface
correctly to the normal mechanism. Having two mechanisms to perform the same

action is probably always a bad idea in designing a systenm.

- 189 - Chapter 7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

7.4 Explicit Recognition of Parallelism in the Syétem Desigﬁ

In an operating system like Multics, there are mahy opérations that are
carried outvin the security kernel of the systeﬁ that dd not reduire a
particular order of execution. An example of this i# the bége replacement
algorithm in the virtual memory. The page replacement algorithm operates by
choosing candidate péges in primary memory to move from'priméry to secondary
memory. The pages are then removed from'primdf§ memory;> Thé removal of péges
from memory mﬁst anéicipate the deménd for épace'in érimary mé&gry for neﬁ
pages, because removal of paées that have“been'modified whilébstored in
primary memory réqdires an operation to write the‘data in éhe page to
secondary memory. This operation can procéed in parallellwiﬁh the use of
other bages in memory. In order to efficiently freebﬁp pages in'primaty
memory, a process that is only loosely coupled to the executing user
computations must cohstantly keep ahead of the user computations, writing ouf

the data in pages that look like good candidates for removal.

If there is not an independent kernel process that does this lookahead,
the page fault handler in each user computation must periodically do some
lookahead, so that writing of pages is ahead of reading of pages into memory
most of the time. Choosing the right point in time to do this lookahead

(before reading the page in, or after?) and the right frequency of executing

Chapter 7 - 190 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the lookahead algorithm (every page fault or every third one?) as well as the
right amount of lookahead to do each time the lookahead algorithm is entered
(depends on the queuing facilities available for writes, the average frequency
of reads, and other factors) can be quite cdmplex. The complexity of these
choices arises from the artificial constraint that the page removal algorithm
must be in lock-step synchronization with the héndl{ng“of'page faults,
contrasted with the basic requirement that the page removal algorithm must run
ahead of the page fault handling for efficiency. Most of this complexity has
been removed in a design proposed by Huber {101, by putting the page removal
algorithm in its own processor. The page removal algorithm then can be

relatively autonomous in its choice of how far to Yook ahead and how fast.

There are many algorithms in operating systems tha; are only loosely
coupled with user-requested operations. ‘In Multics, such algorithms include
managing the paging pool{(as in the example), manag1ng the in-core copies of
page maps, moving daté coming into the system on I[O devices and stored in
primary memory buffers into secondary memory, and‘upda;ing the accounting
records stored in the virtual memory from accounting variables stored in ;he
primary memory by kernel type managers below the virtual memory level of the

kernel.

- 191 - Chapter 7

PROCESSOR MULTIPLEXING IN A LAYERED QPERATING SYSTEM

7.5 Resulting Structure

The result of carrying out the structuring specified in this section will
be to create an operating system in which theAkernel is made up of a set of
processes, each associated with a particular physical resource or. shared
abstract resource. These processes will all be implemented on, dedicated level
1 processors, where the environment of the virtual processor is configured to
exactly conform to the environment needed by the process. For example, the
disk manager process will have an environment that includes only the
wired-down disk accessing code and data bases, and a wired-down message queue
with which it communicates to the virtual mem&ry éystéms fhat'contfol Ehe
reaaing and writing of disk pages. The managér of the page data type will
have access to the disk queue, and wired-down page tabléé that itrmanages. It
will be controlled by a queue of requests pto&ided“by user processes that take
page faults, or by the segment manager, which may need to create or delete

pages.

A non-exhaustive list of algorithms of the Multics system that would
benefit from being implemented on a dedicated level 1 processor follows.

1. Device management (currently done by interrupt handlers). One
level 1 processor for each I/0 channel.

2. Page removal algorithm. (Designed by Huber [10])

3. Page fault handler. Havig this processor would allow I1/0 devices
to access virtual memory as described earlier.

4. Environment descriptor manager. In the environment of the
environment descriptor manager, each environment descriptor could

Chapter 7 - 192 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

be known as a data segment. Thus manipulation of environments of
all user processes, needed to handle revocation of access to and
simultaneous sharing of environments is only done by one process.
System debugger. In Multics, the state of a crashed system is
inspected by a stand-alone program that is loaded on a crash into
the memory. An alternative would be to design it as a level 1
processor that awaits an eventcount that is advanced by a crash.
Since level 1 is fairly simple, and is the bottom level of the
system, it should rarely be the case that a system crash causes
the implementation of level 1 to fail. - The system debugger can
then be designed in an environment where parallelism works.

Page table removal algorithm. For the same reasons that I
pointed out for the page removal algorithm, removal from primary
memory of page tables for segments is simplified by decoupling it
from operations explicitly called by user algorithms.

Salvaging of directories. Currently two separate mechanisms
handle salvaging the data in directories if the data is
discovered to be inconsistent. One mechanism is a stand-alone
program run by the system debugger while the system is crashed.
The other is a part of the kernel that is invoked when a direcory
manager operation discovers that the directory being manipulated
1s inconsistent. These mechanisms could be merged into a program
that runs on a dedicated level 1 processor that awaits requests
to salvage directories. Like the system debugger, this program
could still run, even if most of the higher level programs have
stopped due to software failure.

Consistency checker. A processor could periodically check the
consistency of important system data bases, in the hope of
catching trouble before other software encounters it. For
example, a process could check to see that two distinct pages
were not assigned to the same disk block.

- 193 - Chapter 7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

- 194 -

Chapter Eight

Conclusions and Suggestions for Further Research

To sum up the research described in the thesis, ‘I first would Iike to put
in capsule form the major insights I have found in the progress of the
research.’ Then, I present a number of topics that I have not had the
opportunity to investigate fully, but which definitely deserve further

investigation.

The technique used to disentangle the virtual memor? - virtugl processor
mutual dependency was to break up the virtual processor implementation into
two levels, the first of which provided no new memory-accessing capability and
could be used to provide processing power to the algorithms that implemented
the virtual memory. This technique is a special case of a -method Parnas has
recently called "sandwiching" [22], that in general allows elimination of
mutual dependencies between two modules, A and B, by splitting A into two
pieces so that the functionality B depends on is in the lower level of A,
while of the two pieces, only the‘higher level of A depends on the

functionality provided by B.

In devéloﬁing a design for ﬁhe two levels of the virﬁual érocessor
implementation, I have avoided introducing new mutual depen&encies between
either of the levels of virtual processors and the virtual memory. In the
case of the Qirtual memory - virtual processor mutual dependency, then, the
sandwiching technique has been successful in practice, as well as in theory.

- 195 - Chapter 8

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The use of abstract type managers ak a metaphor for describing the two
level virtual processor hierarchy has given an unexpected dividend in showing
that the cache management pattern of type extension first developed by Janson
[11] can be used to describe the structure of processor multiplexing
algorithms as well as the virtual memory implementation. The cache management
pattern is a basic pattern in the design dflcperating‘systems because
operating systems create abstract types as tools to manage scarce resources.
As far as I know, thexhse of types as tools to manage Scarce resources is not
yet well understood. However, the cache management pattern seems to play a
quite important role in using abstract types to describe therimplementation of

operating systems.

In the design of both levels, a certain degree of simplicity arises from
centralizing the mechanism that does the actual multiplexing of processors‘in
one or more dedicated processors. As I have shown in ‘the latter part of>
chapter five, it is fairly easy to take a design that usés a centralized
control and‘convert,it into a design that has distributed control. The
inverse transformation is not easy, however. An algorithm initially designed
to be distributed on the processors being wmultiplexed, such as that presented
by Bredt and Saxena [2], tends not to be as clear because the legitimate
orderings of actions taken by the distributed algorithm is not directly

represented in the algorithms.

Chapter 8 - 196 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The use of eventcounts for IPCC in the design has had two effects.
First, protection of information transmitted by the IPCC mechanism is
guaranteed by the virtual memory protection mechanism. This eliminates the
need for a special access control mechanism on IPCC that would make the
implementation of the IPCC mechanism more complex. Second, because
eventcounts are simply words in the virtual meﬁory, the same semantics apply
to the IPCC mechanisms provided at both levels of virtual processor
implementation. Further, because the storage for eventcounts is provided by
the memory, the same eventcount can be used by brocessors implemented at
different levels, allowing inward and outward signalling. Providing
semaphores as the basic IPCC mechanism seems to preclude outward signalling.
In Bredt and Saxena’s design [2], which provides semaphores, it is required
that a level 2 processor that takes a page fault remain bound to the level 1
processor until the page fault is satisfied. 1In my design, a level 2
processor that takes a page fault can wait for the page fault to be satisfied

using level 2 await, and be unbound in the interim.

An important part of the design of the second level was providing an
administratively variable policy mechanism that could be varied arbitrarily
without compromising the correct operation of the kernel of the operating
system. While the mechanism proposed does not prevent denial of éervice to
users, the policy algorithm is run in an environment containing only the
privileges needed to make scheduling decisions. The actual integrity of the

virtual processors being scheduled and the data that they operate on cannot be

- 197 - Chapter 8

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

compromised by the scheduling policy mechanism. In part, the policy mechanism
was easy to include in the design because the processes used to perform kernel
functions are protected from the policy mechanism by being permanently bound

to level 1 processors.

The design developed in the thesis has,<serendipitously, allowed the
kernel to be constructed as a set of cooperating parallel processes. Just as
decomposing the kernel into a set of modules that can be independently
understood and verified is aided by using abstract types, decomposing the
kernel into a set of loosely coupled or uncoupled parallel processes is a tool
that allows designing and verifying small pieces of the’sfétem iﬁdependently,

because only the essential ordering constraints are Specified in the design.

Further Research Topics

In this thesis, I have proposed a fairly.dgpgiled design for two levels
of processor multiplexing, and a much less detailed sketch of how the rest of
the system could be structured around the two levels. A very important step
in proving my results is the actual implementation of the two level processor
multiplexing design. Further, there is‘certainly‘much'to be done in actually
structuring the design of an operating system such as Multics in terms of
dedicated virtual processors. Huber [10] has taken the first step in this
direction by designing and implementing a version of Multics page control that
runs in several dedicated Multics processes, However, uéing the level 1

processors of my design to replace the interfubt handlers used to manage 1/0

Chapter 8 - 198 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

devices in systems like Multics promises to provide a great deal of
simplification. Some of the other suggestions fer using processors made in

chapter seven seem to have promise also.

An important reason for actually implementing the two level design is to
verify that the two level deéign does not reduce the performance of the |
system. I have given a brief argument in chapter three to show that
performancé is not necessarily reduced, but only anractual implementation that

has good performance can actually prove that performance is not a problen.

In chapter five, I proposed a non-traditional computer architecture that
uses a dedicated microprocessor to control the short-term multiprogramming of
a multi-processor system. Actually constructing such hardware can simplify
both the hardware and software structure of a computer system, by eliminating
the need for complex interprocessor control mechanisms, such as interrupts.

In chapter five, the actions taken by the general purpose processors was
implemented by software. It seems to me that a hardware implementation of the
algorithms in the general purpose processor that implement level 1 functions
would greatly simplify and improve the performanée of the system. Such an
implementation seems quite feasible for a microprogrammed general purpose

processor,

A final topic that requires more study is the relationship between type
managers and interpreters. The interpreter for each type manager in the

system is the real processor. The algorithms for all type managers are

- 199 - Chapter 8

P

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

expressed in terms of instructions that are executed on the real processor.

At the abstract level, though, each type manager can be viewed as an
interpreter f;r the operations on the type. Viewing the type managers as
algorithms to be executed on real processors is essential for developing a
design that is actually implementable on a small number of real processors.
Processor multiplexing can be viewed as a meéhanism for ensuring that the real
processor resources get distributed to all type managers that need such
resources. Oh the other hand, viewing each type manager as an interpreter of

its own operations seems to be much simpler. The relationship between these

two views in the design and implementation of systems deserves more study.

Chapter 8 - 200 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

BIBLIOGRAPHY

(1] Bobrow, D., et al., "TENEX - A Paged Time Sharing System for the PDP-10,"
CACM 15, 3 (March 1972), pp. 135-143.

(2] Bredt, T., and Saxena, A., "A Structured Specification of a Hierarchical
Operating System," Proceedings of the International Conference on
Reliable Software, Los Angeles, April 1975.

[3] Brinch~Hansen, P., "The Nucleus of a Multiprogramming System,” CACM 13, 4
(April 1970), pp.238-41.

(4] Dahl, 0.J., Myrhaug, B. and Nygaard, K., The Simula/67 Common Base
y =L
Language, Publication $-22, Norwegian Computing Center, Oslo, 1970.

[5] Dennis, J., "Concurrency in Software Systems," Computation Structures
Group Memo 65-1, M.I.T. Project MAC, June 1972.

[6] Dijkstra, E.W., "Cooperating Sequential Processes,' in Programming
Languages (F. Genuys, ed.) Academic Press 1968, pp.43-112.

(7] Dijkstra, E.W., "The Structure of the ‘THE’ Multiprogramming System," CACM
11, 5 (May 1968), pp.341-46.

[8] Field, M.S., "Multi-Access Systems —- The Virtual Machine Approach,"
Cambridge Scientific Center Report 320-2033, IBM Corporation,
Cambridge, Mass. (September 1968).

[9] Hoare, A., "A Structured Paging System," Computer Journal 16, 3 (August
1973), 209-15.

[10] Huber, A., "A Multiprocess Design of a Paging System," S.M. Thesis,
M.I1.T. Department of Electrical Engineering and Computer Science,
May 1976 (to be published as an M.I.T. Laboratory for Computer
Science Technical Report)

(11] Janson, P., "Using Type Extension to Organize Virtual Memory
Mechanisms,", Ph.D. thesis in preparation, M.I.T. Department of
Electrical Engineering and Computer Science (expected completion,
August 1976).

[12] Kanodia, R., and Reed, D.P., "Eventcounts: A Model for Process
Synchronization," in preparation.

[13] Liskov, B., "An Introduction to CLU," Computation Structures Group Memo
136, M.I.T. Laboratory for Computer Science, February 1976 (to be

- 201 - Chapter 8

PROCESSOR MULTIPLEXING IN A LAYERED .OPERATING SYSTEM

[14]

(15]

[16]

[17]

(18)

[19]

[20]

[21}]

[22]

(23]

[24]

[25]

Chapter 8

published in the ALGOLfBulletiﬁ).

Liskov, B., and Zilles, S., "Programming with Abstract Data Types,'

Proceedings of the ACM SIGPLAN Conference on Very High Level

Languages, SIGPLAN thices 9

Luniewski, A.L.,

(April 1974), pp. 50-59. .

"A Certifiable System Initialization Mechanism," S.M

" Thesis in"progress, M.I.T. Labbratory for Computer Science

McKenzie, A. "Host/Host Protocol
Current Network Protocols,

8246, Jan. 1972).

for the ARPA Networ
Network Informacion .Center, Augmentation
Research Center, Stanford Regearch Institute, Menlo Park,

. ARPA Network

Ca. (NIC

Meyer, R. and Seawright, L., "A Virtual Machine _Time-sharing System," IBM

Systems Journal 9,

Montgomery, W. A.,"
Initiation in' a Computer Uti
Department of Electrical Eng
1976); to be published as’ an
Technical Report.

Saltzer, J.H.,
Report TR-123, 1974.

Neumann, P.G., et al., "A Provabl
of SRI Project 2581,
1975.

Parnas, D,, "On the Criteria to

3, pp. 199-218 (1970).

"A Secure and Flexible Hodel for Secure Process
14¢y," S.M. and E.E. thesis, M.I.T.
ineering and Computer Science. (May.

M.I.T. Laﬁératory for Computer Science

“Introduction to Muliics,f'HﬁI.I,f?rcjécg'MAC Technical

y Secure Operating System," Final ‘Report

Stanford Research Institute, Menlo ‘Park, CA.,

Used in Decompdsing Systems ‘into

b
Modules," CACM 15, 12, Decemfer 1972, pp.1053-8.

Parnas, D. "Some Hypotheses About

the “Uses’ Hierarchy for Operating

- Systems," Fachbereich quormatik ?echnischt ‘Hothschule Darmstadt,

Forschungsbericht BS 76/1.

Rappaport, R., "Implementing Mult

I-Process Primitives in a Multiplexed

Computer System," S.M. Thesis, M 1.7.; M. I T Project MAC Technical

Report TR-55.

Rowe,.L A., "The Distributed Compt

iting Operating System,” University of

California at Irvine Department of Information and Computer Science,

Technical Report 66.

Saltzer, J.H., "Traffic Control inp a Multiplexedugomputer System," Sc.D.

Thesis, M.I.T., M.I.T. Projes

¢t MAC Téchnical Report TR-30.

- 202 -

(26]

[27]

[28]

[29]

(30]

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Saltzer, J.H., and Schroeder, M.D., "The Protection of Information in
Computer Systems," Proc. IEEE 63, 9, pp. 1278-1308 (Sept. 1975).

Schell, R., "Dynamic Reconfiguration in a Modular Computer System," Ph.D.
thesis, M.I.T., M.I.T. Project MAC Technical Report TR-86.

Schroeder, M.D., "Engineering a Security Kernel for Multics," Proc. ACM 5
Symposium on Operating Systems Principles, ACM Operating Systems
Review 9, 5 pp.25-32 (November 1975).

Sturgis, H.E., "A Postmortem for an Timesharing System,”" Ph.D. thesis,
University of California at Berkeley (1973), Xerox PARC Technical
Report TR 74-1.

Wulf, W., et al., "HYDRA: The Kernel for a Multiprocessor Operating
System", CACM 17, 6 (June 1974), pp. 337-345.

- 203 - Chapter 8

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

- 204 -

7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Appendix A

Level 1 Processor Interface Summary

Operations (underscoring indicates output arguments)

Used

Used

Used

by level 2 implementation for control of multiplexing:

VP1$bind (llproc, state, error)
VPl$unbind (llproc, state, error)
VP1Srun (llproc)

VPl$stop (1llproc)
VPl$nex§_stopped (llproc)
VP1$set_proc_interrupt (llproc)

by all level 1 processors:

VPl$await (ecl, valuel, ec2, value2, ec3, value3)
VPl$advance (ec)

VP1Sbegin atomic_operation ()
VP1$end_§tomiq_dSération O

VPl$get fault data (processor state)

VPl$restore processor_state (processor_state)

for managing lower level hardware:

VPl§$propagate_map change ()
VPl$add cpu (cpu_id)
VP1$del cpu (cpu_id)
VP1$crash_system ()

Special Eventcounts

Used

Used

in level 2:

stopped
outward_signals

in all level 1 processors:

clock
I1/0 processor event eventcounts

- 205 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

- 206 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Appendix B

Level 2 Processor Interface Summary

Operations (underscoring indicates output arguments)

VP2$create_processor (envptr, startptr, schedclass, procname)
VP2$destroy_processor (procname, envptr)

VP2$await (ecl, valuel, ec2, value2, ...)

VP2Sadvance (ec)

VP2$set_processoq_interrupt (ecl, valuel, ec2, value2, ...)

Internal Interfaces for Scheduler Domain of Binder/Scheduler
schedule (level 2 processor, quantum)
next-rescheduling (level 2 processor, nomore)
pre-empt (level_ 2 processor)

Eventcounts

reschedulings -- number of reschedulings that have happened.
free —— number of freed level 1 processors.

- 207 -

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form Date : JA/ Il /9§

Report# Lcs-Tr- 164

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial intellegence Laboratory (Al)
)K[Laboratory for Computer Science (LCS)

Document Type:

:Zl'\Technical Report MR) [Technical Memo (TM)
O oOther:

Document Information Number of pages: g (&/3-i naGES)

Not to inciude DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
X Double-sided X Double-sided

Print type
g\mmu [] offsetPress [] Laser Print
[inkietPrinter [] Uninown [other:

Check each if included with document:

0 pob Form [0 Funding Agent Form O coverPage
[J spine B\Printers Notes O Photo negatives
O other:

Page Data:

Blank Page Sy pege numben:

Photographs/Tonal Material ey page numben

Other (ot descripion/page numben.
Description : Page Number:

Trmncx ag (1= d0%) WVien TTE PAGE, &-dd) Uuuﬁr*‘beuw\(
(209- 03)CcAm.hl PRINTER'S AdTES TTRETS ()

Scanning Agent Signoff:
Date Received: [/ 11 /35 Date Scanned: _[/ 13-/ 36 Date Returned: _| /1€ /¢

Scanning Agent Signature: W 1\)1 Cﬁr’m.:

Rev 984 DSALCS Document Control Form cstrform.vad

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darpirgt.wpw Rev. 994

