'MASSACHUSETTS

LABORATORY FOR ~ INSTITUTE OF
COMPUTER SCIENCE \ TECHNOLOGY

(formerly Project MAC)

7z

MIT/LCS/TR-165

HIGH LEVEL EXPRESSION OF SEMANTIC INTEGRITY

SPECIFICATIONS IN A RELATIONAL DATA BASE SYSTEM.

Dennis. J. McLeod

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by .the Office of Naval Research under
contract no. N0001l4-75-C-0661

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR-165
High Level Expression of Semantic Integrity Specifications
in a Relational Data Base System
Dennis J. McLeod

September 1976

Massachusetts Institute of Technology

Laboratory for Computer Science
(formerly Project MAC)

Cambridge Massachusetts 02139

This empty page was substituted for a
blank page in the original document.

e AR g ey e S b

Semantic Integrity Specification 2

ABSTRACT

The “semantic integrity” of a data base is said to be violated when the data base
ceases to represent a legitimate configuration of mhmn environment it is intended
to model. In the context of the relational data itis le to identify muitiple
levels of semantic integrity information: (1) the description of the domains of the data base,
as abstract sets of atomic data values (domain definition), (2) the specification of the
fundamental structure of the relations of the data base (relation structure specification), (3)
the definition of the abstract operations which are meaningful in terms of the application
environment (structured operations), and (4) the expression of additional semantic
information not contained in the structure of the relations nor in the identities of their
underlying domains (relation constraints). T

A high level, nonprocedural domain definition language facilitates the description of
domains. Such a language allows the specification of the properties of the values
constituting a domain, and the action that is to occur if an attempt is made to update a
column entry such that it does not belong to the underlying domain of that column. The
specification of relation structure and structured operations can also be accomplished by
means of high level integrity (sub)ianguages.

A relation constraint has three components: (1) the assertion (a predicate on the state
of the data base or on transitions between data base states), (2) the validity requirement (the
occasion(s) at which the assertion must hoid), and (3) the violation-action (the action that is
to occur if the assertion does not hold at a time when it should). Relation constraint
specification can be related to an expression framework (classification scheme) which is
- useful for the construction of a relation constraint language and specification methodology.
- Assertions are more than expressions of some relationships among different values in a
data base; an assertion singles out the data that is constrained, and states the properties
that this data must possess. A classification is provided of the various predicate types used
to identify constrained data and to state the properties that they are to possess.

A semantic integrity subsystem (of a gemeralized relational data base management
system) can support the generation and maintenance of integrity specifications, verify that
these specifications are met by the data base, and take appropriate action if violations are

This empty page was substituted for a
blank page in the original document.

Semantic Integrity Specification 3

ACKNOWLEDGEMENTS

The author is most grateful to Professor Michael Hammer of MIT for his
enthusiastic suppport and guidance, and for his many and varied contributions to the
contents of this thesis. Many others have helped greatly, providing ideas, comments, and
criticisms, including: Jack Aiello, Sheldon Borkin, Daniel Carnese, Arvola Chan, Marvin
Essrig, Richard Grossman, Professor Barbara Liskov, Professor William Martin, Professor
David Redell, Arnold Schiemann, and Sunil Sarin (all of MIT); Dr. Donald Chamberlin,
- Dr. Edgar Codd, Dr. Kapali Eswaran, Dr. Frank King, Dr. .James Gray, and Dr.

Bradford Wade (all of IBM San Jose Research); Professor Michael Stonebraker (of the
University of California, Berkeley). Although many of the ideas in this thesis belong to
these persons, all of the mistakes belong to th§ author. Finally, the author would like to
thank Mary Rykowski, for her moral support, for polishing the prose of earlier drafts of
this document, and for being an inspired and unending critic.
| This research was sponsored by the Advanced Research Projects Agency of the
Department of Defense and wu monitored by the office of Naval Research under contract
number N00014-75-C-0661.
This report is a slightly revised version of a thesis submitted to the Department of
Electrical Engineering and Computer Science in June 1978, in partial fulfiliment of the
degree of Master of Science.

This empty page was substituted for a
blank page in the original document.

Seduntk Integrity Specification 4

TABLE OF CONTENTS

~ ABSTRACT
ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

1. INTRODUCTION

LL Semantic Integrity

1.2. The Data Model)
13. The Relational Data Model

2. SEMANTIC INTEGRITY

2.1. Background

2.2. An Approach to Semantic Integrity Specification
8. DOMAIN DEFINITION

8.1. Describing Sets of Atomic Data Values
3.2. A Domain Definition Language

3:21. Language Details and Examples
3.3. Implementation Considerations

3.4. Extensions

4. RELATION STRUCTURE
" 41. Additional Column Information

4.2. Comparability

4.21. Domain Conversions

5. STRUCTURED OPERATIONS

B E OO0 9 0 s W N

8 BRYBY 355

5.. Semantic Integrity Information in Structured Operations 14

This empty page was substituted for a
blank page in the original document.

5.2. The Definition of Structured Operations
6. RELATION CONSTRAINTS
6.1. Whither Assertion Structure?

6.2 Relation Constraint Assertions

6.2.1; éimple Assemom

622, Identification of the Constrained cam o

628, Tuple Assertions

6.2.4. Set Assertions

625, Scope of Assertions

63. Rélation Constraint Validity Requirement
6.4. Relation Constraint Violation-Action

65. ihplementation Considerations

66. Remarks

s SRR

Semantic Integrity Specification 5

2L BN G

N I

7. ON THE DESIGN OF A SEMANTIC INTEGRITY SUBSY'STEM.

7. Components of a Semantic Integrity Subsystem
72. The User’s View of the Integrity Mechanism

7. Some Thoughts on Integrity Subsystem Implementation
73.. The Use of Inversions in Relation Constraint Checking (An Example)

8. REMARKS AND DIRECTIONS
REFERENCES AND BIBLIOGRAPHY

n

N

74

8

Semantic Integrity Specification 6

LIST OF FIGURES

I-L "R‘elation EMP

1-2. Example Data B-avse |

I-S.‘A Possible Set of Relational Primitive Operations e
3-1. Selected Exampie Data Base Domain Dcfinit'ioﬁs o
3-2. Synmx of the Domain Definition nguage

6-1. ‘Spm Simgig Assertions (for data base in figure |-2)

6-2. Local Tuple Predicates

6-3. Nonlocal Tu‘pl'e‘ Predicates

6-4. Local Set Predicates

6-5. Nonlocal Set Predicates

106
107
108

.
L
e

m

Semantic Integrity Specification 7

L INTRODUCTION

Rather than just a collection of values, a data base should be a model of some
application environment. When a data base ceases to represent a valid configuration of
that application environment, the semantic integrity lof the data base is violated. The
purpose of this thesis is to examine the problem of describing and preserving the semantic
integrity of a data base in the context of a generalized data base system. The general goal
is to pravide a first approximation to a “theory” of semantic inteér.ity (particularly in the
context of the relational data model), and to provide a basis for a semantic integrity
specification methodology. This includes an overview of the relevant issues as well as a
description of a particular approach to the problem, with emphasis on the high level,
nonprocedural expression of semantic integrity requirements.

Data base systems (data base management systems) are intended to assume the tasks

of facilitating data storage; manipulation, and retrieval. The data base system should also
be responsible for maintaining the correctness of the data in a data base, as well as
providing users with appropriate abstract views of the data. This is particularly important
for large data bases, as ad hoc and "hand" checking is impractical,

- By way of background, it might be useful to place the notion of semantic integrity in
perspective, and to better define the meaning of the term as used in this thesis. There are
a number of ways in which the soundness of data in a data base may be compromised:

L. The reliability of data may be compromised by errors due to hardware failure, as
well as those due to failure of the operating system and data base system software.
Hardware reliability (in the context of data base systems) has been considered
elsewhere [Fossum 1974, Wilkes 1972). Software reliability is a very prominent

research concern at present, as exemplified by the work of those concerned with

Semantic Integrity Specification 8

establishing the correctness of programs. In the area of data base systems,
Hawryszkiewycz and Dennis [Hawryszkiewycz 1972, Hawryszkiewycz 1973] have
developed a - format semamic model of 2 relatiomal dixta bade fystem, defined data
base prinvitive operatioms in-terms of ‘this rhodel," and ‘proven the correctness of the
operation definitidns Wbstrict programs). Weber [Weber 1976] has further developed
this approach.

2. The concurrent consistency ‘of dxtx -nmay be vidlated due to the effects of
improperly controibet sccesses to'shared data by rnlitple’ concurrent users (processes).
It is desirable to provide:each user with' x- consisiéht view of a data base, shielding
 this ‘user from. interféring ‘effects due 1 the xctiVitiés of other Uiers, while at the
same time’ retining x ikximum amount of legiéimitte cohciirrent activity. Eswaran,
Gray, Lorie, and Traiger {Eswaran 1974 'havé deitéibed & high level scheme for
concurrent consiséency control in a relational dita base :yntm. Hawrynkiewycz and

concurrent conslitency based' on a formal semantic model‘af a relational data base
S. Data security may be:ompromised by a faflire to propertj (administratively)
restrict the:manier in-which & given user iky Recéss'shd manipulite a data base. A
good ‘deal of pioneering effort ‘in the acen ‘of sé€tirity anid protection has been
accomplished in' thie:-conteks of operating systems”8ome of ‘this work has beén
extended to dath base:sysems, e.g., the wotk of Chiniberlit, Cray, and Traiger
[Chambertin 1978}, and'Stonebraker and Wtig (Stohetraket 19748),

- 4. The semantic.intagrity of dat is violated when the' dati basé ceases to represent a
legal configuration of the application anvirenment it 15 ‘interidedt o todel. ‘Semantic
integrity errors may be.introduced by’ umfm.éietéar ‘hderstanding, malice, etc.

_ Semantic Integrity Specification 9

(“inadvertent, impreper, or malicious-updits® [Stondiuker T9Me]). In fact, Hardware:
cause the semantic integrity specifications of & data basedo-te-violated. ‘Fer exsmnple; -
~some user may, becaiss of a faikire of the ditk Base Wieurity inechanism; make an
unsuthorized change, such as raising Nis>own satayj fiemn §20,600 to: $30,000; this

© unauthorized change can'then Cause s Semantic Intagvity censtraint’io be viclated,
This thesis deals specifiestly with the Fourthkspect 6F the soundnvess of ‘a- dati base,
namely semantic integrity. In what follows, iu assume that hw'.md softiare -
reliability are gunsanted (sg., by the eperating systam) “We wise assuine e concurrent
consistency is assured; it is sufficlent to assume, without loss of generality, that ¥ singiw user
is interacting with the system at any glvm time. mmwnaammea |

L1. Semantic Integrity

- A-data.base is meant t serve:as-a model of some limited universe; ‘at-any gives time, *
the vajues in the datx base:repressnta’ partipuiar cohtigumtion.of that: ipplication: |
envirorunent. Ewery such:weorld has its own intersddogics a mdwlmspmsymg what
constitutes a legitimate:and piausible-configuration iof.that-eguivanraent Florsatin: 18043 It
should be the function of the:data base system 10:inswe that thase: rales are not vialated
and. therefors that the dagx: base.is hat i iemhntieally dncamsistent state. | -

A basic premise. we will adept is that as noted by Minsky: [Minsky:1974a “the -
fundamental-property.of & date: base.is that it Hasan:intsinsicmesningishich is- invariant
of its intarackion with users”. . The semantic inwgriey specifiontions for-a data base capture
this intrinsic meaning: The dat base-spstern-theuld - factite:the precise expression of

Semantic Integrity Specification 10

these integrity specifications. We assume.that some person (or committee of persons), |
known as the data base adminisisator, is respansible for stating the semantic integrity
specifications for the dasa.base.

It is possible and indead desirable for the data base system to support multiple
abstract logical views of a data base. These views must however be-constructed from and
consistent with the semantic insegrity specifications: (ie, tha data base administrator’s view
of the data base). Even providing a view of the data base which. censists of a subset of
that data. base is difficylt, becanse of the 'm';bl&m the subset and other
elements of the data base.

Avarietyofaummymukmamwuncfﬁwmmngﬁtyofadau ;
base, including'

L. inaccurate data recording or entry,

2. inadvertent alteration of data during some transmission or transcription process,

8. deliberate falsification of data,

4. loss, omission, or delay of data.

The ramifications of permitting incorrect data to permeate »&-Qm ‘base may indeed be far
reaching. . Crucial decisions: may be waﬁi\gly &fm”mmm« in the system
destroyed, and the reliability mmd’ the systemyidegraded (including
application. progranis and packages:as weil a3 thedats base sysem iteelf),

It is generally recognized that-the:problem of bad data:in data-bases is a serious one.
Unfortunately, the state of the art in etxor.checking: in.dam:-base systems is quite dismal,
Most semantic: integrity checking. is curreatly.accomplished: Dy means of application
programs; data checkingnmedmgamuabqld-mu;m :ppkaﬁm programs. Special
purpose data base "audit” routines:are also sometimes uaed to: check:data integrity. - Existing
commercial data base systems perform limited types of integrity ¢hecking, if any. This.

L AR A ot L s

Semantic Imegrity Specification 1l

checking is. nearly always limited to simple data.format checks. Ia any.eass, ufmantlc
integrity infgrma;to,n apd hecking is usually. WMM W imapplication
programs in an ad hoc manner [Cosden 1974} furthermers; no-discipline is impesad an: the
semantic integrity specification process; . This-lack.of structumeand distiplingchas the
following congequences: . |
- L. The mechanism by, whlchmnticmgw mmmaam
2. Semantic integrity specifications are not md}ymedifm.
3. The abstraction defined by mwmmmvm s ifitended
to c‘o;respond.;q; the ut of rules in-the WanMmh difficult to
understand. |

" 4. Inconsistencies and redp,qgancics can_ be:present. in the. semantic integrity
specifications, which may be difficult to. loate. .. .o ‘
5 It is difficukt to make the semantic integrity cbxm wm efficient,-aither by
means of manual orautomuicnp;imuam R S TR N L R T

- The data model upon. whlc@ Adaw bm«sym:# hased. nﬂm here to.consist of
the vtyp,:e(s.) of data structures used.ta represent information: in.the daia base, alang: with the
set of primitive operations, whuhm be uMmmwmmTMmure
of the data model underlying.a d&tihm system hufmury.m;iﬂantgeffm)onz the
manner. in which one describes the semantic integrisy. of ;& datasbase. in- that system.” As
described below, some semantic integrity information is often in fact embedded:in the
structures used,in the data model [ate 1976 Mamenens 1998 = - s

There have been three principal data models; proposed.: for getieralized dati base
systems [Date 1975}

1.2. The Dan Model

Semantic Integrity Specification 12

" L For historicad and other reasons, the' hxemchlcat appronch is a very popular one.
Examples of hiefarchical data’ base systerss and data su ey’ oanguages for
dcfmng and manipulating data bases) include IMS TEMY, HQL [Fehder 19741 Data
Language DMarill 1678) and Bystem 2000 IMRI 9780 In the hierarchic approach,
some semantic integrity information is expressed in the form of ‘dhe-to-many
relationships (crees). ‘Thus, mm-rmy tonstrifiits are’ &pmua By appropriately
constructing the data base hierarchy. o

2. The nttwork approach is typified by the Codasyl DBTG proposal [Codasyl 1971a)
and the work of Bachman {Bachman 1978) Anexample of a‘network data base
sysfem is Adabas [Software AG 19741 In the network data model, some semantic
integrity information is expréssed ‘via many-to-maifry i‘ehtwmhtps. this is done by
appropriately constructing the network mm of the'data base.

3. The relational approach was introdirced by Cotld tc:oad mo]' [Codd 1974a).
Examples of rehtional data base systenss ‘and’ tata’ mnguaga include ALPHA
[Codd 1971a), INGRES [M'cDomld 19713. McDomld lS‘Mb Held 1975b]. MACAIMS
[Goldstein 1970, Qpery by Example RZioof 1974, Zioof 19751 Zloof’ 19756, RDMS
E [Steuerz lﬁ’fﬂ. RisS {Mcbeed 19‘751 EEQU!i ‘fl’oyce m; Chambertin ‘1974,
Chamberlin 1978), and SQUARE [Boyce 197, Boyu o) In'the refational data
- model; functional-dependencies are normally inclided in the specification of the basic
“structure ‘of relaticns. 'ﬁow‘eﬁf. a3 discusied 't seetfou I3, these functional
. dependencies may be easily sepmted ﬁ'om the btﬁc’itruauu of the relations of the

data beie. : e

TR

¥

Several (higher level) semnﬂc data models have been recently proposed [Chen
1975, Schrwide 1095, Senko 167, Smith 1876; Tsichritzis 1999]. Thesé ‘higher level

models attempt to incorporate more semantic integrity information in the basic

Semantic Integrity Specification 13

structure of a data base. Stmctﬁm in these data models are intended to represent
' objects, dttributes of objects, and relationships Batween objicts (in the applicition
~ ‘environment). Semantic dpefations on these structures reﬁrm ngtimtte chang?s in
the application environiment. R

It is not the purpose hiere to analyze these dxta modéls in detail, altough many
of the fdeas developed hirein are-quite closely'Fitited to work on semantic data
" models. Rather, and for réasth to be explained iatét, thé relitional data inodel will
be used herein, as a basis for the discubiin’ of dati*bise semantic integrity.
Although the ideas discnsvedin This thests aré’ appﬁaﬂﬁ“%o*dmm systems in
‘general, the discussion 1s coiiched in terms of the felitional model of data. ~

13. The Relatiom! Data Model g

“'The MMM “appears to bemestmphst data Siriiéture consistent
" with the ‘semantics of information and which provi&es a’ iaffinun degree of ‘data
relational approach there exists an ifterface at' Which’thetotility of Formited data in
2 data base can be viewed as & collectioh of nonhierirchit'réfatidns of ‘asébrted
degrees on a given collection of imple démains (domafiis Whoie élenfents aré ot
decorhposable as fir as the dat basé mianagement syitem is' éohcirned).

For the purposes of this thesis, x (refitfomat} duta bise is défined to be a
collection of normalized reh@s (relations in first normal #5im fCodd 1970, 'and a
collection of domafiit. ‘(Phe relitions pretent B i data: Bikvé "ire spittfically called
base refations) A doumm 15 ari abstract set of atomic"dutd VaRies {Gb jects). Don
are defined independently of refations. A fortalized relatioh’ My Beviewed as a
table, wherein each row of the table corresponds to'a ‘tuple of the rélation; and the

FCEREe S Lo

ymains

Semantic Integrity Specification 14

entries in a column belong to the set of values constituting the underlying domaio of
that column. (Ar_x'.; entry is the value in some yamhrcommnfor a given row of a
relation.) The domain underlying a column consists of the;,isoly those objects which
can appear as entries in that column; any value in.the underlying domain of a
column can appear in that column, and every value in the underlying domain is a
plausible entry in that column. Note that domain and relation names are unique with
respect to a data base, and that a domain and a relation cannot have the same name.

Consider, for example, a data base which cantains information about some
company. Assume that a relation called EMP contains data on the employees of the
company. EMP is shown in figure -, described by its table representation. The
rows of the table correspond to tuples of the ‘rdum‘,(i{gggtds),_xand the columns
correspond to instances of particular domains of the data base. (Loasely speaking, a
relation corresponds to a “flat” file, a tuple to a xeoord, and ncﬂumn to a data field.)

Each data base relation is created by naming the-rslation. and each constituent
column, and specifying the name of the underlying damain: of each column. More
than one column in a relation may have the same underlying domain. Column
names are unique within a relation. Specif yin(the name q‘x‘che underlying domain
of each'colnmn defines the set.of values from which entries in that column may be
selected; that is, the set of entries in a column is always a subset of the underlying
domain of that column. ;

Figure 1-2 contains a description of an example data base.. The name of each
domain and relation _pf the data base is listed therein (in upper case chara;ters). For
each relation, the name of each of its cansﬁmemmk:mmigspmned {by one upper
case character followed by lower case characters), as is the underlying domain of each

column. Relation EMP contains information on the employees of the company,

Semantic Integrity Specification 15

SALES records information on thie supplies of itéms Tor the company, ORDERS
records order information, and BUDGET conmns the uluy budget for each
 dephstivent of i taihpany. , - Dl vt
Figure 1-3 contains a list of some example primitive opérations Which may be
used to interact with a relitional dita base.” Tt is'Wastimed ﬁzitfnad&hhnm these
" operationis, & high' level, nonprocedural qu hnguage\ff“ ovided { (eg. SE’QiUEL
[Chambertin #9745 Q,UEL Diaéid FB0), oF Qery By tﬁunpa :zw 175D,

The advintagés of the retitional ‘dath modil Have besh previously elucidated
[Codd 19M¢, Codd 1975b, Daté 19741, and witl muw héve A detail For our
purposes; the following attributés of the retational 1o 7”’6(&2« mﬂgniﬁa.nt.

'LMpuummwmmmrvu&"&fm)
2. The data model is condudve to (rehﬂvcly) nonproadml‘dah scfcctlon. query ‘and.
manipuhdonunguags R : R

3. It is possible t cleanly isolate the different févels df“‘:&ﬁiiﬁ‘éié“’tﬁt*i.gﬁiy’iﬁ the
refational data model, as diséliséed in chapter 2 Fof exampié, in'thé hierarchical and
“network dsta middels, certain types ‘of ‘Integrity conitrilnts dré ‘datibérately built into
the data structure itself (eg., the owner-coupled set construct in the network ibdel).
The database adiiiiiscrator is thus faced Wit problem:&F separkiiig the semantic
" intagrity reyitreménts fon the complexiiés of the dak’ kcructrre.
refational dau model, “the dm bm ‘adiintitrator Kas anl&‘éub typebfstmcmre to
consider, and & very simple coordinite syt (identiribadioh é¢ ‘Héfations” and colamns
by name and rows by cohtént) By which ﬁc my r&é?‘tcriﬁy lndlvldual itém or

poruonofttutstmun. maum ' ST A

. However, in the

: . Semantic Integrity Specification 16

2. SEMANTIC INTEGRITY

In the context of the relational data model, it is possible tq‘ivc.le;%tify four principal
levels of semantic integrity: -
L Q;p_r_gg_i_r]_ definition is the descriptiop of abstractsets qf atgmic data values, which
are to be qsed to ~sp9c§fy the:set of values from whichf entries ig columns of relations
can be selected. This can be accomplished by 'meaas of v‘a\high level domain
definition language [McLeod 1976a, McLeod 1976b). Far ‘example, the domain
SALARY may | be defined as consisting of positive integers less than 100,000.
2. Relation structure specification is the description of the fundamental structure of
the base relations. This includes namingk each constituent column of a relation, and
stating the underlying domain of that column. . |
8. Structured operations are abstract operamons. which are meaningf ul in terms of the
application environment. Structured opgratlomg_descﬂbe,dm~ base transactions, and
are used to capture the conceptual types of mmipulauons that are meaningful for a
data base (such as, for the example data base éf figure 1-2, an operation HIRE-
EMPLOYEE). |
4. The r relation constraints level is concerned with relationships among data base
components. Relation constraints are used to define all additional semantic properties
of and relationships between the relations of a data base. For examﬁle. primary key
[Codd 1970) (and third normal form (Codd 1971b, Codd 197Ic]) specification is
accomplished by appropriafe relation constrainu.;_ll-igwevey. relation constraints go
far beyond merely supporting functional depengechg;' they provide the capability to
define a very rich variety of types of data prcperr_iés. For example, relation

constraints may disallow inconsistencies between column entries of a single tuple or

Semantic Integrity Specifiation 7

between a tupleaad other tuples in the same or othes- nhuon(t). Fhey may:also. ..

preclude some global patterns in some set of- mm:»m»m:&m baseasa -

whole, or mydulkm ceemin types of missing.datw:(such 23 m tuples; obyolete

- alaes, etr.) : ‘ L

_ Before fm<WMWM-w m&-m"mm ts taken inthis -

thesis, we briefly examine other work-that has been-tene:dn the m« mm
in data, base sym ‘

2.1. Background ;
In.general, there are two major:approaches to-the dpécification of the semantic -
“"Wef adambase: i 0 o » R AR 'us By T s

Llnaw%uppmch mmmmmmm ‘biise: statds 4ro

pesmissible (valid states). The data biseysem % wmm:memﬁ the
- datm basets:always i valid state. (A3 discussed W3 IR chiwper, it may-be

‘mecessary to aflow the data base 1o teporarily:plisstRGisEh Oné of>more invalid

" 2 In a.gtate sransition approach; the set of legat dats busi opiersaions s specified.

- Depending on the'daia-base stute, only cemain:operatiins (yalid opérations) are.
allowed to be performed an‘that state: :These operitiohsare:guarsntesd 1o praserve:«:
- the integrity-of the data: base.
.. A sate snapshot approach td describing. the semantic idfbgely spepifications for -
data base invalyes the expression of.logical constraints; whiichctan be: viewsd: as predicates -
on the state of the data ba:e.;«n'ﬂmumwnwmﬁemﬁ a dulichase-to thoseithat
conform-to some exprassed limitations. - Several; mnffmuy«m. Eswaran 1975,
Stonebraker 1974c, Stonebraker 1975¢,:Zioof 19¥b]}-hawe disqussed: seriantic integrity

Semantic Integrity Specification 18

assertions in the context of the relational data model. Graves [Graves 1975} has also
considered the problem of semantic integrity. -

More xﬁeclf,ic&ﬁy. Boyce and Chamberlin {Boyce 1978a) introduced the use of
SEQUEL predicates for expressing integrity assertions. For an -operation which makes a
data base change to be allowed, the predicates must hoid on the data base state which
results as a consequence of the execution of that:operation,: Esum;m and Chamberlin

[Eswaran 1975] have discussed the functional requirements of a semantic integrity subsystem
and have examined semantic integrity in the context of SEQUEL and System R
[Chamberlin 1975, Eswaran 1975). Stonebraker and Wmé have considered semantic .
integrity in terms. of the INGRES system and the language QIEL [Stonebraker 1974c], and
introduced the concept of query modification as a tool for the implememﬁomof a semantic
integrity subsystem [Stonebraker 1975c). Consider the following example of query
madification: a data base operation is attempted which states “increase the salary of each
employee in the sales department by 108", assuming the existence of an wuy assertion
which states that "each employee salary is. less than $30,0007; query medification would
transform the operation into one which specifies “increase the salary of each employee in
the sales department by 10 if that increase results in his talary.being less than $30,000"
Zloof has studied the problem of semantic integruy'-w-i&h respect to the expression of
semantic integrity specifications in. Query by Example [Zioof: 1975b]. |

In these approaches, facilities are provided to allow the-user to state predicates
(expressed in SEQUEL, QUEL, or Query by. Example) which sire to hold on the data base.
Assertions must be satisfied by the resuk of a dats base change for that change to be
allowed. ' Several significant prablems exist with these approaches:: |

1. They do not deal with the entire problem of semanticiintegrity in a relational data

base, but rather focus primarily on relation constraints.

Semantic Integrity Specification 19

2. They are inadequately flexible With regard to when assertions are

3. The types of actions passible upon detsction of semant *W "*°"“°"' are
limited.

4. No structur’eﬁis _plac._ed_’ on tne semanticlntcgtit;smcif}gttg%skﬁggmtons are
srbitary Predmyén the sateof she daa bmm ranstons from one data base
‘state to another | B | -~
A state transition appmch to semantic lntcgr;ty sgg:ukmon consigs of ggscﬂbing
the set of legal operations which may be performed on a data bue. In this approagh, the
user is confqu to intem:ting wlth the data base bL man.; of. 3 limmd st of op
Semantnc integrity lnformation is thus procedurallz embedded in the ogcminns. This
approach has been suggested by. Minsky [Minsky 19743, Minsky 197th, in the context of

dam base systems. Related work in the area of the definition of abstract data, types (eg.

the work of Liskov and Zilles [Liskov 1974)) has much in common with this operational
Some of the mgst significant prablems with the ‘s}u;g;y transition gpp};gach are:
1. Semantic in:s;r_iti;i‘nfturma‘tion is :,emb‘:d@gg; {n. procadures. in ap unstrpcpured.
ntanneg. and is consequently hard toqulfylm¢pntmtmlyt aundant, inco

and incomplete

2 The conceptuz,l semantic ‘model of a data ba,se(is dl(ﬁcu!t 1o abs;m‘.t fmm the :
procedurally embedded semantic integ'rity mformation e -
8. It is difficult to verify the correctness of the semantic integrtty information. as 4; is

scattered through the oPerations.

lons which are

o [RS
c"ﬂ 14

4. It is not always poulble to precisely characteﬂge thc sgt of
meaningful for a data base at the time the da.ta base it c;eated, Dm is. often kept in
a data base before uses for it are dlscovered or at lcast before all of i%potentm uses

Semantic Integrity Specification 20

are discovered; nevertheless, it is often possible to describe the semantic integrity of
this data by means of propertles it must satisfy (c.g.. assertions which must hold on
the data).

5. Different data base "views" (external schemas) may include very different sets of
semantically meaningful operations, while still couched in terms of a single data base
schema (con&pmal schema). It is difficult to insure the consistency and completeness
of the semantic lntegrlty checklng which is performed by the operations in different
views,

6. Some data base operations are not meaningful in terms of the semantic integrity of
a data base, but are nonetheless required in'prdcticé (e.g..an operation to change a
person's dm of ‘birth, the value of which was orlglnauy incorrectly entered into the
system). o '

2.2. An Approach to Semantic Integrity Specxfication

The major goal of this thesis is to provide a ﬁm approximation to a “theory” of
semantic integrity, particularly in the context of the r‘eﬁt!bml data model. In so doing, it is
hoped that a basis for a semantic integrity specification methodology will be developed.
This methodology should assist in the formulation of the semantic integrity rules of a given
application environment, and direct the selection of those rules which will constitute the
semantic integrity specifications of a data base (e.g.. in the face of implemenmion cost
tradeoffs).

A semantic integrity subsys:em must be capable of performmg

1. semantic integrity checking (error detection),

2. semantic integrity violation focalization (de:ermlning preclseiy which data values

are in error),

0 ey e T i e g e
s

Semantic Integrity Specification 21

3. semantic lntegnty vlolation-actlon (reportlnglmponse)
The semantic lntegnty speclflatlon language(s) must provldc the uur wlth the ability to
state all information required to perform these mks. (Thls lndudes. of course. a precise
specification of the semantic lntegrlty rules them:elvu.) e

Actually. it is deslrable not only to encapsulate (ln the dm base semantlc integrity
speclficatiom) knowledge about the semantlc lntegrlty of a dzta base, but also knowledge

about how users will interact with the data base. The meanlug of a data base lncludes the

l’ 4, ‘3“2.»

manner in which users interact with it; semantlc lmegrlty and u:er abstm:tlon are closely
related issues. |

Some semamlc integrlty lnformatlon is best expressed vla a sme snapshot approach

5

while other lnformatxon ls best expressed in terms of state transitlons The approach

S rigen i

descnbed in thls thesls mcludes both sme snapshot and state tun<lon upects.

LR

' Baslcally. then. the approach to semantlc lntegrlty taken herg hal several ma jor |
objectxves. T E
LIt should be possxble to expms semantlc mtegrity speclﬁcations.
| a.ona high level,
b. declamwely. nther than procedurally, |
c. in a structured manner,
d. abstractly, in a way relevant to the application environment.
2. These specifications should be:
a. easily modifiable,
b. nonredundant,
C. consistent,

d. complete (as a mode! of the application environment), |

3. Semantic integrity checking should be:

Semantic Integrity Specification 22

a. the responsibility of the system (but the system may sometimes need to ask
for advice from the user),
b. flexible. allowino' appropriate speciﬂation of when checking is to be done
(eg. after primitive data base change, after concepmal tr.\nsaction etc.).
c acceptabiy efficlent in terms of the oveull performmce of the dau base
system.
4 Semantic incegrity violation-action :hould be:
a. flexible. altowing an appropriate violation-action to be speclfied (eg - |
inciuding error reporting. corrective action, ctc.).
| b. suﬁ’icienﬂy ‘lucaiiud so as not to geneute time-conmming, expensive, and
potentwly deetructtve side effects”.
The approuch 0 semantic imegrity described in this thesu may in fact be vxewed as
a generalized approach to dau basé design andlor dtn dei‘inition That is, we are
attempting to provide a framework by which the data ina dan base may be described
Additionally, the f’nmework described herem may proVe ucehﬂ u a base language into
| which specifiatiom in terms of a higher level data model (such us those described in
[Chen 1975, Schmidt 1975, Senko 1975, Smith 1975. Tskhﬁtzis 1975}) mty be translated.

Semantic Integrity Specification 23

8. DOMAIN DEFINITION .

The purpose of this chapter is to discuss domain defmition. one levei of sem:mtic
oA hals e
integrity in the context or the reiational dats model. Specifiuiiy. the precise definition of
P (1% K SFE. "! ey * R LR
domains. viewed as sets of atomic data vaiues. is considered. This inciudes a review of the

PR PO T RS FS St R

functional requirements for dealing with the probiern of domain definition. o discussion |
and evaluation of other work that has been done in the srea. ond the description of a
specific soiution to the domain definition probiem.

_‘«?4

Itis impomnt to note that a dornain is different from 2 unsry reiation Domains are)

ot WIS el L
abstract sets of atomic dnu veiues. and my in fact contain anginfinise number of eiements.
s b wid onr (sied gle T

A relation. by contrast, must contain a fimte niimber of tupies. Abstnctly. reiations are
ﬂ' 575 BEEE S i :

sub ject to chsnge (e.g, by the sddition of ‘new tuples) but domains are changed oniy wiien)

g2 AT

the associated abstraction changes To a crude f irst agproximation. the set of vaiues
w e bas s A L
oonstituting a domaun is fixed at the time the data base is defined (piie time") while

- s .% y 5)‘ ’ “' ’ A 'v'“?y Lt

the set of tupies ina rehtion is normaiiy changed during: the dny-to-day operation of the |

fi

et

data base system ("run time")

ERE T TR I N N LI

Domain semantic integrity errors. ie.. errors which involve the presence of entries in
N I‘ gr g et - "'K A

some colurnn of a reiation which do not beioné to}‘the domein tsnderiying that coiumn.

occur frequentiy enough to justify a facility to hendie them. épecific experience wsth a

» 1IN Jﬂ“i' BT

parucular dan base appiication environment has shown tiut. for an experimental sampie |

of user-dau base interactions. a large percentage of errors disoovered a.re domain semantic
o e g 2l
integrity errors [McLeod 19751

T F I T

Semantic Integrity Specification 24

3. Describing Sets of Atomic Data Values

As discussed in cnapter 2, several approaches to semantic integrity for relational data
bases have been recently presented As noted in that chapter. all of these approaches
essentially deal wlth relation commlnts, ie, facmtlu are provided that allow the user to
state prediates (exprmed in SEQUEL, Q,UEL, or Qpery by Example) which are to hold
on the data base

The requirements of domain deﬁnmon are not adequately supported in these systems.
They lack the capabiltty to a!low domains to be ptecisely deﬂned as abstract sets of atomic
data values. Al of these symms allow the data type of each oo!umn of a relation (not each
domain of the data base) to be defined, but the possible types are limited and very
representation-oﬂentad It should be possiblt. fOl‘ exampie to define domams like
SOCIAL_SECURITY_NUM'BER and GEO COORDINATE, mther than being Iimlted to
such domains as INTEGER and CHARACTER STRING It is desnrable to be able to
descrtbe a mnoeptml class or data values. Thls abstnct descnption b quite different from
a mere specmcntlon of the phystcal repraenmion of the valuu in a domain. rather, the
semantic propertles of the:domain are pronounced The work: of Llskov and Ziles [Liskov
1974) conoernlng abstraot data types is related to thls notion. in that chsses of abstract data
ob jects (values) are being described. ‘

Boyce and Chambertin [Boyce 197331 have proposed attnhmg attributes to each
column of a rehtion ("column descrlptors") One of these attrlhutes is the scope of a
column, which spedﬂu the ut of permlsstble values for entries in that column. eg., salary
is a positive integer less than 20000, Similarly, Zloof [Zloof" lQ’ISb] has indlcated that
provisions should be made for. facilitating the specification of entry "formats” ("their type,
size, etc,”).

A detailed scheme is needed to facilitate the precise description of domains, and to

Semantic Inhegrity Specification 25

integrate the domain definitions with the structure of the:velational data base. Suchia
scheme should (at least) satisfy the following criteria: . . = |
1. facilitate the precise and detailed description of-'-mg»nﬁﬁmm&dau values; as -
subsets of one of the paral demains: real number:and chawmiug (these
"natural” domains are the primitive domaing: which are used: n,'mmm other
domains),
2. provide for the proper abstraction of defining domains independent of their use as
underlymg‘mmoﬁ columna. in one oF mene relations;
-8, force a domain definition to be a single maduie, so-that demain semantic integrity. .
information is localized, | e
4. facilitate automatic-domain definition checking and flexible: types of action which
are to occur upon:detection of & domain defintion: vieolation, V
B support specifications that describe when and haw domain-values can be compared .
(e.g. when two values being compared are.feom the:same domain, and when the:two
values are from different domains), and converted-{e.g., whem it is: desired te.convert
the value in one domain into and “equivalent” value:in-another dmﬁ d

- 8.2, A Domain Definition Language

.A high level, nonprocedural language.can:be used to express:domain: definitions. In
this language, each domain in a-data base is described-by a single domain definition
(domain definislon module). The definition of 2 domain is-insitled™ (bound) &t the time
the domain is created. Domain creation may be viewed:4s the compilation of the <domain
definition ‘module. Note that a demain duwucnwmmmdmmmct ratomic
values. Domains are not dynamic as are unary relations; vather, they. constitute fixed
abstract sets of data values. The definition of a domain may be modified, but this occurs

Semantic Integrity Specification 26

only when the abstraction has changed.

As noted by Hammer and McLeod [Hammer 1975}, three types of information are
required by the semantic integrity subsystem to deal with domain definitions:

L. a specification of the set of atomic data values constituting the domain,

2. information describing when the domain definition is to be checked,

3. a specification of the action that is to occur if the domain definition is not

satisfied.
Since we shall assume that domain definitions are checked whenever an entry in some
column of a relation is created or altered (e.g. by an operation which inserts or updates a
row), the specification of when a domain definition is to be checked need not be explicit.
Thus all that need be explicitly expressed in the statement of a domain definition is the
precise description of the set of values comprising the domain, and the action that is to
occur if an entry in some column of a relation is created or modified so that it does not
belong to the underlying domain of that column.

Each domain definition therefore consists of the following four components,
represented as clauses in the domain definition language:

1. Domain name

2. Description

The description clause allows the set of atomic data values constituting a domain to

be specified. The set of values constituting a domain is defined as some subset of

one of the two natural domains: real number and character string. Every domain is

thus defined and represented as a subset of the real numbers or of the set of

(varying length) character strings. This specification may be accomplished by:

a. enumerating the domain values,

b. decomposing the domain values by specifying the subunits of which they

Semantic Integrity Specification 27

are composed,

c. placing restrictions on the set of values by stating predicates that describe a

subset of one of the natural domains, |
or a combination of the above. The special data value “null” (undefined) is present
in each domain. This is to allow missing data tovbe represented in the data base. (It
may sometimes be useful to distinguish an "unknown"_ value from a value which
"does not make sense” [Florentin 1976}, but this distinction is not made here.)
3. Ordering
The ordering clause is used to indicate how domain values are 6rdered with regard
to comparisons with other values in the same domain. This iriformation i‘s important
in identifying the semantic properties of a domain. One type of ordering
specification is that the values in a domain inherlt the (total) ordering of the natural
domain of which the domain is a subset. Inherited ordering may also bé by subunit
(e.g., the primary ordering is by one subunit, the secondary ordering by another
subunit, etc). Inherited ordering is numeric for domains which are defined as
subsets of the real numbers and lexicographic for domains which are defined as
subsets of the character strings. Another type of ordering specification is that no
ordering exists, in which case only equality comparisons are meaningful. An external
procedure (i.e, a procedure in some programming language other than the domain
definition language) can also be used to define the ordering specifications for a
domain; this procedure is called whenever two values in the domain are to be
compared. Such a procedure accepts two domain values (which are to be compared)
and returns the value that is first in the ordering sequence.

4. Violation-action

The violation-action clause specifies the action that is to occur if an entry in some

Semantic Integrity Specification 28

column of a relation is created or changed in such a way that the entry does not
belong to the 'und‘erlying domain of that column. Typesof violation-action include:
a. the change may be refused and an error signaled,
b. a partu:ular value, either constant or calculated from the erroneous value by
means of operauom (such as substring. oonatenate, ehc.) may be substntuted as
the new value of the entry.
c. a call may be made to an exterrual procedure, the erroneous value being
passed as the argument to the procedure, and the procedure returnlng the new
value of the entry '
System-generated or user-speclfied messages may be optiomlly returned to the user or
calling program Note that in cases b and c, it may be necessary to recheck the
domain definition after the corrected value of the entry has been determmed
At this polnt it should be noted that the use of external procedures for ordering and
violation-action spedfication should be mmlmized imofar as posslble. The capabihty for
such use of external procedures is provided for genenuty and oompleteness.

3.21. Language Details and Exarnples

Figure 81 contains domain definitions for sdme‘dof't'i;e”exudo!e data base domains.
An indentation-oriented syntdx is used in this figure Examples of rrelues in each domain
are listed (in parentheses) to the right of the corresponding domain deFinition. |

Figure 3-2 contains a specification of the syntax of the domain definition language.
In figure 8-2, syntactic classes are denoted oy Tlower case strings,whxle keywords are in
upper case; actually, the language should include both upper and fower case keywords.
Optional parts are enclosed in "%, and alternatives are separated by "|" " |

Inf lgure 81, the deseription clause of the NAME domainde{‘mition specifies that it

Semantic Integrity Specification 29

consists of (character) strings, each of which is composed of a string followed by a ", *,
followed by another string. In this description clause, data values are decomposed into
subunits; the first and third are variable subunits, while the second is constant. Subunits
may be labeled, so that they may be referenced elsewhere in the domain definition. As
stated above, external to a domain definition, the data values constituting a domain are
either atomic numbers or atomic strings. The rule is, if a description clause of a domain
contains only number subunits (variable or constant), then the values in that domain are
numbers, otherwise they are strings. Number and string subunits may be mixed, and if so,
number subunits are converted to string form to yield the string values constituting the
domain. For example, domain MONEY is defined to consist of strings of the form
"$25,000". Values in domain MONEY have two subunits, the first of which is the string
constant “$", and the second of which is a positive number. Values in domain MONEY
are thus represented as strings; the number subunit of any value in domain MONEY is
viewed as a number {(and can be manipulated as such, eg., by "+") when the subunit alone is
considered, but it is viewed as its string "equivalent” with regard to the domain value as a
whole (and can be manipulated by string operations).

The description clause of the domain SEX indicates that it consists of two data
values: "female” and "male” (in addition to the ever-present "null’). This is an example of
description by ehumeratlon. |

For domain MONEY, the subunit labeled "value” must be greater than or equal to

zero, as specified by the subunit where restriction. A subunit where restriction contains a

predicate that is to be true for the subunit and involves only that subunit; that is, this
predicate is a restriction on the set of numbers or strings which values for this subunit may
have. It is thereby possible to express properties of number subunits involving comparators

(such as "=" and ">") and number constants. It is also possible to state that a number is an

Semantic Integrity Specification 30

exponential (exponential notation) or an integer (as for domain DATE). For string
subunits, a size (lengzh) specification can be made, the's& of characters pérmisslble in a
string can be defined (as for domain ITEM), and a- :
(such as™=" or *>") with-constants can be stated.

phic ordering comparison

A global where restriction permits expression of properties involving multiple
subunits, as welk:as those on domain values viewed as a Dnit. ‘A global where restriction
contains: a predicate that ‘may involve a ‘domiin valie, subunit values, operations, and
comparators. ‘String operations can be employed 'to generate’ subsiririgs, calculate Iengtﬁs.
perform concatenations, etc. Number operations iriclude the’ usual arithmetic operations
oh of domain MONEY, the
global where restriction states that -domain values (viewed ustring:) must either h;ve two
digits to the right of the decimal puint or else have no decimal point. Here, 'fig’hk#. AN
1)” evaluates to the right substring of the domain value'(hich is referenced by "), kmrfing

and “maximum” and "minimum” For example, in the descri

at'the character after the occurrence of **(This form of the "right" operation takes two
arguments: a string Whose right substring is to be caicufated, and ‘ahother string whose
index in the first string is calculated to detertine at which ¢hatacter of the first string the
right substring is t6 begin.) The operation “present® yields “true” if the first string
specified contains an oceurrence of each of the folbwmgstrmgs, otherwiseit yields .“f alse': |
The global where restriction of domain ITEM illustrates the speclfi&tﬁ;’h of the number of
times some contiguous group of subunits'can repeat. o

A where restriction may also contain a call of an externat boolean procedure (as for
domain ITEM). If this procedure call is in a global ‘where restriction, the procedure is
invoked with the domain value in question as its ”irgumenti 'the éxn-d"éédure’remms “true” if

subunit where restriction, the procedure is invoked with the subumt value in questlon as its

Semantic Integrity Specification 31

argument; it returns “true” if the subunit value is legal, otherwm it recurns "false" | |
Boolean combinations of the above types. of whete mtrictiqn are auowed in both_:
subunit and global whm restrlcuom. as are cond)uomls (as tor domain DA’I‘E) l"::,
addition, an- “or" may | be used to indlate that the domuln aom;tm valuu that come in more
than one form. ie, that the domain nomlm oﬂ tM unlm of two oc maore sets of values. |
each of which is deﬁned sepamely ’ e B
The second clause in a domaln deﬁnition Is thc ordgr;ngﬂchnu. 'l"bis may specifx
that no ordering. exists on values in, the domaln (‘none"). w,hlch meaps that only equylity

comparisans are aliowed (as fofdonuln SEX) /An ordering specification of "atomic” means

fPryaiy s

that valua in the donmn are ordered by the uml numerlc or, léxiqmphic orderlng ,
vnewmg the domain vatues as atomk: numbm or lmhgs (u for doqain QUAN) The
ordering clause my also oonmn an ordeted llst of labcls (qubumt mma). indiating that ﬂ
domain values are ordered according to the valua of the spec;;‘led subuniu. The usual |
numeric or lexicographic ordering on these subunits is used. md the suguniu are taken in
sequence: primary o:deﬂng secondary ordcﬂng. otc. (u for domw;s NAME MONEY
and DATE). Finally, an external procedure an be used to specify the grdering on the
values in a domain This procedure is passed the two valyes bdl';z compared. and retuns
the value that is first in the ordering sequence (as fo: domain_ ITEM) - ‘,
The third clause in'a domain definition is the violation-action clause. As discussed :

above, it may specify that an error is to be slgnaled indlcating tha,t the data base change
specified by a user is incorrect and should be re jected. A sym-genmaqd or useNpecmedi‘
message may be opﬁong}!x returned 59 the,psg; or aningproggm.’rglf is ;!;g,,trug for ;hg

cthee types of viaaton-acton. 1fth viotion-action 1 spegtied a5 “aror” then an error
is signaled and a system-gcnemed message .is returned i(a:‘s‘ for domains NAMEE: %nd DATE)

Domain SEX has a violation-action clause that specifies error signaling with a utg;;,

Semantic Integrity Specification 32

specified error message. If a system-generated message were 'de's‘ix;ed the specif ic message
could be replaced by “SYSTEM-GENERATED". A system-genented message can be of
the form “the definition of domain SEX is violated”, or can bear more informatlon if the
system is a bit smarter (eg. “the definition of domain SEX is violated, it consists of only
the two values 'female’ and 'male™). The "substitute® violation-action allows a constant
value to be substituted as the new value of the entry being created or changed (as for
domain MONEY). A calkulated value, obtained via string or number operations, can also
be substituted (as for domain ITEM). In the specif lcatlon of thls calculation, 'y represents
the value that is being checked-to determine if it is in the domain The caliulated value is
then checked to ‘make sure that it is in fact a valid domam valie; if not, then an error is
signaled (to avold infimte recurslon) “The defmitlon of domun QUAN offers an example

of an external procedure call viohtion-action u

33. Implementation Considerations

The domain defmit:on languag grd:es tramlates domain defxmtions into an

responsnbﬂity of determining what cheddng ls to be done whenever some dan base change
request is issued by a user. It fnust also assume the respomlbility of performmg this
necessary checking. Whenever a new entry is created In 2 colimn (eg by an insert row
operation) or an existing entry in some row is changed (e.g by an update row operation),
the system must ‘make sure that this new entry be!ongs to the underlying domain of the
column in which it occurs. The information in the descriptinn chisse of the underlying
domain of the column is used for this purpose. If the domain ducnptxon is violated, the
information In the violation-action clause is used. Theordeﬂng';;f'ormation is used when

comparing two values in the same domain, as discusied in chapter 4.

e PICE P Lo B o S Thees y SRR R e T e T

Semantic Integrity Specification 33

A domain definition may be used no obtaln the Information neoossary to construct
EN ‘!;‘ i S Hel® .

several internal relations, which are used by the sernantic tntegﬂty subsystom to facmme

domain deﬂnltlon checking-
" L The domain definition relation concains a single tuple for ach domain of the data
base; this relation has the following oolumns (mth primary ke! domain name)'
a domain mmo, .
b. descripnon type. which is simple w the domain m qne nonhbcbd subunit
with no where mtriction otherwise eomplex .
. global whmrumctlon o
d. viola.tiornctlon type. which is error" 'substiwoe or ’call' .
. violation-action modifier, whicl'r for vifwxm-mm type. gubnamcg 1s the

value (constant or cakulated) to be substimted " fo’;%;tl" lsﬂthe namo of the

SRS Ry

external procedure to be called, otherwise "null”, »

f. errorlwarnlng meuage. which is etther a oonmnt (uscr-q)edﬁed message),

sysrem—genented or i, ‘

g orderlng type, which is atoml none. bum: (!‘or subunn specified

- orderlng).or il (forexterml proadurecall ordcring). B

h. ordering procedure name, which ts the name of th: external orderlngw

procedure lf the ordering type is all" otherwise nu!l" ﬂ - ‘ |
2. The subunlt def gmon rehrion concains a tuple for uch subunit of each domain. _
this relation has the followtng oo!umns (mth pnmary key domain nnme. onbunlt |
index)- |) |
’ a. domain name, | | . 7“, , o
b. subunlt index.v nhich is the ordinal number of tne subunit in the domain
def imtion. |

Semantic Integrity Specification 34

c. subunit type, which is either “constant” or "variable®”,
d. label, which for constant subunits is "null®,

e va_riable'subunit- class, which is "number”, "string”, or "oneof", and "null”® for
constant subunits, |

f. subunit where restriction, "null” if none exists,

g. ordering index, which is the ordinal number of the subunit in the ordering
clause, and "null” if this subunit is not referenced in the ordering clause.

3. The oneof constant relation contains a tuple for each constant in a "oneof”

description of domain values or domain subunit values (for each domain in the data
base with such a "oneof" description); this relation has the fbllowing columns (with
all columns in the relation as primary key):
a. domain name,
b. subunit index,
¢. oneof vconstant, which is a constant in the “"oneof” list for the subunit
identified by the subunit index (for the domain specified by the domain name).
Domain definitions may be utilized to automaﬁcally determine the appropriate
physical storage type to be used to represent values in a domain. For strings, a fixed length
character string representation can be used when possible, such as when domain values are
enumerated (via "oneof"), or when an upper bound is placed on the length of string values
in the domain. In other cases, varying length character strings can be used. For numbers,
it may be necessary in many cases to make a compromise for efficiency. Integers ("number
where i\nteger") may be represented by a fixed binary storage scheme (eg., single word
binary), but it must be clear that this is only an approximation to the domain definition. A

similar situation exists for real numbers: a float binary representation may be used for

storage.

Semantic Integrity Specification 35

3.4. Extensions

P
A

Important issues to be considered in future research ondomain definition include-

LItis possible to extend the domain definition language so that previous!y deﬂned
B 86" R 2 5 i
domains may be used as subunlts in the det‘inition of a new domain If this

t,. el

hierarchic approach is used, care must be taken by the system to retain domaln

RhY

definitions until they are no longer referenced in any other domatn definitlon :

1*1

nbvhde amad U el o
2.kt may be useful to mtroduce dmm m In this approach operations are
REREPRoCY W Al RNUOTE OWVEHDE T Y fayd

defined for mh domain. and manlpulatlon of values in the dcmain is restricted to
the Feadamed J;s‘iaﬁ? Fi il 35

the spedﬂed operatlons This approach issimilar to the notion of aburaa data types

TN T e S ‘s.g*ﬁ bor AR TC b N e t e o

of Liskov and Zilles D..iskov 19741 It may be argued that the agprnach taken tn this

: '. T L ’5‘ ' § :
paper is stm too representatton-oriented For example, v?lues in the domain
i : i FEESETo RN L) § . %
MONEY may be strings or numbers. but this is irrelevant with respect to abstractlon.

The important properties of the value; czcnstitksstis;:aﬂdo%ainmay be best
characterized by specxf ymg the cperati;nz tth;t a;e definngonx thervalues;n the
domain. of course. in this case a dontairr u;il}l ;oﬂionée: beqdeﬂned as a subset of
one of the natural domains (string and real number), and the standardized set of
domain operations (such as ">, "=", "+", etc) will probably no longer be appropriate.
8. It may be advantageous, in some cases, to defer the checking of domain definitions,
and not report violations at the time the data is actually entered into the system. For
example, in the case where a data base is being "bulk loaded” or updates are being
"batched”, it may be desirable to report all viclations of domain definitions at a later
time, say to an interactive user or as part of a summary report.

4. The modifiability of domain definitions is a very important issue. It shoulcl be
possible for the definition of a domain td be changed as the corresponding

abstraction changes. If this is allowed, then it is necessary to verify that all entries in

Semantic Integrity Specification 36

columns having a given. underlying domain satisfy the new definitidﬁ of that-
domain. | | o |

5. It is possible to call an ’ex&mal procedurc tb vérify’that a value in question belongs
to a domain. An txtemal procedure call may also be used in the ordermg and -
violatlon-acnon specifiutions. However. we have no guanntee that the external
procedure is correct. Somz reﬂabtlity is nonetheles guanmeed by the fact that this
external procedure must use the normal dau bue system merface. In add:tion. the
domain dcflnmon is agun checked after the external procedure has terminated.

" 6. The problem of tmpltmenting the domaln deﬂnitlon ﬁcheme and evaluating its
effectiveness and eff iciency has yet to be fulty addmud :

7. It may be usefu! to comider the automatic genmuon of domain def initions by
attempting to genmllze upon afew examples of domain values which are glven by a
user. This ls, of course. a part of the general problem of the demled spedﬁanon of
the user mterface whlch suppom the construcﬂon of domaln deﬂnmons.

~ Semantic Integrity $pecification 37

4 RELATION STRUCTURE

Relation structure specification .is the description of the fundamental structure of the:
(base) relations of a data base. When a relation is created, at least the folhningmbe
done:

1. The relation must be given a name, which is unique ‘with- respect to_ali. names of

rehz;om in the dan base.

ZThenumbgrofeolumminthcnhtwanwbewN‘ o

8. Each columa. of the relation. must be assigned. a unique. name (wnique. wish respect

to the names of the calumns of thetelation).

4. The name of the upderlylng domain of exch column mt:ht specified. A

definition for each domain thus referenced must exist at the time the relation is

Created. | S

It is possible to include other types of informatiop as » part of the.fundamental
structure of a relation, For example, the primary kay,(Codd 1970] of the relation. may be -
identified. Howevef. at the level of abstraction-at which. gur. discussion of semantic:,
integrity is focused, the identification of the prim,r.g; key ma
relation constraint (and expmsed a such). Furthgmme.xhug is.no: mmpe;nng reason for
distlnguishing the primary key from other candidate keys (Codd 18701 It is most logical for
a primary key spagﬂc;;iqn to be viewed as a relation constraint, as is the.case for other
types of functional dependencies.

.be viewed as a type of

Many higher level semantic models for data base design.and abstraction (data
definition), €. [Smith ,lﬁ?ﬂ],i;;pnﬂde;,cenun » ;yR“of "Mﬂﬂe‘ wﬁmn (such as

functional dependencies) to. be special. Functional.dependencies are one important type of
constraint, but there are other types which may be equally imporiant (in.some application

Semantic Integrity Specification 38

environment). We believe that it is essential to provide:for a broad spectrum of relation
constraint types, and to integrate the formulation of these constraints with the process of
data base deugrf and-abstraction. In chapter 6, ourhppmnch to réfation constraints is
further d%hcusud IR

4l. Additional Column Information -
In addition to the column name and the name of its unéetlyinf domain, it is useful
in practice to allow two additional-atiribuces to de assicited’ with each column:
1.2 natrative description bf the column, for dottiifieritition purposes,
2. an indicator speéifying whether "null® {ubidefinedy values fnay be present in the
column: (thus alowing “null" valdes to be ielécvaly préhibited from colimns).

4.2. Comparability

Ttie kinds of compatisons and- mianipulaﬁbﬁs of ‘column entries that are allowed
refates to the semantic integrity requirements of a dita Bise. “The’term comparability is
used herein to refer to the géneral problem of ditetniining when and how two or more -
column entries may be oompired or otherwise manlpum’ed by strdduféd operations. There

are two basic types of comparisons:’ intradom__[u_ cﬁtﬁg ;j s and interdomam
comparison o yre
Intradomain comparisons are those in which two values from the same domain are

compared. In this case, the information in the ordering clause of the domain definition is
sufficient to determine hiow the comparison is to bé made. |

Interdomain compaFisonis are those in which two Valtes from different domains are
compared. In this case, values are compired as atoinic stringé 6r numbers using a domain

conversion, as defined below.

Semantic Integrity Specification 39

4.21. Domain Conversions
A data base has associated with it a set of wg_ EELSL&M Each domain

conversion is specified by means of a m wmm i‘aﬂt mch mverslon is
a specification of how values in a given domajn are converted.into nquiw&hm\. ‘values in

another domain, and vice versa. Explicit specification of domain conversions is necessary

because values in different dom;m belong to different abstract sets, and. converting a
value in one domain into an “equivalent” value in lnothu' rcqulus kmlodg‘c of the
precise hature of the abstract sets corresponding to ehetyo dwmins imrolvnd For example,

both FEET and INCHES are riumbers, but they unno;,bgzmar&m}y added without the

use of an apprapriate conversion. e
Domain conversions are defined independent of the dmms (and uhﬂoss) of a
data base, in the sense that domain conversion modules-have no access fo the internal

details of a domain definition; damain gonversions thus %Amplgvmmw domain.
into atomic values in another. . Domain conversion modules.can. he.dynamically. created,

deleted, and modified, with the restrictions that:

conversion is crated

2, if either bf the domams referenced in the domain cenyersion is deleted, the

domain conyersion is deleted.

For the purposes of this thesis, it is assumed :hat ‘domain. conversion modules are
written in some high level programming language. This language may be a specialized
oné. similaf; to the dom;in definition language. For generality, it is permissible to.allow this
language to invoke external procedures written-in a high level geperal purpose
programming language. o |

For example, a conversion for domain. QQLLARS and

Semantic Integrity Specification 40

THOUSANDS_OF_DOLLARS can be defined as:
~domain conversion DOLLARS, THOUSANDS_OF DOLLARS
DOLLARS = THOUSANDS OF_DOLLARS « 000
 THOUSANDS_OF BOLLARS « DOLLARS'/ 1000
Conversions may be unidirectional as well as bidirectidnal, ind this is the reason for
the- seemtngiy redundant specification in the above mmp!e. ¥or more complex types of
canversiom. external procedures may be used; for cxamph; we' mty ‘have:
domain conversion DATE, JULIAN_DATE ’
"DATE = pl(JULIAN_DATE)
JULIAN_DATE = pXDATE) -
where pl and p2 are external procedures, |
Structured operations may perform various types of domain comparability operations
on entries in-a data base. The standardized set af sich domain operations includes "=",
"wat, BT, et O e, NN U T "w, and string and ‘ser-defined operations. For
example, some structured operation may check to' ek 'if, for sofne tiple in refation R, the
entry in' column A is-larger than then entry in columin’ L3 ﬁ: v issumed tha Both columns

A and B contain numbers.)

Whether or not values from different domatmmay be uttiized -tog‘e'ther ('compared‘ or
otherv)ise manipulated) depends upon the nature of the domains and the particular tjpe of
operation that is to be performed on thelvalues in thote doriains. Tn order to establish a
first approximation to a set of comparability rules (for the’ ﬂmdardized set of domain
operations), three types of comparability are distinguished: = |

1. equality-type, which is invoked when one of the foﬁowhé types of manipulations

 oceurs: o | e e e ,
- & values are compared for equality ("=") or inequatity ("~="),
b. numbers are added ("+") or subtracted ("-"), '

C. sets of numbers are manipulated vix set operations, such as “aximum” and

‘Semantic Integrity Specification 41

"minimum”, ‘ , ; |
d. sets of values are manipulated by "unicn’, "insessection”, or "difference”,
2. ordering-type, which is invoked when values are compased via “t" "¢e", % or
om R .

8. mixed-type, which is invoked when values are manipisiated. via multiplication ("s"), .

division (*/"), exponentiation ("#?), or any mm or user-defined aperation.

Equality-type comparisons are always éﬂowcd if the two values being compared (or.
manipulated) are from the same domain, Le, If the values are from the same column or
from columm with the m‘;md.cﬂylng domain. . lf the values are nog from the same
domain, i.e, they are from distinct columns with different underlying domains. then they
may. be compared. ifandonlytfadnmam mvmmmxmdmm; (AU
domain conversions mbe explicitly defined.) The domain conversion is used to convert
the value in one of the domains into an "squivalent” value in the.other. domain, and the
resulting values are then compared. (Another type of conversion could be supported, by .
assigning units to each column, and defining units conversions [McLeod 1876b].) -

Ordering-type comparisons are allowed if two yalues are from the same underlying
domain and the ordering of that domain is nat “nane”. Ths ordering, infermation in the
domain definition uu:dao determine how the ulunmwbpwnd Ordering-type
* comparisons are also allowed if the two values are from different columng, these columns
have different underlying domains, and a domain conversion exists between those two
underlying domains. In thjs case, the values are compared by u&lng the domain conversion,
as for equality-type comparisons, In any other case, ozdenug-xxpecompmwm are. nat
aliowed. ‘ ., ‘ .) ; 1 :

Mixed-type comparisons are always allowed. Values can always be manipulated by a
mixed-type operation (with no resirictions). Values that.are numbers may be multiplied,

Semantic Integrity Specification 42

divided, and exponentiated with no limitations, except of course for the requirement that
the values be numbers. Although numbers may be addeéd and subtracted only when they
have the same "units®, multiplication, division, and expohenttition can be performed
without any such restriction. It presumably makes sense to divide a value in domain FEET
by a value in domain POUNDS, but it is (normally) not sensible to idd these two values.
For mixed-type comparisohs, vahies being ‘mitnipiiated are tieated as atomic and domain
conversions are not ‘used. Note tﬁnt if user-defiried' domain operations are allowed, they
may be placed in this category by defaul: More genérifly, it midy'be best to allow the user
to specify the comparabitity type (equality, ordeting; ot mixed) 6f exch user-defined domain
operation. | t s '

If the user wishes to state an unusual type of query,'siich &% asking for all: employees
whose name is the same &s the name of their department, the user may be allowed to "force™
the comparison, by explicitly overridingthe restrictions. Entries in the two columns are
then compared using the default numeric or lexicographic ordering, treating the values as
atomic numbers or strings, respectively. The idea is to perniit the system to be flexible and
not to allow comparability rules to get in the way when ﬂveyshmldmt The best approach
may be to warn the user that an operation may be mesnitigiess; but allow it to proceed if he
demands it. (The semantic integrity of the data baie is not reafly in danger anyway).

Domain conversions are also useful when a structiired operation retrieves an entry
from some column of a tuple in a relation and assigns it to be the new value of some other
entry (in a different column of some tuple in a relation). For example, suppose that the
date an item was shipped by some company (the entry in ‘column Difte of relation ORDERS
in the example data base of figure 1-2) is to be copied into the Date column of another
relation, say BIG_ORDERS. (BIG_ORDERS records all orders which request over $1000
of merchandise.) The Date column in BIG_ORDERS has undéﬂying domain

Semantic Integrity Specification 43

JULIAN_DATE (ie,, dates of the form '76184"). while, the Date column in ORDERS has
underlying domain DATE (l.e., dates of the form '112011976') Thus the domain conversion
from DATE to jULlANJ)ATE can be used to effect the dalred Jassignment.

The genenl rule for an assignment which taku the entry in a column (A) and
assigns it as the new value of an entry in ancther columtr (B) isas follows:

L If A and B haye the same underlylng domaln. the ment is p«formed with no

convemon.

2. If A and B have different underlying domaim, then: _ 4
a. ifa domain oonvmion exists from At B, thcconvmim is used to uffect
the assignment, _

b. if no such conversion exists, the aulgnmuu is not allowcd

Semantic Integrity Specification 44

5. STRUCTURED OPERATIONS

A very important aspect of data base semantic integrity is the set of operations a user
may employ to examine and manipulate the data base. It is possible to describe a user's
view of a data base as consisting of data structures plus operations. Alternatively, one may

conceptually characterize the user’s abstrac; view completely by a set of abstract operations,

as is done in abstract data types [Liskov 1974). These operations provide a behavioral
specif iétion of the semantics of the data base.

For these reasons, the cm"lcept of a structured operation is included in our approach
to semantic integrity. The principal purpose of a structured operation is to embody a
conceptual data base transaction: an action which. is meaningful and permissible in the
‘context of the application environment. For the example data base of figure 1-2, structured
operations may include: hire_employee, fire_employee, raise_salary, place_order,

create_new_department, etc.

5.1. Semantic Integrity Information in Structured Operations

One approach to preserving the semantic integrity of a data base is impose the
restriction that the operations that may be performed on a data base are only those in some
given set. This set of operations should be defined so that it contains only meaningful
actions. However, the approach of allowing only semantically meaningful operations has
several problems:

1. Operations which are not semantically meaningful in the context of the application

environment must be allowed, eg., to permit errors to be corrected.

2. The set of operations that are to be allowed may depend upon some characteristics

of the data base state. For example, the set of operations Ol may be legal if the data

Semantic Imegmy Specxficatlon 45

base is ln state Sl, but if the data base is in state 82. thegt nf leg;l operations may
be O2. ' '

8. The uses of a data basé are not fixed, but rather evolve with time. Operations
change and new operations need to be created. 1f the sd'mntrc lntezrlty information
is embedded in these operations, & scan of iﬁ diﬁ” operitions
to make such modifications.

4. Often data is maintained in a data bm bafore uses for it aré ducovmd Tbus it
is difficult to characteriie the data via a behaviaral mmiu approach. ln some Q,
sense the semantics of the data is known, but the uwm of Jh‘ uuti opemiom

'may be neoessary:

on that data is not.

5.2. The Definition of Structured Operations L

Despite the problems mentioned above, it is impomnt to be able to define a set of
abstract ope(;tions ona g;lvatn_ base. To this end, we allow structured operations to be
defined. Structured operations are cansiructed using: |

L. the primitive data base operations (eg., see figure I'8), |

2. statements in a very high level data. wm_(quqy) and data m‘ogmmdon

language, such as SEQUEL (or QUEL or. Query hy Example).
Structured operatlom are ordered lists of: primmve mndom, gtg.tqments in a data
selection and modification language, and previously defined. structured operations.
Allowing prevluusly' defined structured operations within ne:w;:”bpe}itmni enables a
hierarchic organization. ’ R o

'For the example data base of ﬂgure 12, a structured’ opmuon to raise an emptoyees
salary could be defined: ' R

Semantic Integrity Specification 46

operation raise_salary (employee_name, new_salary)
update EMP
where Name = employee_name
Salary = new_salary
This structured operation consists of a single SEQUEL-like statement, which updates the
Salary column of the tuple in EMP with a value in the Name column equal to the first
parameter of the operation (presumably there is one such tuple). The new Salary value is
specified as the second parameter.
Consider an operation to place an order (again in the context of the example data
base of figure 1-2):
operation place_order (customer_id, item_id)
insert_tuple (ORDERS)
Item = item_id
Customer = customer_id
Date_shipped = date()
Order_number = generate_order_number()
In this example operation, a tuple consisting of all null values is first created, and then its
columns are given values. Note that two external procedures are called, one to return the
current date and the other to generate a unique order number. The types of names
(identifiers) used in the definition of the operation include those of parameters, a relation,
columns, and external procedures.
The operation check_credit_and_order could be defined as:
operation check _credit_and_order (customer_id, item_id)
if check_credit (customer_id)
then place_order (customer, item)
else error
The operations check_credit and place_order used in this definition are assumed to have
been previously defined. Note that this operation contains a conditional expression: a
useful construct we may include in the structured operation language. This of course
motivates the need for other types of constructs, eg. for iteration. We may for instance

want to have an operation that takes an arbitrary number of items as parameters and

Semantic Integrity Specification 47

places an order for each.

Thus, in general, it might be desirable to have a structured operation language which
has-many of the capabilities of a general purpose programming language.” We could
consequently allaw structured open_dons to-be written in m‘tdghilwel general purpese
programming language. The detalls of this are not persued here. .

One important point to note in passing, is that: structured operations are important
with Tegard to the specification of when relation constraint assertions’are to hold (be
checked). This is further discusted in chapter 8. =

Semantic Integrity Specification 48

6. RELATION CONSTRAINTS

The fourth aspect of semantic integrity in a-relational datx base system concerns
relation constraints. In this chapter, the requirements. for relation constraints are detailed, -
and an approach to their specification is.presented.

‘Codd [Codd 1971, Codd :197ick has- identified. the “third normal form” of relations
(Codd 1974a): "A relation. R is in third normal form 4f it:és dn first normat form and, for
every attribute collection C of R, if any attribute not in € is functionaily: dependent on C,
then all attributes in R are funttionally dependent on C." Third normal form facilitates the
straightforward expression of some types of relation constraints, namely functional
dependencies. But the class of data properties describable via functional dependencies is
limited, .

Boyce and Chamberlin [Boyce 1973a] observed thgt a high level language, such as
SEQUEL [Chamberlin 1974b, Chamberlin 1975], may be used as a vehicle for the expression
of data properties other than functional dependencies. SEQUEL expressions were shown
to be useful in expressing such types of properties as "uniqueness of key”, "functional
dependency®, "validity check”, and “inter-refational constraints". ,

The integrity assertions of SEQUEL [Boyce 197%a, Eswaran 1975), INGRES
[Stonebraker 1974c], and Query by Example [Zloof 1975b] ate used to express varied types
of data properties. However, these facilities basically provide for the unstructured
specification of arbitrary predicates. Although the assertion expression capabilities of
SEQUEL and INGRES are “"complete”, they do not allow for the analysis of the types of
possible assertions. | | _

Fhrthermore. the assertions of SEQUEL and INGRES are rather inflexible with
regard to when they are to hold, and what action is to occur if they do not. In SEQUEL

Semantic Integrity Specification 49

and INGRES, if a data base change is specified which weuld cause some assertion to be
violated, the data base change is immadiately rejected.and an error signaled [Eswaran 1975),
or the data base change is modified such that the,assertion will besatisfied: {Stopebraker
1975c)
~ In response to this latter objection, a ¢ miz herein defined as an

abstract statement, having three components:

L. the assertion (a proparty), which is a predicaie oo the sate-of the data base or on

transitions between data base states,

2. the validity requirement, which spﬂdﬁiu the aecasion(s) at which the-amsertion is to

hold, e ’ ,

S.they JJM&M which is the action that.is to occur: if the assertion Is not

sausfiedataﬂmnwhenttﬂlmldbe. |

In respanse to the former: objection, 2 detailed ulassification of relation constraints is
presented below. The emphasis is placed on providing a structured framework, which may
be used to construct a high-level, :abmbaad, uﬂ-dhtud. iad%\d'bdpunedvremion
constraint specification mshedology. In so daing; & principaligoal is.to impose some
structure on the problm of semantic errors in data bases. In MW it-is important
to keep “an eye &oward implementation”, although no specific implementation considerations

are included in this thesis.

6.1 Whither Assertion Structure?

We subscribe to the view that the assertion.component of a data base relation
constraint should nat be viewed as an arbitrary predicate of -the first-order predicate
calculus, ranging over tuples of the relations of a data base. Rather, every assertion should

have a well-defined, uniform structure. There are several advantages to taking a

Semantic Integrity Specification 50

disciplined approach to assertion expression:
I. It provides the data base administrater (or other diuthority responsible for
expressing the- constraints) with a conceptual framework in terms of which to
organlzé his thinking and structure the formulation of assertion specifications.
Reducing abstract, probiem-ariented Himitations on* tohfigurations of the application
environment to conérete restrictions on’valies in- the dat ase is essentially a
programming problem. By providing the *progrivhret
general framework for his problem, it is possiie to significantly eaie his task.
2. The issues-of -constraint specification ' which-ate’ ah¥

*with a theoretical and

\y 10 assertion expression,

namely the validity requirement and violation-action, cannot be satisfactorily
addressed. in the absence of the kind of strucwure proposed herein. The degree to
u;hlch a semantic integrity subsystem can respond "intettigently™ to a constraint
violation depends upon how wall the formulatien:efitlie construint-¢aptures the intent
of tsexpressor. . - . . o
3. A useful conceptual framewark ‘for assestions will ‘pkovide some measure of the
complexity of: individual assertions, providing thilir' siepressor with-a gulde to the cost
of their implementation. ‘ Indeed, the’ souCITe oMy alsivtion an’ be used by ‘an
- implementation: facility as a guide to: thie swravgy for the irplamentation of its
checking. o o
It is important to note that insuring that there is a single, unique specification of a
given conceptual constraint is not a major objective here. Rather, thé‘emphasis is placed
on encouraging a "reasonable” formulation; one which: accarately models ‘the application
environment abstraction and which is useable by n%‘hMWfﬁe’iﬁty. S

Semantic Integrity Specification 5l

6.2. Relation Constraint Assertions

The assertion conponent of a nlmm constraint -is & logical predicate on the state of
the data base or transitions between data base states. It expresses somi¢ semantic property of
the data base. | o

Each assertion is either a simple assertion or a combination- of simple assertions (a
derived assertion). Simple assertions may be combined: using ‘boolesn operators and other
connectors (such as “if then else”). The remainder of this section‘deals with simple
assertions; the generalization to derived assertions is more or-iess migmmmwmn
no ambiguity is possible, "assertion” will b used in piage of "simple assertion™

6.21 Simple Assertions

Every (simple) assertion may be viewsd a3 dalimiting cortain values of the data base
in terms of certain others. That is; an assertion does not merely express some relationship
among different values in the data base. Rather; it singles sut ccrtd&n\-valués. and ‘identifies
them as being the constraiged gata of the predicate. The predicate delimits the legal values
of the constrained data in terms of the constraining dats. Thus, every assertion constrains
some data with respect to some other; the two arefiot béing bitaterally restricted.

As a consequence, fhere are two distinct steps in the p}héux of mﬁ’ng an assertion:

L. The data that is being constrained is described. - This description is accomplished

in two sequential substeps, in Which the following are identified:

a. the set of all data objects in the data base that are being restricted (the -

constrained collection),
b. the precise aspect of each of these data objects that is being delimited (the

restricted expression).
Part a of step 1 utilizes data selection predicates. The predicate expression

Semantic Integrity Specification 52

capabilities of any data selection or query language may be-adapted to accomplish
this_task [Chamberlin 1974, Chamberlin . 1975, Cadd, W2a, Codd 1974, Hall 1975,
McLeod 1976c, Held 1975h, Zloof 1974, Zloof 1876a..-Eor-example, consider the
assertion that the salary of each employee in the sales department is less than the
sala:rx.‘of;.hu,«mmaw; Here, the .constyained goliection: consists of those tuples in
relation EMP which have “mles” in the Department. column. The restricted
expression is. the.Salary: eatry of .each such-tple.. The wecessity of first identifying
. the constrained; coljestion and then the; reatsicsed. expression s occasioned by more
rich and complex assertions, as discussed-below. - v ioios om0
2. The actual predicate of the assertion is stated, which asserts a restriction on the
value of the restricted expression for each member of the constrained collection. The
. prediicates used. therein: -aré msmm “Ini-general, this restriction
depends on_other q;:ainthe data base.. The ather: data. which participates in the
assertion is called the constraining data, and:the ekpression which computes the
precise delimim,yal%u called the. restricting ‘sxpesisign. For example, for the
assertion above, the constraining data (for each muple).is the,tuple in relation EMP
whose Name entry. equals the Manager entry. of the-constrained: tuple; the restricting -
expression is.the Salary entry of the constraining tuple, . - o0 .o
Figure 6-1 contains same examples of simple assertions: For each assertion, the
constrained collection and assertion predicate are identified. Nete that the "language” used
to specify the assertion. predmtesu intended only to:be. illustrative, but is more-or-less
consistent with the "level” of (and directly translatable. inso) relational data selection
languages such as SEQUEL, QUEL, and Query by Example. . - . .

Semantic Integrity Specification 53

8.22. Identification of the Constrained Collection

As introduced above, the first step in the specification of an assertion is: the
identification of the constrained collection: that which is com:eptu;lly beiqg delimited by
the amrtion. In general, the constrained mlleaxon is a collection, of data ob jects, and the
assertion applies to each of them. In this sense, wqymmi;gngffgu an assertion
schema, which s instantiated for each element of the coprained collegion,

~ An assertion may either express a ‘property of an individual tuple(a tuple assertion),

or a property of a set of tuplcs considered as a whole (a &w In figure 6-1,
examples 1-4 are tuple usemom, while examples ! 58 aze set usenlons. S _

The constrained collection for a tuple assertion is a collection -of tuples, to e;sh of
which the ulemm ‘applies. The constrained colleaim for a_set assertion, similarly, is a
oollectionofseuotmplu. Tbemmemon agpuuwmhmplggquntheoonmmed
collection. An impartant (and. frequent) spod;l caze of a set assertion is that in which the
canstrained collection consists of a single set. Note the diffarence between this special case
and a tuple assertion: in the former, the assertion applies to the tuple.sat a3.3 whole, while
in the latter it applies to each individual member of Qt. ‘I:tm.in (Al h L the constrained
collection has many elemenss, each of which is 2 tuple.gf the EMP relation; in example 5,
the copstrained collection censists of a single alement, which i, the antice EMP, selatign; in
example 6.‘the constrained collection has mwmm :,atyhj;hti!&; suhutof the
EMP relation. o . |

Both for tuple and mmawmummm@ begins with

identifying some set of .tuples (called the upderlying relptioq of the assertion). This tuple
set can then be manipulated by means of data selecrion predicates, . uiimately define the

constrained collection. , : i ;
The underlying relation of an assertion need not be a relation defined as part of the

Semantic Integrity Specification 54

data base. In general, it may be any of the following: =
1. a base relation (a relation explicitly present in the set of data base relations),
2. the cross produtt of two or riiofe base reltions, -
8. the Unlon of tWo or more base relations,
4. the cross product of 'two of mbreé rehatiohs of typéi 1 znd*s at least one of which Is
not a base refation, ' '
5. any refation which ¢an be defined in térms of base relations, not included in the
above (these relations ‘may be’ constructed using the vurious ‘selection criteria and
~ retrieval 0perator§ of ‘& dita’ selection fangiiagé).”
For example, EMP 154 felation of type 1] EMP tréss BUDGET is of type 2. An example of
a relation ‘of typé 3 Would' bé the Untdhi 6f relitiis CORRENT EMP and OLD_EMP
(where both hive the' skmd Strieture aizm)”mwmpﬁ&% i 'relation of type 5 is
SAL_T'OTAL (Départrient; Stim’_sklaties); Whefeﬁlﬁn_ﬁliﬂés 14 the sum of the salaries of -
employess working for thé assoctited départment; 7 <L T '

The foregoing' classification of underlying relations is'in order of increasing
complexity, and exhibits thie different Xinds of fehitio

$°00 Whiet Wssértions may apply. It
is importait to dbserve that'an Asserfioh nesd riok ﬁpﬂf‘tﬁ"ﬁ *rﬁtféﬂ é‘ﬁpﬂciﬁy presém in
the data base; but may hold fora’ derived retddion =" -+ "

Once the underlying relation is defined, the precise specification of the cén‘strdii‘iéd '
collection can be ‘accomplishied. Tn the ‘case'of tupie dsiertibhs; the constiained coflection is
obtained from the thderlying: refarion by wiéans ‘of “Bita vefection predicates. The
complexity of ‘thie selection ‘process can b describied: in"terms of the opérators of the data”
selection language. Selection of the constrained collection is a problem in“the specﬂ‘n:mfmnT
of a relation. e o

However, in the case of set assertions, there is a need to specify a collection of tuple

Semantic Integrity Specification 55

sets; each such set is a member of the constrained collection. Far illustration, consider the
following tentative taxolnomy of the first stage of the specification process for a constrained
collection which consists of tuple sets:
L. The constrained collection may oontain a single set of mples, Selected from the
underlying relation. (sigple sef)
2. A set of tuples n»\ax_be selected from the underlying relation, and then divided into
groups, eg., by common value in one or more tolymns or by: intervals of column
values (such as 21 < Age < 30, 31 < Age < 40, etc). Certain of these groups may then
be chosen based on proi:ertlgs they possess. The ﬁcgn:szmingg <ollection is thus a
collection of tuple sets, namely the grohps that vaere..fd chosen. The assertion then
applies to each tuplc set in the constrained callection. (g;w set) ‘
8. A set of tuples may be selected from the underlying relation, and those subsets of it
which satisfy a specified property are chosen. An example.of such a property might
be that the number of tupks,in the subset equals three. These chosen subsets
comprise the constrained collection, and the assertion is applied ca each of them.
(property-defined set |
There is a naticeable degree of flexibility in the foregoing framework for ideﬁtifying
the constrained collection, in that it does not impose a rigid specification methodology on
the expressor of assertions. The criterion of completeness would not demand all the options
for the underlying relation allowed above; it is clear that any assertion can.be satisfactorily
specified by letting the underlying relation be the cross praduct of all the base relations and
performing various oparations thereon to compute the constrained collection. Howaver, in
many instances such an ‘Mg‘ approach would be cumbersome and unnatural. It
might be more convenient to follow a "top-down”, step-by-step approach and define a

sequence of derived relations, the last of which is the underlying relation. This can

Semantic Integrity Specification 56

facilitate the straightforward expression of the assertion.
Consider the following assertion: the'sum ‘of ‘silaries o employess of each
department is less than the budget of that department. An all-at-once approach to
expressing this assertion would pro‘éeed" t6 identify thé constrained coftectlon as the set of
tuples in EMP, grouped by common Department (grouged” stk “‘The restrictéd expression
would be the 'sum of the Salaries:(For ‘each group). The assértich predicate is then
“sum(Salary) < BUDGET Sxfary budget whete BUDGET.Deépartment =
common_valise_of (Departmernt) (in the constrained ‘tiple ﬁ:)' “Phus the constraining data
is the tuple in' BUBGET having the Departenent colushii enitry il to the common value
of the entrity in“the Departmeit column’ for the-conwtralidd’ tuple sét, and thé restricting
expression is the Sala#y_budget-colurmin entry of che éRikiintivg tupte:” |
© A'top-down, stép-By-stép approach o the ékpPésifal 6T e above assertion may
proceed by noting that the assettion cauldb'eexpfe&eduimpﬁ ‘aitertion, If there existed
a relation of ‘the form DEPART MtﬁTSz';(Biﬁfiﬂiéﬁ "Sﬂﬁﬁ‘\\iéfféﬁ\’ﬁ:saiiﬂries,
Salary_budget). If sucha-relation‘éxistéd, the constrainéd Cotlectioh would be each tuple in
relation DEPARTMENTS. The restricted expressién would b& the column entry
Sum_of _emp_salaries. - Theé' assertion predicate” wodtd ‘be *Sum_of _emp_salaries <
Salary_budget”. ‘Here the' réitrictivg expression is tﬁe “edluliny efftry’ Sa?d‘y_b\!dget in ‘the
constrained tuple; and the constraining data is the constritied tuple 16t o |
However, the relation BPEPARTMENTS does' not exdist, “Consequently, it is necessary
to specify how it is to'be dérived-from existing base réfitions. “Phe uAderlying relation of
the constrained collection Is'thusa derived relation; |.e; the refation DEPARTMENTS. A
data selection’ Tarigtiag# Would be used to- construct tls derives-rel
specification could be i a SEQUEL-Hike iiguages

tibn; for example, the

Semantic Integrity Specification 57

DEPARTMENTS (Department, Sum_of _emp_salaries, Salary_budget) =
select EMP.Department, sum(EMP.Salary), BUDGET Salary_budget
from EMP, BUDGET
where EMP.Department = BUDGET.Department
group by EMP.Department
6.2.3. Tuple Assertions
It is now appropriate to examine more closely the structure of tuple assertions. In this
case, the constrained collection is a collection of tuples, obtained from the underlying

relation by the application of data selection predicates. The assertion predicate then applies

to each individual tuple in the constrained collection. Tuple predicates are used to specify
tuple assertions. The restricted expression defines that aspect of each constrained tuple that
is being delimited. In the simplest case, the restricted expression is some column name of

the underlying relation. More generally, it may be an expression: an appropriate

_combination of column names, system-provided operators, and user-defined operators.

It may be possible to formulate a given conceptual assertion in different ways, with
different restricted expressions. For example, though the tuple assertions "Credit line -
Debt < 50000" and "Credit_line < Debt + 50000" are logically equivalent, in the former case
the restricted expression is "Credit_line - Debt", while in the latter case it is just
"Credit_line". This flexibility enables the assertion expressor to precisely identify which

data values are to be regarded as dominant, and which as subordinate. In the first case, it

~is a combination of the entries Credit_line and Debt that is being delimited, while in the

latter case it is simply the Credit_line entry. This distinction contributes to the abstraction
power of assertion expression, and has implications for the implementation of constraints
and for the actions that are to be taken upon the detection of an assertion violation.

The value which delimits the restricted expression is the restricting expression, which
is computed from some data values which may reside anywhere in the data base. In

particular, these data values (the constraining data) may be outside the constrained tuple.

Semantic Integrity Specification 58

Tuple predicates may be classified on the basis of the rehﬂon;hip between the
constrained collectlon and the constraining data:

L. A tuple predicate is local (L) if the constraining dm is pment in the constrained.

tuple. That is, for a local tuple predicate, all data referenced in the predicate is.

within the constrained tuple itself. v o “

2. A tuple predicate is nonlocal independent (NI) if the constraining data is data

selected from elsewhere in the data base, but whose se!estion does not depend oh any

data in the constrained tuple.

3. A tuple predicate is nanlocal dependent (ND) if the selection of the constraming

data does depend on data in the constrained tuple. 7
In figure 6-1, examples 1 and 4 involve L-type tuple predicates, example 2 is an Nl-type
tuple predicate, and example 3 is an ND-type tuple predicate. .

This classification is in order of irlxcreasing\ complexity. For L-type tuple predicates,
one has only to. look at the constrained tuple to denermine, the restricting expression; the
constraining data is present in the constrained. tuple itself.- For type-NI thple predicates,
this is no longer the case. The restricting expression is now computed from data arbitrarily
located in the data base, not confined tb the constralneq tuple. However. the data from
which the restricting expression is computed is the same for each tuple in the constrained
collection. Thus the restrictiné expression admits of a one-fime computation, with the result
being used for each constrained tuple. For type-ND tuple predicates, the computation of
the restricting expression depends on data in the constrained tﬁple. It is therefore necessary
to recompute the restricting expression for each indiﬁdual constrained tuple.

There are two d‘imensions. by which we classify local tuple predicates. The first
dimension measures the complexity of the restricting expression, and has three levels:

1. The restricted expression is compared via a scalar comparator to a constant, a single

Semantic Integrity Specification 59

column entry from the constrained tuple, or an expression involving several column

entries from the constrained tuple. (types 1-3)

2. The restricted expression is compared via a set comparator to a set of constants, a

set of column entries from the constrained tuple, a set of single-valued expressions

computed from entries from the constrained tuple, or some expression which yields a

set of values and depends on entries in the constrained tuple. (types 4-7)

8. The restricted expression is compared via a set comparator to a set of constant

tuples, a set of tuples involving entries from the constrained tuple, a set of tuples

~ composed of single-valued expressions computed from entries from the constrained

tuple, or some expression which yields a set of tuples and depends on entries in the

constrained tuple. (types 8-11)

The second dimension reflects the complexity of the restricted expression, and also
has three levels:

a. For types 1-7, the restricted expression is a column entry in the constrained tuple.

For types 8-1i, it is a subtuple of the constrained tuple.

b. The restricted expression is a single-valued expression. For types I-7, the restricted

expression is computed from column entries in the constrained tuple, and yields a

scalar value. For types 8-1l, it yields a tuple composed of such column entry

expressions.

¢. The restricted expression is a set-valued expression. For types 4-7, it yields a set of

scalars. For types 8-11, it yields a set of tuples. (This level does not apply to types 1-3.)

Figure 6-2 illustrates this classification for local tuple predicates of types la-lla.
Consider the relation R (A, B, C, D, E, F) (where columns A, B, and C have underlying
domain real number and columns D, E, and F have underlying domain character string).

Some examples of local tuple predicates may be classified, as follows:

Semantic Integrity Specification 60

L A <15 (la),

2. A < B (2a),

8. A < B/C (%a),

4. Aisin %" "y", "2"} (4a),

5. Ais in {"x", E, F} (6a)

(This means that, for each constrained tuple, the entry in column Als in the set

containing the constant *x" and the entries in coiumns E and F., |

6.(D, E) is in {(‘x" "y") (2", F)} (iOa)

(This means that for each constrained tuple, thevsti‘btupie consisting of the entries

from coiumns Dand E equais either the tupie (“x" "y), or a tuple whose first

component is "z" and whose second component is the F entry of the constramed

tuple.), | h |

7. A +B <C(2Db),

8.A+Bisin{C+1,C+2 C+3 (6b)

9. {D, E} intersect {"w", "x"} contains y" "z"} (4c)

(This means that the intersection of the sets mnsxstmg of the entries in coiumns D

and E and the constants "w" and "x" , is a superset of the set containing the constants

"y" and "z".). '

As for local tuple predicates, nonlocal tuple predicates may be classified on two
dimensions. The first dimension _again consists of three levels:

. The restricted ex}itession is comparéd via a scalar compacator to a a single-valued

expression, which yields a scalar value (and which is computed f rom data elsewhere

in the data base) (type)

2. The restricted expression is compared via a set comparator to a set-valued

expression, which yields a set of scalars. (type2)

Semantic Integrity Specification 6l

8. The restricted expression is compared via a set comparajor to a set-valued

expression, which yieids a set of tuples. (type 3)

Ag'ain. the ucond dimension consists of three leveis. | _ : ‘

a. l‘-'or types 1-2. the restricted expression is k] mlumn entry Far t_yge S.itisa tuple

of entries which constitutes a subtuple of the constrained mplc. . L
| b. The restricted expression is a smgie-vaiued expression For types 1-2 this
expression is computed from entries in the constrpined tupie and Jieldsa salar. For
type 3, it yields a tupie composed of such column entry expressions. , .
c. The restricted expression isa set-vaiued expreuion For fype 2, it yieids a set of

scalars. For type s. it yieids a set of tupies. (This ievei doe,s not npply to type l.)
 Figure 63 illustrates this classification for nonlocal tuple prediates of types la-Sa.

Note that the computstion of the restricting expreesion kuhrval or\ setyal) is indgpendent
of the constrained tuple for Nl-type tupie predicates. but dependmt for ND'type prediates.
The data selection hnguage must now serve the added role of identit‘ying the constraining
data. For this reason, the ciassification Is coarser for noniocal tupie predicates thap for

local tupie predicates.

6.2.4. Set Assertions |

For set assertions, the constrained coliection isa coliection of tupie sets, obtained f rom
the underlying reiation, as discussed in section 622 The assertion prediate then applie,s to
each tuple set in the constrained coliection Set g Q are used e Specify set assertions,
The restricted expression is that aspect of each constramed tupie set that is being delimited.
In the simpiest case, the restricted expression is the set of entries in some columa of the
underiyrng reiation (eg. the set of Salary entries m EMP) Mqrg generaily, it may be an

expression: an appropriate combmation of coiumn names, system-provided operatars, and

Semantic Integrity Specification 62

user-defined operators. These operators include aggregate arithmetic operators which are
applied to sets of values. &

As for tuple assertions, the restricting expression is the value that delimits the
restricted expression. The constraining data may be, in general, data anywhere in the data
base. Again, as for tuple assertions, it may be possible to express a given conceptual set
assertion in several ways.

Set predicates may be classified on the basis of the relationship between the
constrained collection and the constraining data: |

L. A set predicate is local (L) if the constraining data is present in the constrained

tuple set. That is, the restricting expression may be computed solely from the

constrained tuple set.

2. A set predicate is nonlocal independent (NI) if the constraining data is data

selected from elsewhere in the data base, but where this selection does not depend

upon the constrained tuple set.

3. A set predicate is nonlocal dependent (ND) if the selection of the constraining data

does depend upon the constrained tuple set.

In figure 6-1, examples 6 and 8 are L-type set predicates, and examples 5 and 7 are Nl-type
set predicates.

As for tuple predicates, there are two dimensions on which local set predicates may be
classified. One dimension reflects the complexity of the restricting expression, and the
other reflects the complexity of the restricted expression. The first dimension has four
levels:

1. The restricted expression is compared via a scalar comparator to a constant, an

aggregate function of the entries in some column of the constrained tuple set, or an

expression involving several such aggregates. (types 1-3)

Semantic Integrity Specification 63

2. As in 1, except that the aggregate functions in the constraining expression are not
computed for a set of scalars, but for a set of tuples; namely, the collection of
subtuples obtained by projecting the constrained tuple set onto two or more columns.
(types 4-6)

3. The restricted expression is compared via a set comparator to a set of constants, the
set of entries in some column of the constrained tuple set, or an expression involving
several such sets. (types 7-9)

4. This is analogous to 3 in the same way that 2 is analogous to 1. That is, the
restricting expression does not deal with scalars, but with sets of subtuples of the
constrained tuple set. (types 10-12)

The second dimension consists of two levels:

a. For types 1-6, the restricted expression is an aggregate function. For types 7-12, it
is an instantiation of the fuhction "set”, which generates the set of values in some
column or the set of subtuéles for some group of columns, taken over the constrained
tuple set.

b. For types 1-6, the restricted expression is a single-valued expression computed
from two or more of the aggregate functions described above. For types 7-12, it is a
set-valued expression, computed from two or more instantiations of “set”, as described

abave.

A special type of local set predicates, the column relationship predicates, are not

fncluded in the above scheme. Column relationship predicates are used to express
properties such as one-to-one correspondences and functional dependencies. To state a
column relationship predicate, two groups of column names from the constrained tilple set
are specified. The relationsvhip between these two groups of columns is then stated. For

example, one may state that for the relation R (A, B, C, D, E, F), there is a one-to-one

Semantic Integrity Specification 64

correspondence between the column A and the column group (B, C). This means that there
is a one-to-one relationship between the entry in column A and the subtuple formed from
the entries in columns B and C. Note that column relationship predicates are always local.

Figure 6-4 illustrates this classification for local set predicates, types la-16a. For
example, for the relation R (A, B, C, D, E, F) (where columns A, B, and C have underlying
domain real number and columns D, E, and F have underlying domain character string),
various local set predicates may be classified, as follows:

L avg(A) < 15 (1a),

2. avg(A) < sum(B) (2a), °

3. count(D, E) < 50 (4a)

(This means that the number of tuples in the relation formed by projecting the

constrained tuple set on columns D and E is less than 50),

4. set(D) contains {"x", “y", "2} (7a),

5. set(D) properly contains set(E) union {"y", "z"} (9a),

6. set(D, E) is in {("w", "x"), ("y", "z} (10a)

(This means that the set of tuples obtained by projecting on columns D and E is a

subset of the set of constant tuples containing ("w", "x") and "y, "2),

7. D one-to-one (E, F) (14a),

8. set (D) union set (E) is in set (F) {8b).

Nonlocal set predicates may be similarly classified. The first dimension has three
levels: ;

L. The restricted expressi.ori is compared via a scalar comparator to a single-valued

expression, which yields a scalar value (and which is computed from some data in the

data base) (types 1-2).

2. The restricted expression is compared via a set comparator to a set-valued

Semantic !nugﬂty Specification 65

expression, which ylelds a set of scalars. (type3). .

3 Th?, rgstrlctgcll expression is compared via a set comparator to a set-valued
expréssion, wﬁich yields a set of tﬁples. (type 4)

The second dimemion consists of two levels:

a. For typeo 12, the restricted expm;ioa isan wfuactjpm For typa it s
column or the set of,mbmpls for mg,‘x@%;%%%:%ﬁﬂ the MWW
tuple set. | e LT el
lued. axpression computed
from twa or mare of the aggregate functions desegibed above, For types 34, it is a

b. For types 1-2 the mtricted cxpmslon s, aksi\ glev;

set-valued expression, computed from two. or, more instas
above , o .
Figure 6-5 mustmes thns two dimensional chssiﬂqt}gn for types | la-h. hlote that:the

computatxon of the restrtctlng expresslon (scalarval or setval) is lndc,,pendem of the

constrained tuple st for NI-type sef predicates, but ependent for ND-type predicates.

6.25. Scope of Assertions . N . ‘

It was stated in section 622 that ‘each assertion is actuajl! an amrtion sche,ma. an
assertion is instantiated for and applies to each element of the constrained collectiqn. But
there is another sense in which an assertion may be viewed as a schema. This is by
allowing described rather than explicit references to refation and colymn names within an
assertion. | | ‘ |

It may be desirable to state 3 second order assertion, e -each column in some
relation of the data base which has underlymg domtn NAME must be A Subset of the

Name column in relation EMP. This may be hgndleq‘ by,al’lgwing:vco!}umn names. (and.

Semantic Integrity Specification 66

relation names) to be variables which range over the set of all columns or relations in the
data base (or some tpedﬂed subset thereof). This is buicany i universal quanuf:anon of
second order. ' ’

Without proposing a specific detailed solution to this problem of explicit scope vs.
described- scope, we may observe that such a solutlon rhust facilitate a second order
quantification, on a level above the constrained collection, Contider the assertion that, for
each column in the data base named Ci, every pair of entries in this column sums to less
than 100. Here the constrained collection is a set of pairs of tuples. The property must hold
for eachelement of the constrained collection. Fusrthermore, the assértion actually appnes to
each element in a set of constrainied collections, viz., onewch constrained coliection for each
column’ (in the data base) which is named Cl.

It has been stated that the scope of a relation constraint assertion can either be
explicit (apply to relations and columns which are constants) or described (apply to relations
and columns which are ‘varlables whose ranges are descﬂbed) It is certainly valid to
question the desirability and pncucanty of assertions with described scope and we shall not
take a position on this matter here. Rather, for the purposes of the remainder of this
thesis, it is sufficient to assume that we are dealing with usertions having expliclt scope,
although we believe that the extension to assertions having described scope is

straightforward.

6.3. Relation Constraint Validity Requirement

Another component of a relation constraint is the validity requirement(s) the
occasion(s) at which the assetion component of the constraint must hold.

One possibility is that an assertion must hold at a!l times, and consequently must be

checked after any data base change that may cause its viohiion. Such assertions must

Semantic Integrity Specification 67

theoretically be checked (verified) after every primitive data base change (such as update,
insert, or delete tuple).. Assertions actually need: 10 be ehiecked -only if ‘some Value(s) aré’
changed which may cause the auértién to be violited." Somem’ﬁuﬁeen schieved in’
automaticatly determining when an assertion actually needs verifteation ' [Eswaran 1975;-
Stonebraker H¥75¢].

In some cases, it is necessary to specify than an assertion rieed ‘nof hola during some
complex data base transaction(s), 'because it may not be meaningful to verify the assertion
until after the transaction(s) are completed. Such assertions are thecked only at the end of
these transactions. -

Suppose; for example, that there is an assertion for the example data base of figure 1
which states that exactly two employees in the sales department havea safary of more than
$15,000. Assume that at some time the assertion holds, ‘us ‘employees “Smith” and *Jones”
both have salary $20,000 and work in the sales department. It Is how desired to transfer
employee “Smith" out of the ail«depirtmeht. rephacing him with employee 'D'avii‘ (with
salary $30,000). If the primitive operations update row, insert row; and deléte row are the’
only operations available and the assertion is clideked after each prme operation, the
desired change cannot be legally accomplished. Thus the verification of this assertion must
be deferred until the entire transaction {which consists of two primitive operations) is
completed.

Consequently, it can be semantically necessary and/or desirable”for the constraint’
expressor to specify ‘precisely when an assertion is to be checked. For reasons of ef ficiency,
it is also important to-have the ability to specify that an-assertion need only be checked at
certain limited times, because verifying it after every data bise change that could cxuse its
violation might be catastrophically expensive.

Accordingly, the validity requirement of a relation constraint should be exp.réssed in

 Semantic Integrity Specification 68

terms of structured operations. For example, the validity requirement 6f some assertions
- might be that the assertion is to be checked after operation raise-s#lary. Each relation
constraint validity requirement should consist of a list of structured operations after which
the assertion component is to be checked. The special validity requirement "always” has the
function of assuring that the assertion will be checked after any data base change that may
cause its violation.

It may be necessary to check one or more relation constraint assertions after each data
base change is attempted (by a structured operation). The simplest type of data base
change is a primitive update, insert, or delete tuple operation. Slightly more complex is the
set-oriented tuple update, insert, or delete which may be expressed in the high level
nonprocedural data selection and modification language (eg., SEQUEL). Since structured
operations are hierarchically organized, it may be necessary to check some assertions after
each hierarchic structured operation. Consider, for example, the structured operation A,
which is defined to have the effect of executing a delete tuple operation, followed by the
execution of operation B. Operation B consists of a single update tuple operation. It may
then be necessary to check some assertions after the delete tuple operation, after operation
B, after the update tuple operation (in B), and after operation A.

A special treatment of "null® (undefined) values as column entries is required. As
noted by Eswaran and Chamberlin [Eswaran 1975), the checking of a relation constraint
assertion should be such that the presence of "null” values should never cause the assertion
to succeed if it would otherwise fail (be violated), and should never cause it to fail if it
would otherwise succeed. An exception to this rule is made for assertions which explicitly

reference "null® values (e.g., "Sex = null").

Semantic Integrity Specification 69

6.4. Relation Constraint Violation-Action

Associated with every occasion at which an assertion is to be checked, is a violation-
action to be taken if the assertion is not satisfied upon attempted verification. Several types
of violation-action can be specified:
| 1. An error can be signalled, and the requested data,iuse_thsngesge,{emd. A message
is issued informing the userv of the problem; the nature Aoff‘ this megsage may be
explicitly specified as a part of the Vviolation-actian, or it may be chosen by the
system. | ‘ S v . e
2. A warning cat\ be issu'eti, but the illegal data base change allowed. The user ttny :
be warned with a system-generated message, or a. message specified as part of the
violation-action. The warning may be persistent, in which case it appears whenever
the potentially bad data is referenced. o |
3. A corrective action can be specified, which attempts to repair the error; the
assertion is then rechecked. This approach may be dangerous, but is appropriate in
some cases. There are several types of corrective action:

aa substitute value may be specified to replaoe the offmding data,

b. a structured operation may be performed,

C. an external procedure may be called. ‘ _
If a corrective violation-action is attempted the rehtim constraint assertion which v
caused its invocation is rechecked after the corrective action is performed. It is
intended that corrected value and structured operation oomctiveactions handle the
bulk of the corrective vioiathtt-action neegis, Howevet",it ispossible tov;‘gall an
external procedure (which is written in;sptn\e hig;,‘ie%el general purpose
programming langusge)‘ as a corrective action. This external procedure receives no

special privliges with regard to data base interaction. Thereare of course other

Semantic Integrity Specification 70

problems which result from permitting such external procedures to be "bsedy.“whic'h
are similar to those disculsed in the context of domain definifion violation-action (see
section 34). (A more far-reaching set of prob:‘“;;ﬁ% “of iﬁu type is discussed by Minsky
[Minsky 19761) R
The actual interface which reports relation constraific Viofitions to the user should

]

actually allow this user to ¢ontrol the violation-action. ‘The user should be consulted, if
appropriate. For instance, assume that the user Wishes 6 perfdrm an operation which gives
employee "Jones" a 10 raise in salary. Assume also that there is a relation constraint

assemon which states that the sum of salattes of all the

PER ORI

in eac&depzrtment of
_ t. §uppose also that this
assertion would b‘e viohteﬂ it the salai‘y of’ i"jones% fheredse i‘:y 10%. A reasonable
violation-action might be to raise the salary of *Jonés* 't its makimuin | permisstble value.

the company must 'be fods thiaid the budget of that dapaFtim

while reporting thls to the user and asking for approva! before*wctuﬂly pcrfonning the

’ : Sreyd T iR
ICﬂOﬂ.

In this scheme. the vlohtion-actions are assochted w{th the assertwn. they are part
of the relation cohstaint’ This means that violationaction information 18 not a part of the
speclﬂa.tlon of the structured operatiom. AII th?ormatiun rcgai'ding' the chécking of an

pivr i §

assertion is loalized in the relation constralnt ‘I'his has the ﬁﬁ‘ﬂk e}fect of eliminating '

TR y; Thileis

the arbitrary procedunl embeddlng of vlohtion-action information

L R s R T R RIS U

8.5, ‘Itnpfémentationr Considerations
A rélation constraint language processor may ‘be used to oompile rehtton constraints

into an internal form. Relation' mnstnints may be added to and de!eted from a dara base.

(A constralnt may be changed by deletlng itand n&ding a rev version) Adding a

‘4

ot b

relation constraint consists of its compilation and inial ¢

]

Normaﬂy the constraint

Semantic Integrity Specification 71

must be satisfied when it is added to the data base.
The internal form into which a relation constraint is compiled is used by the semantic
integrity subsystem to check the integrity of the data base, and to take appropriate action
“which violations are detected. Moreover, the integrity subsystem manages all four aspects

of semantic integrity, as discussed above and in chapter 7.

6.6. Remarks
The principal purpose of this chapter has been to imposevsome structure on the
problem of relation constraint ‘specification in the context of the semantic integrity of a
relational data base. Important issues to be considered in future work include:
1. a detailed analysis of the applicability of specific high level, nonprocedural data
selection languages to assertion specification (eg., SEQUEL, QUEL, or Query by
Example),
2. a complete description of a disciplined specification methodology for relation
constraints (including detailed example(s) of relation constraint specif ication),
8. specifications of the user interface of the semantic integrity subsystem, vis-a-vis
relation constraints,
4. an a.nalysis of the impact of the semantic integrity subsystem on othsr aspects of
the data base system (e.g., data security),
5. 'an assessment of the ramifications of various problems concerning relation
constraints, including: |
a. redundancies,
b. contradictions,
¢. circularities (because of correctiQe action side effects),

6. a study of implementation techniques for relation constraint checking.

Semantic Integrity Specification 72

7. ON THE DESIGN OF A SEMANTIC INTEGRITY SUBSYSTEM
The purpose of this chapter is to present some briei' comments on several important
aspects of the design of a semantic integrity subsystem The purpose of such a subsystem is

to manage the semantic integrity of a data base. as indicated by the semantic integrity

specifications for that data base.

. Components of a Se'manticg integrity‘ Subsysrein B
We propose that a semanttc integrity subsystem possess i‘our prtncipai oomponem;

L. The semantic grttx languag grocessor translate t‘; . speciftutions in the high

| level semantic integrity languages into interrtal f‘orms uset‘ui to the semantic integrity
subsystem 'As discussed in this thesis, there are foursemantic integrity languages. for
domain definition relation structure, structured operations. and relation constraints. ,
‘(Actually, these four langauges may be viewed as subhnguages of a single semantic
integrttyianguage) T .
| ;2 The semantic _t_ggrm_ _hg_c_k_g_ determines which domain definitions and relation
constraints need to be checked after a given data base change is performed and

feprnes
A

D i G

performs that checlting

8. The semantic ntggritz vioiation-action grocessor takes appropriate action when a

sivifor TETURRTE teres o B R (AT

domain dei‘initton or relation constraint is violated.

4. The relation relation constraint compatibility checker is responsibie i‘or insuring that the set

of relation constraints currently extant for a data base is i‘ree i‘rom contradictions and

other undesirable properties. The eompatabiltty checlter may be called by the relation
it

constraint ianguage processor when addmg 2 new relation constraint. to make sure

that it is acceptable to add it. The problem oi‘ designing and implementmg a

Semantic Integrity Specification 73

compatability checker involves general techniques of deductive inference, automated
theorem provers, etc. Only a very limited compatabimy‘;tgeékcr'coqld be practical at

the present time.

72. The User’s View of the Integ‘rity Mechanism | ,

. It is extremely important to provlde an effective user - dm b&se system interface,
especxally with regard to the creation, muntenance, and reporting ¢ of Semantic tntegruy
information There are actually three ma jor types of uurs wlth whlgh one, needs to be
concerned: ‘ | |

L. the data base administrator (DBA). whxch may in fact be a slngle person or many

person:, whose job is to create and maintain the semantic intcgrity specifications,

2. the nonprogramming user, who deals with the data base by means. of generalized

data selection and modification languges (eg. SEQL)EL. QUEL,. or Query by

Example) _ ‘

3. the applimtibns program, which calls upon data base system facilities. -
Of course, a single person may serve both as a DBA andy a (nonprogramming) user. The
dxstmguxsh the types .of oommummion with tbe semantic inytegri.tx sub;x;tgm w‘hic'h are
necessary. , | | | |

" The DBA should be provided facilities which allow the followmg types of actions:

1. add relation, o

2. delete relation,

8. add domain,

4. delete domain,

5. add structured operation, -

Semantic Integrity Specification 74

6. delete structured operation.

7. add relation constraint,

8. delete relation constraint.
It should also be possible for a DBA to change the structure of relations, and modify the
definition of domains, structured operations.end relation oonstraints it is :furthermore |
desirable to allow the DBA to ask questions about the semantic integrity ;pecir ications,
especially the relation constraints. For exampfe, it should be possible to ask which
constraints may possibly be violated if an entry in a given column lsc;n;nged. or which
constraints have a given colum entry as constrained data. |

The nonprogramining user must be provrded with high level reportmg of semantic
integrity violations and violation-actions. In general a (nonprogrammmg) user sees a set of
data structures (domains and relations), a set of structured operations, and a set of relation
constraints. When a domaln definition or relation constraint is found to be violated, the
user is either informed of this fact or an automatic corrective action is attempted In any
case, it must be’ possrble to provide the’ user with a high IeVe! error message The
semantic integrity subsystem must not be comptetely sﬂent (eg. see [Stonebraker 1971d,
Stohebraker 1975cJ) 1t must also be possible for the user to interact wlth the semantic
integrity subsystem to attempt to reparr an error, should that be appropriate -

The applications program must be provrded with capabiutres similar to those for
nonprogrammmg users, but all communication must be accompushed via procedure call and

return, and message passing protocols

7.3. Some Thoughts on Integrity Subsystem Implementation
Although a detailed investigation of implementation techniques for semantic integrity

subsystems is an important research topic, little has been done on it to date. Stonebraker

Semantic Integrity Specification 75

and Wang [Stonebraker 1974d, Stonebraker 1975c] have: preposed & very clean “query
modification" approach.to integrity checking, but this, scheme. has some limitations: (e.g. -
some useful types of techniques for the optimization of integrity checking.are not handled).
Sarin [Sarin 1976] is currently investigating this topic in .same datail. In this thesis, we are--
not principally concerned with the specifics of implementation techniques. However, we
shall discuss a few impartant aspects of semantic iRtegrity, subsysiem implummum

First of all, it is impartant that a data base logging.and backup facility exist. This is
crucial in allowing the actiens of a struciured operation (traniaction).- o0 be "backed out” and
"undone”, if occasioned by the violation of a domain definitien or relation constraint.

It is sometimes the case that a data base change wilk cause several dmmfﬁeﬂniticﬂs .
and relation. constraints to be checked. (A data base change is accomplished by the
invocation of a primitive or. structured operation,) -A.scheme must be developed for .
determining in what order these are to be checked. One way to hwdk this. is to assign
priorities to domain definitions and relation constraints; .this may be done by the DBA or
automatically by the semantic integrity subsystem.. Dasnain definitions should recetve
priority aver relation constraints (since they are always cbecked after primitive operations),
and the various types of relation constraints canbe ordered by their complexity, importance,
or some other metric.

Since relation constraint checking. is potentially a costly undertaking, it is: crucial that
efficient checking techniques be developed. Much-pf the work: on-optimizing: data selection
and medifiction languages is relevant. here. Heuristics may be deyeloped for determining,
‘on the basis of the patterns éf data base interaction, which access paths and aids to
maintain [Hammer 1976b). One type of useful hauristic. invelves the.maintenance of
aggregate values. For example, if there is a relation constraint assertion which-states that

the sum of employee salaries is less than $100,000, it may-be helpful to maintain the sum

Semantic Integrity Specification 76

and update it as necessary, rather than constantly recalculating ‘it when the assertion is
checked. Other types of heuristics may also prove useful, eg., dealing with' characteristics
of individual types of physicat storage devices (such as data’ ctustering and page
arrangement), or dealing with the maintenince and use of inversiofis {indices).

731 The Use of Inversions in Relation Constraint Checking (An Example)

As an example illustrative of the usefulnen of lmemm: in relation constraint
checking, consider an example assertion. Suppose Mtheamm (for the example data
base of figure 1-2) mm that-for each tuple Bin rm BWDGET, the entry in the
Satary_buéget mmn (B.Sﬂary_budget) is g?emr than or equﬁ té the sum of the entries
in the Salary cotumn of the mplex in EMP (EL, .. En) wmch have Department =
B.Department. Several primitive operations which may: reqhﬁ-e this sasertion to-be checked
are listed below, along with the method by which the ivécessary checking may be
accomplished and an indication of which inversions would be helpful in such checking:

L for some tuple B in BUDGET, Salary_budgetils changed:

a. find all tupbes s EMP (EI .., En) wivich ‘have Department = B.Department,
b. calculate S = ElSalary + .. + EnSafary, -~
C. check that S <= B.Salary_budget,
useful inversions: ‘Department in EMP (for step.a),
2. for some tuple E in EMP, Salaryis changed: - -
a. find all tuples in EMP (EL; .., En) which havé Department = EDepartment,
b. calculate $ « ELSalary + .. + EnSalary,
c. find the tuple in BUDGET (B) which Has Department = E.Department,
d. check that S <= BSalary_budget, ' |
useful inversions: Department in EMP (for step a), Department in BUDGET (for

Semantic Integrity Specification 77

step c),

3. for some tuple in BUDCET (B), bepartment is éh;ng;d: |

(same as 1),

4, for some tuple in EMP (E), Department is changed,

(same as 2), | " R

5. new tuple is inserted into BUDGET (B),

‘(sanie as), - |

6. a new tuple is inserted into EMP (E),

(same as 2). | | | _ | |
In this particular example, no checkmg neads to be‘ done when tuples are deleted from |
EMP, since that can only cause ﬁther sufn '('S)T to dec@. Oof conrse. this is not true for all

assertions involving sums of this type.

Semantic Integrity Specification 78

8. REMARKS AND DIRECTIONS

The ma jor purpose of this thesis has been to provide a ngmprehent’tve.‘\?etai__led
analysis of the issues and problems astociated with mamtatmng éntintic integrity in a
generalized (relational) data base system. The prlncipal emphasts has been on the high
level expression of semantic mtegrity specificatiom The ma jor portion of the work
described herein has been concerned with provlding a framework for semanttc integrity
specifications. Both the functional requirements for a solution to the semantlc integrity
problem and a specific approach to providmg such a lolution have been emphasized An
attempt has been made to indicate important directions t‘or further work on semantic
integrity. | | |

By way of conclusion, there are several important génetal directions for the extension

o ide

of the work described in this thesis. The following are most significant:
1. an analysis of important integrity specification language design issues (eg, the
usefulness of constructs in languages like SEQUEL, QUEL, and Query by Example,
the adequacy of nenprocedural specification methodologies, the importance of
iteration and recursion, etc.),
2. the complete design of a language for semantic integrity specification, including
sublanguages for each of the four aspects of semantic integrity (in the relational data
model),
3. the development of a well-directed, structured, disciplined approach to data base
design (based on the semantic integrity framework), |
4. a comprehensive example of the application of the semantic integrity specification
methodology described herein to a "real” application domain, |

5. the implementation of the semantic integrity subsystem outlined in this thesis,

Semantic Integrity Specification 79

6. an inalysis of the cost of building, minnihing, and‘;gpniercing semantic integrity
rules,

7. a study of the relationship of semantic integrity issues with those of security,
concurrent consistency, and -query processing.(including the use of deductive .
techniques),
8. an evaluation of the ramifications of separating the four aspects of lntégmy to the
extent described above (e.g. an analysis of whether it is.necessary to allow the

zinforma,ation within a domain definition to be referenced in reiation constraint.
assertions), and a study of the appropriateness of this approach,

9. an evaluation of the applicability of a behavioral approach to the description of

data semantics in an integrated data base environment,

10. the extension of the semantic integrity.scheme to allow _multiple "views” of a data .
base, _ : -7

1. an evaluation of possible extensions to permit a-nanabsqlutist approach ta integrity |
(involving the notions of q_uantizéd truth and confidence measures [Zadeh 1976)),

12. a study of the ability of the approach to the semantic integrity problem described

in this thesis to improve the overall effectiveness of a data base system.

‘Semantic Integrity Specification 80

"~ REFERENCES AND BIBLIOGRAPHY

[Abrial 1974] |
Abrial, J. R, "Data Semantics”, Data Base Management, North Holtand, 1974

[Aliman 1975}

Allman, E, M. Stonebraker. and G. Held, Embedding a Relational Data Sublanguage ina
General Purpose Programming Language, Electroiics Résearch” Laboratory iepon ERL-
MB564, University of California; Berkeley CA, 10 October 1975,

[Aliman 1976]

Allman, E., M. Stonebraker, and G. Held, ‘Embéddfngi’ Relatiotial Data Sublanguage in a
General Purpose Programming Language”, Proceedings :of ACM SIGPLAN/SICMOD
Conference on Data: Abstraction, Definition, and Structure, Sak Lake City UT, 22-24
March 1976. | | '

[Armstrong 1974]
Armstrong, W. W, "Dependency Structures of Data Base Relationships”, Information

Processing 74, North Holland, 1974.

(Astrahan 1975)

Astrahan, M. M. and D. D. Chamberlin, 'Implementation of a Structured English Query
Language”, Proceedings of ACM SICMOD International Conference on the Management
of Data, San Jose CA, 14-16 May 1975.

Semantic Integrity Specification 81

[Bachman 1973]

Bachman. C. W “The. Prognmmer as Nawgator Communimions of the ACM Volume ;
S § .
16, Number 11, November 1973,

[Bernstem 1975] /
Bernstem P A. _) R Swemon. and D C. Tsichriuu. A Untﬁad Appmch to Functional}
Dependenciu and Relatiom Proceedings of ACM SIGMOD Inumatlonal Confcrence on'
the Management of Data, San Jose CA, 1416 May 9%

(B jomer 1978] v
B jomer. D, E. F. Codd, K. L. Deckert, and 1 L ngcr. The Gamma-o N-ary nelacional"
Data Base Interface Spectficatlons of Ob jects and Operations, IBM Rescarch chort_
R J1200, San Jose CA, Il April 1973.

[(Borgida 1975]) |
Borgida A T, Topics in tbe Undmtanding of English Sentences by Computer. Technical _
Report 78, Department of Gomputet Science. Universlty of Tomm. Toromo. Canada.
February 1975.

[Boyce 1973a] _ ‘ . ;
Boyce, R. F. and D. D. Chamberlm, Uslng a Strucmred Enghsh Query Language asa Data
Defnition Facility, IBM Research Report R 1318, San Jase CA, 10 December 1973 i

{Boyce 1973b] . .
Boyce, R. F., D. D. Chamberlin, W. F. ng II1, and M. M Hammer. Speclfylng Quenes as

Semantic Integrity Specification 82

Relational Expressions: SQ_UARE" Proceedlngs of ACM SIGPLAN-SIGIR lnterface
Meeting, Gaithersburg MD, 4-6 November 1978,

{Boyce 1975]

Boyce, R. F., D. D. Chamberhn W.F. King II[, and M. M Hammer. "Specifying Quenes as
Relational Expressions: The SQUARE Data Sublmgnage ' Communications of the ACM 7
Volume 18, Number 1i, November 1975,

[Bracchi 1972)

Bracchi, G. A, A. l-'edelx. and P. Paolim. "A Language for 3 Relational Data Base
Management System Slxth Annual Princeton Conferencc on Information Sciences and
Systems, Princeton N j 23-24 March 1972

[Bracchi 1974)
Bracchi, G., A. Fedeli, and P Paolini, "A Multi-Level Relatlonal Model for Data Base
Managemem Systems Dau Base Managemem. North Holhnd 1971. o

[Cardenas 1975]
Cardenas, A. F., "Analysis and Performance of Inverted Data Base Structures”,

Communications of the ACM, Volume 18, Number 5, May 1975.

[Chamberlin 174a]
lChamberhn D.D,R.F. Boyce, and L. L. Traiger, "A Deadlock-Free Scheme for Resource
Locking in a Data Base Envlronment Informauon Ptoceuing '74 North~Holland 1974.

Semantic Integrity Specification 83

[Chamberlin 1974b]

Chamberlin, D. D. and R. F. Boyce, "SEQUEL: A Structured English Query Language”,

' Proceedings of ACM SIGFIDET Workshop on Data Description, Access, and Control, Ann
' Arbor ML I8 May 1974. J B

[Chamberlin 1675]

Chamberlin, D. D, J. N. Gray, and L L. Traiger, "Views, Authorization, and Locking in a
Relational Data Base System", Proceedings of National Computer Conference, Anaheim
CA, 19-22 May 1975. ' '

[Chan 1974) |
Chan, A. Y., Automatic Selection of Inversions in an Integrated Data Base Environment, S.
M. thesis proposal, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge MA, 18 December 1974.

[Chen 1975] e e

Chen, P. P. S, "The Entity-Relationship Model: Toward a Unified View of Data”, ACM
Transactions on Data Base Systems, Volume 1, Number 1, March 1976 (to appear). R
[Codasyl 1971a]

Codasyt Committee on Data System Languages, Codasyl Data Base Task Group Report.
ACM, New York NY, 197, |

[Codd 1970)
Codd, E. F., "A Relational Model for Large Shared Data Banks®, Commiinications of the

Semantic Integrity Specification 84

ACM, Volume 13, Number 6, June 1970.

{Codd 1971a]

Codd, E. F, "A Data Base Sublanguage Founded on the Relational Calculus®, Proceedings
of ACM SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA,
197 | |

[Codd 1971b]

Codd, E. F., "Further Norm.alization of the Data Base Relational Model®, Courant
Computer Science Symposia 6, New York NY, 24-25 May 1971, in Data Base Systems,
Prentice Hall, 1971.

[Codd 197Ic] o ‘
Codd, E. F., "Normalized Data Base Structure: A Brief Tutorial”, Proceedings of ACM
SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA, 1971

(Codd 1971d] L
Codd, E. F., "Relational Completeness of Data Base Sublanguages”, Courant Computer

Science Symposia 6, New York NY, 24-25 May 1971, in Data Base Systems, Prentice Hall,
1971

[Codd 1974a]

Codd, E. F., "Recent Investigations in Relational Data Base Systems”, Information

Processing "74, North Holland, 1974.

i
¢

Semantic Integrity Specification 85

[Codd 1874b) R

Codd, E. P, "Seven Steps to Rendezvous with the: Casua} User”, Proosedings of TFIP TC-2
Working Conference on Data Base Management Systems, Cargese, Corsica, I-5 April 1974;
North Holland, 1974.

[Codd 1974c] _ ,

Codd, E. F. and C. J. Date,.“Interactive. Support for. Nen+Programmers: ‘The Relational’
and Network Approaches”, Proceedings of ACM SIGFIDET Workshop on:Data-
Description, Access, and Control, Ann Arbor M1, I-8 May 1974.

[Codd 1975])
Codd, E. F., A List of References Pertaining to Relational Data Base: Management, IBM
Research Laboratory, San Jose CA, 1975, T

[Codd 1975b)

Codd, E. F. (editor), “Implementation of Relational Data. Base Management Systems”,:
(Transeription of 1975 Natianal Computer Confersnce Panel:Discussion on Retitional Data
Base Management), FDT - Quarterly Bullerla’of ACM SIGMOD, Volume 7, Nruber 2,
September 1975.

[Conway 1974]
Conway, R. W.,, W. L. Maxwell, and H. L. Morgan, "A Technique for File Surveillance”,
Information Processing ‘74, North Holland, 1974. |

[Date 197a]

Semantic Integrity Specification 86

Date, C. J. and P. Hopewel, “File Definition and Logical Data Independence”, Proceedings
of ACM SIGFIDET Workshop on Data’Description, Access, and’ Comtral, San Diego CA,
97. . | | '

[Date 1971b]
Date, C. J. and P. Hopewell, "Storage Structure and Physical Data Independence”,
Proceedings of ACM SIGFIDET Workshop on Data Description;:Access, and Control, San -

[Date 1972)

Date, C. J., "Relational Data Base Systems: A Tutorial”, Proceedings of Fourth Anmual
Symposium on Cemputers and Information Science; Miami:Beach FL, #4-16 December 1972, -
Plenum Press, 1972. - SR R

[Date 1974]

Date, C. J. and E. F. Codd, "The Relational and Netwark Approaches: . Comparison of the
Application Programming Interfaces”, Proceedings of ACM SIGBIDET Workshop on Data
Description; Access, and Control, Ann:Arbor MI, 13 Mayi197¢.

[Date 1975]
Date, C. J., An Introduction to Data Base Systems, Addison-Wesley, 1975.

[Engles 1971] . , .
Engles, R. W., "An Analysis of the April 1971 DBTG Report®, Proceedings of ACM
SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA, 1971

Semantic Integrity Specification 87

[Eswaran 1974]
Eswaran, K. P, J. N. Gray, R. A. Lorie, and I. L. Traiger, The Notions of Con;istency and
Predicate Locks in a Data Base System, IBM Research Report R JI487, San Jose CA, 30
December 1974.

[Eswaran 1975}
Eswaran, K. P. and D. D. Chamberlin, "Functional Specifications of a Subsystem for
Database Integrity”, Proceedings of International Conference on Very Large Data Bases,

Framingham M A, 22-24 September 1975.

[Everest 1974a)

Everest, G. C,, "Concurrent Update Control and Database Integrity”, Proceedings of IFIP
TC-2 Working Conference on Data Base Management Systems, Cargese, Corsica, 1-5 A"pril"
1974, North Holland, 1974.

[Everest 1974b)
Everest, G. C, "The Futures of Database Management”, Proceedings of ACM SICMOD
Conference on Data Description, Access, and Control, Ann Arbor MI, 1-3 May 1974.

(Fadous 1975]

Fadous, R. Y. and J. Forsyth, "Finding Candidate Keys for Relational Data Bases",
Proceedings of ACM SIGMOD International Conference on the Management of Data, San
Jose CA, 14-16 May 1975.

Semantic Integrity Specification 88

[Fehder 1974]
Fehder, P, "HQL: A Set-Oriented Transaction Language for Hierarchically Structured
Data Bases”, Proceedings of ACM ‘Nationtil Conferénce, San' Diego CA; November 1974.

[Fernandez 1975}
Fernandez, E. B, R. C. Summers, and T. Lang, "Definition of Access Rules in Data

Management Systems®, Proceedings of International Conference on Very Large Data Bases,
Framingham MA, 22-24 September 1975, '

[Florentin 1974)
Florentin, J. J., "Consistency Aﬁdlting‘ of Databasés;'. The 'Computer Journal, Volume 17,
Number 1, February 1974. ’

(Florentin 1976)
Floréhtin. J- J. "Information Réference deihg", Communications of the ACM, Volume 19,
Number |, January 1976.

[Fossum 1974)
Fossum, B. M., "Data’ Base Integrity as Provided fof by a Partlcular Data Base

Management System", Data Base Management North Ho!land 1974.

[Coldstein 1970]

Goldstein, R. C. and A. L. Strnad, "The MacAims Dara Managemem ‘System”, Proceedlngs ‘
of ACM SIGFIDET Workshop on Data Description and Access, November 1970,

Semantic Integrity Specification 89

- [Cosden 1974] | o
Gosden, J. A., "Large Scale Data Base Systems - Current Deficiencies and User

Requirements, Data Base Management Systems, North Holland, 1974.

[Gotlieb 1975] , , . T ,
Gotlieb, L. R 'Computing _]oins of Relations”, queedxngs of AGM SIGMODJ ,
International Conference on the Management of Data, San Jose CA, 14-i6 May 1975.

[Graves 1975)

Graves. R. W, "Innegrity Comrol ina Rehnonal Data Dacrgpum Lin;uag; , Proceedmgs
of ACM Paciﬁc Confema. San ancxsco CA, I'-18 April 197, ‘

[Gray 1975] | _ o L

Gray, J. N, R. A. Lorle. and G R Putzolu, Granuh,ritx nf Locks ln 3 Shared Data Base”,
Proceedings of Intematiom! Conference on Very Large Data Bases, Framingham MA, 22-
24 September 1975.

[Grossman 1975] ‘
Grossman, R. W, 'Representing the Semantics of Natural Language as Constraint
Expressions”, Working Paper 87, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge MA, January 1975,

[Crossman 1976] R
Grossman, R. W., Some Dau-bue A.pphcmons of Cvmtu{m Exprcmuns. S. M. Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Semantic Integrity Specification 90

Technology. Cambridge MA, January 1976,

[Cuttag 197%6] - R |

Guttag, J., "Abstract Data Types and the Development of Data Structures”, Proceedings of
ACM SIGPLAN/SIGMOD Conference on Data: Abstra.ction Deﬁnltton. and Strncture.)
Salt Lake City UT, 22-2ﬂtfarch1976 et el s o

(Hall 1975)
Hall, P. A. V,, S. J. P. Todd, and P. Hitchcock, An Algebra of Relations for Machine
Computation, IBM Sctentific Centre keport UKSCOOSG Peterlee. ?:nghnd January 197.

[Hammer 1974]
Hammer, M. M., W. G. Howe, and 1. Wladawsky. An Interactive Business Definition

System, IBM Research Report RC&&O Yorktown Henghts NY ls January 1974

v : S R R AL A

[Hammer 1975)
Hammer, M. M. and D. J. McLeod, "Semantic Integrity in a Relational Data Base System",

Proceedings of International Conference on Very Large Data Bases Frammgham M’A 22-
24 September 1975. “ R S | "

[(Hammer 1976a]
Hammer, M. M. and D. J.- McLeod, A Framework for Data Base Semantic Integrity
Constraints, Very Large Data Bases Group Report, Laboratory for Computer Scnence. '

Massachusetts Institute of Technology, Cambridge MA] fanuary 1976.

..

Semantic Integrity Specification 9l

[(Hammer 1976b)

Hammer, M. M. and A Y. Chan. "Index Selection ln a SeIf-Adaptlve Data Base
Management System", Proceedings of ACM SIGMOD International Conference on the
Management of l.ﬁat;. Wuhington D. C, 24 June 1976 (tg‘}pg&;r);;)

(Hammer 1976c]
Hammer, M. M., "Error Detection in Data Base Systems®, Proceedings of National
Computer Conference, New York NY, 7-10 June 1978 (to appear). |

(Hawkinson 1975] o .

Hawkinson, L., "The Representatlon of Concepts in OWL Proceedings of Fourth
International Joint Confcrence on Artificial Intelligence, Thilisi, Georgia. USSR, !-8 ‘
September 1975.

[Hawley 1975]
Hawley, D. A., J. S. Knowles, and E. E. Tozer, "Database Consistency and the CODASYL

DBTG Proposals, The Computer Journal, Volume 16, Number 3, November 1975.

[(Hawryskiewycz 1972]

" Hawryskiewycz, 1. T. and J. B. Dennis, "An Approach to Proving the Correctness of Data

Base Operations”, Proceedings of ACM SIGFIDET Workshop on Data Description, Access,
and Control, November 1972. |

[Hawryskiewycz 1973]

Hawryskiewycz, 1. T., Semantics of Data Base Systems, Massachusetts lnstltutg of ‘

Semantic Integrity Specification 92

Technology Project MAC Technical Report TR-112, Cambridge MA, December 1973.

[Heath 1971] |
Heath, 1. J, "Unacceptable File Operations in a Relational Data ‘Base”, Proeeedlngs of
ACM SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA, 1971.

[Held 1975a]

Held, G. and M. Stonebraker, Storage Structures and Access Methods in the Relational
Data Base Management System XNGRES Electronics Research Laboratory Report ERL-
M505, Unlverstty of Callforma. Berkeley CA 3 March 1975

(Held 1975b] -
Held, G, M. R. Stonebraker. and E. Wong. "INGRES A Relational Data Base System '
Proceedmgs of Natnonal Computer Conf erence, Anaheim CA, 19-22 May 1975.

[Held 1975¢) 7 »
Held, G, Storage Structures for Relatlonal Data Base Management Systems Electronics
Research Laboratory Report ERL—M533 Umverslty of California, Berkeley CA 1 Augustv
1975.

[Hewitt 1971] , ,
Hewitt, C. E., Procedural Embeddmg of Knowledge in PLANNER Proceedmgs of

International Joint Conference on Artrficxal Intelligence 2, September 1971

[(Housel 1976)

Semantic Integrity Specification 93

Housel, B. C. and N. C. Shu, "A High Level Manlpulation md Qpérx nguagg for |
Hierarchical Data Abstractions”, Proceedlngs of ACM SIGPLAHISIGMOQ Conferena on
Data: Abstraction, Definition, and Structure, Salt Lake City UT, 22-2¢ March 1976.

UBM]
IBM, IMS/360 Appuuuon Dmiption Mmu;l GH20-0765. Whm Plalns NY

[Jervis 1974]
Jervis, B. M., Query Languages for Relational Data Base Manngement Systems. S.M.

Thesis, Department of Compyter Science, University of British Columbia, Canada, Mv
1974. | | | o |

[Joyce 1974]
Joyce, J. D, J. T. Mumy. md M. R. Ward. ‘Dm Mmagement System Uaer Requlremcnts -
Data Base Mmgement Syms. North Holhnd 1974.

[King 1974
King, W. F. III, On the Selection of Indices for a rue. IBM Rmh Report RJiML, san
Jose CA, January 1974.

[Liskov 1974] v '
Liskov, B. and S. Zilles. ‘Prognmming wuh Almract Data Types Proceediugs of a‘

Symposium on Very ngh Level nguaga. Santa Monica CA. March 1974

[Lorie 1974]

Semantic Integrity Specification 94

Lorie, R. A, XRM - An Extended (N-ary) Relational M’emory. I‘BM Cambridge Scientific
Center Technical Report 320-2096, Cambridge MA, J‘"W o4 S

[Machgeels 1976]
Machgeels, C., "A Procedural Language for Expressing Integrity Constraints in the
Coexistence Model", Proceedings of IFIP T'C-2 Conference on Mode!ling in Data Base
Management Systems, Freudenstadt, W. Germany, 59 _]une 1978 (to appeur).

[Marill 1975}
Marill, T. and D. Stern, “The Datacomputer: _'A'iletwork Utllity", Proceedings of National
Computer Conference, Anaheim CA, 19-22 May 1975.

[Martm 1975)
Mamn. J T. Compnter Data-Base Orgranizanon, Prentlce Hall. 1975.

[(Maynard 1974]
Maynard, H. S., "User Requirements for Data Base Managemnt Systerm (DBMS)' Data
Base Management Systems. North Holland, 1974,

[McDonald 1974a}
McDonald, N,, M. Stonebraker, and E. Wong. Prehminary Design of INGRES Part I -
Query Language, Data Storage and Access, Electromcs Research Laboramry Report ERL-

M435, University of California, Berkeley CA, 10 April 1974. ' -

[McDonald 1974b)

Semantic Integrity Specification 95

McDonald, N. M., M. Stonebraker, and E. Wong, Preliminary Design of INGRES Part Il -
Protection, Concurrencf and Graphics, Electronics Research Laboratory Report ERL-M 436,
University of California, Berkeley CA, 9 May 1974.

[McDonald 1974c]

McDonald, N. and M. Stonebraker, CUPID - The Friedly Query Language; Electronics
Research Laboratory Report ERL-M487, Univerﬁity of California, Berkeley CA, 16 October
1974

{(McDonald 1975a]
McDonald, N. and M. Stonebraker, "CUPID: The Friendly Query Language”, Proceedings
of ACM Pacific Conference, San Francisco CA; 17-18 April 1975. -

[McDonald 1975b)
McDonald, N. H., CUPID: A Graphics Oriented Facility for Support of Non-Programmer
Interactions with a Data Base, Electronics Research Laboratory Report ERL-M563,

University of California, Berkeley CA, 12 November 1975.

[McLeod 1974]
McLead, D.], Relational Data Management in Minicomputers, S.B. Thesis, Department of

Electrical Engineering, Massachusetts Institute of Technology, Cambridge MA, February
1974.

(McLeod 1975)
McLeod, D. J. and M. J. Meldman, "RISS: A Generalized Minicomputer Relational Data

Semantic Integrity Specification 96

Base Management System Proctedings of National Cornputer Conference, Anaheim CA,
19-22 May 1675, S |

[McLeod 1976a]
McLeod, D. J., High Level Domain Definition in a Relational Data Base System. IBM
Research Report ijs San jose CA. 9 February 1976.

[McLeod 1976b)

McLeod, D. J., "High Level Domain Definition in a Relational Data Bﬁse System”,
Proceedings of ACM SIGPLAN/SIGMOD Conference on Data: Abstraction, Definition,
and Structure, Salt Lake City UT, 22-24 March 19%. o |

[McLeod 1976¢)
McLeod, D.], Query by Example and SEQUEL Translation and Compitibmty. IBM
Research Report ijd, $an Jose CA; 1976. ’

[Meltzer 1973)
Meltzer, H. S., Current Concepts in Data Base Design, IBM Report to GUIDE 37

Information Systems Division, 2 November 1973.

[Minsky 1974a)
Minsky, N., "On Interaction with Data Bases", Proceedings of ACM SIGFIDET Workshop
on Data Description, Access, and Control, Ann Arbor MI, 1-8 May 1974.

(Minsky 1974b)

Semantic Integrity Specification 97

Minsky, N., Protection of Data Bases and the Process of User Data-Base Interaction,
Department of Computer Science Technical Report SOSAP-TR-1], Rutgers University, New
Brunswick NJ, September 1974.

(Mommens 1975]

Mommens, J. H. and S. E. Smith, "Automatic Generation of Physical Data Base Structures”,
Proceedings of ACM SIGMOD International Conference on the Management of Data®,
San Jose CA, 14-16 May 1975.

[Morgan 1970]
Morgan, H. L, "An Interrupt Based Organization for Management Information Systems®,

Communications of the ACM, Volume 13, Number 12, December 1970.

[MRI 1972]
MRI Systems Corporation, System 2000 General Information Manual, Austin TX, 1972,

[Mylopoulos 1975]
Mylopoulos, J., S. A. Schuster, and D. Tsichritzis, "A Multi-Level Relational System”,

Proceedings of National Computer Conference, Anaheim CA, 19-22 May 1975.

[Nijssen 1974)
Nijssen, G. M., "Data Structuring in the DDL and Relational Data Model”, Proceedings of

IFIP TC-2 Working Conference on Data Base Management Systems, Cargese, Corsica, 1-5

April 1974, North Holland, 1974.

Semantic Integrity Specification 98

[Nordstrom 1976]' 4
Nordstrom, B, "An Outline of a Mathematical M'odel for the Deﬂnmon and Mampu!anon
of Data® Proceedings of ACM SIGPLAN/SIGMOD C.onferenoe on Data: Abstraction,
Definition, and Structure. Salt Lake City UT, 22-24¢ March 1976.

[Notley 1972]
Notley, M. G., The Peterlee 1S/1 Syshem IBM United T(ingdom Sciennfic Center Report
UKSC-0018, England March 1972 ‘

[Olle 1974)
Olle, T. W., "Current and Future 'I'rends in Data Base' Management Systems Infomation
Processmg 74, North Holland 1974, ' R RN R AN e

[Ozkaran 1974) _ |
Ozkaran, E. A, §. A. Schuster, and K. C. Smith, A Data Base Processor, Technical Report
CSRG-48, University of Toronto, Toronto, Canada, November 1974.

[Ozkaran 1975]
Ozkaran, E. A, S.’AA. S;:huster, and K. C. Smith, ;'RvAP.: 'As‘xssb;l’;ﬁ\;ewprocessor for Data
Base Management”, Proceedings of National Qomputer Conference, Anaheim CA, 19-22
May 1975. | R | " | |

[Pfister 1974]
Pfister, G. F., The Computer Control of Changing Pictures, Technical Report TR-135,
Project MAC, Massachusetts Institute of Technology, Cambridge MA, September 1974.

Semantic Integrity Specification 99

[Redell 1974) |
Redell, D. D, Naming and Protection in Extendible Operating Systems, Technical Report
TR-140, Project MAC, Massachusetts Institute of Technology, Cambridge MA, November
1974,

[Reisner 1975) 4 :
Resiner, P, R. F. Boyce, ind D. D. Chamberlih. "Human Factors Evaluation of Two Data
Base Query Languages: SQUARE and SEQUEL’, Proceedings of National Computer
Conference, Anaheim CA, 10-22 May 1975.

[Robinson 1967] , . S CREIRt
Robinson, J. A, "A Review of Automatic Theorem Proving", Proceedings of Symposium in
Applied Mathematics, American Mathematical Society, Providence RI, Volume 19, 1967.

[Robinson 1975)
Robinson, K. A, "Data Base == The Ideas Behind. the Ideu -The Computer Journal,
Volume 18, Number 1, january 1975.

[Rothnie 1972] | , v
Rothnie, j B The Destgn of Generahzgd Data Managgment Systems. Ph. D. thesis,
Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge MA,
September 1972. | '

[Rothnie 1974]

Semantic Integrity Specification 100

Rothnie, J. B, "An Approach to Implementing a Relational Data Management System”,
Proceedings of ACM SIGFIDET Workshop on Data Description, Access, and Control Ann_ 7
Arbor M1, 1-8 May 1974

[Rothnie 1975]
Rothnie, J. B, "Evaluaiing Inter-Entry Retrieval Expressions in a Relational Data Base

Management System®, Proceedings of National Computer Conference, Anaheim CA, 19-22
May 1975. | |

[Roussopoulos 1975]
Roussopoules, N. and J. Mylopoulos, "Using Semantic Networks for Data Base
Management”, Proceedings of Internaticnal Conference on Very Large Data Bases,

Framingham MA, 22-24 September 1975.

[Sarin 1976) .
Sarin, S. K., Design of a Semantic Integrity Subsystem for Relational Data Base Systems,
S.M. Thesis Proposal, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge MA, 29 January 1976.

[Schlotnick 1975)
Schlotnick, M., "Secondary Index Opnmxzation Proceedings of ACM SIGMOD
International Conference on the Management of Data, San jose CA. 14-16 May 1975.

[Schmid 1975]

Schmid, H. A. and J. R. Swenson, "On the Semantics of the Relational Data Model”,’

Semantic Integrity Specification = 101

Proceedlngs of ACM SIGMOD Intematlonal Confercnce on: the Management of Data. San *
Jose CA, 14-16 May ms - e .

[Senko 1973)
Senko, M., E. Altman, M. Astrahan, and P. Fehder, “Data Structures and Accessing in Data
Base Systems”, IBM Systems Journal, Number 1, 1978, e

[Senko 1975] |
Senko, M. E, "Specifications of Stored Data Structures and Daired Ou!put Results mv”
DIAM II with FORAL", Proceodings of International Conference on Very Large Data ‘
Bases. anmgmm MA, 2224 September 1975. "

[Sibley 1974]
Sibley, E. H., "Data Management System User Requirements”, Data Base Management
Systems, North Holland, 197¢.

[Smith 1976] _ |
Smith, _) M. and D C. P. Smith "A Semantics for Relatlonal Data Bases Founded on“‘
Abstraction®, Proceedings of ACM SIGPLAN/SIGMOD Conference on Data. Abstnctlon. |
Definition, and Structure, Salt Lake City UT, 22-2¢ March 1976.

[Sof tware AG 1974]

Software AG ADABAS ADASCRIPT Uurs Mmua[.‘ﬂeston ka. 19’7{ |

[Steuert 1974]

Semantic Integrity Specification 102

Steuert, J. and J. Goldman, "The Réhtidml Data Mamgement System A!?erspec;ive'.‘
Proceedings of ACM SIGFIDET Workshop on Data Description, Access, and Control, Ann
Arbor ML I8 May 1974,

[Stonebraker 1974a) o
Stonebraker, M. R., "The Choice of Partial Inversions and Combined Indices”,
International Journal of Computer and Information Science, Volume 3, Number 2, J‘une
1974.

[Stonebraker 1974b) ’ o ‘
Stonebraker, M. R., "A Functional View of Data Indépendence'; Proceedihgi of ‘ACM

~ SIGFIDET Workshop on Data Description, Access, and Control, Ann Arbor MI, I8 May
9

[Stonebraker 1974¢}

Stonebraker, M. R., High Level Integrity Assurance in Relational Data Base Management
Systems. Electromcs Remrch Labonzory Report ERL-Mi'ls University of Cahfornh.
Berkeley CA, 16 August 1974

[Stonebraker 1974d]

Stonebraker, M. and E. Wong, Access Control in a Relational Data Base Man,agem’e’nt
System by Query quificat_ipn, El%,ctronic's%_,Rgse;rch_, ,L;bon;pgyé}gggq:t_/ERL-MQSS,
University of California, NBerkeley CA. ﬁ May 1974. | o

[Stonebraker 1975a)

Semantic Integrity Specification 108

Stonebraker, M. R. and G. Held, Networks, Hierarchies, and Relations in Data Base
Management Systems, i-:lectronics Research Laboratory Report ERL-M504, University of
California, Berkeley CA, 3 March 1975.

[Stonebraker 1975b]
Stonebraker, M. R., Getting Started in INGRES - A Tutorial, Electronics Research
Laboratory Report ERL-M518, University of California, Berkeley CA, 23 April 1975.

[Stonebraker 1975c]

Stonebraker, M. “Implementation of Integrity Constraints and Views by Query
Modification”, Proceedings of ACM SIGMOD International Conference on the
Management of Data, San Jose CA, 1416 May 1975,

[Summers 1975)
Summers, R. C., C. D. Coleman, and E. B. Fernandez, "A Programming Language
Extension for Access to a Shared Data Base”, Proceedings of ACM Pacific Conference, San

Francisco CA, I7-18 April 1975.

[Taylor 1974
;I‘aylor. B. J. and S. C. Lloyd, "DUCHESS - A High Level Information System"®,

Proceedings of National Computer Conference, Chicago IL, 610 May 1974.

[Thomas 1975]
Thomas, J. C, and J. D. Gould, "A Psychological Study of Query by Example”, Proceedings
of National Computer Conference, Anaheim CA, 19-22 May 1975.

Semantic Integrity Specification 104

[Tsichritzis 1975))
Tsichritzis, D; Features of a Conceptual Schema, Technical Report CSRG-56, Computer
Systems Research Group, University of Toronto, Toronto, Canada, July 1975.

[Valle 1975] _ :
Valle, G, “Interactive Handhng of Data Base Relations: Experiments with the Relational
Approach®, Technia! Report. University of Bologna. Bologna, Italy, March 1975.

[Weber 1976)

Weber, H., "A Semantic Model of Integrity Constraints onn Relational Data 'Base'.
Prnceedings of IF IP~TC-;2 Conference on Mode!lln; ;n‘a Data Base Managemént Sym
Freudenstadt, W. Germany, January 1976. - o |

[(Whitney 1974]

Whitney, K. M,, Rehuonal Dau Management Implemenmlon Techniques Proceedings of
ACM SIGFIDET Workshop on Data Description, Access, and Control. Ann Arbor MIJ, 1-8
May 1974. |

[Wilkes 1972)
Wilkes, M. V., "On Preserving the Integrity of Data Bases”, The Computer Journal,
Volume 15, Number 8,1972. - |

[Zadeh 1975]

Zadeh, L. A, Calkulus of Fuzzy Restrictions, Electronics Research Laboratory Report ERL-

Semantic Integrity Specification 105

M502, University of California, Berkeley CA, 19 February 1975.

[(Zloof 1974] ,
Zloof, M. M,, Query by Example, IBM Research Report RG4917, Yorkiown Heights NY, 2
July 1974 . ‘ -

[Zioof 1975a) |
Zloof, M. M., "Query by Example”, Prbc’eédinﬁs of National Cdfhputér Conference,
Anaheim CA, 19-22 May 1975, °

{(Zloof 1975b)
Zloof, M. M., "Query by Example: The Invocation and Definition of Tables and Forms",
Proceedings of International Conference on Very Large Data Bases, Framingham MA, 22-

24 September 1975.

[Zook 1975)

Zook, W, K. Youssefi, P. Kreps, G. Held, and J. Ford, INGRES - Reference Manual,
Electronics Research Laboratory Report ERL-M5IS, University of California, Berkeley CA,
23 April 1975,

Semantic Integrity Specification 106

Figure 1-1. Relation EMP

column -> Name Sex Salary Manager Department
under lying
domairi -> NAME SEX MONEY NAME DEPT

Jones, Richard male 812,088 Jones, Richard research
Phillips, Jeff male 818,008 Smith, Kathy sales

Smith, Kathy female 811,888 Jones, Richard sales

Semantic Integrity Specification

Figure 1-2. Exasple Data Base . -

Domains:
NAME QUAN
SEX ORBER_NUM
MONEY CusT
DEPT DATE
ITEM

Relations:

EMP (Name, Sex, Salary, Manager, Department)

. NAME SEX -MONEY NAME - DEPT

SALES (fteh, DcpaffnenxﬁfQuanttiu;ph_hand. Cost)
I1TEM DEPT QUAN MONEY

ORDERS (Order_number, Customer, Item, Date_shipped)
ORDER_NUM CusT ITEM DATE

BUDGET (Department, Salary_budget)
DEPT MONEY

107

Figure 1-3.

create
delete
create
delete

insert
delete
update

domain
domain
relation
relation

tuple
tuple
tuple

add column to
relation

delete
from

column
relation

copy relation
intersection

union

di fference

join

Semantic Integrity Specification

A Possible Set of Relational Primitive Operations

(these operations allou domains and
relations to be defined and deleted)

(these operations allou changes to be
made to data in relations)

(these operations facilitate relation
modification and relational algabraic
manipulatkun of a data Uase)

108

Semantic Integrity Specification 109
Figure 3-1. Selected Example Data Base Domain Definitions

domain NAME | ("Smith, John")
description
last: string

first: string

ordering
last, first
violation-action
error
domain SEX ("female")

description
oneof ®'female’, 'male’
ordering .
none
violation-action
error ’'sex must be female or male’

domain MONEY ("g108")
description
’s‘
value: number where >=8
where length(right(x, ', + 1)) = 2
or not present %, '.’
ordering
value
violation-action

substitute null 'value in arror, null has been assumed’

domain ITEM ("AB-75-326")
description
string where not has numerics, '-'
il:s *=
i2: string where not has alphabetics, '-’
~where repititions il through i2 >=1 and <=3
or
string uwhere call check_item
ordering
call compare_itenm
violation-action
substitute left(x, 5)

’vx#fgufé é-l.

domain QUAN

description

value: number uwhere integer
and >=0

ordering
atomic

violation-action
call fixup_quan

domain DATE
description
.month: oneof 1, ..., 12
ill -

Semantic Integrity Specification 110
(cohtihuéa)‘v

(17)

("1/28/1976")

day: number where integer and >=1 and <=31

*/197°

year: number'uhere integer ‘and >«5 ‘drid <=3 - ‘
where (if (month = 4 or =5 or =3 or =11) then day<=38)
and (if morth = 2 then day <= 29)

ordering
year, month, day

violation-action
error

and (if (month = 2 and year ~= 6) then day <= 28)

Semantic Integrity Specification 1l
Figure 3-2. Syntax of the Domain Dcfin!tion Lanﬁuage

domain-definition :s~ DOMAIN domain-name
nemmm
- v deseript lon-elaun ‘
[ORDERING
ordorlhg—clﬁul
[VIOLATION-ACTION
violation-action-clause)

domain-name 3:= str!ng-cons‘tmt o

doscription—clause tiw dnscrip&rnn-subclauuo
| description-clauee -

degcripti on-subc| quu

description-subclause i1:= description
[uhare-mtmud

description ::= [label:] subunit
| description
- [inhei:] subunit

labe! ::= string-constant

subunit ss= STRING [WHERE string-boo!ean)
| NUMBER [MHERE number-bobisan) . -
| ONEOF string-constant-list
| ONEOF nunbor-comtlnt-l!ut

string-constant—iist s1= ttring—constmt-mt
-~ | esteing-constant-|ist, otring-comtant-conponont

string-constant-component t:= string-constant -
| ALPHABETICS
| NUMERICS
| SPECIALS

number-constant-list ::= number~constant
| number-constant-list, W—mﬁtnt

string-boolean ::= string-boolesan-term ' S
| string boolesan OR ﬂring—boéltm—-tén

string-boolean-tor- tt= string-boolean-factor- -~ 7
| string-boolean-tera: NO s!ﬁng-boolun—factor

Semantic Integrity Specification 112
Figure 3-2, (continued)

string-boolean-factor ::s= strung-boolean—prim
| NDT,.trmg-ﬁoalmpmnaw

string-boolean-primary ::= string-predicate
| (string-boolean) -

string-predicate t1:= comparator strmg—conatant
| IF string-predicate THEN . mim-pmicato
[ELSE atrlng-pradicata]
| SIZE comparater number-sspression ¢
| HAS string-constant=iist
| CALL procedure

comparator ti= = | a= | >']| >u | < | <=

number-boolean 3= number-boolean-term
| number-boolean OR number-—boolean-teru

number-boolean-term t:= number-bog! ean-fac tor
| number-boolean-term AND: mlbor-booican-factor

number-boolean-factor ::» number-boo!ean-primary
| NOT number-boo 1 ean-pr i maru

number-boolean-primary ::= number—predacatn
| {(number-boolean). -

number-predicate ui comparator nunber-conat‘anut

| IF numicatl THEN- puisbar -predicate
o - {ELSE- paietior ~predicate)
| INTEGER

| EXPONENTIAL
| CALL procedure

where-restriction ::= boolean

boolean 3:= bhoolean-term
| booloan OR beoolean-term

boolean-term :31= boolean-factor
| boolean=-term ANO boolun-factor

boolean-factor tt= boolean-primary
| NOT beolean-primary

boolean-primary s:= predicate
| (boolean)

Semantic Integrity Specification 113

Figure 3-2. (continued)

predicate ::= expression comparator expression
| IF predicate THEN predicate

[ELSE predicatel

| PRESENT expression, string-constant-list
| CALL procedure

expression ::= [addition-operator] unsigned-expression

unsigned-expression ::= arithmetic-ternm

| unsigned-expression addition-operator arithmetic-term

arithmetic-term s:= arithmetic-factor

arithmetic-factor

subexprassion ::

I
|
|
I
|
|
|
I

atomic-expression

| arithmetic-term multiply-operator arithmetic-factor

::= subexpression
| (expression)

atomic-expression
set-function(expression-{ist)

APPEND (expression, expression)

SUBSTRING (expression, expression, expression)
LEFT (expression, expression)

RIGHT (expression, expression)

LOCATION (expression, expression)

LENGTH (expression)

REPITITIONS label THROUGH label

ti= labal
| string~-constant
| number-constant
|

expression-ligt ::1= expression

| expression-list, expression

set-function ::= MAXIMUM | MAX | MINIMUM | MIN | string-constant

addition-operator

multiplg-operatqr

fim 4+ | -

sim X | /| k%

ordering~-clause ::= ordering-list

| NONE
| ATOMIC
| CALL procedure

Semantic Integrity Specification 114
Figure 3-2. (continued)

ordering-list ::= label
| ordering-list, label

violation-action-clause ::-”violation-action _
| violation-action-clause
violation-action .

violation-action s:= ERROR
| ERROR message
| SUBSTITUTE expression
| SUBSTITUTE expression messege.
| CALL, procedure- .. ¢ .ou i
| CALL procedurs message .

message :ti1= string-constant

| SYSTEM-GENERATED

procedure ::= string-constant

Notes:

The nonterminals string-censtant and m«zm«ntvc not
further defined. Sl s
ALPHABETICS refers to the characters "A" through "Z" and “a"
through "z, NUMERICS refers to the digits 8 through 8; and
SPECIALS refers to all.other characters. : Fenooe e iy L :

SIZE returns the length of a string subunit. HAS sl, ..., sn
returns "true" if a subunit has an occurrence of each of the
strings sl, ..., sn (otheruise "false"),. SIZE, snd-HAS appear
only in subunit where restrictions. ‘ Cmm §o

SUBSTRING (s,.i1, i2) returns. the: substr] ng.of string s starting
at character il and extending i2 characters. LEFT(s,i) and
RIGHT (s, 1) return the left and right substring. {respeetively)
of 8 having length i. SUBSTRING, LEFT, andn?BH]’ may aiso be
invoked with a second argument which is 8. string.. Ihis:.means
that the substring is to start at the leftmost or rightmost
occurrence of the second string argument, e.g., "LEFT(x, *.’)"
and “LEFT(x, INDEX(x, '.*))" are equivalent. LENGTH{®) i returns
the length of string s. APPEND(sl,s2) concatenates sl and s2.
LOCATION(sl,82) returns the index of the -first _ogcurpence of
sZ in sl (or B if 82 is not a substring of sl). REPETITIONS
sl THROUGH s2 returns the number of repetitions (of the domain
value) for subunits labeled sl through s2.

XY

1.

2.

3.

4.

S.

7.

Semantic Integrity Specification
Figure 6-1. Some Simple Auertions“(fqr data base In figure 1-2)

Note: CC means constrained col lection, PR mna pfqdicato

The salary of every employee is less than SSG aaa
CC: each tuple in EMP
PR: Salary < 58089

The manager of each employes is also an nplouu.
CC: each tuple in EMW
PR: Manager is prount in ut of ai:i Nuu fro' itupiu
In emP
The salary of esach employee in the toy dopartunt h lua
than the salaryief his mansger.. :
CC: each tuple in EMP uhere Department & 'tou S
PR: Salary.<-Selavy of. the tupls mm - Hanugor
In constralned tuplo
The salary of an nplogao cannot m
CC: each tuple in EMP
PR: new Sslary >= old Salaru

The average employes salary is at least equal to the salary
of Robert Jones.
CC: set of tupliss in EMP »
PR: averagai{Seisry) >= Salarg of tmlo MNm -
*Jones, Robert’

Each departwsnt has at Iost tup pnplow g&ith L nlaru of .
wmore than $58,080.
CC: .set of. tupies in EMP where ﬁahru >m mad
by common Department
PRt count{Nems) <= 2'-

The number of: femals empioyees iq at ithnf the tctal
number of employses. -~ °

CC: set of tuples In EHP uhern Sex = 'female” -

PR: = count{Name) - >= 4 %= count(lhn) fnr*tqﬂu ln B’P

Employee names are unique.
CC: set of tuples In EMP
PR: multiset(Name) has no duplicates

15

Semantic Integrity Specification 116
?igure 6-2. Local Tuple Predlcateo

Types of Predicates (a):

la. col scalarcomp const
2a. col scalarcomp col
3a. col scalarcomp colexpr

4a. co! setcomp {const-l, ..., const-m}

Sa. col setcomp. {cal-l, ..., col-m} -

6a. col setcomp {colexpr-1; ..., colexpr-m}
7a. col setcomp setexpr

8a. (col-1, ..., col-n) setcomp {(const-ll. cooy con.t~ln). covy
(const-ml, ..., constemn)}

93. (c°|"1' LE N XY GOI-I'H “tm ‘(cﬂ"’li«' ooo' “’“&n" [E X X
(col-ml, ..., col-mn)}

18a. (col-1, ..., col-n) setcomp ((colexpr-ll. rees coloxpr-ln). cons
(colexpr-ml, ..., colespr-mn)} - .

1la. (col-1, ..., col-n) setcomp setexpr

Definitions:

col: column name with optional "old" or "new"
(col-l, col-i1, etc., are cole; all cols must
reference entries within the constrained: tuple)

const: constant from an appropriate domain

scalarop: by Wy, S, Nk, wWax, nin, ett., of & ui.r~dsflned
scalar operator

setop: unfon (also written as)), mtoructim. d’l ffergm:e.
or a user-defined set operator :

colexpr: a legal combination of col, const. op, auu satop uhich
yields a single value

setexpr: same ‘as colexpr except yields a sst of values

scalarcomp: =, ~=, >, >=, <, <=, OF a usor-deflned‘tcaiar
comparator e

setcomp: is in, contains, properlg is in. properlg contalns.

or a user-defined set comparator

Semantic Integrity Specification 117
Figure 6-3. Nonlocal Tupie Predicates

Types of Predicates (a):
la. col scalarcomp scalarval
2a. col setcomp setval
3a. (col-l, ..., col-n) sstcomp setval |

(In type 2a setval is a set of vaiues, and ln tupo -3a oetval
is a set of tuples.)

Definitions:
Definitions here are the sawme as figure 6-2, except:

séalarvalt a ocalér value computed from the data base
sstvals @ set value computed from thé dita base -

NO predicates are the same as NI predicates, except that the
process selecting scalarval and tatval uly roforuncu the ‘entries
in the constrained tuple.

Semantic Integrity Specification 118
Figure 6-4. Local Set Predicates

Types of Predicates (a):

la. aggfn(col) scalarcomp const
2a. aggfnlcol) scalarcomp aggfnlcol)
3a. aggfn{col) scalarcomp aggfnexpr

4a. aggfnlcol-1, ..., col-n} -gcalarcomp const
Sa. aggfnlcol-1, ..., col-n) scalarcomp aggfn(col-l. ceey COl=m)
6a. aggfnicol-1, ..., col-n) scalarcomp aggfhexpr

7a. set({col) setcomp {const-1, ..., const-n}
8a. set(col) setcomp set(col)
9a. setl(col) setcomp setfnexpr

18a. set(col-1, ..., col—n) satcomp ((conatwll, seey const—ln). enay
(const-ml, ..., const-mn)}

1la. Bet(COI'l. seey .colan): 85‘!@!‘9 ‘(m{ﬂl‘i, b by ﬁbl"‘lﬂ)y e 0’y
(col-ml, ..., col-mn)}

12a, setlcol-1, ..., col~n) satcomp setfneapr

13a. co! crel col

l4a. col crel (col-1, ..., col-m)

15a. (col-1, ..., col-n) crel col

16a. (col-1, ..., col-n) crel (co!-1, ..., col-m)

Definitions:

(col. const, scalarop, setop, colexpr, scalarcomp, setcomp are as

in figure 6-2)

aggfn: set, max, min, avg, sum, count, or a user-defined
aggregate function (also al! these with "'", e.g.,

"set'", meaning duplicates are retalned)

crel: one-to-one, functionally-dependent, or a user-defined
column relationship comparator

aggfnexpr: a legal combination of aggfn, col, const, scalarop, setop,
and colexpr

setfnexpr: a legal combination of "set", col, const, scalarop, setap,
and colexpr -

"Set" returns the set of values in a column (or tupies in a group
of columns. It is an aggfn, but is also treated separately since
it yields a set value.

(Note that "max(set(Salary))* is equivalent to "max(Salary)".)

J

Semantic Integrity Specification 119
F!gure 6-5. Nonlocal Set Predicates

Types of Predicates (a):

la. aggfn{col) scalarcomp scalarval
2a. aggfnlcol-1, ..., col-n) scalarcomp scalarval

3a. setl(col) setcomp setval
4a. oot(col—l. ooy col-n) setcomp setval

{In type 3a, setval is a set of scalars, and in type 4a, setval
is a set of tuples.)

Definitions:
Definitions here are the same as figure B-4, except:

scalarval: a scalar value computed from the data base
setvals a set value computed from the data base

ND predicates are the same as NI predicates, except that the

process selecting scalarval and setval may reference the data in
the constrained tuple set.

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form Date: fo-/ It 175

Report # LCSJR -|€S

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
X Laboratory for Computer Science (LCS)

Document Type:

X Technical Report (TR) [1 Technical Memo (TM)
[J Other:

Document Information Number of pages: 134 (131~ imaCrs)

* Not to inciude DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
W Double-sided 2K Double-sided
Print tyre
O Typewriter [offsetPress [] Laser Print
O] inkJet Printer x Unknown O other:

Check each if included with document:

K DOD Form (Z) [Funding Agent Form X Cover Page
O spine O Printers Notes Photo negatives
O Other:

Page Data:

Blank Pagespy page numben:

Photographs/Tonal Material ey page umben:

Other (ot descriptonipage numben.
Description : Page Number:

Q) TLACE MAP! ([-13Y duwit ko TTIX ¢ Blirk PACE, L aAbbLE
2, Lty Bu{uj uN#rBLk 5)H (A&#OLt
(ias. 13135<Mme ousR, Dom[,):) TRGTS (3)

®)

Scanning Agent Signoff:
Date Received: /%/ ! 1€ Date Scanned: bl 49 Date Returned: __/_/Lg_/j;(_

Scanning Agent Signature: M';ﬂ ?V “@%\/ o o4 DSACS € Cortra Form cstrformved

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFOEE COLIRCTIONS
TerEESTY TR 2 GOVT ACCESSION NG| 3. RECIPIENT'S CATALGG NUMBER]

MIT/LCS/TR-165

4. TITLE (and Subtitle) .' _ . . 5. TYPE OF REPORT & PERIOD COVERED
High Level Expression of Semantic Integrity S.M. Thesis

Specifications in a Relational Data Base System 1975-1976

6. PERFORMING ORG., REPORT NUMBER
MIT/LCS/TR-165

mm §. CONTRACT OGN GRANT NUMBER(s)
Dennis J. McLeod N0O0014-75-.C~0661

Ms T8. PROGRAM ELEMENT, PROJECT, TASK |
Massachusetts Institute of Technology AREA & WORK UNIT NUMBERS

Laboratory for Computer Science
545 Technology Square; Cambridge, MA 02139

t1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency September 1976
Department of Defense T NUNBER GF PhosE
i‘l 0 Wilson Boulevard _ 121

. M erent from Controlling Office) 18.‘ gECURITY CL ASS. (of this report)
Office of Naval Research

Department of the Navy Unclassified
Information Systems Program [182 DECLASSIFICATION/ DOWNGRADING
Arlington, Virginia 22217 : SCHEDULE

] IE. B‘§| RI!U ”8“ !| Y !M!ﬁ!,?o’ tma !oporl)

Approved for public release; distribution unlimited

i7- DISTRIBUTION STATEMENT (of the abetract entered in Block 20, it different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae alde if necessary and identity by black number)

Data base management, semantic integrity, error detection and correction,
data base design, data definition, data semantics, very high level languages

S . .
20. ABSTRACT (Continue on reverse side if necessary and identity by block number) .

The “"semantic integrity" of a data base is said to be violated when the
data base ceases to represent a legitimate configuration of the application
environment it is intended to model. In the context of the relational data
model, it is possible to identify multiple levels of semantic integrity
information: (1) the description of the domains of the data base as abstract
sets of atomic data values (domain definition), (2) the specification of the
fundamental structure of the relations of the data base (relation structure
DD ,"S7™. 1473 eoimion oF 1 Nov 65 15 oBSOLETE

. " S/N 0102-014~6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Dafa Entered)

q.ec.um'rv CL ASSI Flcn'mn cl Tuls PAGE(When Data: Entered)

spec1f1cation), (3) the definition of tha abstrictzdpnnaticnsauhlch are :
meaningful in-terms of the application envtn\, e (sﬂ \\g ¥4d operdtions),

| and (4) the expression of additional semantic tifarmatiom not contained in
‘the structure of the relations nor in the 1ghnt1t1es of their underlying‘ "
domains (relation constraints).

} ‘A high level, nonprocedural domain definition language facilitates the
description-af domgins. - Such d language:allows thesspecification of the
properties of ‘the values constituting ‘a domatn, and the dcttonithat is to

I occur if an attempt 15 made to update a column entry such that it does not
belong to the-underlying domain of that column. The sgecification of :

“relation structure and structured operations can be accompTished by neans of
high level integrity (sub)languages. , .

A relation constraint has three components: (1) the assertion (a
pred1cate on the state of the data base or on transitions between data base

‘states), (2) the wvalidity requirement (tﬁe'ecegsiﬁg%s at: wh?ch'fhe assertion

‘must ho]d), and (3) the violation-actien (the actfen hat is: to‘occir ff the ’
assertion does not hold at a time when it shoatd).® Rtf&tion gons%
specification can be related to an expression fraauﬁofk {crass?fi dgtion

“scheme) which is useful for the construction of a re ktan constraint language
and specfficatien;uethodology Assertions are more” "than’ qxpgessions of -some
relationships among different values in a data basei..aa-assertion: singles

~out the data that is constrained, and states the pes les this datd.mist
possess. A classification is provided of the vaplous.predicate-typas used

- to 1dent1tx constcained data and to state the propng;ies that thay are. to

‘possess. e

A semant1c integr1ty subsystem (of a genera}r:edpnalat}englﬂdata base

management system) can support the generation and maiptenance. of .integrity

| specifications,- verify that these specifications are met by the data base,
~and take appropriate act1on if violations are detected

SECURITY CLARMPICATION OF THIS PAGEWIA Dite Entored)

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

