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Abstract

We present a theory about the logical relationships associated with system behavior. The
rules governing the behavior of a system are expreased by a Petzi ngt A set of assumptions about
the modelling of a system permit us to separate system behavier into two components, what we
refer to as information and control mummmmmmm
are independent of choices. |

We develop a concept of information that is nonprobebilistic. It is not inconsistent with
shm'swmmmfmamumnmmmmm
than probabilities Our approach embodies four commen motions about information: (1)
information distinguishes betwesn akernatives; (2) & resalves choloss; (3) it is transmitted and
transformed within a system; (4) it says something sbeist pant behavier (memory or posdiction) and
¢ither enters or leaves a systam, and we can trace informadion 33 R flews through a system.

The control component of system behavior is dewemined by a system’s contrel structyre,
which 12 an gvapy graph). We show how the contrel structure of & system may be

¥ 2.
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interpreted ‘a3

When considered separately, the theories of information and control are of limited

mm‘;iuq. When brought together, they provide a technique for predicting and postdicting
vior.

Thesis Supervisor: Suhas 8. Patil |
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differential \ mmmmmnuw
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12. Petri Nets: |
Mmmuchuofmmmmmmmtmedmw mentioned above,
Petri nets are {ormal models, and they permit mathematical analysis of system behavior. Howaver,
unukeamddwfcumeaﬁmM&anfwmm
empioyed. Uniike finite-state machines, Petri nets ﬁh.mm to describe. a4 m.in. terms, of
& toiak wnstructuesd, symem stmie. Bus asiher- they allam for: o.dlatribuind. ystem. state in which
-many individual states-may. hold copcurrentiy. Sioee. Petsl nats-age 2. genecalization. of finite-st
machines, they mmmm»ﬂm monhipm in-passicular, the shility to
primitive concepts and, Mmmamm '
Apmmumubmmmmmmwmm&
mmmuwm'wmmmﬁmmmaammm
mdnwnudrcbmdmuw Mmuhmhl’@mu‘ o




- We say-that state s is a precendition of Event ¢ if hd only if there Is 4n arc leading from 5 to e.

- Similarly, State 5 is 8 poetpRdNIn of Event ¢ if and only if there s ari arc leading rom ¢ t6 s.

Thus, in:our example, sates b and ¢ sre the préconihions of lviiit. ¥, 'while-sates ¢ ahd ¢ are the

Before we can use a et o simuiate system bivior, wmwm it. ‘This is done

~by designating certain states as initia} conditiens mmmm shewn' graphtically
by placing a ‘token" on them:

v

5
0!

0

'fmmwtwunmmmmwwmﬂmmm
~{contains . token) then thiat ‘event may gecur (fire): The occe § holding of
(muaﬂmfm)%pmmmmm;md(pmaMm)mh
postsondition. mmmuumwmmmwmmm
preconditions and postconditioms. In genefal, there may b #verst: mwéuiﬂng
and otly.




mbmprmmmwmmmmm:hummmmm
- AVE A J0 canflict Qnly ome. o tham 4.90rmiNNli- I Rioal e eiding o thasharad atite,
mm«;tmmmdmmmmmm‘mrwmqu |
-~ are in conflict. mmmmznmmmmw

another set of hoidings. It should be apparent that there are, .40 gensral : muny: alergstive
mmhm&:mmmmmm'mmhm—ddmmﬂ, |

13. The Problem:
| Pwtmmmmdwwmthgmmmmm

(1) Under what conditions wmgm pmn"émm be produced?
(2 wmmnnmmonmmmm

{ o

(%) What are the cffmofuymmma
.ammm mm#mmm% - mmmawm

The present work started out a0 W umu llﬂldpn for answesing Question::




201wl thes MEINE, was to
find a way of mnhmm:mﬁmﬁm the occurrences:-of & partisular
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- bahavior by examining the. logionl strusiure. of the. o, Gl I8. QUL GAse, ia. the, et
wm- RN DA “ B l;;‘. SURE T O R ER TR
® mmmw Ahese ¥

influenced ancther. In a Petri net, a chole is repressntad by a shared state. For our purposes, we
can cistinguieh bsewetn to tppe of hoie: (s sheln e onipined choics

Caenen

(a) Example of Free Choice  (b) Example of Constrained Choice

Pigws 1.3 Cholse

In thefwuu.thenulnnowayspeﬁfiammmubbem mdthutshow
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mm.mamammmmummm mmm
the leftorrlghthmdm'mﬂvunm m;f:tumhthuﬂwm wm'fm' (We
A.Mmmwmmmwmymu&):&)@ﬁummntm
Mammmnymh.kmum mljﬁ. T‘qfnmambhmmlym
Mthdrpmpuﬂumwdw. “This 15 bacause, I & from choies e, no chosce infhaences
| ‘myotlm Azmtghtbuxpm fmemwmn;;éu:l;;ughfwwm We
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dependency. rmmmmmwwmnm»wm

‘at the ‘simd cisdics. - The only: hep appieaied toidie-in discovaring the mechanism

and there was no ‘way of dchitving sar-gosh taing' unrenrinal-nets;: So we -had tofind a set-of
restrictions that permitted us 1o trace the flow of ‘influences’ while still maintaining: genersiity.
* Turing ‘machines -had ‘shown: that & :model could ¥ siversly resivicted withewt: yeducing its

umm |
pmmwmmmmucmmmmmmmam
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clastes of nets. ummmm.“‘mmmwm
managesble.
 conctirrency. In one form "m”‘“’mﬂﬁﬂmwmm They've
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< will be used. inour theary te pravide 3 netion of. oo,
Mathad graphs are the: dusl of ade mchion, MMM*MMM

Akhough they've not been studied Wuumﬂmm '

‘woll undesstend. B, 4; %12, 161 The:mest astpble: choras

- describe: only: = fixed; sepaiine;patiorn-of. beavier. Il b sunotder
Free-choicg nets are- goneralieation of - beshoiaty meshiensand. ssarked. graphs.. . They

perinit both concurrency and cholce. Some significant resuls have boen obsmined 5, &1 byt as we

mmmmmudmm.mwlunudmmmmmy.
Anwmhrg«chuthnfmdﬂummﬂuﬂm mmeuof
mucm«mnmmmmmmm«mw Onlyafw rmltshnve

bomobumed[s.m mmmammn o mmwdmm
| mmmmmmm mnu« or mmiimeﬁ-y

: TR Aoy g *?,,.‘., 3 A YR SRR EEE

In mmm:mhmnuydmmummmnm:mmmm

thepmblunmtheabt&ywmmprmaﬂuud Mwm:na. Ov;rapéﬁdd
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() Information is (ar-at least cught to.be) » sy

(2) Jnf orrantion-is what raslyes shoiom. . (This:ia.a 5w
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iy & syl uwwmmww ‘conflict’
bWuhmfmmm) 'rln

system at thoss points where there ‘is: ‘Backwarderconflict’
mawnummmmnm) The
m«munammmm»mnmm

~ Hok aleo recagnised that information could be ueed 5 & teol feripmdioing:
behavior. He andm were iiltcmtful i SPPORG this iden to state machines (18] Within
e context of & Mite athin, the) Wik W '
* Kilortes. “The thedr ts'comslesiit with alf the-points Weiees _
“wolk 15 that’ it astabltibed - the' priniph it inf sttt U Kefuraisieed as'e sy sshitive
concep and thai It coud be-sled-for oIl T peteticany WWhavier: OF cousse; Wate
* nachinet’aré a very Tisiidied> Uile‘of cruduichs; sad Thart el wieial tw vewd (o apply e
" information: Tio %o a hudl mewmwm

U ks it
w«ﬂmﬁmwwnmw;
choices are rissived. ° ,~“"‘Wmmwmmww¢

NP mnw mmmm
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fmmcmmmmmm with postdistion. K akhough it's not
mentioned in the paper, there is & dual side to the thesry desling with prediction. .
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Houhumumhumnmmd
relates to his aince his pew. mmm«mg#{:

- Chaptar 2 - Patri.Nets
Tmmumm'uummwu Is:jast 3 bipartite, directed graph.

~ A Beri net is. 2 mat 10 which we atiach. 2 special jnsarpretation. and; for which. we defing a

. iemalation ruld’ A g Erash (e Sehing) - Jatch aet i wiichs sach. quant, has. sxactly one

‘ ‘mmMmmmmMM)mrmumwmm
o ptate- has exactly one: incident Ars-and. one: smergont M. A-Shisanennept of -2 Perl ret. s &
- sate-graph subset: in which il ares ‘connestest Lo 5. PRrNSIANOE. Mle are. Jeed. An gremt

- epmponent of & Petri net s v evant-graph suimet in vinioh Al . 1o a.pasticipating

- avent are used. A Petri net covernd: by:smie companents (svant. companents) is said e be state-

~ gragh decompossble (eventemeh desarapaeabie): Wa: prowy thst iK: 3 Detel st it beth, SGD and
The pimeiacion ruls-generaies & set of passiel enters impuiasions) sach defining a causlicy

- geintion ameng a s of e -hoidings and event.oogcomon. - Thaee ars four ways in. which. two

instances (holdings or occurrences) x and y may be ralatedy x:and.y.may be colncident. (e the same

instance), x may precade 5, x may foliow 3, and x and y may be concurrent. We show that in a

. mmmmmm.m mm&mawm

oW 5 i g
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Some basic assuimptions sbout the MoGeling of-4 s7ukim are presented. Tiise are rassduted
A spttem is s defined a5 a Patri net - the srsbem petc= together with (1) a: set of- wbeets of
sates and (2) 2 sat of subsets of events, With the help of five axioms (refiseting cur sssumptions)
_we're able to establish all the features of our model. ThﬂbmduNmuudwgmhl
cavering of "token' state components, ﬂnmwmm The subsets of events are used to
generate a covering of event componests, the modes of the: sywem. The:parts are lacal structures "
‘state behavior: The modes may be vinwed-as the ‘nasral frequenchss’ of the sysem.
To extract the control companeit of sysiem bihevior; we firstgenerats the pliprnative cipsses
of the system. This is-dene by collagaing’ each of the pasis. Theakerative ciaases: partition the
 sains and ovents of the-system net. There are:two-types of alisemative chises: thoee. that contain
akernative classes induce:s quetiont et that 1s:an.svent ginph:. This-is the syt sructie of the
" sywam. ‘The mestings form the svents of the contzol sishciuss; witiie she links: form:the states. - -As
mmmmmmﬂmmmfmumM -What's
fout Is Just the bl 0 distinguish betwet ghernpiives . Bor ench e tirselttien; (isuation of
e sysem net), there 1s 8. corresponding centzol maltise fsimulstion of the contsel structuss), and
" the two simelations are-iscmerphic. . The second simulasion s cbtained from the fisst by 2eplacing
each instance of an element with an instance of the akternative cass to which yhat eloment-baiumgs.

Distinguishing between. akernatives is the domain dhfmm.,'rhu"n the topic of



chapmi.mm:huc&pmmm“;mm We note here an important
result of mmmumnmmmmmm

) the alapnstive this oo which &t belpngs:and mwwm s:oplor
'wmmmuumummmwwmwm
- -stracture. By mmmummmm
e mm* mm : SCRTEL i ek S UNBP dnesbeaun ot o




- A Backwards choice

£

‘ WMMMWWMMMMhmnmm w.mmm,
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: mdm«mwumw«mmam«mmmm

};_mmwmmcmmmm poscor Tmmmd

By T o U )

-nmudmudwbcmmfamummmdunmtmmmwmmy

a4

~ content of the event's Wp have ﬂnfmmm

| memdumnnuﬁundmmmmh' -
conflict with .

mummduwmaum-nam-mmmnM"
eunﬂlawnhc B
“This means mmu“namammm mm is

" forwards confiice, and is font By s Sebann at precisdly thass =muw
" Purthermore, the informatioh gained o lest in a coffticr siteation & mnmm .

the choice 13 resolved. The samé sorts of idans apply. W calEtiiined choless, sRcept now the
infarmation to resolve the choice is supplied by the aystem.
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| mmmvmmmumm@ummm
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thon for us since the
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lmporunt nhmup betwesn the puu in sn svet @ '- ..3 the m ‘"

o YO S

“""l. l“ |'- m | “ “~ » “m' ' i A : u“f i »ﬁl gl T a s

3R oy oy f ] P T T TR TN U R
W“x? b i leeaMOS pusiaiiow iy ool il

SRR a7 o el P g

Sign T i e § oy = N4 - , L e e L
U h 7 o'*q &I ST E‘“f' i‘ AT s L

Biseo o R A . P LoxAE
S A R ‘».{; A S S R

ghﬂnh&mquﬂ

=t ST FRL e

Mmmmmummmmmmmmmmam
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Gvems in-an: mwsm'muw@pmagm;
oc pathe having mwmum 'l'ht

nmm;mhfmq,wnwhm'mdhmnmmhuupuhm:
synchronic delay of k-L. - ‘
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of "back-cone’ and 'front cone.’ The back coneof an event-« in an-event gmph s the set-of states s
such that: thers does not exist'e patk of: delay sere teeniating at:e:and whose:figst stats is 5. The
front cone of ¢ is the sst-of states s puch m there:doss nat exist: s path of delay zere originating
‘at ¢ and whose Inst state is 5. There is 2 siinple selstiumbip between:spnchironic delay-and back
‘and front cones: -
mmm«uyaam;(mmmm)ummmmamm
back boundary-of x'sheed is crossed. -
- The synchironic delny-of & path 4 is-equal to the: number of times the {rppt boundary of: x's
@l 1s crossed.

Cones have an extremely inserssting ‘connestion 1 the simusistions of an event graph. - The mates
of a particular cone define a series of cone-like slices in each simulation. If it's a back cene, then
these cone-ike surfaces point forwards, and if it's a front cone, then they point backwards. At the
tip of each 'cone’ is an occurrence of the related swent. For that occurrence, the 'cone’ provides a
boundary betwesn the past:and ‘ot past’ - If it's 2 back cone - or:the future and 'not future’ - if
it’s a front cone. Between any two consecutive ‘congs’, mm'mmd each event.
System 3pace is asescigted with the notion of: WMLVM is.a messure of the
“dack’ betwesn two svents. . The gyachronic distance betwesn:twe evmnts in an-ayent graph is the
minisnal token loading on these circuits containing: both events:; When an. svent graph is strongly
. commucted and free of blank circuits (circuits. withowt any. tohens):syncheanic-distanes delines a

“ remeitan the sst of events.

! Do not confuse synchronic dohy and synchronic distance.
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Within the:coneot somulation, there is 2 'Sotal ordusing Seeng: eccurrences of ‘the same
- mesting. For ench such. toml ordering, there is.3 ‘corvaspinding:seiai erdering in: the: system
. aimwsiation ameng oocurreness of . thess mm..aymmmmmm
. system-simulntion; the -u.mum-u M&wl&fu onuerenet of ‘Rvant ¢ then
1w smy that ¢ i the 13h iaaetion 5t Mesting ' (fe-that spmdn m)- ¢ isn holing or
' aocurrence i the:systern timulation, then: we-oas 3pemk of the: ' mmmm_
1 g’ In this came, movilt be cliher nagative:or paciiive, depuniiig Wpe Wiiethir the: GenvIvance
- associated with-the tranesction-is befersior aftarg. .
‘We now:-consider the following problem: -

w’*mmchwmhmmmmmqummm
-akernptive ciam ¢ If mealdneriwhich M War A MNANS o, Wt WO this
mmmummmmmwmmn,.m
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\ ’mmwmwmmm»mmmrmmmm mu

SR
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mmmm&nynMMMfuanMqummnﬁmrdsu

B
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" requirements. wwummunqnwa‘mmm)ﬁﬁmm
lnfmﬂonlmdaudwkhqmuhummwwﬂm“nmwbichlt
could mnmmmw mmdtanm
modes. Since wmnmﬁ.nmmﬂﬂthhMqu

mmolyudummoﬂnmh.



. For each sncheded made; we-know that by traciey the sncluiion: backwards {forwirds) we're
- GOing-10. genevatn & subnet-of the slmwintion sadinting: e (bet-0fi ¢ T subnet: defines a
- partial bistories pacsihis. -In-fast, s0me f the-pastiniistorios Tpbeidtentiabie wiitrurity Sur, in
with £inke speeme, thers is 2 finite: way of chacasniaing she det-of {forwasds and dackwards)
 partial histories smocielnd with-such muciuder snade: Pihe-asas siadiribed du-Chapter 5 vase be
used to 'slice up' the forwards and mmmmwm‘wmm
and frcnt for forwards histories. This mw:m?wwmww. To
ch&nwtuthmdfmrdswiﬁmmhmrh.nnﬁmﬂmmmo.

fRacy iy AR 08 &l
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cwmpondhqmupamuw r«:wumnmuvmm
state’ ddmuapwbhmmw&lhm ’len.ﬁhpﬂlmﬂl
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(2) semantics mmwmm
(3) methedology (How is the theory to be applied?)
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CHAPTER 2
PETRINETS

21 Net:
Nmmmmmdmm.

o Aggisn mwn&nmnm;w ,
Auamheutdmcm (Nwﬂbvinduabipmmmphmm
AUB as the vertices and C as the arcs)

lunun:hununwud1nummmnduuhwmnmxgumuwcmﬂﬂfermw&

‘%= {y|9x}
x* = {y | x9}

Definition: If N is the net <A.BC>, then R is a ssbnet of N, witten RGN, #f R=<A’,B’C’
where,

A’gA
B’¢cB
cl c c “Alxnlu leAl)

Property 21: A subnet is a net.

Notation: If R is a subnet of the net <A,B,C> and RecA’,B’.C’>, then,
for X g AUB: Xp = XN(A‘UB’)
for YCC:  Yp = YNC’
Qp i1 the resriction of Q to R.
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22. Petri Neu:
The rules governing the behavior ofa:spssarn gre sxpressed in terms of a Putri net.

Definition: A Petri net is a net S.EF> where,

S is a finite nonempty set of states
E is a finks nonempty set of gYenty
F ts the flow relation

Ifscs.thmmm&‘sm&'&:w&s.md the elements of 3°
ds. EM&MRMI cmuld ﬂnmw

pet is a quadruple 8, K, F, > where,

ICH 1 the et of il s

Definition: A siate graph (state machine) is & Petri ast S.EF> in which,
Mook {'okalled o ¢ Tas oo

Definition: An svent graph (marked graph) is & Petri nat S.LF> in which,
VieS: ['s}=h =1
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Figure 2.2  Abbreviated Repressntation



Definition: If N-«s.r..p is & Patri net, then Re<8“5F*> o  sialg componset of N iff,

(R state graph
28 e g

@ P~ Pl e U 8 T
R 18 2 cognetted, ne-empty saie-graph m(}u Whigh aj &

Definition:

_(a)Rpsa nen-empty eventgraph
RYRAN M s as
(c) F’ « FN{SXE’U E’X8)

R is a connected, mmﬁﬁunmamm».
Mmmm

Citipey e mes Mo R RTINS EE s g
Definition: A Petri net is said to be *’MB)wrmhdum&némm

5 21e ety oy a ol adpees by e s o o

i .
g

* ""f’i} rsg) Lk ﬁ(«: f:} , g? _{w

Inr-'lgnnzs mmwawmuu

Aita tm\m bk ey wine Ry
the Petri net N. Each of the two nets in Figure s 2 saie compodient of 15?lm& ‘amn

' mminrmwhmmmsfﬁ. Neotice that sach state component selects all

ammmdwammptmmhumdmmaﬂmhcnm With an event
mpamnnmupum nmaMmMj‘umm
lntomdmmwtofuchm mmudnmuﬁiﬁumdm
Mammwm lu.un’lahw:hmmyhmml
,_‘,dmwdﬁtnmdm
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Definition: A gircuit is a (directed) path whose two endpoints are the same. An ¢lementary circuit
, uammMmmuwmd-um

Lemma 21 lnaPcmm.tmumof ?n(mcvmmuua
MM)M&mm

Proof: ,w'sbumuintheinm
chooses exactly ane
arcs of the event Al i
lnddmmandmmuetwm Ve
has exactly one incident arc and one emergent ’
mmmm««mmm (|

Theorem 2.: lnavmnumuumscnmmn mmmmﬂw«yu«n
mbmm | 5 A

Pmof Wemveththmfmmuwwpmffaeﬁm«mubﬂng

elementary circuit. N&fm&cﬁmﬁ‘dw |
~ conmected. meumfmntmw&uwm. - a

23. The Simulation Rule:
lnmmmpvemuimbmspﬂqndmwwfwhtﬂm Inthu

section, we formalize that rule. wmummmmmpm of Hok [10]

The basic idea Is very simple, “Given am initieiised mmﬁ Woi Rule generates all
possible finite "simulations’. Mmﬁm“mamm:mamdm
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*holdings' and event ‘occurrences’. MMIM reflests the pastern of ‘terminations’ and
initiations’ of holdings by occurrences. B

Aslmuhmn uupmmudnaut <H, 0, G»inm&uﬂnutof holdhp.o is the set
ofoccutremu.andcutheuuumynhum lnord«mdhunguuh betwnnmted instances
ofthemelment.anmmm(dmughoum«mmmu)ujwmum ordered
pair <xn> where x is an element. - the 'instance type’ - and nbtpﬂdvelnw[‘t - the ‘instance
number’. The Simulation Rule is: defined recursively. xummmhm is a collection of
isolated hokdings of the form <> where s is an initial condition. In a simulation, the set of
unterminated hokdings is referred 0 as the 'front boundary’ of the aimulation. When there exists
amdhoﬂmmmtmmmndmummhmnmmdmhoﬂmgfor
each precondition of Event ¢, then & new umhnmm be generated. The new simulation
conmnsonemmmferlvmtcmdoﬁeiljn holding for each of ¢'s postconditions. The
mmmdcm'thepmlgwymmmmdhpmdmmsmd
initiates’ the new hokdings of ¢'s postconditions. )

To create new instances, we employ an auxiliary function, -
Definition: (x,Q) = {<x, IQNX{x}dN)+>}

#{x,Q) creates a set consisting of a new instance of El-m 8-,5,,

than the number of instances of x in Q. Asa mult.m \ : !
in numerical order beginning with 1.

We're naw ready,foc the formal simulation rule.



o R AR Y s el S e . o R SR

“Definition (The Simetation Rulek If Z is theinitislisad Patri nat- <8y K, F, 1> then,

(D <Ix{l}.4.4> is a gimulation of Z. TVIL M TR

(2) If T is the exislbing stinulatiens <M,:0, € and.if A is:a st of ‘holdings’ in the
‘front boundary’ of T consisting of ons ‘heiding’ for each precondition of Event ¢,
. T T P pe R ommiesgie s Y

O U 9(e0), ‘ ‘ R
CUKxfeO) UnOInge Hi! we il o 2. oo

(5) The owly' Sonilitiont of Z'ere theitghei BP9 sty

Ttlaint A e n ue

. Stup (2) s hustrased in Figure 24,

" f&l Wm}ai

Definition: If T s the simulation <H,0,C>, tlun.

7 Histhestoftigdings o T o saa s oo

t we're using a notational convention hére. ‘It e Ui “of thi Paetin £ 4s Q, and If the
mmmwdfmun.mmxm

AX) = xgx fx)
Thus, ¢{¢", H) = ’2. »s, H).




e
-*:%
.

The ordered pairs in C are the glement | canne
said meMhth =mnwlmm

leaning from h to q (4 to h). mnuwiw ) holdings is catied
thefmt(huk)md'l' '

In thegnphlalwn&nﬁadm%'thvmmdnmum The

slmuhuoninszbhmﬁmmtmmuhme)ms«ml.d.and

g designated as initial conditions. mm«mmmmampﬁm

npmmudmandbuuuthqm@hmfuudw&hmmm‘nmmm The

abbmhudfumoftheﬂn%nh?hn%hmu}fwu Note that this practice
humcffoannﬂnm”utbnﬁam

Thefmmmfm Mfmmmm

Propafy?-!: A simulation hi“mt.

Property 2.3 Mmﬁummmmdedﬂmm
mmuﬁﬂuduﬁ

Property 2.¢: AmmhmwmmenﬁuMbymm
than one occurréhée. -

Property 25: A simulation is circuit-free.

Definition: %M«WM&WMWMMcmdamhm
The new ‘sructure is transktive, reflexive, and - because of Property 25 -
mummhahdugkutmum We write x<y to indicate that x is related

to 9 by this partial order, and x<y to indicats thet <y but xm). We adopt the
following terminology,

x=y - % and'y are colacident’



32

~ °
P
—t
)
° ° ~N
e ey
—i -
L] LY
o \e
~ e ~
s
Jiee)
-
\\\\P
- ~ [y
P o~ P
i — ~
- - '
a/\o a/\
~- » ~ ~ 'y
P e
4 —
- -
— ~
~ “~

Figure 2.5 A Simulation
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xSy - * precedes 9
y follows x

x{y A ydx - ﬂﬂd’mm ..
(Nmmabymmvm“mmwmdfmw This is not

mluago.huk‘smmrywm Neotice that concurrency is
mthhgmtlmdnabmd

& .-»uﬁw :
mmcmfm,mgmﬁhmﬁh

Property 286: ummdmzmwm

«.mmlnmu‘r.ﬂhwh&! g temace of x following <xm> iff
nemal. P~

simulations.

Def inition: m.wmo*f ) denotes the paths of G, G is a sienulation, then each

Notation: lfqbthek:m«»,thmﬂ-t%ﬂahumddmamd
instances in_the cbvious manner. Rih‘@nnmunpdnham

Mtuaﬁ(hm .

Theorem 2.2: xrrmmmwpmu:muab then,
cd!m"tﬂ(mf
"The image of a path in T is a path in N’



“Proof: EvﬂmﬁTk“dhmwmwmm This
Wwﬁhmvmiw die : (=]

Deﬂmthlr AM& a simulation is a path orlghulat in mmmgnmum
nndumumh«(in unfrmtbonnduy

‘‘‘‘‘

" Definiton: If Ta<H,0.C> i3 a simulation of the initislised Pesrt net S,EF.
of <8,EF>, then r

for A HUO: Ay = [qeAN#i55UEy ) |

"Ap contains those instances in A MMWMR:

for BCC: By = {<pg>aBich. >aFy}

"By, contains those ares in B that bave Mugee. AR’
Ta= Ol

Property 2.7: urmm«mmmw«bmnmman then
Ty 182 subnet.of T. ;

d’ G,E,FB, '

and R is a subnet

F‘ - F“slleu E"Gl) - CR W"Q‘U leHl)

' 'lfFlcnnMcfullm(mP)MmonR Mclmmaall
m(mﬂmmmdz,, e 5

Property 29: If T = <H,0,C> is a simulation of the initialized Petri net <N,I> and R is either a
state component or an event component of N, then,

Cn = CNHRXOIU OanR)

'Cp consists of all arcs in C connecting two instances of HRUOy '



B

Theorsm-2%: If T is a simulation of the mwmwm R-is.a.sipte. component.of

Proof: If T il!hl“llthlm*a.lhmr‘m*mmlﬂ Inx{l}. They

Now suppose that <Hy, Oy, Cy> is  simulation of <N, I> for which the theorem is satisfied,

and that <Hy, Oy, Cy> is derived from <Hy, Oy, C;> through a single application of Step
(2) of the Simulation Ruls. Thus, thers exists an vvent ¢ and a set of holdings A in the

H’ - Hl U “‘.Hl)
Oz - Ol V) “‘:Ol)

Cy = C; U Axyle,Og) M wlnpiiie Hy)
From Property 29 we have, L

(Cylp = (Cylp U Apxinin@yiy UlgleQulyMiie Helg .

TMaummmcumhl.ccwgm vR. In the first
s, [Agl = KeeOpgl = Knie'Hypl = L And in the sscond Al = Kele.Op)yl =
Kele"Hylgl = 0. Either way, the theorsm is satislied for <Hy, Oy, Co>. a

- iz

I P i

In the net of Figure 2, tﬁm isa '2-eaken' mm ﬂﬁmrof those mm. evmtt.

and arcs that lie on the outside ring. According to Theorem 23, there should be two strands

 associated with that state component i euch- similetivir oF e F et - Tholdt Yrads ‘are shown for

e st In FgUe 22, Mot th he e i i 27 o sochr 21cken s

 Component - the inside ring - and four oken state components. The reader may verify that the
simulation of Figure 28 contains the appeeprists #unfr oF sEsndy Fur-cadh of These.

t finl is the number of 'tokens' on R.



Figure 2.7
/ .

CuohryulfThamofﬂnhWMNud‘u».mdkhaMnn
wdu.mr,m«amm

Cuoﬂuyz.!lfdipbuaquﬂnmmmdk.mdkuu«kmau
enmpanmd‘N mmmuu,uo.mmum

Corollary 23 uru:mw.:-mmuamn byl-nlmmmu.
MMTMW&%M& y ordersd.
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Figure 2.8
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Strands of a State Component
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31 Assumptions:
Like any theory, the one prewntad hare is based-on-secinin.5smphons. The ma jor ones are
~ the following:

{)] Asmudwnhuchmuamofmmmdm dnsymm

2 Thchghlupmefsymhuhavbrmhmbdyupm in terms of the

(8 nmwmmmmmmmmmmuum
pmmmmmmmdmm o

(8) Every.aystem clomant da-part-of -85 lenst;

'Assumptions (1) and (2) represent an attempt to find & common ground for describing the
myriad fmof:ymlmm. The notions of state, event, holding, and occurrencs appear to
be general enough to encompass everything that one might consider to be 'logical behawiar’. Note
 that ‘we. are speifically excieding those:aspects: of: renlity:net enplioable. i iogical terms - for

Because we're dealing: with -finie spstems, thera.omst be a:finite way of b
constraints that a system piaces on the holdings and cocurrences of its slements. Experiance with
Patri nets has shown them to be ideally suityd for chamoweiping swch.cmateaints. This e the basis

for Assumption (3).
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0

The most natural we. of introdutifig the mtion of aklernativeness is by assuming the
existence of sequential components. mmmmamﬂmdm
elements into akernative classes. (To be explained below) By assuming that alernative classes
from different components do not partially overlap, we get a partition of the entire set of sysem
elements. This is the meaning of Assumption (4).
important concept in many different m kt these disciplines have bpew bestd en
QWMMMMMQ(%M mmmmwm

LN
Jem *i];,p I

mpn&mwﬂhnmwm&mbmww Afurzll.mntryh‘w

sad isetage o aeegLe Ioslew A

duerlbcthmmhywh“*ﬂﬂﬁm
The five “‘:ﬁbmwwwtm mfum

D s bhg g T'f?ﬁ%ﬁ eh0 my 3%

. incorporates. ﬂnum MMMMMWNM‘fde

****** 2 e Beotpmsaumb 80 e et A (b

‘WWWM Much more

I 'the preceding chapier wo'dininguished bepwesns/Pawhaitt and s linitialized - Retal net’.
We do the same for systems. nammmmm-mmmm
T propertiel ‘of & spitan Seuion"S8 iv-eiaperis: willi«tiyriehnvitenl propmties of an
| "”-"ﬁllﬁ‘!ﬁlym ; , e Tl R G g M g et el oo

" We Begin' Uy defihing the gatith -1 WRWMIQ&WJ&M




41

of states and 2 set of subests of evants. mmwwmww”wammnf
state components - the 'parts' of the system.. Thombmdwmwundwgmmummng
of event components - the ‘modes’ of the system. ‘We couid; of ‘conrse, have included the parts and
modes themseives in the definition of a system, but thers-would haye beem..x great: deal of
redundant information. We're taking advantage of the fact that a state wh whiquely
identified by its states, while an event component i3 uniquely identified by its svents. ‘Nete that for
a given Petri net, there may be several oovmupofbuhmmnmdumtmponmu.
The constructs of the theory wil, m,g@m. depend. upen which:coverings are selected, but the

implications of this are Aot fully understood.

Deﬂmthnj <NDP.Dm>where.
N = <5, E, F> is a Petri net - mwg
Dp < (P (S) is the part decomposition
me(z)uanmmm

desu&mmm_

Axiom I: N is connected.

This axiom merely prevents a mmmmmmw Thisisnet a
 real Himitation since in such cises wich connected component cas: be treated 3 & separate systesn.
Axiom 2: S = UDP
A .
VAeDp: <A, *AUA’, l?n(AxEUExA)» is a cennected, m-empty m graph

*The sets of statet in DP generate a-covering of state components.”

T P(A) denotes the power set of A - Le, the set of all subsets of A.




2

Definition: The state coropanents genersted by the st in Ry are caliesk she gt of 4 The auor
parts is denated by p.
When the system 5 is inisialised, we will requirs that ehch: past be assigned sxacily one initial

conditien.  Thus, the parts will mmmwﬂm&hww&bww
Axiom % E = UDpy

"

VBeDyy <'BUB B, FNSXBUBXS) is o commpted, Aen-smpty event graph.
"The sets of events in dyy generate a coveringof swint Companents.’

Definition: mwmwwbyttnmhnamMMMdA The set
of modes isdmond by M. -

mnmuaummm.mrmmamvm Themforthls
interpretation are simple. Irmwuuummm;mrmmamvmmma
the states connected to that event are alio invoived. For a state that is part of a steady-state
pattern the situation is different. annmmpmmm“mwmdmcmum’
involved. So we seu-that siendyatate behavier is setunslly susscistnd-with gvant-compenents: In
components that comprise the modes.

Property 8.1: Every part and every mode is strongly connected.

This follows from the fact that N is beth SGD and EGR)... (See Theuren 2J) . -




Propertys.‘t thlymnmd.

smNummmmDmmwwww(wa.u
must be strongly connected.

33. The Parts | o

Themlmmmfwmmmw“humdumunm”mnwlm
thcnotlonufmuvm WcmwmmmMmﬂm
mm:ﬂycxclnuvo. Mh.ﬁmw-hmnummm«wmmm then
theyannotbcMamun. mmmﬂnyd‘mmmﬂmmmu
wmmhoaumrmmﬂyunnpmmmqbuhhmhnsh(blﬂm
state component - that is, a part. But we don't want to say that-tné slements die sherative  Just
because they belong 0 the same part. Fumumhﬂﬂnpﬂm&dnunghohm&ry

SEEY

drwlt.ﬂmmmmonthcdmkaahuﬁn&muu 'l‘herebanmmon

o
R4

however, in which two elements would definitely be calied akkernative: whcn thqm akernatives in
chola. smNrMhhmwhnmc;:ale»mtmrds
bu:kvnrds dlnahmof tlun. we MM!‘MMNMM In Figure 381,
Events ¢; and ¢y are alternative, as are Events ¢3 and ¢, We carry this idea one step further by
defining the Mn clomige’ af & paet:. If two-slements ins mmmm
immediate successors within the part are ako Muwwm predecessors.



Sy ¥ el %

. This iden is formalized as follows, = - -~ . peoox

ummm.:,;(x,)’mm

: St . - 5 s v ¥ ForlF
EAR RN el FEA WD cas iy o

v::x, xeq,x - |
V"xv"zxa-’%‘ Xy xepeg A «"1*3’“‘3‘“4’ V ("a"‘l’”‘o"‘z» » "s"‘rx.

w'“’“’“"l‘““”l‘“m&ﬂmqu&ms,m, (Wedonotny
that an cloment s alanative with ilp) - i = 50

Thearem 8k For PP, op s an squivatence relation an'the dleniewts'sl P, and, -
WA € Xplocg: AgB V AgE! e WE mes i sane

events.'

'It-umeqmvalmanhuonontlnmx then X/= denctes the set of equivalence classes
induced by . :



1%

Proof: Reflexivity and symmetry follow directly from the definition of «cp; For transitivity and
the second part of the theorem, we make use of the fact that two elements are refated by ocp
iff thmuamfm(m)whkhmmgpmudqulmmuw(from)thon
two elements.! Thmifu,bnhdbd,c.wm W whith e leiug|
and |ual=ln g}

- -

Because a part is strongly connected (Property 3.1), there exist paths ug and ug as shown.
This gives us paths of equal length leading from b to ¢ and ¢ - namely, pguamgey and
Mshgpgny. Thus, cecpc and ocp is transitive. To see that a state and an event can never be

sliernative; it is only necemery:te note thst betwsn-any: twadaies Hit paths. are of even
hngthwhibbﬂmamandwﬂmuapﬂumefddhnﬂh o

Now since ccp is an equivaience selation on the:slements: of: Past P, ocp induom 2:quotiont net
of P.

‘Definition: For Pep,

P = <{l, | se8p}
(leyiley> | wpetpl>

! This fact may be verified by the reader.




Property 33 P* i3 a net.

 The method of generating a quocient ot s iustrated n Figure 83,

1 2 {1,2}

b () alC c {bic) {a)

3 4 {3'4}
(a) pPart P (b) Equivalence Classes (c) P“r

‘Induced by o,

mmmmmmm»«)uumm Thi i shways the case
wmtsmthchngthormehadmnqndn&udw“mdivm)dtm
lengths of ‘the-slementary circuits in the dorrespendiog:part. . -
Definition: If G 1s a strongly-connected directed graph, then,
7(G) = gd {nin is the length of an elementary circutt in N} |

Theorem 32: For Pep, P‘hmmdmﬁtdmm

Proof: The definition of «p eliminated alt bnn:hing both fonm'd: and backwards, in P*.
Because P is strongly connected, 50 too is P*. It follows that P* is an elementary circuit.
Let n be the length of the elementary circuit comprising P*. We note that two elements

belong to the same equivalence class iff the length of every path between the two is a
mukiple of n. Now each elementary circuit in P may be viewed as a path starting and

o



a

terminating at the same element. M«gmmﬂvdmmuqdmmml’muu
beamuupleofu. Thus, n < ¥(P). el e

Letpbcapuhmhhumkumlymmﬁ?‘ Itbqlnundqdnuthcmm
oquivalence.cists-but not necessarily at the same. gimer Such a path clearfy exists. Its
lengthyis n. Lat 6 and b be its two endpoinis. fince.s.and b are in the same equivalence
m;mummm:fmm_‘ mec

N
ae 2 \
: \
3
) Mo ) M3 |
/ Ml =n
s : /, |N=|ﬂgl

Because P is strongly connected, there exists a path pg fram b t0 5. We now have two
circuits: pgug and pasyp. SMMMMUMMMW

mwmmumm,@)mm am P In
. _ , \gkmum;y(l') must
aleo divide the difference ' and .l is juit n. Therefore,
P (PISH. . m*mum;.nmmx w o .. O

Thomgnphhrmaﬁa)hummm«ndmsmnnuhud
hngth 12 mmuuwa&m;hm&mmrms«b) It Is an

muqmnamf.wmuun;udima ;

e



{a.c,e}

{bldl f:g}

(a) P N ' | (b) P*

Fguedd

TR

=

What vn've dont so far is wgmm% Wm

'g va 0 T

eV

nit‘”for each pm. In order to

construct a single quetient net-for ‘the: m MMMMMM -at fhe possible
relaﬂomhlps bcmm two tmuvechuu fmmdmm pmg? There are thrce poutbmues.
(1) the alternative clusu are dhjotnt. (2) they ptmﬂly o:trhp of}!) 1!\:1 m ldemlal. Since we
needapamttonofthe:ymmwmaqummﬁ;uguchﬂemem
possibility, akternative classes that partially ovchp. This is mwm the following

axiom.



9

Axiom 4: VP, Pyep: Vq«Xr!I-c,l:'VrcxP’ldp”e B ey Vel e
giradg V g=r

Figure S5 ifiustrates the type of stuation that is prohibited by this axiom. Part Py generates
lll ammnm f’  the ‘events ¢y in& v, Pt P;W an’ ammcm
s . vk BE peind

eonulnlngthutnghwmtq mwm«mmmmt

Figure 3.5 Partially Overlapping Akernative Olitont

 Definition: o = (pecp

o is the alternativeness relation for 8.
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Property 3.4 o is an equivalence relation on x.m. R TE RS £
VA eX/o: AcS V AcE

"Each equivalence ciass-indused by« Sontains. sither
events.’ '

sixngly. stabes or exclusively

;mmﬂmhwt’ -

¥ g . B
< « Tan oy gl P S
Ww ST TR AR vl DEROWCR NP et e ey
H

Since o is an equivalence reiation on-the elements of the net N, « induces a quotient net of
N. o

Definition: The mf« Jinhtm net N* = &° E°, F*> where,

'l 58] Gt lipks of »
E“‘[‘Ll"i‘-} (dnmwg,_&
F* = {<xl lyl> | 29} E

X* denotes S*UE*, Wemnmmw /CRecall that x+y means <xy> « F.)
For paX®,

p* = {g 1 poq)
.P.l,‘mv’ " j e ‘ .

The steps invoived in generating a control structure are illustrated i Figure 36. Notice that

memudm"myhvhnduwmwgy&’f m;-mudby

II%BL .2’?

the parts. From this we have the following,
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aIn3onI3ls TOI3U0D B burjeasuas 9g-¢ anbrd

s3Ied oyl (q) (R) uwz._ium&.g (@)
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(penuT3uoD)

( N) ®an3ona3zs Toa3zuod aylL (P)
*

{8’L}
{b} {reu}
{9’s}
{p} {30}
{v'e}
{e} {(2'a}

{e'1}

9°¢ @anbtd

898E8RID PATIRUISFITY OUYL (D)
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Property 36 N"um'gtymnm.
Theorem 33: N* is an event graph.

Proof: Each link ! belongs to at least one part. Lchthapm. Then { is contained in the
elementary circuit generated by P. thhth&”&lma’mmmmmda
unique output mesting. Becanse P is a state compenent, those two meetings contain all the

events that are adjacent to the states in ‘L Mnmmunhmmmﬂ

connected to /.

smanuourmmnuwupudﬂyshwﬂ&naninmwmmmmkslna
control structure will be drawn as . . . ‘Unks'. . Thus, the control structure in Figure $.6(d) will be

depicted as in Figure 8.7.

Figure 3.7 A Control Structure (Abbreviated Representation)
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nhﬂmsMp.thwﬂhwmmmmvhwmmvw The

relationship is illustrated in Figure 3.8 and uapmdbymfmm

Figure 3.8
Theorem 3.4 VeeE: VieS*: )
1), o |IN¢a=] (a)
[o(], o |IN=0 | ®)
.TMpmdmﬁiquw?mmfm.“de[cl‘.'
o0 o li0el=l - | ©
(el ¢! o [INe]=0 o | (d)

*The postconditions of :Evest ¢ select one state from each output link of (],



: '-af'f?r,"r"vu“»-’.,@@e:g* R B ey MM R A o R R A B T R R T

Proof: The theorem follows from these observations, ;.

set L

(1) A mesting:m-and-a ink.J ape connacted in: N 46£:thans: is & paet P:auch.that m and [ are
connected in P*.

© (2) m and }ave condected tn P* i1 ench-event: jnmsis conmected 40 snactiy one state it L -

(%) i m and { arenot conmectett in. N* then:No.teie in L b eencitted:taah eventinm. - O

33. The Modes:

'l‘hcmdummmd‘uanﬂ “The event components of N have an

«ffy

Lemma 8L nuuummgn m
Verex: Kyl *“n"'l )
'm«mwmmmwunmmam

;

Proof: Anmmmwmmm anmudunmmmdmm

By

out of a state. From Thejrem 3.4, we then

VppyeX®: pyopy # blnxnd b:"xl'
Thumt.wmmmuyaw mmmm a

Modomthemﬂuteumpudmmmﬁmm Woslu!lnkc
W v oavherreds Aoes Uvaisia m He 2y aegd
unum mwﬁnmm;mm“mnmmmmmm

mrsemaaie i dirg
M ‘ %‘i

slement.
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Axiom 5: YMelll vgeX*: Xyngi<l
'A mode and an akemative chiss interseet in no: rmore tima-one element.’

In figure S8 we presented a system net tagether-with a set'of patts. Wiven these are.combined with

- the modes:in Figure 55, we gt a cemmplete spstim. . The-render-may: verify that Axiom 5 is

satisfied.

rgﬁn's.o' uoeu “

I-‘romLemmas.landAxiomsufoﬂwstmumuﬂmdeummmyamun
chssatall.orlnmamuchabmndnchuencﬂym Butunfmtaseannotbe.mit

T

mldimplyamodcwﬂhmm




5

‘Theorem 35 YMelL VgeX®: [Xyfgl=1

Corollary 81: VgeX* <M
*The size of an akternative class cannot be greater than the number of modes.’

Theorem 35 together with the next theorem mbﬁih nw relationship between each

mode and the control structure.

Theorem 36: mcm;y;x.,gxu:
apey w Bl
Tmnmmlnummxnywmcchmmhmm&]‘w
ol
Proof: » Definition of N* as a quotient net.
* Assume [x]_¢[y),,. mxw}(batmmkmm ‘Assume it's x. By Theorem

Mandthcdcfmnnnafnundeummmﬂw%wmmzm
Xl such that x.>efy. nwrmssmmmmamnmmt

in Xy Nyl Therefore, y = z and xy>eF)y. =

Corollary 822 VMeTt: M is isomorphic to N*

. We now have a nice visual interp retation fof the class o nets produced sdiicec by “Axioms 1|
through 5. Each net in this class can be viewed as an interconnection of isomorphic event graphs.

If we imagine the elements in each akernative class to be vertically in line, then each mode will be
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roughly horizontal (see Figure 3.10). In the top view, alternatives are indistinguishable. So too are
the modes. Their projection forms the control structure. In the side view, we can distinguish

between the alternatives in an alternative class, and we can identify the individual modes.

TOP VIEW

° \
/\/ Control Structure

SIDE VIEW

L\
Z N

Individual Modes

Figure 3.10  Views of a System Net
From the structure of the modes, we can say something about the structure of the parts.

Theorem 3.7: VPeP: VMelll PNM is an elementary circuit of length 4(P).



‘Proof: P* is an elementary circuit of length 4(P). Since M is somorphic to N*, M contains an
elementary circuit of length (P) whose image is P*. This circuit is also contained in P. O

Corollary 33: VPeP: P is covered by elementary circuits of length (P).

36. An Initialized System:

Over the last four sections, we've established the structural properties of the system 8 We're

now ready to consider the behavioral properties of the initialized system /.

Definition: £ = <Z.DP.Dm> where

Z=<S,EFD

IcS

VAeDp: IANI| =1

I is the set of initial conditions of £.

Z is the initialized system net.
The third requirement says that I assigns exactly one initial condition to each part.

If we think of § as the system 'hardware', then the set of initial conditions may be viewed as

the system 'software’. With this interpretation, a piece of software (Le. a program) has no meaning

outside the context of a system. This is exactly as it should be.

Since Z is an initialized Petri net, the Simulation Rule can be applied.
Definition: The simulations of Z are called system simulations.

Because Z is covered by I-token state components, namely the parts, the results of Section 23 are

applicable:
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Property 3.7: Within a system simulation, all instances of the same element are totally ordered.

Property 3.8: If <x,m> and <x,n> are instances within a system simulation, then <x,n> is the next
instance of x following <x,m> iff n=m+.

We've introduced the initialized system net, and now we introduce the 'initialized control

structure’. We use the initial conditions of the system net to generate a corresponding initialization

of the control structure.

Definition: Z* = <N*, I*> where
I* = {[s], | sel}

Z* is the initialized control structure

In Figure 3.1i(a), we show an initialization of the system net from Figure $.6(a). In Figure 3.1L(b),

we show the corresponding initialization of the control strucure from Figure 3.6(d).



{pcp(  @fd}

{r.;e,,f}f s {4}

{78}

(a) 2

Figure 3.1 An Initialised Systim Nt and Corrépending

Definition: The simulations of Z* are calied control simulations.

In an event graph, each elementary circuit is & sale companent, and vice versa. The control
structure has a special covering of elementary circuits genariited g 'Yve.puarts. ‘Because each part is
assigned one token by mewmnwummmm by I*.

" Theorem 88 Z* is covered by 1Hoken state components.

Corolfary 8.4 Within & control simulation, ail ‘instasices of -the sume akernative class are totally
ordered.
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Corollary 85: If <¢sm> and <g,n> are instances within a control simulation, then <g¢,n> is the next
instance of ¢ following <gm> iff nem#.
We now show that for each system simulation, there is a corresponding control simulation,

and two simuiations are isomorphic.

Definition: If T is the system simulation <H,0,C> and ¢ € HUO, then

o{g) = < [4],,, lfreHUO | r<g A Pucdll >

©1(g) is going to be the image of ¢ in the control simulation corresponding to T. Notice
that ©q{q) Is an instance of the alternative class to which § belongs. Thus, if two instances in T
are associated with alternatives, then those two instances will map into the same type of instance in
the control simulation. Because of this, the instance number assigned to ©v{g) is not necessarily
the instance number of ¢. We must count the number of instances in T that precede (<) ¢ and are
associated with the same alternative class as g. The instance number of ©{g) will never be less

than the instance number of ¢. .

Definition: If T is the system simulation <H,0,C>, then,

T* = <Bq{H),6{0),8(Ch!

In Figure 312(a) is a simulation of the initialized system net in Figure 3.1Ka). In Figure
3.12(b) is the corresponding simulation generated by ©1. Notice that the second holding of State b
in T corresponds to the third holding of Link {b.} in T*

The next two theorems establish the relationship between T and T* and the relationship

between Z* and T*.

! e{(C) = {<Opig).p{r>ig,r>€C)
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Figure 3.12
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Theorem 39: If T is a system simulation, then S is an isomorphism from T to T*.

Proof: O is clearly onto. Now suppose that @q{q;) = Oq{gg). Then
(91, = (@), m
and,
Kr 1 r<gq A Poc@qll = Kr | 7<gq A Pocfisli (2)

Let ¢ = [§;],, = [§5),,. Since ¢ is an alternative class, there exists a part containing all the
elements of c. Consequently, the instances of elements belonging to ¢ are totally ordered.
Line (2) says that ¢y and ¢y appear at the same point in that total ordering. Hence, ¢} = g3

and @ is I-. If C is the causality relation for T and C* the causality relation for T*, then
it follows immediately from the definition of T* that,

<. 7> €C o <Bqlq) 0r)» eC* o

Theorem 310: If T is a system simulation, then T* is a control simulation.

Proof: If T is the initial simulation of Z, then T « <IX{l}, ¢, ¢> and T* = <{(s]_Isel}x{l}, &, &>.
But {{s]_Isel} = I*, and therefore, T* is the initial simulation of Z*.

Suppose now that T satisfies the requirements of the theorem, and that Ty is derived from
T through a single application of Step 2 of the Simulation Rule. Let,

Tl - <Hl' 01. C1> \ Tz - <Hz. 0,. Cz>
T ‘t - <Hl.' (o) l" clt> T 2‘ = <H 2.' 02" c{,

Now there must exist a set of holdings A in the front boundary of T, consisting of one
holding for each precondition of an event ¢ and such that,

Hz = Hl U Q(G., Hl)

Oy = Oy U nle, Oy)

Cy = C; U AXn(,0) U 9(¢,0¢)xn(¢’ Hy)

We must show that a similar relationship exists between T;* and Ty" We note that
[e], €E* LetA*= O, (A). Because A is contained in the front boundary of Ty, and O,
is an isomorphism, A* must be contained in the front boundary of T,*. By Theorem I4(a
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& b), A* consists of one holding for each precondition of [¢],. For the three components of
Ty we have,

Hz° - GT (Hz) - GT Hl)wvr (nle ’Hl» )
2 - eT (Op) =0Op (°1)U9Tz 7e.0y) (2
Cq* = {@Tz(q).e Ty (r)>l<q.r>€Cq} = [<9Tz(q),91~ (r)>l<q.r>€Cy} ()

U {<0r,(@)8r,(r>lqr>eAxn(¢Oy)}
U {<Br,(g)Or,(rhlqr>ene.Oy)xnle" Hy)}

Since T} is, in effect, a prefix’ of Ty, we have B, Q= B-l-l(q) for all geH,UOy. Thus,

Or,(A) = O, (A) = A°

aTz(H,) = OTI(HI) - H;* (4)
61,(0y) - 0r,(0p) = O* ®)
{<O, (@), Oy, (ri>l<qr>€Cy} = {<By, (g), Oy, (1legr>eCy} = Cy? (6)

Let <s,n> be a holding in #(¢’H;). Because (5], is an alternative class, there exists a part
containing all the states of [s] . Therefore, the holdings of states belonging to [s],, are
totally ordered in both Ty and T, Furthermore, <s, n> is the last holding in the total
ordering of Ty. From all this, we get,

OTz(q(c'.Hl)) = {<[s],n>| s€e’ and n is the number of holdings in Hy of states belonging to
G}

= {<[s] ,n>ls€e” and n is the number of holdings in H; of states belonging to
(s}, - plus I}

- But by Theorem 14{(c & d), {{s] e’} = {[s] ] [s) € ()%} This, together with the fact
that GTI is a bijection, gives us,

O, (n¢’, Hy)) = {<Ls),, n>| [s],€ [¢],,* and n is the number of instances of [s],, in
H;"- plus 1}

-l b H ™
Similarty,

O, (e, O) = w(ll,., O (®)
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From Line () and (8) and the fac tht By, (A) - A",

(Or ) Op Wbl ¢ AogeO) s AN O e
(B0, Or,(rblar « .(..opx.ﬁ* Hy)j - #M’bﬁ wu " (10)
l-'imlty. we get, ' '
H" -Hi.Uﬁd‘ Hl.) ‘ , ‘ o Llﬂ.ll.'*.&"
Og* = Oy* Un(lel . O o Lo Lines 2,5, % 8
Cy*=Cy*V A'Wl.,.ox‘) 1} «uwﬁx-m.:gm . Lines$,89,&10

 Since, by hypothesis, T,* uamafz' ummm'r, is abo a
simulation of Z*. v a

Corollary 38 uammmmmmmw the two
mmmpm
Mmmmmmmwmwumm
[goneral, one-to-one. lnmgmﬂuuwmbom:pmmmmwnmgh
control simulation. /

lnghum.nmth:ﬁumhsdmmm For each ohe we provide an
The initialized systom «pm;n Figure uwbnpw The three
parts comprise the thres sages. whmmu e shift |
Bits mumwmunampmrmmnmmmmmwum

of opmwnt 'information’.

boctanmoumge.v
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(1)
COYER 10!
(3.
o 8
(55}
N 16
(7)

(d) Initialized Control Structure

Figure 3.13 (Continued)



Y

Tmmumsmmmrmmufmbymafmmpmmm
connecting the first and last stages. The result is a circulating bit pipeline. Notice that in this case,
"bits' are conserved. o

mmmm.mdrmm&mhtwm. The choices associated with
SnmaaMbmthMMWThmcmmmthl
npment,rapocuvdy.mmwanym Thmmfmmmﬂnymrupmdw
the four possible operations. Nmmwmuumwmrtmwu
components. Wevccbmmufwwm Akthough the choice is arbitrary, it has no
cmamnnmmmw;rmmmmmwmmumm
case. Thenamrlgunmumum WQmmammh
nhmd.mammdmvmhm The significance of this is not yet
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(a) Initialized System Net

Figure 3.14 Circulating Bit Pipeline
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(b) Parts

Figure 3.14 (Continued)
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(d) Initialized Control Structure

Figure 3.14 (Continued)
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Pigure 3.15 Half Adder
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(d) Initialized Control Structure

Figure' 3.15 “*(Edntinued)y v -~

A v b

Figure 3.16 System Net with Two Control Structures . . .
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CHAPFER +

41. Information Congent:

In mucupmmmmm-p_rm,fmg?mg In Chapter 3, we showed that
the control structure N° deermines mm og:‘bénvbr that result when akernatives are
made indistinguishable. We mmWhm the ability to distinguish between
alternatives. Wohuﬁm&onoﬂeud‘hfwmﬂn“’fcﬂmm

Definition: The set of parts containing WHMMM ﬂnudmm
Mxhd“by

Definition: For x ¢ X,
I(x) = T - M(x) | |
"Kx) 12 the set of modes excluded from x Xy) is the afermation content of x.

| rmeuwmmeMum;Jmemm
moduhuwdomhmmnﬁcm mw&m&umumu We
mtghtnotethnwhmmchnmhumnhqmdmthmmpmmmu)
andmenfore.mmmmmonmormmnmu,
ltueonvmhntmmuluhr'mmg* The information content of an element

'ThummadmmmnbyHolundCotmml In the context of a strongly connected
state graph, Mumm'mmwﬁam»huudmm
circuits.




an cmuvmammdmmmfmmm In Figures 4.1 through
4.3 are the ;ymmfwthsymdmwmtm.wmm‘hm We've associated a
color with the events defining each mode. Next to each system element is its information content
expressed as a set of colors.

Theorem 41: Vx;.xs € X:

Byl A Kxylelag) - *1'“:

'lrmdmbmg““; pok
m;mmmkﬁt

ciass and have the same information

" Proof: +« Obvious

» numammmmmm
(8) Koxeq)wilxg) » Wiy )eTllxg)

(b)mmamgmmmm
(c) A mode intersects an alternative class in exactly one eloment. a

class to which it belongs, and (2) its information confent.

42. Information Flow:
Supmmuqlmhmmmmn,mmwmmumm

causal connection leading frem g, to qy.
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Red = {1,3,5,7}

Violet = {2,4,6,8}

Figure 4.1 Bit Pipeline - Information Contents

of the System Elements
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~ Bed = {1'3‘5'7} -

Violet= {2,4,6,8} |

Figure 4.2 Circulating Bit Pipeline - Information
contents of the System Elements



Green = 1,3,5,9,10,12
Red = 1,4,6,9,11,12
Orange = 2,3,7, 9,11,12
Violet =

2,4,8,9,10,13

Figure 4.3 Half Adder - Information Contents
of the System Elements




Let q; be an instance of x;, and gy an instance of x;. Associated with q; is the information
content of x;, and associated with qg is the information content of x3. We shall interpret the
information that is common to both x; and x; as 'flowing’ from q to qs.

Our convention of associating modes with colors permfu a graphic representation of
information flow. The arcs of a system simulation are colored according to the following
algorithm: An arc connecting instance <x),n,> with instance <xpng> is assigned a particular color
iff the mode represented by that color is contained in I(x)) N I(xp). In Figures 4.4 through 4.6 are
some simulations for the systems described in Figures 313 through 3.15. Using the correspondence
between colors and modes given in Figures 4.1 through 43, we've indicated the colors assigned to
each arc. The reader is encouraged to do the actual coloring. Note that some arcs may be assigned
several colors, while other arcs may be assigned no colors at all.

This formalization of information flow corresponds remarkably well with intuition. In
Figure 4.4, we can see quite clearly the flow of 'bitsT down the bit pipeline. The two colors
correspond to the two different bits. At Events | and 2, bits enter the pipeline. At Events 3and 4,
the bits are transferred from the first to the second stage. At Events 5 and 6, the bits are
transferred from the second to the third stage. And finally, at Events 7 and 8, the bits are lost.

As expected, in the circulating bit pipeline, bits are conserved. As shown in Figure 45, the

same two bits are present at the beginning of the simulation and the end of the simulation.

! The notion of a 'bit' is very restrictive and is used here only in an informal manner. Formally,
information is expressed in terms of excluded modes, not in terms of bits.
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Figure 4.5 Circulating Bit Pipeline - Information Flow
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With the half adder, the situation becomes more complicated. It is no longer possible to
interpret information flow in terms of bits. But the flow of information still corresponds to our
intuition. As shown in Figure 4.6, information enters at the designated inputs - Events |, 2, 3, and
4 - and is lost at the designated outputs - Events 10, 11, 12, and 1. Notice that in each of the two
middie simulations, information is also lost at an interior event. In the '0H’' operation, the color
orange is lost at Event 6, while in the '1+0’ operation the color red is lost at Event 7. At Events 5
and 8, there is no such information loss. The reasons for this are simple. In the case of both 04
and 140, we get the same outputs - a sum of 1 and a carry of 0. In these two situations we are
unable to reconstruct the inputs from the outputs. The information lost at Events 6 and 7 is what
allows us to distinguish between 0 and 140. In the cases of 040 and 14, the conservation of
information at Events 5 and 8 corresponds to the fact that, in both cases, the inputs can be
reconstructed from the outputs. This short discussion is a preview of the ideas contained in the
next two sections and in Chapter 6.

We mention now an interpretation for information flow that the reader might find helpful.
We've shown that the control structure determines those aspects of behavior that result when the
alternatives in an alternative class are lumped together. We've also shown that information content
provides a way of distinguishing between alternatives. Our practice of associating modes with
colors then permits us to think of information as colors assigned to the 'tokens’ on the control
structure. The colors assigned to each token determine a unique system element. By defining
appropriate color transformations for the meetings in the control structure, we can duplicate the

behavior of the original system.
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Proof: We prove just Part (a).
M=) |
Since ees’, .
TAGs™) = TG U TS -
Thus, |
) = M) U Be"-{a). | .
Bocavee Te) N s™-{ell w @ (Thogeam88), .
o) = THs) - TGS},
And,
M) = M‘i‘}»«ﬁnﬂw'ﬁ!&»m
 From the definition-of-information conten we get, -
CKOeKIUMSED D

Corollary ¢1: VseS: VecE:
(s¢e Ves) » Ks)gle)
Tmmf«mmﬁmwmtmmmmummumdmh
To illustrate Theorem 1.2. we note that in l-‘ig\m u. 1(3)-m l(dH. and m»-m So we
have I(3)=1(d)UTTK4) as predmd Gomtlury 41 means tlm, \mh our uheme for cobrlng the arcs
of a system slmuhﬂm.theoolorsmmﬂngmd luvlngaholdmgmthcm ln ochcr mdl.

colors appear and disappear only at occurrences.




What is' the significance of Theorem 4.2? In un‘un of st ¢ is-oneof the: alwrnatives in
the forwards choice associated With 3. WHR thet-shilics s encemmered in the: cowsse: 6 a system-
simulation, it will have to be resolved. (We are not concerned at the momnt- wiither this is a free
choice or a constrained choice, or possibly a combination of the two) Resolving the choice is
equivalent to selecting one of the akernatives in s°. But M an-ovent in 3* is equivalent to
specifying the modes that cover the remaining events in 5°. (Given TNs*-{¢)), we ¢uri determine
TMde) and thus ¢) Therefore, the information gained is géing FIoM: 535 ome<alf the events in s°
resolves the forwards choke associated with =/ TGRS thairwiei. o3 the ohly berwitive’ In s°,
there is no choice to be resolved and there is no informationguiined. 7

For the case where ¢, everything is reversed. W4 are now dealing with s backwards
’ ol iﬁd in:going from s to ¢, we
talk about the information lost in going Trom ¢ &M‘m pinoives: thé backwards

 cholce associated with 5. It s what we would need to ‘back ag?SriwiiSimte X to oam of the events in

s

ﬁ uolvlgggl_tﬂgg
In the preceding section, mmnmmmﬁmm content of an
evenundmmrmummm:dsmmm(pMm)dﬂnwm We now
m.::mmummapmmmmmdmmtmdmmm
mfonmuonof_nnnwnfspmm(pwm S
rmmnu.nmmmm o




Property 41: VeeE:
K'e)gl(e) and IKe“)gke)

Tmmrmmuwwmmmmwmmmd
the event's preconditions (postconditions).

The concepts of 'information gain’ and ‘information loss’ at an event follow naturally.

Definition: For “-‘3' o

reh = Herled B )
RCRL Rt ek o
™ois “"“&m@u Evente. -

\ | r(c)nmmmu Event .

*"rm mfmm (loss) at Event ¢ is. Ih Wd. minus the
mm«nmtdu asteadditions).’.! ;

lnmuuununmmmnmmmmmmmurmu4;
NmtmmmmMWMuwmmwum

WemmdmmaMM*Mmamrmm:ym
mvimm%wd; thmk of wmm loss as hfm”;d.:tm the system to the
system environment. The significance of information gain and information loss lies in their
relationship to conf et |

mm'mm’mmwmmmmmmm-mmmmw
mbhdandhaveaénwmpmﬂm.m;mumaaﬂgunﬂ. But for the
class of structures we're dealing with, (forwards) conflict can arise only when two events have the

same set of preconditions. (This is calied free chgice.) The reasons for this are as follows. If two
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I (e) I (e)
{o,v} g
{G,R]} 8
{r,v} 4
{c,0} 8
g g
g {o}
8 {R}
g g
8 2
] {r,0}
g {c,v]}
ol (v}
g |{G,r,0}
Table 4.3
Half Adder -

Information Gains
and Losses
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events have.ampmmmmtmmhmbﬂnmm. By theorem 34,
each event selects exactly one state from ench input lnk of that meeting. Because each link is
contained wkhmalmmum(zm).nmmhhnmhkanm
concurrently. It follows that if the two events are to be enabled concurrently, then they must have
the same preconditions. As a resu, the situation depicted in Figure 47 cannot arise. However, the

situation in Figure 43 can. I jhoukl be noted thet wvarything we've said applies not only to
forwards confict, but to backwands conflict, a3 well. . |

Since in our theory fmmmmmmmmmm

conﬂgunnum.nmglnunllm mwm

Definition: For ¢y.89,¢E,
le+0z L J .Ql-'gz

ox 0y o> ¢ 'e0y’



n
We say that o) and ey.are in forwards confUE #f e;x’e; and eyvey. We my-that ¢

and mmww{qxqaﬁjﬁq (We do not say that an event is
meonfuumw)

Property 42 x*and x‘mupluhanhuomm E

chuqufx—‘ arecalied bachuards conflict w

Tmrmmmmmmmmmmmm
amnmmm;

mrabuQMnummmmm’mmm”mmm

B2 om | 0 o
o) @ L

{8) {4 ,
{6} {8} . -8 {8)

iy (8} o 6
{8} {78} | N

(a) Forwards  (b) Backwards

Table 4.4 Bit Pipetine -
Conflict Classes
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Proof: We prove Past (n). |
5 e ke e
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. Theorem 43: VeeE:
1) - Ml o) | Cmmeet e SR )
T(e) = TMlel, - -{e]) ‘ L 4b)

Tmmfmmnhd(hu)utwcumi»mmndwmmm
events in forwards (backwards) conflict with ¢.’ ‘

Proof: We prove Part (a).

I%e) « Ke)1("0) o | ' definition
=Kor U, Ko . definition

-, ‘0.— (e)>Ks)) o DeMorgans’s Law

- “f)' ™ {e)) ‘ Theorem 4.2(s)

=T, ‘D’ (s"-{e)) | Theorem 3.5

- T( ufJ, >} - | | Boolean Algebra

= TGl + -{e]) Lemma 4.Ka)

a

Thcmdumyvﬂymhdmbymmmmm_md losses in
Tables 41-43 with the forwards and backwards omﬂic classes of Tables 44-48. For example, in
Table 4.1, we see that the information gain of Event | in the bit pipeline is {V]}. In Table 4.4, we
mthatzvmtlumfm@nmmthsvﬁtz The set of modes covering Event 2 is {V]. It
checks. |

We note that when an event is not in forwards (backwards) conflict with any other event, its



-information (loss) is null. Thus, information i gained (lost) st precisely those points where there is
forwards (backwards) conflict. Furthermore, the information gained or lost in a conflict situation
specifies how the conflict is resolved. This is bucawes selecting an mwt conflict: class is
‘equivalent to specifying the modes covering the remaining events »:fsom either gne we can derive

the other. | |
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81 Event Graphs:
control structure. Since the control structure is an event graph, any sesiits

_¥e.obiain for event-

graph simulations can be applied to system. simulatigns,. This js fortunate because event-graph
simulations have some very nice pmperﬁu.' Those properties are thb sub ject of this chapter.
nefmm mhc results, we must umdm mmmw

Definition: For a directed Graph G, II(G) denotes the paths of c'

Definition: For a path x in a directed graph,

* denotes the initial endpoint (tail) of 4

Definition: lfplsapathlnthedlremdgnphc andxuavmofG then,

xq lff xappunlnp

Definition: For paths u; and gy in a directed graph,

#y Spg iff pgisasubpath.of ug

T We're repeating the definition of JI(G) given in Chapte'rr 2.



Definition: If 4 is & path in the directed graph O, sAd A is a st of vertices of G, then,
lnly denotes the number of times & élént of A appears in x.

If <N,I> is an initialized event graph, and u 1 & path in N, then july is called the token
lpading on u.

Definition: A is a path whose two endpeints

Definition:

52 Baths | o
Many of the ideas in mmmnmmwmmm the paths in
event-graph simulations. We begin with basic circults. |

Property 51: In an mumﬂmmmmmmmmmm

This can be seen from the following.

(2) In an event graph, each state has exactly one incidont a7 and ohe emergent arc.
(b) In a state component, each event has exactly one incident are and one emergent arc.
(c) A state component is connected.



Whenaninmauudeventgnphuwvmbyhmcchmm.nkmfmmmzs
that in each shmhﬁonoftheeventgnphaﬂimﬁnwdthemdmmtmmuyudm

We also have the following lemma.

Lemma 51: HthmuthntmhMbymm
I is the set of initial conditiong of Z,

cummmm’?mmﬂ.
then for <<x),ny><XgNg>>€C,

llzlﬂl » x,d
ngenyH <o xgel

'If there is an elementary ml Mfm Instance <xyny> to Instance
<xgfig>, then Ng=y for S!ﬂ uad l'd for "‘L

Proof: From Thiorem 22w knew thit a3 st deeian aic ih thegwint graph for Z, and
therefore, must be contained in a basic circuit of Z. The image of that basic circuit in the
simulation associated with C s a ¢ ,mwwmm«ln>m«,n,>
are consecutive instancel. “Thig siind 't ke dicinrie @%W“E‘““‘"S
attheuniquohummqfﬂnmm m&lmdmm:tan
numbered ‘ﬁ‘mmummmmmhm

. Feltws B0 f@’%&;‘h RIS '?”" o s AC
Notice that instance numbmmummwlatudu matmmmmmm. and that

’M 3 : it m. &‘a gi I i o ,g:‘* e /:§ S e e

N R



Figure 5.1 Initinlised Event Gr: ol by Basic Clecuis.

© TheotemBl: If Zisan iniatized eyens.
: 1 s the et of 4 ‘h
T is a simulation of 2, then,

V’:ﬂﬂm;-'qn‘ql\q‘pﬁ‘, * e |
then the

'lt:,andqmmm necth u'rmquum ints,
mmwmmmmmuﬁ* e

Proof: Let ‘eje‘egecxm> and ¢ =¢q’=yn>. By Lanypa 51, the pumbet ang!
wndlﬂmsuundbybdhqmdqhmfcnﬂﬂa—mﬂfu:d In elther case

Pyi=l- o
As an illustration of Theorem 5.1, consider the following two paths in Figure 5.2,
€12 >a2>d.2>D2>2,2>a35d D HRH>ad >SS
€3=<2l><d >AS > >t > >8> 2><1 > 3>A83>
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Since ¢ and ¢q have the same endpaints, their images should have the same token loadings. Let's
see.
#=2a1b2a1b2d3 and I?yi=2

99=2d374e374e3 and Py}p=2

It checks.
For an initialized event graph covered by basic circuits, the next theorem establishes a
special relationship between the paths of the event graph and the paths of a corresponding

simulation.

Theorem 52: If Z=<N,I> is an initialized event graph covered by basic circuits, and T is a
simulation of Z, :

then Vuell(N): Veell(T):
‘ue'? A ued" A il o EP(T): ‘Pe'e A [Pes’ A Pep.

"If u is a path in N and ¢ is a path in T, and if the endpoints of 4 and @ are the
same and g and & have the same token loadings, then there exists a path in T having
the same endpoints as ¢ and whose image is .

Proof: Let ‘g=c<xy,ny> and o =<xyng>. The required path { can be constructed by backtracking
from <xgng>. Property 2.3 guarantees that at each step there will be a way of extending

the path in accordance with u. There's one exception though, and that’s when a holding in
the back boundary of T is reached. By Lemma 51, when a holding in the back boundary
is reached, the token loading on the path already generated is ng. There are two cases to

consider: (1) <x;.ny> in the back boundary of T and (2) <x),;ny> not in the back boundary
of T. In the first case, [pl=ny by Lemma 51, and, therefore, the path must be complete
(otherwise, we would have llp>ny and |ul=i#l;). In the second case, [Plj<n, by Lemma 51,

and, thus, this case cannot arise. So we've now got a path } such that [=<xyng>=¢" and
Peu. Because “yex;, ‘T must be an instance of x;, and because lul=l;, =l From
Lemma 5.1 and the three facts () *Pe"c, (2) iPl=I0l;, and (3) *?="¢, it follows that ‘F="¢. O
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TollluunteThmmwwmmmImmpuhpmtlncvmtgnphofl-‘lgures.land
the following path ¢ in the simulation of Figure 52

A = 2ib2aib2ds

o= dJ»dM>¢J>dJ>«M>¢3xM6}>

We have “y="#-2, 4°"3, and iy-Pir2 Therefore, there shoukd be a path [ in the simulation
otFlgures.zhavmgﬂnmmucmdmmuM There is.
r«umzmzmmw:www» |

Wemmkumwmmm&mmmtnwmb
&quﬁuMiWMﬂW
'into thiee mmm ﬂm»{. 12) o wm*ﬁuiﬂ)iﬂmm:m are

\ R S

N\ occurrences
e vhreceding: oo o ova -
> -L\ e / .
OCCUI‘I"CHCQS

concurrent with q 5\'/
/7 AN

Ve .
" feliowingg.

7

.



N I A |
I BEEPRST. (RS NEECY s FTa
N\ / o
N\ /* X e DN occurréﬁnt“és of
N4 oo cEvent e

PIras BRI
= .

|

/ e s (R RN SRR T e »\ PRI
/ 1 AN

i the Nt oucosencs sof Event. ¢-preteding W~ For ANANRINE. TSN be. the, pecond-to-last’
‘ocowtrence of Rvens: o« procating ¢ In-Pigere A2 ddv.is thw: thindrerinst coucrgmoe of Event 1
preceding 33>, while 3> is the last occurrence of Event | preceding 33>,

to occurrences of Event ¢ following 4.

We know that in a simulation of an event graph coveréd by basic circuits, all instances of
unmmmmnym. WMmee\mtam.mmm
what conditions is Occurrence <¢,ny> theh‘thm of Event ¢; preceding Occurrence

<eyng>. To do that, we need the concept of ‘ynchronic delay’

Definition: For a path s connecting two events in the initialized event graph Z=<N,I>,

Sz = iy~ (Rl | PEION) A pe'n A Pren’)

"8u) is the token loading on i mius the minimg! token loading on those paths
having the same endpoints as u' 3z(x) is the pmchrogic deiay of x (with respect to Z).
(When Z is understood, we shall writs the synchronic delay of s as Just 8(x))

EOWE SEIOSERED R TEAT L
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We give the synchronic delays for several of the paths in the event graph of Figure 51.

oy = 1b2d3f4 }(rl) «0-0=0
@ = 4e3c2al Yoy) =33 =0
o3 = 2d3c2al $og) =21 =1
o4 = 3f4el o) =1-0=1
o = 3c2d3f4e3 Hog) =20 =2

In the special case where u is a circuit, the minimal token loading between the endpoints of

p is 0. We thus have the following property.

Property 5.2: If Z is the initialized event graph <N,I>, then,
Vwel(N): $z(w) = lui

"The synchronic delay of a circuit is equal to its token loading.'

The following theorem says, in effect, that the synchronic delay of a path cannot be

decreased by extending the path - the synchronic delay either remains the same or increases.

Theorem 53: If u; and u, are paths connecting events in the initialized event graph Z, then,

misuy = S7(u))<87ny)

'If ) is a subpath of uy, then the synchronic delay of u; is less than or equal to the
synchronic delay of us' '

Proof: Let up = fpyé. Let vy be a path of minimal token loading from “u) to 4y’ Let vy bea
path of minimal token loading from ‘uy to a3’ We have,

87(uy) = luyly - ik
and, 87(uy) = gl - P2k



Thus, dzsg) = Bl + Wyl + Bl <P ¢ o ¢t

Bouunv,uapuhdmm
loading from ‘ug to pg°,

Gunbmmlinu(l)md(?).mm

Since “zd’”it G e e e B Rt T oy e g by

bealy = @y + oyl + 06l o o

balp < Rp+bipely 0 @ o

CURAED e e ownn et o

We'nnowmdyforthcmjnrmhofthﬁm,

o e

R e IR

Theorem 5.4: uzuanmmwmmmw%m

T is a simulation of Z,
<41.ny> A, 5oy g2 Are,

then the fm are equivalent

(a) “l-"l’ is the Kth odcurtence of i ‘l .

40 3qall(TE. ‘qactyby>.

)-i-l

‘There exists a pam from “l-ﬂl"” Wﬂ X
kL. P

cleemit e Aagdig oo e

Proof: We prove that (a) e (c). It foliows, by symemerry, atih) @ E&M.b
@) » ()

5 1

Since <¢).ny> ummmésmmmm must be the
ag. Lntqlnamfma,m»hc,.npk-b.mdqapﬂhfm«;. n+k-b>
t0 <sgNy>. (Amm,:mmmwd-ﬂ%’

PR Yo F L. P
i PEIRET I VRN SR I T
[ [5N
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"o, - .}k oecurrences of e,

:J
!(01,n1+ k-1

oany> ./’«

Autwlv,mdht;hlpﬂuhblfmqnguauw The
| 1_y}wmwmmemwu; is & ,

b e B o ®
From Lewma S, webave
Pih = gty =kl L @

~ We now show that Wyly=sly. smazw-o,usp,;, Lcu-hﬁ—hh and let » be an
. elementary circuit. i N beginning and soding it ¢ 304 having » to 'SF""‘!““
(smhadmnumbumZumbymmm) Lﬂp'-n‘p. p’ isa
puhlanmglwq,.

Wl = osinly = Wyl

Since 4’ mu,hmmmmm(c,mdc,)mww Theorem 5.2
implies the existence of a path-§ in T fromi JcaysigHed> 07 cegny> such that fep’.
Because f-w'y and ¢y, wmmam?mdq after leaving <eyn;+k-b>,
and before reaching <«png>. But qn,k—twkmummo(q preceding -
<tyng>. Therefore, we must conclode-that a=0 and, :

Pah = Wi | - ®
From Lines (1), (2, and (3). we have dglg)ek-1. |

© @) o
Let 5 and w be as defined in the first part, and let u” = w*-1p. We get,
l"li -”k-hh&i x%ﬁ»;i‘w{rf y ~ W R PRI S IR

! @ means that u is repeated a times.




k occurrences {
ot (7]

Theorem 52 implies the existence of a path [ in T from <e;,ny> to <ey.ne> such that
Pap =utly Lapa fl-{,whmfl-.*‘:ndtz =p PyisapathinT from
<6y B> t0.<ey, my+ Ael>, while [g is a path in T from <y, my+ k1> t0 <egnp>. To
showthat«‘.n,+wumnmmdclm«m>.mtbewypath
in T from <ey, #y+ A-> to <igng>. By Theorem 81,

Wiy = Rah

But since Py = 4 and dy(u) = 0,

D=0 | | )

Suppose that § contains an cccucesnce 0 ARIE <6y, Ry +A-13.. Lt §; be the part of
§ preceding that occurrence. §; is a circwit in N (beginning and ending at'e;). By
Lemma 54, ;) > 0. In other words,-§ cauliinaig<circultsirithi s slimtioading greater
than 0. But this is inconsistent with Line (). We must conclude that no path in T
between <o, ny+ A-b> and <sy, Rp> Contalne’ i oRnintE 60 -4f SEr <y, ny+ A-1>.
Thus, <, n,u-bumummdq proceding <ipng>, 8ad <ey.ny> Is the
Ath °“1 3 pens, Bo o0 Slbee o

_ i e

 The equivalence of Snm(a) mm) in ‘I‘WM“MNW%’MF@N 53
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Figure 5.3 Ordered Occurrenced in an Event-Graph Simulation




s

In the simulation of Figure 5.2, we see that <2l> is the second occurrence of Event 2 preceding
Occurrence <1,3> and that <1,3> is the second occurrence of Event | following <2l>. We have the
following path & connecting <2,1> and <I3>.

| @ = <2l1><d 1><3,1><(,2><2,2><a,3><| 3>

& = 2d3c2al and @)=l

The theorem checks out.

53. Cones:
Because synchronic delay is not a convenient concept to work with, we introduce the concepts

of 'back cone' and 'front cone'.

Definition: If Z is an initialized event graph,
N is the event graph associated with Z,
S is the set of states of N,
e is an event in N, then,

¢77(e) = {3€5 | uell(N): “ues A sep A p'=e A Ku)=0}

'$7°(e) is the set of states s such that there does not exist a path of delay zero
beginning at the input event of s, passing through s, and terminating at e’

$77(e) = (3¢S | Juell(N): “ume A sep A sou® A $u)=0}

'¢7*(e) is the set of states s such that there does not exist a path of delay zero
beginning at e, passing through s, and terminating at the output event of s.

@7 (e) is the back cone of e, and ¢*e) the front cone of e. (When Z is understood,
we shall omit it as a subscript of ¢.)

The two definitions are illustrated in Figure 54. In effect, what sedz (¢) means is that the

T Ry

nAS
T
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E
Such a path “l-paths with o . \“"t-Such a path
has non-minimal minimal "~ has non-minimal
token ioading token loading 2y token loading

e
- +

- | .

(a) B€Q,(e) (b) s €@, (e)

rigure 5.4 Paths Associated with Fxont and Back Cones

LI M

£

T [ofa]o -
¢'(2)' .
Fye) 5
$"(4) L

Cones TR (b) Fxont Cones

e Table 5.1 Characterigtic Functions for Front and Back Cones
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'quickest’ wa'y from the input event of s to e is not through s. Similarly, what sedz*(e) means is
that the 'quickest’ way from ¢ to the output event of s is not through s. In Tables 51(a) and 5.1(b)
we give the characteristic functions for the front ;nd back cones of the events in Figure 51. Note
that in our example, ¢z (e) is the complement of @7 *(e) for each event ¢. This is not generally the
case.

The significance of front and back cones is best understood in terms of simulations. (The
first part of our discussion applies to all simulations, not just event-graph simulations). Suppose
that g is an occurrence in a simulation. The occurrences in that simulation can be separated into
two categories: (1) those that precede or are equal to ¢ and (2) all others. With respect to g, these
two sets form, respectively, the past and the 'not past. Now between the two sets of occurrences
there is a boundary, and this boundary is associated with a set of holdings. These holdings have
the property of not preceding ¢ but of being initiated by occurrences that do. This is illustrated in
Figure 55. If we imagine the simulation to be three-dimensional, then the boundary resembles the
surface of a cone. Similar remarks apply to the boundary between the future and the 'not future’
with respect to ¢. In this case, the holdings making up the boundary have the property of not
following ¢ but of being terminated by occurrences that do. This is illustrated in Figure 56. In
Figures 57 and 5.8 is a simulation of the event graph in Figure 51. We've indicated the 'back
‘cones' and 'front cones' for occurrences of Event 3. Notice that the simulation is 'sliced up' by the
'Ct;,nes' of each type.

The reader has undoubtedly noticed that we've used the term 'cone’ to describe both sets of
states and sets of holdings. The correspondence between the two views is straightforward: If ¢ is

an occurrence of Event e, then the holdings in the 'back cone' of ¢ are holdings of states in ¢z (e)
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for Occurrences of Event 3

'Back Cones'

Figure 5.7
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for Occurrences of Event 3

'Front Cones'

Figure 5.8



and the hoidings in the Yront cone’ of g are heidings-of stetes insdy™e) - Thus, we sse-that.in
Figure 5.7 each hokding in the “Beck coné* of an sccurrense of: Events3 155 Holding of :a state-in
¢ ®={s£1). Similarty, we'sér that ShiFigure:3.8:eack-hebling ¥iithe Yromttone’ of :an occurrence
of Event 3 is a hoiding of a state in $"Slebdal. Thess idens wre:exprassad :im:the:follewing

 Theorem 55 uzummmnmmhmwmmw«. C> 13 a
simulation of Z, then for am>eH and an>eO,

| amfamAGEO: pamigan) s talg@ W

a.mic.m A (3qe0: cmthmﬂ) » Mz% e

Luq <«’n’>. Tlmqmmrllybnhht wce of '¢f: preceding <en>,
because any later occurrence of ¢” would have to follow < . (caym> must be terminated
before another hoiding of s is initiated.) By T , Mapﬁhctmmqw
a.n>mhnutlzu)-o mwmmuwdupmpuummmm ‘pee’A

il ,*wbiiﬁmmunmm

- .;
pnmhcthuc.m’ w

wmmhmunuozm

We now relate the concspt-of cones to the he preceding
rmmgmmmdnmmwrwwﬁﬁqamw«tm&mtfc
uapmwmnmmqsmmugmmwmmmm
ofcpmdlngqmcmt-‘lhckm Fumh%hdnfmwhummof
lEventlpreadh‘ b, mmmmqpmmmmfmmm.

Rl VA



A simitnr ubservation applies to:the ‘feout eapes! in Figwee Sk 159,18 28 ogrucrance of Event 8,
~and il 48 & patl eriginating.at.q and AFWINOING. 8. AR IHTOROR 4NN JhEN <4D> uunm
occurrence of ¢ following q 1 & etowes- kol Tront ooy’ Kiwge. ems .a5n. seflacted in. the
followingthearemand corsllary. - - . . 5LtL e o o P

Theorem 56: If Z is an iniialsed event graph covered by basic crcuaks and 5 s a path in Z then,

$Zn) = Wiy, %) o | “ (b)
mmmmyap umumwwﬁmm back {front) cone of x's
head M s M’ ;' : g L : ERSR S R £, £

Proot: We prove «Parta) by mmm* Arnaledd
For |uj=0, we have §(u)=0 and M‘z

| r«mmmuunﬂm&v
ot o Pubn

badic circuit

'Mz'(u’): Forthuan,mm_.;..\\ wﬁmg «m..» w’a.-mlin(m at
", and whose deluy 15 ser. Bacsuse i hes e firse n ium

¥sp)=0. mmmwum
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nyhmmm«m;mmmm; Thhmmthcn'sa
path from °y to ;wﬁumwuﬁwwwm
mlofr.vnga;gnthtm ymr m.mwm-ﬁ% Since fisa
path from nov’and](t)-o

&k Sl‘hh% ; N v. L v.», W __i‘ .:..«:,A? P . ) | ‘s)
l-‘roml.llm(z)mc)mhan S

NIM =1

and from Line (1),

 whose delay is 2ero. Since o'’ Fop “m*,mm‘”'m T
?WM*«QW{W“_ | uwi‘y(an).
=y or, equivalenty,

ik -0

l'-'mune(l).mpt.

As an illustration of Theorem 55, consigier the path, 5 & X244 Fignre BL.We have,
o aeper |
‘oS and =4
¢ (0 )={ace} and $'ue{bde)
e pat
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- Corotlary 5.1: If Z is an initialized event graph coversd by basic circuits,. - . .
T is a simulation of Z,
(ﬂbWﬁwmrww vl o g

@) «1.n1>hdnh'thmmoi‘n re i 1 3
Ll B0g w0 Yol

(b) <o, ng> is the A'th occurrence of cgfm <tq, up ‘
() IoeII(T): ‘o=<ty,n;> I\c-«,nyh%-l A

ﬁhih :
'rmu.p.mrm«,.n,m«,wmmmmmydmwum’

b pAT LT
S 1

R

(d) 3edKT): '“l'"l’ ANe -%> A MW h-l

Th«euamrm«,.npw«,ny andluwwdnbutmofc,h-l
m' 5 B Pa

S5

R (¢) Sodll(T: ety o w,n,i NG
R g s
“nnuba pdnm W%W*MW“ @ Al

B P LTI P e B

Thcmtm:hmwmmwmsmmmﬂm

SR Ll AFwin J owe

~ Theorem 5.7 If Z=<N,I> is an mmmmmwmmwm and
E is the set of events of N, then,

- VeaE:" W*"I .;;ﬁbﬁ;, ’Wi P et
'm-myem:c,tmmmuamumnmmqmum

(front) cone is crossed.’
Proof: We'll prove just the first equality U T R A

smaNummmmwdmmngmm Whlpﬂtfm
‘wand w toe. Thus, du)=0and y’=e. mum“

‘Z(Ul) h'lrhh UW . m 'w R %; * -

In addlﬂon. we have by Theorem 58(a),

Szlwn) = lunlg (o) = Wig,-)* Wlg,-to)
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e &
b= iyt R

iy = oy -(e)
Theorem 58: If Ze<NI> is an:inkiniised ovent geaph seversd:by basie- siroslts, N -is-connecied,
mdl:uthcntofm«fN then,

VeaE: Vpupppali(N)
“mmg AmTemy 0 bl bigh - knw g0 - halru) s2lp*)
vmpamanmmmmmun«fmmmmwmu

mlm&dﬂmhhmmﬁmm“ﬁw(fm)m
~ Proof: mmmmfummfum
smnummmmmuhwm Lﬁnhapﬂl

from sy and pg’ "mhﬂd S nyrma'r _
hlk*“'blb‘u}f‘hﬂ’-@),‘ | S R
skt *+ Wl = alg-y) + oy
Combining, we get,

bl - aly = W1lg-(e) - Waly-te)

5.4. System Space:
‘No“tiveory of ‘systems can -be- considenstl -complotssmithews sotiens:af space and time. We
introduce in this section a netion of "system space’ and:in the next soction s nation. of ‘system time'.



Snppou that ¢y and eg are events in an initialiasd ewapt gragh spvered by bakc circuits. In
Section 82, we ieerned that in each ssnwiation of fhe event graph the o 1 B, Jwding from
oecurrmasof ™ mmmmauf ¢y are as shown in WM
oecurrmcu of.e3 %0 occurrances of ¢ are as shews in Figure B5(b). Thlm now is this

deommmmtwnbnﬂnmbM-mmm

P ey and et T quenion wwmmm

adt W Yo upevs Yo

i

<e1,m1 >e (Cg.ﬂgf)

{9y, Mys1 de .y {ey.Nge1)

i Jg M)

<emy+2 )
<enmye3) s T , gﬁ;.n,03>
: {0y my* 2D
<e'.m104) o

: o {0y, M,* 3
t
|

{8y,Mgs4)

(a) (b)
Figure 5.9 Orderings betwesn Ocowrrences

~ Synchronis distance-is & missuse:-of: the lelack’: Aatwain: Iva. syanis I8 a8 swent graph. It

- -
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Definition: For Events ¢; and ¢y in the strongly-connected mu;mh Z-chl.b,'
0 v if 04-02
prey49) = o
"prioyay) s the minissal oken loading onvhese cirasts containing.both ¢, and ¢y,

prley.sq) is the 4 mﬂmmbﬂ (When Z is
understood, mmmuuamdm :

In Table 5.2 we give the synchronic distances between tlnm in Flguﬁ 5L

pley-e;)
Table 5.2: Synchronic Distances

The follwlng ’thconm provides the connection betwesn synchronic distance and the

- ordering relationship betwesn two events.

¥ This is equivalent to the notion of distance used by Coninoner (13]. (See pp. 112-16)



T s a simulation of Z, |
<01 M)>, wgiigh, Sird <oy.n)> are sccurrences in T,

then, S
ey 5 the st ccoterins of o preIRling A } R

| SNy IO st dodieieY OF Oy Kbl bt J

The theorem is iustrated by the folowing figors.

e{@;, My

‘o (&4, M+ peley, &)

Proof: By Theorem 54 there exists 2 path.#; fram chy > 1 <syas> and 2 path from w5 from

- Bgity> to <ayny> such that Kiy) = Qand Hog < @ Lt Z « N> and ¢ = ¢;-sy. Bécause
#) is a path from ¢) to ¢y of Teinimit-tuken-feading and &y is a path from ey to ¢ of
minimal token loading, # must have minimal tehen knding with respect o these circuits

containing both x and 5. In atherwerds, ¥y = pyle;, p) Since @ 15 2 path from < my> to
<6yn1>, we have, by Lemma 51, that ny-my « 0. The dusired resukt follews. o

We see in Figure 5.2 that <Ll> is the lagt occurrence of Event | preceding <1, and 3> is

eSS ATy IR SR g
occurrences of Event 1 is 2. This is the synchronic distance Events | and 8.

WithTMm&aﬁnMvemmmwmmwthnmry

requirements, then we can determine the ordering relationship between occurrences of two events.

Allmnudknowisthesymhmlcdlnmm”.“mu h‘rmmnshwm
ordering relationabips for sevasal values of fleyay). B
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The next theerem states that 2 is & metric wiwe the event graph satisfied two elementary

properties.

Theorem 510: If Z is an initialized event.graph that is MMhﬂ(z)fmofIlhnk
dmh.umpzhana(nﬂnd‘ﬂ&. Mhmg.c,.mdc,
@) pegag) =0 w wymey
®) prloray) = prleysy)
() peray) S prnashrdansy

. Proof: Flrstofaltmgmmmy‘mtht@hmm Property (a) follows

fmmfmmzumcmmw, 2 ) fell from the

'sumgmnmmymwmwmmwmmbymmumm
,_uwummwm hmm wmtﬂmmm
absence of blank circuits and coverability by basic circults are necesmry and suffickent conditions
“for liveness’ and ‘safeness’ in event graphs.! | |

Wenownmmemudmumummncms. 'rmmssmds.smd
pmpmyssmmmnwumuumuamwmmhm
by basic circuits. mmum mwmurmmu
Theorem 5.10.

Corollary 52 ummuummm«z‘ufmummmwmua
metric space.

'Livmmmthatﬂmuhﬂmuofthewmmhmhumddubﬁuﬂly far. Safety
means that instances of the same element are totally ordered. .
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Definition: If Z* is free of blank circuits, then <E*,pz+> is called the system space.

55. System Time:

In most theories of system behavior, 'time' is introduced as a primitive concept. Our
approach is novel in that the concept of time is derived from the logical structure of a system. We
only require that the initialized control structure satisfy three simpﬁ properties. There is no need
to augment the definition of a system, and there is no need to modify the simulation rule.
Definition: An initialized event graph <N,I> is said to be synchronous iff it (1) is connected, (2) is

covered by basic circuits, and (3) satisfies the synchrony property:
JkeN: Vodl%N): |wlekiwl
"The length of each elementary circuit is proportional to its token loading.’

An initialized event graph that is not synchronous is called nonsynchronous. A
synchronous system is one in which the initialized control structure is synchronous. A

system that is not synchronous is called nonsmchronous.'
For examples of synchronous systems, the reader may refer back to Figures 3.13-3.5. In
Figure 3.13(d), the proportionality constant between the length of an elementary circuit and its token
loading is 2. In Figure 314(d), it is also 2. In Figure 315(d), it is 4. An example of a

nonsynchronous event graph is shown in Figure 511.

! The question of what an ‘asynchronous’ system is is outside the scope of this discussion.

' in determining the length of a circuit or a path in an event graph, we count the arcs in the
abbreviated representation of the event graph. This reduces the length by a factor of two.



w.mmmmwﬂﬂwmmm MQMM
event graph is connecset aad mmmumm

Ahofmthuynchmypmpmy nkmﬂut&chgﬁﬁuhmdmuuammph
ofk and thttthchngthdmhmmtuq;iuk. R!'Mﬂmkhmlbthegdof
the lengthsofthuhnmﬁry&wm Now mmmmumue.anbe

VM”"‘I@W““ m b!!.
These results are refiected in the next property.



Property 1. IF Vs i & syichroneus svent graph, them, -
VellN): fuly(N)-ll .

Towmmmmmmwmmm mmwmwot
the phuerelmon mpmmummfmmmmmmmeummy
that the akernativeness relation is generated from a part. The same ‘collapsing’ procedure is used.

g el Syl

Definition: The e relation for the event graph N=<S.EF> is the minimal relation
B8 such that

Vxe(SUE) xSpx

Elements x; and x, are said to be in phase iff x)8yxy.

Thewmd mmnwumm
thephuerchtbn ’

Property 88: If N nmmméx@,mpﬂqumusu&m.
vu(su;m,., AgS V AgE

'Endnplullauchulnduad bypnmmmumwm«umwy
events.'




Definition: If N is the strongly-connected evest guaph «SAFa: thun- s Sundamuntal sicguit of N

is the quottent net Ki=.E.8>, where,

5 = {lg,, | 368}
| F = (dxlg Dylg,> | xppef)

Propey 83 Rsamm.

me\ﬁu‘mm&wdmmﬂ )

The fundamental circuit may be thought of as a 'dlock’. Now with this interpretation, it
might appear that to make an evant graph ‘synchronous’, &t will be Retsssary to Yire' the events in

'nummwmu



Ee e oy m“*é"*’“‘”&Xgmwﬁwantﬂ W TTHIAEAE S 3 G R e R s e e

a phase transition ‘in unison'. However, this is net the case. In fact, &Wm,hmry for

~ the initial conditions to be in phase. All that's required is.that the. jnikial:conditions belong to a
‘marking class’ in which it is possible for just those states in a given phase to hold. As it turns out,
there is exactly one such marking class: it bes MMQQM in.a.strongly .connacied. £y
graph free of bisak circults, swa ‘matkingy’ belong, to-the same. surking siass Uf they induce the
same token loading on each circuit Now in the sitontion where . just thaee giates in a given phase
hold, the token loading on each circuit is known:

Vuel(N): ol = —
¥(N)

But this is just Property 55, which is equivalent to the synchrony property. Therefore, a set of
initial conditions:can by beought ‘inte.phse’i{f the yynibmny.propsrty & w.hfm
With the preceding discussion a5 kadkgrouhd, #eire\noe’.aady 1w dasalop. the ma jor results

Theorem 5.!1. lf <N,l> isa :ymhronomcvem gnph, thun,

Vnnm wawww *MWM

'If wy and g are paths in N having the same endpoints, then the length of uy minus
9(N)«(token loading on ;) equals the length of ue minus ¥(N)+token loading on pg).
: T S T T R R B e By e TP e e

..+ Rroof: - Because a synchronows ewent graph. is-strongly connased, Mhere:sniste-a.path. pg (rem »°

and p’. to .‘l and .‘:. From Property 35 we have,
g tHigl = ANl lpHmaly)
Waktimal = (Nl Hslp)

! Theorem 11 in [4)
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Vsl apemy” Ayl e )

Proof: Buuup,p,fmadml.mhnbymu

b Flamgl = ¥ (NXimyly+imgly)
The theorem follows.

Theorem 51%- I Te<cH, Q0 is arsimuistion of & synchingmoni sugntgiaph; then, -
Vopegeli(T: vty Neyesy” sl

'In ammaaqmmwmwmmmm
then they must be the same length.’ .

Proof: Fmthmb.l.mkmthuﬁw mo,uo,mm"p;m{m

Mmmmme'mmrme“&Mmmn
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Definition: If Z is the synchronous event graph <N,I>, then,
for Events ¢ and ¢y,

dg(ey.49) R JuelI(N): “u=ey A p'=eg A neluby(Niul
'37{¢;49) = 1 Iff there exists a path u from ¢) to ¢y such that n = by (N)psly’
for States s) and s,
" 35y, Sg) = Bg{ey, eg) where ¢; is the unique output event of sy and ¢y
is the unique output event of sy,

(Theorem 5.11 guarantees that 37 is well defined.)

bz(x‘";xz) tells us 'how far ahead' the first instance of x, is going to be with respect to the first

instance of x;. In Table 53, we give the values of a(cl,cz)'and ¥s1,59) for the synchronous event

‘_pphdl"mll.
-]
e2 2
1 2 3 4 a b ¢ 4 e £
1{0111|21} 3 alotli1l1]2]2}3
2 1-110]|112 pil-1l0fjo0ol1]1}2
€1
31-2]-1101}1 cl-1j0i0l1}1)|2
51
4 |-3[-21-1| 0O dal|-2{-1j-1j0]|0}1
e |-2|-1|-1] 0} 0] 1
(a)a(el,ez)
£ |=-3[-2}-2}-1j-1]| O
(b)a(sl,sz)
Table 53

Using 37, we now define the 'time interval' between two holdings or two occurrences in a

synchronous simulation.



Definition: If <x,ny> and <ryng> ase sithr two holdings oc tme. aeciicosnce
the synchronous event graph Z=<N,I>, then,

Bzlexpappagng) = (Rrnghy(N) ¢ dpbupng)
Azig14y) 18 the time insrvel from ﬁ”ﬁ‘ -

w.nvommnmmr«mmnmu lndweut.v(ﬂ)-z

Aldbetds) o m2+s .
A(4,2>,<135) s -3 = ed
AD.2>,d ) s  (x2+2 -0

A“:’.‘!ﬂ’) = “2 "‘2 - 2 T

The next mmmmmazmhmmum“mummﬂ

a metric for tme.

Theorem 51¢: If ¢, g3, and ummmmumu;mdm
WMW&M ,

(a) Bglgy. qy) = 0
®) Agig149) = -Orlepny)
- (©)-aginay) = Az + Agayny)

Proof: (a) Follows directly from the definitions of Az and 2.
(69 ey ) = -drfiy ) by Theorem B12. It follows that Sy y) = -Orty dy)
(c) Lat gyucxyny>, ggeexgity>, gy=cipny>, and i 2 = &N, . We have,
Algrgy) = (nymy) y(N) + Arpy)
and Alg4y) +Olgady) = (ymyhy(N) + eyt ¢ owm + *m’
For occurrences (and similarly for holdm).
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Ay g) + Axgxg) = m oo Ty g€l “pymey A g’y A “pgy A iy’
A = lagl + gl - 7Nl + gy
oo FualIN): ey A =y A m = - (Nl
- Axyxg) =7
Thus, x), x3) + dxy, x3) = ¥xy, x3). It follows that,

A(gy, g9) + Algy, g3) = (ngmyhy(N) + 3xy, x3) = Algy, g3) | =

Theorem 515 If T=<H,0,C> is a simulation of the synchronous event graph Z, then,

Vedl(T):
‘00°€0 » A/‘eg’)=loly (a)
‘eo’eH » Oy'00")=loly (®)

JIf @ is a path in T connecting two occurrences (holdings), then the time interval
between ¢ and ¢" is equal to the number of holdings (occurrences) crossed by .

Proof: (a) Let ‘o = <¢;,n)>, ¢° = <eg,n9>, and Z = <N, I>. Thus,
Ay("a,0°) = (ng-ny) ¥(N) + dz(e;.e0)
Since @ is a path from ¢, to ¢y, the definition of 2 gives us,
d7{(ey.9) = ] - ¥(N)io
We know that |l = ¢l and, therefore,
ACe.0") = (ngny) ¥(N) + lely - ¥(N)ely
From Lemma 51, we have ng-ny = [#j. The desired result follows immediately.

(b) Let °¢ = <s;,n;> and @° = <sgng>. Let u be generated from & according to the following
diagram,



[’
-

gaamn

.

e T X k. o
’ -
Q

N -

’ o is 2 pith in Noand el » g s b FommdstiobioncE Amege. .
Asysy) = el - NNl = g - 70lek

? - Which, in turn, produces,

A(s, €°) = (nymyWy(N) + Il - ¥Nlely. -

‘Because of- wm hich w cnswecl;. wa vt framilapme 5
- mm sommnen vs e fen ad T Moy o gt

Theorem 5.18: n«ocmamwwmmmmzm
Vg1 43 € O: Vi by ¢ H St

qivky Agyhy Az‘!x-ﬂ) Az("l W o o | (@)

A Adpey o Ozl gp) = Ay, by - ®)

memg,mnmmmﬁndhmw then the
time interval batween ¢; and gy is thaiibme Weliuigt and Ay

Proof We'll prove jut Put (l).

Lﬂn-«l.np. ;-«,up. Al-cl.np.mdb, W Andlltl-wﬂ;bc We know
that )5y and egesq. Nwhphamhhﬂfmhmmmdqmcg
Let ¢3 be the unique output event of sg. We gu,
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b

w
-

IA(ql. gg) = (ng-ny) y(N) + leysyul - y(N)isyuuly
A(Ill, hz) - (MZ‘MI) 1(N) + h“zla' - 7(N)W:Il

We have immediately, leysyu| = lu] +1 = [usqge3l From Lemma 51,
we get, m; = ny +[s5y|; and my = ng + 5l Thus,

O(ky, Ag) = (myHsglny-syidy(N) + leysyul - ¥(Nwsgly

Qe G @ > o em — e QWi § A §

L)
= (ng-ny) ¥(N) + leysyul - ¥(N)syuly sz
= &gy, 99 e, O

The notion of 'simultaneity’ is defined in a straightforward way.

Definition: If ¢, and gy are either two occurrences or two holdings in a simulation of the
synchronous event graph Z, then,

917292 * OZq1. g =0

77 is called the simultaneity relation. We say that Instances ¢; and gy are simuitaneous
iff q) v7 q5.

Property 58: If T is a simulation of the synchronous event graph Z, then ry defines an
equivalence relation on the holdings and occurrences of T. Furthermore, each
equivalence class induced by ry contains either exclusively holdings or exclusively

occurrences.

Definition: In a simulation of the synchronous event graph Z, the equivalence classes induced by
r7 are calied simultaneity classes. A simultaneity class of occurrences is called an
instant of time, or just a time. A simultaneity class of holdings is called an

(elementary) interval of time.

We have the following property from Theorem 5.15.



Property 5.10: lfMMWMa'smm mmmmmm
- coincident or concurrent. -

iy IR

We have the following property from Thededd 518

Property 5.1t uq,.q,q,wg,mMmamW?mmﬂmMZ.
B L o @

f1°93 A 304 A 3Tz, * 1770y o (b)
memmmmmm@m)m

Pmpuﬁawandwmnthuha Wm mmhndtyclmufmna

series of "slices’, with m«mmmmunmmtmmm
Figure 5.9, Tmmmmummmmmmrmu

‘. -r‘;~;:~¢» &

Thmn.’:.l? u,,m,,mmmmdumamwhz.tm.

1726y = §620; ‘
e and ﬁmm oo m',ad ) mwa phuc." ho
Proof We glvetho proef fummmfwhwwaa Z=<N, D,
and qu -«l.nplnd”-d‘.lp. w,m
L 9. 9 = 0
- W*%@ ° =
o JAlIN): oty A 'ty A - YN ymgy)
* Judl(N): “puey A p'eeg Alpl = (m-Ryulghy(N)

Thus.qlrzq,m:wmm:mmﬁ;ﬂz’wwuamuklph
of 4(N). It follows that x; and x; must be in phase. =




e g

s R e
FLRIRAR s

LT ST R




lnsmu.mmm'nﬁndwwﬁfgfwdq preceding
(following) <sgny>. r«.wmmnwmkmm
time interval betwesn <eyny> and W NM*Qth‘W'ha
directed graph. .

Definition: uvlandv,mvcchmwmm'nphﬂ then,
dgivyvy) = min{leIlO) | pevyApery)
dg(v;.V,)hﬂnWM“Mv,nv,

Theorem 5.18: If«,.npm«,nyanWhtmdmmm

al.nphthek'mwmchm%
wummmdqmw o

Az(«we-mr) - “Wlﬁ.’

Proof: FmThm&iukmMMngn&ch&tmmfmal.npb
ymhmw-l- Lat g be a minienal ta poth in N from ¢ to ¢3. That is,

hll-dn(cl.cg). It ‘follows from Theerat 31 thet 4} *mmmmm
from ¢; to ¢y Thmfm. ' ‘ '

O -Wrag - @ o e
Theorem 511 alio gives m. "
kNl = Ny (@)
Combining Lines (1) and (2), we have,
9 = (k-Dyp(N)Hul |

But Bi-iely and leidyieyey) and 1o,
i = (k-Dp (N} ey a9) |

[ X!
»
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From Theorem 5.15(a) we have |olg = Ag{<syny><egny>). The desired result follows. a

In the simulation. of Figure 5.2, we see that <> is the third occurrence of Event | preceding <4,3>.
We have ke3, 4(N)=2, and dp(1,4)«3. Thus,
A<ll><4,35) = (3-x2 +8 = 7
This checks with the value of A(<l,i>,<4,3>) computed earlier in this section.
The final results of this section have to do with four functions defined éarller in this
chapter. For general event graphs, these functions depend upon the set of initial conditions, but

for synchronous event graphs, they are independent of the initial conditions.

Property 512 For a path u in the synchronous event gﬁph Ze<N,I>,
$z) = (wHANCuwD [ ¥(N)

Property 518: If ¢ is an event in the synchronous event graph Z=<S,EF.I>, then,
$7(0) = (3€S | BudlI(N): "3 Asep A e A lulednCan)

$7'0) = {3€S | IuelI(N): “u=e Asep A s’ A lpld s’}

Property 514: If ¢; and ¢y are events in the synchronous event graph Z=<N,I>, then,

PL(’I"Z) - (dN('l"z)"dN('z"l»l ¥(N)

Before concluding this section, we should perhaps say a word about the distinction between
'system time' and ‘observer time'. System time is strictly a system-relative concept, and is observer
independent. Observer time, on the other hand, is relative to a particular observer. In the case of

a clocked system, the two notions of time are, for practical purposes, the same. However, in the



case of an unclocked system, the twe-nations of time-saay; bear: itle resambiancs 10. ane. another.
rormmph.umqmummumﬂnmmhmvmmw for ¢y
w_gmﬂtnobm«um.onmm TMWMnmaywhmquthulf

tmuaammmmfmuhbm”ﬂpmhmbuhqmnmomd
obperv«m
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CHAPTER 6

PREDICTION AND POSTDICTION

6.1. Information ntrol:

In Chapters 4 and 5, we examined separately the two components of system behavior:
information and control. In this chapter, results from the two areas are brought together to
produce a technique for predicting and postdicting system behavior.

As we showed in Chapter 3, for each system simulation there is a corresponding control
simulation, and the two are isomorphic. Consider a pair of corresponding simulations. Because
the control structure is an event graph, the control simulation has the regular properties described
in Cﬁapm 5. Since the system simulation is isomorphic to the control simulation, it too has these
regular properties. Of course, the system simulation also has certain "irregular’ properties, but these
are describable using the concepts of information flow.

It is the irregular properties of system simulations that are the focus of this chapter.
However, in getting our results, we will take advantage of both the properties of information flow

and the regular properties of event graph simulations.

6.2. Transactions:
Suppose that we have a system simulation and a corresponding control simulation. Within
the control simulation, there is a total ordering among occurrences of the same meeting (Corollary

8.4). For each such total ordering, there is a corresponding total ordering in the system simulation



among occurrences of those events belenging 4 the felated meeting. These ideas are illustrated in
Figures 61-6.4. In Figures 61 and 6.2 wu've reditwn - ihe INnialS

system net and the initialized

control structure for the bit-pipeline exampie of Section 37. In Figures 63 and 6.4 we give a

ammmmmmmmmi We've indicated in the control

simulation the occurrences of Mesting {58), and we've indicated: i Ve Jpeny: simuition : the

occurrénces of Events 5'and 6. Nt thi: onib-dus WIvenpendinds  Setwoe Al two sets of
We adopt this terminolegy:

_Dcﬂmuon If, mmamym&en'ﬁwmwnhMMmam

F AT X émémmmwb
(twﬂntm).

© Event 518 the first- traivbatel

}:mcummm-cmm
Event 5 is the third transaction s Wang'me)

Nwmppwmuqummam«mmu.qmmm Tbunn
A TN Gy

nntpukofunn'thmuahnuMm Mnbg’

Definition: If T is a system simuiation,
qisaninstance in T,
¢isan event,

m is & mesting.
_ B isa nonzero in

R T

. then,

araire fe Ty
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Figure 6.4 Corresponding Control ‘Simulation
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F«nq“n&hmwwﬁﬂwnmqumm is an
occurrence of Event ¢.

Fwnaqﬂnn'thmammummm;umm is an

occurrence of Evint &..
In thesimuhuonofFlgunG.!,ifuluqbcﬂnﬂmhMmly)mmof Enntiu
indicated, thmtmmmuhanqmuMhm Noumatforns-Sand for
nzs.thcreannon'thmncﬂmummmq mmmmmmmumm
bothmpmmmnrmwmwmummtvmaummu

mnuahnandthcmtmmuumaﬁqu Aﬂmghthumymt
mmmmammnmmmm

Meetings oy ey _om  om
Lax Tnsactioms (=)~ | 2 | ' T75 | mene
Next Transctions (o)~~~ | 1 | PR A s
Second Transactions (n=2) none | j s 5 9

Table 81 Tmmwg

Having introduced tmmdgammmﬂ'mmammnhun

3

mmmmmmmwmgﬁn%m:ﬂnnmm

Definition: If T is a system simulation,
q s an instance in T,
n is & nonzero integer,

then,

t0.T) = {eaE | Within T, ¢ is the n'th transaction at [s), relative to g}




If we let T be the simulation in-Figure 83.and ¢ b as s\-smmmmhm@fmt
~ values fort,(q.T).

toleT) = @3
CrfeD = (245 |
LU © L e

e - BAR :
T ¢ .vwfﬂ.;ﬂ@jll!&f#ﬂ&g; e

mmammmmmmmmmmmuum
Definition: Ammmruuuwurméammmmm

mmquaﬁuehwnwtﬂm“amdmmmT’

@ ¢ =8¢
(b) for 1<ngk (-ksns-o and Ve .
T rmed T

'T’huann'thmnnmmnhuvemq formmg

© t,(q.’l') < e’ T

"T'he set of n'th transactions in T relative to ¢ is contained within the set
of n'th transactions in T/ relative to ¢°." .

A La



We can state a necessary condition and some sefficient conditions for extepdibility. From
earlier work (4], we kmﬁm in an‘event graph, nmw in a blash sircuit can ever
occur. Therefors, if any system simwlation -t b, lther ferwards orbackwards, the
initialized control structure must be fres of biank cireuits. -Siippdsé that this is the.case. Then the
only way for the system net to ‘hang up' in the forwands{backivlilils) disection ds for there to be a
pattern of holdings on the inpnt mw&mm such that no event in the mesting
is forwards (hckvmds)nbhd bymm mummphuf a buduurds 'hmg up',
consider the simulation in Figure 65. uuammmmmvma l"lgure .15
with States A and f as initial conditions. mmmdawyammmm
any event in Mesting {56,78), the simuiation unumm extendible. The following are
uifﬂdnu conditions for all system simulations to be forwards exsemeble« ;- o ot

FEREIT R e R O W L SO e I

S "‘wAdemmfmudnuchhpmm«ufm
MM

T iEuT

The following are sufficient conditions for smwwuwﬂmxbn

(a) Z* has no blank circuits. ‘_
(c)VmcE‘- uauAmdemfmmhmhkdmtm
Jeam: ¢'=A
Except for the situation noted above, the initialized systoems in Sections 8.7 all satisfy these



Figure 6.3 A Slewulation tht is Not Backwands Extndible

Befors: procesding; 2-ward about. the phenseamen of. ‘dendlock’ 3. in order. In the past,
deadlock in-a Petri net: bas-bean used:to:represent the.ove mammlm
Tepresenting the-pasage of time as described in-Section. 44, iock. in the system net would
" correspend to 'thme-standing stilf’.  Since this 1.0t UL INkRS, :¥E ity is a reasonable
“ngumption. UL the quIsion arises &3 to how the phanomenen of- deadiock s to be, reptesent
Since doadiock ts. a 'mode’ of behavior, there will prohabiy;be ;& made (a1 defined formaily)
corresponding 0 any desdieck situstion.

Oui;gffommthischapw;nmwmdwuhthcfmw. .

" We'know that ¢-is-&n-instance in some systupe: gimulption and: that-¢: hm with the
akernative class ¢. If we also knew which cloment in ¢ ¢ was an instance of, what would this
additional knowledge tell us about the possibie patterns of transactions prigr.10-q. and

subsequent to g? ,



That additional mwm»um, mMimmmmuvu But this
mxmmhcmtm:mﬂrm-tmm So the 'information content’
of the mmnmwummnmnmnmammwu
Anythmgthnaabcdduudfmmﬂhwfmmm |
mrmhwmmunmamnpmmmmmfmm
associated with ¢ could m«mmm«um-‘pumnmﬂ have
emanated from tm(pndm). Mmmmdtudcxﬁﬂdm
Because information is mwmmmmmumwmmou
* separately and then merge the results. ‘Anteiated with auls snchusion, thare-ace twa sssts of the
sivhulation contiining ¢. One SEReE tracki nm thopasti and the other. trages . Into
" the futare. mwmmmmuwmm »ﬂmd
*’"‘-Mug mmmummmwnm
" 'In fact, some of tive partisl iisteries-may be exsndible stbidianiinfor in: which ause there may be
 an nfintos nismber of distinet pers)-hamries ponible: Sutainss melsnsdenliog Srch Finig SV
there is 't-‘”fmi'nﬂr ChanCIlrSing the ut o inciomade arik fotwards pertiel: bisteriss.:: The
cones described in Section 53 can be used to 'shior up' thaashams S generate she gartial histories.
This produces a finite set of "history segments’ as shown in Figure 88. This approach is especially

advanugm:M&cn&hMMnnghhmhﬂnn&h

thodlffmtmpm%khhmw«uyhmw s

©* In‘order té constract posniiaiion. grapha: sad-pradinien gaphy, 4ome. preliminary. def initions
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—2— A 'Back Cone'

'History Segment’

2 __— An'Exclusion’

/Z/A‘ Front Cone’

Figure 6.6 Subnets Associated with Excluded Mode



Definition: In a directed graph, a chain is a sequence of arcs such that each arc in the sequence
has one endpoint in common with its predecessor and its other endpoint in common
with its successor. (The differsnce batwesn 2 path and a chain is that a path must
traverse an arc only in the forwards direction, while & chain may traverse an arc in
either direction.) mudmcmwoudmum

Def'inition: lfcuach;mm:dmmdwhwdxﬁk&mdmmmuw
s { i _d‘yﬂh«kmmuﬂfmxwy

udAummamwhcsmmammmd
mmwmcgmnx

Definition: For m¢E® and M,
v'(mM) = {ecE | IeC{NX c-mc«/\x,mc,. Ohldu‘zﬂg)zol (a)

"For each event ¢ in »"(m,M), there.exists a ‘tfmcbmwmmnmcbtlmc -
does not intersect the mode M'and. the n ; of forwards crossing of states -in

wz:'(m)' by ¢ is greaten thn IMI“*‘MMB crossings.’
7" mM) = {eeE | ZeeCIN): ‘2am A c=e A XJR" Ald Udze'm)2 0} ()

'Foruchevmtclnv‘(n.m.mmnMCfemmwmimutocwch that ¢
does not intersect the mode M and the numbet of forwards crossings of states in

uoza*(a)uycupmmm«‘ﬁnmmwdmm

v'(m,M)_isthesetofeva\utmanbeconumdhlba:kurdshw,agmemfor Meeting m
and Mode M. v*(mM) is the set of events that can be contained in a forwards history segment for

Meeting m and Mode M.

'oz.'(m)umemofunummuckmofumn wzo'(n)umemammbewmg
to those links.



7

The requirements given ln the following definition: mill: ba:ueed ip genesate the SUDORLS (
the system net that correspond to the history segments. .

Definition: Faawbnakdﬂn;ymmt.amdqu.wdlmn.mddmmfm
I'G@Imtl. ; : »V_f;v,‘;;-f . j,; £ - - ;,f;i:'.'z_‘.x .

(la) ¢ cEp g v(mM)
(ib) ¢ cEp g v'mM)
(2) VaeE": hﬂEllSl

'R containg 1o mere thas ane event fromen
® $g-( EgUEy MNS-Sy)

'Amummmnmnhdmnmmtnlm&mmm
in the mode M. e lhd el R ,

(4) Fg = FR(SyxEqU EySy)
(Ba) Vn(sl Wz-'(ﬂ)): ( s)l-(s’)rl

Within R, ud-mm(s‘-utz-‘(n»mmdymmmm

() Vse(sy-Uzs ik Cilpetsy

- "Wain R, “mu%—t&pﬂmm‘
W""‘*

e Tunctions contained In the next defiition carreipend 3:the frentiand back bauadaries.of 2

history segment.



Definition: For QGE, meE®*, and Mell,
b (QmM) = ‘Q N (Uzx"(m)) N (S-Sy)
f(QmM) = Q" N (Udzx'(m)) N (8-Spy)
b{QmM) = *Q N (Upzx*(m)) N (S-S))
FHQMM) = Q" N (Uzx*(m)) N (S-Spy)

We're now ready for postdiction graphs and prediction graphs.
Definition: The postdiction graph for Meeting m and Mode m is the graph <w’(m,M)w"(m,M)>
where,

w(mM) = {Eg | RCN and R satisfies Requirements [2,2.3,4 and 5a with respect tom and M}
w(mM) = {<AB>ew (MM)R | £ (AmM)eb(BmM)né}

Definition: The prediction graph for Meeting m and Mode M is the graph <w*(mM)w(mM)>
where

utimM) = {ER | RGN and R satisfies Requirements 10,234, aﬁd 5b with respect to m and M}

2 MM) = {<AB>e(u M2 | FARM)=bTBmM)ng}

To help clarify these ideas, we'll work through an example. Of the three systems considered
above, the circulating bit pipeline is the most interesting from the sﬁndpoint of prediction and
postdiction. We've redrawn its initialized system net and its initialized control structure in Figure
6.7. (The parts and modes are shown in Figure 314 Let's consider the meeting {56]. For m={56},

we have,

¢ (m)={{a}.{d}{h}{k1}} and Ug(m)={ad,hik,]}

¢ m)={{bcl{ef}{ghifl} and Ug*tm)=bcefg.j)
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Nwmppmthﬂ“hthemmndm%lmwwl Then there are two subnets
ofmumuammmm;mamwmm»mmm
satisfying Requirements &mxm&%u,fi 88 The resuking posidiction and
wmmmmarvgmu ﬂvmmmmnm»f«m
graphs)

OurmMummmeﬂmman be used to
<wmmmmmawu;mmmun»mmm
‘mmmmk-ymmmmmmwmmmmrm«

buckwndy-bmamnyﬂmmmdmwummm

‘requirements.

Definition: For QgE,

Q is seif-consistent iff quipgﬁ‘ .1,-»3

: 'Audwmummhmmmﬂnammfmmh
meeting.’ i

Definition: !lemdQ,msﬂwasﬁmm
QQy > VeQp: Vaely e ey
chqutmdQ,mmMmmﬂQgﬁ

TwmdwmmMmeﬁwmm no more
thmmnmfmmhm \

Propmye.l. HTuasymetmwﬂmhaww then,
t.(q:r)tsuwm | '

And, from Raquhemmt(!),mhtnﬂnfm." o
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k h e b
1 7 5 3
b 3 h e
3 : 7
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F
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(a) Backwards 'History Segments’ (b) Porwards 'History Segments’

Figure 6.8

{135} u {7} {157} {3}

(a) Postdiction Graph (b) Prediction Graph
for Meeting {5,6} for Meeting {5,6}
and Mode {2,4,6,8} and Mode {2,4,6,8}

Figure 6.9



Property 6.2 VmeE®: VMal
VQeu(mM): Quis self-consistent
vQeutmM): Q Is seif-consistent

MmaMWMamuammm is self-
consistent.’

Themtfwrﬂnwmmﬂumrwhmmmm. Unfostunately, they
'mqummmbm TMMthﬂmmmpdnmof

prediction and postdiction.

Theorem 61: (a) If T isa MMMM“INWI& T, m={€),
~and Mek(@), then 3Qex’ (mM):
9eQ A tffTIvQ
MtMMaMMmmT'MMWq
such that,
§ «§
vneX: t (Tt (¢’.T")
VaeE*: t (¢’ T'Neng
Q - ’.(%HM"T')

(b)uTnafmnrdmmummqhmmnme ma{¥],,.
and Mek(?), then 3QeNmM) : ,

§feQ A t g T) = Q

andthmuwafmrdmmdbhmmT’Mmmmq

-7

VneZ" t,(¢.T)ct (¢".T")
VeeE": t (¢’ T'Na=¢
Q- "'(m)ﬁq(l'ﬂ")
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Proof: We prove just Part (a).

Because T is backwards extendible, there exists a system simulation T/ with an occurrence
¢’ such that,

g =G
vneZ: t (¢.T)gt,(¢".T")
VaeE®™ t (g, T")Na » ¢

Now since T is backwards extendible, it must be possible to select T so that it too is
backwards extendible. Let R be the subnet of N defined as follows.

ER = v'(mM)Nt(¢".T")

Sg = ("ERUE"RIN(S-Sp)
FR = FNSRXERUERXSR)

We can deduce the following about R:

(2) ¢<Egcv(mM) §eER and def. of Eg
(b) VaeE": sNER|<! Epcty(¢”.T")

(c) Sg=("ERUE"R)N(S-Spy) def. of Sy

(d) Fp=Fr(SyXERUERXSp) def. of Fp

(e) Vse(Sg-Udze (m)): (“s)g=(s"Ig~1 def. of R and Cor. 4.1

In other words, R satisfies Requirements 1a,23,4, and 5a. Thus Egeu’(mM). We know that

§ is an element of both v"(mM) and t(¢",T’), and therefore, 7eEg. Finally, because
t.4(¢.T) and Eg are both subsets of t(¢*,T*), it follows that t|(¢.T) » Eg. a

Theorem 6.2: (a) If T is a backwardi—extendlble system simulation, A is a holding in T, Mel(R),
and m is the unique input meeting of (3], then 3IQex(mM):

feQm) A AT % Q

and there exists a backwards-extendible system simulation T/ with a holding h” such
that ~

A" =3

VneZ: t,(AT) g t,(A°,T")
VaeE*: ¢t (h'T)Na=¢
Q = v(mM) N y(h"T")



() If T is a forwards-extendible systom simulation, & is & heldingin T. Malf1).1
umwwm&%hw

Ae'(Qrm) A t,,u,'r) ~Q

and there exists a forwards-extendible sywem simuiation T/ with a hplding A° such
A =R
- neR®: wm swf.l")

) ER
A R

Q - "(ﬂ-“) n "j(h’:r')

Proof: We prove just Part (a).

wurummmmwx'mm A
tlm.

ek o B »

Vel r(t"r’) S B (4]

VeeE* :_,(A'r')m e | L ®

CcQ and Q--‘(n.lf)m_,(',r') B
Beause §s (Qwm)and $2, - |
mgmm‘;y.

g Q;ﬂ{i.r” ‘*ﬂwﬂ R

It follows that,

Q=v(mM) N1, T) . ®
And finally, because ¢_y(AT) and Q are both M‘t.!ﬁ”r'), -

LD »Q B ©
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Lines 1-8 comprise the desired result. o

Definition: Within the context of a prediction or postdiction graph <u,w>, we write AVB to mean
<A, B>ew. For Aey,

VA = {BIBVA}
AV - {B|AVB}

Theorem 63 (a) If T isa system simulation, ¢ is an occurrence in T, m = [§] ., Mel(§), Qeu(mM),

k is a negative integer, and there exists a backwards-extendible system simulation T*
with an occurrence ¢“ such that,

G =3

vneZ: 1,(¢.T) g 1,(¢".T")
VaeE*: (¢’ T')Nan¢
Q= (mM) N(e”.T)

then for VQ » ¢é WeVQ;
tx1(qT) = U

and there exists a backwards-extendible system simulation T*“ with an occurrence ¢°*
such that

ell - el

vneZ: t(¢".T) gt lg”".T")
VaeE" f (¢’ T )Nax¢
U = s(mM)ne,_4(g”".T"")

(b) If T is a system simulation, ¢ is an occurrence in T, m=[§],,, Mel(@), Qeu'{mM), &

is a positive integer, and there exists a forwards-extendible system simulation T with
an occurrence ¢” such that

§ =7

vneZ* ¢ (q.T) (¢ T")
VaeE*: 1(¢’.T)Na=¢
Q = s{mM) N4 (g".T")



then for Q7 « ¢, WeqV:
halgT) = U

~und thess exias afmmm T" m__h PCCHITIGS. ¢
m M oy 1 s

§ -8

Vuaﬂ ‘. l I)G‘.(‘ll-rft)
VeeE": f (¢’ T’))Ne ¢
U = s%mM) Nty g4°"T")

Proof: We prove Part (a)

G £

mr'ummmmm-mmr"mn
occurrence §° such that,

all - el

g - .
FA N f’} EIE T R
T < :

. Vﬂ‘t: ‘.(’I’Tl)s"-“ll:rll)

VeeE*: t, {4’ T’)Ne » ¢ L 3
T :

MmT’hMm&uMkmthuﬂT”anmh

backwards extendible. mmmnsau’au?mimhwcn

. defined aa follows.

EREWERSE A el st Lo

Eg = v"(mM) N :,‘_,(,"'r")

. Sp = CEQUER") N (5-8y)

Now because tg(q"l"):tg(q' T")md uﬁ:ﬁmuuw mnm fmusting,

tk(, QT’) - ‘k(’"l’r”)

‘We'how have,

Q=7 (mM)Nle’".T’)
En = " (mM) N tk- (q”.T")

It is a straightforward matter to show that,
f(EgmM) = 5(QmM)

R AR A I et e R L M Sl
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Since VQ » ¢, it follows that 5(QmM) » ¢ and Ex » ¢. Using the arguments in the
proof of Theorem 6.1, we then have,

ER € u'(m,M)
Thus, Ep € Va,

It remains to be shown that £, 4(¢,T) » Eg. This follows from the fact that ty_1(q.T) and
Ep are both subsets of ¢, (¢”.T""). w]

Theorem 6.4: (a) If T is a system simulation, & is a holding in T, m is the unique input meeting of
(A),, Mel(R), Qeu(mM), & is a negative integer, and there exists a backwards-
extendible system simulation T’ with a holding A” such that,

A =3

vneZ: ¢ (AT) ¢ t, (A", T)
VaeE": (AT )Na»¢
Q = 7(mM) N 1 (A.T°)

then for VQ = ¢,3U e VQ
ty1(qT) = U

and there exists a backwards-extendible system simulation T/ with a holding [ 1
such that,

ZII - II

vneZ: t, (A T") gt (A" T"")
VaeE® ¢ (A’ T’')Nané
U =o' (mM) N1y _4(h°*,T")

(b) If T is a system simulation, 4 is a holding in T, m is the unique output meeting of
(A1, Mel(R), Qeu’(mM) k is a positive integer, and there exists a forwards-extendible
system simulation T with a holding A” such that,

A =R

vneZ* t,(AT) ¢ 1, (A".T)
vaeE": {(A'T')Nan¢
Q = omM) N (A"T")



then for QY ¢, UeQV:

and there exists a forwards-extendible system simulation T/ with a holding A““ such
that,

all - ;I

vneZ* ((A’T’) gt (A" T*")
VaeE": ¢ AT )Nané
U = 2f{mM) N tkol(""'T”)

Proof: Similar to that of Theorem 63.

As a limited illustration of the preceding results, consider the system of Figure 6.7 and the
postdiction graph of Figure 69(a). All system simulations are backwards (and forwards)
extendible. Consider Event 5. It belongs to Meeting {56}, and its information content contains
Mode {2,46,8]. Now if ¢ is any occurrence of Event 5 in a system simulation T, then from
Theorems 8.1(2) and 6.5a), we have,

t.4(gT) » {1, 8, 5}
t9(g.T) ~ {7}
t.3qT)~{1,8,5)
t4(qT) = {7}

.

The odd-numbered transactions preceding ¢ are consistent with {135}, while the even numbered-
transactions preceding ¢ are consistent with {7}. This checks out with the system simulation in

Figure 6.10. Here we have,

‘-l(qu) - {lv 85 8}
‘.z(q.T) - {*’ 6| 7}
‘qa(th) - ‘
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Figure 6.10 A System Simulation



CHAPTER 7

CONCLUSIONS

71. Evaluation: -

With the theory introduced in the preceding w.yemmabhwmt important
nndsoanmnmmpmmmmapumm The net representing the
half adder is just one example. mwuﬂmmmdqﬁwmwmu
rich and varied. Q ”‘

The theory has the following advantages:

(l)ﬂenmﬁmumpnﬂbmmmuwym Among those

concepts are some that are fundamentel www&m and ‘causality’ are
the most notable.

mmmu«mmmammdm Concurrency is the key
mmmmummmdmm

(s)mmmmmaummmmmcwwmw the complexity of a
system model is reduced significantly.

4 Idendfylngthemumncmmsym ‘hardware’, arid the set of initial conditions
with the system MuuQMmWWNMMm
“and software. .

(5) The techniques of the theory lend thumdvu;.la‘ amuon.



m

7.2. Future Work:

The work that needs to be done falls into two categories: theory and metatheory. The
metatheory is concerned with four related topics: (1) foundations, (2) semantics, (3) methodology,

and (4) scope.

() foundations - The theory we've presented depends upon five axioms. We've tried to
make those axioms plausible, but clearly more work needs to be done. The goal here
should be to reduce those five axioms to another set of axioms that are more or less
self-evident.

(2) semantics - A number of concepts have been introduced in the theory, and we need to
understand the meanings of those concepts. The two that are of the most concern are
parts and modes. We've said that parts are associated with strictly sequential behavior,
and that modes are associated with steady-state behavior. But we need to know much
more about these concepts - in particular, how they relate to concepts already familiar to
us. (Note that foundations and semantics are intertwined.)

(3) methodology - For the theory to be a practical tool, there has to be a methodology for
applying the theory. A set of practical examples is necessary in establishing such a
methodology. _

(4) scope - The scope of a theory is the range of problems to which it is suited. We must
find out for which problems the above theory is suited and for which it is not suited.

In the mathematical development of the theory, there are several areas that deserve attention.

(1) For a particular system net, there may be several ways of choosing a covering of parts and
a covering of modes. We need to determine precisely the effects of those choices. We
already know that the control structure and the information contents of the system
elements are, in general, affected.

(2) The four theorems of Chapter 6 are quite cumbersome, and are only the first tentative
steps in the area of prediction and postdiction. Much more work remains to be done.
(In this area, Theorem 4.3 ought to play an important role.)

(3) The ability to predict and postdict system behavior should provide the key to answering
the following questions about a system. These questions were posed in Section 1.3.

Under what conditions will a certain pattern of behavior be produced?



m

-What are the consequences of a decision within a system?
What sre the effects of a system modif Kation?
How does behavior: in-one part of 2 spsensinflwence belivior in another part? . -

How do the outputs of a system depend upon the inputs? (Le, What is.the 'functien’
of the system?)

symckmhnmmwbowmmd Mqums.

(4) Within this thesls, we-have et m&m mm This is a
major area, and one which will require considarable offort. ‘Fhatseffart will entail
relating the approach presented here with the ideas of Information Theory. In
particular, mmw%wwm um mumumon'
informuonmm o AN

(5) In Section 55, we mmmwmmm This property
allowed -us to deline instants -of tme. ‘R rhigit: S0 Iveeering W investigate other
possible constraints - on'* the " tontrol " sructerd (T | i sKkivids -of space/time
mmmmnmmm)

The success of these efforts will determine the fruitfuiness of the keas presinted:in this thesis. In
any event, we hope to frave stimulsted £he readur 19 AnkINg Ab0U thertesues ratsed
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