MIT/LCS/TR-171

A MULTI-PROCESS DESIGN OF A PAGING SYSTEM

Andrew R. Huber

December 1976

The research reported here was sponsored in part by Honeywell 1Information
Systems Inc., and in part by the Air Force Information Systems Technology
Applications Office (ISTAO), and by the Advanced Research Projects Agency
(ARPA) of the Department of Defense under ARPA order No. 2641 which was
monitored by ISTAO under contract No. F19628-74-C-0193.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139

A MULTI-PROCESS DESIGN OF A PAGING SYSTEM *
by

Andrew R.kﬂgbgr

ABSTRACT -

This thesis presents a design for a paging system that may be used to
implement a virtual memory on a large scale, demand paged computer
utility. A model for such a computer system with a multi-level,
hierarchical memory system is presented. The functional requirements of a
paging system for such a model af¢ @iséussed, with emphasis on the
parallelism {inherent in the algorithms used to implement the memory
management functions.

A complete, multi-process design is presented for the model system.
The design incorporates two system processes, each of which manages one
level of the multi-level memory, being responsible for the paging system
functions for that memory. These processes may execute in parallel with
each other and with user processes. The multi-process design is shown to
have significant advantages over conventional designs gn terms of
simplicity, modularity, System) security, ﬁ'and ,systeg) growth _and
adaptability. An actual test impfemeqtation on the ﬂultiqs systen was
carried oat to validaté the proposed design A

Thesis Supervisor: David D. Clark
Title: Research Associdte

*This report is a minor revision of a thesis of the same title submitted to
the Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, on May 19, 1976 in partial fulfillment of the
requirements for the degrees of Master of Science and Electrical Engineer.

ACKNOWLEDGEMENTS

I wish to thank my advisor, Dave Clark, for his patience in what has
been a rather protracted effort. The original idea for this thesis is due
to him. Three people were of great help to me in implementing the design
presented in this thesis: Bernie Greenberg explained many of the
mysteries of Multics page control and gladly contfibuted his time,
kn;wledge and enthusiasm. Bob Mabee implemented some of the code
necessary to permit page control to be implemented on Multics as parallel
processes, and helped in getting the design working on Multics. Doug
Wells was expert at finding my programming errors and explaining the
pitfalls of PL/1. Without their help, I would still be debugging. Many
other members of the Computer System Research Division contributed in ways
too numerous to mention.

The research reported here was sponsored in part by Honeywell
Information Systems Inc., and in part by the Air Force Information Systems
Technology Applications Office (ISTAO), and by the Advanced Research
Projects Agency (ARPA) of the Department of Defense under ARPA order No.

2641 which was monitored by ISTAO under contract No. F19628-74-C-0193.

ABSTRACT

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

LIST OF FIGURES

CHAPTER 1: Introduction

1.1

1.2

1.3

1.4

Processes
Paged Systems
Paging Systems as Processes

Summary of Thesis

CHAPTER 2: Basic Objects and Functions of Paging Systems

2.1

2.2

Page Control Objects

2.1.1 Pages

2.1.2 Page Frames

2.1.3 Address Translation Registers
2.1.4 Segments and the File System
Page Control Functions

2.2.1 Memory Allocation

2.2.2 Memory Deallocation

10

11

12

15

17

17

18

20

26

27

31

2.2.3

2.2.4

Memory Reconfiguration

Memory Wiring

2.3 Summary

CHAPTER 3: Designs for Paging Systems

3.1 Paging System Structures

3.2 Multics’ User Process Page Control

3.2.1

3.2.2

The Current Multics Paging System
Multics as a Single System Process

Paging System

3.3 Multi-process Combination Paging Systems

3.3.1

3.3.2

3.3.3

3.3.4

A Two Process Paging System
Hoare’s Structured Paging System
Saxena and Bredt’s Hierarchical
Operating System

System Versus Combination Paging Systems

3.4 Advantages of Multi-process Paging Systems

3.4.1
3.4.2

3.4.3

3.4.4

Simplicity
Modularity

Security

Expandability

CHAPTER 4: A Multics Implementation of Multi-process

Page Control

4.1 The Multics Implementation

4.1.1

Size and Scope

35

36

38

40

41

43

44

48
50
51

61

65

68

70

71

74

76

717

80

80

81

4.3

4.1.2 Differences from the Model

4.1,3 Performance

The Interface with Segment Control

4.2.1 Necessary Segment Control Functions
4.2,2 Complications Introduced

Other Page Control Functions

CHAPTER 5: Eliminating the Global Page Table Lock

5.1

5.2

5.3

The Strategy
Locks on Segments

Multics Complications

CHAPTER 6: Conclusion

BIBLIOGRAPHY

APPENDIX A: Changes made to Multics standard page

APPENDIX B:

control

APPENDIX C: Code from Multi-process page control

Components of Multi-process page control

82
85
90
91
92

94

96
97
104

107

111

113

116

117

119

Figure

Figure

Figure

Figure
Figure
Figure

Figure

Figure
Figure
Figure

Figure

Figure

2.1:

2.3:

2.4:

3.1:

3.2:

3.3:

5.2:

LIST OF FIGURES

Model of a multi-level hierarchical memory
system

Translation of virtual address page i,
word n

Virtual address translation with
segmentation

Allocating memory to pages

Multics page control

Algorithm of the Core manager process

Algorithm of the page frame allocating
procedure

Binding a page to a page frame

Multi-process page control

Performance of multi-process page control

Processes accessing page control data
bases

Processes locking multiple locks

16

22

24
30
45

53

55
58
60
87

98

100

CHAPTER 1

Introduction

This thesis will examine a general multiple process desigh of a
paging system. Such a design could be used in the implementation of a
demand paged memory in any suitable computer operating system. As
computer systems have grown in size, the operating systems have also
greatly ihcreased in size, scope, and complexity, especially so-called
computer utilities and large time shared systems. The design presented
here offers a method for. simplifying one large component of such systems:
the memory management task. The resulting system is less complex yet
readily expandable to accomodate future systems growth.

There are two central concepts underlying the design presented in the
following chapters. These are the concept - of a‘proéess as an abstraction
of a program in execution, and the concept of paging as a means of
implementing a virtual memory. Before the motivatfon for designing'a
paging system as cooperating processes can be discussed, these two

concepts warrant closer examination.

1.1 Processes

The essence of a process is the execution of a program. Numerous
definitions of a process are given by vérious authors [Da68] [Ha70]

[Di68a] but all include the notion of an execution point passing through
the instructions of some program. Thus a process is an abstraction of the
locus of control that passes through an executing procedure [De66].

The address space of a process, that is, the set of all memory
addresses the process may reference, is an important component of a
process. In fact, the address space of a process influences the
computations the process can carry out to such an extent that we include
the address space in our definition of a process. A process, then,
consists of a pair: an execution point, or locus of control, and an
address space.

The process abstraction provides a natural way of describing an
operating system. Each user’s work is viewed as a process, 1.e. a task to
be performed. The operating system itself is seen as a task or process
manager. The various facilities the operating system provides, such as
memory or device management, can themselves be implemented as processes.
Two good examples of systems designed around the process concept in this
manner are Dijkstra’s THE system [Di68b] and a multiprogramming system
described by Hansen in [Ha70].

In any multi-processor computer system, processes offer a
straightforward technique for achieving multi-processing (the simultaneous
execution of two or more programs). Any physical processor (CPU) in the

system can execute any user or system process. This permits the operating

system to be multi-processed, i.e. different functions of the operating
system may be executed in parallel. Parallel execution of the operating
system, or one component of the operating system (the paging system) is a

central theme in this thesis.

1.2 Paged Systems

Paging is a common strategy for solving the meuory allocation
problem, one of the chief tasks any operetiné systen must perform.
Examples of systems using paged memories include Hultics [Da68], TENEX
{(Mu72}, and IBM s VS systems [Hh74] ISc73].

In a paged system the address space of a process is divided into
contiguous pieces of fixed size called pages. Physical memory 1is
partitioned in the same manner into contiguous blocks called page frames.
When allocating memory to a proceas, any syailshle pege frame may’be
allocated to hold any page. | - |

. Usually the memory of a latge computer utility is organized into
several physical levels L1, L2, ... Ln. The access time and capacity of a
level increases with n, and each level is normally a different type of
memory device. For such devices, the smaller the access time the higher
the cost per bit and therefore the smaller the capacity. Ey combining
such components with widely varying speeds and size into a multi-level
memory an overall memory system can be constructed uhoselcapacity equals
that of its largest component yet whose effective speed approaches that of

its fastest component.

10

In such multi-level memories a process may reference only pages
residing in the primary (level () memory. Referencing a page not
allocated a page frame at the lowest level results in a page fault, an
event which causes the necessary operating system mechanisms to be invoked
to allocate a level 0 page frame to the page and cause the page to be read
into that page frame. The operating system modules and the data bases
these modules use to perform this task are called the paging system, or

page control. Page control is a resource manager; page frames being the

resource page control manages.

1.3 Paging Systems as Processes

There are many alternative methods for organizing and implementing
the paging system functions. The most widely used is to have the user
process itself perform the necessary memory management functions when
needed, just as with any other system call. That is, the code that
carries out the necessary operations to allocate page frames is executed
in the user’s address space just like a user program.

This thesis will examine several ways for organizing paging systems
as processes. The paging system can be broken down into several
activities, for example, removing pages from primary memory when it
becomes full to make room for other pages. In such a system, each
activity of the paging system can be made a separate process, with its own
address space. Thus the paging system becomes a set of cooperating

sequential processes, running in parallel and asynchronously. Such

11

systems will be called multi-process paging systems, and this thesis will
argue th#t such systems offer significant advantages in simplicity,
modularity, security and expandability over more conventional designs.

The work described in this thesis differs from a multiple process
paging system proposed by Hoare [Ho73) in the number of proéeSSes used and
the function assigned to each. The model developed by Saxena and Bredt
[Sa75] is closer to what is described here. However Saxena and Bredt use
a multi—leve1 pnging-systen that‘discingﬁlahesfusar*ﬁhgetfahlts from page
faults caused by system processes, a distinction found unnecessary in the
design presented in Chapter 3. These differenqea and similarities are

considered in more detail in section 3.3.

1.4 Summary of Thesis

The remainder of this thesis will examine the design and
implementation of paging systems for a largs computer utility as several
cooperating processes. The Multics system will be used as a model of such
a computer utility. Multiga was chosen because it 1s‘typfcal of large,
sophisticated time shared systems and'incotpbrkt&%*ﬁbth'of the
Prerequisite ideas already mentioned: a multi-level, demand paged memory,
and processes. Therefore the basic concepts are already present and need
not be added.

Currently a major research effort is being made to engineer a
security kernel for Multics {Se75]. Redesigning the paging system

contributes to the certification of such a-kernel by reducing both the

12

size and complexity of the code that must be verified. The original
impetus for the work described in this thesis was the’need;for simplifying
kernel mechanisms such as paging. |

Chapter 2 discusses the basics of paging systems_inndegail. The
objects page control uses to implemént a large‘demgn§ paggd virtﬁal meﬁory
are examingd. Functions which the pagigg system musﬁ p;ovide to the rest
of the 6p;rating system are lisﬁéd and discuséea.

In Chapter 3 pagipgbsystems are classed ?ﬁfo ;hFeé groups baéed on
their organization. Userrprocesg paging systems, illusg;ated by Mgltics,
are those ;here the paging functions aré pérforﬁed 1n‘the user’s process.
System process paging systems utilize special system processes to
implement the paging functions. Combination paging systems, using
features of both of the other two types, include designs appearing in the
literature due to Hoare [Ho73) and Saxena and Bredt [Sa75]. The author’s
design for a combination multi-process paging system in presented, in
which memory allocation is performed in the user’s process but other page
control functions are done in system processes. The significant
advantages of both types ;f multi-process paging systems are coﬁsidered at
some length.

A test implementation of the design on the Multics system is
presented in Chapter 4, concentrating on the difficulties arising in an
actual implementation and the insights gained from such an effort. The
results of this test implementation are compared with the current
implementation to see how well the goals of a multi-process implementation
~can be realized.

Techniques for exploiting fully the parallelism available in a

13

multi-process paging system by eliminating global locking strategies are
examined in Chapter 5.

Chapter 6 concludes the thesls by summarizing the important results
and drawing some final conclusions and observations.

The three appendices present additional information on the
implemented multi-process page control described in Chapter 4. Appendix A
compares the design to the standard Multics page control. Appendix B
lists the components of the implemented design, and Appendix C contains

some of the actual PL/l code from important portions of the design.

14

CHAPTER 2

Basic Objects and Functions of Paging Systems

In Chapter 1 the paging system, or page control, was lobsely defined
to be those procedures and data bases»ngégssary to resolve page faults and
provide the memory allocation task. This.chapter will focus on exactly
what functions and services page control pust provide to the reét of the
system and what objects page control must ;mplgpgnt in providing tﬁese
functions. Such a description will help suggest how the parts of page
control can best be divided along functional lines into several processes.

Figure 2.1 illustrates the model of a memory system that will be
assumed in the remainder of this theéis. The memory system is a
hierarchical, multi-level memory consistiggvof threé levels: 1, Primary
memory, in which any data referenced by a processor mpst reside. 2. The
paging device, or backing store (which need not be a single device) which
acts as a large, high speed buffer between primary and secondary memory.
3. Secondary storage, which provides long term storage of data and
programs. For example, in such a system primaxyvmemoty‘is,pften high
speed core memory; the paging device is often a drum (or a bulk store

device in the case of Multics); and disks and perhaps tape normally

15

Primary

|

l

| level 1
Memory !
l
|

T
|
|
|
¥

Paging
level 2
Device

-~ ————

Secondary

level 3
Storage

Figure 2.1

Model of a multi-level hierarchical memory system

16

provide secondary storage.

While the model shown incorporates three levels of memory, more or
fewer are possible. The actual number of levels should not be crucial in
a well designed system. Indeed, the design presented in Chapter 3 will be
seen to adapt easily to a multi-level memory with any number of levels.

Pages are moved from level to level by the paging system. It is
assumed that a page may reside in any or all levels of the memory at any
given time; however only one copy of the page may exist in each level.
If multiple copies of a page do exist in the memory hierarchy, they may
not all be identical. The most up to date version of a page will be the
copy in primary memory (if there is one), then the paging device copy (if

there is one).

2.1 Page Control Objects

There are three objects of fundamental importance to page control:
pages, the basic allocatable unit of virtual memory; page frames, the

corresponding unit of physical memory; and address translation registers,

which translate virtual addresses into absolute physical memory addresses.

2.1.1 Pages

In paged systems, the address space of a process is divided into
units called pages, or sometimes virtual pages. A page is an abstraction

of a portion of a process’s address space, a set of consecutive virtual

17

addresses (hence the term "virtual page"). Procederes and data are both
broken into pages, akthaugh?ﬁhtsudivtifoﬁ%iﬁtéfﬁagéiﬁ%a'tﬂVisthe'Eo the
programmer. ‘ o L

The number of consecutive virtual addreswes (locations) in a page is
the page size. The page size is typically fixéd dt'a power of two, and
generally ranges from 128 to 4,096. The page sive 18 usually determined
by characteristics of the hardware in order to cptimizé pe¥formasce of
secondary memory. The virtual address spasw of w proceds is restricted '
only by the hardwere”s limits on the nunibér of pages the process may

reference.

2.1.2 Page Frames

The physical counterpart of a page is a page freamd. Just as the
address space of a process is divided into pages, the physical memory in
the system is broken into page frames. ‘Aipage frame ¥s & con®fgucus area
of fixed size in some physica¥ memory device. EBach page frameé can store a
number of bits~of?iuférnatiuny?ﬂhaely the sume muiber of bits 48 in a page
(which depends upon the page size and the word sise). :

Page f;ames are the raw memory resource of the system. The number of
page frgmes is strictly limited by the capacities of the various devices
in the memory system. Often it is useful to distinguish among the page
frames of each level hence the terms "paging device page frame" or "core

page frame may be used

Memory allocation is done by assigning page frames to hold the pages

18

needed by a process. A process may only reference pages which reside in a
primary memory page frame. Since the number:of primary memory. page frames
is quite small (on the order of hundreds) while the number of pages the
processes in the system can address is much larger (by at least an order
of magnitude) only a fraction of the pages can be in main memory at any
time. The purpose of the paging system is to multiplex the page frames
among the pages to give the appearance of a much larger primary memory.
he paging system must keep track of the status of each page frame,
whether allocated or available, at each level of the memory under its |
control.' While there are many ways to organize the required information.
we assume lists are used. There is nothing fundamentsl about using a list
structure for this purpose, the choice is largely for convenience. Thus
we assume that page control maintains two lists of page frames for each /
level of memory it manages (primary or core memory, and the paging device
—-— secondary storage is assumed to be managed by the file system, see
gsection 2.1.4.). These liats are a "used list"‘containing those page
frames currently allocated, and a "free list" consisting of those page
frames not currently allocated. We further identify each 1ist by its
level, hence there will be a "core used list" and a "core free list", and
corresponding paging device free and used 1ists. Note page control may
want to keep certain information about the page frsmes‘o; theae various
‘1ists. For example, for every frame on the core used list, page control
will want to record the identity of the page using that frame. We assumeﬂ”
the page frames in a list may be ordered in an nrbitrary manner. '(For
example, the lists might be.structured as linked lists) The reason for

wishing to order the lists 1is made clear in section 2 2. 2.

19

These four lists, along with the page tables described in the next
section, are the fundamental data bases of page control, for:they define

the state of the memory.

2.1.3 Address Translation Registers

Since processes make references to virtual addresses of the form
(page, word) while the physical processors executing the instructions of

FATE 3

the process must reference real memory using physical addresses, there
must be a mechanism for translating virtualh:ddresses (references’to
virtual pages) to physical addresses (references to page frames) This is
done by associating with each virtual page an address translation‘
register. The address translation register contains the address at which
the contents of the virtual page may be f;und (1.e. the absolute address
.of the page frame bound to the page) All referencesito pages are made
through the address translation registers. If the{page has not been
allocated a page frame a special tag indicates the fact and causes a
special hardwsre fault when a reference is made to the address translation

register.

The address translation registers for allvthe pages in the address
space of a process may be collected together into a page table. Typically‘u
the virtual pages in the address space are identified by a number° 0,1,
..i, n. The page table then is an array of address translation registers,
the ith page table entry is the address tranelation register for virtual

page 1. Because the address translation registers are grouped into a page

20

table, they are often also called page table words, since each is
essentially a word in the page table. Hence we will use the term page
table word to refer to these page address translation registers (and to
distinguish them from address translation registers used for segments; see
the following section). The page table may be contained in special
hardware registers, or reside in memory as any other data. Of course, the
physical processor must know the physical address of the page table. If
the page table is maintained in memory, a special register, the page table
base register, indicates where. This translation mechanism for paging 1is
ijllustrated in Figure 2.2.

Besides containing the physical address of the page, the page table
word often contains some additional items, such as whether the page has
been referenced recently or modified. The reason for recording these
facts is usually to provide information to various page control
algorithms. More will be said about the function of such additional

information below.

2.1.4 Segments and the File system

At this point a brief digression is in order. Although this thesis
is concerned with paging systems and déals with pages as the basic
component of a process’s address space, it is necessary to also consider a
higher level organization of the address space, namely segmentation.
Segmentation has a profound influence on a paged system,

Until now the address space of a process has been treated as strictly

21

—_——

Page Table
Base Register

Page Table

Page 1

Word n,
Page i

Figure 2.2

Translation of virtual address page i, word n

22

ord i

linear, a oﬁe dimensional array of words. In Multics and other segmented
systems this is not the case. The address space in a segmented system is
two dimensional, containing mﬁltiple segménts, each of which 1is 1tsélf a
linear address space. Thﬁsiivvirtual address in 3,9?5“9;¢d system
consists of a segment number and a word number (of#n;t&quiﬁhin~thev
segment. Each segment is paged, so the offse;“with4n~tha»oegnaét i8 in
two parts, as before: a page number and a word within the page.

Instead of hgving a single page table, the address space of the
process is now defined by a page tabie for each segment. There?muét be a
page table base register for each page table;mqthehewuilitgéwc#iled
segment descriptor ﬁord;iaﬁa collected into a desc?iéibi-ségﬁ§n§. The jth
segment descriptér word céntains the absolute addresayoiwthe;pake table
for segment j. The descriﬁto; segment of a process completely defines the
address space of the proceés; The physical proceéaor ex?cuting the
instructions of the process must know the location of the descriptor
segment for'that‘pfbceéé.' A register called the deécriptor segment base

register is used foi thiabéurpose. ‘The translation of a virtyal address

¥

IR

in a segmented, paged memory is shown in Figure 2.3.

Segments may be shared, i.e. in the addte;sws?aée ofrﬁbré than one
process. In this case there will be a segment descriptor word fof the
shared segment in the descriptor segment of each process sharing the
segment. These segment descriptor words will gll point to the @ame page
table. " ’

While the paging system bears the tesponsibility for maintéining the
page table words, the job of assigning a page tablerﬁo aqaééﬁé;t will be

assigned to a different module, the segmerit -éﬂager. Since the number of

23

Descriptor Segment

I
I
I
I
|
|
I
I
I
|
|
|
I
I

Descriptor Segment

Base Register

Segment j,
Page 1

|
I
I
I
|
|
|
I
I
I
I
I
I
I

Segment j’s
Page Table

Word n,
Page 1

Figure 2.3

Virtual address translation with segmentation

24

£ <+ ——

ord i

segments in a process’s address space is unlimited for most practical
purposes, a page table cannot be given to every segment. Instead, the
available page tables are multiplexed, just as page frames are multiplexed
among a large number of virtual pages. That is, segmentation implies
dynamic page table word allocation. Allocation of page tables to segments
is a task very similar to allocating page frames to pages. This job is
performed by the segment manager and will not be discussed further here.
Activating a segment (corresponding roughly to opening a file in many
systems) results in the segment being assigned a page table.

The paging system can deal only with segments that are active, i.e.
have page tables. Deactivated segments, those not assigned page tables,
are manipulated by the segment manager and the file system.

Thus the page tables, though indispensable to the paging system, are
not completely implemented by the paging system. Rather the task is
shared with the segment manager (or segment control, as it is often
called). And although segments per se are not really page control
objects, page control is aware of their existence and has some knowledge
of their implementation. As a consequence, there is interaction between
segment control and page éontrol. This interaction is undesirable as it
complicates both segment control and page control, and we would 1like to
minimize the interface between segment control and page control. This
interface will be examined in detail at a later time. (1)

Similarly, page control interacts with the file system and knows

(1) Research in progress at the Computer Systems Research Division is

attempting to eliminate from page control this knowledge of segment control
and the implementation of segments.

25

about the file system’s organization. Such knowledge complicates page
control, and minimizing the influence of the file system on page control
is highly desirable. By the file system we mean the operating system
modules which manage the permanent storage of segments on secondary
memory. The file system is responsible for knowing where a segment is
stored in secondary memory so that the‘paging system may bring the
segment’s pages into primary memory when needed. Secondary storage page
frames, or "records", are allocated to segments by the file system when
the segment is created. Thus, the file system must remember the location
of each page, and a "file map" analogous to a page table is kept for each
segment to retain this information. The file map itself can be stored in
the file system.

The structure of the file system may vary widely; however we will not
be concerned here with the specific organization. The file system may be

hierarchical as in Multics or flat (one-level).

2.2 Page Control Functions

Having examined the basic objects the paging system manipulates we
turn to the operations that page control must perform on these objects.
The most important job of page control is allocating memory, that is,
assigning free page frames to hold pages. When all available memory has
been allocated, memory deallocation must occur to enable reuse of page
frames. Memory deallocation removes pages from page frames thereby

freeing the page frame for further use. Note that in a multi-level memory

26

eystem a page may be allocated memory in one,‘eevera;,‘or none of the
levels.
Hence the two major functions of pagelgoetrol are:
1. Memory allocation
2. Memory deallocation
Two other minor functions that a paging éxstge may optionally provide
are:
1. Reconfiguration
2, Wiring or Locking

The following segtions will comsider. gll four of these in. turm..

2.2.1 MemoryﬁAllocation

Hemory allocation 1is the primary task of the paging system. Recall |
that a processor ‘may only refereuce pages which are allocated main memory .
page frames. A reference to a page not allocated a main memoty page frame>
causes a page fault. Aseuming a free 1ist is kept as mentioned in
section 2. 1 2, the steps involved in allocating memory and thereby ‘
resolving the page fault are the following. - P

1. A reference ie made to the page, whose page table word contains a
special tag, causing a hardware fault which reoults in the invocation of, .
the paging system'e‘main'nemorf allocatort‘ | |

;2 A free page frame is obtained from.the‘core‘freeyliot.

3 The identities of the page to be read 1n and the frame the page is '

read from are saved in the collection of information aseociated with the

Y 7 oed

27

main memory page frame. (This information is needed when deallecation:
occurs.)

4. A read operation is performed te é¢opy the contents of the page
into the main memory page frame.

5. The absolute address of the page frame is placed in the page’s
page table word, replacing the special’ fault tag. {(Note the fault tag
must remain until the read operation‘is completed.)

Control may now be returned to the process that made: the reference to
the page.

An important complication arises in"a multiprocédsing:emvironment

with sharing. Care must be taken so that while the sequence of steps

described above is in progress, other processes sharing‘the!page are
prohibited from repeating the steps. That is, two processes may‘not
allocate page frames for the sane page simultaneously.’;lhisfwould lead to
several possibly inconsistent coples of the same page. There must be ‘some
inhibiting mechanism which prevents a process from beginning the | |

allocation procedure for a page if some other proceas has already started

v {"“.

the allocation algorithm for that page.

There are many ways of implementing such a mechanism. One is to

‘;:‘.

permit only a single page to be involved in the allocation procedure at

q.\;

any given moment. For example, the allocation code could employ a lock,
which any process executing the allocation aléorithm must set. Since
there may be a considerable delay involved during the read operation, this
scheme may result in an impractically inefficient paging system. ‘A per
page mechanism, rather than a global mechanism which inhibits all

ER

allocation, seems desirable. There is much more to be said on this topic,

28

the mechanism used to prevent multiple allocations for a single page is
very influential in determining the efficiency of the overall page control
design. A closer examination of this issue is postponed until Chapter 5.

Memory allocation must be performed at each level in the memory
system. Thus memory allocation must also occur for the paging device.
The only difference from main memory allocation is the manner in which
allocation is initiated. Main memory allocation takes place in response
to a page fault; paging device memory allocation is done in response to
an explicit request made by the main memory deallocation algorithm as
explained in the next section. Otherwise, the steps in allocating paging
device memory to a page are identical to those for allocating main memory:

1. A request is made to the paging device allocator for a paging
device page frame.

2. A free paging device page frame is chosen from;the paging device
free list.

3. The identity of the page is stored in the collection of
information associated with the paging device page frame.

4. The contents of the page are copied into the page frame.

5. 1f the page has a main memory page frame allocated, the identity
of the paging device page frame is saved in the information associated
with the main memory page frame, and vice versa (see Figure 2.4).
Otherwise, the identity of the paging device page frame is placed in the
page’s page table word so that when a fault occurs thé location of the
page on the paging device is known.

As was the case with main memory allocation, once allocation of a

paging device page frame to a page has begun, the system must insure some

29

Case 1l: Unallocated page

Page Table Word
| |
|

Case 2: Page allocated a main memory page frame

; Main Memory
Page Table Word Page Frame

| |mmmmme |
| PE—

Case 3: Page allocated a paging device page frame

Paging Device :

Page Frame Page Table Word
| <===mm -1 |
| -mmmmmm > |

Case 4: Page allocated both a main memory page frame
and a paging device page frane

Paging Device ‘Main Memory
Page Frame Page Table Word Page Frame
| [=== > | >
! | I | ¢ommmmen | |
| | I I
I [< I o
I I >| o
| | |
Figure 2.4

Allocating memory to pages
30

other process does not duplicate the effort. The same mechanism used to
prohibit multiple main memory,allocatiéns.may‘be employed.

Memory allocation at the finalvlevel of the memory system is the duty
of the file system, since the file system bears the responsibility for

permanent storage of segments.

2.2.2 Memory Deallocation

The second step in allocating main memory listé& in the preceeding
section 1s to obtain a free page frame from)the'coréjfreétliét."Tﬁié‘list
can be maintained only by deallocating méih'memory;‘i.e. reveréing the
steps of the allocation algorithm and thereby freeing page frames. This
operation is commonly termed "page replacement" ln‘paged systems. Page
replaceméht, or memory deallocation, is nothing~ﬁbr; tﬁaﬁ removing phges
from the page frames iﬁ which they reside.

The steps taken in deallocafing a main memory page frame ftbh its
page are summarized below: o

1. A used page frame is selected from the core used list.

2. The page contained in the page ftamé;(which éaﬁ!be ﬂeterﬁiﬁed by
looking at theninformation associated with the ﬁége frame -- see step 3 in
the allocation procedure) is copied to somé ﬁfher p&gé frame ih:the‘memory
hierarchy (more on this shortly).

3. The physical address of the page frame stored in the pége table is
replaced by the address‘of the page frame copied to 1ﬂ;s£§p 2, aﬁd‘the

fault tag is set.

31

4. The page frame 18 added to the main memory free 1ist. (For
security reasons, the contents of the page frame should be cleared to all
zeroes.)

Several comments are necessary to explain these steps further.

First, nothing has been said about how the deallocation algorithm is
started. The allocation process might note when performing step 2 that
the free list was empty and thus issue a call to the deallocation routine.
This has the undesirable effect of delaying the allocatien. The approach
taken in the design presented in Chapter 3 is to eeiqtain the free list at
some minimum size; whenever the supply of free pege.fraﬁes is depleted
belew the system determined limit, deallocatioejpegine until ;he free list
is sufficiently replenished. There‘is, of ppuree, e‘significant tradeoff
involved here: time spent in allocating memory versus effective memory
utilization. Page frames on the free list represent unused physical
memory. It is possible to utilize memory completely by allowing the free
list to become or remain empty. But then alloeating‘memory is slowed due
to the necessity of first deallocating some othef ;aée f:aﬁe so that a
page frame is free. Although a delay in alleeating ﬁemory to apy one
process should not 1ower throughput in a multiprogrammed system, two costs
are involved: a process that presumably already has pages in memory is
prevented from running, and response time for any one process is
lengthened. | “

Second, nothing has been sa;d about the criterie to ﬁe used in
choosing from the used list the pagerrame that is to be"replaced. The
method for making this decision is commonly called the "page replacement

algorithm" and usually involves usage characteristics of the page

32

contained in each page frame. For example, the First in, First out (FIFO)
page replacement strategy chooses whichever page frame has been allocated
to a page for the longest time. Note this implies it is possible to order
the page frames by the length of time they have been allocated. One way
to do this alluded to earlier is to maintain the used list ‘as a linked
list of page frémes; the head of the list being the page frame in use for
the longest period of time. Newly allocated page frames are addad at the
end of the list. We will not be concerned with the details of specific .
page replacement algorithms; the discussion of paging systems here 1is
intended to be ‘general enough to permit élmost'any page replacement
algorithm. It is worth noting however that someé algorithms require
special information be kept on each page. For example, a "used" bit is
often associated with each page. This bit 18 set by the hardwnre when a
reference is made to the page. The replacement algorithm may examine the
bit, and reset the bit, in deciding what pagevshould be deallocated. The
details of one such scheme are given by Corbato [Co69].

A third éomment with respect to memory deallocation pertains to
copying the contents of the page to some other page frame in the
hiérarchy._ There are two points of interest: what other page frame to
use; and when the copying is necessary.

The question of where the page 18 to go when ejected from main memory
is answered by lookihg in the data associated with the page frame. Recall
that step 3 of the main memory allocation algofithm given above remembers
the page frame a page is read from when allocated main memory. If the
page was read from a paging device page frame, it may be written back to

that same frame by an appropriate output routine. Otherwise, the page was

33

read from disk, and the paging device memory allocation mechanism is
invoked (as discussed in the previous section) t§ obtain a paging device
page frame to allocate to the page and ‘serve as the destination of the
page. Under certain circumstances, or if the:paging device itself is not:
part of the current memory configuration, the'ﬁagefsfconteatS‘nay instead
be returned to their permanent file system location.

The copying is necessary only under .two circumstances: 1. The page
has not yet been written into the paging device page frame. 2, The page
has been altered by a write operation, and hence.the copy in main memory
differs from the paging device copy. The first situation is readily
recognized; to aid in detecting the second .situation many paged systems
include special hardware which associates a "modified" bié with each page.
This is similar to the used bit mentioned in conjunction with page
replacement, but the modified bit is set only when a write reference is
made to the page, e.g. a store instruction. This bit is examined by the
deallocation algorithm; if it has been set then the page has been modified
while in main memory and must be copied.

Deallocation of paging device memory is analogous. The steps
involved are as listed above for deallocating a page frame from its page.
The comments apply equally well with iny the. following alterations:

Utilization of memory on the pagingbdeyicefis less critical than with
main memory. . This is because there is assumed to be a much larger amount
of memory on the paging device. Hence: paging device page frames are a
less critical resource; therefore it is feasible to maintain a larger
number of page frames on the paging device freg l£§;~thanrm¢ghs be the

case for main memory.

34

Used and modified flags may also be associated with each paging
device page frame. The used flag may provide information to the paging
device page replacement algorithm for determining which pagingadevice~page
frame should next be deallocated. The modified flag determines when .

copying the contents of a page is neceseary at deallecation time. .

2.2,3 Memory Reconfiguration

The memory configuration is defined by the page franeaiava11§bie to
page control for allocation. Memory reconfigurntien‘codsiats\df
dynamtcally adding or removing page frames tduthetsupplyvgvailable to - page
control. To add memory to the system dynamically, the page frames of the
memory unit must be added to the pool of pageifrauea«controllediby the
paging system. The inverse operation of femoving'ﬁemory is 8lightly more
complex; The page frames of the device being renéVed~mu§t'be freed before
they may be removed from the memory configurationm.

Reconfiguration is not, strictly speakingqaafpﬁge-control function.
It i8 included here because page control must cooperate in reconfiguring
memory, and any paging system should be designed with an awaténess of the
problems of reconfiguration. Thus to assist ia: removing memory, 8
removing flag might be-associated with each page frame. This flag is
turned on by the reconfiguration algorithm. The allecation:algorithm
should be designed teo ignore any page frames on the free list with the
removing flag on. This prevents allocating to & page a page frame that

will only have to be deallocated shortly.

35

Newly added memory may be treated simply as free page frames and
added to the free lia; for future usé. Schell {8c71}] 'provides an
extensive ekamination.of dynamic reconfiguration. The desire to perform.
dynamic reconfiguration can complicate other page coamtrol functions

severely, as the next section will demonstrate.

2.2.4 Memory Wiring

A useful function for the paging system to provide is thaﬁ»of
"wiring" or "locking" memory. A "wired" page is .simply a page that must
always be allocated a page frame, thereby always remaining referenceable.
by a physical processor. There is a second, mere regtricted type of
wiring thch will be called "absolute wiring"; an “gbgolute wired" (or
"abs wired") page not only must he allocated a page frame at all times,

- but the same page frame at all times. This means that the absolute
physical address of the page will not be changed.

Some system functions must be wired, at least im part, in order to
operate properly. The pages of page control and page control’s data bases.
are an excellent example of this. In order to avoid an: infinite recursive
loop of repeaéedly taking page faults while handlimg. a page fault, at
least a portion of page control’s ptocedhres_andvdg;aﬂguse be wired.

Absolute wiring is necessary only if abselute physical addresses are
used by parts of the system. The most likely,place for this to oceur is
in the inéut/output programs. Channel or i/o programs:may require

absolute memory addreases;.if this is the case pages used as buffers for

36

doing i/o to terminals, etc., once allocated a particular page frame, must
remain there. The only alternative, to somehow keep ‘track of all the
instructions that use the absolute address and alter 'these instructions
every time the page is allocated a different page frame, is generally
impractical.

Providing for wired pages is fairly straightforward. An additional
flag may be associated with each page frame. When a page must be wired,
it is allocated a page frame and the wired flag is turned on, indicating
the page frame may not be deallocated. In searching for .a page frame to
replace, the replacement algorithm must skip over any page frame whose
wired flag is on. A page may be unwired at anyftine if it no longer must
remain referenceable, by merely turning off the wired flag.

Absolute wiring may be provided in a simtlar fashion. An extra

complication arises if in setting up a buffer :a.contiguous area of memory -

greater than the size of a page is required. In such a case the paging

- system must contrive to allocate some number of page frames which have

consecutive absolute physical addresses. It may not always be possible to
guarantee this can be accomplished. |

The chief difficulties involved in both wiring and abs wiring virtual
pages are due to two sources. sharing of virtual pages, and
reconfiguration. Since the same virtual page may be in the address space
of several processes, two or more proceeses may desire that a particluar
page be wired' In such a case, a simple flag is inadequate, a counter of
the number of processes wiring the page 1is needed instead Where security
is an issue, additional mechanisms are needed to insure pages may be |

unwired only by a process that previousiy wired them.

37

Reconfiguration poses a more difficult problem. Adding memory, of
course, presents no difficulty. But consider~uhat hapﬁens 1f an attempt
is made to remove from the memory configuration page frames which have
been wired or absolute wired. The reconfiguration must fail if an
absolute wired page is encountered, for by definition its physical address
cannot be changed. Simple wired pages can be handled, though not withou;
some awkwardness. Remember a wired page ﬁust’temamn-referenceable
(allocated a page frame) at all‘times. Thus the page may be moved by
allocating a new page frame, copying the contents of the page into that
new page frame (meanwhile the page 1is still allocated the page frame being
deconfigured), and then replacing the address in the page table word of
the page with the physical address of the new page frame. Additional
complications occur if the virtual page is modified during the copy

operation. This problem is discussed fully by :Schell ([Sc71]}.

2.3 Summary

The job of page control is to implement a lafge virtual memory for
processes by multiplexing the limited amount of physical memory. Pagé
control deals with four ijects: Pages are fhe basic unit of a pfocess’s
address space. Page frames are the bésic unit of allocétable physical
memory. Page table words are used to map pageé into page frames by
translating virtual addresses referenced by processes into absolute
physical addresses usable by hardware processors. Segments are logical

units of information, either programs or data, consisting of one or more

38

virtual pages. Each segment has a page table containing all the page
table words for the virtual pages of the segment.

The chief functions of a paging system were seen to be memory
allocation (assigning a page frame to hold the contents of a referenced
page) and memory deallocation (removiné the contents éf a page from a page
frame, freeing the page frame for allocatién). Other functions related to
page control discussed were ﬁemory reconfiguration (changing the pool of
page frames available to page control), and memory wiring (prohibiting the

breaking of a page frame-page binding).

39

CHAPTER 3

Designs for Paging Systems

Now that the underlying concepts Uf»ﬁigtﬁg‘systémé have been
introduced and the functions reguired of such systems examined, we turn to
the question of how to structuré a paging system for a large computer
utility. The Multics system will be used as the basis for the general
computer system model for which such a design is intended.

Contemporary paging systems such as the Multics page control have not
been implemented taking full advantage of the process concept even though
the operating system itself implements and makes extensive use of
processes. Rather each user process performs the functions of page
control, using shared supervisor code and data.

The first part of this chapter will present a method for classifying
paging systems based on whether user or system processes implement the
paging system. Multics will be used as an example of a paging system
vwhere the paging functions are pgrformed by the user’s own process. A
simple change to convert the Multics design to one using a system process
to perform the page control operations is then considered. Next‘a design
splitting the paging functions among several processes is presentéd. This

design was actually implemented and tested on the Multics system.

40

(Chapter 4 discusses the details of this implementation.) Two other
similar designs appearing in the literature are contrasted.to .the proposed
design. The advantages of these multi-process paging systems are

demonstrated by comparisons with the curremt ‘Multics page control.

3.1 Paging System Structures

We will divide paging systems into three broad categories depending -
upon the answer to the following question.v Where, i.e. in ‘what process,
are the paging functions performed? The categories are: N

1. User—process paging systems, in which the page control functions
described in Chapter 2 are performed by the users’ processes. |

2, System~process paging systems, utilizing special system processes
whose exclusive job is to carry out page control operstions exclusively.

3. Conbination paging systems, where some page control Operations are
done in the users’ processes, others by system processes.

A further division of paging,systems csn‘be msde based‘on how many
processes 1mplement the paging system. (Clearly this is not meaningful
for user process psging systems, since all the processes in such a system
implement the paging functions) Thus we might consider system process
paging systems or combination paging systems utilizing only a single
system process as opposed to multiple processes. As will,be seen,
however, the advantages of multiple processes are so compelling that ooce
the concept of using a system process to perform paging fonctioms is

accepted, multiple processes seem a natural and obvious extension.

41

In examining each of the different organizations for paging systems,
we will be particularly iaterested is the molution the design uees for two ..
crucial problems ioherent in a multi~process saviromment sllewing sharing
of pages among users. These t# problems sre dsta base contention and .
page fault contention.

By data base contention we mean the interfetence caused by two or
more processes attempting to access a common data base simultaneously;
Hence data base contention is a direct conaequeace of nulti-processing.

i

Data base contention is only a problen, of courae, whsn the data base may
be written as well as read.y Uhen a proce;a ;;;walt;r a data base, unless |
all alterations can be perforned in a single, uninterruptible operation,
there is the danger that another process nay find the data base in an
inconsistent or outdated state. This is not a problan unique to paging
systeus, ariaing here due to the fact a,centtal acconating of all memory
resources nust be kept by page conttol. As a simple but important)
example, if two processes wish to obtain free psge frames simultaneously,
the paging system must insure the same page frane iaﬂnot allocated to
ot , . L .

Thus we wish to know what mechanisms the paging system design offers
to provide exclusive access to essential data bas;s. Ideally the o
mechanism should be easy to understand and use asivell as guaranteeing
data base integrity and prevention of system deadlock. Usually some forn}
of semaphore or lock‘is involved. T

Page fault contention, or more sinplyApageicontention, is caused by

the sharing of information among users in a multi-processing environment.

When users share information, the pages contsining that information are in

42

the address space of each user’s process, and may be faulted on by any
referencing process. If users were not allowed to share pages, e.g. if
users executing the same program were always given their own copy of the
program, page contention would be non-existent. By page contention, we
mean the problem already mentioned 1nbseétion 2?2.1; fﬁatlié; two
processes may not be allowed to allocate a page frame to the same page
simultaneously, or multiple copiles of thé p;gerin primary“memoty may-
resulg. | | |

In some sense page contention is reallyhdaﬁa ﬁaée conééntion in a
different guise, for after allya page'mayiﬁe considerédyé'data base. We
differeﬁtiate between page contention and data base contention because
separate mecﬁanisma are ﬁormally employedifo fes&lve(éaéh. ‘While
conceivably careful data base design can minimi#e data base contention,
page contentionwcan not'be‘avoidedéﬁg loﬁg aé the time required to régd or
write a page between memory levels is long reléfi%é“ta iﬂéttuétian.spéedé.

The following sections present seier#lu&e;igné<féfyﬁaging systems.
Attention will be 3i§en to thé teéhniqﬁes‘inherént t;iéiéh for dealing

with page contention and data base contention.

3.2 Multics’ User Process Page Control

We begin our investigation of paging systgg_dg;;ggg.with a_typigal,
contemporary paging system, namely the Multics page control (as i:va;isted
in fall, 1975). The procedures of Multics page control execute in the.

users’ processes, qualifying it as a user process paging system under the

43

definition of the previous section.

3.2.1 The Current Multics Page Control

A process taking a page fault in the Hultics.system begins all the
required paging functions at the time of the fault. Thus allocation and
deallocation of page frames in both levels of- the memory must be done at
page fault time. The complexity that this results in is Well illustrated
| by Figure 3.1, which represents diagrammatically the Multics page control.
The diagram 18 necessarily at a rether high level, onitting much detail.
The boxes represent program modules (procedures) carrying out specified |
functions; the solid arrows depict procedure calls and the dashed arrows
indicate interprocees messages./ The following paragrephs describe the
sequence of events represented by Figure 3 1 heppening after a page fault.

When the page fault code is invoked, the first thing done is to run
the paging device page removal algorithm as depicted by the call to the
routine labeled "get free pd record" in Figute 3 1. This procedure checks
to see if there are ten free paging device page frames. If there are less
than ten, enough paging device page frames are séletted, one at a time, to
increase the nember to ten, and the necessary 1/o to remove their pages
from the paging device 1s begun.

At this point two complications arise. The firgt is due to hardware
limitations of the Multics system. It is not possiblbitb perform read or -
write operations directly between the paging device and-the disks in

- Multics, only between main memory and the paging device or between main

44

—— e e —

Quop
sma

asod

jdnaiasjur
o/t

Toa3uoo @8ed SOTITNR

~N

2ITIM
|
| 28ed
| @231am
|
Y
| |
| ares |
| 28ed |
| |

TN

| 3tney o%ed

paodaax pd
331BO0TE

2100 puilj

1°¢ 21n31y

a3ed
pea21

|
_
_
_

I

ITned

_
|
_
_

peax

<«

|
|
|
_

_

| sSm1
| 1ae3s
|

—

gpaodax pd
2913 2198

Y
~

memory and the disks. Thus, the operation of writing a page from the
paging device to the disks must be done in two steps: first a read
operation, reading the page from the paging device to main memory; second,
a write operation, writing the page from main memory to disk. This two
step operation, a read followed by a write, is called a "read write
sequence'", or "rws'". Note that performing a read write sequence requires
a free main memory page frame. This is indicated in the diagram by the
call made by the module "start ;ws“ to the "find core" routine.

The second complication results from the relatively long time
required to perform a read or write operation on a page. To require that
the faulting process wait until the i/o operations it may start as part of
read write sequences are completed would intolerably delay the faulting
process, causing poor'response. Thus thé i/0 necessary to evict pages
from the paging device is not waited on, but only started. When the
completion of this i/o is signalled via a hardware interrupt, whatever
process is currently executing must deal with the interrupt. Thus the
task of deallocating paging device page frames, though begun by the
process taking the page fault, is finished by whichever process happens to
be running at the completion of the disk write operation.

Returning to the discussion of Figure 3.1, we are now ready to
resolve the page fault by calling the procedure named "read page', which
must first allocate main memory space. This is done by a call to "find
core" which is the main memory page replacement algorithm. When a free
page frame has been created by evicting a page, it is returned to read
page, which then.may start a read operation to copy the contents of the

faulted-on page into main memory. The faulting process must then wait

46

until the read is completed, as indicated by the call to the procedure
"pagé wait"., The completion is signalled via a hardware interrupt, which
is converted to a software aotify.

Multics uses a single semaphore, called the global page table lock,
to solve the data base contention problem. This lock must be set by a
process before it may begin processing a page fault. The lock is released
just before the process blocks itself by calling 'page wait". In between
these times, another process attempting to resolve a, page fault must_wait
until the lock is released. »

Waiting on the lock 1s done by repegtgdly trying to set the lock
until one succeeds in doing so. This "busy" waiting has two major
implications: 1. A process may not block itself, giving up the processor,
while it has the page table lock set. If this were done, all page control
functions would be prevented until the process weére awakened and run
again. 2. For efficiency reasons, the time spent with the lock set should
be minimized, as this in turn miniﬁizes thé 1nterfereﬁce'among processes
due to the lock which results in waéted ﬁrocéssor time.

Measurements show that when running the standard Multics system in a
configuration with two processors, under a moderate to heavy load the
processor time spent looping while waiting to lock the global page table
lock can amount to 10Z of the fotal system prbceésor time. In certain
extreme conditions this overhead can go as high as 20%. This effect would
be even worse in a system with three or more pfocessors. Hence the global

locking strategy can have a severe impact on system performance. (1)

(1) A recent experiment has shown that abandoning fﬁ§;ﬁthessor‘rather than

47

The global page table lock 1s not used to protect against page
contention. To do so wbgld prevent any process from resolving a page
fault until all read and write operations caused by a previous page fault
had compléted (including read write sequences). Instead, a per page lock
(implemented as a bit in the page table word of each page) is used. This
per page lock is set whenever ifo is begunt on a page (which can only
happen with the global page ‘table lock set) and feﬂatns set until the i/o
completes. Thus a process faulting on a locked page, even though it gains
control of the global page table lock, cammot start i/o to bring in the
page (or to throw it out). The proceéss must wait until the lock is

released. Hence the per page lock protetts the page while in transition.

3.2.2 A System Process Page Control Based on Multics

To introduce how a paging system implemented as a system process
might work and to see some of the potential advantages of such a design,
consider the following simple yet radical change to>the design just
described: When a page fault occurs, instead_ofrhaviqg the user process
execute the programs to resolve the fault, simply send a message to a
system page control process, and wait for a return message saying the
desired page has been bound to a page frame in main memory. Nothing else
is changed; the algorithms described previously and illﬁstrated by Figure

3.1 have merely been made a separate process. Essentially what has

looping on the lock will increase the performance of a three [processor
system. This change may be incorporated into the system. =

48

happened is that a page fault~has_been,;ransfofned from a call to the page
fault procedure to an interprocess message t??tha-gageucontrplfp;ocess;

There are disadvantages to this design, mainly in terms of
efficiency. The time required.to resplve a page fault is increased by the
length of time required to send the message to the page control process
and to schedule the page control process. .

What do we gain? First, the page control.process bas its own address
space and execution point. A separate address space enables removal of
all the paging algorithms and data bases from the user’s address spéce,v L
The execution. point, as we shall see, allows parallel execution of the
page control process.

A second benefit is guaranteed service, : Since the mesaages to the
page control process (i.e. the page faults) can be ordered, we can serve
the page fanlﬁs in the order they occur,. Thgre,isknogh;ng@;n Multics
currently to prevent an unlucky process from always being locked out of
the page fault handling code by competing processes who always manage to
lock the global page table iock‘first; '(Tﬁgl this actﬁ#lly‘é;et happens
is a very remote possibility, but important if guaranteed service is a
sygtemrgoal.f - a |

A third benefit is the elimination 6f the gloﬁhl baseviébié lock.
Since only a single process, the page conéfol é:bcess:‘ﬁay‘§CCebl the’
paging éystem>data baseé,sdatayﬁh;e cdntéﬁtioh is impossible.”fhis
benefit seems ill;sorf beéause the Qiﬁglé ;roéééi'hﬁk réﬁiaéed the‘globaf'?
lock, and the overall efféét is the éame Q;Adnlf one pége.fault;ﬁay'bé'
processed at a time; in fact only one pagépéﬁntrdl funégion may bé’

performed at a time, since there is only one prodess (and héﬁcé one

49

execution point) to perform them. However, replacing a lock with a single
process is not only conceéptually claaner but ztié‘ﬁ&liez-tOwundexatand.éndw-
show correct.

" The important thing here 1s the favt that the précess has an
independent execution point as well as a separate address space. Once we
realize this fact, the question arises as to why aét change the algorithm
of Figure 3.1 to take advantage of this &xeéutien~paint? ‘Why c¢oantinue to
deallocate page frames only when resolving a page faualt? Siace the page
control process knows page frames will be needed, why hot have him execute
the page replacemént algorithm between page faults; when he would
otherwise be idle?

Thié‘concept.of allowing independent parallel processing by a system
process performing page control fuhéttons;1Iéﬁ&%‘us‘dﬁtettiy to the

multi-process combination paging systems discussed in the next sections.

3.3 Multi-process Combination Paging Systems

Expanding on the possibilities suggested by the Single s&éﬁem process
design presented in the preceeding section,’th:ee_multifprocess
combination pgging systems are examined here. In eacﬁ of theée, the
necessary allocation of main memory page frqmeq to pages 15 performed by
the faulting process. Deallocation,»howeve:, id dong‘by the special
syétem processes. Thus these paging systems classify gs’coﬁbination
paging systems as defined inksection 3.1. Addition#il&, e;ch design uses

multiple processes to implement the system performed paging functions,

50

hence the term multi-process combination paging systems. ~The number and
organization of the system paging processes are what distinguish the three
designs. The first is due to the author and has been implemented on
Multics (see Chapter 4); the other two deaigns have appeared . in the

literature.

3.3.1 A Two Process Paging System

In Chapter 2 it was noted that the work of the paging system can be
described largely as allocating and deallocating page fraﬁes to and from
pages. Allocating a page frame to a page is a relatively simple task that
a process can do for itself, since there is no need for patalleiism‘—— the
process cannot continue until the page fault is resolved. In demand paged
systems, allocation is performed only upon actual reference to a pége, "
because it is impossible in general to predict which pages in its address
space a process may reference.

Deallocating p#ge frames (and thereby creating‘frée page frames) is a
more complex task involving decision making, néme1y>choosingtthe page that
is to be replaced. Deallocation, unlike allocation,'may‘bé'ddne at any
time.

In particular, page frames may be freed 1ﬁ“advaﬁcé, maintaiﬁing a
pool of free page frames from Hhich page fremes are éélected[as needed.
Replenishing the supply of free pagé frames'dayibe doﬁe whenever
convenient. The job of deallocating page frames héy:be assigned to a

system process, distinct from user proteéses. ‘Note this allows us to take

51

advantage of the parallelism offered by & process. This completely

removes the page replacement function from the user process. There are
several immediately obvicus advantages té suih’é's%fategygd'l. ?;ge faults
may be resolved faster, since deafiocafibn‘18‘no'i%nger done at page'faﬁffﬁ
time. 2. The page fault algorithm is simpler. 3. The procedures and data
involved in doing the deallocation ﬁay be removed from the address space

of the user process. These and other banggita’offgnghagqﬂgg;ﬁion will be
discussed fully later.

Since the memory model‘agsumed here (EiguggfZ.Llﬁinporpoxa;eq two,
levels of memory m#paggd by the pgg;nghgxggem,"Fyo‘qggtemﬂpracgasea will
be used in the multirpropeas page cong;ol,augggapedﬁhggg,:yope will be
assigned the task of deallogatingipagg frames for g@ghilgvel An the
memory. The three parts of the rgaulting?dgg4gn;{pgqga;pg page faults in

the’faulting process being the thi;ﬂ)'argvdiggysggﬁﬁénrtu;g, .

The Core Manager Process

The special system process assigned the task of deallocatipg main
memory page frames will be called the éorg-mgnggeg process. The algoritha
followed by the core manager is depicted in Figure 3,2.. As. long as the
number of free page frames in the pool available for allocation is less
than some system determined;vqlue, the core manager keeps deallocating
page frames. Firgt, the page replgcement;algpr;thq ;gﬁiqvokgq‘;q:decide
which pagé frgmg“ipvto be dgallocgted. Note this is gtrictly . a policy
decision. Once a page frame has been selec;ed, it can be frqe4>by‘wr1ting
thevpage out Qf main memory and changing‘;he pagg,;ahlg wpgi for the page

appropriately. When the write operation is completed, the newly freed

52

. i i — — — ————————— Y — T — — ——— — — —— _—— W ——— — — SO —— i — . ——

0w
®
(2]
o |
<
(14
—

Wake up | |

| |

[}

N |

“ |

¥ : |

/ \ |

/ 1s the number \ | |
/ of free page frames \ HO";I Go |
\ less than the =/ | Blocked |

\ minimum ? / | ‘ I

\ /

h‘-————-—-—-

Choose a page frame
to be unbound

|
I
I
¥

Unbind the page
frame from its page

> — — ——

Add the now free
page frame to the
free pool

Figure 3.2

Algorithm of the core manager process

53

page frame may be made available for allocation to some process requesting
a page frame. This sequehce of steps may be repeated until the supply of
free page frames reaches some system éat&ra;hed value, at which time the
core manager process blocks itself. WNotice that processes may be
requesting free page frames from the free:pool even while the core manager
is executing. ‘

There must be some mesns of a:arting.ﬁp‘thg cgr& manager process.
One way to do this 1is to simply wake up the core mapager periodically. An
alternative strategy which adjusft to varytng“lcuiida for free page frames
is to wake up the core manager process whenever the pool of free.page
frames becomes low. This requires interprocess communication, for the
procesas which notices the nusber of free page frames is down must wake up
the core manager. That is, the routfhé ihich{aiigeat?s free page frames
must follow the algorithm shown in Figuteb3.3. 1f there is at least one
free page frame, it is immediately allogated to thercaller. If the
remaining supply of free page frames in‘gndg;;gﬁlysteﬁidefined minimum, a
wakeup is sent to the core manager p;ocesb; Edﬁevé;,%if there are no page
frames in the free pool, the allecation cbdé must do one of two ihings:
1. Report failure to its caller, who nusc;try again later, or 2. Block the
calling process until the core manager groggsq;pignais tha; the ;upply has
been increased. Of course, in either c§§£ ﬁhe‘¢qre manager must be
awakened to start replenishing the ffee pool, The latter approach is
chosen here because it results in an alloeation strategy which always
succeeds in the eyes of the caller, i.e. alwﬁys fétufnsmawff;; page frame.
This simplifies the code in the calling pfbéédure. Indeed the caller will

never know what happened, except perhaps that it took longer for the

54

/ - 1s the pool \ | |
| of free page frames __YES aI ‘Send ‘wakeup to |
\ empty ? / | core manager |

I
I
I
I
|
I
|
I
I -
|
|
I
I
|
|
I
I

\ 2
\ _ / |

| .
| ¥ v
| NO i) : |
| | Go blocked]
) 4 o | - |

| I |

| Chose a page frame | |

| from the free pool | ¥

| |

R
| Receive wakeup |--—--

[

!

|

|

\
/ \
/ 1s the number \ | |
/ of free page frames \ YES ;I Send wakeup to |
\ less than the core manager |
\ minimum ? / | : |

\ / |

| B

I

|

|
NO |

‘V

¥

|
Return selected |

- page frame to the |
caller]

I

]
¥

END
Figure 3.3

Algorithm of the page frame allocator procedure
55

allocating procedure to return the requested page frame. (A complication
may arise here with the use of locks; see sectioﬁm51is

Two additional points remain to be madé. Fitét, adopting the just
deaéribed strategy means the algorithm of Figure 35&“1s”ihébmplete. An
additionai step must be included to. gend wpkguﬁ q;gﬁ#ié';o<qpy processes
that have gone blocked because the page frame posi"iis empty. Second,
since anf number of processes may be requéétlnﬁ free pige Trames
simultaneously, some technique i3 necessary to insure a page frame is not
allocated to two requestors. For example, arloct on the free pool is
sufficient. The fact that several proeesscs :may ba competing for any page
frames in the free pool also explains the loop in the algorithn of Figure
3.3. When a process is awnkgned by the core managnr, there 1s no
guarantee that there are s;ill page frames in the free pool, since other
processes may have grabbed them all. Therefore, after go{ng blocked to
await repleniahment of the free. page frame pool, thq algorithn must be

repeated from the beginning.

The Paging Device Manager Process

The paging device manager process ig the secé?éwpfbthemFWO system
processes used to manage memory in our mul;itpggcegs,dggign. .Chapter 2
noted the similarity of the paging device ﬁemofy g;:;herﬁain memory, and
that allocating and deallocating page frames must be domne fbt‘each level
in the multi-level memory hierarchy assumed in our-model. In fact, the
allocation and deallocation of paging device pagetféames is so similar to
the allocation and deallocation of main memory page frames that the

algorithms to be used by the paging device manager p;oéqurgnd the core

56

manager process are almost identical. Figure 3.2 describes the paging
device manager’s algorithm as well as the core manager’s algorithm. The
details need not be the same, e.g. no doubt a different policy may be in
force for deciding which paging device page frames are to be freed, but
the general form and structure are the same.

In a like manner, Figure 3.3 also describes the algorithm used by the
paging device page frame allocating procedure, except of course the wakeup
signals would be directed to the paging device manager process rather than
the core manager process. The parameter used to trigger the signal to the
paging device manager, the number of free paging device page frames, may

also be different.

Handling Page Faults

Now that we have added two system processes to do the deallocating of
page frames at each level of the multi-level memory system, we turn to the
allocation operation. Figure 3.4 shows the steps necessary to resolve a
page fault, i.e. allocate a main memory page frame to a page in a system
using fwo system processes to perform deallocation. The first box invokes
the page frame allocation procedure, previously presented in Figure 3.3.
This may result in the faulting process blocking itself if no free page
frames are available. In the usual case however, a free page frame will
be available and will be returned. The page may then be bound to the
allocated page frame, and the necessary read operation begun to read the
contents of the page into the memory locations of the page frame.

The remaining procedure needed to fill in the picture completely is

the procedure which performs the allocating of pages to paging device page

57

START

|
¥

l

| Call page frame allocator
| to get a free page frame
l

I
I
|
\ A

Place page frame address
in page table word of
faulted on page

l
I
!
A2

|

| Perform read operation
| to read page into the
| allocated page frame
|

I
A\

END

Figure 3.4

Binding a page to a page frame

58

frames. This occurs during the freeing of main memory page frames. One
of the steps in the algorithm of Figure 3.2 is to free the main memory
page frame from its page. This deallocation results in the contents of
the page being copied to some other page f;age in the memory hierarchy.
Thus the replacement really expands into the three steps already depicted
in Figure 3.4 for allocating a page to a pége.fféhe%\ That is, a paging
device page frame is allocated and the page is written to the‘pemory
locations of‘the paging device page frame. |

The interrelationship of the core gapgég:?;roceas, the paéiﬂg.dgvige
 manager process, and a process trying to resolve a page fault is |
illustrated by Figure 3.5. The boxes reprében; program modules which
perform the function indicated by their lahél.i The solid arrows depict
calls made by one module to another, and.the broken arrows represent
interprocess signals. For example, the main'mem;ry allocation procedure
will send a wakeup signal to the core manager procesgs when‘the number of
core page frames becomes too low, as indicated:by the broken arrow from
the box labeled "allocate core" to the box titled "core manager".
Similarly, if in removing pages from main memory the core manager
discovers there is an insufficient supply of free paging device page
frames, a wakeup signal is sent to the paging deﬁice manager process,
represented by the arrow fr&m "allocate pd .record" to the "paging device
manager" . |

This design, as implemented on ;hg Multics system aa/QQséribed in
Chapter 4, incorporates the same features as the Multiés’page control for
preventing data base contention and page fault contention. That is, a

global page table lock prevents the core and paging device managers from

59

O\ﬂ_

jdnaaazur)

T0a3u0d 98ed ssavoad-yITnR

, “;vumOwu pd r
_\ounvoaﬂu !
_rnrluuw1+||#,

I !
P
| 43130m |
| I
1 .
/ b
*, .
_ A I -
| o8ed" | | @a0d | _
| peea | | 33edoy1e |\ | 9x00 328 |
_ o MR W U |
3 v\ w
v |
Y W
| _ || _
| | : 198euem |
| 3rne3y 28ed | L 9100 i
_ _ _ _
8892014 830014
Sug3ineg aa8euey 210)

¢°¢ 2anByyg

£31301

e]

paodoa pd 328

|
AR
,_

_

\) T4
,,
1L

& 1a8euem
| @oTa9p Buyled
|

§592014 138euey
90Ta3(q Suifeg

|
_
_
_

60

executing simultaneously, or one of the system processes from running
while a user process was resolving a page fault. Per page locks gre also
used to solve the page fault contention problem, However, one of the .
benefits seen from this design,‘as.d;sgugsgd_1p.§eét;on,3.4,6,6;8»the .
potential for splitting the global page. table lock.. This question will be

considered fully in Chapter 5.

3.3.2 Hoare’s Structured Paging Syétém

Hoare has prbposed'lﬂo73j h'hﬁlfiépézééséqﬁégiﬁﬁ 5&562& intended for
a general computer systeﬁl‘“Thé'modei;HBafé uses for a éénerAI:COhbu%Ef‘:Jvi
system is similar to‘theuﬁodel assumed hé%é%i%ﬂégmajbrrdiffefehéé in the
models used is due to the oﬁeJIEQei heh0f§ﬁin33fpoféegarinto ﬁaéré'é'
model. That is, Hoare assumes a memory system consisting BfwisEAiﬁ‘memory
and a drum as a Bécking:Stoié; but dbesv;Séﬂiaéiu&ékgwéeédhd‘ié#él‘of
memory such as the diska aéshmé5.Bé;;Q b:

Hoare uses monitors [Ho74] to describe hfétk§giéh.“”kdaifbfémére
procedures with built—iﬁ éiﬁéhfbniﬁéti&ﬁ7pfihifi#éé;”*l‘ﬁdniiaftaefines a
group of proceddres only one of which mgi géwin:execﬁfibn.hi aﬁy'tihe;
thus ensuring mutual exclusion among processes executing the procedureé '
comprising the monitor. Hence ﬁbﬁitérs'ht;?aiﬁigh'fé@giﬁiécifng device.
In Hoaré;s'syéfem a monitor 1sﬁéssiénédlio Eﬁéhwphéé;V £h1§ méﬁiﬁo£'
includes procedures tdﬂgécéﬁé'thé&bage;‘b}iﬁgfitlinibkﬁ;in‘&embfi on
demand, etc. Thus a process féﬁltiﬁgloﬁ“a’ﬁake {nvokes é'proééaﬁre in the
monitor for that page to bfing.the pagéﬁihfo'édte;?JThé bdilt;iﬁ

13

6l .

synchronization ability 6f the monitor ensures that sanother process does
not simulténéously attempt to bring the same page into core.

Memory deallocation is done by system processes in Hoare’s design.
Rather than using a single process for tsck lewél of memory, Hoare assigns
the page replacement task t6 a separaté process for each page. When a
page is brought into main memory in Hoare’s systes, & process’ 1s created
and started up which periodically tries to throw the page out of main
memory if it has not been referenced recently.

Hoare’s monitors permit a high level solution to bﬁth the page fault
‘ contentiqn,p;oblgm and ;he data hagg ?ogpggt}on pygplggf The noni:org_
assigned to ‘each page are eesentially per page locks. solving the page
fault conten;;on problem. Sinilarly, putcing thg other paging systen
functions inside a ﬂppitor_S;FPKBU§FP§t§¢Qk§fFL§%1Y§.§9¢QB§ F° ?egins o
system data baaes. | | |

While Hoare's monitors allow him to desctib; his system in a r;ther
elegant fashion, the system suffer two acriou{mdtawbacks in practice. Ihe
first is actually 1mplementing the synchroniz;tion 1lp11cit in the use of
monitors. There are aerious efficiency iaaues unansuered here because a
combination of hardware, or "buay" wuitin;. and aoftupre wuiting ia{
required.

. The‘ggcond, pgrhgpg(mote serious dgg;g{gqu”gp Hogrg:p’p;égpsalvis
the number of processes involvedr one £9r QYGT? p#g§~;glﬁai;~yegp;y.h
There is‘alwgys overhead involve& {n implgééé;;gg processes, both in
keeping track_of the state of ;he procggs,igqg?sghedqling tﬁg‘prchss,at
the appropt%q;g time. Most éys;ems are not capable of gup?qrtipg»th;' |

large number of processes required, and most schedulers are not designed

to give the.fast response that would be necessary to make Hoare’s scheme
efficient enough.for practical.purpgaqs.A For these same.reasona Hoare’s
system would expand poquy-to a system with . mere levels of memory.
Adopting the. same strategy of one-removal precess pex»gége‘would worsen . .
the problems of implementing and acheduling.thc,nacesaqry number of
processes.

There is an orthogonal viewpoint of paging systems from that taken in
this thesis, a view which Hoare’s description adepts.in part. We have .
pilctured pages as objects manipulated by system. and user p#ocesags.
Instead, each virtual page may be thought of a#. ag-precess, a process that
performe all desired actions on the page, moving it in and out of memory,
wiring it, etc. (Not just: removing it fneﬁ nemory as do Hoare’s
processes.)

This concept of a page as a process has also been used to explain
Multics page control. (1) .As already pointad-out.abové, it is -
prohibitively expensive»to.actually implement a process for each page,
however pages can be thought of as being implemented as very simple
processes with page control acting asfap,in:erpreterwfor these processes.
The per page information (e.g. flags, locks) define the current state of
each page process; the various actions of the page processes (such as
wiring themselves, bringing themselves into memory) are done.
interpretively by the pége control code.

A more formal characterization of this view is to define each virtuwal-

page to be a finite state machine. The state of each such finite state

(1) This description of Multics page control is originally due to Bernard
Greenberg of Honeywell Information Systems.

63

machine (page) 18 defined by the values of all:the per page information
contained in snd. assoctated with the page’s page table word <~ the used’
and modified bits, the wited flag, ete. Yach tvaasition of the finite
state machine corresponds to an action parformed s the page, and is.
implemented as some page control procedure.

For example, two states of a page are the "in core" state (i.e.
allocated a core page frase lﬁ<£§di¢&t¢diby:ah§vpug.&ftann address in.the
page table word) and the "out of core" state (aot alloeated a core page
frame as indicated by the fawult tag in the page table-woed). The .
transition from the “in core' state to the Yout of -core" state is
implemented by the code of the page reglacemaent a&garitha; ‘Conversely the
transition from "out of core" te Yan core' is perfosmed by the allocatton
code. The inputs which cause the &axious state trahoitions are requests
from processes, e.g. a user process wishing to refatence a 'pariicular page
may cause that page to move from the "out :6f coze" state to-the “in core”
state (and as a side effect causcﬂsannvotispapgge to:make the tramsition -
from in core to out of core).

Page control, then; emulates these finite state machines by driving
the pages through the various states in responge: to.the demands: of uses
processes. Hoare’s monitors, which perform all the-allowable actions
(transitions) on pages, make emplicit chéanannpt.bi»a:finite'atate~
machine. The procedures of the monitor directly implement the: state

changes of the page.

64"

3.3.3 Saxena and Bredt’s Hierarchical Paging System

As part of a structured design of an operating system Saxena and
Bredt [Sa75] include.a description of a paging syé;gn.. Their hierarchical
operating system consigsts of four levels, numbered .ome to four, each level
built on top of the lower numbered levels (level 0.dis the hardware),. The
four levels are: 1. A simple scheduler for running. and.syachronizing a
fixed number of system processes. 2. .A simple memqry manager which
implements a virtual memory for these system pracespes. . 3. A scheduler
for implementing and syachronizing a large number of concurrent processes
using virtual memory. 4. A memory manager for implementation of the .
virtual memory. Essentially the simple gchedqler¢an4:s;mplg memory
manager implement system processes which provide complete process
multiplexing and virtual memory to a large nymber . of. user. processes,
Monitors are also used to describe this_qya;em,uangQ;o,§g;ye the data base
and page fault contention prohlan;Q. |

The chief distinction of this system from the épe presented in
section 3.1.1 is in the extra scheduler and memory manager. Like.ﬂnare'g
system, only a single level memory is considered. . Howgver, unlike Hoare’s
system, only a small fixed number of processes is ng;essaty»to implgment
the paging sysatem, because a process is not assigned to gach’pagel _Saxena
and Bredt specify a page replacement process which, like the core manager
process of Figure 3.2, can operate on any page, rather than creating a
separate replacement process for each page as Hoare does. And instead of
assigning a separate monitor to each page, a single monitor performs the

memory allocation function for all pages. Thus, only one page fault may

65

be handled at a time. - .

Though much closer to the 'dfgstgﬁ pmumd here, there is a
fundamental ‘difference, amtvtheeMMuﬁutsuam saneger .
The high - level scheduler '(ﬁh‘&&h,ﬁ &tﬁlﬂ!" -aHpletens atethe simple process
scheduler ‘level) and-the high Tevel Sdibry ‘alnkger 'processes are both
allowed to take page faults. “These "syovet’ iguge’ feultaiart hendled by .-
the sifiple 'Wéiory maitager. ‘Ihis lelnb thiee b two differant kinds of
page faults: ”amu"xmﬁmm&dﬂwﬂw*mf ahd 1t wust be -
possible- to differentivte butveeh thed. - This 1y #h wdded tomplexity; and:
one vhich may téq&i‘re hirdvite | Gosivtahol Which ‘Mot alli wydtons may be
capable of pm&&‘iﬂt co

What ‘fs°gaised by the ‘extrd levels of-éehediner wnd’ nemory mansger?
Primarily‘the ability“of"the high Tevel sehsluler %Wwaw C
use, in a 1imited Tashibn, the foastiohs sath-tupleihits. "Phus, the high

level memory manager may be ‘implementéd We' provesses whick ay: take page -
faults; similarly with the high level scWéliider. “Tha entra levels slso
solve the problem of “Whether to ikpluliient the! virtukl’ hembry Selow the
scheduler br vice vetrsa.

System ‘Hesigters are often presented With & @1ledhex because both the
scheduler and the wemory wanager Wolild 1 {45 vse” the' futiction -

oy e o Gowrping

hierarchically, whichever of these mmh Lyl shdiveed: bendath the

implemented by the othet. f the opersts

other camnot use eithiér ‘the function ‘1t tEeEe provided orithe function
provided by the higher ‘mddule. The problew is gene¥ally solved by -
splitting theé scheduler or ‘the memory mariager fiuﬁd*‘fm ‘Fevels, one below

and one above the other module. Having ‘two Tdveélks Gfidach as ‘do ‘Saxena

%6

and Bredt removes the mutual dependency of the top two levels.

In practice, the advantages of allowing the meﬁory manager and
scheduler to take page faults may never be realized. Supposedly, paging
the memory manager and scheduler will free physical memory for user pages.
Yet the pages of these two modules are nérmally so heavily used that they
will always be‘in ﬁain ﬁemoryAanyway. Theié'is also hﬁ'éfficiéhcy issue
in allowing the scheduler and ﬁemory manage; to taié’pagé faults; for
overhead is increased and response time advefﬁély affected. This‘is a
major reasonvwhy many systems make these these two méﬁhlégﬂpermanently
resident. |

Hence transparency of structure rather than efficiency is the real
{ssue. Careful design may eliminate the need for two levels of both the
memory manager and the scheduler. Such a design has been proposed for
Multics using a two level scheduler and a single memory manager. A simple
scheduler implemented below the virtual méhofy:woﬁid allow use of
processes by the virtual memory manager, while a more complex scheduler
implemented above the virtual memory would implement user processes and be
able to take page faults. By‘careful design, the Tow level scheduler |
does not need to use the virtual memory. "

One of the kéy questions here is the lafger'iésue’of the proper
structure for an operating system. We have coﬁééntfated on the design of
just one part of an operatihg system, the paging‘aysteﬁ. The previous
discussion points out the need for cbnsidériﬁg'ﬁhe deéign of théﬁpaging
system in the context of the overall system structure. The general |
problem of structuring Opetating systems has been treafed by many

researchers [Li72] [Di68b] ([Ha70], and is beyond the scope of this thesis.

67

3.3.4 System Versus Combination Paging Systems ‘

Little has been said to this point about syageqFProcesg paging
systems, with the exception of the discussion in section 3.2.gy¢ons;dering
Multics as a system process paging system with a single page control
process. To remedy this defic%gpcy, we diqguqa'in thig agct;?q how‘the
two process combination paging system presented in section 3.3.]1 (and
implemented on Multics as discuaaed‘in Chap;e; 4)‘cou1d-bgcome a system
process paging system us;ng three system processes to img;enent the page
control funcfions. |

The combination paging system of sec;iqn,3;3.1vc§p be diewinto a
pure system process paging systeg by rgngvingupgge fgq}; hgndling (memory“
allocation) from the user p;qqe;;es.’ Instead, a ﬁhirdrgystem process will
be assigned the page fault handling Job, Thus a user process taking a
page fault sends an interproceas messagg to this fgu}&_haq@ling‘process,
vhich performs the steps of Figure 3.§,ihﬂhgq‘the faulged'on pngg‘hgs been
read into the allocatgd page f;ame, a8 message is_pept”bagkﬂppethe faulting
process, stafting it up again.

The essential‘difference between such a threg procegs system page
control and the two.prqcess combination page cpntrol iq that memory
allocation (page fault resolution) 1s occurring in a‘s;ngle system process
instead of in many user processes. ‘This has majorpimpliggtipna ip two

areas: security and efficiency.

68

- The system process design seemingly offers improved system security.
The memory allocation code, and the data bases reiergnéed'by this code are
removed from the address space of the usen's'proceés.r This not only makes
the user’s address space smaller and more compact, -but makes it impossible
for the user to intentionally or inadvertently damage this .code and data
and thereby affect other users. This separation is lmportant in systems
~ with no protection mechanisms, but since most computer systems do offer
some means of protection (e.g. supervisor mode, write protected memory, or
rings as in Multics) there 1s likely to be little if any extra protecﬁion
from the user afforded in practice by handiinswp;geiiﬁulta”in a separate
process.

More significant is the effect of the.page fault handling process on
system efficiency. First, there is the extra overhead required by the
interprocess messages needed to repoit the'page fadlt to the syétem
process, and to signal completion of the fault to the faulting process.
Even if the message sending overhead can be minimized there is the
additional expense of scheduling, that 1is saving the state of the faulting
process and starting the page fault process, and vice versa when the fault
is completed.

There 1is yet anothei cbnﬁidergtion with réspeci to efficiency,
important in multi-processor cohfigurations. ‘Nameiy, only one'pagé fault
may be processed at any time, because there is a single page fault
handling process to reaolve page faults;‘ While this could conceivably be
remedied by explicitly adding a page fault handling process for each
physical processor, note that the combination paging system does this

implicitly by having the user process resolve the page fault. Since as

69

many user proceases may be exscuting simmltansously ae there sre physical
processors, the combination paging system gutomatically expands or
contracts the number of processes handling page faulta:at any time.

Of course, the preceding srgument is irrelevent if a global lock is
employed to prevent data base conteatisn, becsmise thean only a siagle
process may be resolving a page fault in any cese. -dowever, Chapter 5 -
will describe how using system processes smables splitting the global lock
into several locks. Hence the tangible diffepences between the two -
designs are likely to be slight, end the deécision ss-to whichis best for
a given system will dapend hesvily on such factors.as the locking strategy

and how efficient the implealntlxioa:of.pxﬁeeiﬂne is.

3.4 Advantages of Multi-Process Paging Systems

Having examined numerous multi-process pagins ayetems, the question

arises as to the euperiority of such designl over a conventional design
such as the Mnltica page control described in aection 3 2 1. There are
four areas where the multi—process deaigns offer decided advantages.

simplicity, modularity, security, and expandability.

RS

While these advantages accrue to ell nulti—process designa appearing
in section 3.3, the following diecussion pertains ditectly to the two

process design presented in section 3 3 1 whoae 1nplcnentation is

discussed in the next chapter.

70

3.4.1 Simplicity

The pulti—p;pcess design 1s ¢lgarer‘§qd,g§sigg to undq;s;qnd’dug to
the separation of the allocation and dg;;lpcggi§gm§§?kg into separate
processes. Bothﬁ§hg-core,managgr‘gﬁogeag,and“tgg_gggingfq§yiqe manager
are simple, agqu;ntial algorithmamyhich can P°~94§§5?t99d without
reference to the other parts of thelpagingtsysppmf‘}In-cégtgggg, the
cérresponding a;gorithps in Multigs are inggg}“}ngq ;9 ‘JEQQPl;x manner .
This complgfityuis la?ge;y due ;6:§he fgg; cﬁg;»gﬁe Fprge tasgg,split intok
sepazate processes by the multi-process design are Lumped fnto & siogle
process, that which tgkgs thg page fqg}fﬁwf?his_p?gpggs‘pgcoqea somgthigg
of a three ring cirquim_;rjigg tq dqvgveyyghgﬂg‘g; pgpé - free qugg on
the paging dqyiqe, freei§gage.inimain‘ngpory, tg;olvg‘;pe pggeﬁfgult.» In
order to do so, an ordering must be,}pgoqed»qglghgggbqaska,*siqpe a single
process must do thingswngﬁenti§;;y, T@gquqggpgpté}nggplem here is
caused by trying to place a squeng;aluorder439‘1nhgge?;ly parallel tasks.
There is ﬁq satisfactory yayvtg_gvo;dfthqagrdifficulF%fg except to realize
the parallel nature of thegg_tggkqﬁgnd a;low §h§n_tovbe dongfin pa;allel.

Separate proceases‘alao g;eqtly_giqpxiﬁy>§he‘ﬁregtmgnt of 1/0
interrupts. The chief source of difficulty with input and output
operations is the relatiyelf‘lqng,time tbey‘ggquire réla;;ye to
1nstruq;ion‘gxecut;on times. We havg_gL;eady‘geenkgpat in ;hg]Multica
page con;rol the progessvg@igh starts a pegd‘?rigg geqﬁgnce does not walt
fqrythe ﬁ??k write to complete, since to dq’qg‘gpqldvéelay page fau;t
resolution. Therefore the completion of the read writeisquegce must be

noticed by whatever process is around at the time. This of course

71

complicates things, as all processes mist be ready to pick up where
someone else left off.

On the other hdnd, the paging device ﬁéﬁhééf;§§ééiﬁh cdh wait for a
read write sequence to complete, Since nis fob ié‘ﬁé@%i?’h&éﬁing but
performing read write séquénces. stmifa?ly, thé core manager process,
once a write has been startéd to copy 4 pagé to thé paging dévice or €o
disk, cdn simiply wait until the wiitd ib Fratéhea, " '

Essentially we are arguifig 18 fdvor Sf & Bephrdfé process for
performing 1/6 (é.g4. the pagidy devicé Bandge? procéss doing the i/o for
read write sequénces) is opposdd €8 4 triditfenal faterrupt handler, which
spreads the 1/0 among whatevet ﬁrodééﬁgﬁ'ifﬁvﬁigéﬁffﬁg.‘ There afe two
chief advantages of the procé¥s approdch over the fntéirupt handler.

The first of these is the ciﬁfiéi'ﬁf‘iégdéfﬁ%ﬁ of the process
approach. The sequential nature of é‘féia;ﬁgiiégﬁﬁéﬁﬁﬁée {s obvicus from
the paging device manager’s aigbtifhﬁﬁ stdrt a read, wait for the read to
complete, start the write, wait for tﬁé’#fiﬁé’éo‘CéﬁﬁTété; In contrast;
the same algorithm impléménted in ah intéffupt hendler obscdres the fact
that a disk write always follows a bulk store read in performing read
write sequences. Some process sfdffé tﬁéiézﬁﬁi when the féié’é5§§fgies
the interrupt handler receives control. Inééffdﬁf handlers are 1ﬁ€£¥fabiy
written as dispatchers -- the aouréé dfvfhé'iﬁtéffﬁﬁf'ié?decérﬁinéd and
appropriate routines performed to do whatever 1§ necessary. dfhué;‘éféér'
determining the read portion of a read write sequence has completed, the
interrupt handler starts the write. _The’intéffﬁﬁt”ﬁandief regains control
later, on completion of the wfite, and ﬁ.ri113‘;“7};';2"3"‘:v.x;‘s.:"'r

In other words, the process which starts the /o is best equipped to

72

know what actions should be taken when the i/o completes. Having a
process perform i/o allows us to take advantage of this fact, while using
an interrupt‘handler places ali knowledge of what action to take in the
interrupt handler code, forcing the interrupt handler to sort out all the
various possibilities.

The second major advantage of the process approach 1s that it
permits formalized interprocess communication mechanisms to be used in
implementing the i/o. Block and notify primitives may be used by the 1/o
process, which blocks after starting 1/o. The process receiving the
interrupt merely turns it into an interprocess notification (the "notify"
of Figure 3.5). The awakened i/o process then continues with whatever
steps are appropriate upon completion of the i/o. In addition, the i/o
process can, if necessary, wait on a lock, where an—interrupt,handler
cannot (since the interrupt handler -may have interrupted the process that
locked the»lock).

The end result is a cimplification of ;he treatment of interrupts;
only the lowest level of the system, directly above the hardware, need be
aware of and deal with interrupts. All the processes performing i/o
implement the i/o0 in terms of waiting on events using the standard
interprocess communication tools.

The philosophy of using separate processes for i/o in place of
interrupt handlers is given in more detail by Clark [C174].

Dedicating a process to manage the paging device allows another
.simplification in performing read write sequences. A read write sequence
requires a main memory page frame. If anf process ﬁay start a read write

sequence if may be difficult to obtain the necessary page frame without

73

adding compiex module in:grcongpc;iqagﬁ‘asumngtbt paging device manager-
repeatedly performs resd write sequesces, 'a wain memory page frame may be-
assigned to the paging '—dtvicev»ma;g_m" pnmchtly for use as-a buffer,
avoiding the problem of dynsmic allocstiom. .This solution is possible in
the Multics page control, but much more difficult for two :'reasons: 1)
Since any process may start a read write #equemce, ény page Erame used as
a buffer must be protected against multiple simultsnedos use. - (Note in
the multi process scheme the 'paging dﬂ!t&ﬁ Reneger procuss acts as a lock
on the frame used as a buffer.) 2) A simgle prodess may etart several
read write sequences at the samp time. (This {s low the Multics page
control achipves paraiielism.) This smeuld require-several pa;g-frms’be
available as main memory bufféers.

The factors just discussed result ina simpler, easier to understand
paging system. This"has important ramificattons tnimmay areas; Since the
code is simpler and more understandable, it is easier to modify and:
maintain. This is valuable not only ia tasting and debugging the code,
but in being able to-change the algorithnw:ac~asa;tex date: with confidence
that the system will continue to work, and t® be sble to- predict any - -
changes in system performance. For nha‘b@heiriaséasﬁthufcoda-uould be

easier to certify, or to use in proving a given propérty sbout the system.

3.4.2 Modularity

The separation of the main memory page replacement function and the

Eee

paging device page replncement function into separate procesaes makes

74

possible a much cleaner modularization of page control. This is apparent
by comparing Figures 3.1 and 3.5. For example, it 1s clear from Figure
3.5 that the main memory replacement algorithm (represented by the box
labeled "get core'") is part of the core manager process, and is invoked
only by the core manager. This is not the case with.the Multics design of
Figure 3.1, where when performing paging device page replacement we can
suddenly find oufselves executing the main memory page replacement
algorithm. |

Improved modularity reduces the possible paths through the code, i.e.
lessens the interconnéctions between moduleé, and simplifies the |
1nterfacés Between the fesulting brogram moddleé.‘ Mﬁﬁy of thé Benefité of
bettei modularity match those discﬁsséd in cbﬁjuncfionvwith
simplification. Howe#er, though improved modularityyﬁnd greater
simplicityccamplémeﬁg'each other they are not the sdme thing. Modularity
can be bought at the expense of complicating the‘individual modules;
conversely a system often can be made to seeﬁ‘simpler by increasing the
number of modules.

The most important advantage of the modularity of’thermulti-process
design islwhen considering modifications‘of thé desigh to 6ther‘8ystems.
For example, consider a comﬁuter system with paging but without the
multi-level meﬁory assumed in Figure 2.1, i.é.1consistihg only of main
memory and disks, without a paging device. TO'usé the two. process design
presented in’sectibn 3.3.1 would require eliminatioﬁ of the paging device
manager and a slight change to the core manager so'thaf pages evicted from
main memory were always written to disk. Similhrly,vif another level of

memory were added, another module analogous to the paging device manager

75

could be added 1in a reletively"eraightfbruurd‘ﬁianer‘thuhnegenthe
additional memory. That is, the deesign expends and contracts easily and
modularly to fit any multi~level memory system, - Elther of ‘these two
modifications would necessitate extenstve, sajor alterationms to the page

control of Pigure 3.1, due largely te ¥ts lack: of fusietdivnal® modularity.

3.4.3 Security

The multi—process design presented bere offers eigniticant security
TSN -

advantages over a traditional scheme. By security ue mean the prevention
of unauthorized release or modification of inforuation (either procedures
or data). Dividing page control into separate proceeles increases
security between parts of the syltem, and alloue lepereticn of policy from
mechanism within page control |

Protection of the user from the syetem, or the sypten fron the user;
is not directly enhanced uhere mechanisms such ae euperrieor mode, ringsv
etc. already exiat. Houever, the advantages of sinplicity and modularityb
previously discusSed would nake any attempts at certification of the
multi-process page control much easier. For exenpie;‘thenlacee that read_
and write arbitrary pages are localized and eeeiiy identifiable, and few
in number. S

Security between parts of the system is erfectedkgb'the separate
address space afforded each page control prcceae. rer instance, only the

paging device manager process need be permitted to execute the paging

~device page replacement algorithm. Since the pagin; device uaed list is

76

used primarily for this task, we can also restrict access to the paging
device used list to the paging device manager process. No other processes
need ‘access to this list.

Separation of policy from mechanism is possible .if the system offers
rings as does Multics (or some other form of protectien domains) ' [Sc75].
The address space of each page control process can further be divided by
use of these protection rings. The progrems implementing the mechanics of
paging, e.g. reading or writing a page from or to disk, adding or removing
a page frame from a list, gathering usage statistics, etc. éan be placed
in the most privileged ring. The policy algorithms, e.g. deciding what
page to remove from,prinary memory, execute . in a less privileged ring, and
must call the inner ring procedures to get .the information needed and to
actually implement the decisions made. Thus the failure of the policy
algorithms could never cause unauthorized use or -madification of the
information in the pages. The system could be certified without having to
certify these policy componments. (Failure of the policy algorithms could
still result in denial of service.)

To summarize, the separation of the parts of page control permitted
by the multi-process design effectively allows extra "fire-walls" between
pieces of the system and and between procedures implementing mechanisms

from procedures deciding policy.

3.4.4 Expandability
Expandability encompasses two ideas. Oﬁé‘has been mentioned in the

77

discussion of modularity aad might better be tarmed adsptability, namely -
the ability to add another manager process to:tha-pagiig system to
manipulate another level of memory. The second aspect of expandability is-
the ability to increasge -the i~§mber of proceseds ‘exdcuting as 'core or
paging device ‘managers as the .gize af :the compater myéu‘n REOWS .

In a genmeralired computer utiliity with muktiple:processing units and
large amounts of memory, & point wikl evewtually:be redched where a single
core manager process will be unable :to supply ‘fréeé - main memory page frames:
fast enough, even if the core ‘manager 'is always eéxediting, since with
several processors there will be multiple usdr piocdsses eéxecuting
simultaneously, each taking:-page :faults aud demandtng page frames. In
such a situation, the solution 'is to c¢reate additiosal core manager
processes ‘(or paging device manager processes) '&s wéeded to supply free
page frames at ‘a sufficient rate. ALl of ‘the-core Wakager processes would:
be identical, and follow the algorithm of ‘Piguré 3.2.-

This design would be rather inefficient . if-thedglobal:locking
strategy used by Multics is employed. The wmuktiwptocess dasign, however,
enables elimination of this lock by structuring the paging system’s data
bases into distinct parts, each of which.needs to:be accessed only by a
single process (or type of process; e.g. if eheﬁe%ara&nﬂitipkevcore
manager processes)., This would significaﬁtly»déérei&eﬁthé interference
among processes, producing a corresponding increase in system efficiency.

This issue is considered in more detail in Chapter 5.

To conclude, the multi-process design offers advantages in

M SN

simplicity, ease of understanding, increased functional mbdularity,

78

enhanced user and system security, adaptability and expandability. The
implementation described in the next chapter demonstrated that these are

not just theoretical benefits but offer practical advantages as well,

79

CHAPTER 4

A Multics Implementation of Multi~process Page Control

4.1 The Multics Implementation

Many readers will doubtlessly be strongly tempted to skip this
chapter; we urge this temptation be resisted. Althbugh the topic of this
chapter is an actual implementation on the Multics system of the
multi-process paging system presented in section 3.1.1, the emphasis is
aot on the details of Multics or the particular 1mplenéntation of a paging
system, Rathér, the emphasis is on the insights gained into the design by
its implementation. There are always problems arising in implementing a
system that are not apparent from the design of the system. The purposes
of implementing a real multi-process paging system were to demonstrate the
validity of the design, determine if the system’s theoretical benefits
were manifested_in practice, and to measure the‘performance of Bsuch a

system,

4.1.1 Size and Scope of the Implementation

To give some idea of the size of the system implemented, the standard
Multics page control consists of 28 moduleg written in assembly language
and PL/l. These total approximately 4700 source statements, 360Q .in
assembly language and 1100 in PL/1, which compile into almost 11,000 lines
(words) of object code. To implement the mylti-process design, extensive
changes were necessary. These changes are summgrized,in\Appendix A, which
lists the modules in the Multics page‘cqntrql,thgt we;e‘chaéged or
deleted, and the modules that were added. Appendix B lists the program
modules required for the multi-process page control. For ease of
implementation, the entire multi-process page control was writtea in PL/1
except where already existing components written in gsqgwbly‘lqngqgge‘wgre/
used with little or no alterations. The size of each‘of thg modules in
source statements is also listed in Appendix B, and the size of the object
code for each program. Excluding minor changes in existing modules and
some changes to the scheduler nee&e& toMéhéﬁlézimplemeﬁfiﬂg page control
as system procésses, approximately 1700 PL/l statements were written. The
total size of the 32 modules comprising multi-process page control was
roughly 3700 source statements, 1500 in assembly language and 2200 in
PL/1. Note the numbe; of PL/1 source statments doubled while the number
of assembly language source lines was reducé& b§'moré thén:half. Bécéuse
of the large increase in PL/1 source lines, the resultiﬁg modules compiled
into slightly more than 13,000 lines (words) object code. This increase
in size was due to the effect of writing the progréﬁétin;a higher level

language.

81

The structure of the implemented system was identical to that
illustrated in Figure 3.5. Both system processes, the core manager
process and the paging device manager process, were driven by control
procedures named "core manager™ and "pd menager™ respectively. These

programs received wakeup signals from otheér processes, determined what

action to take as a result of those signals, cdlled the receséary routines

to accomplish that action and thén signalled the completion of that action
to any waiting process before blocking thé system process. A more
specific idea of how these processes wotk may be gotten from Appendix C,
‘which contains some of the actual PL/1 $ource prograws fof the

core_manager and pd_manager modulés. Por codipletenéss, comparable code

from the third part of the systew, the page fault path, fs ‘also included.

This 1is the code that runs as part of the user process and fs responsible

for resolving page faults.

4.1.2 Differences of the Implementation from the Model

There were several points in the actual 1mpleméntation where it was
found necessary to deviate fromkwhat the model igy}igs. One of the mogg
significant of thesé was in the mechaniamku;ed.to 1mp1¢men£‘the core and
paging device manager processes. Thefmodel.déés not differeﬁtiate between
the system processes used to implement the core manager gn@ p#éipg device
mahager and the typical user process except in the fungtiphs they perform.
In practice however, they may need to'be-implemented differently in order

to obtain the efficiency and responsivgneaa'required for system functions.

82

~

Additionally, the system processes must be ahle,;o,éperatebwithout taking
page faults, since they are used to implement page faults.

Hence a special type of process was used tb,implement ﬁhe gore‘
manager and paging device manager prdceaseatthgp were aimpler and involved
less overhead than a full Multics process,. All procedyres, iableé,'and
temporary variables used by the core and paging»device manager p:ocgsées
were fixed permanently in main-memory. The4p:ocesges,;lso lacked the
ability to add new segmenté to their addfesa space, but this is not an -
ability needed by the page control processes anyway. |

The manager processes were also restricted f:quusing the full
interprocess conmuniéatiqn ngchanism_pﬁ,yglticq, bquuaé_tq éermi: them to
use this facility would have requi:ed‘mucgﬁgprg'che,Qnd data be‘kgpt in
main memory permanently. ;ns;ead, less équﬁgqu p:imi;ives$gerg used
which allowed processes to wait on events and §igna1 the occurrence of
eveats but did not allow 1nterp:oce§s messagewqending; ‘The use of these
primitives, which were already part of the ggqug:ding;tics system, h@d
some performance implications because df their ;ncefac;iqn_with #he
Multics scheduler. Therefore, a speQ1ai 33;,°f g;i&i;ivgsﬂqgs implemented
and used only for waking up the memory manager proggcsga.f_These
ptimitivesrigaured that once either of the system processes was :eadytto_
run, it was started as séen as possible.

Another difiiculty invelving the yait,p:igitive grqseigromi;hg
restricted enviranment‘a process operates in after a page fault., At this
time, the faultiag process cannot take another page fault, thus it must
run on a wired s;ack. Myltics does not.provide a wired stack on a per

process basis, but rather on a per physical processor basis. In a

83.

situation where a procéﬂs needs a wired stack, it uses the wired stack
(the "prds", or processor data segment, in Multics teriinology) associated
with the physical processor curféntly executing the process. ‘This has
severe consequencesvfot the waiting operation. ‘1f a process surrenders °
the processor while using the prds as a stack, its stack history is lost.
The next process to run may overwrite the pr&ﬁ&sﬁacﬁi*ihd even ‘{f this
could be prevented the process may run on ‘Hdifférent ‘physical ‘processor
(with a different prds) when restarted. e

The result of this restriction 1s that 1f a_ﬁtﬂceif’reéolving a page
must do so at a point where*it‘ﬁdé”hé'ittek“ﬂiifbty'on"ﬁhe“prdb. This
situation arises in the implemefited sulti-process page control whien a
faulting 'pro;éss calls the main memory page frame alldcator, who discovers
there are currently no free page framés. At this pofnt the core manager
is signalled to free more page frames, But ‘the fdulting process must wait;
blocking itself and surré:iaefin.g the processor. If ‘the’faulting process
did not give up the processor, the core miﬁiief”ptééuiévﬂight“ﬁiéér'be)
able to run (e.g. in a éingle”pidcéséof”aystenf; Srhﬁéfthg’séaék'histofy '
at this point must be lost. This is not too sevére; since nothifig has
really been done up to this point Gther thin detsriinifig aﬁatiﬁigé”dséiéd
the fault. The mechanism used to solve ﬁﬁis pioﬁléﬁ 18 tb“ﬁiéi the wait
primitive note the pf&cesa is running oﬁftﬁé'ﬁrd&33gﬁﬂjt¢sthri the process
by repeating thgkiﬂStruction that csused the page’ fault when the process
is unblocked. This same'géEiOn; reﬁeatiﬁgfth&*faﬁifiﬁg instruction, is
also used to restart a process waiting fot the completion’ of a read

operation to bring a fauited on page‘intb?cbri.f IA€he firdt: case, since

84

the fault has not been resolved, the page fault code }éwinvokédragain, but
this time there should be a page frame available. In the latter case, the
fault has been successfully resolved, and the process continues merrily on
its way.

To summarize, the implementation differences were due primggily to

the simpler type proceas‘usedVQQ implement the core and paging device

manager»prpcesses,’which_impos§d soyg(rgstgigtiong;pn ;he»fuuc;ions‘these
processes could perform, and to ;he strategy gged;gp‘nplgicalfgr
implementing a wired stack, The q;her:d;ffe:gngeg,frgg_thg mode; due to
segmentation are presented 1n,s¢¢;;on 4,23:gndgreault;inladdigg extra

functions required to deal with segmentation ;9_;pe Job of the pystem

processes.

4.1.3 Performance

To compare the performance of the multi-process paging system with
the standard Multics paging syétem,'é systéhlséﬁchhdrﬁ”wéé run using both
systems. A slight change was made to the standard system in order to
obtain moreﬁmeaningfui results Eo? compari&dn;"'Tﬁéutéiﬁqn'fbr this change
was the larger size of the mu1ti4process'page'cbnEfoltéystem. ‘Nine
additional pages of memory were devoted tozﬁérhéhently‘ﬁited system

progréms and data in the ﬁulti—ﬁfocess pagé éoﬁiroi#i This meant that the

primary memory available for holding user pages was reduced a
corresponding amount. So that the size of main memory usable for paging

by user processes vbuld_be_compaiable-in bbthvcgge;; hine;additipngl pages

85

were wired in the standard system and left empty.

This modification did not make the size of the pageable memory
exactly equal on both systems. The multi-process page control keeps a
free list, and the number of frames on this list varies constantly as the
core manager adds page frames and faulting processes request them. Each
page frame on the free list reduces the amount of available memory
available for paging; 1if, on the average, two page frames are on the free
list, the effective pagable memory has been reduced by two pages. When
the benchmark was run, the core manager was set to keep between four and
eight page frames free. (That is, when awakened, the core manager would
keep freeing page frames until there were eight; the allocating procedure
would wake up the core core manager when the number fell below four.) A
very conservative estimate is that on the average three pages were on the
free list. To compensate for this effect, another three pages were left
empty and wired when running the benchmark on the standard system, for a
total of twelve (the previous nine pages due to the increased wired code
and data plus three to compensate for the pages on the free list).

The results of running both systems are summarized in Figure 4.1. (1)
The multi-process page control system took 8.7% more page faults. The
increase in page faults is accounted for by three effects. The first of
these is the inability of the adjustment described in the preceding
paragraph to make the effective pageable memory exactly equal for both

systems. The second effect is due to differences in the algorithms used

(1) While useful for comparison, these numbers were obtained in a special
test environment and do not reflect the normal operating performance of
Multics.

86

Standard MIT Multi-process
System page control

Actual Estimated
Number of

page faults 60,261 65,504 65,504

Average time

to process a 1973 2043 1226
page fault
(microsec.)

Total CPU time
attributable 119 307 184
to paging (sec.)

CPU time spent (sec.):

processing
page faults 134 80

in core manager
process 141 85

in paging device
manager process 32 19

Figure 4.1

Performance of multi-process page control

87

for page replacement, specifically in when pages are replaced. Since the
multi-process page control evicts pages before the system runs out of free
page frames while the standard system only replaces pages when no free
page frames are left, the,pnga8;§g;d 1n:qpqggy,§;ygny given time may
differ. Given the same execution sequence, changing the pages in memory
will cause a different f&ult pattérh:and fault rate. Third, the average
time to resolve a faul:vchgngcd,,ﬁg.kigurg @,L%phoun. AnxidifféEﬁﬁée in
the time required for any event in a multiprocessing environment can alter
the pattern of page faults by changing the contents of ﬁﬁé §é§§:y;

Although the average time speat processing a page f§§L§ ;ggé%ged
relatively constant, these times are measured differently and are not
directly comparable. Since page replacement in both ﬁzig,pemoty”;ﬁh the
paging device 1s done at page fault time in the standard page control,
that time i8 included in the time to process %sﬁﬁﬁﬁff*ﬂéfg vhile this time
is attributed to the core manager or paging device manager in the
multi-process scheme. Thus one JSuId expect the time épent'ptoééssing a
page fault to be much less for the multi-process iné&ﬁhéﬂtggion.

The fact that the time is not smaller is due_ggkghe ogggheéq of PL/1.
In the standard system; all but a small‘ftaction ofﬁ%ﬁéCSOJEthit runs at
page fault time is written in assembly language. In the multi-process
system the situation is reversed, with the_largg‘majority of the programs
written in PL/1. There are two sources of ovérhead attributable to PL/1
at work here. One is the fact that in general, algerithms written 1in
assembly language are ahorteg and execute faéter than the same algorithm
written in PL/1. (In cases, the object code generated by PL/l may be a

factor of two or three larger.) Second, and more important, is the

88

overhead involved in making a PL/1 external procedure call. In the
assembly language version, subroutine calls and returns are made via a
single transfer instruction. A more complex sequence is required in PL/1
so that the stack and the PL/1 environment are managed properly.

In Multics measurements have shown that a PL/l external procedure
call requires on the average 67 microseconds. This figure is for a call
with no arguments; each argument passed adds approximately two
microseconds. The path followed after a page fault occurs in the
multi-process page control involves twelve external calls, Using 70
microseconds as an average time for one,extarna;.call (i.e. assuming one
and a half arguments per call), this means that a total of 840
microseconds of the average 2043 microseconds .required to resolve a page
fault, or about 41X of the total, is due to the procedure call overhead
alone.

A similar calculation shows that twelve PL/l1 calls are also executed
in the course of freeing one main memory page frame. Measurements from
the benchmark show, assuming that all of the ;ime‘spént-hy the core
manager was spent freeing page frames (not strictly true, see sections 4.2
and 4.3), that an average of roughly 2100 microseconds was required to
free one page frame. Agéin, the PL/1 call overhead was 840 microseconds,
or about 40%. |

Using this figure of 40%Z, and reducing the amount of time spent by
each component of page control in the actualyﬁénchmérk by 40, gives the
results shown in Figﬁre 4.1 as the estimated'perfofmanceybf ﬁulti—process
page control. This shows the estimated perforﬁancebimprovement if all tﬁe

external PL/l calls were changed to internal broceduré calls,

89

There is a smaller effect due t5- the repetition of certain steps in
each PL/1 program. Por exdmple, pointers to data Diisés may have to be
initialized in several proe&ddrésévfﬁitéiﬁ*bf judt onte a8 in the adssembly
language version of page control. Aviother factor in the increased
percentage of processor tisme attributéble to the paging system is the fact
that some operations included ifi the totel time ehifgéd to the
multi-process page contfél are not coxmted vowirds the overhead of ‘the
standard Multies paging systeém (see scetfouns ¥.2 ‘and 4i'3).' While 1t 1s
extremely difficult to estimate the effeet of ‘these tWh factors on
performance, their elimimattow wight tesult ¥ 'a PEbthér {mpfovement of
5-10% over the estimates in Figure 4.1,

Achieving a perforsanee ‘lével iﬁﬁillihg”ﬁfriipfqvfng upon the current
Multics page control was not a goal of the test impTementation. However:
it 18 the author’s belief that the multi~process implementation is nét
inherently léss effictent; it could be ﬁiﬁb*ﬁiﬁh ﬁéf@’tﬁiﬁﬁfaﬁle'if
appropriate programming style wae used, #uch as only d#ing internal
procedure calls, which Maltics PL/1 ‘implements very efficlently, and using

global variables.

4.2 The Interface with Segment Control

Multics is a segmented system and has the concept of "active" and
"inactive" segments as discussed in section 2.1.4. This necessitates
gsome extra function in page cqntrol, which leadc_to a more complex core

manager and paging device manager than would otherwise be the case. The

90

extra functions that must be added to page control, and the complications

these extra functions introduce, are examined in the next two sections.

4.2.1 Necessary Segment Control Functions

The chief area of contention between segment control and page control
is the page table. Page tables are allocated by segment control, but must
be maintained by page control. When segment control wants to perform an
action which may affect the page table words, it must call upon page
control. In the case of the multi-process design of this thesis, that
means the core manager and paging device manager processes.

There are four segment control functions which affect page table
words. Thegse are: 1. Activating a segment, which requires the file map
containing the permanent disk addresses of the segment’s pages be copied
into the just allocated page table. 2. Changing the size of the the page
table (a "boundsfault" in Multics), which requires the contents of a page
table be copied into a new, larger page table when a segment grows. 3.
Deactivation, which flushes the segment’s pages back to disk. 4.
Truncation, which deletes some or all of the pages of a segment, requiring
the deletion of all coples of those pages in all levels of the memory
system.

.Of these four, only two require intervention by the core manager and
paging device manager processes. Activation does not, because a process
cannot take a page fault on a segment until the segment has been assigned

a page table; thus segment control can be responsible for initializing the

91

page table. Similarly, when a process extends the size of a segment
causing a larger page table to bé allocated for it, the process can copy
the page table itself, since no memory is allocated or deallocated the
core and paging device processes need not be ;nvglvgdf .On the other hand,
both deactivation and truncation explicitly require memory deallocatiqn,
and thus the assiétance of the memory mgnlgp?ﬁp;gggi;gg, who%e job it is
to do memory deallocation.

Deactivation requires the "cleaning up" of any pages of the segment
remaining in memory. Pages of 1nac;1vg segﬁgn;sygaqgggwstay in mg;n
memory or on the paging device becausgithe:e wi}l no lgnger bgipage tabig',
words for these pages. Thus the pggingwdevice_mqaage:“gust perform read
write sequences on any pages éf the segment bein§t¢g§gtiygtgd;that reside
on the pagingrdevice. Any;ppges”in mqinrgeggxy must alpo bg'qv;cted, gnd‘
the core manager must‘insgre that the gy;cﬁed P?&?‘;%ﬁ?_&?t put back on
the paging device.

Truncation is somewhat easier in one respect, for no i/o0 need be
done. Since ;hevpages are being deleted, copies F??iﬁiﬂg‘oﬂrﬁhﬁ=938138
device or in main memory_maj sipply be_q;sca;ded,?§g§y;hg1r,yag¢,frames
claimed and added to the gppgqp:i&tg”frge ;is;,tlAgy,d;gg copies of the
~deleted pages must algo be throyn away, énd ;hefdisk“recprdsmghgy occupied

returned to the file system for future reuse.

4.2.2 Complications Introduced
Since truncation and deactivation of segments both pdténtially

92

involve main memory and paging device memory deallocatipn: these operations
are logical cendidates for implementation:in the ceore:and.paging device
" manager processes. Doing 30 necessarily-complicates these processes as
they no longer perform a single task. They must now be awakened when a
segment i8 to be. truncated or deactivated to perform the nmecessary ateps.
This means when the core or. paging device .manager-is atarted up, they must
determine why they were awakened, and perform-the correct function. Note
also that. just sending a wakeup signal is insufficient; more information
is required in the case:.of a truncation on-deactivation: - In both
instances the segment on which the operation is to be performed must be
specified; additionally for a truncation which pages ‘are to be deleted
must also be indicated,
Thus the core manager and paging manegeruhecOme.meesage receivere;

responding to interprocess messages from other processes to free page
frames, truncate specified pages or clean up designated eegnente.' When a

Lave,

process wishes to truncate a segment, a message is firet sent to the

paging device manager process, uhich deletes any copies of pages of the o
segment on the paging device, returning the pa;:"frames bound to those
pages to the free pool.‘ Upon receiving notification of the completion of
this part of the task from the paging device manager, a nessage is sent to
the core manager process asking him to finish the 3ob. The core manager)
deletes any copies of the segment s pages in core, edding their page
frames to the pool of free main memory page framee, and signals that the
truncation is complete. Deactivations are hendled analogouely, with pages

‘being returned to disk rather than deleted

An alternate strategy is possible and was contempleted for some time.

93

The truncation and deactivation functions could be parformed by the user
process, rather than asking the systém-processes to perform’ these tasks.
This has the advantage of keeping the core:and:paging device manager
processes ‘simple, but distributes part of thé fumetion of page control-
back to the user. This implies deallocation of memory may be going on in
more than one place at a time. There is:cleatrly:a trade~off here between:
making the system process more complex and:shoving:-mystam functions back
into the user processes. In the: final sansiyeis: ttiwae felt. the prime -
consideration was to coilect~ati:en&»plgefcontrél&oiaraztonsﬁinro a:aingie

process.

4.3 Other Page Control Functions

In section 2.1 two other page control functiona were discussed'

memory reconfiguration and memory wiring. In the context of the system
. @ 5;

processes, memory reconfiguration amounts tovadding or deleting page
frames from the supply that may be allocated, mamory wirinélmeans
guaranteeing certain pages will not be removeo from main memory. These
tasks, though of secondary importance,rare.also within the province of the
core and paging device manager proceases." - (

The steps involved in adding or removing memory have already been
described in discussing memory reconfiguration (see section 2 2.3). These‘
steps are carried out by the appropriate memory manager process in

response to a request from the process performing the reconfiguration. On

completion, the reconfiguration process is notified Hence reconfiguring

94

page frames presents no additional complications, merely increasing the
number of functions the paging device manager and core manager processes
ﬁust perform.

Wiring pages (section 2.2.4) was implemented as a system procedure
called by user processes. The only effect ;pon the core manager was to
include a check for wired pages when choosing pages for removal.
Implementing wiring in this fashion reqﬁires no‘;éiioﬁ by the core manager
process and was done largely for convenience, as the currently used wiring
procedure could be used unchanged. Wiring could be done by the core
manger process just as easily; becoming an interprocess call instead of a
simple procedure call, Absolute wiring, however, must be implemented by
the core manager process since desliocation of aomeApagag;mayy0ccur and
special allocation techniques may be necessary. This adds an extra
function to the core manager process,

Unwiring pages can be implemented in the core manager process or
simply by procedure calls. The choice:is largely ome of convenieance. To
reduce the amount of code rewritten for the test implementation, unwiring

was implemented without the intervention of the core manager process.

95

CHAPTER 5

Eliminating the Global Page Table Lock

One of the major benefits of having multiple processes implement the -
paging system is the ability to simultsneously execate two processes
performing page control functions. This parslleltsm in the performance of.
page control functions is loat, however, if a global lock such as used 'in
Multics (section 3.2.1) 1s used to prevent data base contention. Since
only a single ptocess may have control of the loc¢k, only one page control"
function may be executing at any moment. This 6f eourse prohibits
handling several page faults im parallel,

In this chapter a strategy for splitting the global page table lock
will be developed. By identifying the processes using each page control
data base and which data bases each process may reference simultaneously a
strategy using individual data base locks can be implemented. Such a
‘scheme allows full advantage to be made of the multi-processing capability
of the combination page control presented in section 3.3;1, including

simultaneous handliﬁg of page faults.

96

5.1 The Strategy

One reason the global lock is used in Multics is that all page
control funétions are perfofmed at paéé fault time. Tﬁﬁé:a’ptacess
handliné‘a page fault ﬁilivfirst access the paging device used and free
lists, then the core used and free lists, etc. Since every user process
taking a page fault must sc¢esavall the page control dats bases, all the
data bases are subject to data base contention. The global lock protects
everything, even tﬁbugh some data will no longer be referenced or are not
yet needed. _ v

Hence s first stepiiﬁ,éividing the global lock is determining which
data bases are subject to contention, pClea:%¥ 1f a data base is accessed
by only a single process that data base need not be protected. Figure 5.1
presents this information for the paggwcggprgL;Qata‘basesf For example, a
user process handling a page fault would have to access the cbrexfrée list
to obtain a free page‘f;é¢e to allocéte_tot@pgjfaulted—on page. Clearly
the core free list must also be referenceﬂ by the core manager process
since the core manager'isﬂthe process responsible for adding page frames
to the fregzliat. |

Not surprisingly, all the data bases are used by more than one
process. Pages are refergpced not only by bbfh‘of’the system processes
but also by user processes faulting on the pages. The other four data
bases are each accessed by two or more processes. To allow parallel
execution while preventing contention,'accesé:éﬁ these data bases must be
arbitrated in some fashion. A lock on each list is the obvious solution.

Thus we assume a lock is associated with each of the four lists; the lock

97

core free list

core uaed_list

paging device
free list

paging device
uged list

pages

(page table words)

Referencing
Process

core manager

user process

core manager

user process

core manager

paging device

manager

core manager

paging device
manager

core manager
paging device

manager

user process

Figure 5.1

Reason for access
e
add a free page frame
gbtain free page frame

to redolve page fault

chose page frame for

deallocation -

add newly allocated
page frame

obtain free page frame
for allocation to page

" treimoved from core

add a free page frame

add newly allocated
page frame

chose page frame for

~ deallocation

when doing main memory
page replacement

when doing paging device
‘page replacement

when resolving page
faults

Processes accessing page control data bases

98

must be set before access to the corresponding list is allowed.

Similarly a lock will be associated ﬁith each page, and the lock must
be lockEdbbe£0re operations may be carried out on the page (e.g. -
resolving a page fault). This of course is not new; Multics already has
such a per page lock. | |

With multiplg locks, precautions are necessary to preclude system
deadlocks. Thus a second important ‘step in eliminating the global lock
and replacing if with distfibuted locks 18 determining under what
conditions a process needs to lock more than one data base. 1f such
conditions never oécut, a system &eadlock cannot occur due ﬁo two
processes walting for locks held by one another.

Situations uherg a process needs accéss.éimultaneoualy to two objects
protected by locks occuf frequently, as shoén in Figﬁre 5.2. For
ingtance, any user process taking a page fault must lock the tqulted on
page wvhile the page ia‘regd in, and while the page is locked the process
must access the core used list to add the page to the used list.

At this point the next step is to develop a locking protocol defining
allowable actions on the locks which guarantee system deadlocks cannot
occur. We will use the standard Multics avoidance strategy which involves
a "locking hierarchy" and "waiting rules”. The locking hierarchy states
the order in which locks are locked. This insures that if two processes
both need locks A and B then both processes lock these locks in the same
order, preventing one process from locking A and waiting for B while the
other process locks B and waits for A. The waiting rules state when a
process may walt for a lock without giving up the processor (i.e. when

waiting may be "busy" waiting, done by repeating the attempt to set the

99

Procgsg

user process

core manager
process

paging device

manager process

Data Bases

- Io Be Locked

Pagev
core used list

page

-core free lisg.

page .

core used list
ST . sua Femoved . from.main memery

pase”

‘paging device.

free list

page

paging device
uged list

Figure 5,2

'Sitﬁ;tion‘Requiring

- Bakh.Deks Bases Be Locked .

| Adding a page just allocated
a page frame to. the used list

. Asiihg'foé/&ipagé frame
+oonlo-sallocate .tora page that
has been faulted on

‘Remgving from the used
"list a page that is to be

Requésfing a free paging

wﬁ"li(i&cﬁ” fxeme to sllocate

to a page

- «r Deleting from the used list
a page that is being removed
-~ fxrom the paging device used
1ist ’

Processes locking multiple locks . .

100

lock until successful, as opposed to non-busy waiting, implemented in
software and requiring the process to surrender the processor). Thus a
process must not be allowed to surrender the processor (block itself) with
a lock set if some other ﬁrocess might perform a busy wait on that lock.

It is not difficult to determine what the protocols must be. From
Figure 5.2 it can be seen two levels of locks exist =-- the locks on the
four lists, and the page locks. A process needs to have only ome of each
locked at a time.‘ Clearly, the protocol must require locking the page
lock first. For example, after a page fault, the process taking the fault
must lock the page before accessing the core free list to allocate a page
frame. This is to insure another process has not already begun allocating
a page frame to the page. Hence we have the following rule defining the
locking hierarchy (order of locking):

A page must be locked before attempting any operation on the page,
and before that page may be added or removed from the core used or free
list, or the paging device used or free list.

The waiting strategy is largely determined by the relatively long 1i/o
times. That is, pages must remain locked while read and writes from and
to the paging device and disks are in progress. Hence pages will be
locked for long times, making busy waiting on page locks hopelessly
wasteful of processor time. (In addition, a process looping on a page lock
could prevent the process that wished to unlock the page from ever
executing and thereby freeing the lock.) Thus a process wishing to wait
on a page’s lock must block itself, giving up the processor. Note the
hierarchy rule given above implies a process waiting on a page lock cannot

possibly have one of the four used/free lists locked.

101

There is a further question of what to do if a proceés needs to lock
several pages of the same segment simultaneously. Such a case may occur ’
in performing such functions as deactivation or truncation (section 4.2.1)
that operate on all pages within a segment. Usually such a problem may be
solved by locking each page in turn, performing the necessary actions on
the page, unlocking it and continuing with the next page, etc. In Multics
this method is adequate, however if it is not sufficient, locking the
pages in order by page number imposes the necessary lock ordering to
prevent deadlocks.

For the locks on the used/free lists, busy waiting is not only
possible but desirable. These 1ists need only be locked for several
instructions, as long as required to add or delete an entry. Thus wait
time should be minimal. Note assuming busy waiting here implies a process
never gives up the processor with one of the four lists locked; that is,
the add/remove operations must be non~interruptible.

To summarize, the rules for waiting on locks are:

1. A process must block itgelf while waiting on a page lock.

2. A process may block itself with a page lock locked.

3. A process may busy wait on the lock associated with any of the
four lists of Figure 5.1.

4, A process may not block itself with one of the four lists of
Figure 5.1 locked.

The last two rules are enforceable by requiring all additiouns and
deletions to the lists be made using system functions. This has the added
consequence that the callers need not even be aware of the existence of

the locks or the rules. The primitives themselves are written to obey the

102

protocols. Indeed, if the used/free lists could be implemented without
locks by carefully choosing their atructure, ‘the: last two: rules would be
unnecessary. Thus the implementation would be transpaxent to the user of
the primitives.

In other cases, following these rules may require knowledge .of the
implementation of certain system fuynctions. In particular, section 3.3.1
discussed implementation of the routine that allocates.free page frames.
The approach chesen involves blocking the calling process if there are no
free page frames. Processes using such ‘an allocation.routine must be
aware that they may block themselves by callimg the:sllocation routine,
and ensure this would not violate the locking rules.

How do these rules manifest themselves in practice? Consider the
core manager while attempting to free page frames. He attempts first to

lock a page. If the core manager fails in this attempt to lcck the page, ,

i . 1 i

yfhe merely trieq another page on theluéed list. (If he really must have‘
this particular page, by the rules above he must go blocked) " However
assuming the core manager succeeds in locking the page, he may then B
examine it to decide if it ia a good candidate for removal. lf the core
manager decides the page should be replaced he renoves it from the used
1list (locking the core uaed list while doing so), gets a paging device |
page frame to write the page to if the page is not already on the paging
device (locking the paging device free liat momentarily) and starts
writing the page. The core manager may then block himaelf until the write
completes, at which time he adds the paging devica page frame to the
paging device used list, unlocks the page. and finally adds the now free

core page frame to the core free list.

103

A process taking a page fault blocks himself if he cannot lock the
faulted-on page. When the page 1s unlocked, the process will be awakened
and can try again. When the process succeeds in locking the page, he can
then determine if the fault still needs fo be resolved.

Adopting the scheme outlined above will indeed permit not only
simultaneous execution of both system paging processes (or multiple
instances of system processes) but also parallel execution of user
processes handling page faults. As long as user processes do not attempt
to resolve faults on the same page they will not interfere with one
another. Waiting for data bases is minimized because the data bases

(1ists) need remain locked only while items are added or deleted.

5.2 Locks on Segments

The locking strategy presented in the preceding section is
insufficient in a segmented system such as Multics. This is because
certain information about each segment is maintained by page control. For
example, the number of pages of the segment that are currently in main
memory is one such item of information. In é per page locking scheme,
there is no way to protect such déta Qithout additional mechanisms. For
example, a process faulting on a page will need to increase the count of
the number of pages in core for the page’s segment; if simultaneously the
core manager process is evicting a page of that segment it must decrement
the number of pages in main memory by one. A race condition may develop

leaving the number in an inconsistent state.

104

Another example of per segﬁent,informngionawhich~page control
maintains in Multics is "quota". In Multics,.quota is an upper limit om:
the number of pages the segments of a directory may comtain. (Multics has
a hierarchical file system where all segments are cataloged in special
directory seg-ents; A directory’s quota restricts the amount of sﬁorage

that may be consumed by segments within that directory.) Page control -

‘must keep track of the quota as well as-the number of pages used by the

segments in the directory. A full discussion of quota is postponed to the
next section. |

Thus.in practice & segmented system would - need to add another level
of locks, namely per segment locks, to pfOtQCtéthﬂ information associated
with each segment and manipulated by page éontzol. It should be
emphasized that although the term segment lock is used, these locks are
used only by page control and not by sagmentvcdntrol. Segﬁnnt control may
need to use some sort of lock for proper. implementation of its functions;
however, the segment locks discussed here are not intended for such use.
The per segment locks discussed here are not locks.on the segment, but on
the page control information associated witheeach:segient.s,Inple-ented
beneath segment control, segment control should not be aware of their
existence,

How sheuld theae per segment locks be.incorporated? One solution
would be to use the per segment locks in place of the per page locks. In
this scheme, access to all of the pages comprising the segment as well as
to the per segment information, would be contrelled by the segment lock.
Having a single lock control all the pagea in a segmsgnt means that once a

process has locked a segment while processing a page fault, no other

105

LTI TR i TR

R O e

process could perform any action oﬁ that- segment (e.ig. fault on another
page, remove a page of the segment from: core) until- the page fault had
been completed. :Note, though, this restriectiom ﬁouid‘be advantageous
under certain circumstances; i.e. when performing a segment oﬁetation sach
as truncation or deactivation which operates on:-all of the pages of the:
segment. In such cases lockingiihe sagment ‘leck allows-the .entire
operation to be performed, where. in a fcwupageﬁ10ﬁiiag;seheaz'each page - in
the segment must be locked.

A better strategy is to implement the segment locks beneath the page
locks; in the same manner-as the locks oﬁuche&unod and free ‘1ists. - The
segment locks, like the locks on the lists;wnead:aaiy be locked for a- few
instructions while the pervaegnant information is updated. The rules
applying to the locks protecting the used-aﬁd frae. 118ts must also be
observed for. the segment locks. That is, a ﬁrneesﬁ'niy*1oek afne;ﬂent
only after the page (if any) the process 1s operating on is already
locked. Segment locks can be busy waited on, but a process must uanlock
any segments it has locked before &b#n&aningwehcsproceseot.

This strategy of ‘implementing the segment locks does not conflict
with the implementation of the: locks on.cha free and ‘used lists because a
process never needs to have one of the lists and a segment locked
simultaneously. (If such a situation did arise, appropriate ordering
rules would prevent deadlocks.) Happ£1y~theiaddtéion'offper'segnent locks
does not place any restrictions on what page control functions may be
executing in parallel. Several user page faults may still be resolved at
once; 1f by chance page faults on two pages of the same segment are being

handled, at worst one process will wait momentsrily while the other has

106

the segnent,of interest locked.:

5.3 Multics Complications

The per segnent locking atrstegy just described for Multics has not
s ;
been implemented. This section discusses two complications uhich

prevented the segment 1ocking echene from being added to the multi-process
implementation of page control on Multics in the time avnilsbleQ

' The first problen is ensuring that the globsl psge table lock is not

o T

being used in obscure ways by programs knowledgesble of its function to

protect dsta against contention. In fact, one 3ood argunsnt for renoving

v
¢ e

the glohal lock 1s to force euch sssumptions to he msde erplicitly.
) I;S : "‘

Knowing that a globsl locks protects many dste haseernskes it very
tenpting for a progranner to take advantage of the globsl lock by using a
certain location in a data base as a temporary because he "knows" the

global lock protects that location sgsinst sny other use Hhile he hss the

- - S

lock set.

As an exsmple of a hidden use of the globel psge table lock. consider
E = 2 IR B

the following fron Mnltics- Requests to the bulk store paging device for

o £

i/o are queued as they arrive for actual execution lster. The queues kept

.,3‘ A‘:_ A ,:'; g s

are protected only by the global page tsble lock. That is, the code is
not vritten to allow several processes to be accessing the queues |
simultaneously. Removsl of the global lock could therefore reeult in

errors in these queues unless a separste lock were sdded to protect the

queues.

107

Unfortunately such assumptions are not usually documented. They are
not discovered until such time as they result in a fatal system error of
some type.

The second source of difficulty is the Multics imoieuentstion of
quota. Actually, the problem is caused by the interaction of three
features: quota, the hierarchical file structure, and dynamic segment

SRR

growth There are two numbers associated with each directory in Multics;
the quota or maximum number of pages (disk records) the segments of the
directory and inferior directoriea may occupy, and the records used which
is the actual current count of storege used. A directory may be specified
as having no quota, in which case any quota placed on superior directories
is the only constraint on the directory (e 8. if directory beta is
immediately inferior to directory alpha and assuniné alpha has a quota of‘
100 and beta has no quota, segments in beta can never occupy more than 100
pages) . . ‘

The crucial factor is that Multics allows dynamic growth of segments.
By merely referencing a non—existent page of a‘seguent a process can
create that page. Referencing the nonuexistent page causes a page fault,
and page control creates a page of zeroes.‘ At this point troubie arises,
for this creation must be reflected in the records used count of the |
segment’s parent directory. Thus, while the segaent the page fault wss on
is locked, the segment 8 parent directory must also be 1ocked to update
the records used count. If the records used is 1ess than the directory 8
quota, the creation is valid. However if the records used would now

exceed the quota, the page may not be created and page control must notify

the faulting process of an error. The situation is complicated if the

108

segment’ 8 p;rentfdirgctory does not have a quota limit, in which case the
directory’s parent must be checked, -etc.. na;ii‘atsuperio;~d1:ectoryvLs
found that does have-such a limit. At each step&up=the<§1erarchy, the
directory (which is, of ceurse, a segment) must be locked. in order to
increment its records used count. - When.a directory with a quota is found,
the. check can be made.

The difficulty arises in locking all the segments at the same time. .

They must be locked,: because seme very.important.pex segment information

is being changed. Since lockimg the directories is-always from the; bottom

up (in terms of.the hierarchy . tree), there is no danger of a deadlock..
But recall that the previously presented locking rules forbid a process
from blocking itself with any segments locked. Hence if at any point, a
process cannot lock a particular directory in its search for a directory
with a quota limit, it must uhlock.all locked segments and block itself,
starting over again when awakened.

0f course, when pages are deleted (e.g. by a truncate operation), the
records used must also be updated in a like manner. Multics further
complicates matters by always deleting pages of zeroes. That is, if a
program or data segment has an entire page of zeroes anywhere, that page
of zeroes is automatically deletéd each time it is reﬁoved from main
memory {and recreated upon next feference).r This is done on the
assuﬁption creating the page is fastér than reading and deleting is faster
than writing, and that disk space will be saved. There is an impact of
this decision on quota, in that such a page of zeroes is only charged
against quota when actually in core.

The implementation of quota aﬁd the deletion of zero pages complicate

109

the page controi algorithms, and especially the locking strategy,
tremendously. Various simﬁlifications are‘possiblé; for example: do not
allow segments to grow dynamically, or allew them to grow dynamically but.
insist a maximum size be speé¢ified and always couwnt that maximum size
against the quota (thus no change is needed in records used when a page of
zeroes 1s created). Explicit operations could be used to change the size
of a segment instead of having page control do the work automatically.
Unfortunately all such solutione have noticeable effetts on the system,
and would change its functionality. The issue of quota, its
implementation and impact on the syatem, tsfquite eomplex and is stillg

- being studied.

110

CHAPTER 6

Condluaioh

This thesis has preseﬁted a design for a system that implements a
virtual memory using asynchronous, cooperating sequential processes.

This design was demonstrated to offer significamnt potential advantages
over other designs in terms of simplicity, medularity, system and user
security, and degree of expandability.

The proposed system was built and tested on the Multics system. The
implementation showed the feasibility of the design and the validity of
the claimed advantages.

It is felt that the technique of exploiting parallelism in pgrtorming
system tasks by implementing those tasks as several cooperating sequential
processes 1is ex;remely important and powerful. vThat‘this method can be
made to work in practice and lead to operating systems whose design is
simpler and better structured is the most significant result of this
thesis.

The Multics system offers several additional examples of places where
a system process could be incorporated to perform tasks currently done by
the user process. For example, section 2.1.4 mentioned that page tables

are multiplexed among segments in the same fashion that page frames are

111

multiplexed between pages. Currently, when a segment is activated, if no
page tables are available, the user process must execute a 'replacement
algorithm" which frees up a page éable by deactivating some other segment.
The similarity with page replaceﬁent is obvious, and a system process
could be used to keep a free pool of pagé fables in the same fashion as
the core manager does for page frames ;n ghe design presented here.

There 1s much that still can be déne‘in this area. The test
implementation could be greatly improved if the Multics scheduler were
redesigned to truly implement system ptoeéuielﬂthat c¢ould be:scheduled
without the considerable overhead of the currest scheduler. The
per-segment locking strategy proposed in section 4.4.2 would greatly
improve the performance of multi-process page '20#%:@1 ik multiple. -
processor systems.

Finally, it is hoped the success of the implemeatation reported here
will encourage other such attempts, perhaps-along the lines of Hoare’s
proposed system or Saxena and Bredtié system, to see- 4f the diffieslties
concerning thbsé'syétems mentioned 1in sections 3.3.2 and 3.3.3 ‘can be
overcome. It would be interesting to compare implementations. of: such:.

systems, or newly proposed systens}vvi;h'that@gtvun'hera;»

112

Bibliography

[C174] Clark, David D., "An Input/Output Architecture for Virtual Memory
Computer Systems", MIT Project MAC Technical Report TR-117, Cambridge, Mass.,

(Jaﬁuary, 1974).

{Co69] Corbato, F. J., "A Paging Experiment with the Multics System", In Honor
of P. M. Morse, M.I.T. Press, Cambridge, Mass., 1969, pp. 217-228.

[Da68] Daley, Robert C., and Dennis, Jack B., "Virtual Memory, Processes, and
Sharing in MULTICS", Communications of the:-ACM; .vol. ll, no. 5, {(May, 1968),

[De66} Dennis, Jack. B., and Van Hofn,~Ear1‘C¢, "Programming Semantics for
Multiprogrammed Computations", Communications of the ACM, vel. 9, no. 3,

(March, 1966), pp. 143-155.

[D168a] Dijkstra, Edsger W., "Co-operating Sequential Processes”, Programping

Languages, F. Genuys editor, Academic Press, New York, (1968), pp. 43-112.

[D168b] Dijkstra, Edsger W., "The Structure of the "THE’ Multiprogramming

System", Communications of the ACM, vol. 11, mo. 5, (May, 1968), pp. 341-346.

113

[6r75] Greenberg, Bernard S., and Webber, Steven H., "The Multics Multilevel
Paging Hierarchy", paper presented at the IEEE INTERCON Conference, New York,

New York, (April, 1975).

[Ha70) Hansen, Per Brinch, "The Nucleus of a Multiprogramming System",

Comminications of 'the ACM, vol. 13, ne.’k;JQApmil,«1910};igp»u238~2Al.

[Ho73) Hoare, C. A. R., "A Structured Paging System", The Computer Journal, :

vol. 16, no. 3, (August, 1973), pp. 209-215.

[Ho74] Hoare, C. A. R., "Monitors: An Qperttﬁﬁg;Syst&nVSttucﬁugigngqncept",

Communications of the ACM, vol. 17, no. 10, (October, 1974), pp. 549-557.

[L172]) Liskov, Barbara H., "The Design of the Venus Operating System",

Communications of the ACM, vol. 15, no. 3, (March, 1972), pp. 144~149.

{Mu72] Murphy, D. L., “Storage Organization and Management in TENEX", AFIPS
Conference Proceedings, 41; vol. i, (Fall Joint Computer-Coriference, 1972),

pp. 25-32.

[Sa75] Saxena, Ashok R., and Bredt; Thomas H., "A Structured Speeification of
a Hierarchical Operating System”, Proceedings o6f 1975 Conference on Software

Reliablity, (May, 1975), pp. 310-318.

[Sc72) Schell, Roger R., "Dynamic Reconfiguration in a Modular Computer

System", MAC-TR-86, Project MAC, Cambridge, Mass., June, 1971,

114

[Sc73] Scherr, A. L., "Functional Structure of IBM Virtual Storage Operating

Systems Part II: O0S/VS2 Concepts and Philosophies", IBM Systems Journal,

vol. 12, no. 4, (1973), pp. 382-400.

[Sc75] Schroeder, Michael D., "Engineering a Security Kernel for Multics",

Operating Systems Review, vol. 9, no. 5, pp.25-32,

[Wh74] Wheeler, Jr., T. F., "0S/VS1 Concepts and Philosophies'", IBM Systems

Journal, vol. 13, no. 3, (1974), pp. 213-229.

115

APPEND

IX A

Changes made to standard page control

Changed Extensively

page_fault
post_purge

pc

pc_abs
pc_contig
pc_wired
freecore
delete_pd records
wired plm
evict_page
page_error
initialize dims
init_sst

pxss

Changed Slightly

bulk store control
disk control

free store
pc_trace

wired fim

wired shutdown

Modules Added

116

page fault pll
core_manager
pd_manager
read

write

core free list
core used list
pd_free list
pd_used list
utility

Modules Deleted

pd_util
get disk meters
meter_disk

APPENDIX B

Components of Multi-process page control

: ; B _Seurce Object
Name Language statements © - length
page_fault alm 560 580
page alm 28 116
device_control pll 136 - 7 896
bulk_store control alm 369 386
pc_trace : © alm 45 \ 68
free_store alm 133 ‘ 138
read pll 62 - 318
write pll 192 : 956
evict_page pll 39 ' 142
page_error alm 217 ’ 349
post_purge alm 126 126
‘get_diek meters - pll - 12 22
disk control - pll - 247 1472
p¢_wired - pll 70 312
page_fault_pll pll - 32 170
pc pll - 294 L 1740
core_free list pll ' 54 oo - 290
core_used_list pll 49 232
pd_free_list pll 53 230
pd_used list pll 40 ‘ 180
‘core_manager pll 282 1224
pd_manager pll 179 724
pc_contig pll 16 .80
utility pll ‘ 62 384
quotaw pll 85 ' 310
thread - opll 33 128
‘get_ptrs__ alm 37 88
pc_trace_pll pll 85 812
pc_abs pll 17 160
wired_plm pll 45 162
delete_pd records pll 75 416
freecore pll 14 66

alm: 1515
pll: 2173
3688 13,277

117

Components of standard page control

Source Object
Name Language statements length
page_fault alm 1592 1616
page alm . 34 132
device control pll 118 134
bulk_store_ control alm 369 - 376
pc_trace - alm 45 . 252
free_store alm 133 142
evict page pll ‘ 147 : 168
page_error alm - 376 614
post_purge alm 145 . 146
get_disk meters pll 12 : 116
disk control pll 247 : 1478
pc_wired pll 71 . 254
pc pll 389 . 2144
pc_contig pll 69 . 320
quotaw ' pll 85 : 310
thread pll 33 . 128
get_ptrs_ alm 37 88
pc_trace pll pll 8 812
pc_abs pll 69 328
wired plm pll: 36 152
delete_pd_records pll 111 346
freecore pll 34 140
meter_disk pll 12 68
pd_util alm 394 402

alm: 3423
pll: - 1280
4703 , LO,B@G

118

APPENDIX C.
Code from multi-process page control

The following code is taken directly from the implementation of the
multi-process paging system implemented on Multics as described in Chapter
4. The procedure "page fsult_pll" is the cede executed by the user
process at page fault time; the procedureaf"c@rq_panagar"_andv"pq_pangger"
are the procedures executed by the core and ;pd.mansger processes .
respectively. While some code has been omitted (chiefly lower level
subroutines and segment operations such ae deactivatiom, trucation,
wiring, etc.), no other changes have been made; all the pregrams listed
were actually run on the Multics system.

The normal operation of the system is fairly straightforward for the
most part and follows the ideas already presented. Page. faults are the
event which drive the entire system. On the. occurrence of a page fault,
the page fault code 1s invoked. After determining the page causing the
fault, a call is made to allocate a free core: page frame. The allocation
procedure is ultimately responsible for driving the core manager process,
for when the number of free page frames falls toa low, a wakeup is sent to
the core manager. On receiving this signal, the ‘core manager selects an
in-use page frame to be replaced and writes the page held in the page
frame out of main memory. After waiting for the write operation to.

complete, the core manager adds the now free page.frame to the free list.

119

The writing step may have several results, as an attempt will be made to
write the page to the paging device. If a copy of the page is on the
paging device and the page has not been modified, no write operation is
necessary. But if the page is not yet on the paging device, or has been
modified, a write must be performed. In the fosiar-eﬂak, a call must be
made to allocate a paging device page frame, and this is the act which
ultimately activates the paging device manager. Mhen the allocation code
notices too few paging device page frames-are available, a wakeup signal
is sent to the paging device wmanager. :After receiviag the.wakeup the pd
manager chooses a used paging device page frame to remove and performs a
read write sequence if necessary (i.e. if the paging device copy-has been
modified with respect to the disk copy of the page, -or if there is no disk
copy). When the read write 'sequence is f}tniﬂhcd,uthg .page frame is added
to the free list.

Both the main memory replacement algorithm 8nd the paging device
replacement algorithm operate in a least recently used (LRU) fashion. The
Multics hardware keeps modified and used bits in the page table word as
mentioned in section 2.2.2. Each used list - is implemeated as a doubly
linked circular 1ist of entries, with a pointer to the least recently used
item. This pointer identifies the first page. frame examined when one is
to be chosen for deallocation.

The main memory replacement algorithm examines the used list until a
page whose used bit is off is found. Any page lopked at during this
search whose used bit is on has the bit turned off. - Once such a page is
found, it is a candidate for removal. {(Certain other checks are:made, for

example to insure the page is not curreatly locked because it is

120

undergoing a read or write operation.) As pages are exgmined; the pointer.
to the least recently used item is advanced so that after the page to be
removed is selected the page frame immediately following it in the list
(i.e, the first page not looked at) becomes thexleaaﬁ.recently used page.
When pages are faulted on and read in, they are plgged;immediately behind
the page pointed to by the laas; recently used pointer; this makes them
"most recently" used.

The paging device used list is managed in a similar way, however
there are no used bits associated with paging devicé pages. Thus rather
than searching for the first page on the paging device used ligt with a
used bit off, the first page that is not cqr:en;ly aisq‘ig‘main memory is
selected for removal. The rationale for.;higvdecxsipnwia_that the page is
in use if in core, thus should not be removed from the paging device.

Note since the page is in main‘memory,.aooner or later it will be gvicced
from main memory, and the eviction will be made easier and faster 1if the
page 1s already on the paging device. When a page is read from the paging
device to satisfy a fault, that constitutes a uag of thg page, 80 it is
moved to the most recently used position in the used list. Similarly,
when pages are first writtem to the\paging ng;9e, they are entered into
the most recently used spot in the list.

The code that follows makes use'of several data baseé that are given
rather cryptic names. The comments in the code often refer to these data
bases. The list below explains the meanimg.of egghyabb:e#iation and the
purpose of each data base. These data bases are defined by PL{1
structures. In the actual code, a statement of. the form "Zinclude sst;"

causes the PL/1 structure declarations for the data base "sst" to be

121

included in the source file by tlie cqmpiféflﬂﬁgeoﬁbiThtionﬁffne.'
1. ast - active segment table

The active segment tablé contains omé entry (an Maste”, or "active
segment table entry") for each ddf!&e segment 'fii the System. Tach aste
consists of all the page table words for pages of the segment plus the per
segment information kept by page control such as qegndﬂt“lhdgfh; qudta;

etc.

2, cmp - core map

Each page frame is described by a "core map entry" ("cme") in the
core map. The cme contains tlie information associsted with the page
frame, e.g. a pointer to the page tablé wofd of the page aflocated the
page frame. The core used apd Free lists ure merély Fiaked lists of

[AR

cme’s.

3. pdmap - paging device map
Each paging device page frame 1s deseribed by a "pdme”, or "paging
device map entry", in a manner anialogous to ‘thé ‘dére-map éntries; - &

Similarly, the pd used and free lists are lifiked Tists 6f:pdse’s.

4. ptw - page table word

Each page of an active segment is desctibéd by & page table word
w@ich contains the current address of-the copy of thé pigé‘higheat in the
memory hierarchy; i.e. a core address if the page %8 in cote, otherwise a

paging device address or if the page 1s not on the paging device, a disk

122

address. Used and modified bits, a lock bit, and a fault tag are also

kept in the page table word.

5. sst — system storage table

The sst is the primary page control data base. It contains not only
the core map, the paging device map, and the active segment table, but
also all other page control variables and constants such as pointers to
the beginning of the various free and used lists, the global page table
lock, etc. A large portion of the sst is also devoted to metering
information (number of page faults, number of read write sequences

performed, etc.).

123

198 spnyduTY
tise epNEdUTY
iM30 BpNYOUTY
tawd »pnidouTY

£1SS epNIdUTY

1(eid) A2jus sbedgpesy

S(J30) AUiue SEOTPESATDPESISTITPISNTRIO0D

S (I40) SUINIBI AJJUS JWODTHILO0J RS IST) T8IV }T0I0D
SUTLITING (198J *ALATLING *pOXTy 4jeJppe ‘Jppe)

/« SUOTITPUGD BSUTUDIEN DRARS o/ $4X0 UTQ PAXT} €4BPTL NG 268 AESDD

/o« BUINIOUD BIOND STQTUUE SUSON OCUBZ=UON o/ o s4xe ulq PIXT} QIYUITRiONDESPY

/e B4SR S, fUdJRd O} JOIUIOG o/ ¢a4d deised

/e ®580 BUTS NG} 3O PJOM S1QE) 6T OL JJ0 10y o/ spaubTi® (@T) 410 dj0”)0J
Ja A BUTLING, JO *58S.)0 9iSE O Ji0 * |3y o/ spoubyie (9T) 41Q daiseTjeu

I *10UUOD I5BG SSOD0UC-TI NG JO} JOQNN °*N MBIPUY AG Gl-T=9 UBLITJIN

*MO]jJOA0 B4OND BYyy S|RUSTS UBY} 8p0D Line; ebed Y 3yl °*0S oOp

0% BLOND JUDTITINSUT ST BJIY} pue peledud 8Qq 04 ST ofed & 1 epod
INR;TI6R0 Ky SUL OF BUTUINLSIL MO JJJBA0 C40ND JO AT TQTISSOA WYY
LJOJ SHOBYD OS{|E BJINPBDOIC STUL °*IST| POSN 3J40D YL UO INnC ST WD Wy
SEBL B ANOD DEBU B4y UBYM 3D PBLEDO} IR BY| OJUT B|NPOE pPeEJ By

AQ PIJINDEJ 3bRA Byy BUTUJLIOUDD UOTIBWJIOUT Syl S} (T} DUR pEdJ

Byl JOJ 240D 0 NO0JQ € S8 ed0||e IJNpados STUL °,0d9iSeT 180, AQ O}
PBIUYOO ST AJjud JSe dsSoym judwbas ey JO (3§55 Ul puom ejqey ebed jo
48S3)0 ST ,L0307109,) 0} Sjujod _OiaTiey, Ry} abed Yy uo ouop 9Q SNB
peoJ €& UBYM BPOD jjne);Tebesn 844 AQ PO} €D ST 3] °IINPOW pesJ T)0 S}
pue 8pod jine;Tebed KNIV Byl UIIALIQ OIBJUBIUT UR SB Sid8 BUTINOJ STUY

s(paubrie (8T) 4TQ) SUJNEBY (A40TJ10J SdB S2T[BJ) dunpadoud 31T1d™§ (ne;"ebed

sJe|oep

sJe|a0p

o/

124

/o POUBTSSE 08D Of Jid *10J UINIeY

Jw DPOSN ALUBIB Y |SONW SE JST| POSN U SUD 0y

J« SPJO UO BuluuUna 3DUTS § {NE}TeBRA UT PO Aq

/o GUOP ST 3310j0w02 04 071 Oyd ..ou\. a.S:Q:,,

/o DIOR o¢n¢¢ o&un e— umvgooo zwav .vc ®O° 'oz

o/
o
o/
«/
r\

§ ((6083) 184) UINOJ
{qosud) SWOTPOINTPPREISTITRESATOSO0D (€D
t (asumd) sbRAgpPERJ ||

tppeASD M idE = PPENSID°OED BS|®
tpus

/e vu louv sy ebea’ chcz &/ $T ¢ Sginej"ebec pariss = Siine) sbea"pac ss
Y4 tppexsSIpcdmpd = PPEHSTP WD

e oivo wWou} SSIIPOE NSIP UT 1714
74 o6pd o IBUTOD B INCUOYH

fiee -ou .ouuuvn.una (4T *ppech}d) pex])) AjaTiine sdewpdeiss) |sJppe = deupd

/a GOEPAYOE3 UT 11} OS5 S82IAP BulbRe UY

/e SOOTAGD BUTHERY B3 UO ST-ST S| NU«UON

/« SSOJpPE NSTP Y SE uoo‘aaa ®id $§NU By} SN
le 1IN u_ sbed 2y} 41

&

/7« %080 inoqe ojuT Ul (114
/e 968G Oy} O) BUDD O MOIOIQ B Bi8D011Y

Ja MO) JIBAD [EUB TS PUR MUY OV I
/4 41 838040 O4F SLOND yGNOUs SABN] 088
In .o-wa _~=c e UD pRiinR;; »u

/e PIOR B)GRY ou.c s, onan 04 JejuUlod 3109
/e« O6R0 BUTLINE) jO ¥iSE O} JSjUTOO |89
/» —uw 0} Jdjulod 89

s/

o/
«/
o/
«/

o/
o/

(Y4
'Y 4

K74

o/
o/
o/

$(C%EDd) (8J = dBEDPACIND

top usyy .
PYITPA*iSS = PIDemid JT 0S|0
SPpeASD R dE = PPENSTRCOED UMY
Q.0. = PIP°Nia 3}

£(d3d) 184 = guid*eEd
$A8313CT 04 = G SO IND
$() JWOTPLRI0| |8SISTITONIN|TOI0D = TIWD

$1Q.0u) VN0 U
{) TionhTysnous,_ 1 uay
Q0. = PIP°Nd 31

§ (d46™104 $0488) Ji0 = d4d
$(do}SeT)8 4043S). JIOC = deise
$(36087485) JPpe = dySS

125

Cid4ms Jur o «500000000000000000000000000000000000,,) 4Tul poubTie (9of) 311qQ o._ool.: Jo0uTppeaspT| inU

/o NBEW JOAD| 3AS W/ SJRUJEIXD (TZ) UTQ POXY} |OAB|TSASESDS
. /e UO II%W O} JUSAE 08%4 42 tpaubiie (aT) 41q.put
/e $O1ANSUBEd Aq POVSNISI JUBAS LTON 4/ c SpeuBtie. (83) JT14.PVie
/e SHPUTINGL Jiwg Aq pepudu snjen NSew D 4/ ©SLTdY VTN REXT) VSeRRLO
/e ON PRIJRLE D0UG-[UBUM DISSEA 440 Buy 4/ $030 JejutedTpejuenun
AR WD PO U 0) JRUT0Y &7 LT T LR T E YY)
Ja AJEUD ONURSED JOF POLETRIST O WNIEA DIASS 4/ ;- spaubTI® () i14.posB™pio
/e BUTJIIN SGB ILTYm SyonJsiejul Guinejje . bei) 47 ~epeubT e (1) 410 | 17U
/4 SSIJPDPR SOTASD jO UOTIJIOT PT DAY o/ *{6T) VOIS0 .vv-:ov. voc..ov (%) 414 pPIPTBOTASD
/e 1000 3845 OF POIEINES G105 SEEIRPE BITANE &/ Crme o 8422) 419 PPRARP
. /e U0 'pEIE IO GG @ abRd §30Y ¢ SUTQ PEXT) (SHRET ISR}
% /e VO LT8R O) SHEUBTISTJISERUBETRINICYSS JO BN(GA o7 . .Quoonbrma.
R Ja BUTJIN SQE JO} BSN OF WD 541} O XWPUT 4/ 490027541}
/s VO PO RIITO 8Q’ Gy (eHUS U] 9800 eIt E &2 : S subROTSat)
" \. :e n&.n&a.iAqi $)-SEIEE O IWQBON 2 L . LT - . SspBedTou
: Lk PEEEDNNAL EPIODEL O IJSQENN) o o 4SRI0II
te »cauuivog*;4u30a~un JOBNERA PEARE 4/ . Lo SPBJINTSGReTP O
©s 1§ iNepeY abbs po enpEa pexed. i/ . S s cn ‘1TiIse}
/7« DOpBIU aouuo 31QeI T SG8 SAOMB L {UED J0- POl) SR : . ‘papesy
Ze 3@ PONOI | GUTHQ A|{U0JIND . 4I8 JO ISQERR L T s 3300
' 74 4368 PSS O S eud e sbqunl gpc . o & o : o tazrs
/4 $400 8 UT SND §SJ[} O OBW 8403 Ul xepul t\ R) teseq
/e *BTE 615000 PELu SERTE 40 60 Sxsput abey oy : - sAJy
Jo SOIUNOY o/ s
7+ .av.: d60 »/ S © 41y eJmidep
Ia ‘q.es~c¢u ssea $5020J0=1INE J0] JOGNH *¥ MOIPUY Ag ast@.. uSLLT

®wluwA®8I,) A} TIOUSESKD. | 18D, Buliniexe
Ag PO} RUSTS ST JebrUBE 840D BY§ LUOCTIEOTUNWEOD SSBI0UCG-ILBJUT 40}
POSN 9JuB SOATITETIT AJTI0U PUS LTeM PURDURYS BYY °DPOATIINS ST dnaNem
JOYJOUR | T4UN NID |Q sabeutE BU0D BSU} SHOD OP 0O} NJOM DU ST BJBYyy 31T
AJUp *SBCAJ (1B 30 SiSONDBJ SUTPURISING |)€ S8 B |C0w0D JISeuew
0J03 SYS PILIBIS BOU0 SION °*OUTPURISINOG SdAL (RU} O S]SINDey OU sJe
SJBYS [BNDS BUR OM} BY) UIUM SAYL INSE) BSUY PIRIOJJIBG SBY BU UBSUN B igRTJRA
) LSUOPT, BUTPUDASRIU0D Y} Of BUO SpPpE Jafeuew 840D WYyl tpowmJuojusd
. SOUSTIN By NSE} 2yt 04 SUTPUOOSIJJOD PiQRYJEA SICUBTS™, 34) Of BUO Sppe
JOJSONDRJ ¥ 3 qeTuea _duop™,, EulpuddsSeaJJ0d Y4 O SENjeA aYy
Yitn SO QeTJIeA SIRUBTIST, #ys)0 SONJERA Byi BuTJeOwod AQ SeM [Sendey
i JeUm SUBAODSTP Jabeurw 340D WYLl °*PuUCp 3q BurTyiIsos Burisanbeu
SS00040 40S WOJ) POAIBOIBJ ST GNONEM B jTHUN COO| O} ST WyjTuob)®
218eq Ul °SiST) 9S8y} VO SUOTIPJIBJO BUTAIOAUT S3TINP (€ GuTmJojaed
$S4ST) POSN pPpUB BBJU) 240D By, sbeuew 0} ST Jabeuew $JOD BY| 30 UOTIOUN}
Syl °JOJUTOO INU B ST §T 8S8D STy} UT steulinhou STyl Sutiied Ag butuundg
20J0=-H Y} SIJRIS §] UBYUN M58 TI0STAINONSTBIEDID AQ paSSed Judjujod ®©
S] juawnbue Syl °CUOTCZTIeITUT UT AJJed SWIPTIZTICISTUT AQ pejeadd
(99-944 89S {08QeN AQ POLUBNG)UE] S€) D0JO0-H UR ST SSBDOJY udbeuew aa0d
syl °35025040 JeBCeURE 040D BYy JO) BUTNOJS BUTATJD Yy ST STyL o/

$(JejuTodTpeuURMUN) BJNPED0ID jJBSeURETRJIO0D

126

$RLBPTIS 104 4UCD BDPNTIUTY
tSeSSaJpPRT) INU BPNIOUTY
tmid B3pPN)OUTY
$45% 9PN IOUTY
.40MD APNIIVIY
$3SS 3PNIOUTY

$qaid) Aajus sfedgaitum
S(a4d 03d) AJud BBROTAACHSALTITIN
S (9EQRTJBA) SUOTLUD AJIUBS JJSSAS
¢ (440) ALiue ebedgpesd
s((n) Jeyd) Asjus AjTjougssxd
S((T4) UTQ POXT} Sulrq POXT} *ulq POXT}} AJjue JUBAI=UO KO0 | G§SSXJ
$((TZ) UIQ POXT} *(TJ) UTQ POXT}) AJjud xsew jasginwd
sAs3ul |0 yd0 jungabed
A sAajue jiayd0gabed
s(poubTie (BT) 47Q) AJjus jTemagabed
s(paubTI® (gT) LIQ *4id) Asjus (DTAdgabRd
s(poubtie (22) 41Q) Asjue j1socapgabed
s(pouBTI® (§T) 4TQ *peubTie (9T) 31Q) AJiua Adodssbed
: sA24ud wedgasea
sAJjuUs SiNOBBTLTeDU0)SEAOT
$(43C) SuUNLes AJjue 240273001858 5117paSNTaJOD
t(Jbd) AJJUD SEITPOSNTRAOWSILISTITPASNTRU0D
$(J30) AJjus swdpesnTppetistiTPesSn 8u40d
$(240) AJJUD PEDTIDIITOACHIISIST T ®BI)TRI0D
$(J10) Asjue amdTesJ) ppeRSLIST I 8BIT2I0D
SUTLIING (J40 SAIOTAINN *UTW SpaxT} *PDIATP 411q ¢)euppe ‘uppe) BIR|D8D

127

Ja NJOR 3J08 JO) IIBN o/ $(908 S0juis™ise| ‘g euB 1STIe60URETI0D° 35S) occsvacowruo_awuwun 11w
‘ v . iphe
T ¢ 2UOPTSBTUOD” -u.pna = Suop" uaqecou 8458
v : . AB403761 {yo"} 08 ey
/a 45iSONDeu ebed SNONGT JUOD Auy o/ ».n_ncuualmaﬁcou lo.uuu > oeov uuautov lo.u«n- SIJum op
R _ tpus
$T ¢ SUOPTSRIOD™ o>oaos.~mn Y oecenwouoo m%@ﬁ-l.uhu
194027 BADNSY Ji0Y
/e LOAOBOJ O} 840D AUY o/ ».a.oco-anisoo SAONSJI*ISS » BUDPT SPUED o»acvso»nn. S134n op

3 up,
$T 4+ SUOPTERI0DPPET SS = ocovnﬁclquvn-.wuw
. ASJODTPPR | 18D
Ja IDPR O)F BJ40D AUY o7 $(SIBUBTISTRU0OTPPET LSS > ocoﬁnu.sou PPR? run. o) jum op

.v:o
$T 4 SUOPTERLEOUNULTEDCISS = SUOPTSELEIUNI I TEDySS
$8580UNILTED 1482
/7« S84EOUNJIL AUR O o/ $(SIBUBTSTRLEOUNITUO*|SS > BUOPTSEIRIUNJLTWIC ISS) DY Tun Op

tpus
$T ¢ SUOPTEANURS DT ND*§SS = BUOP uc:cuo.onlo.unu
tdnues|dTed | e

/« SONURS|D AUR OQ o/ $(SIRUBTISTONUED (DTWI*SS > BUOPTSONURS |DTEI®LSS) S TUM Op
tpud
/e« POYOROJ wNETXRE | TLUN 840D 023 o/ $04027,06 | ®d
$(SONITIRI S TRER 4SS > SPUDTDOI}°ISS) B TUM OP
/e S948) U0 BUTITER JO) BNIBA JIIUNOD (B9 o/ »m.uca~alc¢u-c¢ulopou.~wm = 8jeisTise}
/e *IBABIO} IBBABI 1000| UIRK o/ $ta,T.) ®ITyn oD
$(90F 4048 ST SR | ¢S eUSTSTUNBEUEETRJU0DISS) LUBAITUOTNDO0|GESSXT ||edD
/e JOBRURE 810D SIRUSTS BUOBWOS |TIUN I8N o/ $SICUBTSTJORURATRU0DSS = PR ST4SE)
/o PONSEE SUNJ SAEMIE JUPERURETSJI0D BJNS BNEN o/ S$(NSRED|O S13AB1TSASESOS) NSERWT ASELNNT |jed

s(s6esT s5) uppe = dISS

128

/e 940D 840N 20} BuriTen sUOAUR ALTION
/« MO UN
/e $ST1 88U} UD 301G .3J0D BBJ} MOUL BYL INd

/e USTUTS OF 4T 0} 3TBR UBU4 Suo Bufof
Jo LITES O/ 801 S0D1AJNS -j0 N0 BFRd]

J« MI0|Q 840D BUL $0 SIUSLUOD BYy N0 -«agt
/e DIOM ®1qes e6%3 04 JOIUTOD 4089

/4 4511 POSN w04} HI0{Q 0403 vouu-«on sACuURY
/7« POOJ} BQ 04 NWOO(Q

/e 8402 PUl} Of WYTJOG|E LOURNIDR) GBI) (8D
/7« ¥O0) ®(qei abed ayy xuom 3474

/e« $STI 2943} 04 4T PPR pus 840D 3O ¥I0|1Q
/e 9JOW PUO ON 88J} O} BINDPSIOJD |BUIRIV]

o/
o/
o/

«/
o/

«/
./
o/
«/
o/
«/

«/
o/

$0405™ 405 pUs

(TR, ¥Y

n.locoot~ AjTaousssxd (jed

$140™45b jungebea 11ed

{(dowd) SwWST88J)"PPESISTI TR TUIOT (18D

$(iasa) 9J) iTemdgesed | 18D usyl
' so*njd 31

s (oo uD) sﬂﬁanoﬁuu: t1es

teomideoowd Jn010~ Jio = d3d

t (dow)) o-ulvon311>o-luy~u~.lvoualosou jped
$£0) 940974381 9S$ISTITPESNTEI0D = dOWD
t1ia™yd01g86ea @D

LeJnpe20Jd 1940371086

129

130

/o AJIUS BNOTDOSATDDPR O PUI o/ tuangen
/e BSN U] S, 8WD JO JUNOD JUINBJDUY o/ $1 ¢ SBWOTDPOSN®ISS = SewdTpOsN° SS
tpua
/e OND STUL O} XO&Q JUTOO AJJUB | XBU ONRY o/ $(deWd) 04 = dQ WD ¢~ dN
/o WD STUYY O} JUTOD AJiUD S8 BNel o/ $(O0ND) |0U x T 0N ¢~ (0Q°BWD $diSS) Jid
/#« 4ST) JO pPBAY |8 MO w0J) JDIUTOO ROeq AdO) o/ 1dQ*owd <~ On = dQ*oWd
/« 3ST| JO pedY O} JIIUIO0U 99 o/ s(apesne ss sayss) J3d = dn
/o AJIUD JSUT) BUD§DQ UT ALjUD STy PROUYYL ./ §0peSNeiSs = djcond
Za 4STH PASN ByYJ U] SITJIIUd JOYLD o/ fop es|e
/e J1OSET O) AULUd §SB) Due §XBU O} o/ {pus
/o SJIBQUTOD 43S SAULUO AJUuOo ST STM4 BDUTS o/ $(dawd) 84 = dq*wd sdjcewd
/e AJJUD STYY OF ST O PRPIY O} J40 §BS o/ $(aewd) a3y = dpesSn*yss
fe *4STH 8ul UT AL4ue AQUO By} STUL RN o/ {op usyy
Je AJOME ALLUBaund ST 4ST) POSN Yy 31 o/ 0 = samdTpasneyss 3t
$($63STiSS) Jppe = OySS
$43d78wd = dewd
/% WOT{[S00 pasn ,/
/o ALJUBIDU 508 BYy VT }ST| Oy} O} aBND 4/
/« AQ O} POJUTOC BWD B} SPPE AJ4Ud STYL «/ $(J33670w2) Aajus gewd"pesnTppe
§ni0 apnpouTy
tdud apNIOUTY
$§4SS IpNIdUTR
$(01QRTJIBA) SUOTIA0 AUSUD JUJBSAS
SUTLITING (aid $j8a ¢))nu) sue|dep
/+ °*5IB JUGNDIB (00U AU} Of SONT) o/ $OTieyS Jul (00000T) 4TUT UTQ pexy; Auews
Z« IST| P3SN SO PROY IR BWD O JOLUTO o/ s44d dn
/%« PRAONDJ UD DIPPR 8Q Of WD sJBLPUEJIRd o/ 8430 40" WD
/« XBPUT QOO0 o/ ‘urTQ pexty T euejdep

/e *1044U00 dbEd SS3D0UATLINE UO} JOQNH °*Y MeJPUY AQ 6§l=G=8 UBLITIN o/

/s

8|QRTJRA By} U] PBUTRIUIRW ST IST) QUi UT SOTJ4US Jo 4OQuNU BY]
Y4 SPBaIBUY A)eseTpawN] AJLUB PasSN AjJUBDBY LSOW YL SJBINDJTD ST IST! BYS BIUIS

*SauwdTpaSNeyssS

*88d POSN A4UBDRJ Ses|
sAajus
*asn

POSN AJjuUSd0y 588 BU} O} SLUTOD OPASN*ISS $IST| UL 40 PRBY BY} O} JB4uTOd BYy)
458§)0 JOpJO UT IST| PONUTI-A|QNOP 4UBINDIJTD B OJU] POZTUREJO 8J® S,9ED 24y *asn ujf
A14usJund aue JeY} S,3WD JO JST) U4 UTELUTEW 04 PIPIAU SITJ4UR ||B SUTBIUOD 3|NPOW STUL o/

$34NPad0U0 ${iSTITPOSNTBI0D

/7« AJIUS 38OTPISNTEAOESL 30 PUJ

/7« DOAOEOJ §S[| JO PESY € AJIVe L1 AJjuUs XU
/« O} GPOSNLSS 43S ¢ ST) UT SBTJIUS (1148 31
/7« STUL B4@ITPUT ©) q,0. O4 43T} 8y

Je 04 JOJUTOG LOS8J SALOND MOU 51| PeSN 4]

/e 4511 PUSN UD S.8WD JO JURGD JUBWIJOEQ
/« LI9SWOGS OF JUTOG GQ*RWD pue dj°sud

/e OSEBI LR UT SDUTS. S4STI 8y4 Ul Adjus
Ze SUD AJUO ST IS §T UPAD NJOM SOANS
/« 9S4} 240U == INC BND BY} PRIJYS MON

/a 4S11 DOSN By} wOJ} CIwWD
/7« AQ O} POJUTOD BwD By} SBACESY AJJUB STYY

'%4

o/

«/
o/

o/
o/
o/
'Y
o/

o/
o/

tuINIed

tdjeemd = UDOSN*YSS UMYy
(asud) joJ = 0} CpESN° (33 T ¥S|O
10,0, = GPOSN*SS UBY}
0 = SOWOITDOSN®YSS 31

£1 » SOEOTPESN® {SS x SVWDTPISN+ SS
$0)°0ud = dj°oND <~ (UQ°PWD *O0}S3) UNd
§0Q°0uWI 3 0Q*OWD <~ (d}°0ND 4diSS) Nd

$($63ST1SS) JPPE = d}SS
$440" 0D s dewd

.

(4407 0WD) AJLUS SNOTPESNTSAONSY

131

$11311°pesnTe 402 pus

Je ®INDOW ST)TPOSNTOIOD BY} SOUS STYL o/

J« AJiUs 8J0DTID818S JO DPUI 4/ tLithuy uunjey

/7« SO145 AusE J49))8 -un' "0y} a-ccw)1 ‘urgo ol 1{,°0J02 804} O} @jQISSOAN] W), 1) gccusa 112
‘ . , « tpue

, /e AJLUS IXBU 0} JejujOd SOURAPY o/ s(djawd ¢diss) Jid = cPwa
/o POCGINS SEN M) OY) .vcnbm,nnuo UdedJ J1 o/

. ﬂ.ao_.# f_m:?_
»n»-o-o = apesne}ss
/n olu STd¢ :«u.o ININ :\ »”oo LEIL
5. 3R
»« + :a«x».»uu = :cnxm.uu
/e 471G DBSN WYY o/ mnlﬂl = 3‘0-2@0
Zw IO BUTUINL 1T QINS 05 SSBA o/ 40D uBY}
/e« & PSN UdSq 350U ua: cw ﬁuo-.- ol nydémia 1 90
/e OINS SO JUNO) o/ !T ¢ SOOINS*ISS = SOOINS*{SS Ubyy
/e & O/71 4O} BITAJES SO N0 ISTHIGYLD o/ SO*Mid 37 0S| ®
/o OTNS SUTAONBJY JUNOD $SBA o/ £1 4 JATNS*ISS = JATHS*ISS Ueyy
/e & POINBTIUCDID BUTEQ §1 ST SPOJITM JON o/ BUTAOCES L BND Y B850
/e QINS POJIIM SR BUTUNOD SAIMS OS5 PIJTIN o/ ¢T & MUTINS®ISS = MOATHS®ISS ULy
Ja & DOIIM 4T ST iSMa Butobuapun JON o/ pedrmenid 31 oSt
Ja PROATNS AUM JO JUNOD BUTCIIN 84T OAINS *SOA o/ 1T + DUSATYS*ISS = PASAINS*4SS Uy}
/« & SMJ ButobJuepun 8bed SI ./) SuJscsmd)7

/e WD STUY JO) PJIOM o_amp 850 04 JPJUTOC 09 / $ (OMido oD 6dySS) J3d x d}d
Jea LUNOD A9YS |80} O} 3UO PDY o/ $T 4 SC3IS*1SS = $OB S°* SS
/o BUTITIR) 940}0Q S, WD AuRE B 3OO0 ./ tAuks 0} T = 1 O

/e 4STI DPOSN JO DR O} JBIUTOO 239 o/ $LOpeSN®18S ¢dSS) 444 = dewd

$(35085T8S) Jpre = 44SS
/% °"POAOWIS BUBq JOU 4/
Ja PUR 50/1 BUIOSJBDUN JOU SPBUIM (OU PSOYY BJuR o/
Ja 59580 9j1QT6113 °3)0 S] 47Q pOSN ISoym eb6ed ./
/e« B)QIGTI® UR U0} PAUURDS ST ST) PISN Byl o/
/e °$J0D WOJ) PIAONIJ BQ || Tm 3bed BSOUM WD € o/
Ze 4S11 POSH 340D Pu} wWOJ} 6urideas suwyjitraobie o/

/e $UBWADE JODJ BBRO Y} SIUBWAICRT] AJJU® STUL o/ $(J8d) SUUNIBI AJlUB 18J0DT1O8)9S

132

PR R

a
%

ARy

. 1683 SPNIIVIX .
1488 spnpouTL

133

tAVius LTRNESEXNG -
SIUTQ POXT) AJJUS JUBASESSXD
S((9) Jeyd) AJjuUs juBAN|OPESSXG
S{(h) JEYD) ALGUR SUSARRREREEXD
- SAJJUS | 4dTNO0)| UNgBed
sAN U (dTHO0Sebed

SUTLIING (JIC 5183 S {nu suppe) BJR|ID

/e ASTI 8834 40 pRRY 0} JsiuTOd o/ A 240 436 sseydep
.-o.z.:oo ou-a uaouo..no:.:n J0} .__!.2. '} ..o.;.cc AQ §l=Se® USLITIN o/ .

/a *sJ0u swOS oo.: 0s ...oaucqu 203 WY} o..
‘UeS ST _-cu-w n nmf :o.ca ﬂco&v v::oo UL USUN SNUY SSEWTL LIt §C SENITeR) TULNT LSS
x< JOGUNU STUS GOSN 0} ST 4} JOGRUSBE BUOD BYL °SSEDTIRJ} 4SS O)GRETJEA By} Ul jdey ST

CASTE SN UG SBTJINS [0 JAQENN BUL L CJSABAOY IST| BUL UT BSBUMAUR 80J4; RBAOESJ 3G Aew
SORINSTLUOIBD *B°] $SOTAJES WOJ) PRAOESS 6UTEQ BED § °*|ENDE. SUR 3,382 804} 118 e3uTS
SLSTE B4 3O POSY YL -W0J) PBIBIO| LR DUR O} PIDPE 348 SATLIUS A |SRION ; .».av..;.uuu Aq |

2, POLULOC ST pBEY WSouMN 4ST) v-xc:.i_a:ov sJeNdJT2 & 04T v:a:-u&b 4R 5,08D Syl "seyy |
AJLUBIIND BJe jeys S, 0WD JO §ST| BUl UTRJUTEW O} PIPIBU SOTIIUS | |® SUTEIUOD I|NPOW STUL o/

$9UNPIO0JI0 §4STITO0UETOI0D

7« AJEUD BEITIBISTRAONNY O PUI o/ : T tuangeyq

Za DOAOEOU ARI1 O PROAN. §8 AUJUD 3T AJJUS JXBY o/ (94500 = 08004 °185 UYL
/e OF GBI *LBE 495 ST LT SOTAP 1148 3] o/ (038D) 18J = OF OB0JJ*ISS 4] 8540

Ja BTN DIRIIPAUT 04 Qufa O 4810 S} o7 . ..n:ot = OBD3 488 Uyl
/e 04 JOLUTOE 850 .b«niv nou vaq. a4} 41 o/ . BN L L w SRR ISS BT
. /e «n-_ t@;- uo n.é-v *o rtsou wtbnvsuoe ot : ; T - nOtu ot;e.*uﬁ = acsu o-L..ona

. /w JI0SEBJL OF JUTOO GGOOWD PUR T CEBD o/ e . : a ce
L Ja OSED LRUL UT SDUTS SISTI BUL UT AJjus 4y »o..-u = o.'oso <= .na..-u .a~mu. J44d
/o BUO AJUO ST PUdUL. T USAD NHON ST8IS. o7 - 40GP88) = AQTAND <= (0)°ND t048S8) N0

Ja 9SPJ) BOU -w N0 WD U} PESJIML MON o/
. ; o . $($50S™iSS) Jppe = diss
Je 41 BUTJINETJUODED *6°8 51| SBU} By} MBI} o/ :
Je BHD D1} 13885 8 HUTAOCESJS UBYN BN J0) AJjVe 4/
Je 1012005 € S$7 STUL IS8T} 80U} WYl BOJ) OBMD 7

/e AQ O PRJUTOT BB Y| SPAOWBI AJJUd STUL o/ : : $ 168039 AJjue. 19UDT 8B ITPACERY
Ja AJHUS BEOTBLTPDE JO PUTF o/ - EETR YY N
¢ ¢ SHOTINU I THBETSHNT L3S = SPEITRNI) THRUTSONT L ESS USYy
/e 414 BUT|TOD SBET} SR o/ SOUDT NI ITXRN 4SS = SONDTINL} 4SS T
Ze 93N UT S,0MD JO JUNOD JUINBJIDU] o/ $T & SOWITORJI* 1SS = SBMITRRULOSS
tpue
Ja 4511 30 PROBY MOV AUIUD STYL kW SA|IRUT Y4 o/ {(o0ud) 18 = AU} 1SS
/e $1958344 O} jut0d o7 ${demd) |8J = djcoud ¢~ (OQedWD SOySS) Jid
/e Q28D DUR G j*B3WD BSSRD JBU§ U BOULS o/ t(O0ND) (80U x AGQ°IWD <= JiU}
Ja AJLUD BUO AJUD T UBAS SHJION STHl ®4ON o/ 10Q°PWY <~ J2i¢} = 4q* WD
Ja 4ST1 40 PEOBY (& SuWD 04 JRLUTOG (89 ,/ S(AOB LSS SO4SS) JiC = J39)
/o 4ST1 UL 4O DEBAY MBU By} AJIUP STUL NEs o/ 109U *ISS = O 0ud
J« OS S4ST} 234} OYy UT SOTJIUP JBYID «/ {op es)e
Ja $1983T O} AJJUD SR PUR I XBU O} »/ tpua
Ja SJOLUTOC §BS SALIUD AJUO ST STUL ODUTS 4/ : $(AoNd) 104 = AQ*BWD 4d)°*eud
fa AJEUD STYL O ISTY O peay O} Jid 43S o/ f(aewd) 18y = CIBJI}* 1SS
Ze *4ST) BYE MT AJjUd AJUO BYL STUI WNEN o/ top usyy
Ja AJOED AFLUBJIIND ST ST 04 WYY 3T o/ 0 = sSewdT ey i5S 1
/e SSBIPPE NSID WYy DUt 4/ $0,.0.022) = ppexSIDe#ED
Ja SED By UT SJILUTOO N0 HUR)EG o/ 19,0,(8T7) = CoupCU*BuD $dd Se*RND SOmidedmd

$(860ST 155) Jppe = d}SS
Ja 4STH 904} By} jO PEOY Byi O ddND o/
7+« AQ O} POLUTOC 883 BUL SPPE AUJUD STUL o/ : ttdewd) Asjue geEd”e8J; ppe

134

;nw-‘amwou.uugoo_vcc

Ze OINPOE ISTIT8IITOU0D BYi SPUS a~£h«v\

/4 AJIUS BEDTBiEIO} IR -0 U3 o/

\- WD 84} WYL OF S uTOA o:. :usuom m\ : ‘ B : ‘.L*ou. cgzﬁ-s
Ca . : - fay ’ .) o ?‘ﬂ'&
/e <ab8URE 840D ON oxn: :s T en_ocona JOBRUSETEI0D ¥ 88} «c.aOanan t1ed
7o SOBD 80U} N8} 004 |PUBTIS o/ N2 3 u.eca<ulinauiv¢0¢ -u.,un = u.ggu*mi‘ucuaiiuc (FA3iI1
/e 0J08 3808 804} o/ ST T 1 71 YT
/« SNETUTE PRJISAD By} -Nojeq Mn.xnu u».»l py YA ’ aoQulo-u. ¢-e~aa > u-uatcocuoauu -q
7o POAOWEJI By} BUINOj O} AJjUd O of .uac nn o/ k mw. Lo wa..-co ao Lu&a = cooguauuﬁmoand
/o 0w O4 4STH JO e.uu oy Jejuted yes 4y ‘s. S S "azar = GO0} *J5S USE
7e iSTI 3%y wouy AJjue jsey eg§- vc»e Amx .nw.s EEEE - : c aanuioouu.nﬁc .~

; Xy P . e
Ay B . P Loau 4 ¥

/« PORBIU SHIO|Q 340D 40 4uR0D Juslibusul ¢s R s oeo.cé»w» s u!tscoua-
/e 43T) %84} UO SRTJIIUS 0O .cweuhmcqwnuumm »w R "u « Sewd"¥ea} ¢ 5§ ufnu-uacwew..na

$01°08D <~ Jid] = ¢}°0ED ¢~ (OQ°OWD <~ g~au .a-uu. J44d
/o 4STI BUL 4O PEOY 18 AJsus Byl BAOWSY 4/ $€QEED ¢o Jjd) = GG SwI: &- fa) ewiy i¢e Afd) VAL SSY dj0O

Ze $STE 984} O PRAY R BND O} JSJUIOD 89 o/ , $(000J" 4SS *dYSS) Jd x J4T)
fpus’
/e o:c««cou 1L .:o:cc.‘nac -Lou .n o/ ${,.0400,) JUBAS|BPESSXd | |¥D -u_o
tpus
\.»nnnacmucqu caaqoc 149 xuo.&ox «/ S 14d7yd0 86 || 8D
/e 8403 OSwOS ®0aj O} Jebeiee sidd F TR LAY, s4TengsSSRd [jed , e
e BUTETRN SUOSEG |40 HIOIUN YA o/ _ $130”nd0 Ungabed eI :
e -cu sY 8JsuL [Tiun sreR 4 “top uews
, 2403 88af ou 11148 5T o/ 0 = SPWITeRJ 4S8 Y
Ie >u:o ~uo 63 ‘Jeleiin $305 ..oh a7 $(SISVUBTSTINBRURETSI0D" §S8) FUSABESSNG 11U
e «:&xo.wﬁnn an —cu o7 T ${u909,) -LUSASDDESSSRD (T iRD
/e SOWD JO N0 SOET} JELR o7 “¥% & sSe®dTj07in0 uou«~.huu = nonuano ~3o uct«o.panw
" /e G803 98J; O} JobDeuRw 900D (I8} 4/
Ja SISTI 984} UG §,.083 GU $uR 843y} JI o/ 40 = woeu oog. 45S) o.ucx op

“ E : $(808373$5) JPPE = 4)8S

/e« POLIRUSTS 0S8 ST JobBURE o/ ; i
Ja 8403 B\YL CUBQENJ PIMO (I BUYL MO|8Q SAOUD o/
e S 0N DU} 4O JBQENU SUL 3] 0SS SAOD WY 4/
Ja 1T4UN SLIEN DU PWOS 03U} OF JBOEURM BUOD 4/
Ja U} SIBUBTS T CSUCU BUR BJBYL I WD 4/
Ja 93U} B O} JBIUTOD & SUJINIDS AJIUD STYL o/

ttasd) SUIMNIS () AJIUe jeudTBiEd0)| (|

135

N

stpoubtTie (9T) 41Q) AJius jTendgebed
sAJjue wedgetey

$¢a30) AJIUD SNPATPISNTRADENJS ST TPISN P
$(430) AJJUD BEPUTIBY;TIAONDISLISY T 00847 DE

ST . : S(J80) SUINEBI AJEUS PIEISUTRATOSIS3SIST{TIIENTRY. .

o ; s - S¢Ia0) AJSUD PupdTIRJITPDRSISTI T4 DY |

A S(J40) SUINIEI AJJUS SEDTIRI0I FRSIST I8 4} 0403
: W S(ETL) UTQ POXT)) SUINIBU AIIUe TH304D
.5»:2. ..:nnan..:o ...:c.o.-:.-33!.3:.«-&8. ...3-»

\n wwmoo&uq.-ao 3 CELEPEN: oF oA IR A I P

/e O pa- :oluon vsf }o uisosy m nuw::-: :.: T4%4s 3t 3: utq v.x: .-?.8.: o4epon

: 7¢ WBRE » 'Y 1} ws L BIRUINL RS (T2 Ui DONY T FOASYTRASSSS

7« $PJonm_ulq u-xﬂ_ .&o TREEASLGE Supd | ‘ttaespo). vtz yarpeniyi (ke e) | S4pETRISEY

S JEun T seah e ! o Poc e SDMBTAR ARTY 410 put

/e MSELTJIOSTAIBGNS m:csw »m w o -cﬁww k3 . © S ansUr e pbiuenun
_ >.. uos; 4 Jhad R h ke pbaey o o ; $(T1) WIq PORY} %SRWPie
/e TR A v&wsw sk oty 2 T ey Rk ulq PEXT) SwTy
RS 5 wm%%oa@: " obd 14 ’) oo eso e DIEBUTQ PRXTL (4Se)

7« UO POIEINHY" 67O DO U BB b o g R L 3 sy

/e VO 1%h 2 u.-czuo..-ﬁacculec.:u jo onjep o , o : ssjmysTisey
7S 1T L W U T T LT e e eniia o Luel miip .o?.oao...

Ta JOLUNDS 4/ . i |

_ /e XBPUT dOOY 47 , .:

e S LT LB aui -#wo..a-t.y._ N4 .!.3. .ci.tvf s.. 23& gz:..__.

.u-.:u-x- st

a.n..ﬁdw&&aoﬁu‘we.:s JUSARSSSXRG 1103 B Jebtuse DA BULT @ ek 8¢

wao} 318198 JUSAd DUR §Us MTUS™HOD 1§ B 00.-3. e Yoy

JEBRUSSE PO SYJ JOABNOY SJUBAS JeBeusw pO & UO BuTiTEN Sassedoud AQ

‘posn Sontati1as AjTi0u pus jrem paepues sy) *DEATR ANE ST UNBIEN

Jeqoue’ 11360 w301 q yebecues pa Bus SEOD 0P o) WaOR' ou BT SaIbyy T

AjuD *SB0AY j1e J0 sisenbeu Tulpue siho { e 818 0E0D UsBeuew

PA By} *PBIIEIS BIU0 0N SuTpuRiSine 8GAL RUL O S 38NDE. ou BJe

R T (Rhb®’ 038 MY BUL USUM SNUL INSEL BU POlJD JaeT BRY Sy UBN b4 GRTIEA

«OUOPT,, BUTPUOESEJU0D B4} Of U0 SppE JeBeusw PO Sl (POEUC) md

SOysS T o: HSe] 944) BUTPUDERe NI !3?3’ LI IN T, BN} 04 BUO SPPE

JBISINDAY ¥ ARYQE TIEN JBUCHT, SUTHUDISPUIDD B4 §9° SENIEA U}

UiTM SejqeTaen ,SieusIs™, ayy jo0 no:_!,, sy} Bulseduod Ay ses senbed

Y} JBuM SJUAOISTP govoco- pa ey) °such 9q BUTYLINOS BuTisendeu

$593058 S0 b PIATIODEL ST dnexen B | TUn GOO| O ST NyjTaeBgw

21884 BUL PSIST) BSAY] U0 SUOTIRJIICO BUTA|OAUT SETINP e BuTwaoj.ied

33571 POSN PUR S04} DO By} ebeuke O} S] JOOEBURE pPd BU} O UOTIIUN]

Syl CJOLUTOI JINU B ST LT #SED STUL Ul teulhou ST Bur)led Aq Sutuung

20J40=H Oy} S$JIRIS 41 UIUM HSEITIOSTALIEONSTEE0UD AQ DBSSEd U UTOC @

S] JUdWNBUR BYL CUCTIEZTIRIIIUT UT AjJes SHIPTEZTIETITUT AQ pajeadd

(99043 ®3S (99QE)N AQ P USRI |du] SB) J0JdeH UE ST SIMO0LE Jebeuew Pd
Syl °*SS000u0 JIBTURW DU DYy 4O} BUTINOJ BUTATJID B8yl ST STVL

1(JosuT00TPRIUBAUN) BunpBdoUd jIbBeueuTRd

48| 20D

oJR | I9P

o/

136

LT

uTg pPeXT} *uTq pPeXT}

CLLTL)

ulq pexry)

t4se apnouTy
tMid 2pN|OUTY
¢dwd BPN|IDUTYL
$45S apnouTy

$(J4a 803d) AUJUd SMURR TUM

tAJjue deupdgalTun

Se(n) JeYDY) Aujus AjTiougssxd

SUTQ PBXT)) A2jud JUBAITUOTHIO|QESSXd
S(TZ2) UTG POXT}) AJBud Sew §asginud
sAajue JidTyd0 |ungabed

sAaUB

1407)20 g3bed

137

,.veo
$1(90F So,umys” rao. .-.-conu sbaacanivn.oans ucoto :on:aoaaounxa .‘to

2

/o SAS *Jnd YiTh VOSTJEAWOD 4O} o-~ 44848 utg o/ SR »vto o
/a S8 W1} JUNOY o/ CLONYE = ()THIOLD ¢ JUBISTRNIITENIYSS = jumyS”T o.-u SHNJ*LSS. :
fdeupage I TIn 148D
/e IN0 USILTIN SRl SARS o 10814 = jepanTiSe|riss
/e UIEBE aRE PA (N0 S4T4M UBUE o/ top uUB§:
/e 1BALBLUT B48DON UBYY JOBUOE 3T o/ .-»;..c~ THLEPON ¢ SJOPONTISR) *4SS o 8BTS 3T
/« UlEH® dew DA BiTPAN O S T 88§ L7 O xuc.y.n Qcao

»veo

£T ¢ BUOPTIPUOISITPOTIAONDI 1SS 5 SUOPTSDUIOI JTRUTDACES Y I ES

: 1SPUOIBITDETIACERY | (0D
\.puoavn->o-¢¢-\n.u.o:bquIUvLoovulvnlﬁsoloc.unnv ocov uuseuocunlo:ocvg.pnu.o._::ov

tpus
tT + SUGPTIPIODNITROTIPRISS = BUOPTSDUODISITPUTDPES S8
$SpuodeaTpdTppe €3
/e APPE O SPUPU AUY o/ ((SIEUSTSTSPUOINITPU DDESSS > SUODPTSPIOISITPATPPR*1SS) BITUYN OB

ipus
$T ¢ SUOPTINIEOUNILTDAECISS = SUOPTSLRIUNIL PO SS
e RoUNILTPY 1D
$(SIPUBTSTHIRIUARUITPA=LSS > SUOPTSELEIUNILTPE*§SS) B TUN OP

tpud

$T ¢ o:ovnnn:cau.u PA* LSS =z UODPTSANURS |D57PU*SS

. f{anuee|>7pd | jed
\-ncscno.u>coceo\ ..u.o:o_uczzoo.unvn.suuvocooua:cn-.ova.-u_o_~::ou

tpus
$pu0desTPE" 06 § |ed
L $(SOWPOTIRI TXRECLSS > BBUTPACISS) S| TUN OP

/e S48) J0 BUTLIEN 4O} os.-, JOJUNDD BARS ./ {SjeubIsTaebeureT DA 5SS = Ble ST ISR)
/s ®4BABJO} 1B0CRJ (000| UIRY o/ : $4Q,.T.)) Tun op
$198f fsqeisTise| ssjeuBTsTaebeurETDOTSS) JUBANTUOTHIO |QESSRE |{eD
Je IUBAD JODRUSE PO 1SJUTS JT4UN JTEM o/ 1SIsubBTISTAbRUBE PO SS = BiRSTISe |
Je PHASEE SUNL SARR|B JOSBURE™DA Buns ONBY ./ $(NSRBPIO ¢ 10A0)TSASESOS) NSERTIeSSiNnND f)Ed
/o BJ8JUTOA JiNISN (89 oy . tdewpar iSS = dewpd

$(369sT 55} uppe = ayss

138

$PpJ0O0I"PE" 106 DY

fuani ey

$ONTy = ()THI01D & ocovto-ﬁlwsu.rmn x BUODTOWT LTSN SS

/w PJ020J Pd ® JO) SUTITER SucAu® AJTION
v /o MNI01UN

ZJa $ST1 984} By4 UD XHD0)Q PG S MOU B4} 8384

/e DJ0D8J PU BUL }O SIUBLUOD BY} INO BLTJUN

Je $ST] S04} wWOJ} PJIODEJ Pd POIIS|IS SAOWIY
/« PRI} 8Q 0} NIOIQ
/e PO PUT} O Wy YJOB (€ joucEmade)|ddd (€]

/e 0| ®jqei e58d Sus %30] ISJT3
/o 4811 884) O} 41 PPR puR DPUOIGJ pd
/e ®JOW BUOC AN 3BJ) O} BINPEDOJE [RBUJEIUY

o/
s/
«/

o/

o/

o/
o/

o/
«/
o/

§ 1L.0040,,) AjTiOUgSSXD | 8D

$§4a™yo0 jungsbed jied

$(dewpd) upaTe8 .} TPPRSIST) "8IS TRD 1€

. £()™H3012 = eu1}

$(O0Upd SCMOITSNICISS) SHUSHITIN |]BD

g (dewpd) SWPUTPESNTIAOWRJISIST| PISAT PO | 18D
$() PJOI8JTPA"O|0SSLST | PESN PG = denpd
$4)"N0010 = nuc.aouu*lu:u.pwu
t14ano0 | g8BwC | €D

{8UNPe20Jd 3PJOIITPAT} 6

139

/e ON BUTATS 840)0Qq Supd o

/o 994} JO) BUINOO| COO) Of SEWIL }O JOQERN o7/
/o 4S1) POSN O PRy 4® dupd OF JRIUIOY o/

/e 1SOJI04UT O WPT Of JOUTOG o/

, /« XSPU] dODTY o/

§dud epnyIdUTY
$438 SpAjOutY

£ (01QRTJBA) SUOTIUO AJLJUS JUBSAS
SUTLITNG (Uid 4184 tuppe) Sue 3D

£000000T) 4TVUT UTQ POXT) Auem
s44d On
sJ44d “dempd

‘uta pexT; 1 sumidep

/e “1043U0D BBRA S$8I0U0-TIINE JO} JEANH Y NBIDUY AQ §L-G=Q UBLITIN o/

I

*POSNTpdesS

S1QRTJRA Byi UT POVTRIUTES ST {STI Suj UT SOTJIUS JO JIQENU SY] °*BEPd PESN A|iUdey {SER}
SU{ SPOIINIC ALOLRTPONET ALiUD DPOSA AJLUSIBJ §SON BYL SURINDITD ST ISTI BYI BOUTS *AJue
POSN A1jusdsy (SEd| Buj O} SIUTOC SAPOSNPO°ISS S4ST| UL JO PEBY By} O} JOLUTOD BYy] =asn

$S%) JO JepUO UT ST PONUT|-AIQNOD SURINIUTI ® OJUT PBZTUEBJO e S.eupd Byl cesn uf
A14Udaund sue oYy S,PWPd JO (ST Y} UTRLUTES O} PIPIdU SOTJLUS ||€ SUTERIUOD SINPOE STUL o7

{sunpedoyd 314ST i pesnTpd

140

Ja AJLUD SEDATDESNTOACESJ)0 DU o/ tUINLeI

/e POADNSJ ISTI. JO DOOM 4R AJLUS ST AdQuB 1XBU o/ t0}°sEpd = CPOSNDU*3SS USY}

/4 04 GPASRPCE. L3S S§S]1 UL SPTHUS ..a«u X o2 (oewpd) [8J = OPISNPA*iSS T 8S|0

: Ja:STHS S4RIIPUT 04 Quf. 03 4511 SUL o/ ’ £q,0. = OpeSNpde 1SS Uy}
/o O3 SOLUTOC J0SBU SAJCNS NOU (ST| POSN I o/ 0= pesnTpac4ss 7
. v /e ST11.POSR YO $,08Pd }O JUNOD LNOWRLORD o/ ; T - PISNTPGeSs = DESNTPA‘ySS
E J« 1PSEBYY O} JUTOG OQINDPU pug 4} °eupau o/ , ; o ‘
i /e 9S8O jRUL UT-IDNTS S4SPL. Uy ul AJjue of t0joompd = G} 3WPd «~ (dQ°BNpO 4CySS) Jid

\.oco>_comnoub:o.qcu>cxgo:nno~w.\ »onqcsunuoa.oevnna.n..laua.nunuugea
/e OSEBUL B40U «= 4NO. BWPO. B} DROJLS NON of : ;

e

SR e L. a. e ueenbue AdoQ: o/ . {aswpd = dowpd
. i L : N : . $185987188) Jppe = AissS
Ze $STL POSDH YL WOJy Q8NP o/

4w A 04 POLUTOC BMPT SYJ SEACERJ. AJJUS STUL of _ - " §4"aewpd) Aujue peEpdTDeSNTEACNSJ
Je AJlUS SWPATPESNTPPE JO PU3I o/ sudniey
/e OSSN NT u.otoa to JUROD LUBEBJIOUL o/ , , ¢T + POSATDA*)SS = PESNTPA*SS
. : tpue
f$(dsepd) 18J = GQ°EpPd <=~ ON
J« 400S POSA AjJUSd8J 308 U o/ s(doupd) 04 = Oj 0wpd <= (gq*ewpy ‘diss) Jid
/e *8°] 46N Ag O} POLUTOC AJJUS o/ f§dqeswpd <~ On = dqedmpd
74 AJIUS BU0JBQ UT AS4US STUL PROIUL o/ sgpesnpde*}ss = djesmpd
/e ST $O PBOY O} JBjUTOd 409 o/ t(dpesnpdeiss *d}iss) 24 = on
Ze 4ST1 POSN BUL UT SOTIIUS JUID o/ top S|
Je MIOSHT ©O) AUjUP (SB) PUR IX3U O} o/ -
/e SJOLUTOD }9S SAULUS AJUD ST STUS 2DULS o/ 1(dewpd) (84 = dq°ewpd ¢djcdwpd
J7o AJIUD STUE OF IST) 30 PRIY 0O J}0 43S o/ t(dewpd) §9J = APOSNPO* LSS
Ia *$STI ®Yh UT AJJud AjJUo Syl STUL NEs o/ $op uayy
/e AJOWD AfiudJand ST 4STE P3SN a4 1 o/ 0 = pesnTpd*ss 1
/7« fUBNNGIR ADO] o/ {~dsepd = oesmpd

4 (356887 1SS} Jppe = OISS
/e VOTI130d DASN o/
fa AILUSOBI SO BUL UT §STL BUL Of aowpd o/
/e« AQ Of PBJUTOA SNPT Bui SPPE AJIUS STUL «/ $ (“dewpd) AJiue tdwpdTpesnTppe

141

= o . © 7 fsstI"pesnTpd pue
7+ $10paw ISTI"pESATPA Ul SPUS STUL o/

fa 43308 PIOIRITPUTIINIRE WG 3O pUI o/ e P ,
/e 914§ Ausm L.«-. WPY PUT} §,UED T ySBJY o/ 1(,.°%Epd B84, O} SiqrESOdARY 1pa, 1) JISAS 1¥d

tpus
/o Y8DC DOIN ALUSI0J (389 O J40 BAOW PUR ./ 0] *2upad = ADOSNPU* 4SS
Ze AJRUS §XOU 48 NEO| Of JBJUTOU SDUBADY ./ . §{djcsupd *ayss) Jjd =z dewpd
/« S8PC STYS STR)D 08 SON o/ n.nonva. uJInied 931
/¢ GINS SRJ S® LUNOD SS8A of AT ¢ SNUTSOTNSTPAISS & SHUTSOTNSTPACSS ey}
/7« LSmJ ButOSJeBpUN supe s} .-Leu ul Jou oo;n o/ snaesupd 371 ou..
Z+ OINS 0J03 UT SB JUNOD 4NQ 4T o/ 4T ¢ 8J0UTITSUINSTPO 4SS = oLoucn SAINST PO SS usyy
7« GINS UBYE BJ0DUT ST O6RC S ,AJLUD STUS I o/ oscouq.cnua 1
/o IST) POSN PUROIB SABS O JB}04 AN o/ $T ¢+ SUNSTPAc 4SS = SABISTPACSS
/e S8II4US Autw YBNOUUS 000 o/ _ tAuew 0} T = 1T op
Je ONPGA [XOU OF S]] DIED JO PRIy 0S8y ./ t0)"oupd = dpESNDPA*.3S
/a WWPd POSN AJ4USd8J [SBR| O} PUR ./ ¢ (OPOSNPA®(SS $G4SS) Jl0 = USWPD

) o $(s6e3TiSS) uppe = ayss
Ze SPOIIB|BS §] 3407 UT 40U ST B58C SOYw o/ =
79 SUDG POSN A {yUdDeJ §SBB) BYL *POUINIBJ . o/
Za ST POOJ] 9Q O} -3BPT 1XOV W) Of SOJUTOO ¥ 4/
J+ *BD1A0p Buibea syy uUo sSebed JOj WYLTUOB)BR 4/

/e 4UdWIIL|ADL 868D By SLUSNI)ONT AUJUD STYL o/ $(24d) Suuni®a Aujus 1pu0desTPAT OB 8S

142

7 geud spnpourx
$48S 9PNIOUTY

143

tAJIUR JTEeNgSSXd

S(uTq POXT}) AJiUs jUBABSSSXD

Si(n) JeYI) AIUd Jusad|BpgsSSXd

S((h) Jeyd) AJjus JUBAIDpEgSSXd

sAJIUS (i0TND0 uUngated

SAJJUS [4UTHO0 1S I0RA
SUT4ITNG (440 ¢ |80 tappe) JE)I0P

/e UD BUTLLEM GOL BALEA JOLUNOD POARS o/ $(GE) UTQ PaXT; eieysTise)
. 74 $ST) 984} UL QNP ISJTE OF JOJUTOY o/ . _ 330 4305 suw|dep

/e *1043U03 8680 SSED0J4ATTLINN JO) JOQNH *Y¥ M8JPUY AQ §2=G-8 USILTIN o/

-lw b *9JOW SWOS 804) O} JeSeuew pPd Buy o}

JUSS ST |BUSTS B STYL HO|8G SEOJUP SUNOD BuYY USUR SDUL *SOETL)W (¢ SOwDd RN VTN SS

< JOQENU STU) GOON 0 S8JJi Jebeuew DO Byl °*83J)"pde-yss sjQeTJIRA BU{ Ul $09y ST

$SI1 UL UG SETIIVE }O JBQUAU BUL “JBRAINOY ISTI BU§ VY BJIBYNAUS WO peAOmEd 8Q Aew

SpOINBTIUODED *B°T SBDTAJSS WOJ) PeAOWSJ Buteq swpd ¥ s jendo due S ouwpd 86U} |}® BDUTS

SAST] S4i $O PROY By} WOJ) DOIEDO]IE pur O} PIPDPE BJE SITJiUR Ajjemgon . *deaJdypdess Aq

0f POSULOT ST DEOY SSOUM *ST| PENUT|=AIQNOPp SJIRINDJTD @ o«t~ruonncnoso sJe n.Jnuo.och *884)
L ALSBIIND IR LBYL S, PNPC O 4ST) B UTR UTEW O . PEPIBY SO JIUS |8 SUTELUDD BINPON STUL o/

teunpedoJd ST ees) pd

Za AJJUS BEPATINJTDAONGYL 0O DU 47

/e DOACESI IS[| JO DEOY € ASLus T AQUS §XOU o/
/e OF UBJIPO LSS {05 4481) VO SOTLHIUS 4138 5] 9/
/o BIUL B3BITPET ©f Q0. 04 ISI1 N o7

Ja O} JRIUTOC 4O58d CALOED NOU 31| 304 I o7

Je 4ST) 98U} UD S .PNDG O JUNSD JUNEBUIEG o/
/a JIOSMOYS O} jUTOd GQeNRPY pUE O)coups L/
/e 938D J8UJ UT BDUIS YISTH M) UT AJIMS o7

/o SUO AJUD ST S0UJ T UBAD NJIOM SC0IS o/

/e« PSBYL 340U -- iNO PEPA BUL DEBJYL NON o/

I+ 41 BUTINETIUODED *6°0 4814 S0I) UL $0J} &/

Za YSPT ITLII00T B SULADREY. UBHR B8N JO) AJIUS o7 .

/e (812305 ® ST STyl *4S1| 04} By} W4} CGBMPE o/
Je AQ O} PBUTOU BUPD BYJ SSACESI AUSUD STIUL o/

/o AJ4us 20pdTe0UTPPR 30 PUR o/

tuanged

tdicompd = OO9J)PU*|SS U}

{oompd) 180 = dBO)DA"}SS i1 8330
anue: w d0JPAs 48S U
0 = 9007 ployss 37
13 - otsatvu.uuu = #94)"pdsyss
nn. ouon = ny.o-oe <= .nn.-va .a-w~ 40
taqceupd = dq*MNPd <o _n..o-vc ‘gyss) Hd

..n_uaowr-www JPpe = 0338

$(doNpA). A23G8 2 08DATE0L;TBACEY

fusnged

1T ¢ SONPATINLITRRETSOWTICISS = SONPATORI I THRETSONT L 4SS USYY

/e T4 SUTITOD S0nTy JeiON o/
/e FSN Ul $.08p0 O JUNOD JUSNEJIDUL o

"

/e 4ST1 1O -PROY NBU AULUS STUL ONER SA)[RUTS o/
/e J1038844 0} 4utod o/

/a GQ°NPA pUt 4) *upd 9SED BYS UT DULS o/
Ze ASQUD BUO AJUD T UBAS SHJOM ST, SJON o/
Ze $STE Sub O PROY MBU By} AUJUS STY} SNEN o/
/e 4ST1 98J) JO PROY O} JBIUTOD 189 4/

o ISTL 3845 SUY UT SBTILUS JBULD #/

e 3193L] O} AJQUS §SB| DUR XU O} 4/

Za SJBLUTOC 185 *AUIUD AJUO ST STVUL 8DUELS o/
Ze ASJUD STUL OF ISTI JO PEBY O} J40 }BS o/
Ze CISTI U UT AJ4ud Ajuo By STY4 ONBE o/

7o ALOED AjLudJand ST 4ST) 884} UL U] o/

e 4ST1 904} 04 BUTPPR BU08G AJJUD 0JI82 o/

/e $STI 394} GYL §O pESYy 34} OF UONPOD ./
/e AQ O} POLUTOD BWPd Byl SPPE AJ4UD STUL o/

SOWP ORI TN ISS = 00037 PA 133 T
T ¢ 90U TPUL ST = 90U} TDA IS8

fpus
t(asupo) 84 = dIeLpU” SS

$(008pPT) 104 = U3 8uPO <. (AQ*BNPA $aySS) W30

$(OMpd) |04 = dGePWPd <~ 3G}
1dq e mpd < J40) = dg°dupd
1000.0)P0* 358 = dj)°dupd
$(080 U paA® ISS $04SS) 40 = S0}
top os{e
tpua

.».n.lvn— 184 = CQ empd 40 empd

s(deupd) |8y = deRJ)pacss
$op usy}
0 = 904, pas 38 1t
£0,0,.(9%T) = SiTQ empd
$(s60ST1SS) Jppe = d;i88

$(09BpO) AJjUS oWDUT P04} PDE

144

143717000} pd pus

E _ J« ®INPOW §STIT98237PA BYL SPUS STNL o/

/e AJQUS BEPATELRI0))8 4O DUI o/ tta40)) Wngea
b /e 9408 SWOS 384} O} o/ tpua
/4 Jobuuse DA BU} OGN INEH o/ $ (SeUGTSTJeBgueRTPA* SS) JUBABESSXO | |8D
ST ¢ STRUBTSTSEEPA~PEsUTPA*SS = S{EUBTSTSeRpdTPIBY “pge})ss
: t0p usyy
/e WANTUTE DRJISED DU} HOI8Q UB||E) SA BN T o/ SONPCTEBIITULINT LSS > 9047 PAISS 1T
/o DOAOEBY (84} utaso..c. AJLUS O} 488 40U T o/ " tdjcempd <= Ji0) = CIPUIPAC LSS BS|0
/e Qule ©4 ISTI §O PEBY O} JOlUTOG (85 o/ $Qul,. = G804;PA° SS VoYY
J4 ST 832) w0J} AJJUS {SE) BY) DOADESJY ¥ T o/ " g= 90437 pac i8S 1
w /e POIBIO| |8 SIBPO JO JRI0) GATIRINNND ON o/ 11 ¢+ pepeduTparyss = vcoocc “pasiss
¥ Za $ST1 90U} UO SBTIUS JO (UNCD JUBNEJIIRQ o/ 1T « 88J)7PA*ISS = IBJ)TPGISS

t0,°8Mpd <~ 440} = G)°0upd <~ (0Q aupd <= J)O) *4}SS) Nd
/e 4ST) B4 4O PBOY 18 AJJUS BACESY o/ $0Q°0EPCA <~ JIO} = 0G°OEPd <~ (d)°06Pd <= Jid} ¢04SS} Ji0

J« 451} 40 PRIy J€® Bapd O} JBLUTOD 39 o/ L(aveupd* |SS SdisS) 40 = 440}
B fpues
: Ja BUTTEM JBYLO0Q § ,UOP HOU JWOS T 4NG / §(,0040,,) JUBABIEPESSXTD |18 89S (P
{pus
/e BUTNUTIUCD 8J0)8Q {40 HIOI-0Y o/ $ 1407 5D0) g8600 || 8D
/e JOSBURE DO WOJ) JRUSTS UOTLBITEOD JO TGN o/ tyrengssxd (e3>
Je SUTITEM 8U00Q §§d HDOIUN SNK o/ $14d75O0ungebed |1ed
/o $8J) 3OS JTIUN XHI01Q o/ top Uyl
/o B84} BUOU 1148 1T o/ 0 = 204;7DU"LSS 3
/o SWOS 38U} O4 JIORUBN DO By| OGN OHEM o/ ..a.ucunu TJISeURBMT PO §SS) JUDAISSEXD €D
/e SDJOD®J PO SJOM JO} LIEM 04F [0S (09 o/ $(L0040,,) UBABDPRESSXD (@D

/e SBNPA 304} OU SONTY JBLBY o/ t1 ¢ S3WPOTOTINOTSANTL®ISS = SeWPATOT{NO “sSowyii*iss
/a 96405 8384} O} JOBRURE PO |8} o/
/o %4ST1 ®8J) uO S, supd Ou SR BJBYY I o/ $(0 = 084} pd"}SS) B TyYn 0D

tigbesTi85) Jppe = A4SS
/e POIIBUBTS 0S8 ST Jobeuem 4/
Ja B40D SUl SJBQENY DINO|[E Y} WO) G SE0JID o/
Ja S$S.08P0C 98I O JBQENU BYY J] °0S S0P Y o/
J« 1T3UN SITEN pus BMOS 38J4) O} Jobsuew PO SYP o/
/4 SIRUBTS 4T SBUOU SR BJBU4] °SNPC 834} o/
/a ® O} JBLUTOO ® SUJNLDJ ADJUD STYL o/ t(v4d) SUINIeY () Aujue jewpdTeiedO|(®

145

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form Date : {130 195

Report # LCS:TPC‘v|

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
\,g(Laboratory for Computer Science (LCS)

Document Type:

/’QiTechnical Repot TR) [Technical Memo (TM)
O other:

Document Information Number of pages: 146 {iso-imsges)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: intended to be printed as :
[0 Single-sided or O Single-sided or
~#X Double-sided "R Double-sided
Print type:
Typewriter [] offsetPress [] Laser Print
[inkletPrinter [] Unknown [J other:

Check each if included with document:

[0 poD Form O Funding Agent Form O coverPage
[0 spine O Printers Notes O Photo negatives
O Other:

Page Data:

Blank Page Sy page numben:

Photographs/Tonal Material wy pege numben:

Other (mote descriptionipage numben:
Description : Page Number:

TmacEmaei (1= 146) urte'wn TiTLE PAGE ;‘.‘Lij/j‘w‘fp BLARIL
(49150) Seancprtiol TRETS (3

Scanning Agent Signoff:
Date Received: /[/ 30/ 95 Date Scanned: /L/S /95 Date Returned: 12,7 43S

Scanning Agent Signature: W«'A (V\} Q—J’-’\»

Rev /94 DSALCS Document Control Form cstrform. vad

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 994

