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ABSTRACT

Two algorithms for the mutual exclusion problem are described and
proven to operate correctly. The algorithms are unique in that they use
very simple synchronization primitives yet are fair and retain their
fairness even if the number of parallel processes in the computer system
increases unboundedly over time. One of the algorithms uses simple cells
of read/write storage as the primitive; the algorithm is similar to the
classic algorithms for this problem proposed by Dijkstra and Knuth, but is
generalized to handle an arbitrary number of processes. The second
algorithm uses extended cells of storage that model read/modify/write
(e.g. test-and-set) instructions. While it is well known how to use read/
modify/write instructions to achieve unfair mutual exclusion, the1r use in
a fair algorithm is novel.

The results prove that cells of read/write storage are sufficiently
powerful primitives to achieve coordination of parallel processes. There
is no theoretical necessity for a model of computation to include more

sophisticated synchronization primitives such as semaphores and serializers.

But while cells are sufficient, the algorithms are very inefficient; more
sophisticated primitives are desirable for that reason.
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Title: Associate Professor of Electrical Engineering
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1. Introduction

In thfs thesis we present two unique algorithms that solve the mutual
exclusion problem and we prove that the algorithms operate correctly. The
mutual exclusion prob]em is typified‘by a situation in which there is some
critical resource that will not work correctiy if it is accessed simultaneously
by multiple processes. For example tbe,criggca] respurce might be a
data-base; if two processes were to modify the data-base at the same time the
resU1ting information cpu]divery well be incgp;istent, : Thezfunction.qf a
mutual exclusion a]gorithm is»to coordingyg_;gg?sgyera] processes involved
so that no two of them wi1],ever‘access the;requ;ce gpnéurrently. | A]go,z
mutual exclusion algorithms are usually requfrad’tg be fair meaning that
- all processes that try to access the resoupéeiwjf1vbe g}]gyed;fo do so
eventually. That is, the algorithm must not be éble to lock out some or
all of the processes indefinitejy. ~ Both glgqrithmslthat we present are
fair. -

Mutual exclusion algorithms block the attempts of processes to enter
the critical resource while the resource is being referenced by a previous
prbcess. The algorithms that we present here are cailed busywaiting
algorithms. This means that when some process that wishes to enter the-
critical resource is blocked -- i.e. when the process must be prevented
from proceeding because the resource is busy -- the process waits in a loop

testing the value of some memory location. This is in contrast to devices




| such as semaphores [D1jkstra, 1968] or ser1allzers [Hew1tt 1975] that block
processes by suppend1ng their act1vat1on |
The f1rst algorithm that we present uses s1mp1e ce1]s of read/wr1te
memory as 1ts synchron1zation primit1ve The only instructions that these
-cells are assumed to implement are update instructions and read-contents
instructions. = The algorithm is mode11ed after the class1cal ones by
Dijkstra [Dijkstra, 1965] and ¥nuth [Kputh; ‘19667 in~that~it:vequires an
array of memory cells proportional in size to the number of processes in the
system Unlike the previous work, our algorithm geriéralizes so as to appTy'
to systems where the number of processes mdy grow unboundedly over time.
We prove the correctness of our algorithm using thE“dctor model of
computation. ; ,
The second mutual exclusion algorithm that‘wéastudyeuseSwan extended
type of cell as the syachronization primitivegﬁthe‘CeJTS”afe extended so as
to model read/modify/wrfte‘type instructions that are commonplace in real
computers. It is well known how tosimplement unfair mutual.exc1usion with
read/modify/write~instructions: this is the»standavdftest-and—sei loop on
a binary lock variable. We show how the unfair algorithm can be extended
to beyfeir and how the algorithm may be used in systems with an increasing
number of processes. | _
We shall, in the rest of the Introduction, review the basic e1ements‘
of the actor mbde]. Thai section primarily is intended to introduce the
syntax and basic definitions we will use in the thesfs, and to amplify those

elements of the model that are most relevant:here.
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Chapter 2 presents the cell-based algorithm ahd’}’é,i'formal proof of its
correctness.  Chapter 3 studies the extéﬁde'd-'-‘te%ﬁz;oi‘ﬁﬁéﬁ ébd informaﬂy

proves that it works properly.

1.1 Basic Elements

The actor model of computation as used 4n this thesis originated with
Carl Hewitt [Hewitt, 1973};fmaﬂyr theoreticalissmaf the model were |
extensively developed by.lrene Greif in her receet dissertation [Greif, 1975].

Every computational entity in an actor system s an acter. There is
no distinction drawn between d@ta:and procadures -- both are actors.
Information is passed between actors b,y' an operation ca‘ﬂect message trans-
mission, which is rather &na}eogouvs to argumest ﬂ:ﬁ:ﬁm and returaing -in
conventional systems, It shouid be noted.that "mﬂsm transmission” does

not refer to any sort of inter-pr

cess commmicatien; there is only one
locus of .control in a message transmission amd it flows with the message form

source to target. As actors are the only entities in an actor: ss_ys—tem>,_‘aand~
| since they imteract solely by means of mé%m transmissions, therefore
message transmissions are the only activities that:can take ;ﬁlm +n.an .
actor system. Message transmissions are called events. . |

An actor is defined in terms of the messages it accepts and the

messages it generates in response.  Most actors accept only a narrow class
of messages: the addition actor, for example, accepts messages containing.

a sequence of numbers only; a list actor accepts messages such as 'first',
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‘rest’, and 'cons'; and so forth. If an'actor receives a message it

doesn't like, it is ekpected to send an efrdé;meSsgge to a special'actof

called the complaints deparfment. We shqn't'déaTHWith erforg or complaints

in any de£a11 fn thié thesfs;' - |
Whenvan actor receives an acCeptab]e mgssage it may generéte a very

large number of events as é'result of this sfimulus.* | Usual]y we are not

interested in specifying gllhthe messages sent in resbonse; since message

transmissions are the only activities that occur amongst actofs, a specification

of all messages would rgquire specifying the entire gctor,doWn,to the level

of primifives. Iqsteadee Jjust specify a sﬁb-set,of the events_geherated

by the actor. The common strategy for suppressing unwanted detail is to

ignore most messa g transmissions. exceptvthose whose targets are of interest.

Greif calls the setrbf interesting target actors the "distinguished set".

Input/output specifications correspond}to a distipguished set contaihing

(1) the actor being called and (2) the actor expected to receive the output.

A specification coacerned with side-effects. might have all cells be in the

* We will see later that in some sense the:actor‘gehenates the entire future
of the process. Here we mean the more Timited set of messages obtained by
~regarding the actor as analogous to a called sub-procedure.



distinguished set. And so forth.

Consider as ah‘example of actor speéification,;the addition’actor.
We wish to convey that plus accepts messages éontainiﬁgvtwoznumbers and
returns their‘sum as its answer. The specificatioh’ starts with the message
received by plus, and then states what messages fesultﬁ

Event 1: plus receives a message coﬁtainihg~n1 and n2, .
where n1 and n2 are both numbers.

Event 2: ? receives a message containing nl + n2
~ There is a question-mark in event 2 because we have not stated
anywhere the identity of the actor which is to receive the answer. In most
programming languages there is an implictt control structure that governs
what happens tb the results of expressions. TypiédTTy,}if an exphession
like (+ 2 3) were embedded in another expression, e.g. (f (+ 2'3)), then the
result of (+ 2 3) is 1mplicit1y caused to be the argument to f. In the
actor model, such control structure is not imp1fcit]yipreseht; if one wiéhes

to receive an answer to a message an explicit continuation actor must be

‘present in the message. The activity whereby an actor "returns a value"
reduces to just another case of message transmission -- namely sending a,
message éontaining the value to the tontinuation‘actor.

The plus actor must be defined so as to,reqUire that a continuation
actor is present in the original message:

If there is an event in the history of the form

event 1: plus receives a message containing nl and n2
where nl and n2 are both numbers, and
a continuation, called cont




then there is an event of the form .

event 2: cont receives a message contatnzng nl +n2

This specification is at a high level and says noth1ng about how plus.
does its job. The actor may use‘the,hardware<addfin;truction»1n.some,cases:
and multiple precision string addition in other cases, or whatever. There
may be many, many events between event 1 and event 2,:£he specification
leaves all that unspecified. But if event 1 does happen then even£‘2',
will happen. : : :

This lattef interpretation of the actor definition is most imp#rtant,,

The relationship between event 1 and event 2 is called the actor causality
relationship: we say, event 1 causes event 2. ..Ibe,ﬂhpwﬁ of.thi5~cahsality ;
is not specified -- merely that if event 1} bappens,'thenqthat.causeszevent'2_
to happen later. |

The generalness of the causal link is reflected in the form of the
event statements. -Event 2 is the activity of plus answering the caller.
Intuitively this event might be describéd‘as, ?glgg,éends nl+n2 to cont";
however, the way the event actually described there is.ne mention of plus
at all. This is becausé plus may have delegated the job of sending the
answer to some sub-actor or acquaintance. in,a;model where control is fully
nested -- e.g. in LISP - the answer would have to beﬁpassgd back up from the
sub-procedure through plus on its way out to the original caller. However,
in the actor mdde] the control structure is represented explicitly in message
continuations; plus could very easily tell the sub-actor to generate the

answer and send it directly to the original continuation.
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As it happens, this non-nesting of control occurs commonly in actor
definitions. Strictly speaking, a single actor may never generate more
than one message in any given process. If the computation at hand requires
that several messages be semt -- as in a program of sequential statements
or a nested expression -—,a#whOTe‘S]ew\offsuﬂéid¢&ri‘actbrs are created, one
for each message transmission. The final actor created will typically
be specifiedstp send the~answer_to‘the'origﬁnal caller. No multi-processing
is imp]fed by this plethora ofvactor creation; it is mostly a device for
simpTifying'thé formal notation. It also helps avoid problems with the
values of local variables. Each actor is borm with the values of other
actors "frozen in" in a manner similar to thefprograwmﬁng'iangﬁage POP-2
[Burstall, Collins, Popplestone, 1971], and so there is no need for such
things as stack frames as formal devices, et al. | | ‘

The only case in which the originally-catled actor is the one that
actually sends the result back happens if the actor does no visible
comphtation. The actor cannot even do any run-time argument type chécking.
Such an actor must afways be a primitive;‘primfthe’&ctcrs;‘hbwﬁver, can be
of this form and actually do useful things. |

Events are the basic computational units in the éétnr model and we
shall refer to them repeatedly. A more cofivenient syntax for events is
desirable therefore. Events will usually be written ¥n the'foliowing
format:

< target receives message [in activator]* >

*This field is optional, it will bé used in\multi-process cases.




The format of a message is

(message: sequehce—of—arguments
(reply-to: continuation))

For example, the event of calling plus with thé'érguments 2 and 3
would be written R
event 1: < plus receives (message: [2 3]
(reply-to: cont)) >
and plus's response would be | S
event 2: <-cont.recéive5’(mes§ag95'[5])’>
As we have defined them, actors are devites that map an event into a
sequence of .events: they. map the event:wheééby'thgyvare'called,into:the
sequence of message transmissions they cause. vAﬁ arderad- sequence of eveats
is called a behaviér. The sequence of events,caused“by‘an actor ‘is called
the actor's behavior. | |
If an event cprrasponds‘to a procedure call -~ i.e. it is of .the form
. event 1: < procedure receives (message: [r-argumenisf-] v
: '(rep]yrto::return—pt)) >,
then it will cause many events but eventually,}hopeﬂ&ily.atherévwil] be an wu,'
event: | | | |
event n: < return—pt recéivesp(messageé [--result of précedure--])>
O0f course, return-pt is itself an actor and it will mﬁpweﬁént.n into some

subsequent events n+l, nt2, ...
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For example, consider the following program fragment:

factorial (5) ;
print ('done') ;

.

The call to procedure factorial corresponds to the event
“event 1: < factorial receives (message: [ 5]

. {reply-to: return-pt)) >.

Factorial will do many things‘internallygiﬁut assuming it is a well-defined
function, it will eventually return to the continuation, return-pt. That
: eveni'wouldube

event n:  <return-pt receives (apply:[--countdown's value--])>

~ Now, what does the actor returﬁ~pt’do? factorial has just finished

and the next thing the program text says to do is "print (‘done');".
Furthermore, the program says to do that no matter what factorial did. The
actor réturn—pt must be defined as follows: .

event 1: < return-pt receives ?7>

| causes |
event 2: < print receives (message: ['done']
(reply-to: return-pt-2))>.

The question mark in event 1 means that return-pt cares not what its input

is; it does the same thing no matter what. The continuation in event 2 must
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be an actor like return-pt that performs the step after print ('done') in the
program ! : . . ) : . . T . .
Plugging return-pt's spec1fication into the pregram fragment ylelds
the following scenario:
event 1:  <factorial receives (message:~[5]

“(reply;tof‘return-pt))>

- ‘event n: <return-pt receives (message. [—-factorial s value--])>
event n+1: <print receives (message: [’done 1 | '

(reply-to: return-pt-z))>'

The dot-dot-dot after event n+l reflects the fact that program keeps on. going.
Print will cause many events, eventually return pt-z w111 receive a message
and it will cause the next step of the program to be run, etc " Ta paraphrase
an old homily, event ntl is the f1rst event of the rest of the program's life.
It seems intuitively appealing to break the behavior between events n
and n+1. All the events between 1vend n inC?ustye.are_reesonebiy |
attributable to factorial; they may reasonably be called "Factorial's behavior".
The events from n+1 onward are more naturally called “the rest of the program";
This division of behavior is quite useful in nany cases. It allows

us to talk of an actor's behavior, or the behavior resulting from an event,
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in a compact and more or less precise way*. 1ye.ﬁillkuse this natural
terminology often. It is important to note, though, that the division is
really arbitrary. The events n and n+1 have no locally observable
characteristics that distinguish them from the events before or the events
after. | |

If we decide, therefore, not to break the behavior between events n
and ntl, a different interprefation emerges. fhe behavior resulting from
an event may be regarded as gll_the future behavior of the process. This
view interprets.behaviors as more than descriptors Qf‘ihe,past performénce
of an actor system; behaviors are also prescriptors bf the future of the
system. |

Almost all actors are pure'in the sense that their behavior does not
vary of time. Given the same input message at two-differént’times, the |
actor will cause the same sequence of "next" events both times. If a11
actors 1n the system were pure there could never be any t1me vary1ng behavior
in the system -- everytime the system werehstarted up it would 1nev1tap1y

produce the same answer in fhe same way. ‘There is only onekprimitive actor

*It is quite hard to make the notion formally precise, though. What is the
resulting behavior of an event without a continuation? Even if there is a
continuation, we have.no assurance that a _message w111 ever be sent to the
continuation.
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whose behavior is not fixed over time and that is the cell of read/write
storage. |

Cells are defined to respond to two kinds of messages: one message
of the form (message: ['contents?'] (replyrto:Lcpntinuat;on))»pnd the other
message (message: ['update' to new-va]ue],(rgply-tq;l¢ontinuat16n)). The
first méssage asks the cell for its contents and the cell responds by sending
back the value stored in the most recent update message. The event following
a 'contents?' query will always be of the form

Ecell's-contents: <continuation receives Xmessage;[ce?]fs~c0ﬂtentsl)>.
However the actual content of the event will vary as the contents of the cell
varies. | |

Whenever the behavior resulting from an evept is time varying that
means a side-effect has occurred. By localizing all side-effects to the
actions of one particular kind of actor, the cell, reasoning about the time
variability of behaviors is greatly simplified. Of.course, since actors may
be defined by users that utilize arbitrary aumberslof_qells in arbitrary
algorithms, no generality is lost through thq;gimplifigation,

We have noted that the past behavior of a_system,;qgéther with all the
actor definitions in the system prescribe the future course of that system.*
Suppose we have an actor systém, A, which has been running for a whi]e. A

will, therefore, have a behavior B. As long as the actor system is running

* Though if there is pakal]e]iém, there may be many possible future courses.
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its behavior will continue to grow. If we were tb‘“freéZé“ the actor
system at a point in time, the behavior would of course stop expanding’and‘
would have a last event, E, .. In Ordérfto'?eiumé ﬁﬁé%tdﬁpuiktiﬁﬁ all
we need is E;_ .., becaiise the behavior that resuTts from Elast is all the
future behavior of the process &s described above. |
Behaviors are the concrete realization of processes in the actor model,
analogous to such things as ‘stack frames in more conventional models of
computation. ‘Consider the modei suggested by Bobrow and Weigbreit [Bobrow
& Weigbreit, 1974 for-instance. As a process runs it maintains a pash -down
stack of stack frames each of whith includles a program counter, local |
var1ab1e bindings and all the control structure information necessary for the
" running procedure to reference nﬂn Yocal variab?es and to’ return to its
caller. To freeze a process in the Bobrow and Wetgbreit model we would stop
it after some program step. The stack frame fbr the ruﬁnlng procedure and -
all its predecessors on the stack are at that point poised, ready to execute
the next step in the progr‘am * AT that'is reqdiééd’ﬁb'resume i'ﬁe p;-og.:am
A11 models of - computation need some methad to concrete1y incarnate -
running processes. In the Bobrow and Weigbrelt mbde?;rfﬁé stack and most
particularly the “current" stack franes play that rote. In the actor models it
* In the model the program counter is assumed to be updated after each

program step. For a real running system the stack frames only simulate
the model and usua)ly don t update the PC after each 1nstruct10n.
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is behaviors and their last event.
The actor model of computation“isflargelywﬁotivated by'an‘interest
in describing systems of'muitiple processes': 'The”modeThesideveloped s0
far here has dealt only W1th 51ngie process systems, though The formal
machinery deve]oped for the sing1e process case must be extended ever so
sTlightly to embrace multiple processes ‘ |
Behaviors are the concrete realization of processes in the actor model.
For each process in the actor system there wili be a distinct behavior
describing its act1v1t1es since creation. The union of a]i the indiv1dua1
behaviors is also called a behavior: it is the behavior of the actor system
as a whole. . If the processes never ihterect{thensthat is the end of the
story. If, however, the processes do interectathehjve need a little more d
formal machinery. | | | S o
| If two processes 1nteract we often want to compere an event or events
in the behav1or of one process with events in the behavior of the other
In order to tell which events go with which process al] events are iabeiled
with a name called an activator The activator is more or 1ess equ1va1ent to a
process name. | ’
Events that include an activator are written
event: <target receives message in activator> .
Our nomenclature for activators will normally be oOSSibiy with a subScript;
Phrases 11ke, “event E, in “data base" will be used as a shorthand for

"event E, in the behavior of the process whose activator is a data-base".
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Multiple process systems may be 1mp1emented in numerous conf1gurations:
all the processes may actual]y run on the same computer with on]y s1mu1ated
para11e11sm, or each process may have its own processor, or some may be one
way and some the other way. We w1sh for oyr theory, at least in 1ts
fundamental form, to be applicable to a11 forms of paralle] processes
1ndependent of how the para11e11sm is ach1eved Ne make no assumpt1ons
therefore about the relative speeds of var10us components of the system One

‘component m1ght be a human.being performing 1nstruct1ons off a wr1tten sheet
and another component m1ght be an IBM 370/168 The human be1ng mlght have
an effect1ve execution speed of one 1nstruction per second as. compared to the
machlne s 60 m11110n 1nstruct1ons per second

Also there may be arbitrary and uneven delays between events even in the
same process.  We may have an a]gorlthm part of which executes on the
370/168 ‘and part of wh1ch requ1res human process1ng Though the algorithm
represents one single sequence of steps -~ 1i. e. 1t 1s a s1ngle process -~
some. events there1n are separated by 160 nanoseconds wh11e others are spaced
a second apart '

Nor do we assume the ex1stence of a globa] tlme standard with which
activities may be t1me-stamped. G]oba1 t1me stamp1ng of events that
transpire‘in separate processes is fea51b1e for 1oca11y-execut1ng processes
but is often hard to achleve w1th geographically d1str1buted systems Atra
minimum, the existence of a common t1me standard for a]] processes requ1res

careful planning ahead, both to acqu1re the common c]ocks and to make sure
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-all programs use the time iﬁformation‘properly. There are some problems
where global time-stampfngvseems an invaluable aid and others where it adds
as many«difficulties as it solves.* At this timefﬁe'arerinterested~in seeing
how far asynchronous, non-time based models can go.

The impact of these assumptions is that~events'ih separate processes
- are npt usually comparable -- i.e, it is not usually possible to-tell which
event happened first. Concretely, the impact of these assumptions is that

in general, between any two eventSuinnbneﬂprocess—there may occur arbitrary

numbers of events in other processes.

* Satellite ALOHA networds are a positive example of timg¥stamping,
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2. Busywaiting Synchronization Algorithms Using Cells.

We shall study in this chapter the problem of enforcing mutual exclusion
of an arbitrary number of processes with respect to some particular critical
or protected actor. The mutual exclusion problem has been investigated
exhaustively in the literature. Genera!lyﬁwbrk in this area may be classified
according to the primitive synchronization facilities that are assumed to be
available. In this éontext the~phraséfﬂprjuﬁtdve:facﬁi1ty“ means that the
operation involved occurs indivisibly, as if it were a.single {dnstruction or

_micro-instruction'in the instruction set of a hardware machine.

Natura]Iy the more sophisticated the primitives are that are assumed
to exist, the easier it is to solve the mutua]lexclusion problem and related
problems such as the readers/writers problem. Some common synchronization
primitives include semaphores [Dijkstra, 1968], mbnftors [Hoane, 1974}, and

- serializers [Hewitt, 1975]. These primitives all achieve mutual exclusion
of arbitrary numbers of processes.

Cells may also be used as the synchronization primitive of a mutual
exclusion algorithm as is well khown. Dijkstra [Dijkstra, 1965] and Knuth
[Knuth, 1966] developed the classic algorithms along these lines. Their
algorithms only work, though, if the number of proéesses in the system does
not increase over time beyond a fixed maximum; it remains unproved whether
mutual exclusion of an arbitrary number of processes, where the number is not

fixed over time, can be achieved using cells. We will prove that it can be
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accomplished. ‘

We have elected to study mutual éxcfﬂsiﬁh per- se becausé.it fs the
fundamental synchronization activity needed to:protect actors from harmful
multi-process comcurrency. ‘Using a mutual exélUsiaﬂVOﬁeratoﬁ as a[buf1ding
block, other more sophisticated -actor protectfen mechantsms Caﬁieasi1y'be7

~bui1t These more sophisticated ‘mechanisms: may impTement better ‘scheduling
Aalgor1thms than are possible in the simple mutua1~exc1us1on operator, also -
they may be able to recognize situations where total mutual echuswan of
pracesses is overly restriétive;aand they may aﬂwaﬁsoMerc¥aSS of prbcessé%
tp access the protected actor coliectibn;cbncuﬁrent!y;‘” Th$S~1atfér“élab4-
oration corresponds to the well-known re;ders]writers“brobﬂéhfahd‘fts
extensions. | |

In the following section we describe the algnrithm and demonstrate
informa]]y that it works correctly. A formal proof in the actor model is

presented in the section following.

2.1 The array of ;e]ls splution

The algorithm that we present here is based on the.approach propesed. -
by Dijkstra in [Dijkstra, 1965].  The key ingrediemt.of this épproach is
that the mutual exclusion operator maintains An array of cells that must be
;t least as large as the number of prccesses;thatque;th»operator., Each

element of the array is indexed by the "name" of a process.
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The basic form of the Knuth and Dijkstra algorithms is this: When a
process wishes to pass through the mutual exclusien guardian it changes the
value of its entry in the cell array to indicate to all other processes that
it wants to get through. Then some Eompu&at%un,is ﬁerformed on every other
entry in the array; the actual computation varies from algorithm to algorithm,
but in all cases the purpose of the computation*iinn indicate whether or not
there is another-process already executing inside :the critical region. Only
if this predicate answers that no processes are in the critical region may
the current process proceed to pass through the guardian. If the new process
is not permitted to enter the critical region now -- i.e. if the computation
it performed on the array said, “No!;'-- the process must wait. It does so
by looping, each time cdmputing-the entraacesprndjcateguntii the answer is
"Yes!". | L |

Algorithms that follow this approach have been proven correct by
previous researchers. In particular, Greif [Greif, 1975] has proven that
a similar algorithm proposed by Knuth [Knuth, 1966] indeed does work.
Correctness of mutual exclusion algorithms has two components: First, it
must be the case that two processes never execute in the critical region
concurrently -- this is a minimum spéciffcation; and sécond, the aigorithm
must be fair -- j.e. it must be guaranteed that all pkocesses that attempt
to pass through the guardian will make it througﬁ’evéhfua11y;

The algorithm of Knuth is known to work, but only if the number of.

processes in the system does not exceed the size of the array of cells.




-21-

We will show how this limitation can be circumvented, thus proving that fair
mutual exclusion can be achieved for an7arbitréfy number of proéesses using
cells as the primitives. ' o )

The original atgorithms presented by Dijkstra«andlknuthkarg prétty

complicated. The algorithm we describe here 15353ﬁi1af to theirs in

essence, but it is much easier to understand, and much easier tbiféasdﬁ about.
First we present the simple case of the algorithm where the number of proéesses
is assumed to remain fixed.  Then we will extend ‘the épﬁroaéh to‘héndié?)
-arbitrary numbers of processes. - - - T

Consider the i11ustratiVe'diagr%m-beToQt

an array of cells,
state-array

R | protected-actor
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We will call the array of cells required by the algorithm, state-array; we call

the actor being protected, protected-actor. Also, we assume the presence of

a special process, %utex® whose Job it is to mind,the,stbre. Whenever an
external process Qs wishes to access the protected-actor, it changes the value
qf statgfarréy [i] and then waits. mutex in its idle mode loops continually
scanning the state-array; eventually Oratex Will note the changed value of
state-array [i], and inform a; that it may enter the protected-actor. This
algorithm is intended to bg fair and we will prove that it is, though by no
- means is it FIFO. This means thatjwhile all processes that try to pass through
the mutual exclusion device are assured of getting through, no attempt is made
to service requests in thé order they are made.

The operation of the device is reguiated by theﬂvalue‘in state-array.
Each e]emenf of state-array reflects the state of one process in its efforts
to get through the guardian. The elements of state-array range over four

values:

idle -- o, does not wish to enter;

request -- o, requests permissibn to enter protected-actor;

grant -- o4 is granted permission to enter protecteﬁéactor;

~done -- o, has finished its interaction;
and idle, again, indicating that the interaction is complete from Ui g point

of view and o

mutex's Yiewpoint, too. It 1s‘1mportant that the transition from

any state value to the next is always in the province of either o; or amutéx
but never both.  The transitions are controlled as follows:. |
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idle to request -- by o4 when it decides to enter,A

request to grant -- by when it a]lows o to enter,

mutex
grant to done -- by a1 when 1t has finished with protected-actor,

done to idle -- by a when it notices that oy 1s done.

mu tex

Each external proeess‘must*fotioW'ad'éStabfiehedfprotoco1»fﬁ’its dealings
with the protected-actor The mutua1 exclusion operator can only. be assured
of working properly if the protoc01 is adhered to dutifu11y eyery time the
protected-actor is referenced In order to 10ce];ze the 1mp]ementat10n of. this
protocol, we will ut111ze the concept of e nca;ement” put forward by Greif
[Greif, 1975] and Hewitt [Hew1tt 1974]. o
Ne wi]] 1magine that the actor being protected is. ful]y enc]osed,

encased, within another actor that serves as an alias for it. A1l other actors
know only the alias; they do not know the protected-actor ftself. Hhehever’
an actor wishes to send a message to the protected—ector. it sends it instead
to the alias-protécted-actor; the alias observes theprotacol, and retransmits
the message to its ward when the protocol allows Tt. A11a54protéCted-ector |
is specified by the algorithm written de5cr1pt?ve1y be1ou (the a1gor1thm is
specified formally in LISP: shortiy hereafter)

alias-protected-actor = |

(1) receive argument, and call it theéinputémessage

(3) update state-array [i]: ﬁ"request‘

(4) loop waiting for state-array [i] to be 'grant', as follows
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(5) ask state-array [1] for its contents, and 1et state = the contents
(6) there are two cases for state: -
- (6-1) state = request' -— repeat from step (4)
(6-2) sfate 'grant' -Q proceed wwth step (7).

(7). send message (message: the- -input-message (reply-to: step -(8)- ~-below))
to protected-actor

- (8) when finished referencing protected-actor, update state-array [i]:='done’
(9) loop waiting for state-array [i] to be *idie’, as follows
(10) ask state-array [i] for its contents, and 1et state the contents
(11) there are two cases for state: |
(11-1) state = 'done' -- repeat‘froﬁ étép (9)

(11-2) state = 'idle' -- exit to externa11y supplied continuation
with answer received from. protected-actor in step (8).

END:

The storekeeper process, o mutex’ follows a different regimen. O utex
may be thought of as running in two modes, a scan -mode and a wait mode. In
the scan mode, Unutex circulates through thewstate~array_scanningfeach element
in turn.  When it reads a state~array[i]:whose;yaIue is 'request', it stops
its scan. It changes the element, state-array[i] to be grant', and enters
its wait mode. In wait mode, %mutex loops testing the same element of the
array over and over. When that element becomes 'done’, Crutex changes it

back to 'idle', and resumes scanning.  Importantly, amﬁtex-a1ways resumes
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its scan with the array element after state-array[i] |

The algorithm that %nutex executes is embodied in the actor described
below, an actor that we call regulate-mutual—excius1on Steps (2), (3), (9),
(10), and (11) compr1se the scan mode of the algor1thm, steps (14) - (18)
implement the wait mode (Th1s actor is specified fbrmal]y in LISP f0110w1ng
the description).

regulate-mutual-exclusion =
(1) set cell i:=  first process name known |
(2) ask state-array[i] for its contents, and set state = contents

(3) there are two cases for state:

(3-1) state = 'idle' -- go to end of loop, step‘(Q), to continue scan
(3—2)vstate = 'request' -- proceed with step (4) |

(4) update state-array[i]:s= - ‘grant’ |

(5) loop waiting for state-array[i] to be 'done‘,tas:follows,

(6) ask state-array[i] for its contents, ‘and set state = contents |

(7) there are two cases for state:

(7-1) state = 'grant’ -- repeat from step (5)
(7-2) state = 'done' -- proceed with step (8)
(8) update state-array[1] 'idle!

(9) resume or continue scanning the state-array as follows
(10) there are two cases for the process name index, 1i:

(10-1) i = 1ast process name known -- update i:=  first process
name known
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(10-2) else, update i:= next process name after i
(11) repeat from step (2).

END

The two actors alias-protected-actor and regulate-mutual-exclusion
specified formally in a LISP-1ike notation on the following pages. A
certain license with LISP syntax is taken in that we write array references
in the ALGOL-ish form

array [index]
rather than the LISP
(get 'array index)

and (store 'array index value).
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(defun alias-protected-actor (the-input-message)

(prog (i state answer)

Step-2  (setq i (the-name-of-the-process))

- Step-3  (set state-array[i] 'request') -
Step-4  ;; loop waiting for state-array[i] to be 'grant'
Step-5 (setq state state-array[i] |
Step-6  (cond | | | |
Step-6-1 ((equal state 'request') (goto step-4))
Step-6-2  ((equal state 'grant'),(gotg‘stepﬁ?))

| (else (error)) | | T
Step-7 (setq ansWer (prqtgcted—actorvﬁhaeinputvmessage))
Step-8 (set State-arnay[i]z'done') |
Step-9 ;; loop waiting for state-array[i] to bei'id]e'
Step-10 (setq state state-array[i]) -

Step-]l (cond R e

Step-11-1 ((equal- state 'done') (goto step-9))

Step-11-2 ((equal state Tidle}).(returhianswer))
(else (error)))))
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(defun regulate-mutual-exclusion nil
(prog (i state)
Step-1 (setq i (first-process-name-known))
Step—zl (setq state stateAérrayEﬁU)?’
Step-3 (cond
Step-3-1 ((equal state 'idle’)(goto step-4))
(else (error)))
Step¥4 (sef state-array[i] 'grant') '
Step-5 ;; loop waiting for state-array[] ta ‘be 'done'
Step-6 (setq state state-array[i})
Step-7 (cond
Step-7-1 ((equal state ‘grant')(goto step-5))
Step-7-2 ((equal state 'done‘?(got&*ﬁiepsé))
| (else (error)))
Step-8 (set staté-array[i] ‘idle')
Step-9 ;; resume or continue scanning the state-array
Step-10 (cond
Step-10-1  ({equal i (last-process-name=knowr))
(setq i (first-process-name-known)))
Step-10-2 (else (setq i (next-process-name-after i))))

Step-11 (goto step-2)))
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The proper operatlon of this mechanxsm is apparent assumlng that
the system starts out in 1ts natural" 1n1t1al cond1t1on | That 1s all B
entries of the state—array must be 1n1t1allzed to 'idle ; no external process
may be referencing protected-actor 1nit1ally, and “mutex must start execut1ng
regulate-mutual-exclus1on at step (l) we shall expla1n the correctness of
this solution 1nformally at th1s t1me' a formal proof is presented in the
next sectlon | lf ' |

There are two aspects to the correct operation of a fa1r mutual
exclusion operator First does it even implement mutual exclusion - 1. e.
does it prevent the s1multaneous access of two processes to the protected—
actor. The second aspect is the fairness of the device, w1ll every process
that attempts to reference the protected-actor be allowed to do S0 eventually. |

We w1ll demonstrate fxrst that the system here does 1ndeed achleve -
mutual exclusion Proceed1ng from the stated 1n1tial condit1ons, 1t is
-'clear that no process w1ll ever reference the protected-actor unless al1as-
'protected first sees the state array element equal to grant" : Also, after ,
| the process is done, and not before, al1as-protected-actor changes the grant'
state to ‘done’. Thus 1f no other actor ever mod1f1es a state-array element
that equals 'grant', we may be sure that no process w1ll.access the protected—
actor unless its state array element is grant' T o

Furthermore, each process that w1shes to enter the protected region first
sets its state element to be request' and does not set 1t to be grant'i |
The anly actor that does set states to grant"1s the actor regulate—mutual-

exclusion, that actor will only set one state to grant' and no more untll
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that state-array element cycles to 'done' first. It follows that no more
than one state-array element w1ll equal 'grant‘ concurrently and therefbre,
that no more than one process will reference protected»actor concurrently
‘ Falrness of the operator may be 1nferred from the scan algorithm

‘employed assuming that the operat1ons in step (lO) of regulate-mutual-exclus1on
are all well defined, one-to-one funct1onslv That is, there must be a un1que
first process name, a unique last process nane, and the funct1on ggﬁt_applied
iteratively starting with the first name must yield all the names known to the
system exactly once. G1ven all this, 1t is clear that 1f no process ever
requests entry then each state-array element will be scanned once before any
element is scanned tw1ce |

If one process sets its state- array element to request', regulate—mutual-
exclus1on will note the fact the next time that element is scanped.  The
.scannvng will then be interrupted and steps (4) - (8) attempted, and the
state—array element nill be Set‘to 'grant‘-' lhe sneciflcation of alias-pro-
tected—actor mekes it clear that once stateFarray[lj is set’to ‘request', the
entwre sequence of the protocol must 1nev1tably occur Thus it is a foregone
conclus1on that the state element will eventually becone"done Regulate-
mutual-exclusion detects the ‘done' state and resets it to 'idle' thus
completing'the cycle. |

The important fact is that the entire‘interlude from step (4) to
step (8) does not affect the scan parameter, it Thus)providing that all the
steps (4) - (8) do occur the scan will resume as iflthereuhad been no inter-

_ ruption. And as we have noted, the interaction,betueen the two processes
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does insure the completian of those steps. Thus o oo, will-scan all the
other elements of state-array before it scansthe ame just let through.
again. Therefore all the elements of the array will .get.a “next" shot . -
through to the protected-actar and none can be locked out. I.e. the opepator
is fair. |

This algorithm for mutual exclusion only works so long as the number

of processes that may wish to access the protected-actor does not exceed

the size of the state-array. Of course, nothing in either alias-protected-

actor nor regulate-mutual-exclusion prohibits the use of a variable size

structure in place of an actual fixed size array. Suppose statefgrray were
physically implemented as a list. Whenever a new process sought to join the
crowd of processes with rights to the mutual exclusion operator, a new entry

could be cons'ed onto the front_of the state—array 1ist, and the variable pointing
to the front of the 1list could be updated to include the new entry.

In this model the identifier "state-array" will be used to name the list
of state-array elements. The notation -- state-array[i] -- must be understood
as a symbolically indexed reference into the list pointed at by'state-array.

We may continue to assume that the expression state-array[i] returns a pointer
to the cell that the ith process must twiddle in order fo pass through the
mutual-exclusion operator; therefore the statements like

(set state-array[i] 'request')
that appear in the actor alias-protected-actor will still work eﬁen thdugh

state-array is changed to a list.
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The algorithm for regulate-mutual-exclusion though references all the
entries of state-array sequentially and it is more convenient to rewrite that
actor using car's and cdr's than it is to try to make the array notation
work. A version of regulate-mutual-exclusion that is particularized for

the case of state-array being a Tist is presented on the following page:
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(defun regulate-mutual-exclusion nil

(prog (i-state state)

Step-2

Step-4

Step-6

Step-8

Step-9

(setq i-state state-array)
(setq state (car i-state))
(cond o
' ((equal state 'idle')(goto step-9))
((equal state 'request’ é(goto stgarﬂd)
(else. (error)) T T TSP

(rplaca i-stateé 'grant') -
H1 1oop wa1t1ng for state-array[i], i e. i-state. to be ’done
(setq state {car i- state)) IRt |
{cond

((equal state 'grant’ )(goto step-s))

((equal state 'dane )(QOto step—a))

(else (error))

~(rp1aca i-state"idle')

33 resume or cont1nue scanning the s&aie~array
(cond ; if at end of state-array 11st
((nu11 (cdr i- state)) : then reset i~state to.begwnning
(setq i-state state-array) -
(else (setq i-state (cdr i-state))))
; else set i-state to‘next;ehtry

(goto step-2)))
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The operation of creating a new process may add the new process to the
state-array by cons'ing a cell for the new process onto state—array Th1s
procedure is described in algorithms fﬁr*attvrg?fhrtﬁhhﬂibxﬁaﬁﬂ»state-array
below: R

fork =
(1) receive argument and call it new-process

(2)  do whatever has to be done in the innards ef‘the system to create
a new process ,

(3) ’expand state-array for the new- process (see below)
(84) exit to externa11y supp11ed contwnuation
END |

expand-state-array =
(1) receive argumeht and call it new-process

(2) allocate a new cell and call it new-state Update new-state's
initial contents to be 'idle' \ :

(3) Cons new-state onto state—array and let new-state-array = the
returned value

(4) store new- state in the bowels of the system in a manner associated
with new-process

(5) :update state-array:= new-statesafray

(6) exit

END s
The actor expand-state-array is expressed formally in LISP on the

following page:
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(defun expand-state-array (new-process)

(prog (new-state new-state-array)

Step-2 (setq new-state ‘idle')

Step-3  (setq new-state-array (ebns new-state state-a?ray))
Step-4 (... store new-state in the system...) -
Step-5 (setq state-array new-state-array)))

There is a potential tlming error associated,u1th the actor expand—state-
array if it is executed concurrently by mu1t1p1e processes A possible

behavior involving two concurrent executions of the actor 1s illustrated below:

Process-l‘  Provess-2.
(2) ‘new-state :¥ 'idle’ (2) new~state = 'id1e
(3) new-state-array := (3) new-state-array =

(cons new-state state- array): (cons new-state state-array)

(4) ... | /(4)
(5)  state-array := new-state-a%?ay' (5) ‘state-array := new-state-array
That is, both processes could create the new-staté-array using the

same previous state-array resulting in a structure Tike
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‘state-array

new-state-array for

process-—1

new-state-array
for , :
process-2

Whichever process updates sfdte-array in step (5) last is the one that

will win out in the end. Its new-state cell.will‘hﬁ.included in the
state-array list; the other entry, while notigacbggg nor possessing a dangling
reference, will never be referenceable from state-arkay.

- This bug would be avoided, however, if the operation of adding processes
tb state-array were a mutually exclusive operétion. There would be no problem
with extending the state-array list to arbitrary size, if only the operation
were restricted to one process at a time. In the actor model, new processes

do not arise through spontaneous generation; aside from the processes that are
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stipulated as existing in the system's initial conditions, all otheh{
processes are created by events. Events,eof'ceurse,:ahe'activitieshin some
process that a]readyfexists. | |

If we assume that all initial processes are represented in the"'
state-array then we may specify that process creation‘oceurs in a mdtua!ly
exclusive manner by protecting the actor'forkvwith preciselyfthe utual
exclusion operator that we'heve described here. That is we may-define
an actor alias-fork that is identical to alias-protected-actor, except it
relays the input messages to fork Tnsfeaﬂfbf‘ﬁfefebfedlactdh.h In other
words we may use state-array to protect the actor that expands sfateAarkayl'

There is one other trouble-spot in exfenﬁiﬁg'the”"ehiaj‘of“celis""
solution to arbitrary number of processes -~ the processes being added to
the staté-array may be very prolific and mey'themselves'create'mOre new
processes.  These additional new processes will have to be added to the
<state-array, too, of course And they too may be very pr011f1c

| Suppose that when new processes are added to stpte-array thet they are

added at the end. And suppose that when each passes through to the protected
region it creates a new process that 1mmed1ate1y attempts to pass through |
the mutual exclusion operator itself. Under these cond1t1ons the scan may
be stuck in an 1nf1n1te]y grow1ng morass of fast breed1ng processes Ahy'
requests entered closer to the beginning of the array w0u1d never be served

This bug may be avoided, though, by the s1mp]e strategen ‘of extending
the array at its front. Now,_even’though the'array might grow without bound

over time, every request that is entered would bevscenned and allowed through
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eventually. This is because no process created during one scan of the
state-array would itself be attended until the next scan.

Thus, the "arréy of cells" solution to the mutwal exclusion problem may
be extended to handlé.thevmost general case of wnbounded numbers of processes.

2.2 Formal proof of the solution

We shall prove. the correctne$s of the algorithm in two:stages. First,
we will prove that mutual exclusion per se is implemented; then we will prove
the fairness of the aTgQriéhh. For the first,part‘it~doesn't matter whether
or not the number of processes remains constant. ~The extension to handle
arbitrary numbers of processes need on]ypbe.cansidered inf;he fairness proof.

Before proceeding, let us state precisely what is;being‘prbved.

Definitjon: a normal returning actor

Let protected-actor be an actor which includes in its specifications

the following fact: if the event

.t < - i
Eenter—1 protected a¢tor‘rece1ve;

(message: any-message
(replys;o:'continug;ion)) in o>
appears in the behavior then the event

s . . .
Eaxit-i cont1nuat1pn rece1yesv

(message: any-answer) in o>

will appear later in the behavior.



Then protected-actor will be cal]ed'a:norﬁa?*retu%uing actor.

This first definition ensures that the actors being protected are all
‘well-behaved and act 1ike normal sub-routines. If we send a message to the

protected-actor we expect it to answer and not fly offfon its own someplace.

Definition: mutually exclusive reference -

Let protected-actor be a norma] returning actor.
Then protected-actor is sa1d to be referenced in a mutually exc1u51ve ‘

fashion if and only if for,a]l quadrup]es.of events

(E N E

enter-i’® Eex1t -1’ “enter- J exjtrj)’ej?‘”v
one of the fol1ow1ng two order1ngs holds |

either (1) E before E before E before E

enter-i exit-i - . epter- J exit- j

or  (2) Eqnper-y before Eoyqy 'W’;’efm Eenter-1 before Eexit-i

Definition: fair encasement

Let protected-actor be a normal returning actor. ;'Ahd‘igtMelias-protected-
actor be another actor. | v S
Alias-protected-actor fairly encases protected-actor if and only if
a behavior has the following event in it: ‘
Ehe1]°_i:’<alias—pr6tected-actor reeeives_i -
(message any-message o .
(rep]y to: continuaiion)) in a1

Then it also has the following events in the stated order.

¢
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Eonter-i’ <protected-actor receives
(message: any-message
(reply-to:-alias-~continuation)) in a;>
Eoyit-j: <alias-continuation receives
(message: any-ahswer) in a.>
| Ebyebye-i: <continuation recelyes

(message: any-answer) in ay>.

Definition: fair mutual exclusion actor

Let protected -actor and alias-protected~actor be actors and suppose

that alias- protected-actor fa1r1y encases protected—actor

Then alias-protected actor is a fair mutual exclusion actor for

protected-actor if and only if for all histories which contain

E E ... ., E E

enter-i’ “exit-i
i#j

_ hello-i’ i Ebyebye -i’ be]]o-i’ enter-j°
Eexit-j° and Ebyebye-j

“one of the fo110wing'two orderings holds:

i before Eanter- _j before before Eexit-j

befcre E

“either (1) E before E

enter i exit-

or (2) Eenter _j before ‘before Eex1t _; before - before Eenter _3

exit-j’
In particular these order1ngs ho]d even if Eheno -j -were between Ehel]o -

and Ebyebye g or the converse.
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The theorem we shall prove is this:

Theorem: G1ven the actor a]1as-protected actor as spec1f1ed 1n sect1on

2.1 above and any actor protected—actor wh1ch satisfies the consta1nts in the

def1n1t10n here A]so. given the actor regu]ate-mutua]—exclus1on and the
process Urutex as specif1ed in section 2.1 |
Suppose that the spec1f1ed system starts out 1n the fb110w1ng 1n1t1a1

conditions:

(1) each element of state-array equals '1d7e'; o

(2) .no event of the form E has yet occurred,

enter- -1
(3) “mutex has not yet begun to execute regulate-mutua]—exc]us1on but

it will execute the actor from the beginn1ng once the system is started up

Then, alwas protected~actor is a fair mutual exclusion actor fbr o

protected-actor.

The proof of this theorem will be faci]itated by the cencept of an
"inter-process handshake” describing the lnteraction between the external

process and Oputex: . 1he actors allasfprotected—actor and regulate-mutual-

exclusion 1nteract by means of a protoco] with the fo]1ow1ng character |
one process sets the cel?, state—array[1] to some part1cular state value
.and then busywa1ts until state- array[1] changes to some other va]ue The
other process meanwh11e is already set to ]ook for a partlcu1ar va]ue in
state-array[i]; when it sees that value it "shakes hands" w1th the f1rst

process by causing the next transition of state—array[1]. In this way the
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two processes éoordinate each other's activities and 1ead each other through
thé algorithm in a step-by-step sequentiaf manhef | . |

In the fo11ow1ng sub-section we will formalize the concept of inter-
process handshaking. After that the mutua1 exclus1on a]gor1thm will be
reformulated in terms of handshakes and we w1TT use the reformulated vers1oh

to prove the main theorem.

2.2.1 Handshaking between processes

| The concept of handshaking will be defingd by specifying an actor that
implements it. Then we prove several useful theorems regarding the properties
% of handshake actors.

The actor handshake receives messages of the fbrm

(message: (shake: cell
(set-to: value-]f
(then-wait: value 2))
(rep1y—to cont1nuat1on))
handshake will update the cell to value-1 then 1oop busywa1t1ng until the
cell's contents become value-2. At that time, handshake rep11es to the
continuation. The algorithm for handshake is describéa”be1ow:' A formal

version of the actor in LISP follows it..

Handshake =
(1) receive input message of the form
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(message: (shake: cell
| (set-to: value-1)
(then-wait: value-2))
(reply-to: continuation))
(2) update the contents of the cell to value-1.
(3) busywait for the contents of the cell to become value-2 as follows:
(4) read contents of cell and let 'state = the contepts.

(5) there are two cases for state:

1}

(5-1) state = value-2 -- repeat from step (3);

~ (5-2) state = value-2 -- proceed with step (6).
(6) exit to the continuation

END.

The actor is specified formally below:
(defun handshake (shake-cell value-1 value-2)
(prog (state)
Step-2 (setq shake-cell value-1)
Step-4 (setq state shake-cell)
Step-5 (cond ((not (equal state value-2)){goto step-4)))))

Definition: completion of a handshake

A handshake is completed when a reply to the continuation occurs. That

is, given the event
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E <handshake receives

“handshake-1-2°
(message: (shake: cell
- (set-to: value-1)
(then-wait: value-2))
{reply-to; continuation-1))in o >.
Ehandshake-]-z is completed by the .next. event, if any, of the form

E <continuation-1 receives.

compWete-l-Z:

(message:~2)ain.aa>v.

Befinition: matching a handshake

Let Ep - ndshake-1-2 D€ an event of the form

<handshake receives
(message: (shake: cell
(set-to: value-1)
(then-wait: value-2))
(reply-to: continuatien-1)) ina.>.

Let E be an event of the: form

update-2
<cell receives
(message: ['update' to value-2]

(reply-to ?)) 1nVub>.

Then Eupdate-? is said to match the handshake Ehandshake-1-2‘
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The reader should note'that matching of handshakes is purely a‘
syntactic matter. The matching event is not in any sense guaranteed to
satisfy the busywaitlloop in the handshake_and thyé lead to the compietion
of the handshake;uindéed an.event that matches a handshake may even occur

before the handshake!

Definition: completion-causing event of a handshake
Given Ehandshake-]-z as in the previous dgfinj;ioqs,wand given an

event Eupdate-2~that ma;shas Ehaanhake-l-Z'
Consider the event

<cell receives
(message: ['update' to value-1]
| (reh]y;to: step (3) of haquhgke)) in a,>
occurring after E,_ .0 o1a_y_p but before fhe reply to continuation-1; call
this event Eset-to—l' |
Consider the class of events
<cell receives | |
(message: ['contents?'] |
(repiy-to: step (4) of handshake)) in ap>
also occurring after E .\ b1 o 1.p but before its completion. Call these

events £ ait-for-2-




be any event of the form o

,ngt Ec1obber

ECXoﬁhef' fce11 receives ) |
| (message [ update' to not-value-]]

(rep?y-to. ?)) in ap>
" Where not-value-1 = value-1.

The event Eupdate 2‘1s a'completionécaésing event of Ehandshake 1-2
if and only 1f Eupdate 2 appears in the behavior affer Ehandshake 1-2° andp
no event of the form Ec]obbar is between { pdate z and the next occurrence

of Eait-for-2-

Theoren: Completion-causing event causes completion 6f"a handshake
[This theorem expresses the fact that comp!etfon»caussng dvents
are aptTy named that a. handshake wi11 comp1ete if and only if
a completion-causing event is present -
Given an event Ehandshake 1-2 a8 above and any event Eupdate 2
that is a comp]et1on-causing event of Ehandshake’1 _
Then Ehandshake 1-2 will be completed -- i.e. handshake will rep1y
to the cont1nuation -~ if and an]y if some ewént Euﬂdate o is present in
the behavwor
Proof: This result fo110ws directly fromfthe-spac1f1ed algorithm for
handshake and the axioms for ce?ls Handshake will reply to the continuat1on

in step (6) of the algorithm 1F and- on?y 1f 1t read the contents of the cell
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via an event of the form Ewait-for~

From the axioms of the cell we see that this condition requires

5 and;fqund‘the'contents:toibetvaiue‘z.

that the most recent update event in the target onécﬁiag of the cell must -
~be of the form Eupdate—Z‘_ 7 | : - S

A simple but important qarol1arywof,thisvthgonamaapp}iesiWhen:ﬁhe‘t
"set-to" value does not equal the "then-wait" value of a handshake.  First

we define a bit of terminology.

Definition: proper handshakes
Let Ehandshake-I—z be a handshake event as aboye,of.the-fbrm o

Enandshake-1-27 <handshake receives .
(messagg:(shakg:qce11
(set~to: value-1)
 (then-wait: vajue-2))
| (pgp]y-té: continuation)) in a >
Ehandshake-]-z is called a prbper handshgke}ifiqnd‘onlyjf vg]qeel

# value-2.

Corollary: completion causing event of a proper handshake
Let EhandShake be a proper handshake event in - | }
Then np completion causipg event Qf‘EhandshakefFa" be an;gvent in qh,daisp.-

Proof: A1l completion causing eyents of Ehandshake must be events that
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update its cell between Epandshake and the completion of the handshake; also
-~ the event must update the cell to value-2. :

The only event in the handshake that updates the cell is the "set-to:"
event therein and that event updates thecell to valte<1.  Since value-1
# value-2, the "set-to:" event cannot be a comp]etion-causing eVEnt of the
handshake. And since no events occur,iﬁ~dh'other"fhan evenfs“that‘pértain
to the handshake until its completion, ﬂo"evéﬁtsviﬁfdh can cause the
completion. | B

The property expressed by the corollary is imﬁortant because it ensures
that proper handshakes do c;use the running process to wait for some specified
- events in another process.  Hereafter we shall assume that all handshakes
" are proper. L "_’ -

Another-ihteresting_property of handshakes'is.that.they-m&y be chainedv
one after the other resulting in a multi-process sequencing of events as we
will see short]y. First we need to mdké definitions similar to the'ones
above but involving inter~pracess~handshaking instead of simple updating

of events.

Definition: a matching handshake

Lgt Epandshake-1-2 be an evgnt of the form

Ehandshake-1-2¢ <handshake receives
~ (message: (shake: cell
(set-to: value-1)
~ (thenvwait: value-2))

‘(rep1y4to:'continuation—l)) in a,>
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Let Epondshake-2-3 D€ an event of the form

<handshake receives
| (message (shake cell
(set-to: value-Z) |
(then—to value 3))
(reply-to continuation—Z)) in “b

Then, E handshake~2-3 is sa1d to be a match1ng handshake for Ehandshake 1-2°

Defin1tion cbmg}etion-caus1ngfhandshgke

Given Ehandshake 1-2 and Ehandshake 9.3 25 in the prev1ous def1n1tion.
Let Ese¢ to-3 and Ewa1t for-2 “be events related to Ehandshake 1.2 38 in the -
definition of a completion causzng;event‘of«a handshake. = And let Eclobber‘f
be any event that updates the cell to a value not eQual to value-2.

Then, E, . dshake-2-3 1S @ completion- causing handshake of Ehandshake—l~2

if and only if the fo]]ow1ng condit1ons ho?d
(j) Ehandshake-2-3 is after Esét-to-l and befgfe the completion of

 Ehandshake-1-2}
and  (2) There are no events £
of E

handshake-l-z'

_ Thearem completion—cau51ng handshakes cause completfan ’ :
Given an event Ehandshake 1-2 @s above and let Ehandshakeiz 3 be any
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completion causing handshake of Epandshake-1-2.

Suppose also that there is no other event E 2 of the form

update-

Eupdate—Z: <cell receives
(message: ['update' to value-2]
(reply-to: ?)) in a,>
between the event E__ . .  (related to Evandshake-1-2 35 1n the previous
definitions) and the completion of E, 4o\ 0o o a.
Then, Ehandshake—]—ZQWi]] be completed -- i.e. handshake will reply

to the continuation -- if and only if some event E _ dshake-2-3 2ppears in

the behavior.

Proof: Let E ., ., , represent the class of events between each Ehandshake-2-3
iand its completion wherein the cell is updated to value-2.

I.e. each Eset-to-2 1S of the form

Eset-to-Z: <cell receives

(message: ['update' to value-2]

(reply-to: step (3) of handshake))in a.,>.

By supposition the events E o are the only events between Eset-to—l and

the completion of Ehandshake—]-z that update cell to any value whatsoever. Not

set-to-

all the events E need occur in the range between E 1 and the

set-to-2
completion but any that do are completion causing events of Ehandshake-]—Z’ and

set-to-

thus fulfill the "if" part of the theorem.
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The "only if" part follows from the observation that those Eset to-2
events that are comp1et1on causing events of Ehandshake ] -2 are its on1y
completion causing events. _ |

A useful corollary to the above theorem applies. to chains of
completion causing handshakes. Given a sequence of handshake events where
each handshake but the first causes the comp1etion of its predetessor, if
the first handshake does in fact occur, then all of the-handshakes except
the last one will complete one by one in sequence. | Though the handshakes

appear in separate processes it is as if there were an act1vator type causa!

1ink between them.

Definitien: cheins of eompletion—ceusing;handshakesf.‘

Let Eyondshake-1-2° “handshake-2-3" Ehandshake-3—4’ +++s Epandshake-n-m

each be handshake events Let Ehandshake 1-20 Ehandsh&ke—S g o . be events.
in process ay and let the others be in process “b LR # O - - Suppose further

that E . in the

handshake-1-2 15 before Epo i hake-3-4 15 bef°”e Ehandshake-ﬁ 6
oy activator ordering and that the events of abvarevordered simjlarly.

Let Ehandshake 2-3 be a complet1on-caus1ng handshake of Ehandshake 1-2°
let Ehandshake-3 -4 be a complet1on causing handshake of Ehandshake 2.3 etc.

Finally assume that there are no events updating the handshake cell other
the "set-to:" events in the handshakes, between Epandshake-1-2 2nd the event

E , where E is the “set-to:" eve"t'{“:shandshake-n-m'

set-to-n set-to-n -

Then, the sequence of events Ehandshake»lez’ Enandshake-2-3° Ehandshake-3-4’

s Ehandshake-n-m is called a chain of completion-causing handshakesy
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- C oro11arx chain of complet1on-caus1ng handshakgs
Given a chain of compietton~causing hanﬂshakes 5handshahe~%-2'

Epandshake-2-3° +*+ Ehandshaka~uwm
Then each of the handshakes hut the last one. ulll campiete in sequence -

" T-& Epandshake-1-2 111 complete befpre By cpaps p.3 Which will
complete befqre,ghiaashate~3~4??gtg; By I}h‘ﬁ!1”4h y11J_ﬂﬂteGQIplete,‘butv

it will start.

t

Proof: Thls corollary fol1ows from succe551ve applicatxons of the previous
theorem that states that completion caus:ng handshakes cause complet1on

In general, given a chain of completlan causing handshakes occurrwng
in act1vators a, and s there may be many events betnnen the coupietion of
one handshake in one progess and the start of the: ﬂext hanéshake 4 that
same process. For example, suppase a cnnﬁrlbution to a handshake chain
includes the events Ehandshake 1- 2 and Ehandshake 3_4 These twe. events |
are part of a larger piece of}a g behevtdr thtt a!ﬁo fnc1uées ‘the fe!lauwng
events and relationships: | .

: Ehandshake 1-2 before the compietzen of Ehandshake 1-2
before an arbitrary sequeﬂce ‘of events

before Ehandshake-3—4
Let's cal) the handshake event in ab ‘that 11nks Ehandshake 1-2 to
Ehandshake 3-4 i" the chain, Ehandshake 2- 3 Aﬂ 3mpartant fact is that the

“arbxtrary sequence of events 1n/a noted above cn?y occurs betwaen Ehandshake—z 3



and its completion.

-53-

placed in a time enve10pe demarked by Ehandshake 2 3 and its comp]et1on._

This re]atlonship is 111ustrated below'

| afbitrary

The handshaking causes the'arbitrdfy events in a, to*bé"

o

Ehandshake set-to wait-for C sequence - Ehandahake set
1-2 1 2 of events 3-4 . 3
Ga -—_——.—-.—’on---o') t———’r“n—‘*-‘-ﬁﬁnﬂ—;‘—'———n—;-
Ehandshake setﬁ;o wait-for
2-3 ] e c
time of
arbitrary
sequence.
vl_ of events
s = e e e e e envelope demarked by Ehandshake~2 3 -----
L.,time._..,

The dashed 1ines represent the busywait Toops present in the handshake actor.
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‘Definition: inter-handshake gap
Let Ehandshake-l-Z’_Ehandshakeb2-3"Ehandshake_3-4s coees

E be a chain of comp1etion'cdﬁ§iﬁg‘hahd?hakes in processes

handshakeqn n’ :
a, and o, . Suppose that events Ehandshake~1-Z;UEhandghake-3-4,' . . are

the events in ua. |
We will represent a genergl_pair of sﬂtpessive handshake events in

either process by the notation

Ehandshake-i-3° Ehandshake-k-1
where if we continue to use the subscript convention followed so far, i,j.k,
and 1 are successive integers. |
Let us call the completion event of Ehandshake = i» Chandshake-i i-j.
Then the sequence of events in the activator ordéring of chandshake—1
after that event and before the event Ehandshake k-1 is called the inter-handshake
gap between j and k; that sequence will be:denroted gap-j- k.
The first event of gap-j-k -- i.e. the.very,next event in the activator
- is called E

ordering following C The last event of

| handshake-i-j ~ gap-j-k° | |
the gap -- i.e. the event preceeding Ehandshake-k-1 ~= s called the completion

event of the gap and will be written Cgap—jék'

Definition: parallel inter-handshake gaps and handshakes

Let E E E

handshake-1-2> “handshake-2-3° “handshake-3-4> - * °° Ehandshake-m-n
be a chain of completion causing handshakes. Let gap-2-3, gap-3-4, . . .,

gap-(m-1)-m be the corresponding inter-handshake gaps.
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Then we will say that the pairs (Ehandshake-3—4’ gap-3- 4l o
(Ehandshake-(m-l)—m, gap-(m-1) m) are each parallel inter- handshake gaps
and gaps.

Theorem: the envelopment of inter-handshake gaps

Let Ejandshake-1-2° Fhandshake-2-3°"** Enandshake-m-n D€ @ chain of

completion causing handshakes. Let;gap-2-3,-gap-3~4,,..,»gap~(m-1)-m be
the corresponding inter- handshake gaps.

Then for any 1nter handshake gap, gap-j-k, and its paralile}l handshake
Ehandshake-j-k’ the fo]]owing re]at1ons1ps\ho]d.

Epandshake-j-k Pefore Eqap g
- before Coap-j-k before Cpandshake-j-k-
Of in other werds, the gap is enveloped in a time perfod demarked by its
parallel handshake.

Proof: It follows from the definition of inter-handShake’gaps that

Chandshake -, 1 = ._]'-- the completion event of the handshake preceed1ng ,

the gap -- is before E And s1m11arly C 1s before the f1rst

gap j- k
event of the next handshake,

gap-j-k
Ehandshake-h-1, 1 = k7, " shall prove the
theorem by proving that '

Ehandshake-j-k 'S PETOre Chanichake-i-g
and  Ey ndshake-k-1 15 before Cp o icrake-j-k

which yields the overall relationship
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Ehandshake-j-k 227OT€ Chandshake-1-3 PeFore Egap s

before C before E

gap-j-k handshake-h-1 P€FOTe Cpapichake-3-k

Enandshake -j-k 15 Pefore Cpopychake-i-3 DECAuSE Eppicnake-j-k 1S 2

completion-causing handshake -of Ehandshékeéiij. 'Furthermore, Epandshake-i-j
may not complete before Ehandshake-j~§'ec§”rs‘b¥ virtue of the "chain of
completion-causing handshakes” corollary. ‘

Similarly Epondshake-k-1 15 DEFOre €y dchake-j-k PeCaUse Epo o ichake-k-1
is the completion-causing-handshake °f“Ehahd§hakéoj-k‘

The two results of most relevance to us ﬁere'are these:

(1) If we can establish that two pfécesseé“interact as a chain of
completion-causing handshakes, then the tnt&r»process interaction once begun
will complete up to the last handshake I the last handshake can be
completed, also, through some separate mechanism then the entire interaction
will comp]ete

(2) The events in one process's 1nter-handshake gaps will a]ways be

enc1osed timewise in a handshake in the other prbcess

2.2.2 Reformulation of the algorittm using;handshékés

In this section we will restate the algorithms that constitute the

actors alias-proteéted-actor and-regu}ateémutuaf—exc]usion-rep]acing the
explicit busywaiting loops in thqse algorithms by invocations of the
handshake actor. We will prove that the,intéractions of those two actors
does take the form of a chain of completion-causing handshakes and therefore
the major theorems of the previous secfion do apply to these attbfsv

The reformulated algorithms are presented below. - The equivalence of
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the original algorithms to these revised ones {is appgrant_by even a textual
substitution of the body of the handshake}actof fohieaCh call to it. As
usual we first present an informal descripfion followed by avformal»specij

fication in LISP.

alias-protected-actor = (revised)', | |
(1) receive argument and call it the-input-message.
(2) set local identifier 1 = the name .of the process.

(3) send handshake the message

(message: (shake: state-array [i] -
(set-to: 'request')
(then-wait: 'grant')) |
(reply-to: step (4))).
(4) send protected-actor the message
(message: the-input—mgssage;
(reply-to: step (5)).
(5) send handshake the message
(message: (shake: state-array [i]
(set-to: ‘done’) -
(then-wait: ‘idle'))
(reb1y—tb: stép (6))).
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(6) exit to externa? continuation with the answer recelved from
protected-actor in step (4). ‘
END

regulate-mutual-exclusion = {revised)
(1) set cell i:= first process name known.
(2) ask state-array[i] for its'contehts and iéi‘state = contents.
(3) thre are two cases for state: | R E

(3-1) state = 'idle' -- go to end of loop, step (6), to
continue scan's "

(3-2) state -.'request' -- proceed with ' step {4).
(4) send handshake the message
| (message: (shake: state-array [i]
(set-to: 'grant')
(then-wait: 'done'))
(reply-to: step (5))).
(5) update state-array [i]:= 'idle'.
(6) resume or continue scanning the state-array as follows:
~ (7) there are two cases for the broc&ss’name index, i:

(7-1) 1 = last process name known -- update i:= first process
name known;

(7-2) else, update i£= nextvprocess name after i.
(8) repeat from step (2). |
END |
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(defun a]1as—protected-actor (the 1nput-message) : revised

(prog (i answer)

Step-2 (setq 1 (the-process-name) ‘
Step-3 | (handshake state-array[l] request' ‘grant ) |
Step-4; (setq answer (protected~actor the- 1nput-message))
Step-5 (handshake state-array[i] 'done' 'idle )
| Step-6 (return answer))) _
(defun regulate-mutua]—exclusion nil “;reviééd
(prog (i state) , | ,
~ Step-1 (setq i (first- process-name-known))
Step-2 (setq state state-array[1])
Step-3 (cond |
Step-3-1 ((equal state 'idle!) (goto step<6)) -
Step-3-2 ((equal state ‘request') (goto: step-4))
(eise {error)) |
Step-4 (handshake*state—array[il *grant'“’done*)
Step-5‘ (set state-array[i] 'idle’) | |
. Step-6 s resumé or continue scanning the state-array
Step-7 (cond |
| Step-7-1 ((equal {1 (last-process-name-known)):
(setq i (first—process-namﬁfknoWn)))' ”
Step-7-2 (else (setq i (next-process-name<after i))))
Step-8 (goto step¥2)))
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In order to use our actor/behavioraI proof techniques to prove properties
of these programs we must first establish some corelation between steps in
the algorithms and events in the behavior of the system that resuits when
the programs are executed This coreiation is someWhat complicated by the
repetitive character of the programs, we may expect that a process wi]i
attempt to enter the protected-actor many times during its execution and s0
each program step wiii be executed many times even for one particular process

Each program step generates a ciass of events aii of very 51miiar form
For example each time the alias- protected—actor receives a message -- step (1)

of the algorithm -- an event of the form f"" '

<a1ias—protected-actor receives
(message: the—jnput—messege~;x
(rep]y:to;,contipuetion))~in ay>
occurs. We will find it useful to classify events:beth«by'the program step
to which they correspond and by the value.of the index i applicable to that
step. Thus the above event might~be«e]as;ified~;s;*on event resulting from
step (1) in alias-protected-actor witheiedex LIS QPR ~He_shail edopt a more
succinct and mneumonic nomenclature along those lines. Erents corelated

 with steps in alias- protected—actor w111 be denoted by E where

subscript -i?
the subscript will have some mneuMonic appeai, events resuiting from

reguiate»mutua]-exc1u510n will be written H (the "M" is to remind

subscript -1
" us that reguiate-mutual-exciuSion is run by “mutex only).
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We remind the reader that appeiationSVSUéh 55 E name

. subscript-i
classes of similar events, But where novconfusion is 1ikely to result
we shall use the same symbol to refer to specific évents; when we must

refer to more than one event of a class, we will differentiate the names

‘with primes, e.g. E subscript-i-

Definition: names of events resulting from the algorithms
*Let Ehe]]o—i denote the events whereby alias-protected actor receives
an input message:
Enello-j° <alias-protected-actor receives
(message: the~input-message

(reply-to: continuation)) in o>

*let E be the handshake event af'stép (3) of the actor:

request-i

Erequest-i: <handshake receives

(message: (shake: state-array[i]
| (set-to: 'request')
(then-wait: 'grant'))

(reply-to: step (4))) in o>

*Lét E name the evehts whereby theeinput?message is relayed to

enter-i

the protected-actor. E is the first event that references the

_ enter-i
critical protected-actor

E : <protected-actor receives -

enter-i’ o
(message: the-input-message

(reply-to: step (5))) in a>.
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denote events of protected—actor rep]ying to the alias.

et Eexit -1

E :<step (5) of alias- protected-actor rece1ves

exit-1
(message the~answer) in a1

*let E be the handshake event at step (5)

done-i

Edqone-i° <handshake receives

(message: (shake: state-arvayli]
(set-to: 'done')
(then-wait: 'idle')) .
(reply-to: step {6))) in ay>.
*And let Ebyebye-i denote the events whereby alias-protected-actor
transmits protected-actor's answer to the outside world:

-Ehyebye-1? <continuation receives

(message: the-answer) in a.>.
Now we define events in regulate-mutual-exc]usion

*Let M be the event in step (2) that scans state-array[1]
scan-i

M : <state-array[i] receives

scan-i°
(message: ['contents?']

(reply-to: step (2))) in oppe,>

*The event following M

scan-1 takes two possible.ferms. Let’
M | |

hot-request-i be the response

M

hot-request-i° <step (2) of regulate-mutual-exclusion receives

o, e Y )
(message: 'idle') in Ynutex
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Tlet M i be the other response

request-

"pequegt-i° <step (2) of reguIate—mutuaT~exc1usion receives

(message. request ) in a tex -
* et ngant i be the handshake event at step (4)

M- “grant-i° <handshake rece1ves

(message (shake state-array[i]

o (set-to: 'grant ) |
(then-wait 'done ))
f(reply—to step (5))) in uhutex .

* et "1d1e § denote events at step (5) that reset the element to 'idle .

"idle T <state-array[1] rece1ves |
(message [‘update’ to '1d1e ] )
(reply—to step (6))) in “mutex .

A significant ordering relationship anongithe‘ﬂamed*eventSfew’
alias-protected-actor may be inferred from thetstridghtaline, ebh-brehching_
nature of the actor's,aIQOEithm.' -Since theresare(no»beanches 1n>the
~algorithm at the level of abstraétﬁon,represented’byﬂthejrevised version
here, if all.the named events;occur. they?must~0ccsw-1ntofder.

Theorem: straight line theOrem for a11as—pretected—act0r

Given the event class names defined above.

We may structure the event classes 1n an ordered sequence

[E, , E E
hello-i request-1 enter, Eexit i’ Edoae—t’ Ebyebye-i]Z .




If an event from any class appears in an actor system s behavior

then an event from each of the preceeding classes in the sequence must also
appear, in ‘the same order as the events appear in the sequence For example,
if an event Ebyebye i
events must also appear, before Ebyebye i in the stated order:

appears in a system s behav1or, then the fo11ow1ng

Eheno i before E - before Eenter i befbre Eexit i before Edone i

reQuest
Furthermore, if two events of the same named class, call them
Eclass 5 end E' class-i eppear in the behevior. then‘an event of each other

named class must appear between Eclass i and £ c1ass 1

Proof: The order used for the sequence of events is derived by 1nspection

of the stated text of the a1gorithm used by aiias-protected-ector
The 1nv101ab111ty of the order expressed 1n the theorem follows from

the absence’ of loops and branches in the algorithm fbr a11as—protected-ector
at the level of: ahstraction pertaining«to the named events

A sim&lar theorem: may be derived for the events of regulate-mutual-
exc]usien, or at-least the wait mode of the e1gnrﬂthm. steps (2) through (5).
With alias-protected-actor the.theorem~expla1ned«that'the-events pertaining
to some particularaprocess,‘ai; happen serially in-a welisdefined sequente.
Regu1ate-mutua1-eXCIusioﬂndiffers 1n_that,jt-igtgrﬁetsiwith-aIIthe o
external processes, not just one partitu]er,gi,f,,Bytnsinge only one process
ever runs the actor, the events“therein ~pertaining to all processes will occur
serially. This is the property that is fundamantaliy depended on for the

algorithm to provide mutual exclnsion
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Theorem: straight Yine theorem for reguiate-mutuailechDSion'

Given the event class names defined above.

And given the assumption that'“mutex is the only. precess that ever
executes the actor regu]ate-mutue]-exclus1on

We may structure the following event classes in an.ordered sequence::

["request-l’ Mgrant i’ 1d1e 1]

If an event from any of the classes appears in a- system s behavior ..
then an event from each of the preceed1ng g]asses 1n the seqUence must also

appear, in the same order as the events appear 1n the sequence

Furthermore, g1ven two events Eclass i and E lass -7 where the word
“class" may be instantiated by one of "request" “grant", or "id?e" -- if
E . and g

class-i class-j both appear in the behav1or, then at least the

following other events must appear in order

" (1) the events after E in the sequence;

c]ass~i

(2) the events before E in the sequence.

For example, if the events Mgrant -a and nganth

must also occur in that order.

class-J n
both occur then

events Midle -a and Mrequest -2

Proof: The fact that only one process ever executes regulateqmutual~exclusion
means that the behavior perta1n1ng to it is a tota] order and‘the order of
events may be read off the text of the actor's algorlthm.

The order is fixed and inviolab1e due to the ebsence of loops and

branches in that part of the algorithm giving use to M . M

request-i* grant-i’ and
M

idle-i-
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As a final result of this section we will prove that the two actors
interact as a chain of completion causing handshakes. There are three
handshake events involved in any'interac£TGN‘betweeh a1$as-protected-actor
Edone-i> and Mgrant-i'
We will prove

and regulate-mutual-exclusion -- they are E . .y i

The chain that is formed in Erequest—i’ Mbra"t_ij Edone-i-

that as used in these programs Mgrant-
E

request-i done-i 21ways causes the completion.of- "grantai‘

threée events form a chain of completion-causing handshakes.

i'aluaySACauses»the~c0mpletion of

and E Thus the

Theorem: Mgrant ; causes completion of Erequest _i

Given the initial conditions stated for the main theorem, in particular
the fact that state-array[i] is 1n1tia1iZed to tidle'.

Then M

grant-i is é?ways.a'compTetioh»caQSing'ﬁahdshake of E

request 1

Proof From the definltion M

grant-i is a completwon causfing handshake of

E if and only if

request-1i
(1) M

(2) Mgrant i set- to-request i
within the handshake that updates the cell to request' but before the

is a matching handshake for E

grant-i request-

occurs after the event E s, the event

completion of Erequest-1

and (3) there are no events E between E and the

set-to-request-i
is an event of the form

clobber

cemp]et1on °f‘Erequest;1 where Eclobber
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E < state-array[i] receives. .

clobber’ :
(message: ['update' to z]

(reply-to: ?)) in “z's’ Z ¥ 'grant’'.

The matching criterion is purely syntactic. Two hendshakes.match if

the “then-wait:" of one equals the “set-to:" of the other. E__ ° waits

request-1{

for state-array[i] = ‘'grant’ and M sets staté—array[i]‘equaT to

grant-i

‘grant’; hence M matches E

grant-i request-i’
The other two criter1a are dependent on how the handshakes are used in a

specific program. Our theorem States that Mgrantﬂ

completion-causing_handshake °f~Erequestft4ﬁnd S0 .we must prove that in all

must always be a

executions of the actor system the proper Ordehinysvﬁﬁ11 hold.

By the straight line theorem if Mgrant i

Mrequest-i 1s-an event whereby

appears in the behavior it
- must be preceeded by an event Mrequest-i.
state-array[i] reports that its contents equal 'request'. The scan event,
'Mscan i that sends the 'contents?’ message to state-array[i] must occur
while state-array[1] equals 'request'. '  " | "v | ; |

Since state-array[i] is initialized to iid?é“ Mscen 1 1n th1s situat1on |
must accur after an update event that updates the cell to request'; and
before any event that resets. state-array[1] to any other value A peru;a)
of the algorithms here indicates that the only events that update state—array[1]
'So the M_

to request' are the "set-to:" events in E glving

request-i’ scan- 1
, , L - o
rise to an Mrequest-i event may only occur after the “set-to:" event in

Erequest-i and- before the state is further updated.
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The ordering informatien'garnered so far is illustrated below:

set~-to
Erequest—i reguest » S C

' .-————————i’.«—- -t -—.-f -~%’ ..

@ .,» ‘_E’Q . '» Lol : a’.

Mscan—i, Mrequestwi o grant -1

Now, we know that state-array[i] is not ubdated«in a handshake after the
set-to:" event; and once Erequest . completes the walua of the cell will no
longer be request' and w111 not be reset ta request' until another event of
the Erequest ; c]qss‘oc;urs. Therefcre, the Mscan - 1eﬂd1ng to the Mrequest-1
event may def1n1te1y be placed in t1me‘betwegn-the}"set to,",and,thefcompletian

of an E type event

request- 1
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request-1i _request , ; :
a _ L
mutex ‘. - > e ﬁ:’p.
Msoan*i“ Mrequest—1~-»«~ grant-1 .

Furthermore the handshake event will not .be cgmp_lqe,ted,until a completion-

causing event of the form

<state-array[i] receive§u  |
(messa’ge: ['update’ to ‘grant’']
(reply-to; ?.))'-"in d? >
occurs. The only events of that form in the actor system are the “set-to:“ :
events within the handshake Mgrant-i' We hayeftherefore‘p]aced the time of

s 1t - ] . ., by s .
Mgr‘ant-i and its "set-to:" event as before the cmpletwn of Erequest-‘i also:
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E set-to c
request-1i request :

ai ._—-‘-—-—-——-—-——-9.—_-‘ W Gwd sl sy ay ke wewy s ey S

Vi o E e e e
“mutex o ——> o -2 ok = >e
M g M 1 Mooty set-to c
scan-i reg- gra grant
So we see that M . must always occur between an event of the form

grant-i

- " Iy . i b —_—
Eset-to-request—i the "set-to:" event of a handshake, Erequest—i

and the completicn of the handshake. M i thus always satisfies criterion

grant-
2 of the definition of completion-causing handshakes.

The final point that we must establish is that no event, Eclobber’

updating state-array[i] to value other than 'grant' may occur between

Eset-to—request-‘i
to consider:

and the completion of E There are three cases

request-{°

(1) that E is an event 'in a process other than o, or o

clobber j mutex’

(2) that E occurs in a,;

c1qbber j
or  (3) that E

happens in o

clobber utex”
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Case (1) may be reJected due to our supposltion that only the: actors
alias-protected-actor and regulate-mutual»exclusion are able to access the
state-array; alias-protected-actor makes it 1mposs1ble for any process but
o to reference state-array[i]; and by assumptlon “mutex is the only process
that ever runs regulate-mutual-exclusxon ‘

We have already noted that there are no update events in a handshake
after the "set-to:" event Therefore there are no update events in “i

between E 4 and the completion of E

set-to-request- request-i- :
As for a we have already proved that.there .are no events updatIng '

mutex
state-array[i] between Erequest i and Mgrant i After the occurrence of
the event "grant § its "set-to:" event happens, this event updates the cell

but it updates it to the allowed value, grant' Between the "set- to: "

event and the completlon of M there are no events updat1ng state-array[ll

‘grant- i

so if Eclobber occurs in °hutex it must happen after the complet1on of "grant i

But Mgrant ; cannot complete until state-array[1] is updated Since
that update does not happen in o mutex it must happen 1n ai | But we've |
just shown that a, cannot update state- array[i] further until E

request -1
completes. So qmutex cannot clobber the state until a updates it and a,

cannot update it untll Erequest i completes I e. there can be no event

E in o

clobber mutex
is rejected also.

pr1or to the completion of Erequest i and thus case (3)

Having established that there can -never be an event that clobhbers the

state-array element before E is completed we have proved that the

request-i

third and final cr1ter1on requ1red for M to be a complet1on-causing

grant-1i
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handshake of E

request . 1s always satisfiede 'Th1§ completes the proof

of the theorem

Theorem: Edone ; causes completion of "grant i
Edone j is aiways a comp]et1on—causing handshake of Mgrant e

Pronf The proof of this theorem is simi]ar to the proof of the previous
theorem.

Theorem: the handshakes form aIEhain of cdmpietidneceusing handshakes.
Given the actor system described in this section and the stated initial
~conditions. | |

M

grant-1° E

Then the sequence of events £ done-1i e]ways forms

request~i*
a chain of comp]et1on-causxng handshakes '
Proof: The previeustwo theorems stated that
(1) M
and (2) E

grant-i is always a completion-causing handshake of E

done-i. is a comp?et1on-caus1ng handshake of Mgrant §-

The def1n1t1on says that whenever these two relations ho]d then the events

request-i

_form a cha1n Since the re]at1ons always he1d in thts actor system, the.

three events a]ways form a chain af completion-causing handshakes

2.2.3 Proving the theorem us1ng handshakes

In the prev1ous sect1on we proved that the 1nteract1on between a11as—
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protected-actor and regu1ate-mutua1-exclusfbn‘a]wﬁys take$-tbe form of a
chain of completion causing handsﬁakes; We shajl usé that result here‘to
prove the main theorem of fhis chapter: fﬁgt'given thé'specified actor system
and the specified initfal conditions alfas-protected-actor is a fair

mutual exclusion actor for protected-actor.

The proof proceeds in two parts. The first part shows that all
references to protected-actor that are funneled through aﬂias~prote¢tedsaCtor
occur in a mutually exclusive fashion. The second step is to prove that
hlias-protected-actorrprovides fair encasements of protected-actor. Combining
these two points yields the overall theorem.

We will see that Part I of the proof'followsvsﬁraightforwardly from the
handshake theorems developed in'sectfoﬁ 2.2.1.m Par; IIvhas two subfparts
one of which also follows from the handshake theérem; the second sub-part,
though, involves proving the fairness of reg&late~hutué1-engusion's scan
algorithm. It is in this last part that_the poténtial for hdre processes
being added to the system must bé accounted for._"This last section does
not follow from the handshake theorem.
| Part I -- Given the actor system and initial conditions stipulated in the
main theorem. | |

Then all references to protected-actor that occur within alias-protected-

actor occur in a mutually exclusive fashion.
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Proof: The defin1t1on of mutua]-exclusion says the fbl]owwng.

Let Eenter i be an event of the ferm

Eenter«i: <protected-actor receives
~ (message: any-message
(rﬁply-tg: continuation)) in a.>

and let E . ;. ; be the next event thereafter of the form

Baxit-i’ <conx1nuat10nvreceﬁwes

(message: any-answer) in a,>
Then for all quadruples of events

(E . E L E

enter-i® “exit-i enter -3° exit j) > = J_

one of the following two orders must hold
e1tﬁer (1) Eenter - Fexit-i §Efﬂre %entar -
or (2) Eenter -3 eefore Eex1t NE before Eenter i before E

before E

before E exit-j

exit-i°

Given a pair of events -- Eenter i and E exited = ar1s1ng from the
execution of alias- protected actor the. $$rawght 11ine theorems for that

request -i and the

next event of the class E Moreover E and E_ ;4 ; must

done-i’ enter-i
occur after the completion °feErequest¥13"“hj°h is @ handshake event. This

means that E . . . and Eaxit-i eccuriin>the:ﬁn$erehan4%ﬁake'gap between

Erequest-i and Edone—i'

We proved in the previous section that the sequenee of handshakes

E i Mgrant -i* Edone-j 15 @ chain of completion-causing handshakes.

request-
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grant-i is thefpéra11e1 handshake to the gap betweeﬁ

Therefore, from the enve]opment of inter-handshake

It follows that M

Erequest-i and Edone-i'

gaps theorem, we know that Mgrant -1 ‘gnve1opes" the gap -- 1 .. Mgrant i is

before the completion of E » and the comp]etion of M, rant-i is after

E

request-i 9

done-i+  And sTnce Eqpygp g and Egyyy g are within the gap, Moo, o

envelopes them too. 'Sée the,111ustration be]qﬁ;i

'Eenter—i ' >ngjt~i rszdone—i B

G e s b

critica1 
- region

& . Mypant-1'8 ‘envelope ~>

The straight-line theorem for the actor reguiate~mutua1—exclusion shows
that if an event Mgrant-i appears in the behavior, then no other event of the

grant-j appears.  This
leads to the following relationship:

class M . may appear until the completion of Mgrant-i
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Mgrant -4 before E

before M

before Eex1t i before comp1et1on of
hefbre E

enter i

M before E

grant-i grant J
for all values of i and j.

enter-j exit -3’

Embedded in that relationship is the re?ationshlp requ1red by the
hypothesis, and thus Part I of the theorem is proved

Part II -- Given the actor system and initial conditions stipulated in the
main theorem.  Then alihs—prbtectedfactgcgntdxiﬁegffair-eﬁcasement for

protected-actor.

Proof: There are two parts to the proof. First we will show that if a
particular request is scanned then the associated message will be transmitted
to protected-actor and the answer will subsequently be retransm1tted to the
external continuation. This part of the-praof~$5fessentjally a continuation
of the previous proof of Parf I of the m@in theoren. ‘The second section

of this hroof establishes that the scanning of the array is itself fair.

Part II-(a) -- Given the actor system and i»itiaavgonditidns-stipulated in
the main theorem. If an event of the form
Epe11o-i: <@lias-protected-actor receives
(me;sage: anyémessage
o (reply-to: continuation))‘in as>
appears in the behavior, and it is\fo?Towed\by‘an event of the form



M

request-i’ SteP (2) of regulate-mutual—echustn receives

(message. request 5 1n “mutex b
then the following events a1so w111 appear in the behavior after :

M

request -j and in the stated order

M

.2 < -
enter-i* protected actor recewves

(message any-message
(reply-to: step (8))) in o >
| before “

Eexit—i' <step (8) of aT1as-protected-actor receives

(message any-answer) in a1> ‘
before |

Ebyebye -5 <continuation rece1ves

(message: any-answer) in ®4>.

Proof of Part II-(a): Certain parts of the hypothesis are true by inspection

andhare included here for compIeteness. In part1cular, if E i occurs,

enter-~

then Eex1t - is required'to occur'because protected-actor 1s constralned to be

a normal return1ng actor in the hypothesis of the main theorem. -
If Ehel]o-i occurs then by virtue of the stra1ght.1ine theorem the next

named event, E

request-i’ is bound to happen. Also if M

request i oecurs’that‘

means that Mgrant i

we proved in the previous section that the sequence of events E

will occur, too.

“request-i

and M form a comp]etwon causing cha1n of handshakes and so

grant i® Edone -i
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both occur, then E will occur inevitably

done-1i
is the 1ast handsh&ke in the chain it will not

request-i’ and Mgrant-i

after. But since Edone B

become comp1eted by virtue of act1v1t1es in the cbain Edone j requ1res an
exp11c1t comp]et1on cau31ng event 1in order for that handshake to terminate
and for the next step in alias-protected-actor to occur. By the same token

if E completes then the next step of the program will happen, too;

done-i
the step after the handshake is the step that replies to the external

continuation -- i.e. it is the step corresponding to Ebyebye L

So if there will be a' completion-causing event for E during every

done-i
execution the system then the theorem 1s proved

The state of affairs 1n effect when Ei i occurs is illustrated below.

; n Ryl
We know that Mgrant-i always completes after the set-to:" in E, . _; because
Edone-i 1S a]ways a completion-causing handshake “f»ﬂgrant-i:
» : set-to
Erequest—i ¢ Eenter—i Eexit—i Edone—i done
“mutex * —3 -_--'—""“""""'.",“"‘"“‘“"“"'"'","""'9‘
set-to S S C
grant-1i




The event in o

utex . is M.

after the completion of Mgrant -i

1d1e it

Mid1e-i: <state—array[1] reCeives
(message I update to ‘fdle ]
(rep1y-to step~(6))) in “mUtex .
We will prove. that M1d]e i “1s aTways the one and onTy comp1et1on causing
event of Edone- |
‘ Midle-i must satisfy three criteria in ordef to completion-causing-
event of E, . ;: |
(1) Midle -j Must match Ejone~j ~ Which 1t does by 1nspect1on,.
(2) M1d1e i must occur after the "set to J event re]ated to. Edone 4
which it does because Edone-1 1s always a complgtinngcausing,handshakeaqf
’ "grant~1 which is before Midle-i? o | :
and (3) there must be no otherleyeht updating state-array[i] between Edone-i's
"set-to:" evenplgnd‘the completion of Edone~i-  This statement of the third
criterion is stricter than the definition requires; if this statement proves to
be true then Midle-i Will always be the one and only completion-causing event
of the handshake. | | L
The third criterion is true as follows: The only prggesgesq;hgt‘may:
reference state-array[i] are o and o utex: There is no update event .between
the "set- to " event of a handshake and 1ts complet1on and $0 no event 1n a1
may V1olate the criterion. There are no more events 1n amutex that update

state-array[i] after Mid1e- i dur1ng this same cyc!e of the algorithm. If

Brutex updates state-array[i] further, that update may not occur until after‘
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an event M' We have already proved that events of the M

o request-1i
class handshake and therefore there

request-i*

class occur only during an Erequest i

must be an event E' between Midie—i*q”d M ; also if the

request-1i request-i
alleged update event is to hgppen before the completion of Edone~i’ then
1]
E request-i ™St 11kew1se occur before the completion of E; . ;. In other

3 g 5 ! .
words the supposition that we are making is that there is an event E request-i

between E and its complet1on

done-~i
The existence of such an event in that re1ationship leads to the

vollowing order1ng

E before E' before eamplet1on of Edone - before E

done-i request-i byebye-i-*
This ordering of events violates the strafght line theorem of a11as—protected-

actor. Hence there cannot be an event of the form E'

request 1 between E

done-1i
and its completion and the third criteria is upheld

So M1d1e i will always cause the completion of E j3 the event

done-
Epyebye-j 'S assured of occuring, and Part I1-(a) of'the theorem is praved.

Now we must establish that the scanning of the array is itself done
fairly. Part II-(a) showed that any request that does gettscenned will
get passed through to the protected-actor. Peft;iie(b) shows that all
requests that are made will be scanned. T

Part 1I- gbl - leen the actor system and the 1n1t1a1 conditvons stipu]ated

1n the main theorem If an event of the form
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Enel1o-{; S21ias-protected-actor receives
' ! (Message: any~message :

(reply-to continuat1on)) 1n a1

appears in the behavior, then it will be'followed by an eventtofvthé form

M‘v

Prequest-1 <step (2) of regulate-mutua!-exc]uszon receives f

(message request ) inq tex .

Also, if Eheno i happens and is followed by Mrequest i then there

~ will be no subsequentfevent M tai? unless there is

request-i -1 1ke ¥ request
an event E'hetao-i'?fﬁef 5he11b-1'

Proof of Part II (h);, The secand statement in tbe hypothes1s is qu1te easy

to estab11sh and we wi]] d1spose of it first Nhat the statement is saying
is that if a request is scanned once it willinot-bé*scaﬁﬂedﬂagéin. In other
words the operation of lettihgtafpequeﬁt intexthefﬁﬁotected-actof and'passing
the answer back out reinitfalizes=theistate-array element soméhow.

We have already shown that if an event }ike Mreﬁuest—if°¢curs it must be
immediately preceeded by an event M
state-array[i]. M

scan_i,that reaqs:themqontgnts of

request-i TO11ows only if the contents of the state element

1, [}
~were 'request’'. | If Mrequest i does happen than M%dle -4 is assured of occurring
.and there cannot be another Mscan i type event, ln between
M1d1eéf, of course, sets state-array[1] to .be 'udle -There cannot be

another event of the M class until and unless state-array[x] is. again-

request-i
made equal to 'request'. The only events in the system that do that are
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E . type events; E . events in turn only occur after

request-1i request-1i

Enelto-its» and only one B0 oct s Will followany gy, ; without an

intervening Ehello—i

So, what we have is this:

before E before E'} 11,7 Defore E'

n st Epetio-i

request-i request-i
. . " v
M Gputex’ Mrequest--i before Mid!e-i before M request-i
which says that if Erequest-i is before Mrequest-i_the" E.request-i must be
before M' oo est-i ™ i.e. the second statement is established.

The first statement in the hypothesis-is,stating that the scan of

- the array must be fair. Let M, .. . be an event of the form
Mecan-i’ <state-array[i] receives

(message: ['contents?']
(reply-to: step (2))) in A tex”
The scan algorithm is fair if and only if for each process in the system there
., and after each' M . event there is another one

sCan-1 scan-1

later. If those conditions hold then there will be an.M;can_i-eVent after each
E

is_a first scan event, M

request-i reduest-
Erequest-i event g]so. Since each Erequest-i*EVé“t is a direct result of the

event which implies that there will be an M ; event after each

preceeding Ere110-i €vent, this would meén‘that'eVery-Ehéjlo_i~wou}d be

followed by an M as required by'fﬁe theorem.

request-i




Events M occur lnvstep(z) of

scan- i ial-gxclusion. = The

value of 1 being scanned is controlled by step(lé anee\ -and- thereafter »

by steps (5) and (7) ~Assume for the moment that the_;gan is not. 1nterrupted
by any request, and Jet' s examine just the scan part of the algerithm regulate~
mutua]-exc]us1on = (scan part only).

(1) set cell i:= first process name knows, .~ .

(2) ask state-array[i] for its contenssygné,Iet.Staee,s~contents. 4

(6) resume or continue scannlng the stateearray as follous

(7) there are two cases for the prqceSSaname index. i

(7 1) i= last process name- kuoua - update o= first process: name known,

- (7 2) else, update 1:= next process ‘name eiter i.

- (8) repeat from step (2) S

~END - |

If the state-array is static and dees net change size. wtth tfme then the

,first process name and the last proeess name are- each constants.v The scan
algorithm then has the form of two nested 10095 ‘the euter loop repeatediy sets:
itoa constant 1n1t1al value and the inner Toop updates 4 unt11 it reaches a
constant maximum value. This structure wil] result in fair scanning if the
/funct1nn updating i has the. following. property start1ng w1tn the first process
name knawn, successive application of tne~functien,must'y1eld all process names
known to the system; if the function is tknly funétianel,in»tne<mathematica1'
sense then it will yield all process names;once befonefrefurnﬁng any name a

second time.
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If the scan is interrupted then some*evantfﬁscaﬁ;i will lead to an

"réquest—i ¢Vent'rather‘than directly going to step (9). But as we have

- already seen, if M_ “happens - then #11 tﬁe Steps of the actor

request i

_ggulate-mutua1—exclusion must- inevitab%y énsue Tead1ng to M; in step

idle-i
(5). After step (5), the scan is resumed in stgp (6). Since\the~wait'-

mode interruption is guaranteed to termimate and to resume the scan, and
since it.doés‘not'effectjthe scan -parameter 1 in ahy”way.‘?JThe interruption
cannot modify the fairnes§ of.fhe scan‘algorfthm. |
Our argument for fairness assumes th&t'tﬁé sthte-array is of constant

- size. Let us relax that assumption andjéltew.the*drray to grow withbut bound
‘over time. To do so requires that the- state-array be treated as a‘variable
sized structure instead of a fixed size'itray " Also the index i must not be
interpreted as the usual kind of integer subscript* 1 s instead a possibly
symbolic index into the state-array structure.

The fairness argument heretofore was based on the fact that between two
successive scans of~somefs£até—ar§ay e?&nﬁﬁt-fﬁere?&re'a‘f?xédfnamber of other
elements to scan -~ namely the size of the ‘array minus one.’ To extend the
arguments we must replace the notion of a fixed number of intermediate scans
by the.notion of a bounded‘uumber Ifrﬁetween'two successive scans of the

- same state-array element -there are only a bounﬂed number of other eléments to
scan, then the second successive scan event aTways will happen and the B
algorithm will rematn fair. '

It turns out to be crucial where in thefstate—array structure the newly
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-added elements are put. If they are added afterftﬁg,;urrent,5can point --
i.e. between the element current]y.béing scanneduaﬁdgthe end of the structure --
then the scan algorithm no longer is assured of being fair. For if elements
are added to the array as fast as umutex,is‘able.to,scan.them or. faster, then
Gnutex Will never reach tﬁe end of the array and will never wrap around to the
beginning. Thus no element of the array will ever.get scanhed.av"next“ time.
Suppose; though, that the'new elementS'are'alwaYS added behindvthe scan -~
i.e. between the beginning:df‘fhe{array ahdféﬁé‘éfémeﬁtvbefng écaﬁnéd currently.
In this case there will always be 2 bounded‘number«bffelémgnts;between the
current scan point and the lastﬂglemgntqu7ehe.arrayﬁ4.«Thét is,;althoughgﬁhe
beginning point of the scan algorithm may change now,or some behavior in the
middle,may vary, the stop rule for the algorithm nemain§,const;nt. . So .every-
time i is set to the first process name.known we may énggict the number -of
entries that must be scénned before feaching3tbewcqnstant!A}ast,process name.
Everytime 1 is reset to the first process wevw§11 say that a new cycle of the
algorithm has begun. Let us ca11_the‘numben of entries that must be scanned
in some particular cycle, size (cycle). | o

‘scan-1 _
occurred.  We must prove that there will be. another event M' in the

Now suppose that an event M : fbr;seme.par;jcqlar_j.has Just

Tsean-i-
behavior within a bounded number of scan steps. Call the. cycle during which

Mscan-i occurred cycle-a and the next cycle call cycle-a+l. - The pumber of

[ ) s
scan events betwee"~Mscan-i and M/scanAi is }ess.tbqn

size (cycle-a) -- the total number of scam events in cycle-a

+ size {(cycle-a+1) -- the total number of scan events in the next cycle.
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-Thus if the array is expanded behind the current scan, each event of the

form M__,_; will be followed by another sich event within a bounded number

of scan events. The bound s not known at the tiﬁé'thit“"sgan-i happens;
it is, however, known a bounded time later, when the first process in the
state-array structure is next scanned. - The scan algorithm therefore _

" remains fair even if the state-array is eibahdéd%ﬁ*tﬁbut bound over time.

- A _specific algorithm fqr<ggpandin9 the state-array: ‘

A specific algorithm for expanding the state-array was presented in
the 1nfofma}~discussionfef'thefthédrém.’:fThatialgerithm trédated the state-
array as a 1ist rather than an array. “In that wode the identifier “state-
array" is uséd to name the 1ist of state-array eleménts. fhé*notatidﬁ --
state-array[f] -~ must be understood as a symbolically indexed refefence into
the 1ist that state-array points at. 'Thﬁflfs,‘%he;éxPrESSidw

state-array[i] o |

may be assumed to return a pointer to thefééil on the State—array list for
the ith process. | o v

The programs for manipulating state-array, alias-protected-actor and
‘regulate-mutual-exclusion, were written with the ideéx in mind that state-array
would indeed be an array. Now that state-array is to be a 1ist those programs
might have to be modified. | .

A1l references to state-array that occur in aliasip?etected—actor'always
refer to a specific element of it. Since the expression -- state-array[i] --

returns a pointer to the appropriate Ce13g‘the.referénces in aljas-protected-
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actor will continue to wark even though state-array is a list.

The algorithm for regulate-mutual-exclusion though references all the
entries of state-array sequentially and it is more convenient to rewrite
that actor using car's and cdr's than it is to try to make the array notation
work. A version of regulate-mutual-exclusion that is particularized for the

case of state-array being a list is presented on the following page:
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(defun regulate-mutual-exciusion nil

(prog (i-state state')

Step-2

Step-4

Step—S

Step-8

Step-9

~ {cond

(setq i-state state-array)
(setq state (car i-state)) -

((equal state 'idle‘)(gbto'step~9§)'7
((equal state ‘request' )(goto step 4))
(else (error)) | |

(rplaca i- state graht')

33 loop waiting for state-array[i], i.e. i-state, to be 'done’

(setq state'(éar i-state)) -
(cond |
((equal state 'grant')(goto step~6))
((equa1 state 'done’')(goto step-S))
(else (error))
(rplaca i-state 'idle') |
;3 resume or continue scénning the state-array
(cond ' ;if‘at:end of state-array list
| ({(nu11 (cdr i-state)) = ;then reset i-state to beginning
(setq.i-state state—array))
(else (setq i-stéte,?cdr i-sgate))))
“ selse set i-state to next entry.

(goto step-2)))
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The operation of creating a new process may'adﬂ,the,new=proces§ to the
state-array by cons'ing a cell for the new process onto state-array; This
procedure is described in algorithms for actors fork and expand-state array

below:

fork =

(1) receive argument énd call it new-process ,

(2) do whatever has to be done in the innafds of the system to create a
new process | '_ , |

(3) expand-state-array for the new—proéess (see below)

(4) exit to externally supblied continuation |

END

Expand-state-array =

(1) receive argument and call it new-process |

(2) allocate a new cell and call it new-state. Update new staté's initial
contents to be 'idle’ _

(3) cons new-state onto state-array and 1et.new-state-arréy = the réturned,
value \ |

(4) Store new-state in the bowels of the system in a manner associated with
new-process | |

(5) Update state-array:= new-state-array

(6) Exit

END
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The actor expand-state-array is expressed formally in LISP on the

following page:
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(defun expand-state-array (new process)

(Prog (new-state new-state-array)

Step-2 (setq new-state 'idle')" o |
Step-3 (Setq new—state-array'(cons new»state_stoté—array)).
Step-4 - (.., store new-state in the?syStem;;;) |

Step-5 | (setq staté—array-new-stoteeafroy))),

The scan algorithm in the revised réguiotéémutualéesclusion here uses 
‘the pointer in the cell state-array as “the beginnlng of the scan“.i
The expansion algor1thm.1n expand—state-array a]ways‘adds new processes before
the current value in state-array;f Therefore this method<ofradd1ng processes
to the list does not destroy the fairness of ihe scan élgorithm.

However, if mulitiple processes are aQ}e to exeCute'eipand;state-array

concurrently, it is apparent that harmful fhteractiohs are quite possible.

Let us call the events indicated by step (3) Econséi:

PR -
Econs i state-array receives

(message: [* cons' new—state]

(reply-to: step (3)?) in a1>

Also, let Eupdate-i
E

represent the events in step (5):
update-i' <state-array rece1ves
(message: [ update' to new—state—array]

(reply to:. step (6))) in ;>

Suppose that two processes a4 and aJ, are execut1ng expand state—arrqy at

the same time. The following ordering of events is possxble.




in a.:

hlaﬁ.

E

l
' Eéﬁhs-j

cons~i

~tEupdate-i

////EéfOre

(Eupdate-j

At the time of Econs‘j’ state-array has not yet been updated to

include Ugrg

new entry. So both o

using the same previous state-arfay. ~This leads to'structures Tike

a.

new-state-array for

RN

P .

new-state-array

for
o.

R

staté-arfayg?

L ——

and o5 would create the new-state-array

> w o

Whichever process updates state-array in step (5) last is the one that will win

out in the end.  Its néwéstate'cell_wi11 be inciuded'in ihe state-array list;
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the other entry, while not garbage nor possessing a danglihg reference, will
never be referenceable from state-array. The effect is that that process
will never be noticed by regu]ate—mutua1-exc]usion, 1 e. requests from that
process would never be serv1ced If we were to allow th1s s1tuat1on, the
mutua] exc1us1on operator would no longer be fair

The solut1on as we noted ear11er is to treat expand state-array_as a

protected actor and only al]ow it to be accessed via an encasing a]1as actor
V}that provides fair mutual exc]usxon. If we assume that a11 in1t1a1 processes
are represented in the state-array then we may specify that process creat1on
occurs in a mutual]y exclus1ve manner by protecting the actor fork with precisely
the mutual exclusion operator that we have descr1bed here. That is we may
def1ne an actor alias- fork that 1s ident1ca1 to al1as-protected-actor. except
it relays the input messages to fork 1nstead of protected-actor | In other
uords we may use state-array to protect the actor that expands state-array!

The final question we must resolve 1s whether there can be any harmful

‘interactions between e *_pand-state array and other actors that reference the

state-array Alias protected-actor only references e1ements of the state—array

:'u.-

1

and only that one element associated W1th the runn1ng process S1nce qggggg:
- tate—array never mod1f1es any ex15t1ng components of the state array structure
= ‘there can be no harmfu] 1nteract1ons between these two actors 2
| Regu]ate-mutual-exclusion, however does more than reference the components
of state-array, it needs to reference the start of the structure every t1me a new

cycle begins -- i.e. every t1me the scan reaches the last element of the array. If
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expand- state-array actua]iy succeeds at getting the newiy added elements

included in the scan, reguiate-mutual-exciusion must use the cell state-array
| as the starting point of the array That 1s when the algorithm says to set
= the first process known that means setting i such that state-array[i] will
point at the same entry that state array points to.,t ' : |
Suppose that i is set to state-array concurrent w1th some externai process

executing expand-state-array Can that iead to any harmfhi 1nteract10ns?

eyt

If iis set after step (5) of the aigorithm then i wiii acquire the ew
" value of state—array and the next eiement that u111'5é scanned 15 nen]y added
element. By the time step (5) happens a11 the processing associated with
expanding the array will have already been done -- step (5) is the last activity
in the a]gorithm except for the return Therefore there is no difficuity with
the newiy added element being scanned at this time " )

If i is set to state—array before step (5), 1 e. between steps (l) and (5)
_then the value it obtains is the previous value of state—array In this case the
'next eiement scanned wiii be an eiement added during a previous expansion of the
array or an original member of the array, and wili not be the eiement being added
now. In this case the newiy added member wiii not be scanned unt11 a future cycle
starts We know that the eiement wi]1 be scanned in the future because the
scanning aigorithm is known to be fair : | ,
‘ So, the state-array structure may be expanded safeiy with no pOSSIb]e
timing errors prOV1ded oniy that the expansaon is done in a mutuaiiy exc1u51ve |

fashion.
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Conclusion of proof: We proved in Part I that thefsystem of actors

a?ias-proteCtedeactor'and'regulate-mutua14¢xé1usion combine to form a

mutual exclusion operator for the actor protégtedractOrQ In part. Il we
proved that the system of actors fairly encase. protected-actor; that is all
- messages that aré received by the alias are retrénémitted,tq the protected~
actor, and a11 of the proteCteanctor's answers are de]ivered~to_the externpal
contfnuation. R

Putting together Parts I and II gstab]i§h§§ that alias-protected-actor
is a fair mutual exé]usion'aéfor for proteqtedéapyor,as required,by the

main theorenm.
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3. Busywaiting Synchronization Algorithus Using Extended Cells

In the previous chapter we described an a1gorithm that ach1eves fair |
mutual exc1u51on of an arbitrary number of processes uswng cells as the |
synchronozation primitives, = That algor1thm requires a relat1ve1y 1arge
amount of storage though -- 1t requires an array of ceTls proportibpaI in
size to the number of processes in the system.} “In this chapter Qe will
describe ah'a1gorithm‘that uses eXteﬁded'cé1fs'asxtﬁe syﬁéﬁroniéation
primitives; this algorithm also ach1eves fa1r mutual exc1usvon but requires
only three extended cells of storage to do it.

An extended cell is a cell that is able to modei the read-modify-write
_ instruction#tthat are commonp]ace_in present-day computers. "These
instructibns enable a process to both read and update the contents of a
memory 1dcation in one indivisible activity. In other words, the mutua]
exc]us1on that is provided by the computer ‘hardware to guard aga1nst
- simultaneous updates to a cell is extended ever so s]xght}y'to allow these
compound instructions. | |

Unfair.mutual.exclusion is trivia]iy achievable ustng read/modify/write

instructions as is well knoﬁn, by means of binary. lock variables. Suppose

we redefine cells so that they will also respond to test-and-set messages.
In response to such a message, the cell will update'itS‘contents to 1, and
return its previous contents to the continuation. We will see the simple

unfair algorithm shortly.



Fair mutual exclusion algorithms need a wee bit more memory than just

a binary lock provides and hence we need an instruction that is a Tittle

more powerful. That instruction is the'add'ébnstant instruction. When a

cell receives a message of the form

(messageﬁ ['add constant' 27] .
(reply-to: continuatibn))‘ '
it updates its contents to be its previous contents hius the constant, 27 in
this case. The value returned to the contfﬁuationiié*theJnew-ﬁpdatgd‘va]ue.

We will use the add constant instruction in three specific configurations

only. It will be used to add 1 to a cell, to add-1 to a cell, and to test-

and-set a cell. test-and-set is simulated with add constant instructions by

means of the following algorithm:

test-and-set =

(1) add constant 1 to the cell. Call the returned value state.

(2) there are two cases for state:

(2-1) staté # 1 -- add constant - 1 to cell and return 1 as the
value of the test-and-set. _ B ‘
(2-2) state = 1 -- return 0 as the value-of the test-and-set.
END | |

Hereafter we shall use the word increment as a synonym for add constant

1 and the word decrement for add constant -1, test-and-set wj]T refer to the




algorithm specified above. A o | ,
Unfair mutual exclusion may be implemented by a simple algorithm that

loops trying to set a binary lock variable:

unfair-mutual-exclusion =

(1) test-and-set the cell, IOckfceli. and.let state = the returnéd
previous contents of lockaceil‘}, | |
(2) there apé two cases for state:
(2-1) state # 0 - repeat from step (1)
(2-2) state = 0 -- prqceed_witﬁ.stepf(3);v\
(3) reference the protected critical region as required
() update lock-cell:=0 |
END

This algorithm is not fair for a very spéCiffc reason. Lét;s ﬂefine-
the word "sessfion® to réfer to those activities occuriing in some particular
process, from the first time the process execﬁfés‘étép”?fj above until the
process is let 1nto‘the”Critiédl‘region once and comes out of it. I.e. a
session corresponds to one interaction of ‘a process with the critical region.
A session may last forever only because during one session o?’sdme‘pfdbess,_
a s an unbodnded number of sessfons for other processes may take place. N

However, at any given time there ékéébﬁiyra‘ﬁéuhﬁéa'nﬁmber‘df proceéses

existant in the computation systeh. ‘So how does poof‘dgrhaﬁége to get stuck
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in an infinite loop? There are two ways: either some processes.qreAunder—
taking unbounded numbers of sessions -- e.g. they are’in a loop wherein they
enter and exit the critical: ‘region; or some processes are off somewhere bus11y
creating new processes in an unbounded fashion, and these newly created
processes are engaging in sessions with theycr1t1ca1 region over here. If
both these "session sources" could be muted so that during one session for =

a
on1y a bounded number of other sessions could take place, then o. cotild not

a
- get stuck. » And indeed both sources can,be quenched’by~avschemetthat reqdires
only three read/modify/write typevcells, as we shall show. |

Consider first the problem of repeat sessions. We need to achieve the
following specification: Suppose a, and a, are two processes waiting to
pass through the mutual exclusion operator; and suppose that o makes it
through before 0. O must not attempt to pass through again until oy passes
through once. You may note that this specification is svmllar to the
constraint satisfied by the scan a]gorithm presented in the prevxous sectton

A sure way of keeping a from try1ng to reenter the compet1t10n 1s to
keep ab locked up inside the mutual exclusion device unt11 u gets through
We imagine a device with two "chambers", an input chamber and an output chamber
Processes when they want te enter go into the input chamber to walt They are
allowed out of the input chamber one by one and_they pass through the crftica]
section. Afterwards, the processes are hetd up in the output chamber and

made to wait some more until the input chamber is empty. See the illustration

below:
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input output

e O " chanber

chamber L pre—

critical
“reglon

A device like this has the potentia] for fainness if all the wait loops in
both chambers can be shown to be of bounded duration

“An algor1thm along these 11nes is flaufeharted.on the next two pages,
and descr1bed thereafter: The key to the algarithm is that entering and -
ex1t1ng operations are decoup]ed wh?le processes are allowed to exit the
dev1ce, none are allowed to enter. The ce]l ggggz[fill—state, keeps: track:
of whether the dev1ce is being fwlied or emptied.
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(1) }' . announce --- inéremgnt input-counter

(2) . test-and-set lock €
(3) |

no

yes -- hote that lock:
now equals 1.

start of mutually
exclusive region

e 7

(4) read empty/f£1i11 state cell
(5)

no --

update lock := 0
(6) ~  referende the

\ critical region
(8) . increment output-counter
(9) decrement input—couhter
(10)
' no
input-count
(11) ' ; yes --— update‘gmpty/fill
tat HE T tying'
> sta e’ empﬁy ng

(12) update Tock := 0

end of mutually
exclusive region




(13)

(14)

(15)

(16)

(17)

(18)
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l

read empty/fill state cell &

no

'emptying'
f)

yes

decrement output-counter

is
returned
value

=0
?

yes —-- update
empty/fill state
'filling!'
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fa1r-mutua1-exc1us1on (assuming no new processes are created)

-- requires three read/modify/wrjte.type-ceiysf‘»fi'

ihput-counter number of processes either wa1t1ng to enter
cr1t1ca1 retion or in the’ critical reg1on
output-counter = number of processes wa1t1ng to exit operator
lock = 0 1f no process 1s 1n crit1ca1 reg1on
=1 1if a process is in critica] region |
(1) announce desire to enter by 1ncrementing the 1nput-counter |
(2) test-and-set lock, and let lock state = returned‘prev1ous va]ue J
(3) there are two cases for lock- state
" (3-1) lock-state # 0 -- repeat from step (2)
(3-2) lock-state = 0 -- proceed with step (4) -- note that the
Tock now equa]s 1 regard]ess
(4) read contents of a normal ce]l, ca11ed empty/fiII-state, and Tet
state = contents
(5) there are two cases for state: ) |
(5-1) state = 'emptying' -- update lock =0 - i. e free the Tock

and repeat from step (2)

(5 2) state 'f1111ng - proceed with step (6)
(6) process is now va1id1y inside mutual exc!usion operator, reference the

critical reg1on as required
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(7) the process has finished referenc1ng the critical region 1:It_is‘oou,1n
the "output chamber“‘
(8) increment the output-counter »
(9) decrement the input-counter, and let counter = returned vaTue
(10) there are two cases for counter
(10 1) counter # 0 - sklp to step (12) below
(10 2) counter 0 -- proceed with step (11)
(11) update empty/f111 state:= empty1ng
(12) update lock:=0 -- i e. free the lock N
(13) read contents of empty/f111-state, and 1et state = contents
(18) there are two cases for state: ,
(14-1) state = ‘fi]]ing - repeat from step (13)
(14-2) state emptying - proceed uith step (15) |
(15) decrement the output-counter. and 1et counter = returned value
(16) there are two cases for counter:
(16 1) counter ¢ 0 ---sklp to state (18) below
(16-2) counter = 0 -- proceed with step_(l?)_
(17) update empty/fi]] state:= 'fiIling . |
(18) exit to the outside world

Mutual exc]usion per se is provided)by tbe,binary lock-cell. The
_ Protection of the lock ranges from;stepe(ﬁ).to;stepgﬁ}Z); on}y one process at
a time will ever execute in that mutua]Ty‘exckusiwelnegton;~u»tou;wilt note

that the decoupling state variable, eﬁpty/fﬁ11fstetetfs only referenced within
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that region and therefore there will never be any ambiguity as to the state
of the device. We may study each. of its modes separately.

In 'filling' mode, processes may arrive at both the input and output
~ chambers of the device. In the input stage the processes will pile up in
the loop of steps (2)-(3), accumulating thére while other procesSeS‘afe‘
executing in the critical section. At the output stage, processes also
muét wait, here in the Toop of steps (13} and (14).  This 1étter'1oop is
controlled by the instructions at steps (9), (To)‘and~(l1); whichicontro1
the empty/fill state of the device by examining the fullness of the input
chamber,

During ‘emptying’, processes may also accumulate at the {nput gate
to the mutual exclusion operator, however they may not enter"the device.
In this mode the processes that are looping thrﬁugﬁ the output chamber
peel themselves offrahd return to society at large. Thus liberated, any
or all of the processes might immediately turn around and try to get back
into the place, of course; however the decoupling of the input from the
output due to the mode being 'emptying' prevents this feedback path from
becoming oscillatory. |

The fairness of this a]gnrfthm‘fo11ows from the bounded duration of
all its loops. There are three loops in the program: | 7
(1) the loop at steps (2)-(3) where each process tries to grab the lock.
(2) the loop at steps (2)-(5) waiting for the state to be 'filling'

(3) the loop at steps (13)-(14) waiting for the state to be 'emptying’
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- We shall analyze these three loops and show each to be of ‘bounded duration.
We assume, of course, ‘that the. program _s;ta'rtsvoétef!u its natural inttial
“conditions: all counters = 0, the lock = Os'éaptleilllﬂ 'fi%iiﬂg‘, and
“there are no processes inside-ﬁthevaperatorv*initiaﬂy ~Also recall that
at this time we hypothesize that no new pmeesus are created in the system,
we will extend the salut1on to cover that case . saortly.~
Let's consider the loops in reverse. erder, startfng with the loop

waiting for the state to become 'emptying'. Thc‘enu~test for the loop is
satisfied when input-counteﬁ becomes 0. v»!t*tsccerthfnly‘the case that there
is a maximum value attainable by input-countef' it may never exceed the
number of processes existant in the system. - Now, input-counter is decremented
only within the mutua]ly exclusive regien ﬂhjch‘neaus that it may be decremented
‘only while processes are allowed: into that regfon. . That is, fnput-counter may
be decremented only while the mutual exclusion operator is in 'filling' mode.
During this. -mode, though no. Processes are allowed: back out into the actor |
society where they may increment. input-eauntar:again;« Thus: during the phase
when mput-counter may be decremented, no pmcess ‘that has both incremented
it and decremented it corresond1ng1y may 1ncrement it again. ‘Nor, of course,
will any process increment the. 1ﬂput-caunter twisa uithout decremeht1ng it
in between. _ | '

- This implies that inputfcouﬁter may be incremented only a bounded number
of times‘per "filling' mode. Onée all protegses~havémincremehted it one,
though its value may be far less than the~maximQM possible value, there wtll‘

be no more increments until the mode switches tof'emptying?{
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The activity of letting processes into the critical region will go
on until there is a mode switch. Since there are’onTy a bounded number of
increments possible until the mode sw?tches; and since. each increment is
uniquely matched with a decrement,'the switching of the mode is inevitable
and will happen in bounded time. _

Thus Ioop (3) -- waiting for empty/fiTl-state to equai"emptying' -
is a loop of bounded duration. _ | |

Now Tet's examine the next loop up.the ehain,jthenloop at;steps (2)
through (5) waiting for the state to switcnzbaqk'to 'filling'. The transition‘
here fs directly controlled by the activities of processes as they exit the
output chamber in steps (13) -(18). ‘,

It is clear that while the output chamber is f1111ng up, the value of
output-counter will increase to'a maximum value . The operation of emptying
the chamber decrements the counter back to_O_yh11e maintaining a decoupled
relationship with the input of the device; during the emptying phase'no processes
are allowed to enter the output stage and:sonthe‘ou;put-counter is not subject
to incrementing during that period. | The opevetion‘of’decrementing a number
that is not being otherw1se updated is an operat1on of bounded durat1on

Therefore the second Ioop, a]so, is guaranteed to term1nate in a bounded
amount of time. _ , o _

We should note before pass1ng one 1mportant deta11 1n the output

a1gor1thm, a fragment of which is reproduced be]ow. .
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(15) decrement the utput-counter

(16)

is
returned value
S =0

?

no

yes

(17) update empty/fill state := 'f£illing! .
te e il s

-

It is quite 1mportant that the va]ue tested in step (16) is the value

Areturned indivisibly by the decrement 1nstruct1on and that the va]ue tested

1s not obtained by an 1ndependent read contents message The a1gor1thm as

it is results in there being a un1que event that observes output-count 0

and hence a unique event that resets the mode to 'f1111ng~.‘; Were the test an
independent activity, several different processes could decrement the counter

before any tested it, and they all could observe output-count = 0.
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It.is not harmful in and of itself for several events to update
state = 'filling" redUndant]y.‘ If, however, some one of the processes tarried
at length between step (16) -- the test -- and step (17) -- the update -- it
might reset the state during the next pass of the program, after the state
had just been set to 'emptying' for another go round. -If so, the emptying of
the output chamber would be abo?ted in mid-stream and if no more processes ever
‘entered the device, the output chamber'wduld nevervbe.emptied.

The algorithm as specified does not allow this poténtia] deadlock.

Fina)]x we reach the loop at the front door of the mutual exclusion
device, the 1;op where procésses vie with each other to grab the lock. This
loop, of course, is the embryo of the whole machine, the sequence of events
that assures mutual exc]usion in the first place. ;The boundedness of this
lToop is implied by the bound on the loop encompassing steps (2) through (5);
the larger loop encloses the former one.

We see then that the algorjthm presented implements mutual exclusion
and does so without introducingvunbounded loops in the behavior of any process.
The algorithm thus implements fair-mutual-exclusion as advertised. Furthermore
it does so using a fixed number'of cells, albeit cells extended to model read/
modify/write instructions.  This means that all synchronization primitives --
semaphores, serializiers, what have you -~ may be~imp1emehted using just the
normal, primitive memory arbitration schemes provided by most computer hardware,
with no extra software-induced indivisibility of operation. |

Other interesting equivalences of power may be deﬁonstrated using this



-110-

algorithm. The algorithm cannot be iMpiéméntéﬂ'uéing unfair semaphores

and normal, unextended cells. . This is because the announcement of

arriving processes accompliﬁhedjby incrementing input-counter in”step (1)
could not be assured with an unfair semaphore. But, the algorithm could
work given unfair semaphores that will answér the quéstion, “Are any processes
at all waiting to get through you?"  Given these vather trivially extended
semaphores, all the counters in the algorithm would become obsolete, and the
tests for zero would be replaced by the question. That is to say, this
slightly extended unfair semaphore has equivalent poWer to the glorious fair
semaphore. _

The algorithm as presented wi11'0nTy"wofk so Tong as the nhﬁbéf of
processes in the system remains bbuhdéd;»“¥f:fhéﬁé‘f§:a'pfote55 source out
somewhere busily grinding out new'proceSSés; tﬁéﬁ5tﬁéffnbhtééBUhfer'may be
incremented forever and the mode switch*froﬁ"fﬁ??ihg*'to ‘emptying’ may
never come about. . In this case we would find stagﬁant ﬁoo]s of processes
collecting in the output chambers of the locks in the system. “

A way must be found to preveht newTyfckeétéa?ﬁfbcéSSeS“frOh competing
with processes already in existence unfi} thé ofﬂér”pfbcé55és3getzth?bﬁgh ‘
the mutual exclusion device once. One way ‘that this may be done is by
restricting the actor system to;h&ve‘ndfﬁoré thén‘One‘of:thé devices and
insisting that all process creation happeri behind that unique lock. =~ Further,
each newly created process must mim1¢‘ftS‘paréhf*anﬁéﬁait inlfhe“outpUt chamber

until 'emptying' mode begins.  This modiffcatfori his the effect of keeping
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the set of processes that are candidates for entrance into the mutual exclusion
device from acquiring any new members during-any one filling session. The
boundedness of the loops in the a]gorithm/depénds oﬁ this fact alone.

This solution restricting the system to one mutual exc]Usion oberator
is extremely inelegant and clearly inefficient. However it ‘does work -- it
does implement fair mutual exclusion for an:arbitrary number of processes --

which is the major theoretical concern.
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4. Conclusion

We have presented two algorithms that impﬁeMentfféir”mutuai exclusion
for an arbitrary number of processes. Both llgoritﬁns ‘use relatively simp?e
synchronization pr1m1t1ves, the first solution udes cells ‘and the second uses
cells extended 50 as -to model read/modtfy/urite-instructions. |

The cell based solution utilized an arwdy.of cells with one cell per
~process. Similar algorithms have appeared»vh5&5&ivfterature°prevfously
as we have noted; the unique contribution that we make is to show how the
algorithm may be genera1i2ed from an array te a variable size date structure.
We presented an'aTgorithm for expanding that‘structure tﬁrough the additionv
of newly created processes and proved that fair metualjexc1usion could be‘
retained by the algorithm evenif the~number ef proéeSSES in thefsystem were
to grow without bound over time. o

| Ne proved that the fairness of the solution in the face of proliferating
processes depends critically on where the»new processes are appended to the
structure of cells. In our so]ution'there is a definite order to the cells
in ihe structure and requests from processes to pass ihreugh the operator are
serV1ced via a scan algorithm that scans from the first to the last cell in
that order. If the new processes are added at the end of the data structure --
i.e. after the last ce11 -~ then the scan‘a190rfthm‘could get "stuck" in the
expanding, new portion of the structure. This would heppeh if new proeesses
were being added and each put in a reqUest to pass through at a faster rate

than requests were being serviced.
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However, if the new processes are inserted at the begﬁnning‘of the
data structure -- i.e, before the first processis cell -- then the scanner
cannot get stuck. Whenever the scan,a]gorithm{finﬁshgﬁ‘the last process it
must of course reset itself to‘thg‘fjrstﬁprch§sa_g thusuwrapping‘ardund. ‘We
said that a new cycle of the scan began everytime the scan were reset in this
manner.  The important fact is:that_if”new:prgeeSsesfare;added:at'the beginning
of the structure, the size of each cycle is some particular -fixed number.  Two
different cycles may very well be of different sizes, but once a cycle begius
its size does not?change." Tbergfore.ohcega cycle beg$n3~ﬁe may be sure that
1t will end in a bound,éd number of steps and a.new. cyele begun thereafter.

The fairness of the scanning opera;jompfpllowé from the_boundedness of
each cycle. ~ Because that means thaﬁ-every;ime.§gma particu]ar'process is
scanned it will be scanned again in the future within a bounded number of
events.

The other point to be cireful of ingexpénding the data structure is to
make sure that only one proéess,expands it at a,time; That is, the operation
of expanding the cell structure to accomodate,neu]y;created proceSséS~must*
itself be done in a mutqa]iy exclusive fashion.

The second fair mutual exclusion solution that we presented used read/
modify/write type'ce1ls as the synchronizationiprimjtive.'ﬁ_It is well known
how to implement unfair mutual exclusion with"these,extended,cé1ls,,using a
test-and-set instruction and a bihary Tock yariéb]e.-i We prove thét it is

possible to achieve fair mutual exclusion also'usihg a small number of these
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extended cells; in particular the number of cells required is much Yess than
the number of processes in the system. ‘

However a' serious deficiency of this algorithm is'thatvft introduces
considerab1e\delay in the execution of  progrim§“béy6hd:thatlfeQUired for
mutual exclusion per se. | Mutual exclusioﬁ'&?ébrfith‘mqy always delay
processes that are trying to enter the critical, protected region; our sécond
_algorithm here, though, also delays the processes as they try to exit from
the device. | | o ‘ | |

From a theoretical siandpoint“it‘13'1hteresting that fair mutual
exclusion of an arbitrary number 6f'broc§ssés mﬁffbé‘fmp1éméntedluSing:su£h
simple primitives. In this sensé more saphf%tfééted'pfimitiﬁés,SUch'és
serializers have no more power than simple tittle cells. ~ But from a
practical point of view differences do emerge. Botﬁ‘aigorifhﬁs'that we
present have efficiency related drawbacks: The cell solution requires lots
of memory -~ it needs one cell per process per mutual exclusion operator
The extended ce11 solution fs slow -- it introduces approximate]y twice as
much delay on average than is reguired by mutual exclusion pervse. Sp while
primitives Tike cells are cdmp]ete synchronization primitives and a theory
does not need more elaborate primitives in order to coordinate parallel
processes, cell solutions are inefficient. ‘More sophisticated synchronization

primitives aré desirable for this reason. |
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