D
f
l/

B MASSACHUSETTS
 INSTITUTE OF
TECHNOLOGY

%

Q
R
(4

LABORATORY FOR
COMPUTER SCIENCE

(formerly Project MAC)
—

i

MIT/LCS/TR-177

A

A LAYERED VIRTUAL MEMORY MANAGER

vt

Andrew H. Mason

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139




Tius blank page was inserted to preserve pagination.



MIT/LCS/TR~177

A LAYERED VIRTUAL MEMORY MANAGER

ANDREW HALSTEAD MASON

May 1977

This research was supported in part by Honeywell Information Systems Inc., and
in part by the United States Air Force Information Systems Technology Applica-
tions Office (ISTAO) and the Advanced Research Projects Agency (ARPA) of the
Department of Defense of the United States under ARPA Order No. 2641, which
was monitored by ISTAO under Contract No. F19628-74-C-0193.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(Formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139



This empty page was substituted for a
blank page in the original document.



Page 3

A LAYERED VIRTUAL MEMORY MANAGER*
by
ANDREW -HALSTEAD MASON

ABSTRACT

This thesis presents a specification for the Multics virtual memory man-
ager. The virtual memory manager is that part of the eperating system which
coordinates the usage of physical memory and which manages the bindings
between logical memary and physical memory. .Ims the case .of Multics, physical
memory is composed of fixed-length blocks called frames and logical memory
consists of segments, representing sets of frames.;. :... .. . .

The original specification is out of date and obsolete because it
describes an overly complicated structure and ignores the issue of resource.
control. The specification described here compatibly updates the function-
ality of the Multics virtual‘gemo;y_manqgg;,gqgmplif;eg‘the_gequisite struc-
ture, and addresses resource control problems.

The specification is in the form of a,pgdel,,ug;ng;thevmethqdologieshof
type extension and layers of abstractionm. ‘These methodologies provide the

tools to develop a precise model structure, yh;chfig‘cgpgple of handling the

intricacies of resource control. The end result is organizational sihpliciiy;

certifiability, and comprehensibility.

THESIS SUPERVISOR: David D. Clark

TITLE:‘ Research‘Associate in the Depattment of Electrical Engineering and
Computer Science

*This report is based upon a thesis of the same title submitted to the Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, on May 12, 1977 in partial fulfillment of the requirements for
the degrees of Master of Science and Electrical Engineer.

fur o - Rk el e M Batt




Page 4 Acknowledgments

!F!KOﬁﬁzgcuggrgsmv ra

My greatest indebtedmess is to Dr. David ‘CXark ¥or the insight and help
he gave me throughout the work on thie thesis and for the many hours he spent
reading my drafts.

Many thanks go to Prof. Jerome Saltzer, for the suggestions and ideas
that he provided me.

I want to especially thank Prof. Bavid lidell for starting me on this
work and for sharing uany &1scussions with ne about tha naterial.

I3 : ]

Bernie’ éreenberg, of«ﬂuuéyué!l lﬁfot-uttaa syiaﬁit Iﬁc;}”hné Dick Bﬁatt,

woievie CHE kS

fometly of HdneyWell Infatunticm Systedi m., m iarybh&lpfﬂ! by gtving ue =

advice on some of the technical upects o: Mtfe :

cyrs b TS AN

T also want to tﬁ:uk :he qasers “of ‘the uupueur Syauﬁs Ieiedfch Divi-'
sion of the M.I1.T. I’.aboratoﬁ for' Ciilpdfek‘ ’ﬁm:*fm tﬁeit N#Wf‘t. adviee, - |
and comments on my vork' M Ihy Eagliiﬁ. ':In !n;i‘ﬁ.ﬁﬂlli’ !hil thaon and Dﬁug _
Hunt yere ‘most helpful iﬁ dismllqnl an thé‘ “ﬁ'iﬁ 3‘! lif!{!rtnt ﬁq)ECts of ny -
thesis, and Dave Reed, Bob !Ilbee,veud Andy m m*ﬁt&h technical” .

expertise.

This research was supported in part by Honeywell Information Systems

Inc., and in part by the United States Air Force Ittfomation Systems Tech-

S’ \J.

nology Applications Office (IS'IAO) and the M}vmad lesearch Projects Agency

N o8

5

(ARPA) of the Depattnent of Defense of the lhited States &det m Ordet No.

2641, which was monitored by ISTAO under Contract No. F19628-74-C-0193.

oo




£ O

g SPTRRARTRARI  P R

Table of Contents Page 5

TABLE OF CONTENTS

ABSTRACT « v v o v o o o o o o o o o o = s o s o o s s s a o s s s o ase 3
ACKNOWLEDGMENTS + + « o o o « o o o o o + o o o s.a. 06 s s s s s oo oo &
TABLE OF CONTENTS + « « o o o « o o « o o o o o o s s s s s s s s o « o s 5
LIST OF FIGURES « « = + « o o o o o o o s s = o s a s o a o s s oo oo+ 8

Chapfer One Introduction . ¢« « 4 ¢ ¢ ¢ ¢ ¢ o o o o o o e s e e ae e 9
1.1 The Problem . « « « o o o o o o o o o o o o o s s o o o o s oo 11
1.2 Method Of SOLULLION « o « o o o o o o o o o s o o s o o oo 13
1.3 Related Research . o« ¢« ¢ o o o o o o o s o o ¢ s o o = .'. e o o 15

1'4 Plan Of the TheBiS e o ® 8 o e s e & s s s 9 & 2 s & & o s e s 17

Chapter Two The Multics Virtual Memory Manager . . « + « o« « « o o« = = « 19
2.1 The Multics File System fn Brief « o« « « « o o o o s o o o o o = 20

2.2 Some Details on Segmentation and Paging in Multics . . . . . . . 25

2.3 Problems with the Current Virtual Memory Manager . . . . . . . . 36
2.3.1 Page Faults on the FSDCTY. e o o 4 o o o @ ; S ¥

2.3.2 A Peek at the Quota Problem « o o o o o o « o o « o o o« » 38

2.3.3 CONCLUBLION &« « « v o o o o o o o o o P |

2.4 Summary * e e 8 o ® o & o tv s e io .A e o o e e & & o o o e o 8 41

Chapter Three A Three Layer Virtual Memory Manager . . .. « « « » o o o o 43
3.1 Modularization « « « « o o o « s o o o s o s o o s o 0 o o.s o o bb

3.2 Modularizing the Virtual Memory Manager . . « « « « « « « « « » 48




Page 6

3.3 Ordering the Modules . . .

3.4

3.5

Objects and Type Managers

SUMmMAry .« « « ¢ s o o o

Chapter Four The Paging Manager .

4.1
4.2
4.3
4.4
4.5
4.6

4.7

PAGE CONTAINER Attributes

PAGE CONTAINER Operations

*

Dependencies in the Paging

Discussion « ¢« ¢ ¢ « o

L]

. L4 . . L4 L]

Manager . . « ¢ «

Extensions te the Paging Manager

Further Thoughts . .. . « « «

Summary . ¢ ¢ o & o s«

Chapter Five Resource Control . .

5.1

5.2

5.3

5.4

5.5

QUOTA CELLS .+ v « « o &

5.1.1 QUOTA CELL Attributes
5.1.2 QUOTA CELL Operations

5.1.3 Dependencies in the QUOTA

The PAGEMENT Munsger . .

.

.

-

5.2.1 PAGEMENT Attributes . .

L3
-
.
.
-
[

5.2.2 PAGEMENT Operations . . « ¢ ¢« s ¢ o &

5.2.3 Depemdencies in the PAGEMENT Manager

How PAGEMENTs and QUOTA CELLs Fit Together .

Resource Control and PAGE CONTAYMERs . . . .

Summary .« ¢ o o v o o« o

Table

of Contents

e o o o 32
« s ¢« 56
e o s . 61
« o .« 63
« « . . b4
. . e .4 66
« -« « 68
e« . . B9
N §
Y £
I b
. 0. 17
o« o o e 79v
« e .. 19
. v .« 80
e s e . B4
« o .. 86
« + . o« 86
e« o« 88
e o .. 9
« o e s 95
c s . 96
e o v o« 99




Table of Contents Page 7

Chapter Six Segment SUPPOTL &+ &+ « « & & & o & o o « o &« o+ o « « o « « « « 101
6.1 Active Segments . . .« v 4 4 4 4 4 e s e s e 4 e 4 e e e e e . s 102
6.1.1 Information in the AST . . « & v & & & « + o o = « « » o 103

6.1.2 Splitting Up the AST . . & &« & v & o o o o o s+« « « = « 104

6.1.3 Active Segments and PAGEMENTS . . . « « + &+ « o« o « « « . 106

6.2 Functions of Segment SUPPOTL &« « & & & & o = o o o o o« o « « » « 107

6.3 SUMMATY + & « & o « o o o o o o o o o s o« o o« o o o o o« « + o+ 110

Chapter Seven ConclusSion . . & v v v « o o o o o s+ o & o o « o o o o o o 111
7.1 RESULES &+ v 4 v & 4 4o & 4 o o o o o o o o o o o 0 v e e e e oe o 112

7.2 Differences between Multics and the Model . . . . . . . . . . . ll4
7.2.1 Visible Functional Differences . . + « « « « « « » .« o+ « ll4

7.2.3 Invisible Structural Differences . . . . « . + « « - . . 116

7.2.3 Philosophical Differences . . . « « + & o o« o « « « « « . 118

7.3 Resource Control . . o v & v & o « o o o o & o o o e e e o+ .« 119

7.4 Directions for Future Research and Development . . . . . . . . . 122

APPENDIX © v v v v 4 v o o o o o o o s o o o« o o o o o o o o o s o o o o o 125

REFERENCES v v 4 v v 4 4 o v o o o o o o o o o o o o o s o o o o o o o« « 129



Page 8

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

LIST OF FIGURES

I1-1 A Sample Directory Tree . .

I1-2 Quota Cells in the Hierarchy . .
11-3 The Hardware Addressing Mechanism

11-4 Structure of the Multics Virtual Memory Manager

I1I-1 A Possible Model Structure
I1I-2 Structure of the Model
V-1 Moving Quota with Segments

VITI-1 Final Structure of the Model

List of

Figures

55

113



Chapter I Page 9

Chapter One

Introduction

As computer systems find more and more applications, the need grows to
guarantee certain properties about them. For example, some worth-while prop-
erties concern the security of information stored in a computer and the integ-
rity of the names used to reference the information. Attempts to prove the
validity of such properties demonstrate the importance of the operating sys-
tem, because all of the system software relies on the operating system.
Therefore, there is a need to certify an operating system, meaning to guaran-
tee that the operating system matches its specifications. Intuitively, it
should be clear that given two systems supposedly having the same function-
ality, it is easier to certify the one which is simpler. Thus, as a prelude
to the certification of a system, the system should be simplified as much as
possible. This thesis addresses the question of the simplification of one
part of an operating system.

There are few tests or criteria for determining the degree of simplicity
of an operating system. About the best test is to assign a competent person
to study the code of some subsystem for a few hours. The system is too com-
plex if the person cannot understand how some subsystem works after such
study. This test provides a threshold over which a system is too complex, but
provides no method for engineering a system below the threshold. What, then,

is the nature of complexity? The key to unraveling complexity is structure




Page 10 Chapter I

[Simon, 1962; Liskov, 1972b]. The better a system is structured, the less

complex it is.



Chapter I Page 11

1.1 The Problem

The Multics Security Kernel Design Project, of which this thesis is a
part, is an effort to redesign the Multics supervisor. The goals of the proj-
ect are to simplify the system to increase its security and reliability. Some
of the work included in the project has been a study of virtual memory mecha-
nisms by Philippe Janson [1976]) and a redesign of traffic control by David
Reed [1976)}. This thesis draws heavily from their work.

The goal of this thesis is a specification of virtual memory management
for the Multics system. A specification for a system is a description of its
operating characteristics. Although a specification can take many forms, a
complete specification dictates the behavior of the system in every situation.
A specification is needed for the Multics virtual memory manager because none
exists which accurately reflects the current functionality. When Multics was
first designed, much thought was given to the specification of virtual memory.
One of the hard problems was the design of a subsystem to control and account
for the usage of the virtual memory. This subsystem was called resource
control. No solution for resource control was found at that time, so its
specification was omitted. Later, a resource control mechanism was invented.
Since the system was then being implemented, resource control was simply added
on to the existing virtual memory manager without updating the specifications.

The result was an example of functional entanglement, meaning that the func-

tions of virtual memory management were poorly distributed among the modules
of the virtual memory manager. The virtual memory manager became difficult to

understand, both because the modules interacted in complex ways, and because




Page 12 Chapter 1

these ways were not refle¢ted by their specifications. This situation has
persisted to this day. The problem is that resource control represents a com-
pletely different dimenedew of virtual memory menagewmesit. It cannot be added
in a simple way; to achieve clesmliness and singlichey of structure, it must
be incorporated into the desigw from the start.

In dgsence, the problem attacked by this thesis has two facets. The
first, and more importamnt, fs that the specificatiow ¢f the virtual memory
manager is incomplete. It does not address tie arew of resource control. The
second: is that the implewewtwtion does handle resousee eontrol, but does so in

a confusing manner .




Chapter 1 Page 13
1.2 Method of Solution

The specification proposed here will be presgented in. terms of the
extended type methodology. Some of the related regearch will be mentioned inm
section 1.3. As suggested by the intrpduction, ome of.ghe. important features
of the specification is its structure. It is.layered, dn the sense used by
Dijkstra [1968a], and is composed of type managers.  We use this structure for
two reasons. First, a layered arrangement of extended type managers is quite
precise. This avoids any ambiguity in the specification. Second, a layered
structure has important implications for system certification. Rather than
forcing a proof for the entire system at one time, each layer can be proved
independently. The entire system is proved by a kind of finite induction as
follows: Suppose the system 1s constructed from n layers. The first and low;
est layer is a subset of the hardware. Proving the lowest layer forms the
basis‘of the induction. Layer i is proved by assuming the correctness of
layer i-1 and then matching the specification of layer i with its implementa-
tion. This process is repeated for each layer.

Another implication is that the layers do not have to be proved in any
particular order. The proof of layer i does not require the correctness of
layer i-1, only the assumption of correctness. Of course, the entire system
is not proved until all layers have been proved.

These implications can be utilized because layering requires strong
assumptions about the dependencies among the layers. In effect, layer i may
directly depend only on layer i-l1. It may not use or depend in any way on any

higher layer or on any layer lower than i-l. In chapter three, we shall




Page 14 Chapter I

define dependency precisely and explore some of the implications of the defi-
nition.

By using type managers, the specification is a model for the virtual
memory manager. Although a specification need only describe the external
characteristics of the system, the use of type managers also abstracts the
internal implementation. By so doing, comparison of the specification to the

implementation is made easier.



Chapter 1. ‘ Page 15

1.3 Related Research

The research reported here is based on work in seggrgl different areas of
Computer Science. These include: modularity and(¥§ygr;ng, type extension,
and program verification, as they apply to operating systems design.

The concept of layers of abstraction or@giqg;e¢‘w1tbiDijkstra and the

design of the "THE" system [1968a). Subsequent systemg which expand upon

these ideas include the CAL;systg@\;Lgmpaon;and,S:u;g;s,51976; Sturgis, 1976]_

and the Venus system [Liskov, 1972a).; Parnas [1972a; 1972b] has studied gen-
eral principles of modularity for systems, ;B,ecgn;],yQ Agwgombingd,his work_
with the layering approach to describe the design of a family of systems
{Parnas, 1976].

Type extension began in the design of languages such as SIMULA [Dahl,
Dijkstra, and Hoare, 1972] and ALGOL-68. Liskov also used it extensively in
CLU [Liskov et al., 1977]. Janson [1976]) extended these ideas to be more
flexible in operating systems applications. Type extension was used in sys-
tems design for HYDRA [Wulf et al., 1974]. Robinson and others at SRI pro—
duced a specification for a layered, object-based sjstem {Robinson et al.,
1975). These are all software efforts; as yet, no one has designed objects
into the hardware.

Prograﬁ verification also started in the field of languages. Naur
(1966], Floyd [1967], and Hoare [1969] defined correct operation of a program
in terms of assertions about the program and were able to prove assertions

about small programs.



Page 16 Chapter 1

Currently, the verification of operating systems i8 receiving much atten~
tion. A methodology supperting proofs of correctness is being developed at
SRI [Robinson et al., 197%]. At M.I.T., the Gomputer Systems Research Divi-
sion of the Laboratory for ‘Computer Science 48 in the final stages of a design
project to facilitate hand verification of the Milttcs system by identifying
those mechanisms required to guarantee the system’s security [Schroeder,

1975). This project involves the restructuring of the aupeﬁéiéor. As part of
the‘project, Janson {1976] and HBunt [1976} Btwdtéd adtternatives to the virtual
memory implementation, and Huber ([1976] used separate processes to simpiify

the structure of the demand paging module.




Chapter I Page 17

1.4 Plan of the Thesis

Chapter two presents an overview of the Multics storage system and
explores some of its details. Although understanding of this chapter may
require careful reading, two rewards can be offered. The first is that sev-
eral of the problems inherent in the organization of the current system will
be immediately illustrated. The second is that a sufficient technical back-
ground will be accumulated to understand the motivation for several features
of the specification. The Multics virtual memory manager is complex. This is
why a specification is needed.

In chapter three, we develop the intellectual underpinnings of the model.
We start with several conjectures about how to modularize a given system.
These are integrated and applied to the Multics virtual memory manager. Next,
the notion of layering is examined and found applicable. The result is a vir-
tual memory manager having three layers. Finally, we give a brief introduc-
tion to type managers and the notation (essentially PL/I subroutine calls) to
be used in succeeding chapters. The placement of material in chapter three is
somewhat anomalous. This material was in fact written after the model was
developed, and evolved from some introspection. We decided to place it in
chapter three to give insight into the construction of the model before we
presented the details.

Chapters four, five, and six develop the model itself, from the bottom
upwards. Chapters four and five give precise formulations, in our notation,

of the lower two layers of the model. Chapter six discusses the top layer in



Page 18 Chapter |1

general terms. We could not formalize the material in chapter six because of
interactions with other parts of the system.

Chapter seven presents a summary of the thesis. General features of the
model are recapped. Next, we explore how the model, as presented, differs
from the current Multics system. Finally, unsolved problems are discussed,
along with suggestions for further research. The Appendix following chapter

seven gives a brief summary of the model.



Chapter II Page 19

Chapter Two

The Multics Virtual Memory Manager

In this chapter, the Multics virtual memory manager is examined. The
chapter is divided into three sections. The first describes the environment
and context in which the Multics virtual memory manager exists. The second
explains some of the more technical details in the implementation of the
Multics virtual memory manager. A reader who is familiar with Multics may
skip these sections without loss of continuity. The third section examines
some of the problems in the Multics virtual memory manager which will be

addressed by succeeding chapters.



Page 20 Chapter II

2.1 The Multics File System in Brief

Before examining the details of the Multics virtual memory manager, some
higher level context is necessary. Multics gsupports a file system which is
organized as a tree hierarchy of directories and segments. A representative
sample tree is shown in figure II-1. 1In the figure, circles represent direc-
tories, rectangles stand for segments, and arrows illustrate the hierarchical
nature of the tree. The top-most directory is named the ROOT because it is
the root node of the directory tree. The directories USERS and LIBRARIES are
immediately inferior to the ROOT. By convention, immediate inferiors are
called sons and superiors are called parente. Other familial relation names
are used to describe other relationships (e.g. brother). The ROOT is the only
directory or segment in the hierarchy that does not have a parent. Thus, the
parent relation imposes a partial ordering on all elements of the hierarchy,
and the ROOT is the supremum of the tree. For more detail, the interested
reader may want to examine some of the Multics literature [Organick, 1972;
Bensoussan, Clingen, and Daley, 1972].

Directories are simply catalogues. They may comtain segments, links, or
other directories. Segments hold information, which can typically be pro-
grams, data, or text. A link is a named pointer to another element in the
file system tree. Thus, directory Jones could contain a link to the segment
FORTRAN which is in the directory COMPILERS.

Segments use storage in 1024-word blocks called pages. Associated with
each segment is the number of pages that it uses. This is known as the

segment’s length. Users are charged for the storage used by their segments,



Chapter II Page 21

ROOT

USERS LIBRARIES

Jones Smith

COMPILERS EDITORS

profile DATA FORTRAN lisp TECO

Figure II-1 A Sample Directory Tree

where the charge for a segment is supposed to reflect the amount of secondary
memory allocated to the segment over some period of time. However, not all
pages of a segment require secondary memory. A very common occurrence is for
all 1024 words of a page to hold the value zero. In this case, the page is

called a zero page. By not allocating space for zero pages on secondary



Page 22 . Chapter II

memory, the space can be made availlable for other, non-zero pages. This
policy imposes some restrictions on the operating system which will be dis-
cussed later. For the purposes of this section, the pélicy implies that asso-
clated with each segment must also be kept the number of its pages which are
non-zero, or, equivalently, the number of 1024-word blocks of secondary memory

which are actually allocated to the segment. This number is called frames

used.

Storage charges are accumulated in a set of designated directories which

are called quota directories. Each quota directory holds a quota cell for

this purpose. Note that not all directories have quota cells. However, a
directory may have a quota cell only if its immediate parent has one (except,
of course, the ROOT, which does have a quota cell). Thus, quota directories
are also organized into a hierarchy, which is a connected subset of the direc-
tory hierarchy. To distinguish between them, the hierarchy of all segments,

directories, and links 1is called the directoxy hierarchy, and the hierarchy of

quota directories is called the quota cell hierarchy.

Within a quota cell is kept the sum of the frames used of all segments
charged to the quota cell. Segments in the file system are charged to the
most immediate parent directory which has a quota cell, In figure II-2, the
segments below directory B are charged to the quota cell in directory B, but
the segments below directory C are charged to the quota cell in directory A
because C has no quota cell. Note that the quota cell is considered a part of
a directory, not inferior to it. Since segments can grow and shrink dynami-

cally, the total number of frames used in the quota cell must be integrated



Chapter II Page 23

Figure 1I-2 Quota Cells in the Hierarchy

over the accounting period (typically a month) to calculate the proper amount
of storage charged against the quota cell during the period.

To limit the charges for some quota cell, each cell also has a number,
called quota, which is the maximum value that frames used may attain. There-
fore, whenever a segment is grown, the quota and frames used of the appropri-
ate quota cell must be checked and updated to see if more storage may be allo-
cated for the segment. A quota cell is consistent if the values of frames
used and quota are non-negative integers such that 0 < frames used < quota.

The quota cell hierarchy can be modified in two ways: quota cells can be

created or deleted and quota can be moved from one quota cell to another.



W

Page 24 Chapter II

¢

These operations can be performed by any user having sufticient authority,
meaning any user having modify permission to the affected directories. No

modification may be performed which would leave any quota cell inconsistent.



Chapter II Page 25

2.2 Some Details on Segmentation and Paging in Multics

The basic unit of virtual memory on Multics is the segment. A segment is
a variable-length array of words. It has a length, a maximum length, (1) and
uses some number of secondary memory frames (see the next paragraph). To ref-
erence a word of memory, a two-component address must be specified. The first

is the segment number, which uniquely identifies a segment within a process.

The second component is the offset. This indicates the proper word within the
segment.

To simplify the management of physical memory, segments are broken up
into fixed-length pages. At the same time, the physical storage devices (e.g.
disk packs) are partitioned into frames, which are the same size as a page.
The supervisor moves the pages of the various segments among the frames as
required. For reliability reasons, all of the pages of a segment are perma-
nently stored on the same physical device (physical volume). A Volume Table
Of Contents (VTOC) is maintained on each physical volume. It contains one
entry (VIOCE) for each segment stored on the device. Physical volumes are

grouped into logical volumes. A logical volume may contain one or more physi-

cal volumes. Since a user may own a disk pack, the logical volume concept
provides a way to distinguish among system storage and storage owned by dif-

ferent users.

(1) The maximum length of a segment can be changed by calling the supervisor.
At all times, the maximum length of a segment must be less than or equal to a
system-defined maximum length and greater than or equal to the segment’s

length.




Page 26 Chapter II

The operating system remembers the physical location of every page by
keeping a page descriptor, or page table word (PIW), for each. The PTW's of
the pages of a segment are grouped together, in sequence, to form a page
table. The page table, along with other information about a segment, is per-
manently stored in the segment’s VIOCE. 1In order for the hardware to access a
word, the segment containing the word must be active. When a segment is
active, its page table, and some of the other information in its VTOCE, is
kept in primary memory in a data base called the Active Segment Table (AST).

The concept of the home of a page appears throughout the Multics supervi-
sor. It refers to that secondary memory frame on the physical volume in which
the page is permanently stored. When a segment is made inactive (deacti~-

vated), all pages of the segment are returned to their homes.

Associated with each process is a special segment called a descriptor
segment. This segment contains an array, indexed by segment number, of

Segment Descriptor Words (SDW*s)., A segment i3 assigned an SDW by the address

space manager (see below). If a segment is active and the process has refer-
enced the segment since its activation, its SDW contains the address in pri-
mary memory of the segment’s page table and the access privileges which that
process may exercise on the segment, Such an SDW is said to be connected. If
the segment is not active or the process has not referenced it since activa-
tion, a flag in the SDW is set. If the flag is set, it means that the SDW
must be connected before any reference to the segment may be completed. Note
that a segment may have only one page table but an SDW in each of several

processes.



LS e e S U e SRR B, Py e

Chapter II Page 27

The descriptor segment also has a page table and, when the process is

ruaning, its address is kept in a speciol:processor register called the

Descrigtor*Basé Register (DBR). A process can bé executing only if the page
table of its descriptor segment is inmprimary~ma§ory (i.e. the descriptor seg-

ment must be active). In fact,'all descriptor.gegments are always active.

The hardware addressing mechanism (see figure II-3) works as follows: It
is supplied with a two-component address,‘gooh_gé <i,j>. The DBR is used to
find the descriptor segment page table. Next;hphe value of i is divided by
the number of SDW’s on a page:to determine which page of thg desc¢riptor seg-
went holds the SDW of the segment. The hardware then reads the SDW to locate
the page table of the segment. If the segment is not connected, a flag has
been set in the SDW. When the flag is set, & processor expeption, called a
segment fault, occurs. The fault causes a trap iuto the s;pervisor so‘that
the segment can be activated, if necessary, and eonnected

When the page table has been found j is divided by the size of a page in
words. The quotient is used to index into the page table to find the address
of the proper page. Ifsthe page is notrin“primary ﬁamory,sa flag in the PTW
has been set, which causes a different processor exgeption, called atg_g_
ESELE' The fault invokes the supervisor to read in the page. Finally, the
page is in priméfy meﬁofy apd the wordiis reference?.

For completeness, it should be meotioned that ?he pages of a descriptor

segment need not always reside in primafy menéﬁg;:ufhe page table of a




Page 28 Chapter II

—Pr
*>— 4 G '
DBR . i
PIW's | ——
SDW i
resolving a
descriptor
reference to segment
<i, j> page O
descriptor
segment
page table
descriptor
segment
age 1
- pag
‘_—n~
PIW's
g R
ﬂ h ; X segment i -7 N
. page 0 - \
segment i : l
page table ‘ ' ¥
. word j L
| [
segment i
page 1
segment i
page 2

Figure II-3 The Hardware Addressing Mechanism




Chapter II Page 29
descriptor segment is like any other page table; 1if a page of the descriptor
segment is not in primary memory, the flag has been set in the PIW and a ref-

erence to the page will cause a page fault.

The supervisor module which resolves page faults is page control. In

response to a page fault, page control copies pages into primary memory. In
addition to primary and secondary memory, page control may use the paging
device. The paging device serves as an intermediate hélding station for
pages. It is typically smaller and faster than secondary memory but larger
and slower than primary memory. Primary memory and the paging device have a
very limited amount of space for pages. As part of the task of bringing pages
into primary memory, page control also moves pagés from primary memory to the
paging device and from the paging device to secondary memory. The part of

page control which performs page removal is called the page removal algorithm.

To avoid conflict among different instances of page control, each instance

must lock a mutual exclusion lock called the global page table lock.

It should be stressed that a page is a logical unit of 1024 words of
information, whereas a frame or home is a contiguous physical unit of storage.
At any one time, a page may be stored in several frames or none, if the page
is a zero page. Frames and homes may be allocated or freed, modifyiﬁg the
amount of storage which is used by the segment, but not modifying the informa-
tion content of the segment.

Conceptually, if no value has been written onto a page, the page is
defined to contain only zeroes. Therefore, a process may read from a page

even if no process has ever written into it. This feature creates a problem



Page 30 Chapter II

for the management of segments, namely, what should be done with all of those
zero pages? If they are physically stored, valuable space in secondary memory
may be wasted. If they are not, they will have to be created at the proper
time. The supervisor chooses the latter solution. A special null value is
placed in the PTW for the page and the page fault flag is set. When in this
state, a page is called a null page. If a page fault occurs on a null page,
the fault is called a gquota page fault, and page control will construct a
frame containing zeroes in primary memory, change .the segment length if neces-
sary, and modify the PTIW to indicate the location of the frame of zeroes. For
reliability, page control will also allocate a secondary memory frame from the
correct physical volume to be the home for the page. This sequence of opera-

tions is called page creation. Note that the creation of a page does not

cause the page to spring into existence; it causes the logical page to have a
physical representation.

Conversely, before a page is copied back to secondary memory, page con-
trol examines it to see if it ig a zero page. I1f so, page control will delete
the zero page by freeing the secondary memory frame, changing the segment
length if necessary, and marking the PTW as null. Again, page deletion does
not terminate the existence of the page; it eliminates the physical represen-
tation of the page. Zero and null pages can also occur if some process writes
into a page, making the page contain only zeroes. Note that either a read or
a write operation may cause the length of a segment to change.

Secondary memory frames are allocated and freed using the data base known
as the File System Device Control Table (FSDCT). This data base contains one

entry for each frame of each physical volume configured into the system. The



Chapter 1II Page 31

entry consists of one bit, indicating whether the corresponding frame is allo-

cated or freed.

The supervisor module which handles segment faults is segment control.

It is responsible for activating and connecting segments on demand and con-
trols the AST data base. Because there is a limited amount of space in the
AST for page tables, activating one segment usually requires the deactivation
of another. Segment control also handles deactivations. To conserve space in
the 'AST, the page tables of active segments are grouped according to their
size. The size of a page table in the AST is determined by finding the small-
est power of four that is greater than or equal to the length of the segment.
(1) An active segment can grow whenever page control adds zero pages to it.
If an active segment grows too much, it needs a larger page table. The size
of the page table is stored in the SDW. If an attempt is made to reference a
page for which there is no PTW, the hardware will detect this and cause a
bound fault. Segment control resolves a bound fault by allocating a larger

page table.

Naturally, some segments must remain permanently in primary memory. The
most obvious example is the segment which holds page control itself. Since
page control directs paging, if it were not in primary memory, it could not be
executed, and paging would cease. Therefore, segments such as page control

and the AST are implemented from special unpaged segments. An unpaged segment

(1) In a VIOCE, a full-length version of the page table is stored. A shorter
page table can be placed in the AST only if the last pages of the segment are
null.



Page 32 Chapter 11

has no page table. This fact is indicated by the state of a flag in the SDW,
and the processor, upon finding such a segment, knows not to look for a page
table. Instead, the address in the SDW is the absolute address, in primary
memory, of the first word in the segment.

Similarly, some paged segments, such as segment control, should not be
deactivated. If segment control were deactivated, there would be no execut-
able program that could activate segments. Consequently, segment control is

an example of an always active segment. This is shown by the state of a hold

flag in the AST entry (ASTE) for segment control. Segment control knows that

if the hold flag is set, the segment must not be deactivated.

The file system is responsible for the permanent storage of segments. At
this level, segments are the logical nodes of a directory tree. One of the
purposes of the file system is to provide a convenient, user-oriented, global
name space for segments. In addition, the file system maintains segment
attributes. Some example attributes are the segment’s access control list
(ACL), its maximum length, the date and time it was last modified, the identi-
fier of the physical volume on which it is stored, and the address of its
VIOCE. The file system provides the ability to create or delete segments and
list or modify their attributes. Directories are special extended-type
objects, implemented by segments, which may be examined or modified only
through calls to the supervisor.

The file system must also maintain the quota cell hierarchy. The func-
tion of the quota mechanism includes the ability to move quota between a quota

cell and one of its immediate inferiors and the ability to create and delete



Chapter II Page 33

quota cells, When these operations occur, the file system must make the

appropriate modifications to the quota cell tree.

A segment, identified by its file system name, can be assigned a segment

number through a call to the address space manager. When a segment is associ-

ated with a segment number, it is said to be known to the process. The
address space manager also provides facilities to terminate or revoke the seg-

ment number-file system name binding.

The quota mechanism regulates the amount of storage allocated to the sub-

tree under a given directory. One unit of quota corresponds to the ability to
use one secondary memory frame. Every time a zero page is created from a null
page, page control must check the appropriate quota cell, which is part of a
parent directory’s VIOCE and ASTE. The checking is expedited by requiring all
parent directories of an active segment to be active. In that way, the quota
cell is guaranteed to be available in primary memory if needed. Unfortu-
nately, this also ties up primary memory space for quota cells which are
rarely needed. Each ASTE contains a pointer to the ASTE of the segment’s par-
ent directory. Page control finds the proper quota cell by stepping through
the chain of parent directories until a directory is found which contains a
quota cell. By definition, this is the quota cell for which page control is
searching. Intermediate directories, those between a segment and the direc-
tory containing the quota cell against which the segment is charged, do not
have quota cells. A quota cell contains the amount of quota that may be used

by all segments which are charged against it and the amount that is actually



Page 34 Chapter Il

being used (frames used). At no time can the value of frames used exceed the
value of quota. For accounting purposes, a gquota cell also contains an esti-~
mate of the time-frames used integral charged to that quota cell since the
start of the accounting period. - If an atteapt is made to use more quota than
is available from a quota cell, a record quota overflow condition is signaled
to the user by the supervisor.

| Page control relies on segment control to maimtadn the correct value of
the parent ASTE pointer. Since segment contrpl slso depends on page control
to implement the demand paging algorithm, there is a dependency loop in the

virtual memory manager.

From time to time, it is necessary to revoks the access privileges that a
pfocebs may exercise on an active segment, Thie is dome by setting the seg-
ment fault flag in the SDW. Segmemt control can differentiate between this
kind of segment fault and a normal segment famlt because the value stored into
the SDW is different im -each case. Segment eoﬁml then reflects an access

revocation fault to the proper fault haadler. -

The concepts of zero page and null page have been discussed earlier in
this section. Before going to the next section; one refinement of a similar
nature needs to be pressnted. A semi-null page belongs to .an intermediate
class of pages which has been iatroduced in .an effort ‘to improve performance.
They are relevant to this thesis because they exist now on Multics, and will
appear in a slightly modified form in chapter four. : A semi-null page repre-

sents a page of zeroes. It is not physically stored in secondary memory, but




Chapter II Page 35

is associated with a secondary memory home. The system designers feel that a
zero page can be created faster than a zero page can be moved from secondary
memory. Before removing a page from primary memory, page control checks
whether the page is a zero page. If so, contrary to the statement made ear-
lier in this section, the page is transformed into the semi-null state and the
home associated with it is not freed. Frames used, however, is decremented.
If the page is brought back into primary memory before the segment is deacti-
vated, a zero page can be manufactured without also having to allocate a home
on secondary memory. A semi-null page is finally changed into a null page
when the segment is deactivated. The advantages of semi-null pages are that
they can reduce the number of I/0 operations to secondary memory and they can
reduce the frequency of allocations from secondary memory. One interesting
aspect of semi-null pages is that, by the current definition, they do not use
quota. This produces the slightly anomalous situation that a home can be

associated with a page and yet not be charged against any quota cell.



Page 36 Chapter 1II

2.3 Some Problems with the Current Virtual Memory Manager

Although the description of the Multics virtual memory manager given in
section 2.2 is not exhaustive, enough background has been presented to discuss
some of the weaknesses in the implementation. In this section, two specific
problems with the virtual memory manager will be examined. These are not the
only problems, but have been chosen to illustrate the poor modularization of
the virtual memory manager. The nature of the problems can be characterized

as functional entanglement, meaning that the functions to be performed are

poorly distributed among the modules. The modules interact badly, producing
complexity and making the system difficult to understand. These problems are
typical of the confusion in the implementation of the virtual memory manager.
They are examples of the second facet of the overall problem discussed in sec-
tion 1.1.

In the first example, an artificial recursion is used to handle paging
under special circumstances. Besides the fact that the recursion is difficult
to understand, the existence of the recursion masks a much simpler solution,
which will be presented in chapters four and five. In the second example, the
current modularization is shown to be defective because it does not adequately
reflect the needs of virtual memory management. An important factor, resource

control, is underemphasized.



Chapter II Page 37

2.3.1 Page Faults on the FSDCT

A process takes a page fault either to copy a page into primary memory or
to create a page of some segment. The actions required are different for each
case, but the same module, page control, handles both. If a page is to be
created, page control must find a free home for it on the proper physical vol-
ume. To do this, page control uses the FSDCT data base. The FSDCT can be
quite large, so it is kept in a paged segment. Therefore, page control, the
module which handles page faults, must be able to take a page fault on the
FSDCT.

Not surprisingly, this is done with a special case mechanism. Page con-
trol first checks to see if the needed page of the FSDCT is already in primary
memory. If not, page control carefully stores the data about the page fault
being processed and calls itself recursively to copy the FSDCT page. The size
of the FSDCT cannot be changed by page control, so page control need never try
to create a page for the FSDCT (another special mechanism is used). This
guarantees that there are no potentially infinite sequences of page faults on
the FSDCT. However, page control must be careful not to destroy any data
relating to the original page fault.

There is a certain elegance to the idea of using a recursive mechanism to
reference the FSDCT. Taken as a whole, however, the mechanism reeks of poor
design. Rather than performing a real recursion and faulting on the FSDCT,
page control modifies its environment to look as though a fault had been
taken. After copylng the page of the FSDCT, an artificial return again modi-

fies the environment so that the original page fault can be processed. This



Page 38 Chapter I1I

very artificial recursion is extremely hard to decipher. Instead of achieving
any economy of mechanism, the recursive use of page control makes the under-
standing of the virtual memory manager more difficult.

2.3.2 A Peek at the Quota Problem

The term quota problem is used loosely to refer to a large set of com-

plexities in the superviser. It is an example of functional eantanglement on a
large scale. Rather than attempt to discuss the entire problem, this section
will present o.ne aspect of the quota problem.

The hierarchy of quota cells is dynaaic, mesning that it camn undergo fre-
quent modifications. Such modifications are the result of requests to the
supervisor from users having sufficient authority. - $ince quota cells are
modified by page control when creating or deleéting a page, modifications to
the quota cell hierarchy must be coordinated ‘with page ceutrol.

When a user wishes to change the quota cell hierarchy in some way, the
user issues a request to that effect to the ‘superviser. The supervisor first
validates that the user has sufficient authority to request the modifications .
and then calls the program which modifies the queta cell hierarchy, quotaw, to
perform the operations. To avoid any conflict with pdge control, quotaw first
locks the global page table lock. Since both quotaw and ‘page .control use
quota cells as data bases, locking the ‘lock guasrantees that only quotaw can
modify the contents of any quota cell. Unfortunately, locking -the lock also
stops all paging activity in the system.  Next, quotaw checks the request to

ensure that the quota cells affected will remdin comsistent after the modifi-




Chapter 1T , : Page 39

cation. Finally, if the check succeeds, the requést is performed and the lock
unlocked.

This description seems simple enough, but to what module does quotaw
belong? Since quotaw locks the global pagé tablé‘ldék, a fair assumption
might be that it belongs in the page control moduie. This would mean that
page control is responsible for copying‘paégs, citaging pages, and modifying
the quota cell hierarchy. That is'a'veré large ta;k to be performed by one
module. In addition, the quota cells‘of‘active diréctories are kept in the
ASTE’s of the directories, which are supposed»eo“ﬁe part of a segment control
data base. If quotaw is part of page céntrol, it should not manipulate the
data bases belonging to other modules. Suppéée,zonkfhé‘éther‘hand, fhat
quotaw is not part of page control. Then it violates any semblance of modu-
larity by locking the global page table lock. No matter -hew segment control
and page control are chosen, the existence of quotaw ruins the division

between them and makes each dependent on the other.

2.3.3 Conclusion

The Multics virtual memory manager 1is loosely organized into two modules,
segment control and page control. The two modules are pictured in figure
1I-4. The fact that each module depends on the other is symptomatic of poor
modularization. However, it should be noted-that the structure does conform
to the original specification of the virtual memory manager. When the speci-
fication was developed, mutual dependencies, such as those displayed by page

control and segment control, were not considered unacceptable. Later advances



Page 40 v Chapter 1l

Segment
Control

Page
Control

Figure 1I-4 Structure of the Multics Virtual Memory Manager

in modularization revealed that mutual dependeacies 1ed to difficulties in
understanding and implementation (see section l.1).

Examination of the iptersal operation of each module reveals a clue for
how to remedy the problem: Page control is respoasible for two separate func-
tions, paging and the control of page resources. Segment control is also
responsible for two functioms, control of page resources and segmentation. It
ghould therefore not be surprising that the interface between them shows 8o
many interconnections and that many of the .interconnections concarn‘resource
vcontrol. The interface is exactly what could be expected if someone arbi-
trarily divided a resource control module into two parts and incorporated one

part into segment control and the other part into page comtrol.




R o T

Chapter II Page 41

2.4 Summary

The Multics virtual memory manager and the Multics addressing mechanism
have been presented in some detail. Using this foundation, two of the prob-
lems found in the current implementation were discussed. The fundamental
wegkness is the absence of a simple, complete, consistent specification of
what the virtual memory manager should implement. The existing specification
is not complete in that it does not cover resource control. In the implemen-
tation, the existing specification is followed as closely as possible, but
resource control cannot be simply added to the virtual memory manager without
ruining the modularization. In succeeding chapters, the issue of how to

devise a better modularization will be addressed.



page 42 Chapter 11



Chapter IIIX Page 43

Chapter Three
A Three Layer Virtual Memory Manager

In chapter two, discussion centered on how the Multics virtual memory
manager is structured and what is wrong with it. Now it is time to address
the question of what to do about it. The remainder of this thesis will
develop a model of the Multics virtual memory manager. There are two reasons
for doing this: one specific and one genmeral. By proposing a model and com-—
paring it to the real system, we can attempt to rectify the drawbacks already
outlined. If valid, the model will embody the fundamentals of the virtual
memory manager and can serve as a guide to future development and maintenance
on Multics. In a larger sense, a model can separate the important issues from
the unimportant. In this way, we can learn which considerations should be
éxplored when virtual memory is encountered in a different context.

Section one of this chapter discusses modularization issues of how the
model should be constructed. A method will be presented for modularizing a
system. In section two, the method will be applied to the virtual memory man-
ager to arrive at a a particular set of modules. Section three discusses why
and how the set of modules should be ordered into three layers. Finally, we
discuss a particular technique, type extension, for imposing our structure on
the current system. This technique will be used in chapters four and five.

Section four may be skipped if the reader is familiar with type extension in

the context of operating systems.



Page 44 Chapter III

3.1 Modularization

The concept of modularity has been important in programing for a long
time. It grew out of the need to ke able to develop and maintain large, com-
plex systems. By breaking large programs into smaller, simpler ones, the sys-
tem could be written, compiled, tested, and debugged im parallel, thus
increasing the productivity of a programing tesm. ©Of course, a program cannot
be divided arbitrarily, because there is no vesson to believe ‘that .an arbi--
trary division would allow tha parts to be developed separately. When a sys-
tem is modularized, the modulds have cpMcim. te eaeh other ‘in various
ways. By connections, we wmean the assumptions witch the modules make about
one another [Parnas, 197i}.  1f we are not caraful, imcreasing the number.of
modules may cause the nwmbar of connections to giuviia*a cembinatorial explo~

sion. Therefore, while breaking the syatem into-smally simple:modules, we

must also try to keep the number of intermodule commections to & minimum. The - -

best way to do this is to divide the eyatem aloag fusefional boundaries
because, intuitively, those boundaries define a partitiea of the system having

a relatively small number of comnections.

So far, the terms modwle and function.have been used loosely. This is

because they are relative. To an operating aystem, ome function -might be vir-
tual memory; but inside of the virtual memory manager, many subfunctions can
be seen. Therefore, fome: tethniques are needed wihich can help-differentiate

functions, and thus module boundaries, in a givea centext.



Chapter III Page 45

The first technique deals with data base references. If two parts of a
system reference mutually exclusive external data, they should belong to dif-
ferent modules. The term external here means data other than arguments.
Clearly, both a calling program and its subroutine will reference the argu-
ments passed beiween them. This technique makes sense because if two parts of
the system can be placed in different modules without increasing the connec-
tivity of the system, they should be. The converse is also useful, i.e. if
two parts of the system reference the same data bases, they are likely to be
parts of the same module. This technique is the strongest because functions
are frequently described and thought of in terms of their effects on data.

The second technique is that if ome part of the system must depend on a
second, but the second does ﬁot need thg.first.,then the two parts should be
implemented in different modules. Implementing or understanding a single mod-
ule containing both parts is more difficult than implementing or understanding
two separate modules. There are two motivations for this technique. One is
that we wish to explicitly recognize dependencies in the system, both for
informal certification and to increase our understanding. The other relates
to the principle of least privilege [Saltzer, 1974]. If protection barriers
are available within the system, they can be used in this situation to ensure
that damage to the first part of the system does not easily spread to the sec-
ond. This implies, for example, that the trigonometric .functions should be
separated from the floating point package, because floating point operations
are needed to calculate sines and cosines but trigonometry is not needed for

multiplication.




Page 46 Chapter III

Third, if there is a function or service common to two or more parts of
the system, the common part should be modularized separately. This derives
from the idea that there is no need to reinvent the wheel. Rather than force
each user to implement his own file system, one is provided for all by the
operating system. This has also been called the principle of greatest common
mechanism [Hunt, 1976},

The fourth technique derives from the principle of least common mechanism
[Popek, 1974; Schroeder, 1975] and, in some respects, is the converse of the
second. It says that if ome function is common to many users and another is
common to only a few, the two functions should be separated. The idea is that
the amount of the system on which a module depends should be minimized by
placing unneeded functioas in a separate module. This technique is not the
inverse of the third technique and is, in fact, quite compatible.

The last technique involves the frequency of use. If two pieces of the

system operate at different rates, they are likely to be parts of different
modules. Consider a system having one user process and one server process.,
The user process requests two kinds of services, A and B, from the server.
Service A is requested once a second. Service B is requested once a minute,
' Because of the disparity in the rates of the requests, the server process
could be divided into two modules. One motivation for dividing the server is
to guarantee that service for requests of type A i8 not impaired by interfer-
ence with service for requests of type B.

These five techniques are not meant to be exhaustive or definitive. They

have been phrased in terms such as should and likely because they are indica-

tors; they can only give clues as to where module boundaries could be placed.




Chapter III Page 47

Certainly, situations exist which would yield conflicting or misleading clues.,
In the process example above, suppose that both services required the same
'tdata base. Then the first technique would suggest that one module is appro-
priate, but the fifth would indicate two. These techniques are advanced to
provide something, besides personal bias, as a basis for modularization.

Given a system comprised of only one module, the techniques can be used,
iteratively, to approximate the optimum modularity. However, we will not
attempt to prove that they can be applied deterministically, or that they are
guaranteed to converge to the optimum point. The next step is to return to
the Multics virtual memory manager and identify, using these techniques, what

parts should be in separate modules.




Page 48 Chapter III

3.2 Modularizing the Virtual Memory Manager

The Multics virtual memory manager uses four major data bases: the AST,
quota cells, page tables, and the File System Device Control Table (FSDCT).
(1) The FSDCT contains a list of every secondary memory frame available to
the system, along with an indication of whether the frame is allocated for any
page. It is used during page creation and deletion. The other three data
bases should be familiar from chapter two. Naively, we might think, using
technique one, that there should be four modules. However, some of these data
bases are used together. Rather than examine the uses of each data base, we
shall consider them as one pool of data. This is done for two reasons.

First, we wish to start by assuming the virtual memory manager as one huge
module. 1In this way, we can apply the techniques and, hopefully, arrive at a
new modularization. Second, we want to allow for the possibility that the
current data bases are not divided along functional lines. By looking at all
of the data together, we can ignore the effects of the current modularization.

Examination of the virtual memory manager reveals three loci of refer-
ence. The first involves only PTW’s, which are the elements of page tables,
and a few fields in the AST. These data are used when a page is moved from
secondary memory to primary memory.or back again. We shall call this locus
demand paging. The second locus is defined by the data needed for page crea-
tion and deletion. It includes the FSDCT, quota cells, page tables, and some

fields of the AST. This locus will be called resource control. The data

within the AST used for demand paging and resource control is disjoint. The

(1) In the current system, quota cells and page tables are part of the AST.




Chapter III Page 49

only overlap occurs on page tables. Careful study of the overlap shows that
resource control references page tables to create or delete pages. A page
being created or deleted cannot be moved. Thus, although some physical over-
lap exists, temporal factors ensure that demand paging and resource control
never try to use the same data at the same time. The overlap can be conceptu-
ally eliminated by having resource control send requests to the demand paging
locus to create or delete specific pages.

The remainder of the data represents the bulk of the AST. It is composed
of many fields and, correspondingly, has many uses. The principal uses are
for the activation and deactivation of segments, for bound faults, and to
service external requests originating outside of the virtual memory manager
(e.g. moving quota from one directory to another). This locus is called

segment support. Remarkably, this locus does not overlap greatly with either

of the other two. Some overlap does exist, but that is mostly a consequence
of having segment support service requests. For example, a request to deacti-
vate a segment will, of necessity, move some pages onto secondary memory and
free a page table. However, only in a very few cases are data belonging to
another locus used as decision variables for segment support. This strongly
suggests the existence of a natural modularization for the virtual memory man-
ager. Namely, one module for each of the three loci of reference.

The programs which are contained in segment support are paged. This
means that they may move freely between primary and secondary memory. This
also means that they must depend on that part of the virtual memory manager
which handles paging. By technique two, this is confirming evidence that

demand paging should be in a separate module.



Page 50 Chapter III

The FSDCT can be a very large data base. It is so large that is cannot
always fit into primary ﬁemory. To operate efficiently, the virtual memory
manager uses a highly modified form of paging to move needed pages of the
FSDCT (see section 2.3.1). With some programing effort, page creation and
deletion could use the existing demand paging facility when referencing the
FSDCT. This would eliminate a special mechanism and simplify the virtual
memory manager. Thus, by the third technique, there is further evidence that
demand paging should be separate.

The fourth technique also applies to page movement. In the previous
paragraphs, we developed that the demand paging function can be common to both
segment support and resource control. This technique also suggests that the
management of paging belongs in a separate module.

The last technique provides supporting evidence of three separate mod-
ules. Segments are activated at a frequency of about 1.5 times per second,
about 3 pages are created each second, and over 100 pages are moved from sec-
ondary memory to primary memory every second. (1) Here, again, is strong evi-
dence that demand paging should be separated. Although the frequencies of
segment activations and page creations do not differ greatly, we feel that the
factor of two difference does suggest the possibility of a module boundary.

In essence, the virtual memory manager performs three identifiable func-

tions for users. First, it is assuming the entire responsibility for demand

(1) For our purposes, segments are deactivated at the same rate as they are
activated. They are deactivated to make room for a newly activated segment.
Similarly, pages are removed from primary memory to make room for other pages,
and thus are removed at the same rate as pages are brought into primary
memory. However, page creation and deletion are quite distinct. Figures
could not be obtained on the rate of page deletion, but it is reasonable to
assume that the frequency of page creation or deletion is about 4 per second.



Chapter III Page 51

paging. By this, we mean the management of physical volume frames (homes) and
.extant pages so that the user is freed from worries about the physical loca-
tion of pages. Second, the virtual memory manager allows the creation and
deletion of pages. This second function includes the actual create and delete
operations, the mechanisms to automatically invoke creation or deletion when
appropriate, and the facilities to control their invocation according to poli-
cles specified by higher layers. Third, the virtual memory manager groups
pages together to help implement the information containers called active seg-
ments, and provides many utility functions for external use.

Put another way, the first function physically manages the set of exist-
ing pages. The second function controls how and when the set of existing
pages can change. The third function constructs segments out of pages to
facilitate their implementation. The evidence dictates that the three func-

tions should be placed in separate modules.




Page 52 Chapter III

3.3 Ordering the Modules

As seen in chapter two, the Multics virtual memory manager -is poorly
modularized. The key, then, to curing the observed functional entanglement is
to find a better choice of modules which can perform the same task. A module
is a responsibility assigawent [Parmas, 1}972b].: In other words, a module con-
sists of the collection of ‘programs and data bases aeeded to perform some
task.

As was pointed out in sectien 3.2, the virteal memory manager performs
three tasks or functions. As a first step, the virtsal memory manager should
be partitioned into three modules, not the existing two. Each module should
perform exactly one of the wvirtual memory mansger fumetiona. This step is
easy to understand, but h§V‘thonld the: modules be structured?

From the considerations discussed in section 3.2, a preliminary structyre
for the virtual memory nandger can be constructed. It is shown in figure
II1I-1. The circles represent modules, and the arrows represent the module
dependencies. The presence of the arrow labeléd‘é points out an important
consideration: Should the resource control module conmtrol the interactions
between demand paging aand segment support? This question will be answered
later in this section, after some background is presented.

The technique of layers of abstraction was first introduced by Dijkstra
[1968a] . It involves separation of a system into a series of linearly ordered
layers, where each layer, consisting of a set of modules, performs a set of
related functions. Higher layers may use lower layers, but lower layers may

neither use not depend on higher layers in any way. In terms of the connec-




Chapter III Page 53

Segment Support

Resource Control

Demand Paging

Figure ITI-1 A Possible Model Structure

tions among modules, the layering technique means that no connection between
two modules may pass completely through a layer. If, for example, resource
control is supposed to be a complete layer, the arrow labeled A should not be
allowed because it by-passes resource control. By rigid adherence to a five-
layer structure, Dijkstra was able to design, implement, and debug a medium-
scale system in a short time and with very few people. This technique seems
to have some attractive properties, but is it applicable here?

The meaning of the term module changes with context. Viewing the operat-
ing system as a whole, the virtual memory manager is one module. However,

within the virtual memory manager, there are three modules. This suggests



Page 54 Chapter III

that the system can be thought of as constituting a hierarchy of modules.
Each module can be successively divided into smaller mbdules, until we have
only individual machine instructions. In fact, instructions can also be sub-
divided until the boundaries of particle physics are reached. Simon analyzed
systems taken from many disciplines and found the hierarchy concept almost
universal [Simon, 1962]. 1In his view, organizing a complex system as a hier-
archy is critical to understand, describe, and control the system.

This kind of hierarchy orders increasingly fine partitions of the system.
There is another important module hierarchy, which is the hierarchy of module
dependencies. It is related to the graph of the conmections among the mod-
ules, given a particular partition.

Given that Multics is a hierarchy of module dependencies, Dijkstra
[1968b] states the fundamentai reason why the hierarchy should be viewed as a
series of layers. The reason is that an important function of an operating
system is to provide resource allocation. The modules should be ordered into
layers to hide the fact that the modules themselves use some of the resources
provided by other modules lower in the hierarchy. Otherwise, confusion
reigns.

This is directly applicable to the virtual memory manager because, as has
been stated, one of its functions is resource control. Thus, the virtual
memory manager should be structured into three layers, as in figure III-2.
The ordering constraints on the modules, which were developed in section 3.2,
still apply, so demand paging should be the bottom layer, resource control
should be the middle layer, and segment support should be the top layer.

Note, in particular, the absence of the arrow labeled A from figure III-l.




Chapter III Page 55

Layer 3 Segment Support
Layer 2 Resource Control
Layer 1 Demand Paging

Figure III-2 Structure of the Model

Because the system is layered, all dependence of segment support on demand
paging must first be routed through resource control.

A general discussion of modularizing the virtual memory manager is all
very well, but specifics are needed. Are there any methods of module descrip~
tion which can explicitly recognize connections? The answer is yes. Type
extension is such a description method. The next section will briefly intro-

duce type extension and show why it is useful.



Page 56 Chapter III
3.4 Objects and Type Managers

Type extension is being used quite extepsively in the design of struc-
tured programing languages such as CLU {Liskev et al~,A1977] ag§ySIHULA'[Dahl?
Dijkstra, and Hoare, 1972}. However, use ofr;his modeling technique for oper-
ating systems is still new. Philippe Janson [1976] has applied type extension
to virtual memory mechanisw#s and David Reed [1?16} has used the technique in
studying processor scheﬁuiing aaﬂ traff1c~ca;£cql.

The type manager construct has aeveralfgeslrable properties that make it
attractive for modeling purposes, The objecix handlead by type managers are
completely defined, so there can be no éuastioa sbout the purpose, function,
or usage of objects. Second, the 1nterf§b!nﬂihpng type managers are well- .
defined. All communieathon'ancng type managers must occur openly across the
interfaces. Third, the iaternal tapréaeniatiuan of objects are completely
hidden from other type manegers which use them. This easures that no unfore-
seen side-effects cam occur. Fourth, the dependsucies saong type managers can
be generated in a straightforwerd msaner. - Finally, 1f the objects and their
attributes are chosen tarefully, their usage will de natural and intuitive.
This is important, ia sperating nysteﬁs desiga, to prevent the gpread of com-
plexity. 1In other words, type extension provides a natural way to modularize
a system along functioenal bowadaries. This is exactly what is required by
section 3.1. These properties are by no means exclusive to type extension,’
but since type extemsion has'them, it is to our advantage to use type exten-—

sion in this context.




Chapter TII Page 57

An object is defined by the set of operations which may be applied to it.
It has a set of attributes, which correspond to the properties of the object.
One of the attributes of every object is its name, whose value must be unique
over the relevant universe of discourse. A type is a set of objects which all
have the same set of attributes. All objects of a particular type are managed
by one type manager. For example, the objects of type REAL NUMBER would be
managed by the REAL NUMBER type manager. They might have attribute sets con-
sisting of the attributes name and value. The name attribute might have val=-
ues such as x, y, or z, and the value attribute might be -1, 5, or 3.14159....
Hereafter, type names will be given in capital letters to distinguish formal
types from the concepts that they are attempting to represent.

Some operations on REAL NUMBERs might be: creation of a REAL NUMBER hav-
ing the name A and value 3, deletion of A, and addition of the values of X and
Y and storing the result in the value of Z. Further operations could be
defined so that the type REAL NUMBER corresponds to the mathematical notion
having the same name.

More complex types, called extended types, can be defined in terms of

already existing types. The representation of an object is the set of objects

used by the type manager to implement the object. The map of a type is a data
base, internal to the type manager, which indicates the set of component
objects which make up the representation of every object of the type. Natu-
rally, any operation defined on objects of some extended type must be express-
ible as operations on the component objects.

One of the strengths of the type extension modeling technique is the

independence of an object from its representation. Users of a type need have



Page 58 : Chapter IIL .

no knowledge whatsoever of how the type is implemented or internally repre-
sented. Consider, for example, the extended type VECIOR.. Using the type REAL
ﬁUMBER, the type VECIORVcan be defined to correapond to the mathematical con-
cept of two-dimensional weetor. What about the wepressentation of VECTORs?
The representation is completely up to the implementaer of the VECTOR type man—-
ager. VECTORs may be internally represented in either Cartesian coordinates
or polar coordinates, usimg two REAL NUMBERs. The choice will probably depend
on the intended or anticipated use of VECTORs, érxﬂhieh representation is more
appropriate for the set of operations provided. Conceivably, the manager
might use both represeatatioss or switch between tha.~qsrcouvandent. The man-
ager might even represemt them in elliptical ceordimates. The point is that
the internal representatfon of a VECTOR s completsly irrelevant to a VECTGR
user. As long as the user and the type manager sgfes of a way of communicat-
ing about VECTORs, the user does sot nsed to imow snything sbout their repre-
sentation.

Janson [1976] idemtified two fundamentally different kinds of types:

create/delete (C/D) types amd allocate/free (A/F) types. There is essentially

an infinite supply of C/D type objects. They are ¢reated as needed, used, and
then discarded. Most work involving types has conceatrated on C/D objects.
A/F objects can be neither created nor destroyed. They exist in limited num-
bers. They are allocated as weeded and as available, used, and then freed for
subsequent use. The manufacture of A/F objects falls under the category of
reconfiguration, which is thoroughly treated by Schell [1971]. In computer
system, A/F objects generally have hardware representations and represent. some

reusable resource (e.g. secondary memory frames).




Chapter III Page 59

When using objects for operating system design, five dependencies among

type managers can be identified:

(1) Component ~-~ the type manager for type A is dependent upon the type
manager(s) which provides the memory space in which objects of type A are
stored.

(2) Program -- type A type manager depends on the type manager(s) which
provides the memory space in which the programs implementing the type A type
managér are stored.

(3) Map -- type A type manager depends upon the type manager(s) which
provides the memory space’ in which the map.and other data bases are stored for
the manager of type A.

(4) Environment -- type A type manager depends on the type manager(s)
which structures the address space-or.naming~§nvironment of programs that
implement type A.

(5) Interpreter —- type A type manager..depends on:the type manager(s)
which controls the allocation of processor resources: which are used to imple-.

ment type A,

Put another way, type manager A depends on type manager B if the incorrect
functioning of B can cause the incorrect functioning of A. Thie definition of
dependence is intentionally precise and 1is narrower than the notion of copnec-
tion. With this definition, we can capture the essence of which types need
which other types aéd discard other kinds of interactions. For example, sup-

pose type manaéer B performs a service for type manager A. A depends on B, by




Page 60 Chapter IIL

this definition. By changing inputs, clearly A can affect the operation of B.
However, since a malfunction in A cannot cause a malfunction in B, B does not
depend on A. B is connected to A because B certainly assumes that A wants the
service performed, and botl type managers muet refemence any arguments passes

between them.

Type manager dependencies are transitive in that if type A depeads on
type B and type B depemds on type C them type A depends on both types B and C.
In operating systems desigm, it is important to recognize dependencies to
ensure that no twe type samagers are symetrically dependent (i.e., depend on
each other). Clearly, if ¢wo type managers-dapend on.each. other, the secu-
rity, reliability, and understandability of the system is very much in doubt.
Therefore, the dependence relation should alse be asymmetric and not reflex-
ive. In other words, there should be a partigl oxdering: (i.e. 3 hierarchy)
among type managers which guarantees that no type memager depends upon itself.
By examrining the maps of the type managers, the compiete dependency graph can
be generated. Simple inspection will reveal Hhﬁth&ﬁ~t$&zﬂfaph does or does
not represent a partial oxdering. Note that the dependency graph is similar
to Parnas’s hierarchy of uses [1976].

Note that in sectiom 3.3, discussion centered om a layered structure,
whereas in this section, a hierarchy is considered. The use of type managers
does not automatically lead to m‘iayered'stvucmuren Rather, the use of type .
managers helps to identify the dependencies within the system. To create a
layered system, the designer must still examine the dependencies to check that

no mutual dependencies exist and that no dependency by-passes a layer.




Chapter III Page 61

3.5 Summary

In this chapter, we developed a method to modularize a system. While the
method was quite useful, no statement can yet be made about the optimality or
applicability of the method in general. It is at least better than arbitrary
choice or personal inclination. The method was applied to the Multics virtual
memory manager. The resulting set of three modules needed to be ordered,
according to their respective dependencies. Finally, a technique of formally
describing a system was intrﬁduced, which explicitly recognizes module depend-
encies. In chapters four and five, this technique will be used to model the

bottom two layers of our proposed structure.




Page 62 Chapter 1II



Chapter 1V Page 63
Chapter Four
The Paging Manager

In chapter three, the broad outlines of demand paging were defined and we
showed that demand paging belongs at the bottom of a dependency graph in the
virtual memory manager . Thié chapter examines in detail the demand paging
function. The function will be modeled by a type manager, ;alled the paging
manager. The model will then be related to actual system operations, as
described in chapter two.

The essential function of the paging manager is to provide PAGE CONTAINER
objects to higher layers of the operating system and, ultimately, to the user.
PAGE CONTAINERs are designed to store logical pages so that they may be refer—-
enced quickly. The mechanics of physical management of PAGE CONTAINERS is
completely hidden from users of the paging manager. The number of PAGE CON-
TAINERs which may be in use at any one time is limited by the size of primary
memory: The status and physical location of every PAGE CONTAINER must be
maintained in primary memory, and there must be gnough room to hold the wordg
of at least two PAGE CONTAINERs. PAGE CONTAINERs are A/F objects, meaning

that they always exist, even when not in use.




Page 64 Chapter IV

4.1 PAGE CONTAINER Attributes

The attribute set of a PAGE CONTAINER consists of a name, a data array,
(1) a home, a used flag, a modified flag, a zero flag, and a core flag. The
name of a PAGE CONTAINER uniquely identifies that PAGE CONTAINER from all
other pages. (2) When a PAGE CONTAINER is in the free state, only the name
has any meaning; the other attributes may not be referenced. The data array
attribute holds the values of the words in the PAGE CONTAINER, The data array
is also called the contents of the PAGE CONTAINER. The home attribute refers
to the permanent secondary storage location for the logical data contained in
the PAGE CONTAINER that the paging manager may use to store the contents of an
allocated PAGE CONTAINER, (The use of this attribute will become clearer when
PAGE CONTAINER operations are explained.)

The four flag attributes provide auxiliary information about the page
held in a PAGE CONTAINER. The used and modified flags tell whether the page
has been used or modified since it was allocated. The zero flag indicates

whether the data array contains all zeroes., The core flag is used by the seg-

(1) In Multics, the number of words contained in a page is 1024. The particu-
lar number is not relevant to this discussion, but all PAGE CONTAINERs must
contain the same number of words. Those familiar with the history of Multics
will recall that the original design called for pages of two sizes, 1024 and
64. In such a design, either another attribute, page size, must be provided,
or two paging managers must be used.

(2) There is currently a small controversy over the proper scope of object
names. Purists insist that a name must be completely unique over the entire
set of objects supported by the system. Given the ability to share informa-
tion among computers, one can speculate whether the name must then be unique
over the objects available to some set of computer systems (this is very much
a research topic). On the other hand, more practical designers contend that a
name need be unique only over the most relevant domain, e.g., the set of PAGE
CONTAINER objects available to a-particular computer.



Chapter 1V Page 65

ment deactivation algorithm and tells whether the PAGE CONTAINER is in primary

memory.



Page 66 Chapter IV

4.2 'PAGE CONTAINER Operations

In the following discussion, operations will be designated like PL/1 call
statements. Output arguments will be underlined.

The most fundamental operations are allocate, free, read, and write. The
allocate operation can be represented as allocate (home, zero_flag, name).
Its function is to select a PAGE CONTAINER from the pool of unused PAGE CON-
TAINERs and allow it to be used. The value of the home and zero_flag argu-
ments are assigned to the home and zero flag attributes of the PAGE CONTAINER
being allocated. If the sero_flag argument is set, then the data array attri-
bute of the PAGE CONTAINER is defined to contain all seroes, regardless of the
values found at the home location. If the zero_flag argument is not set, the
data array attribute containsrthe values found at the home location. If there
18 a PAGE CONTAINER available in the unused pool, it will be allocated and the
value of its name attribute will be returned in the name argumeant. If, for
some reason, a PAGE CONTAINER caanot be allocated (e.g. there are no PAGE CON-
TAINERs in the unused pool), the operation will fail and return to its caller.

The operation free (name, gero flag) returns the PAGE CONTAINER specified
by the name argument to the pool of unused PAGE CONTAINERs. If the PAGE CON-
TAINER contains all zeroes, the zero_flag argument will be set. Otherwise,
the zero_flag argument will be cleared and the contents of the PAGE CONTAINER
will be placed at the home location. If the PAGE CONTAINER cannot be freed,
the operation will fail.

The read operation can be written as read (name, offset, value). The

operation returns, in value, the contents of the data array element specified




Chapter IV Page 67

by name and offset, Execution of a read operation also sets the used flag
attribute of the PAGE CONTAINER.

The operation write (name, offset, value) modifies the contents of the
data array element specified by name and offset so that it contains the value
given in the value argument. Performing a write operation will also set the
used and modified flag attributes of the PAGE CONTAINER.

The five remaining operations return the values of the home attribute and
the four flag attributes. They can be illustrated as: get home (name, home),
usedp (name, flag), modifiedp (name, flag), zerop (name, flag), and corep
(name, flag). If the PAGE CONTAINER specified in the name argument is cur-

rently allocated, these operations will succeed., If not, they will fail.




Page 68 Chapter IV

4.3 Dependencies in the Paging Manager

To satisfy dependency requirements, five object types are available to
the paging manager. Three of the types provide storage: the primary memory
manager, the paging device manager, and the secondary memory manager. There
are also a primitive address space manager and a primitive processor manager.
These last two handle the environment and interpreter dependencies of the pag-
ing manager, respectively. Component dependencies involve all three storage
types. Data arrays stored in primary memory may be referenced immediately,
but primary memory can hold only a small number of data arrays at one time.
The paging device and secondary memory have larger capacities, but can be ref-
erenced relatively slowly because the data arrays must first be copied into
primary memory. This means that the paging manager must perform a complicated
juggling of data arrays among the available storage areas.

Storage needs for programs and maps are handled by the primary memory
manager. This is done for two reasons. First, the programs and maps of the
paging manager do not occupy a large amount of storage space. Therefore, the
cost of maintaining them in érimary memory is small, Second, because the pag-
ing manager is heavily used by most of the system, it ought to be as fast and
efficient as possible. By storing programs and maps in primary memory, prob-
able frequent references to secondary memory or the paging device for the pur-

pose of accessing programs and maps can be eliminated.




Chapter IV Page 69

4.4 Discussion

The paging manager provides PAGE CONTAINER objects to many ultimate
users. Because of the importance of paging, the manager ought to be simple
and efficient. The model, exhibited here, supports exactly one function:
referencing pages held in PAGE CONTAINERs; other, more complicated functions
(e.g. resource control) are performed by higher layers.

The most striking features of the model are that it is defined entirely
in terms of PAGE CONTAINERs (no mention of segments) and that the demand pag-
ing nature of the paging manager is hidden. These features are quite appro-
priate and reasonable. As described, the paging manager provides a useful
abstraction of memory for use by higher layers, namely, a set of information
containers which can hold pages. Because of storage limitations, there are
many more pages than PAGE CONTAINERs. Therefore, users of the paging manager
must multiplex the use of PAGE CONTAINERs. This is why PAGE CONTAINERs are
A/F objects. They capture the essence of how to manage a scarce, physical
resource, i.e. by multiplexing. PAGE CONTAINERs should not be C/D objects
because the paging manager would become more complicated and, perhaps, could
not even be implemented because of memory shortages.

The paging manager interface should not be expressed in terms of segments
because the demand paging abstraction operates completely independent of seg-
mentation. Therefore, it should not know about them. By forcing a segment
structure upon demand paging, the paging manager becomes more complex, must
deal with considerations which have little to do with its primary function,

and loses its generality.



Page 70 Chapter IV

The desire that demand paging be hidden from users is also supported by
the independence of demand paging. The internal details of multiplexing logi-
cal information containers among physical storage is exactly what the paging
manager is supposed to hide. How PAGE CONTAINERs are managed is not important
to users of the paging manager.

What is going on when a PAGE CONTAINER is allocated? An allocate opera-
tion is prompted by either of two higher layer events. First, some active
segment is being assigned a page table in primary memory and its pages need to
be accessible. In this case, the contents of the pages are stored in some
home, which are in secondary memory. The module performing the activation
then calls the paging manager, perhaps indirectly, to assign PAGE CONTAINERs
to the non-zero pages of the segment. Second, some page is created for an
active segment. Then the page creator needs an empty PAGE CONTAINER to hold
the zero page. This is accomplished by assigning a home for the page and
calling allocate with the zero_flag set. In section 2.2, a semi-null page was
described. In this model, a semi-null page corresponds to an allocated PAGE
CONTAINER whose zero_flag is set. Whether semi-null pages are actually stored
in their homes is an engineering detail. However, resource control must know
if the page is zero in any case.

Since there are a limited number of PAGE CONTAINERs available, an allo-
cate operation could fail because there are none which are free. 1In this
case, the paging manager should not automatically free one. First, the paging
manager does not have enough information about the organization of the system
to make an intelligent decision about which PAGE CONTAINER should be freed.

Second, even if it could decide, the paging manager would have much difficulty




Chapter 1V Page 71

communicating to higher layers which PAGE CONTAINER was freed and why. There
are two solutions to this problem. One is to provide enough PAGE CONTAINERs
so that the paging manager would never run out. An upper bound on the number
needed will be explained in chapter five, The che;‘sqlution.is to implement
a PAGE CONTAINER freer which could be invoked when an allocate fails. Its
operation would resemble the page removal part of demand paging. 1Its sophis-
tication would naturally depend on the frequency of its invocation.

A free operation must occur when the page table of an active segment is
being moved out of primary memory. Then, the pages of the segment must be
moth-balled in a stable state until the segment is needed again. Any zero
pages should be put in the semi-null state during the free; so that resource
control, the caller of the paging manager, .can put them in the null state.
Other pages must be placed in their homes for safe-keeping.

Tﬁe actual demand -paging algorithm is hidden inside of the read and write
operations, Details of the algorithm are. emitted. because they are covered
quite well by Huber [1976]. With only minor changes, his multiprocess page
control can implement the paging manager. For example, Huber discusses the
locking issues surrounding the global page table lock and proposes several .

alternatives.



Page 72 Chapter. IV:7

4.5 Extensions to the Paging Manager

In section 2.2, one of the topics discussed wase that the supervisor uses
several kinds of special sesgments for various purpeses. Most of these are
completely static in length so the supervisor didablés the quota mechanism on
them. In the context of this model, sucl segments are not subject to resource
control and can be factored out. Therefore, ‘it is sppropriate to meation that
such segments can be implemented directly on top of the paging manager. This
introduces two new type mamagers, which meanage SUPERWISOR "SEGMENTs and .the

SUPERVISOR ENVIROCNMENT, They support, in part, ‘the cosponent, map, program,

and environment dependencies of higher laysre.  The SUPSRVISOR  SEGMENT manager -

provides paged segments for the exclusive use of ‘the sapervisor. These seg- .
ments are quite differemt from tser segments ian -that they are not associated
wifﬁ'quota~cells and r:rcfj;:it aver, change lemgths.!' The SUPERVISOR ENVIRON-
MENT manager control# the ‘haming enviromment 'of processds executing in the
supervisor. There are two reasons for intrdduciug these new t:yp’enuiagérs.
The first is that the hardware, on which Multiés fs:isplemented, prefers to
execute in a segmentéd address space. The segments may’ ot may not be paged.-
Because of this limitation, the hardware cannot operate in a purely paged
manner. Second, paged segments of the type described can be extremely useful
to the supervisor. Without them, much of the supervisor would have>to perma-
nently reside in primary memory. This, of course, requires the system to
include a large primary memory to hold the supervisor. By placing much of the

supervisor in paged segments, more primary memory can be devoted to PAGE CON-




Chapter IV Page 73

TAINERs. How these two managers interact with resource control and segment

support will be discussed in chapter five.



Page 74 Chapter 1V

4.6 Further Thoughts

A somewhat hidden issue in this model is the interplay between software
and hardware. The traditional view is that the hardware is more primitive
than the software. However, so far in the model, mo mention has been made of
the hardware. A very reasonable implementation might be constructed as fol-
lows: The read operatiom, say, is always invoked in hardware. If the data
array is in primary memory, the value of the proper word will be returned
without ever resorting to software. If the data array is not in primary
memory, the hardware will detect this and tramsfer {fault) to software at the
same layer. The software can then copy the data array into primary memory and
restart the hardware read. The agent, hardware or software, which performs
the operations is immaterial to the type manager amd layering comstructs.

This theme will reappear in chapter five.




Chapter IV Page 75

4.7 Summary

As seen in chapter two, the principal adverse impact of excess complexity
on page control was that the same routine performed both demand paging and the
creation and deletion of pages. The model outlined here shows how to perfora
only the demand paging function. This allows the more complicated create and

delete operations to fit into a context more suited to their complex natures.



Page 76 Chapter 1V



Chapter V Page 77
Chapter Five
Resource Control

Resource control in a virtual memory manager is:very tricky. On one
hand, page creation and deletion is a frequent occurrence. and must be handled
efficiently. On the other hand, maintaining the entire file system hierarchy
of directories and quota cells in a readily accesaible state is simply infea-
sible because of sheer numbers. Therefore, to perform resource control, given
the policy constraints, a subset of the file system hierarchy (those directo-
ries and quota cells currently receiving the most usage) should be accessible,
This chapter will model the desired behavior of the resource comtrol part of
virtual memory management using two type managers.

PAGEMENTS are a new kind of object, in the sense that they do not fit
immediately into the jargon and structure of Multics. In structure, PAGEMENTs
closely resemble segments. They are, in essence, active segments with page
tables. In chapter six, active segments without page tables will be dis-
cussed. Since our task is to separate the functions of the virtual memory
manager, PAGEMENTs may seem out of place in this layer of the model. They are
needed here because of constraints placed on the creation of pages. A page
may be created and added to a segment only if three conditions are met: there
is quota in the proper quota cell against which the segment is charged; there
is space available on the proper physical volume to hold the‘contents of the

page, and there is room in the segment for a new page. Because of the third



Page 78 Chapter V

condition, which is imposed by the resource cemtrol policy, resource control
must be aware of the structure of segments.

QUOTA CELLs arebimtroduced as a formal type to hold those elements of the
quota cell tree which are curremtly in use. The remainder of the tree is
maintained by the file system. QUOTA CELLs have a similar relationship to
quota cells as PAGE CONTAINERs have to pages. To pesmit reuge, both. PAGEMENTs
and QUOTA CELLs are A/F objects.

The idea of partitiomimg memory objects imto active and inactive elements
because of constraints revurs often. One exampie is plaging some pages in
primary memory while the test are in secondary memory. The constraint is the
size of primary memory. Amether example is active amd inactive segments (see

chapter two). The coanstrsint, here, is the anount of wirtual memory which can

be devoted to AST entries. Janseon [1976] discusses the nature and advantages .

of this idea, as applie& to obfects and type mimagers.




Chapter V Page 79
5.1 QUOTA CELLs’

A QUOTA CELL forms the cost center for the storageé accounting system. ..
For accounting purposes, QUOTA CELLs help maintain records of how much storage-
was used over some period of time by'a"setvof’segnents. «Forfrasource control,:
the unit of account is one page, but pages are grouped together into cost cea- °
ters at the QUOTA CELL layer. At this layer, pages are aggregated into
PAGEMENTs and entire PAGEMENTs are charged ageinst'a single QUOTA CELL. - This
corresponds to the Multics policy that sets of segments are charged against a
single quota cell. Although it is possible to: permit:the pages of a PAGEMENT
to be charged against different QUOTA CELLs, no meaningful -use for such gener~
ality has yet been found.

QUOTA CELLs are A/F objects, where the number of QUOTA .CELLs available is -
limited by the amount of memory given to the: QUOTA CELL manager for storage of
components. As with PAGE CONTAINERs, QUOTA CELLa are A/ F pbjects because a
single QUOTA CELL can be reused indefinitely to hold different quota cells, as

the set of most-used quota cells changes.
5.1.1 QUOTA CELL Attributes

QUOTA CELLs have four attributes: name, frame quota, frames used,. and
time~-frame product. The name of a QUOTA CELL serves to-distinguish it from
other QUOTA CELLs. The frames used attribute is a non-negative integer which
represents the amount of storage (number of frameés) currently allocated to

segments and PAGEMENTs which are charged against chis QUOTA CELL. The frame



Page 80 Chapter V

quota is a non-negative integer which acts as an upper bound on frames used;
the value of frames used may not exceed the value of frame quota. The frame
quota and frames used attributes are primarily used for resource control. The
time~frame product is used for accounting purposes, The attribute is auto-
matically maintained by the QUOTA CELL manager and is the time integral of the
values of frames used simce the value of the time-frame product was last reset
to zero.

It must be stressed that the initial conditions, when a QUOTA CELL is
allocated, are very important. This layer of the virtual memory manager is
not sophisticated enough to handle resource control all alone. This layer
provides a sort of cache for quota cells already existing in the file system
hierarchy [Janson, 1976}. The values in a QUOTA CELL simply reflect the val-
ues of the file system quota cell which it holds. These values are based on
the status of all segments in the file system and not just thevsubset of
active segments. This is why a QUOTA CELL must hold the quota and frames used

for segments which are not even active.

5.1.2 QUOTA CELL Operations

Six operations can be performed on QUOTA CELLs. The first is allocate
(quota, used, time-frame product, name). This selects one QUOTA CELL from the
unused pool, sets the values of its frame quota, frames used, and time-frame
product attributes to the values of quota, used, and time-frame product,
respectively, and returns the name of the QUOTA CELL. This operation will

fail if there are no unused QUOTA CELLs available for allocation.




Chapter V Page 81

Conversely, QUOTA CELLs may be freed. The free operation can be written

as free (name, quota, used, time-frame product). This returns the specified

QUOTA CELL to the unused pool and indicates the final values of its frame
quota, frames used, and time-frame product attributes. If the name argument
does not refer to an allocated QUOTA CELL, the operation will fail. It is the
responsibility of the file system to merge the output values into the file
system copy of the quota cell.

The frames used attribute of a QUOTA CELL is the sum of the frames used
of all segments and PAGEMENTs which are charged against it. Since segments
and PAGEMENTs can grow and shrink in size, an operation is needed to change
the value of frames used. This operation is change used (name, quantity).

The change used operation will fail if name does not refer to an allocated
QUOTA CELL or if the result of changing the value of frames used by the value
of quantity would be less than zero or greater than frame quota. Most of the
changes in frames used occur because of actions by the PAGEMENT manager. How-
ever, if an inactive segment is deleted or truncated (shortened), the attri-
butes of the proper quota cell or QUOTA CELL must be updated.

Most of the time, the storage used by segments is not being charged
against a QUOTA CELL. Instead, the storage charges are accumulated by the
file system at a higher, more static layer. Periodically, the accounting sys-
tem executes a billing routine which counts the values of the time-frame prod-
ucts, resets them, and prints bills for users. During this process, some seg-
ments will be charging against QUOTA CELLs. Clearly, the accounting system
must be able to extract these charges from both quota cells and QUOTA CELLs.

This is done by providing the operation reset_time-frame product (name,



Page 82 Chapter. .V

product) . This retrieves the current value of the preper time~frame product
attribute and then resets ‘the value to zero..: Sterege cbarges will start to
accumulate again at that time-and continue until the product is again reset.:
The operation will fail If the name argument does mot xeprasent an allocated
QUOTA CELL.

The fifth QUOTA CBLL operation allows a user to ‘transfer frame. quota from
one QUOTA CELL to another. The operation is move gquota -(source name,
target_name, guota_quantity). .The valme of queta dquantity must. be a non-.
negative integer. This operatien will decrease the Freme gquota of the ..
source name QUOTA CELL by the smeunt given in yuots peaptity and increase the -
frame quota of the ‘target wame QUOTA CELL by the sswme amocumt. - The. result of
this operation must leawe the mource name and target; hame. HOTA CELLs conaiat-
ent (i.e. 0 < frames usef X Erame quota). :ﬁ\mapemtnn..msllr.;fau; £
quota quantity is negative, 1f the result wonld deawe either QUOTA CELL incon~
sistent, or if either ssurce neme or tavget: e iues not indicate an allo-
cated QUOTA CELL. m&twm:ﬁs called by the segment support layer °
described in chapter =ix.

The final QUOTA CEBUlL operstion. is a bit complivated. It is
move_quota_used (source mame, ‘target name, guota qéantity, used quantity). In
function, it is quite similar :to the move :quota aperation, -except that it also .
can transfer amounts of frames used from - the souvce name QUOTA :CELL to the -
target_name QUOTA CELL. As irefore, source nawe ianil -target name must ~1‘-e;-£'er' to
allocated QUOTA CBilLs ard wuota quantity and amsed guantity must be non- .
negative integers. If completion of the aperation would leave .any QUOTA GELL.

inconsistent; the operation will fail. This operation is designed to help:




Chapter V Page 83

change the quota cell against which a segment or PAGEMENT is, charged by per-
forming the necessary transfer‘of.fnamea used. For a change in the QUOTA CELL
attribute of a PAGEMENT,,thisvo;etation‘1s~eallqd,by the change QUOTA_CELL
‘operation of the PAGEMENT manager (see Bectienfs,ﬂfzim;qihisggperatien can
also be called by the segment: support layer of chapter six...

Why is this operation so complicated? On.the suxface, ittwguld seem that
this operation could be handled by using the simpler move quota and
change used operations. Consider Figure V-l.. . Segmemt DATA.{is currently being
charged against QUOTA CELL 1. The user wents to have DATA charge against

QUOTA CELL 2. No sequence of move quota and: change used operations will

QUOTA CELL 1
quota = 15

QUOTA CELL 2

quota = 5

frames used = 9 frames used = 0

- segment DATA
QUOTA CEL], name = QUOTA CELL 1.
length = 9

Figure V-1 Moving Quota with'Segments



Page 84 Chapter V

effect the desired change without either forcing ome of the QUOTA CELLs to be
inconsistent or using a thirdé QUOTA CELL as an intermediate. .On the other
hand, the operation can be performed by move quots: used (QUOTA CELL 1, QUOTA
CELL 2, 9, 9) and change QUOTA CELL (DATA, QUOTA GELL 2) (see section:5.2.2).
The move_quota_used operation is so complicated because QUOTA CELLs are
only the bottom piece of the rescurce control mechanism. ‘The policies of
resource control are defimed on the quota cell tree in the file system hier-
archy. In order to implement the policies in the lower resource control
layer, some complicatiom is required. This operation seems the best way to
implement the policies and yet minimize complication. Alternatively, the’
functions performed by move_gquota_used could be handled exclusively at some
higher layer. This, houevet, wdﬁld force a potegtih;ly large number of seé-
ments and quota ceils to be deactivated to allqé thgﬂ??eratiog.q The(amount of
time involved to accomplish the deactivations and;£he potential delays forced

on many processes make such a mechanism unacceptible.
5.1.3 Dependencies in the QUWOTA CELL Manager

The paging manager i{s implemented at a lo& layer of the system to provide
PAGE CONTAINER objects for use by higher layer?. The QUOTA CELL manager uses
SUPERVISOR SEGMENTs for the storage of compone&ts, maps, and programs. SUPER-
VISOR SEGMENTs, in turn, are made up of PAGE GONTAINERS requested from the
paging manager. The QUOTA CELL manager must be given some amount of memory in
SUPERVISOR SEGMENTs at system initialiiétion but should rarely, if ever, need

more. Those rare occasions would be necessitated by a desire to improve per-




AR M S B R e R

Chapter V Page 85

formance, and should be handled by dynamic reconfiguration, .rather than allow
the QUOTA CELL manager to directly request more SUPERVISOR SEGMENTs. The
interpreter needs of the manager can be satisfied by the same low layer proc-
essor manager that takes care of the paging manager, Favirongment dependencies
must be met by a more sophisticated: type manager than the. one which serves the
paging manager. The reason for this is .simple; . the. QUOTA. CELL manager exe- -
cutes in a SUPERVISOR SEGMENTed environment, whereas.the paging manager.exe-=
cutes in an unpaged enviromment. The eavito_xpe_nt-; type manager needed is the

SUPERVISOR. ENVIRONMENT manager which was described briefly in chapter four.



Page 86 Chapter V
5.2 The PAGEMENT Manager

In Multics terms, PAGEMENTS represent active segments which are currently::
being referenced. They provide the 11lusion of . Large, linesax; variable~length .
arrays of words, rather than sets of fixed=lahgith PAGE CONTAINERs. PAGE CON-
TAINERs are allocated from the paging manager to- PAGEMENTs and are ordered
into a linear array. This array allows the comverston of a refereace to a
word in a PAGEMENT into & reference to a word #n a PNGE CONTAINER.

The PAGEMENT abstractfon is necessary #n the’ resourete control layer
because of three of the polfcy constraints in page creation: pages may be
‘created for a segment only if there is room in the segment for them, all pages
of a segment must reside permanently on the same phymiical volume, and all
pages of a segment must Be: charged against the same quota cell. Given simpler

policies, PAGEMENTs would not be needed in resource ¢control.

5.2.1 PAGEMENT Attribotes

PAGEMENTs are somewkst complex ocbjects and hawe twelve attributes. They
are: name, size, length, frames used, QUOTA CELL meme, used flag, modified
flag, physical volume, core count, page table, page table modified flag, and
data array. PAGEMENTs can be allocated only in the discrete sizes of 4, 16,
64, or 256. The size refers. to the maximum number of PAGE CONTAINERs that can
be elements of the PAGEMENT (i.e. the number of PIW's in the page table). If
a user wants to grow a PAGEMENT beyond this size, a new PAGEMENT must be allo-

cated. Frames used indicates the number of PAGE CONTAINERs which have been




Chapter V ‘ Page 87

allocated to the PAGEMENT. The length corresponds to segment length, dis-
cussed in chapter two.

The PAGE CONTAINERs used by PAGEMENTs are charged against .a QUOTA CELL.
The QUOTA CELL name attribute indicates against which QUOTA CELL .the PAGEMENT
is being charged. This attribute thus indicates which -QUOTA CELL s .frames
used attribute must be chariged when the PAGEMENT grows or-shrimks. As with:
PAGE CONTAINERs, the used and modified flags tell whether the PAGEMENT has.
been used or modified since the PAGEMENT was‘allocated;orwsince:the:flag'has '
last been tested. All of the pages fn a PAGEMENT must have homes on the same
physical volume. The physical volume attribute holds the name of that physi-
cal volume. If the PAGEMENT grows or shrinks, homes must:be allocated or
freed from that physical volume. The core count indicates the number of pages
of the segment which are curremtly in primary memory. It is used by the seg-
ment deactivation algorithm. It is calculated: by countihg the number of PAGE
CONTAINERs whose core flags are set.-

A page table is essentially the map of a’'PAGEMENT. - It indicates which
PAGE CONTAINERs hold the information in the PAGEMENT s data array. Entries im
the page table may either be page homes or special aull valwes. A null value.
indicates that the corresponding information in the data array is all zeroes .
and, thus, needs no PAGE CONTAINER to store it. The page table modified flag
indicates whether the page table attribute has changed. since the PAGEMENT was
allocated or since the flag was last tested. The last attribute, the data
array, holds information. It appears as a linear array-of words, any of which

may be referenced whenever the PAGEMENT is allocated.



Page 88 Chapter V

The page table is cemtral to the PAGEMENT concept. Lt prevides enough
structure to groups of PAGE CONTAINERs to support a variety of sophisticated
resource control policies.. It aleo fits smoethbly iate.the exiating Multics
view of a segment. Finally, sepexating page.tables from gctiyve. segments is an
excellent way to minimize fumetional entanglement im bath resource control and
segment support. In resource.castrol, We wish to capture a minimal segment
structure on which to builkd. In segment  3uppart, a8 we shall see in cbepter
six, several functiona fnteract. in cemplex wsyw. By previding page tables in .

resource control, the cemplemity of segment swpport cem be reduced.
5.2.2 PAGEMENT Operations

Since a PAGEMENT is & more complicated chject ghen a ?AQE»_;QMAIKER,. -
PAGEMENT operations are alse moze complicated. The; firss ie.the allocate
operation. It can be written as allocate (size; physical velume, page_tabie,
quota cell, pame). ‘' The size sxguoent tells whigh of the four different sizes
of PAGEMENTs should: be alleceted.  There are four.uswied pools, one for each
size, and the operatiem wmill sslect a PAGEMENT dfl'N&MaW‘?Pxiﬁm pool. The
other three input argumests initialize tbe valuss of some of the attributes.
The values of the othexr attributes can be derived from them. , For example, the
starting values of the three flag attributes ie !'felee"; . the values of length
and frames used cam be determimed from the page table, The ipformation in the
data array is defimed .to: be the information stoved in the respective homes:

listed in the page table. Thim operation will fakl if there are no free




Chapter V -7~ —~ Page 89

PAGEMENTs of the proper size. In Janson’s software cache structure, the allo-
cate operation activates or encaches a segment data abatraction as a PAGEMENT. -
Conversely, the operation free (name, phyalcal volume, page table,

quota cell, used flag, modified flag) frees the PAGEMENT specified by name.

The final values of the physical volume, page table, QUOTA CELL name, used
flag, and modified flag attributes are returned by .the aperation. Naturally,
the operation will fail if name does not refer to an allocated PAGEMENT. This
operation corresponds to deactivating or decaching a segment data abstraction
in Janson’s structure.

It is important to streas, here, that the attributes of a PAGEMENT, as
visible to a PAGEMENT user, are different from their -internal representations.
In this case, the visible elements of a page .table are page homes or null val-
uves. Internally, however, the elements are PAGE CONTAINER names or null val-
ues. In other words, within the PAGEMENT manager, page homes are represented
as PAGE CONTAINER names. The homes are passed on to the paging manager.
Similarly, inside the paging manager, semi~null pages are hidden. When a
PAGEMENT is allocated, the PAGEMENT manager, in turn, allocates PAGE CONTAIN-
ERs for those pages which have .hemes. When the PAGEMENT is freed, the PAGE
CONTAINERS are also freed and the list of homes’'returned: to the caller.

These transformations are important because the different states allow a
segment to be represented with different dynamic cspabilities. .In its most
static state, a segment resides only in secondary memory, and its page table
13 in its VTOCE, which is also in secondary memorxry. . Almost noéhing can change
a segment in this state, but if. the system,crashes.athg segment is very likely

to survive the crash. In chapter six, the next state will be presented. The




Page 90 Chapter V

third state occurs when the pages of the segment are in primary or secondary
memory and the page table is in primary memory. This state is represented by
PAGEMENTs. Non-null pages are held in PAGE CONTAINERs and are very dynamic.
They can move from secondary memory to primary memory and back again quickly.
Null pages have no homes and, if referenced, must be created. In the third
state, a segment is more likely to be damaged by a system crash. By dividing
the dynamics of a segment into states, different, useful information contain-
ers can be provided which abstract the important features in different layers.
Also, low level implementation details can be hidden from higher layers. The
file system does not need to know and cannot be helped by knowing the mechan-
ics of moving PAGE CONTAINERs from secondary memory to primary memory.

The most frequent PAGEMENT operations are read {name, offset, value) and
write (name, offset, value). Both operations translate the name and offset
into a PAGE CONTAINER name and offset and call on the paging manager to obtain
or modify the value. If the page referenced by offset is a null page, the
read operation will automatically return the value zero without calling the
paging manager. The write operation, in this case, will allocate a PAGE CON-
TAINER. This is done by allocating a home on the proper physical volume,
incrementing the frames used attribute of the QUOTA CELL specified in the
QUOTA CELL name attribute of the PAGEMENT, calling the allocate operation of
the paging manager, changing the frames used, page table, and page table modi-
fied attributes of the PAGEMENT, and, if necessary, changing the length of the
PAGEMENT. Then the write is completed. If no home can be allocated, the
write will fail. Performing either operation will cause the used flag attri-

bute to be set; performing a write will set the modified flag. Either opera-




Chapter V Page 91

tion will fail if name does not refer to an allocated PAGEMENT or if the off-
set is not within the data array of the PAGEMENT.

The write operation contains the essence of the resource control mecha-
nism. When triggered by a quota page fault (see section 2.2), the write
operation automatically creates pages. Other layers become involved only if,
for some reason, a page cannot be created. This is an elegant method for
resource control. Unless a page cannot be created, resource control operates
quietly and smoothly, but in a well-defined manner.

Three predicate operations exist to return the values of the flag attri-
butes. They are: usedp (name, flag), modifiedp (name, flag), and
page table modifiedp (name, flag). If name is the name of an allocated
PAGEMENT, the operations will indicate the values of the used flag, the modi-
fied flag, or the page table modified flag, respectively. Otherwise, the
operations will fail. If the flag is set, the operation will returan "true"

and clear the flag.

As an aid to reliability, the get page table (name, physical volume,

page table) operation is provided. If the name argument represents an allo-
cated PAGEMENT, the operation will return the values of the physical volume
and page table (list of homes) attributes. This can be used, for example, as
follows: Periodically, a higher layer manager can poll the PAGEMENT manager
to see if the page tables of any of the PAGEMENTs have changed. If any page
tables have changed, the higher layer manager can extract them and store them
in a safer and more reliable place (e.g. in their VTOCE’s). The values of the

length and frames used attributes can be inferred from the page table.



Page 92 Chapter V

Two operations allow for the manipulation of the QUOTA CELL name attri-
bute., They are get_QUOTA;pELL (name, cell name) and change QUOTA CELL (name,
new_cell name). The first operation simply returns the current value of the
QUOTA CELL name attribute. The second changes. the attribute’s value, for rea-
sons discussed in section one of this chapter. As usual, these operations
will fail if name does not refer to an allocated PAGEMENT. To preserve the
consistency of QUOTA CELLs, the change QUOTA_CELL operation calls the
move quota_used operation of the QUOTA CELL manager (see section 5.1.2). The
call is made to transfer the proper amount of frames used from the old QUOTA
CELL to the new QUOTA CELL. Note that during a chamge QUOTA CELL operation,
the PAGEMENT manager must inhibit any operation on the specified PAGEMENT
which would change its length. Otherwise, the value of frames used might be
inaccurate.

For the purposes of this model, change QUOTA CELL will always call
move quota used with the values of quota_ quantity and used_quantity set to the
value of frames used of the PAGEMENT whose attribute is being changed. 1In any
case, the value of used quantity must equal frames used. However, if the tar-
get QUOTA CELL has sufficient unused quota, the value of quota_quantity could
be less. Operations could be intrdduced here which would take advantage of
the unused quota.

For the convenience of the segment deactivation algorithm, the
get core count (name, 52235) operation is provided. Given the name of an
allocated PAGEMENT, it will examine the values of the core flag attributes of
component PAGE CONTAINERs. The operation will return the number of core flags

which are set.



Chapter V Page 93

The truncate (name, length) operation provides a relatively efficient
method of discarding unnecessary pages. If the length of the PAGEMENT is
greater than the value of the length argument, the PAGEMENT will be shortened
by freeing PAGE CONTAINERs off of the end of the PAGEMENT. 1If the length is
less than or equal to the value of the length argument, no change will occur.
This operation is equivalent to writing zeroes into the relevant PAGE CONTAIN-
ERs, but is less time-consuming.

The final PAGEMENT operation is also motivated by efficiency considera-
tions. The operation is move_contents (name, size, new name). The value of
the size argument must be greater than the current value of the size attri-
bute. This operation says to allocate a larger PAGEMENT, of the size speci-
fied, move the contents of the PAGEMENT given by name into the new one, free
the old PAGEMENT, and return the name of the new one. This is equivalent to
freeing the old PAGEMENT and allocating a larger one for the data array. This
operation is faster than freeing and reallocating because the component PAGE
CONTAINERs do not have to be freed.

Move contents is an optimization towards quickly growing segments. The
corresponding operation in the current system has proven effective because
segments grow frequently, A segment grows because some process references a
page outside of the PAGEMENT length. Usually, the page can be created immedi-
ately and the reference restarted. Sometimes, the page is also outside of the
PAGEMENT size, which requires a larger PAGEMENT. The move contents operation

speeds up the allocation of a larger PAGEMENT for this purpose.



Page 94 Chapter V.. -

5.2.3 Dependencies in ithe PACGEMENT Manager

The dependencies of ‘the PAGEMENT manager .are mostly ‘the same .as the
dependencies of the QUOTA JOBLL -manager. ”-.mmimusvare used for the’
storage of components, wapse, and progrems; the low Layer proCessor manager
provides processor ‘resources; and the SUPERVISOR ‘ENVERONMENT manager struc-
tures the naming envirommeat. The difference is -that:the PAGEMENT manager
also depends on ‘tire QUOTA CELL manager through the chmage used -and
move quota_used operations.

Because of hardware restrictions, the -page table of ‘a PAGEMENY must be in-
primary memory. ‘Therefore, page tables are spt i#n wn ‘unpaged segment, like '
those used to implement the paging manager. -Ali1 otther PAGEMENT components can -

be stored in SUPERVISOR SEGMENTs.




Chapter V ' Page 95
5.3 How PAGEMENTs and QUOTA CELLs Fit Together..

The PAGEMENT .and. QUOTA CELL managers must cooperate closely to provide.
the 'middle layer of the virtual memory manager. Although-each supports one .
type, the abstraction desired 1is produced by a fusien:of the: two.:

Two obvious connections between the menagers are that the PAGEMENT man-
ager calls the change used and novg_que;a_pszdeoggra;ions;of-the‘QUOTA CELL
manager. These calls constitute dependencies.of the PAGEMENT manager on the
QUOTA CELL manager.

A more important connection has to do with iaitisl conditions. If the
managers are given correct data on which to: operate, one can be:convinced. that
the correctness of the data will be preserved. ;Ifff50ﬂeisr, a: higher layer,
e.g. the segment support, passes faulty or maliciously contrived data, the
results at the higher layer are unpredictable. The burdeam: of consistency,

here, rests on the higher layer manager.



Page 96 Chapter V
5.4 Resource Control and PAGE CONTAINERS

Two final items must be diseussed. Both: the PAGEMENT manager and the
SUPERVISOR SEGMENT mangger wse PAGE CONTAINERe to implament differesmt kinds of
segments: the PACEMENT mensger uses them for flle! systém: segments available
to users, and the SUPERVISOR SEGMENT manager usee them for SUPERVISOR: SEG--
MENTs. The proper way to wiew this is that: PAGE CONNAIMERs are partitioned
between the two managers. How do we avodid: comfusion about which PAGE CON-
TAINER is allocated for which manager? One way is to rely on a.careful imple-.
mentation so that neither manager tries to. inadvertaatly or maliciously use
the wrong PAGE CONTAINER. This solution will- work, but places a larger burden
on certification procedures to- guarantee correetnessi - A more sophisticated
solution would: inwvolve tagging each »&1lmwr~‘fﬂﬁ~mmﬂf with the name of
the manager for which 1t s allacated. Them, the paging manager could check -
each operation to make sure that only the proper mmmeger: s performing it. In
Multics, this solution can only prevent inadvertent use of the wrong PAGE CON-
TAINER because there are no enforced protection barriers in this layer of the
system. Any malicious pregram can subvert such consistency checks. In a more
advanced architecture, perhaps using domains, a checking mechanism could pre-
vent all incorrect uses.

A perceptive reader may have noticed that the model has departed from the
Multics system because amother layer of indirection has been added to the
addressing mechanism. Ia Multics, references go directly from the SDW to the
PIW to the proper word. In the model, they go from the SDW to the PIW to the

paging manager to the word. The difference is that in Multics, the physical




Chapter V Page 97

location of the page is kept in the PIW. In the model, the,physical location
is hidden within the paging menager. Thig was done to allow the disentangle-
ment of the resource control and demand. pagipg.:fyactions,, By introducing an
extra translation layer, we can see much mg;g}gleggigfghq;,ig;going on inside.
of the virtual memory. manager..

In Multics, when @ segment is activated, a page table is allocated and a
set of PAGE CONTAINERs is allocated at. the samg.time,..However, the size of
the set depends on how many PTW’s in the page table are null. Therefore, the
set of PAGE CONTAINERs on which demand paging may operate can change arbi-
trarily and without any explicit notification of the paging manager; To han-
dle such arbitrary changes, the Multics page control becomes quite complicated
because it must frequently check whether its set of PAGE CONTAINERs has been
changed. Using the model, we can see that the Multics PIW serves two differ-
ent purposes. The different purposes are masked because much of the resource
control function is performed by page control. In the model, the difference
becomes clear. For resource control purposes, the PIW represents the name of
a PAGE CONTAINER or a null page. From this, resource control can determine
the values of frames used for PAGEMENTs and QUOTA CELLs. For demand paging,
the PTW holds the physical location of the page so that demand paging can
determine where pages are. Hopefully, a future system designer will realize
that in the virtual memory manager, an engineering decision must Be made for
either addressing efficiency or clarity of structure. The inherent complexity
of the system is strongly affected by his choice. The dual function of the
PTW again points out the independence of the type manager approach from the

boundary between hardware and software.



Page 98 Chapter V

In section 4.4, discussion touched on the issue of how many PAGE CONTAIN-
ERs there should be. Given the fact that the PAGBMERT manager can never ‘allo-
cate more PAGE CONTAINERs than It has entries in page tdables, an upper bound
on the number of PAGE CONTAINERs ‘needed for the system can be computed. ' That
upper bound is the number of entries in page tables pla8 a number dependent on
SUPERVISOR SEGMENTs. Since the storage requitements-of SUPERVISOR SEGMENTs
are quite static, one can determine the riumber’ of PAGE CONTAINERs needed for

them by counting.




Chapter V : Page 99

5.5 Summary

To support sophisticated policies, the resource control layer of the vir-
tual memory manager cannot operate in a vacuum., It must embody enough knowl-
edge about virtual memory to implement the policies, but should avoid exces-
sive complexity. For Multics, we have designed the resource control layer to
be the cache of a software cache structure. Thus, we can maintain the most-
needed elements of the file system hierarchy in a readily accessible state,
and keep track of required information in a natural form. The internal con-
sistency of resource control will take care of itself if no higher layer
attempts to subvert it. However, the consistency of the system as a whole
depends on higher layers feeding the proper information to resource control at

the proper times.



Page 100 Chapter V



Chapter VI Page 101 -

Chapter Six
SegmentuSuppOrt SRR

The segment support function of the virtusl meémory manager groups pages

together to provide the concept of active déﬁments.*%!ﬁdawbe of the Multics

resource control policies, some of this work 18 already accomplished through -

PAGEMENTs. However, PAGEMENTS are not active segments, ‘g0 further -extension
is necessary.

In contrast to chapters four and five, we will not attempt.to model seg-
ment support. The reason is that a'model would comcentrate on the interface
between segment support and higher layers. <Since the:higher layers have not
been analyzed and disseeted to the same degree as the virtusl memory manager,

a presentation of the interface would not reveal much: about the proper work- -

ings of segment support. Also, the reader would get bogged down in technical

details for which we have not presented the proper .context.: Instead, this -
chapter will be a general discussion of active segments and how:to supervise

the resource control layer.



Page 102 Chapter VI

6.1 Active Segments

Active segments are best thought of as an encached form of file system
segments. They are the first step in allowing words of memory to be refer-
enced. Because there can exist a very large number of segments in the file
system, it would not be feasible to maintain a single, unified data base large
enough to keep track of them all. In addition, since so much would depend on
the correctness of such a data base, one crash could irreparably damage the
system. Therefore, necessary information on segments is distributed among
several fragmented data bases, each of which is manageably small and rela-
tively safe from the effects of a crash. When a segment is activated, this
information is copied inta the AST. The information is’not deleted from the
other data bases, so, in the event of a crash, the system can usually recover
without the loss of any information,

In the current system, PAGEMENTS do not exist, Their function is sub-
sumed by active segments. Therefore, it is not immediately clear how to
relate PAGEMENTs with active segments. The first order of business in this
section is to discuss the nature of the information in the AST. Then we shall
see how the information can be divided among PAGEMENTs, QUOTA CELLs, and
active segments. Finally, we will discuss why, independent of the resource
control policies, the PAGEMENT concept is valid, and simplifies the task of

segment support.



Chapter VI ‘ Page 103

6.1.1 Information in the AST

In each ASTE, the information contained consgists oﬁ five ;ypes. The
first has to do with the internal management of,the,AST:(thread pointers,
allocated flags, and the like). This information depends only on specific
management strategies and need not concern us here. The second kind of infor-
mation determines the segment’s context in the file aystem. Included in this
category are: a pointer to the ASTE of the segment’s jmmediate parent (remem-
ber, all parent directories of an active segment are active); a chain pointer
to an active brother’s ASTE; a pointer to theiAleuof a spn,Vif any son is
active; and an indication whether the ASTE represents a simple segment, a
quota directory, or an intermedia;e directory. Thus, the,gelative position of
the segment in the hierarchy is maintained. This information is used to help
direct many operations of higher layers. For examplg,,itkqanvbe used when
moving quota from a directory to its son. The operation originates from a
call to the supervisor by a user. Using this information, the fields of the
proper ASTE’s can be modified.

The third kind of information is the quota cell itself. If a quota
directory is active, its quota cell is kept in 1its ASTE, This is used to
implement the resource control policies and accumulate storage charges.
Unfortunately, the space for a quota cell exists in every ASTE, to simplify
AST management. Thus, since few ASTE s represent quota directories, most of
this space is wasted.

Fourth, specific information about the segment is kept. This includes

the page table, the various length parameters, used and modified flags, and




Page 104 Chapter VI

the number of pages of the segment which are in primary memory. As described
in chapters two and five, this is used for address translation, resource con-
trol, and demand paging. This is precisely the information which we have
placed inside of PAGEMENTs and PAGE CONTAINERs.

The last kind of information addresses the problem that a segment may
have a different segment number in different processes (see section 2.2).
When a segment is deactivated, the segment fault flag must be set in all SDW’s
which are connected to the segment (i.e. all SDW’'s must be disconnected). To
do this efficiently, the system needs a list of the SDW's connected to each

active segment. The list is maintained by the AST manager (segment control).

6.1.2 Splitting Up the AST

The AST is the primary data base for the virtual memory manager. The
information which it contains is used for all of the virtual memory functions
which we have described. However, we have carefully tried to disentangle the
functions so that they are clearer and easier to understand. If this clarity
could not be extended to the AST, our model would be suspect. Fortunately,
this is not the case. The information can be neatly divided. The third kind
of information becomes the QUOTA CELL. A QUOTA CELL is allocated whenever a
quota directory is activated. Conversely, a QUOTA CELL is freed whenever a
quota directory is deactivated. This may seem to be.parallel to the current
system., It is, in the important sense that the QUOTA CELL is available when
the directory is active. However, this scheme has the advantages that it fits

smoothly into the model and it does not waste as much space in unused QUOTA




Chapter VI Page 105

CELLs. Further, by providing separate data bases for resourée control and
segment support, we can feel confident that the two fupctions do not interfere
with each other or permit communication through some data base.

The fourth kind of information becomes PAGEMENIs and PAGE CONTAINERs. A
PAGEMENT is allocated whenever a segment is activated. . However, a PAGEMENT
may be freed before the segment is deactivated. This can be used, for exam-—
ple, to allow intermediate directories to be active, yet not tie up valuable
page table resources, This makes PAGEMENTsS more usable becauge the process of
freeing one/does not require the deactivation of a segment.

The remainder of the information stays within the AST. The first kind
obviously belongs there because it is concerned with AST management. The
fifth kind must stay in the AST because segments may hefgisconnegted for sev-
eral reasons, only one of which is for degctivatignJ(sgq~section 2.2). The
second kind shows what the real nature of sggméqg sypport is, Segment support
directs the operation of the virtual memory manager. Within it is the infor-
mation needed to accurately decipher supervisor and user commands which are
necessary for operation of the system. In certain respects, the segment sup-
port layer acts like a traffic cop: Operations may be received at any time.
Segment support must coordinate the execution of the operatioms to maintain
the consistency of the system. This may seem unusual since we have already
stated that the role of segment support is to previde support for segments.

In fact, the two functions are the same. The only difference is in perspec-
tive. Segment support is like a traffic cop as seen by lower layers. Higher
layers need know nothing of this. They only see that segment support performs

many operations related to virtual memory.




Page 106 Chapter VI:

6.1.3 Active Segments -antl PACEMENTs

We have stated that PAUBMINTs ure inclulled 4w Whe resource control layer
because of the policies Involvell. This, however, is mot ‘the ‘reason for thediy
existence. ‘PAGEMENTs occupy un :important place ‘intépendent of the resource -
control policies, although the policies inflvence #hetr ‘Structure. To operate
properly, the virtual memory wwwager requires Sifferent ‘kinds ‘of information
vhich have different ltfet'twes. FPAGE CONTATINNRY Wwwve “theé . shortést lifetimes.

#d.. ‘At the other emd of

One is needed only ss lowg s ‘a page 1s betog ‘refer
the spectrum, active segments ‘have moch Tongér Lifetdses; They sre needed to ' -

make all pages of Sowe wegwents accessible. They slwo hold difectories vhich

are parents of other ‘actiwe ‘segments. A ‘particalar RYYE ‘may only be dfstantly-

related to any segment ‘betng wefersnced. In betwsen, ‘there 1s a heed for some ﬂ
information contairer ‘wvo Mold ‘stwgle ‘segmente. ‘The cotitaiter should alldw an -
entire segment to be referewced, but does ot med Bwe idbarchy context of an-
ASTE. ' That container s ‘the 'PACFMENT. 1f, .rs ‘tn the ‘cutrefit ‘aystem, this
information container s ‘tumed 4ith ‘the AST, spate ¥s-whsted, because ‘the AST
must have entries For segments mnot béing refersnced: "If) itnstesd, PAGEMENTs -
and active segments &re ';npu-ﬁud; ‘the ‘different funttions that they help
implement become clesrer. ‘Thve ‘PAGRMENT mansger 4s cencerned with ordering
pages into segments .ant &llowing them to be referfenced. Active segmefitd are :

used for interpretimg vperstions actording to-the file system hierarchy.




Chapter VI Page 107

6.2 Functions of Segment Support

Segment support is entrusted with the responsibility of maintaining the
consistency of the virtual memory manager. By this we mean that segment sup-.
port must supply resource control with the correct data and must retura the
proper information to the f;le system. QUOTA CELLs and PAGEMENTs are allo-
cated and freed at the exclusive direction of segment support. The caveats
noted in chapter five should therefore be applied. to. segment support.

Several specific.opérations,‘to which previous. chapters have alluded,
occur within the domain of segment support. First, segment support must allo~
cate and free PAGEMENTs. One way to do this would be to have available as
many PAGEMENTs as there are ASTE’s and~tg.equgta,gégment,activatiop with
PAGEMENT -allocation and segment deactivation with the freeing of PAGEMENTs.
While conceptually simple, this scheme requirps_mganEAQEMENTg‘thatvwou%d,ngt
often be used. A better scheme involves fewer. PAGEMENTs. A PAGEMENT would be
allocated whenever a segment werg act1vatedﬁqr,$hen anvaétive,segment, which
does not correspond to a PAGEMENT, were referenced by a user. A PAGEMENT
would be freed if one were needed for some other allaocation or if a segment
which does correspond to a PAGEMENT were deactivated, Natupa}lx, when freeing
a PAGEMENT, segment support should try to free that one which has been least
recently used. Such a scheme parallels the.a%go:ithms,used_fo;_page replgce-
ment in primary memory and;for segment deactivation. ‘The parallel should not
be surprising, since it is a common one for the management of a scarce
resource.

A second operation is the allocationm and freeing of QUOTA CELLs. Again,

this could be simply accomplished by having as many QUOTA CELLs as ASTE’s. Of




Page 108 Chapter VI

course, this, too, wastes space. A recent survey of the MIT Multics system
shows that there are about 500 guota directories, as compared with about 1100
ASTE’s. A someswhat better scheme, ‘then, would neet only as many QUOTA CELLs
as there are quota directortes. This would ‘save wpece,’ but what would happen

if a user created more guota directories? A ‘#bre ‘ambitious algorithm would -

have even fewer QUOTA CPiis. If segment support needs to allocate a QUOTA - - -

CELL and there are none teft free, segnent support «ould deactivate a ‘quota
directory and its associated siubtree, thus ¥fresing s QUOTA CELL. The fre-
quency of forced deactivetioms of <quota direceories s strongly affected by
the total number of QUOTA CELLs ‘available, ®b the systiém should be tuned care-
fully to minimize it. One way for the systeés to tune itself would be to have
it monitor the forced deactivations of quota directeries. Tf they occurred -
too frequently, segmeuﬁ ‘support ‘could ask the WUOTK CELL mansger to perform a
dynamic reconfiguratiom to cbtatin space for mere QUOTA CELLs. 'This, of
course, would require Chat a new operation be added to the QUOTA CELL manager.

As part of AST mamagement, segment ‘Suppoft must provide ‘to higher layers

the facilities to actiwate or deactivate segmeénts and to add or remove entried = -

from the connected segmemt 1ist. Higher layerd cémtrol these operation
according to the rate at which segments are reféresced.

Segment support hendles bound ‘faults. As explatned in section 2.2, a
bound fault occurs if a wser tries to réference s page of a segment which is
outside of the bounds of the page table. If the page is within the segmeént’s
maximum length, segment support simply calls the move contents operation of
the PAGEMENT manager. Otherwise, ‘an-appropriate-eérro¥ message is.relayed to

the user.




e R

Chapter VI ' Page 109

Another situation which must be handled by segment support occurs if the
PAGEMENT manager tries to creaté a page and there is no space left on the
proper physical volume for another page home. The PAGEMENT manager informs
segment support of the problem. Segment support tries to relocate the segment
on another physical volume in the same logical volume, because of the relia~
bility constraint that all pages of a segment must have homes on the éame
physical volume. Segment support must try to find another physical volume and
move the segment to ift. 1If this cannot be done, the user must be informed
that he cannot further grow the se’gment.

The above operations usually occur as the result of a segment, bound, or
page fault. A different class of operations handled by segment support occur
because of user calls to the supervisor. It includes such operations as dele-
tion of segments, creation and deletion of quota cells, movement of quota
among quota cells, and changes to segment attributes. The principal action of
segment support is to interpret these operations according to the directory
hierarchy pointers in the AST and invoke the proper operations of the resource
control layer.

For example, suppose that a user wants to change the maximum length of a
segment to X. The maximum length is maintained and enforced by segment sup-
port, when the segment is active. However, segment support will also check
with the PAGEMENT manager, if the segment is associated with a PAGEMENT, to
make sure that the length of the segment is not aléeady greater than X. If it

is, the operation cannot be completed. i




Page 110 Chapter VI

6.3 Summary

Segment support is the guiding light of the virtual memory manager. Tt
must coordinate activities and maintain the context of active segments in the
file system. The operations for which it is responsible fall into two
classes: those arising from hardware faults during address translation, and
those resulting from user and supervisor software calls. The information cur-
rently in the AST can be neatly divided among the resource control and segment

support layers of our model.



Chapter VII Page 111
Chapter Seven
Conclusion

This thesis has attempted to model virtual memory management in a com-
puter system. As part of the modeling effort, the methodologies of type
extension and layers of abstraction were used extensively. Type extension and
layering have a broad applicability to computer systems. Several new lan-
guages use these ideas as a basis for the structuring of data. In this the-
sis, we have attempted to show their usefulness iﬁ;nperating.systems, The
resulting model and specification is, at least on paper, simpler and easier to
understand. In the future, we can look forward to hardware support for
objects. Therefore, it is important now to develop- the necessary tools to use
them for the construction of operating systems. :

The significance of this thesis is more than that of a simple paper
design. The system modeled is not a toy. Multics is a large, complex operat-
1ﬁg system sold commercially by Honeywell. The use of a real system is impor-
tant to demonstrate that the issues involved are not only academic. The basic
issue is simplicity. The task of proving the correctpess of a system, either
formally or informally, is much easier on a simplgtsgstem than on a complex
one. . Perhaps more important, an operating.syatem;ia_maintained by people.
Over time, the system evolves and the set of people who maintain it changes.
The maintainers must understand how and why the system works. Because of

this, a simpler system is easier to maintain than a complex system.




Page 112 ' Chapter VII

7.1‘ Results

Chapter two discussed some of the problems found in the current Multics
virtual memory manager. Although the details are quite specific to this
implementation, the general problem of funétional enta#glement is a common
phenomenon of large software prbjectb;f'ln%ehﬁp%tt three, we considered” tech~ =
niques which control complexity. The keys were modealar: and hierarchical
structures. Then, we argued how layering aad type extenwion can help achieve -
a modular hierarchy.

A specific model of demand paging and- resource control was presented in-
chapters four and five. Mg model ‘Is expressed in' terms of objects. The
point of the model 1s that ‘the underiying fenactionaliry oF the' virtual wemory
manager can be preserved, But can be implemented im a ‘dlmpler, wore structured
way. Although designed for Multicwj the model stractare is appltcable to any:
implementation of virtual membry because the basic prodblems: remain the same.

' In chapter six, we discussed vHe final layer of the Wodel, segment sup- -
port, in genetral terms. The reason for this more gemeral preswentation is that
there is functional entsuglement amotiy segment guppott and higher layers of
the supervisor. A simple wodel of Segment support cannot be desigred without -
a detailed analysis and redesign of the higheér layers, which was beyond the’
scope of this study. Ome of the important points in the thesis is the impact
of module dependencies on thé design of a system. The tderidrchy of modules in
any system is defined by those dependencies, ™ -

The structure of the final model ‘is given in figure VII-l. The circles

represent type managers and the arrows are dependencies. The horizontal lines




Chapter VII Page 113

Layer 3 ' Segment Support

PAGEMENT
Manager

Layer 2 QUOTA CELL Manager

Layer 1 Paging Manager

Figure VII-1 Final Structurelof the Model

show the layering. For clarity, dependemcies have been omitted on managers
such as the SUPERVISOR SEGMENT manager. Although some of the dependencies
have been omitted, the entire dependency graph can be drawn, and the graph
conforms to the layering. structure given in the figure. Note that in the
given structure, the QUOTA CELL manéger cannot be. placed in a separate layer,
because them there would be a dependency of the segment suﬁport layer on the

QUOTA CELL manager which would by-pass the PAGEMENT manager.




Page 114 Chapter VIL. °

7.2 Differences between Multics and the Model.

A new model or implementation can differ fvom an existing one in three
wayé. The first is that the external functiaaality of the new model or imple—vw
mentation is visibly different from thatfof the origﬂpa}m An experienced user
can notice the differences, so the ptoptiety of thﬁ functional changes must be
examined. Second, the internal attuctmre and iﬁctfhng cgnf be reatranged
without visible change. Such a differena‘ﬁwould beﬁbiaible only if the model

or inplementation were exanined 1n detaili Thitd; and most subtly, the new

model or implementation can rgp;eggn; azdiffg:epi perception of the functions

that need not force any physical structuéilwnﬁiifications, i.e. a logical

;
restructuring.

e

7.2.1 Visible Functioaql D;fferences

The model presented here departs: froas the visible! functionality of -
Multics in two ways. The First @ifference is that 'inithe model| reading a
null page will not inVoke the page ‘creation’ WeRdishisk’. - Thld' cbange 1s visible
to users through quota cells and throogh record 'guota overflow faults. Chap=iv:-
ter two discussed the intonsistencies of cremting-a page when reading. - The .
point 1s that a read should et modify the state of any iegaent or qeota celly
This change is not due ‘to any feattire of the model and’ 15 wot brigfnal hereyj 7'
it remedies a basic flaw in the design of Multics. This difference does
require a change to the hardware, but several acceptable hardware modifica-

tions are known. While philosophically important, this difference can be




Chapter VII Page 115

omitted from the model or from an implementation. A more detailed discussion
of the issues surrounding the reading of null pages is given by Stern [1976].
Second, the model modifies the external appéarance of intermediate direc-
tories. In Multics, a count of frames used is maintained for all directories,
whether or not they are quota directories. For quota directories, this count
is identical to the count in the model, namely, the number of frames charged
to the quota cell. ¥For an intermediaste directory, theé count is identical to
what it would be, if the directory were a quota'directory. Therefore, in
Multics, all directories have -some 'sort of a quota cell; but in some directo-
ries, the quota element of the quota cell :is 1gnoredu This can be done, in
the current Multics, because page control must step through all intermediate
directories when finding a quota cell. Thus, incremental changes to all quota
cells affected by creation or deletion of a page ‘are very easy. The count,
however, has little meaning for intermediate ‘directories.  In the model, we
have omitted frames used from intermediate directorieé® so that the resource’
control layer may immediately access thefvtoperféuota cell without referencing
any directories. In this way, the petential -dependence-of resource control on
directories is eliminated. This difference is also visible to users because,
in the model, frames used is not matnt&inedfiﬁ~interaediate directories. The
-advantages, however, are that referencing a quota cell ‘is faster and the.
structure of resource control is simpler because, in every case, the quota

cell may be accessed directly.




Page 116 ' | Chapter .VIL

7.2.2 1Inviseible Structural Differemces

‘The internal structure of Lhe virtual memory manager model also departs
from the structure of Multice. The :first difference of .this sort is related
to the secand one noted in section 7.2.1 because it also involves quota. In
Multics, all changes to the quote aell hieraxgchy are accomplished through the
move_quota operation., This operation tranafers guota from one quota cell to

another and creates or deletes quofa, cells where apprapriate. It is facili-

tated by requiring that quota cells he available fox gll directoriee superior - A

to any active segment, but it also raequiras tim&-all segments in one directory
be charged to the same quotw call. Using the mowe quata waed operation.of the
model,  the -same interface can-be presented to msers. This can be .done as fol- .
lows: , If both source and tavget dixectories are quota diregtories, only the
amount of quota in each quots cell must be emrm If 4 -however, the target
directory does not have a quota cell, a quota cell must be created for it, and
all segments in the subtvee undar the -target .dirsatary shigh wexe charged
against the source directery’s quota icell muet be chamged to charge to the new
quota cell. This change is performed by inwcking the change QUOTA CELL and
move quota used operations on each affected segment. Since the proceas of
moving quota is infrequant, any loss of efficiency will be insigaificant.
Besides eliminating dependence qu directories, the reasoa for implementing
changes to the quota hierarchy as in the model is to allow flexibility in the
resource control policy. This point will be expanded in section 7.3. Note

that this difference and the second one above occur jointly. Accept both or




Chapter VIIL ' Page 117

neither. Théy are introduced to simplify the model and to clean up the quota
cell concept.

The second sttugtural difference is that the model has three principal
modules, while the current Multics system has two. This difference has an
important implication: The management of logical changes to segments (i.e.
the creation and deletion of pages) has entirely different concerns than the
physical management of pages. The two need not and should not be intertwined.
Therefore, we can consider the usefulness of physical management (paging)
-independent of logical management (resource control). The advantage for the
implementation is that the problems mentioned in section 2.3 and other similar
problems have been solved. Several supervisor programs and-data bases, most
notably the FSDCT, can be paged in a natural way and resource control cam be
performed in a modular fashion. This results in economies of mechanism and a
cleaner structure. The new structure facilitates understanding and comparison
of the implementation with the specification. Examining the model, we can
more easily appreciate how virtual memory works.

The final difference in structure, as noted in. chapter four, is the added
level of indirection in the segment addressing path. To implement the model
fully would require a completely redesigned CPU, which is not feasible for
Multics. The real point in this difference is not to suggest a hardware
change at this time. Instead, we want to alert system designers that the
Multics PTW serves two different purposes for two different layers of the vir-
tual memory manager. This presents a trade-off between clean structure and
efficiency which should be recognized. Given the trend in hardware speeds and

prices, this trade-off may soon swing towards cleaner structure.




Page 118 Chapter VII

7.2.3 Philosophical Differences

There is a qualitative diffarence betweses the model and the Multics of
today that is quite gemeral to the study of opereting systems.  This differ-
ence exists independent of whether any code is rewitten:. It is the strict
view, in the model, of the system as a hierarchicsl cellection of extended
types, as opposed to the Msltics view which corganizes the system loosely. The
most obvious use of a strict object approachk fs in system verification. Veri-'
fication, of necessity, requires rigor, and thus csunot be applied to any
loosely defined system. To this end, objecte and types are quite sappropriate.

Type extension represewts more than a& veriffcstiow tool. It is also a
general method of describing systems. It 13 & wey of looling at a systen
which neatly captures the fundsmentals of the systew’s dynawics. Type exten-
sion is concise, precise, and very flexible., Thus, it ie amemable .to formal
description and manipulation. This means thst type ewtension is & more power-
ful method of system descrigption than sinmply describing & system in terms of

modules.




Chapter VII Page 119

7.3 Resource Control

In this thesis, we have examined some of the issues of storage resource
control and how they relate to virtual memory. In this section, we will
attempt to sum up those relationships. There are many policies which can be
used to control the usage of storage resources, They range from almost non-.
existent, where the only constraint is the amount of physical storage avail-
able to the system, to sophisticated, like those in Multics. This variety is
one of the reasons for splitting resource control and demand paging. Any vir-
tual memory implementation will need a standard demand paging algorithm to
support it. The resource control policies, however, are part of the virtual
memory definition, and will change as the virtual memory implementation

changes.

In general, resource control involves four elements: a policy maker, a
mechanism, a set of requestors, and a supplier. The policy maker dictates the
policies under which all allocation and freeing decisions are made. The
mechanism enforces the policies. It must be at the same layer or lower than
the policy maker. Of course, there must be a way for the policy maker to
inform the mechanism of changes in policy. The requestors are the source of
requests to allocate or free resources., All of the requestors must be at the
same layer or higher than the mechanism, but need have no particular relation
to the policy maker or each other. All requests are directed to the mecha-
nism, which decides whether to honor them based on the policies of which it is

aware. The supplier actually performs the allocation and freeings and inter-




Page 120 Chapter VII -

prets all other operations on the resource. In addition to the policies
enforced by the mechanism, the supplier may impose restrictions of its own,
e.g. it may decide not to allocate a rescurce unlees oo is available. . The
supplier must be at the same layer or lower :than the mechanism. It is quite
possible to combine the functions of the mechanism snd the supplier. The
critical factor in the location of the mechanisw im that 4t is between the -
supplier and all requestors.

Resource cotitrol policies can be divided inte two classes:  one where
resources are pre-allocated, and one where rssourcew are allocated only as
needed. The first class of policies has the sdvantages that overhead is
small, and, once resources have been allocated, fwo time need be wasted in
waiting for resources to be available. -These policies can be: ‘shom to be free - -
of deadlock, as long as all resources are requested before any are used. They '
have the disadvantage that a requestor may not know how many resources it
needs, so unnecessary resources may be allocated. ' The second class of poli-
cies is less wasteful of resources, but requires sophisticated methods to
avoid deadlocks. The second class includes sose very complicated policies
because a resource tan be implicitly allocasted by & requestor by mpxy using
one that it does not have. In the model, one cun' Bee instances where both
classes of policies are used for different rescurces. PAGE CONTAINERs are
only allocated as neaded for PAGEMENTs. However, whenever 'a PAGE CONTAINER is
allocated, a home is assigned to it, regardless of whether the home is ever

needed.




e R e

Chapter VIIL Page 121

Very early in this thesis, problems with the Multics resource control
system were encountered (see chapter two). Mucﬁ of the work here can be
described as reorganizing the resource cantrol mechanism\so that it will fit
neatly into a type extension hierarchy. The reorganization, however, leaves
the current guiding policies of Multics intact. The quota system is quite
useful. It permits the creation of a set of resource allocation centers
(quota cells). Resources may be allocated and charged to a center if the cen-
ter has enough quota. The problem with the Multics resource control policy is
that the centers are tied to the directory hierarchy. The directory hierarchy
originated as a naming system. It solved gome of the problems of global name
spaces and the occurrence of duplicate names. In Multics, the directory hier-
archy is much more. TIn addition to a naming hierarchy, it also embodies thg
authority hierarchy (access control) and the resource control hierarchy.

Instead, we propose the separation of these hierarchies, as much as pos-
sible. Logically, they are independent. Forcing them to be identical creates
other problems. For example, a directory which contains a quota cell, against
which any active segment is charged, must stay active(, We have intentionally
designed the bottom two layers of the virtual memeTry manager S0 that they make
no assumptions about the hierarchies. Therefore, they could be used, without
modification, regardless of how the hierarchies are combined. Separate direc-
tory and resource control hierarchies would allow segments in many different
directories to be charged against the same quota cell, or segments in the same
directory to be charged against different quota cellg. These facilities are
useful so that a user may structure his naming environment as he likes, inde-

péndent of how his resources are controlled.




Page 122 Chapter VII

7.4 Directions for Future Research and Development

Since the virtual memory manager model is entirely on paper, we have had
to appeal to the reader’s intuition as to its simplicity and consistency. The
acid test of any design is implementation. The existence of a working imple~
mentation guarantees that nothing has been ignored or overlooked. While we
feel that the model is correct, the only way to prove correctness is to imple-
ment it. An implementation would require large amounts of time and computer
resources, but would, hopefully, verify our results.

To further simplify the Multics supervisor, we can suggest that the
interactions between directory control and segment support be studied. We
have asserted that they interact poorly, but we have made no attempt to change
them. The interesting problem lies in the relationships among the directory,
authority, and resource control hierarchies. These hierarchies serve differ-
ent functions, so should not necessarily be combined [Rotenberg 1974]. One of
the advantages of the model over Multics is that the model makes no assump-
tions about these hierarchies. Thus, separate directory and resource control
hierarchies could be implemented on top of the model, allowing segments in the
same directory to be charged to different accounts (quota cells). Another
interesting approach would be a multiprocess implementation of segment support
and directory control. This could be along the lines followed by Huber
[1976].

A process executing on Multics operates in several related address
spaces. At times, the process is in an environment where it may only refer-

ence primary memory by absolute address. Most of the time, the process is in



Chapter VII Page 123

a ségmented address space, but the segments might be unpaged segments, super-
visor segments, or file system segments. The variety of segment types means
that the process must operate in at least four different address spaces. How
these address spaces overlap and interact is poorly understood. Research in
this directibn might point out a clearer and more efficient way to manage the
sharing of address spaces.

In a more academic vein, another research direction 1s suggested by chap-
ter three. 1In that chapter, we spdke loosely of a procedure for modularizing
a system. The procedure involved the iterative application of a set of tech-
niques. Projects, such as the one described in this thesis, would be greatly
aided by a formal modularizing procedure. -Howevér, devising such a procedure
is quite difficult. It requires careful definitions of modules and connec-
tions, a method for comparing them, and a proof that such a procedure will
terminate with a correct result.

We also suggest further study of the need for objects in operating sys-
tems. The third difference between Multics and the model, noted in section
7.2.2, arose because we have no semantics for describing an object which 1is
created or allocated by one layer and manipulated by a lower layer. One pos-
sible direction for study of this problem is provided by Janson’s software
cache structure [1976]. The appeal of objects is growing. Since operating
systems are fundamental to computer systems, the uses of objects in operating

systems should be better understood.




Page 124 Chapter VII



Appendix Page 125

APPENDIX

Summary of Types Used in the Model

Type: PAGE CONTAINER

Attributes:
name
data array
home
used flag
modified flag
zero flag
core flag

Operations:
allocate (home, zero_flag, name)
free (name, zero flag)
read (name, offset, value)
write (name, offset, value)
get home (name, home)
usedp (name, flag)
modifiedp (name, flag)
zerop {(name, fjﬁg@

corep (name, flag)



Page 126

Type: QUOTA CELL

Attributes:
name
frame quota
frames used
time-frame product

Operations:
allocate (quota, used, time—frame_product, EEEEQ

free (name, quota, used, time-frame product)

change used (name, quantity)

reset_time—frame_product (name, Eroduct)

move quota (source name, target_name, quota quantity)

move quota_used (source name, target name, quota quantity,

used quantity)

Appendix



Appendix Page 127

Type: PAGEMENT
Attributes:
name
size
length
frames used
QUOTA CELL name
used flag
modified flag
physical volume
core count
page table
page table modified flag'
data array
Operations:
allocate (size, physical volume, page table, quota cell, name)

free (name, physical volume, page table, quota cell, used flag,

modified flag)

read (name, offset, value)

write (name, offset, value)

usedp (name, flag)

modifiedp (namé, flag)

page table modifiedp (name, flag)

get_page table (name, physical volume, page table)

get_QUOTA_CELL (name, cell name)




Page 128 Appendix

change QUOTA_CELL (name, new cell name)

get core_count (name, count)
truncate {(name, length)

move contents (name, size, new name)



References Page 129

REFERENCES

[Bensoussan, Clingen, and Daley, 1972] A. Bensoussan, C. T. Clingen, and R. C.

Daley, "The Multics Virtual Memory: Concepts and Design," Communications

of the ACM 15, 3 (March 1972), pp. 135 - 143.

[Dahl, Dijkstra, and Hoare, 1972] 0.-J. Dahl, E. W. Dijkstra, and C. A. R.

Hoare, Structured Programming, A.P.I.C. Studies in Data Processing No. 8,

Academic Press, London and New York, 1972.

[Dijkstra, 1968a) E. W. Dijkstra, "The Structure of the THE-Multiprogramming

System," Communications of the ACM 11, 5 (May 1968), pp. 341 - 346.

[Dijkstra, 1968b] » "Complexity Controlled by Hierarchical Ordering of

Function and Variability," Proceedings of the NATO Science Committee

Conference, ed. P. Naur and B. Randell (October 1968), pp. 181 - 185.

[Floyd, 1967] R. W. Floyd, "Assigning Meanings to Programs," Proceedings of

Symposium in Applied Mathematics, Volume 19 (ed. J. T. Schwartz) American

Mathematical Society, Providence, R. I. (1967), pp. 19 - 32.

[Hoare, 1969] C. A. R, Hoare, "An Axiomatic Basis for Computer Programming,"

Communications of the ACM 12, 10 (Og;gbgr 1969), pp. 576 - 580.




Page 130 References

(Huber, 1976] A. R. Huber, "A Multi—ProCeéé”Dé&lgn of a Paging System," S.M.
and E.E. Thesis, M.I.T., Department of Electrical Engineering and Com-
puter Science, 1976, and M.1.T. Laboratory for Cotiputer Stience Technical

Report TR=-171.

{Hunt, 1976] D. H. Hunt, ™A Case Study of Intermodule Dependencies in a Vir-
tual Memory Subsysten;" S.ﬁ; and‘E.E. Tﬁesls, ﬂ;I:T;,'Department of Elec~
trical Engineering and Computer Sciénce,’iiﬂ‘ﬁuikﬁaiihﬁb%atoryvfor Com-

puter Science Technical Report TR-174.

[Janson, 1976] P. A, Janson, "Using Typé Extension tn'Organiie Virtual Memory
Mechanisms," Ph.D. Thesis, M.I.T., Departwenc-of Electrical Engirneering
and Computer Science, 1976, and M.I.T. Laboratory for Computer Science

Technical Report TR-167.

{Lampson and Sturgis, 1976] B. W. Lampsdn and H. E. Sturgis, "Reflections on

an Operating System Design,” Communications of the ACM 19, 5 (May 1976),

pp. 251 - 265.

[Liskov, 1972a] B, H. Liskov, "The Design of the Venus Operating System,"

Communications of the ACM 15, 3 (March 1972), pp. 144 - 149,

[Liskov, 1972b] , A Design Methodology for Relisble Software Sys-

‘tems," Proceedings of the Fall Joint Computer Conference, 1972, pp. 191 =~

199.




References Page 131

[Liskov et al., 1977] B. H. Liskov, A. Snyder, R. Atkinson, and C, Schaffert,

"Abstraction Mechanisms in CLU," to appear in Communications of the ACM

20, 7 (July 1977).

[Naur, 1966] P. Naur, "Proof of Algorithms by General Snapshots," BIT 6, 4

(1966), pp. 310 - 316.

[Organick, 1972] E. I. Organick, The Multics System: ég.Examination.gg Its

Structure, M.I.T. Press, Cambridge, Massachusetts, 1972.

{Parnas, 1971] D. L. Parnas, "Information Distribution Aspects of Design Meth-

odology," Proceedings of IFIP Congress 71, ed. C. V. Freiman (August

1971), Volume I, pp. 339 - 344.

[Parnas, 1972a] ,» "A Technique for Software Module Specification with

Examples,” Communications of the ACM 15, 5 (May 1972), pp. 330 - 336.

[Parnas, 1972b] ,» "On the Criteria To Be Used in Decomposing Systems

into Modules," Communications of the ACM 15, 12 (Dedember 1972) pp. 1053

- 1058.

[Parnas, 1976] » ""Some Hypotheses about the Uses Hierarchy for Operat-
ing Systems," Research Report BS 1 76/1, Technische Hochschule Darmstadt,

Fachbereich Informatik (March 1976).




Page 132 References

[Popek, 1974] G. J. Popek, "A Principle of Kernel Design," AFIPS National

Computer Conference Proceedings, Volume 43, AF1IPS Press, Montvale, New

Jersey (1974), pp. 977 -~ 978.

[Reed, 1976] D. P. Reed, "Processor Multiplexing in a Layered Operating Sys-
tem," S.M. Thesis, M.I.T., Department of Electrical'ﬁhgineering‘and Com~-
puter Science, 1976, and M.1.T. Laboratory for Computer Science Technical

Report TR-164.

[Robinson et al., 1975] L. Robinson, K. N. Levitt, P. G. Neumann, and A. R.
Saxena, "On Attaining Bilijb1é£50ftwute fbrfh Secure Operating System,"

Proceedings of thebIdtefndtional'Cﬁufvrtuie:ggyRtifablé5ébftﬂare, and ACM

SIGPLAR Notices 10, 6 (June 1975), pp. 267 - 284.

[Rotenberg, 1974] L. J. Rotenberg, "Making Computers Keep Secrets," Ph.D.
Thesis, M.I.T., Department of Electrical Fngineering, 1974, and M.I.T.

Project MAC Technical Report TR-115.

(Saltzer, 1974) J. B. Saltzer, "Pratéction<awd the €ontrol of Information

Sharing in Multics," Communications of the ACM 17, 7 (July 1974), pp. 188

- 402.




References Page 133

[Schell, 1971] R. R. Schell, "Dynamic Reconfiguration in a Modular Computer
System," Ph.D. Thesis, M.I.T., Department of Electrical Engineering,

1971, and M.I.T. Project MAC Technical Report TR-86.

[Schroeder, 19751 M. D. Schroeder, "Engineering a Security Kernel for

Multics," Proceedings of the Fifth Symposium on Operating Systems

Principles, and ACM Operating Systems Review 9, 5 (November 1975), pp. 25

- 32.

(Simon, 1962] H. A. Simon, "The Architecture of Complexity," Proceedings of

the American Philosophical Society 106, 6 (December 1962), pp. 467 ~ 482,

{Stern, 1976] J. Stern, "Multics Security Kernel Top Level Specification,”

Draft Project Guardian Report, November, 1976.

[Sturgis, 1974] H. E. Sturgis, "A Postmortem for a Time Sharing System," Ph.D.
Thesis, University of California at Berkeley, Department of Computer Sci-

ence, 1974, and Xerox Palo Alto Research Center, Palo Alto, California,

CSL 74-1.

[Wulf et al., 1974] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C.
Pierson, and F. Pollack, "HYDRA: The Kernel of a Multiprocessor Operat-

ing System," Communications of the ACM 17, 6 (June 1974), pp. 337 - 345.




This empty page was substituted for a
blank page in the original document.



CS-TR Scanning Project ]
Document Control Form Date: | 1 9 415

Report# L <5 TR&-177

Each of the following should be identified by a checkmark:
Originating Department:

[J Artificial Intellegence Laboratory (Al)
;B’\ Laboratory for Computer Science (LCS)

Document Type:

I Technical Report (TR) [0 Technical Memo (TM)
O Other:

Document Information  Number of pages: 134 figo -1 mrsws )

Not to inciude DOD forms, printer intstructions, elc... original pages only.

Originals are: intended to be printed as :
O Single-sided or O Single-sided or
X' Double-sided ¥ Double-sided
Print type:
Typewriter [Q ofisetPress [ ] Laser Print
[J inkietPriter [] Unknown [ other:

Check each if included with document:

O poD Form O Funding Agent Form EX Cover Page
\,ZI Spine O Printers Notes O Photo negatives
O oOther:
Page Data:

Blank Pagesy pege mmwed: '-(.7,1 63,}'7 Gj IOQ/I;# PAGK Potlops NG TITLE FRCK 173

Photographs/Tonal Material wy page numbes:

Other (ot descriptonipege numben!

Description : Page Number:
EmacAC! (1 - 134 ) b en TITLE o~ GLANK PAGKS
2 -177 =D

~ J
(135140 S nOL_caeR 01 TRET SR

Scanning Agent Signoff:
Date Received: I/ 13 1 95 Date Scanned: /31 195 Date Returned: (341 /%

Scanning Agent Signature: W iﬁ\/ J dJBw Rev 9104 DSLCS Control Form celriorm.ved




Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects

Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the ML.LT. Laboratory for
Computer Sciences.

darptrgt. wpw Rev. 994




