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ABSTRACT

If the reachability set of a Petri net (or, equivalently, vec-
tor addition system) is finite it can be effectively construc-
ted, Furthermore, the fimiteness is decidable. Thus, the con-
tainment and equality problem for finite reachability sets be-
come solvable, We investigate the complexity of decision pro-
cedures for these problems and.shov by reducing a bounded ver-
sion of Hilbert's Tenth Problem to the fimite comtainment pro-
blem that these two problems are extremely hard, that, in fact,
the complexity of each decision procedure exceeds any primitive
recursive function infinitely often, The finite containment and
equality problem are thus the first uncontrived, decidable pro-
blems with provably non-primitive recursive complexity.
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I, Introduction

The containment problem for Petri nets is the problem to de-
termine of any two given Petri nets whether one reachability
set 18 contained in the other, By reducing Hilbert's Tenth
Problem concorniné integer solutions of diophantine equations,
which is known to be undecidable [13], to the containment pro-
blenm, Rabin has shown the unsolvability of the latter ( see
[3]). The situation changes, however, when one considers sub-
classes of the general problem, A result by Karp and Miller
[11] yilelds the decidability of the problem whether the
reachability set of a given Petri net is finite., It also

gives an algorithm to enumerate finite reachability aéts.
Hence, the finite containment problem (FCP), i.e. the problem
to determine of any two given Petri nets whether their reach-
ability aets‘are each finite and one is containod in the other,
is decidable by exhaustion. This thesis deals with the com-
ple;ity of decision procedures for FCP, We show that all those
procedures are necessarily enormously complex, specifically,

that they are non-primitive recursive.

The intrinsic complexity of the decision procedures is not due
to the fact that the reachability sets have to be tested for
'finitenesa, Even if the decision procedure is supplied with
the answer to this subproblem the remaining complexity still

is non-primitive recursive,
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To establish this result we will present in section II a
bounded version of Hilbert's Tenth Problem whose complexity

we know is non-primitive recursive, To reduce it effectively
to FCP two versions of Petri net computers are introduced in
section III, weak computers for polynomials and a more re-
stricted class of 'iterative' computers for functions defined
by primitive recursion, Section IV contains the recursive
construction of such computers for a sequence of functions
closely related to Ackermann's function [1]. Section V and VI
then discuss a property of the polynomial computers intro-
duced before which makes it possible to reduce the subspace
inclusion problem for reachability sets to the inclusion pro-
blem while preserving the finiteness of the reachability sets,
Two modifications of the polynomial computers exploit this
property and serve to reduce the bounded version of Hilbert's
Tenth Problem effectively to FCP, In section VII the reduction

is carried out and the main results of this thesis are proven,



7
11, Basic definitions and properties

In this section we shall give precise definitions of Petri
nets and related concepts like marking  of a Petri nét,
firability, firing sequence, and reachability set, We are

then going to formally state the problems whose complexity we
want to exanino,vand we shall also give the definition of that
bounded version of Hilbert's Tenth Problem which will be re-
duced to FCP.'

We assume that the reader is familiar with the notions like
the free monoid X" over a finite alphabet X, the set X* |

of all non-empty words over Z ( the empty word will be denoted
by A, the length of a word ae I” by |a| ), the concept of the
free commutative monoid generated by 5 which we will write
C(Z), and basic concepts of algebra like the semiring N[x,,..
..,x-] of’polynomials with nonnegative integer coefficients in
the unknowns 11,....xm.

Definition 1:
a) A _I:_é_g_z;:_L_ net P is a 4-tupel (S, T, in, out) with the proper-
ties
1) S is a finite ordered set;
11) T 18 a finite set, SAT = g;
1i1) in is a multiset over Sx T;

iv) out is a multiset over Tx S,
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b) A marking of P is a mapping
a: S—» N (N= set of nonnegative integers)

The elements of S are called the places of ?, the elements of
T are called transitions, In diagrams, places are drawn as
small circles, transitions as bars, and elements of in or out
are denoted by directed arrows, If the multiplicity of elements
in in or out is greater than 1 this is indicated in the dia-
gram by the corrosponding’numbor gttnched to the arrow,

If (s,t)€ in, 5 18 called an input-place of t, and 1f (t,s)e
out, an output-place of t. A transition t is said to be con-
trolled by a place s if s is both an input and output-place
of t, connected by an arc in each direction of multiplicity
one, In order to simplify the pictures this will be. represen-
ted by a double line connecting s and t,

Let 81500098, be the elements of S, Sometimes it will be con-

venient to write a marking a of P as
m

a=] Tyt
and consider it as an element of the free commutative monoid
C(S) generated by S,
A Petri net P together with a marking o of P will be denoted
by the pair (P,a).
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Definition 2:
Let P=(s, T, in, out) be a Petri net, and let v&(s,t) denote

the multiplicity of (s,t)e Sx T in in, v, (t,s) that of (t,s)

€ TxS in out.

a) A transition te T is firable at a marking g of P and takes o

to the marking 8 (written a-t» ) 12¢
1) (Vse S)[a(s) = ¥yn(8,t)] , ana

11) (Vees)p(e)=als) - Vin(8st) + v (ty8)].
b) A firing sequence T is an wlement e T*,

¢) A firing sequence re Tt is firable at a marking o of P and
‘takes a to the marking 7 (written a-Xsp3) 1ff
(31'?-1 3t1’ooo,tr€ T)[T-'-'t«‘tz;ootr w.

£
(ABsPrseesla = ponp= poa (Vis1s) g, _—Sp,]]].

The sequence (/)1): i<r 18 called the marking seguence gen-

erated by .
d) A marking (7 of P 1s said to be reachable from a marking a

of P (written « *>3) 1t o= or (Jre ™fa-Sp].

Of course, the relations —*» as well as —‘» and —t» depend

on the Petri net P, It will however, always be clear from the

context which Petri net is being considered.
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Definition: 33
The remchability set of a Petri net £ with initial marking q

is the set of all markings reachable from o
R(Pya) := {Bia-2p).

If we are given two Petri nets  and ' with initial markings
a and a', resp., we may ask questions about relationshipe be-
tween the two reachability sets, e.g, whether they are equal
or one is contained in the other, To be able to do this we
have, of course, to set up a 1-1 correspondence between the

places of the first and the second net,

Definition 4:
Let P, = (s, T,, in,, out,) be a Petri net with initial marking

@, (1=1, 2), |5] = |S,|, ana 1et E: c(si)-—»c(sa) be the

semigroup-isomorphism generated by the order~preserving bi-
Jection h: S,—-»Sa.

a) R(F,¢;) 1s contained in R(H,x,) (written R(F ,a,) ¢,
R(PA,)) it
E(R(8,2,)) CR(E,,a,).
b) R, = R(B0,) w0, KR(P,,0,)) CR(B,a,) and
| R(P,) CF (R(B,a,)).

To simplify the notation, we will omit the subscript for the

1-1 correspondence h between the places of the two nets.
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Definition 5:

a) The containment problem CP is the problem to decide for
two Petri nets 3% and 3% with markings @, and «,, resp.,
Whether the reachability set of the first net is contained
in that of the second:

OP 1= {q§,2), (8§05 R(P ) CRB,a,)].

b) The finite containment problem FCP is

FOP 1= (<(P),),(%,a,)>; |R(Bya,)<en and
«.p"a]). (%,aZDCCP}.

c) The finite equality problem FEP is

FEP := {<(ﬂ,a,).(%,a2b; IR(?é-“g)l“' and

R(PL,a)=R(8,a,)).

The proof that FCP and FEP are non-primitive recursive pro-
ceeds by effectivqu roduéing to FCP a special, bounded ver-
sion of Hilbert's Tenth Problem dealing with the ranges of
values of polynomials with nonnogﬁtivo integer coefficients,
Though the main results of this thesis hold for any reasonable
encoding of the data involved (1,e. polynomials and Petri
nets), we choose for d@finitenesa‘particular encodings and
corresponding ﬂbtions of the size of encodings.

Thus, we want to encode Petri nets by first writing down the
number of places, and then for each transition a pair of se-
quences of places (designated by their number in the ordered

set of places) which contains in the first component all input
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and in the second component all output-places of this transi-
tion, enclosed in brackets and preceded by the multiplicity of
the connecting arc if the latter is greater than 1, Transitions
which are not connected to any place are disregarded.,

Markings will be encoded by writing down their values on the
places in order, We assume that all numbers are written in
binary, It is easy to see how a code over the alphabet {0, 1}
alone could be obtained by encoding the symbols of our code by

short words over {O, 1}.

Example: The encoding for the Petri net of figure 1 together
with the marking (0, O, 1) indicated by dots in the places may,
therefore, look like (numbers written in decimal):

3,()(1),(1,3)(4(2)),(1,3(2))(1,3),(3)(),0,0,1
(The code for the Petri net is followed immediately by the

code for the marking).

Figure 1:
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Considering, in general, the length of this encodins, the fol-
lowing definition is motivated,

Definition 6:

Let f’--'(S, T, in, gut) be a Petri net, a a marking of P. Then

size(in) = D) flog( vin(o)n)] s Where the sum is taken over
(-] [

the different arcs in the multiset in, Similarly
Biza(w)o

size(P = (aizg(_:!._q) + size(out) + 1) log(|S|+1);
size(a) = 'Sl‘m{108(1+a(i)); 13190‘60"5'}3

sizo(‘.'P,a) = size(P) + size(a).

The length of the encoding discussed above is bounded by a

constant times size(P,a), as easily can be seen.

Iikewise, we are going to describe an encoding for multivari-
able polynomials with nonnegative intoger coefficients, The

code for such a polynomial will be a sequence of codes for its
monomial constituents, separated by apecial delimiters, We may
assume that the variables of the polynomial are Xq9eeesXy for

some m €N, Then the code for a ménonial is the sequence of in-
tegers obtained by writing down first the nongero integer co-
efficient of the monomial, then the hondocreasing sequence of"
integers from {1,...,m} in which each je({1,,..,m} occurs just
as often as the dégru of xJ in the monomial indicates, Again,

delimiters are used to separate the numbers, If, for example,
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| denotes the delimiter for separating monomials and - that

for separating numbers within monomials then the code for the
polynomial

4x1x3 + x%x2 +3 € N[x1,x2,x3]
looks 1like (numbers written in decimal)

|4-1-31-1-1-23] .
By writing the numbers in binary and then encoding each of the
‘four symbols |,:,0,1 by a combination of two symbols from
{0, 1}, a binary code for multivariable polynomials with non-
negative integer coefficients is obtqined. Let

pc @ mkéjoﬂ[xl,....xn]—-){o, 1}«»

denote this encoding.

Definition 7:

Let psN[x,,....xn] for some me N, Then

size(p) 1= lpc(P)| .

Hilbert's Tenth Problem is the problem to decide whether a mul-
tivariable polynomial pez[x1,...,xm] has a zero (a,,....l‘)e

Z® (Z is the set of integers). It is not difficult to see
(and we won't prove it here) that this problem is equivalent
to asking whether a polynomial has a nonnegative integer solu-
tion, Matijasevic [13] has shown that for each recursively
enumerable set MCN there exists a polynomial pe&[xl;...;xm]

for some m &N, such that
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AEM < (Hba,....bmf-'ﬂ)[p(a,ba,...,bm)= o]o

As there are r.e, sets in N which are not recursive Hilbert's
Tenth Problem is undecidable.

On the other hand, if we fix Ne® and restrict ourselves to
asking whether any given polynomial pe &[x.",...,xh] has a

zero (ap...,lh)c {o, Tyeess NJ®, this problem becomes decid-

able by exhaustion, More generally, we might make N a function
of neN and investigate the complexity of finding geroces of
polynomials as above, bounded by N(n),

Adleman and Manders [2] have proven results which imply

Lemma 1:

Let g: N—>N be a (monotone) recursive function which major-
izes the primitive recursive functions, Then the problem to de-

cide whether a pc&[x,,...,xm] (for some mcN) has a zero
(11,.'..,8,.) C{O, 1,...,g(a:l.ze(p))}m requires, for any primi-

fivq recursive function pr, more than pr(size(p)) steps on a

multitape Turing machine, for infinitely many p.

Remark: Let ¥ be a class of functions from N to N, A function
g : N—>N is said to majorize ¥ 1iff
(VeeF In e Vnzn)) | gn)sen)] .

Proof of the lemma: See theorem 5 of [ 2] and note that if a

function h(n) doesn't majorize the primitive recursive func-
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ah(n2)5
tions then the function 2° doesn't, either,

We are now going to define a special fast growing function
which satisfies the conditions of the lemma, but which none-
theless can be computed by reasonably small Petri nets, in a
sense winich will be made precise in tho next section,

Definition 8:

Let A : N—>N be the function defined by
A(x) = 2x 41,

L@ = 1,

() = A4, @),
A(n) = A, (2) . (n,xe N),

A function similar to A is studied in [6]. A result about that
function which immediately applies to A is

Lemma 2:
A majorizes the primitive recursive functions,

Proof: See [6], pp. 144-149.

We are now able to define a problem which is related to the
bounded version of Hilbert's Tenth Problem described in lemma
1, |
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BPI := {(nq;n); Ps qu[x,,..;,x,] for some meN, and
(V(y1,....yn)5’{0,1,....A(n)}m)[P(y],o.o.}")

L ICTPTNE ) s

From lemmas 1 and 2 we obtain the result that BPI is extremely
complex, for any reasonable complexity measure for the triples

(psq,n). Nonetheless, for definiteness, we set

Definition 10:
size(p,q,n) := size(p) + size(q) + n,

Theorem 1: |
BPI is non-primitive recursive,

Proof: It suffices to prove
Lemma 3:

The bounded version of Hilbert's Tenth Problem of lemma 1 with
A as upper bound is polynomial-time-reducible to BPI.

Proof of the lemma: Let's assume we are given n&N and a poly-
nomial pe&[xl,...,xm'] for some me N, Then p has a zero

(&g peeerty) €0,1,000,alm)}® 122 §2(x;y0nn,x)) - 120
does not hold for all (x1,...,xu)€ IO’I’OOO.A(n)} mo The

latter, however, is equivalent to (q~7,q*,n) ¢ BPI, where
q* (resp. =q”) is the sum of the monomials of pa(xp...,x‘)

s e RPN o s e e
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- 1 with positive (negative) coefficients, i,e,
pa(x,,....xm) - 1=q"(X)p0009X,) = Q7(Xp000yX,) and
a*, a7 eN[x,,...,x,]. Obviously, (¢7,q*,n) can be obtained

in polynomial time from (p,n). q.8,d,
if we had a primitive recursive decision procedure ;or BPI we
could by means of the polynomial reduction in the proof of the
lemma construct a primitive recursive decision procedure for
the A-bounded version of Hilbert's Tenth Problem, in contra-
diction to lemma 1 (The relevant properties of polynomial-
time~reducidbility used here are discussed in [15]). This proves

theorenm 1,
q. ‘.d.
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III“T'Q concepts for Petri net computers

Several ways have been studied, e.g. in [7. 8], to use Petri
nets to compute number theoretic functions, A straightforward
approach is to designate some places to contain numbers of to-
konsrrepresonting the arguments of the function and obtain the
function value by counting how often a transition can fire or
by the length of the longest firing séﬁuonce possible at the
given initial marking. As firable transitions may fire or not,
We can in general not expect ?hat eaph firiﬁg sequence repre-
sents the computation of a function value, It turns out, how-
ever, that the following concept which Rabin called "weak com-

putation" works for quite a large class of functions,

Definition 11:
Let P= (s, T, in, out) be a Petri net, and let s,i],...,im,o

€ 5 be m+2 designated places (also called the set Sip of
interconnecting places) such that 8y14y...,1, are not output-

places and o is not an input-place of any transition in T, Let
QEC(S\{B,i-‘,‘oo’im,O})’ DCNm, and f : D—-)Nu{oo}.

P 18 a g-weak-Petri-net-computer (p-WENC) for f 1ff

( V(nl””’nm)c DVkE N)[OSk Sf(nlgcoo’nm) <>

m n, .
5];—‘[1:] 9—=»0'« for some a e-C(S\{1;,.0.y1,0}) .

(f(n1’o¢¢’nm)=°° is 1nterpreted as (Vke")[f(n]’oco’nm)zk])o
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1f we do not want to emphasize the marking ¢, we also call P

simply a WPNC,

WPNC's essentially as defined above have been investigated in
[7] and [ 8]. It 1s easy to see that the functions computed by
WPNC's are closed under addition and composition, and multipli-

cation, as a WPNC for the product f(n,,nz)a ngn, can’be con-

structed (see [8], and section V of this thesis),

We want to construct WPNC's for the functioms A in definition

8. The structure of thie definition suggests doing this recur-
sively, i.e. obtain a WPNC for A,,1 from one for A . In such a

WPNC for A _,(m), the embedded WPNC for A, would be restarted
m times, since by definition A, (m)= A{® (1) (= the m-tn
iteration of An). In general, after a computation of a WPNC

some tokens may be left on non-designated places, Those re-
maining tokens can affect the subsequent computations if the
WPNC is restarted, so we have to refine the concept of a WPNC
as stated in definition 11, In order to be able to start a |
WPNC iteratively, we basically make sure that the successive
computatipns are properly separated and that in a computation
which produces the maximal number of tokens on the output-~place
no 'garbage!-tokens are loft‘on the non-designated places, This

does not mean that there are no tokens at all left on the non-
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designated places, Rather, the WPNC under consideration usu-
ally is a ¢-WPNC for some o#A, and we want to ensure that
after each computation ¢ is conserved or can easily be restored,
We, therefore, introduce the following concept of a conserva.

tive marking,

Doﬁ.nit;on 12¢

Let P=(S, T, in, gut) be a WPNC with designated places Sy s

and for any S1( S let the pro;jection J(s') : C(8)—»C(s') be
the homomorphism defined by
P, 1if pes?,
J(s*)(p):=
A otherwise,
¢ €C(S) 1s conservative iff there is a set of "control places",

SepS S\ 8 S; p» Such that

1) o€ C(Scp):, |

11) (V«.‘/J»CC(S))[(J(SCP)(Q')== 0) Ala—2>8) = |3(s, ) (@)= 0]] 5

111) (Vea,0e0(5) [(3(5,)(@) = p) A (a—22p) =
(Jre™[i(s,)(m—Ta0]] .

For a given ¢ the set Scp of control places needn't be uniquely

determined., Condition 1i) states that the sum of the tokens on
the control places is constant for any firing sequence staifting
at a marking which agrees with ¢ on the control places, It
could be replaced by the slightly stronger condition

11) (Va,pe0(8)[(a—2p) > (|38, )@ = [3¢s, )(@)])]
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without restricting the class of WPNC's we have in mingd,
Condition 111) finally says that from any marking ¢' on the
contrdl Places which had been produced starting from a marking
extending ¢, ¢ can be restored by using only transitions in the
subnet defined by the set of control places, This follows at
once from the observation that each firing of a transition in
T which produces tokens on control places, also has to consume

the same number of tokens on control places because of ii).

We can now proceed to refine the concept of WPNC to what we
call "iterative-Petri-net-computer', We will first state the
technical definition and explain it afterwards.

Definition 13:

Let ?:(S, T, in, gut) be a Petri net, f : N—>N a number the-

oretic function, P is an 1terative-Potrifnet-camuter (IPNC)

for £ iff
i) there is a set Sip={ 8,1,0} { S of interconnecting places

and a conservative psc(scp) for some set of control places

S;pS€ 8\ 5, such that P 1s a 9-WPNC for f, and

i1) 1et’ Sop 1= S\(Sipuscp) be the so-called gperational pla-
ces and define
#Cy 1= [ g'€ C(Syp)s (Fa,Be c())[3(s, (a)=g A 3(8,5)(@) = ¢
A a-=>p]1. |

Then



23

Ic1: (Va,pe C(8yui1,0}), Vore R, ) (sag'—22p9) =

lﬁ, = f(]a |)] .

1c2: (Vn eN){sinp—!-»oaq for some a € C(S)=> « doesn't

contain s ] and ,
( va.ﬁ,ft C(Sop), v 9' .9" ERCO’ v11 '12.13,k,k' ,n’n' Cﬁ)

1 1, ., 1 '
[(e 11noka9'—¢>i ainok'/.?p"-d»s 51.’1'¢>k';'9 )a(k'> k)
A(n'g n)v»5 (13 511-1)10 ’

Because of IC1, ¢ is called an iteratively conservative ini-

tial marking of ¥,

Informally speaking, IC1 ensures that no more tokens than ne-
cessary for the Outjmt are produced during a computation of an
IPNC, and IC2 means that no output can be produced without a
start-token s, and that input and output phases of an IPNC al-
ternate and are controlled by s, 1.e. to pfoduce any (addi-
tional) output at all a token of s has to be consumed, and if
another computation is to follow thereafter, yet another start-
token s has to be used, IC1 together with the fact that ¢ is
iteratively conservative ensures not only that the initial mar-
king ¢ of the controi Places can be restored, but also that
there is no gain in not restoring it, |

The IPNC's constructed in this and the next section will have
the standard structure of figure 2. The places u and v are used

to establish IC2, Choosing ¢=v and Scp= {u, v} it can be seen




2L

Figure 2:
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that ¢ 18 conservative: The token on v can only be transported

to u and back to v, and no additional tokens are added by any
transition to the places in Scp. Further, if the token on v is

transported to u it can be restored on v by firing t!, with a
marking of zero tokens on al,i the other places of the net, Alsqg
IC2 holds if we assume that the subret :Pc in figure 2, which

is called the core of ?, cannot produce tokens on O without

using f‘input-tokens' from i, Under thiﬁ condition, t has to be

fired first, thus consuming the token on s, In a phase in which
tokens are produced on the 'output-place' o, a token has to be

present on v. If such a phase is to be followed by transitions

consuming tokens from i, u first must receive the token from v

by & firing of t, which uses a token from s, Thus, the two con-
ditions of IC2 are satisfied, | |

The placp o, in figure 2 may or may not have an arrow pointing

into P..

HWe want to remark that functions £ : N—> N for which an IPNC
P=¢s, T, in, out) with designated places s,i,0 exists are
strictly increasing, i.e. (VneN)[f(n+1)> £(n)]. Otherwise
assume n €N 1g minimal with the property that f(n°+1)s f(no).

But then

n_+1 f(n )
#1 © g—2510 ©9¢

for some @ € C(S) and an iteratively conservative submarking ¢,

e N e A SRR A o T B AT B T T AR S e < e AR e
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as Pis a ¢~-WPNC for f and, therefore, can produce f(no) tokens

on o by using up n, tokens on i (note that 1 is not an output-

rlace for any transition in T), Applying IC1, we obtain
()

f(no)‘x

n_+1
|10 =lal+ 2a) + 152(]2° |)=2(n_s1),

and, hence, t(no) <t(n°+1), contradicting the choice of n .,
By the same argument, we get for all ne N that

s1i% —*o?(n%a ~ for some « & C(S)

implies that a=A.

Figure 3 shows two examples for cores of the net in figure 2
and gives the corresponding functions computed by the IPNC of
figure 2 where the core is plugged in for .?c. As we shall use

the first example later on we state

Lenma 4:
The Petri net of figure 2 with the net of figure 3a) replacing
P. 1s an IPNC for £ : N—>N with f(n)=kn + £(0)

(keW, £(0) e W),

Proof: The resulting net is clearly a v-WPNC for f, and so it
only remains to show that IC1 is satisfied, IC1 follows from
the observation that any m tokens distributed among the places
i, o, and the operational places of the net can obviously pro-
duce the maximal number of tokens on o if all m tokens are ini-

tially on place i; moreover, there cannot be produced more to-
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Example 1:
}: . B %
— —
£(0)
f(n)=kn + £(0) (kcW*, £(0)eN)
Example 2:

£(0)

£(n) =n% + 2(0) (£(0) e W)
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kens on o if the initial marking of the control places is
¢'=u and not o=v (note that RG ={9¢, o'}) as there is no

?
feedback from 0, into the core,.

qd.e.d.,
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IV, Recg;a;vo construction of an IPNC for A

In this section we are going to show that the class of func-
tions which are computed by IPNC's is essentially closed under
iteration. Exploiting this fact, we are able to construct
small WPNC's for the functions A s neN, In particular, let F

be an IPNC computing a function

f: N—>N
with £(0) >0, and let g : N—>N be defined by

1) g(o)=1,

11) g(n+1) = #(g(n)) Vaen,
i.e. s(n)zt(n)(I) is the n-th iterate of f at 1.
Now define the Petri net % as given in figure 4. Essentially,
& feedback mechanism is added to F which allows to transfer
the output of ¥ back to its input-place as many times as there
are tokens on the input-place i, of 9. The other additional

places (u, and v ) are part of the standard structure and en-

sure IC2 for 9. The dotted line indicatee the core of ’, cor-
responding to figure 2., To denote corresponding places in 9
and ite subnet F, we use the same letter and index O for F,

for the additional places in §. As in figure 4 for ¥, we will
in simplified diagrams only draw the interconnecting places and
indicate the ruf of the net by an oval-shaped line.

Lemma 5:
Let f, g, ¥, and 9be as above, Then 9 is an IPNC for g.

TR P R E
B B i Bt b i S Rt 1 Sy b R S
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Proof: Let qo be an iteratively conservative marking of T such

that ?18 a QO-WPNC for £, and let Sgp= {80’10'00}' Sgp’ and

Sgp'dcnote the set of interconnecting, control and operational

places, resp., of ¥, With F=(s°, ™, 1n°, out®) and
§=(S', '1‘1, _1,:9_1, 9_\;31) set

1 |

Sipvzz {51, i]. 01} »

1
S, = Sgp\’[ul’ V}} ’

cp
1o sl (s g
Sop *= 8N (8,0 8.)

(i.e. the operational places of 9« are all places of ¥ except
the control pldcu_, together with an additional place p).

It can easily be seen that 01 i= V19,€ C(S;p) is conservative:
when the token on vy 1s transferred to Uy it can always be re-
stored to V1. The sum of the tokens on the two places u, and

vy 1s constant as no token can be deposited on any of them

without removing at the same time a token from the other place,

and vice versa, As 91= Vip,» and "O‘C(sgr) is itself conservative,
80 is 91
Now let g* : N—>NuUfo} be the function for which Y 15 a ¢,-

WPNC, As property IC2 of definition 13 18 ensured by the stand-
ard structure of 9, it suffices to show (1) IC1 for g* in place
of £, and (ii) g*= g,

(1) It '€ RCQ (= set of all submarkings on S; reachable in 9

p
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from any marking that agrees with ¢ on Slp) contains u; in-
stead of v,» first some or all tokens on i, may be transported
into the core, then the us~token ie transferred to vy and tn
can fire, restoring the token on “1; As each firing sequence

which is firable at some marking is also firable at any bigger
marking, the maximal number of tokens obtained on 0, or oy does

not depend on whether o' contains Uy or vy, Hence, we may as-
sume w,1,8., that o'= \£| 9", for some Qc"cncoo‘ It follows imme-
diately from the structure of 9that R(':Q° is independent from

whether it is computed w,r,.t, 901' w.r.t, T, i.e. independent
from whether reachability is considered in 901' its subnet f:
Thus, we have to show
: 1

18] = e*(la])] .
As 0y is not an input-place for any transition in ! we may
assume w,l.g, @€ C(Slpu( 1)) Let a=z56#A with rec({1,,p,8,})

S¢ c(sgpulio,oo}) (see figure L4),

Case 1: 7=27
As ¥ 18 an IPNC for f we have for peC(SLpu{ivo]}) and ¢'e
vyRCy, with 8,60'—2» (¢, , that

18l =1 + £(|8]) - £(0)s 1 + £(|6]) = 1s£(la|), as there is no

token on B, We now show by induction for nz1:

f(n) s g*(n),
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n=1: g*(1)=£(1) as t" produces a token on 0, Which can be

transferred to io. The token on :I.1 is first used to enable
this transport and then to stert ¥ on input 1.
n-1—>n: g*(n) = £(g*(n~-1)) as the n-th input-token on 1, may

be used to start ¥ once more on the output so far accumulated

on o,, which is at most g*(n-1), As f is strictly monotone and

has no fixed points (£(0)>0) we obtain from the induction
hypothesis: £(g*(n-1)) = £(£(n~1 ))=t(n),

Hence, |4l = g*(|5])=g*(|al).

Case 2: |7|=m>0

A firing sequence of Y leading from sy to A9 (o'e viRCy )

has w,1.g. the form:

1

« 1 t' _me :
81700' =P 8105,171 —P 8,519, 17 2>

v M=l t' _m-2 ”
—F_ 820,2V1 —> P 80,0, 712> |
-~ QZ
: ]
."*961:‘70,-"1 — 8P n%,n"1—>A9
&

with GieC(’._Sgpu{io.oo}). 90,1 € C(Sgp) for 1=1,.,.,m, or can

trivially be simulated by such a sequence if 7 already contains

tokens on 8. Informally speaking, this decomposition is ob-

tained by breaking any firing sequence s1ao'—'->/)91 whenever
t! 1is fired.



G g AR 8 R A A R, A W
T T i

34

m+lei
NOW set C!i I= p + 61 for 1=1’.0.,m’ an+1 :=p.

It suffices to show

(') 'ai, sg"(|6|+i-1) +m+ 1 =1 for 1=1’60"n+10

For 1 =1 this comes from case 1 and property IC2 for ¥, as no
token of 7 is consumed and, therefore, no additional tokens on

o, can be generated., Shuffling tokens fron % to 10 which is

made possible by tokens on p does not affect the argument in

case 1, Thus
|aq] s g*(|6]) + m,

Assume that (#) is established for all i with 1sic< 1,5 m+l,

Consider the subsequence

a 0 ) 0 V, —>
1,-1%0,1 -1"1 1,-1%,1 -171
P 6y _190.4 -1V1—=>P 4 Vi=a, 9 Vi .
i, 1 0,1 1M i, 0,1, 1 1, 0,1, 1

We have po,i -1€ RCQO and, as % is conservative, we may assume
o

that -(’o,:l.o= % -

From IC1 for ¥ we obtain, then,

6, | =2(|s 1)
10 10-1

and hence

ay |=]6; | +m+1 <4
log |= 1 1, 0

= f(|a1°_1|+i°-m-2) + M+ 1 - io

, e s T L e e St D R AT R B S R S RN
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\

= f(g"(|6|+io-2)) +m+l =1 (ind.hyp. )
< g'(l5|+i°-l) s+me 1l

The last inequality comes from the fact that with an addition-
al token on s; (or p), ¥ can be applied once more to the tokens

so far collected on o, and that the transport of tokens from

o’
% to 0, can be postponed, in any case, to the very last,
For 1o=l+1 we obtain, therefore, |

lag,ql= 18] =g*(|6l+n)=g*(lal) .

Hence, IC1 holds for 9.
(11) We obviously have
g*(0)=1=g(0) and g*(1)=1(1) =g(1),
Assume that g*# g. Inspection of the net ’sho’vm that clearly
g'z g as we might first fire t", transport all tokens of i, to

p and then, as long as there are tokens on p, shuffle all toe-
kens from o, back to i and apply F, consuming one of the to-
kens on p. In this way, we can iterate ¥ ae often as n times

if 11 initially had n tokens, and as T iteratively computes f
and we start off with one token on %, (after firing t") we ob-

tain by this firing sequence at least f(n)(l)=g(n) tokens on
L (and thus also on 04) after the last iteration of F. Let,

therefore, n>1 be minimal such that
511?(’,-—1»/]01 'for some & C(S’) with |p|>g(n)‘and some z‘t.'(']t'1 .

T is w,1,.g. of the form
n 2 LI A v T " 72 "ot
8,170, —2>1°6,v, Qo—_.>ps°61v,9°——>p621100————>p53v100-———>
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with 6,,6,,8.¢€ C(8% {1 1) ', 0. €RC T, € (T°)+ such
1992493 op 1 20291 /2 950 9 90? U1 .

and 7, € {t}*, as

that the first transition of T removes s,

it suffices to have one token on 8, at a time gnd u; because
of IC2 for ¥, the firings of t can be collected in T, after T,,
We may also assume that 8, doeé not contain °, bociuso shuff-
ling them to 1, (enabled by p) would certainly yield a bigger
output, As, reaching p62v1 90, the last token on p actually 'aa1

not used, and as n is l:l.niu.l, we have
|6,| 5 g(a-1).

Cage 1: 5, contains tokens on Oge |
These tokens woré placed on 0, by Ty Because of IC2 for ¥ we,
therefore, have |63| = |62|, and because of IC1 for ¥

|vﬁ| s f(|63| ) s £(g(n=1)) = g(n),
Case 2: 62 contains no tokens on 0ge
Then T,=A and 8= 65, IC! for ¥ ylelds again

18] = 2(|65]) = g(n).

Together with the remark at the beginning of (i1) we thus have
shown g*= g. ,
qe.0,.d,

We want to remark that the construction of ? from Tia not op-
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timal concerning the number of additional places and transi-

tions, One might observe that the places v, and v, are not ne-

cessary, thus obtaining the net of figure 5a) which is, of
course, no longer an IPNC, Using transformations discussed in
[14] this net can be simplified even further (figure 5b)), We
note that the net of figure 5b) has only one more place than £
Without proof we state that both nets of figure 5 are WPNC's
for g (with the modification that i; and o, are no longer only

input rdap. output-places of transitions of the net), and that
the construction by which they are obtained from ¥ can be ap~
plied recursively, yielding WPNC's for the iterate of g, its
iterate etc.. We think, however, that the standard structure
facilitates the proof of lemma S5 and unifios the recursive ap-
plication of the comstruction.

We summarize the results of this section in

Theorem 2:

i) (VneN:-]-*n)[."n is a A-WPNC for A with designated places
Spr ipo °n];

ii) sizoc4h)= 0(n-1log(n));

111) Rk ,8.1%) 1s finite,

Proof: (i) Using the IPNC of lemma 4 for f(x)=2x + 1 and ap-
pPlying the construction of lemma 5 recursively n times we ob-

tain by lemma 5 an IPNC for A (with iteratively conservative
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Figure
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warking °n" D vy ).’ Inserting between s, and th‘o”- trunaitio'n_ ’
corrupondins to AL :Ln ﬁ.guro 4 an addit:.onal plaeo and a
trmit:l.on vh:l.ch 1n1t1t11ma the mnag % we thon got a A-

WPNC Jﬁ for Ln |
(11) 1s u-odut. frcn dcfinitian 6 as in m:h stop ot tho re-
cursive :o_x‘utructtpnto.«;cancmt number of places and arcs is
added.

(111) Each iteration of ¥ 4n ‘9 consumes & token from s, and

thus properly decreases the number of tokens on i,, p, and 8.

We may assume inductively that ¥ permits only finite firing se-
quences (the IPNC of lemma 4 for f(x)= 2x + | certainly does

s0). But as the loop between u, and v; in 9 consumes tokens
from s; we conclude that the reachability set of 9, and hence

recursively, that of ”‘h is finite for the given initial mar-

king, .
q.eodo
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V, Boundable WPNC's for polymomials

In this section we are going to construct WPNC's for multivar-
iable polynomials with nonnegative integer coefficiemts iith
the special property that they are boundable, 1.8, the number
of tokens on any place in the markings of marking sequemces of
computations can essentially be bounded by the size of the in-
put. The basic multiplier nets have also been introduced in [7L

Lewma 6:

v n
64
Let p(x,,...,x.) =12.:,"1 I xJ 3 be a polynomial with positin

integer coefficients 8y, and eijeﬂ for 1=1,,,.,¥y J=1,.0.,0

There exists a A-WPKC P for p,

Proof: We shall build up P ia two steps from basic units which
serve as multipliers and which can be -c'onnoctod teo form weak
computers for momomials, Several of these them constituto;P .
(1) The net T of figure 6a) has the property that |

n, n
nyn, =mex{k; 1 'J °r250%ra for some a} for a1l (=, "2)53..2'

Obviously, nyn, tokers on o can be achieved by transporti*s all
n; tokens from u to o and u', and from u' back to u, as o#ton
as a token on the control places r! and then r enables the
firing sequence tn1 followed by (t° )nl. This can happen oilctly
n, times which also shows that RN, is the maximal aumber of

tokens reachable on o, As the number of tokens onm i, u, and u'




41

cannot increass, and as each 'cycle' (firimg sequence) e {t]*{v]*
Consumes a teken from j, an initial marking of 7 of the form

'ler permits no infinite firing mumu.

(11) Now we commect d imstances of T te form the net J in the
YAy shown in figure 6b) where each box stands for the part of
T surrounded by a dotted lime in figure 6a) (note that the in-
put-places are commected to the previeus output-places). Let ¢
denote the product of the places correspoading to r of figure
6a) 1n the imstances of J, Then repeated application of (i)
yioldl tor M: |

ﬂ J"“‘{k' ]—11 p—-->ok9a for some a} for all (n,,...,n‘i

€ ld 1,0, H weakly computes the hmwas neaomial a ]—J 4

of degree d. likewise, initial .u.rkucl of the form c ! 330

have no infinite firimg sequences,
(111) In order te obtain a WPNC Ptor the polynomial P, ¥ mo-
nomial nets .4,....4, (see figure 6¢c)) with suitable degrees

are combined sharing a common output-place o. The net P has in-
put-places 11900091, (to avoid ambiguity, we sssume that the

Places in the memomial nets are given distinmct names), which
deliver their tokens to as many input-places in each moncmial
net as the degree of the corresponding variable in the monomial
indicates. A monomial net for a constant momomial a, (nJ >0)

consists just of ome place ¢4 and & transition comnecting it
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to o, The places c, (figure 6c)) are those corresponding to ¢

in figure 6b), and the places referred to as 'left control pla-
ces' are those corresponding to r in fisuro 6a), It 1is oasy to
see that Pis a A-WPNC for p and that each marking .2.1 JJ with

(Ryy0.0yn) cN® permits only finito firing sequences.
q.e.d.

A very important obssrvation about the multiplier net J of fi-
gure 6a) is that during a computation nene of the 'interaal!
places u,u',r,r' ever contains more then max{1, ‘t} tokens

where n, is the number of tokens initially on place 1., Also,
one cycle which outputs another n, tokens on o can be performed

if just one toﬁon is available on j.

Let #=(S, T, in, gut) be a Petri nmet, S'C S, a a marking of #,
and T a firing sequence of J/ starting at o, We say that r is
bounded on S' by N&N iff all markings of the marking sequence

generated by t contain at most N tokems on any ef the places
in S,

Considering the above remark about the multiplier nets we are
going to define a special class of functions, These functions
have the property that they are computable by WPNC's by firing
sequences which are bounded on the non-designated places by a

(simple) function of the arguments,
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tion 14:
Let £ : ¥*—»N, ¢ : N—>N be functions. £ is E-boundable 1f¢
there exists a o-WPNC F=(5, T, in, out) with designated places
0,11.;..,1-,0 for f such that

\

(VNBH,V(H1,.¢0,%)‘5{0.1,.0.'N}‘,vk c{O,‘.ooo.f(n"ooo"-)}
Jrer™)

n a \
[aﬂijjo —T>0%x for some acC(S~ {o}) aad T 1s bounded by g(N)

on S\{8,1y40.0y1 ,0}].

Theorem 3:

Let p cl[x,,....x-] be a polynomial with nonnegative integer

coefficients, |p| := maximum of the coefficients of P, and
VNew: g(m = N+ |p].

Then p is g-boundable.

Proof: Consider the WPNC Pof figure 6¢c), The input-places of
the monomial components of P receive tokens only from the pla-~
ces s and 11,...,1.. Becauses of the structure of .'P, it suf-

fices to show that for the monomial net 4 of figure 6b) with
initialized left control places, up to N tokens on each of the
Places i,,,..,1,, and at most |p| tokens om c, there is a firing

sequence of # producing the desired output which is bounded by
g(N) on all places but 0. But, referring to the observation two |
paragraphs above about the multiplier nets, this can be achieved
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by, recursively, firing a complete cycle in the rightmost J-
component of /M which has at least one token on its upper input-

place,

q.e.d,
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Vi, Two m cat } 4 WPNC'g

When reducing BPI to the containment problem for reachability
sets of Petri netes only the markings of the designated places
are of interest. In [8], a method 1s discussed which enables us
to forget about the non-designated places in the general case
vwhere the roachnbility sets needn't be finite., This construc-
tion modifies the Petri net computers in such a way that in an
additional stage after a computation transitions are enabled
which can feed in or consume arbitrarily many tokens on each
non-designated place, Hbv-ior, this coa-t:uption is not appli-
cable in out case as it would produce Petri nets with infinite
reachability sets. But the result of the preceding section
makes it possible to introduce two modifications of polynomial
WPNC's which are also guided by the idea of factoring out the
marking on the non-designated places and which do preserve fi-
niteness of the roachability sets,

Informally speaking, in order to test whether (p,q,n)e BPI we
construct appropriate WPNC's P and @ for P and q such that in
P a11 non-designated places are suitably bounded whereas in @
the marking on those places may take on nny'vnlun up to this
bound, and only finitely many values above it,

Let P=(s, 7, in, out) be a A-WPNC for the polynomial pelN[x,,.

cessXy|, 88 constructed in lemma €, with designated places 8,
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11seeesly,0, 8ot 0:= S\{8,1,,...y1 ,0]}, and let 0° ve a copy

of O (disjoint from 8), The uaiquo element in 0° corresponding
to uc0 will be denoted u°,
Now define the Petri net 5= (s, Tv; in', out') as follows:
8" := 8,L0° ,
T =T,
in' := _1_9_u{(u°,t); u €0, (t,u) cout}, in the multiset-

out' = g_g_t_u{(t,u°); ueO, (u,t)ein}. sense

i}

lowma 7:

Let p, P, and .2' be as above, set for NeN g(N) := N + |p]

' N
and 9' HS u]lc n“ ).

Then g' is a p,.wm for p restricted to {0,1,....3}-.

Proof: Because of the definition of in' and out', the firing of
say transition in T' wHich removes tokens from a place uc O adds
Just as many tokens on uc, and a transition which adds tokens

to u £0, removes the same number from u®, T™is is also true with
O and 0° interchanged. Thus, the sum of the tokems on u amd u°
always equals g(N), for all ueO, Furthar; each firiag uoquonéo
of P starting at a €C(S\0) which is g(N)~bounded on O, is also
firable in B!, starting at a0y, and conversely, But from theo-
rem 3 we know that p is g-boundable, and that, in fact, for sach
input tupel (ny,...,n. )e{0,1,...,N|® and each k with O=k =

n .
P(n1.....5)y P at10ws o firing sﬁﬂuonco T with -D:.;J‘—T-aoka
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for some a£C(S\{o}) which is bounded by g(N) on O, Hence,
n :
-
sl Iiddqu-faok/) for some 2 C(S'\ {0)) also holds. Together

with the fact that each such firing sequence of £ can also be
n
executed on P, starting at lgl{idj s the claim follows,

q.e.d,

The following thecrem summarizes the results.

Theores 4:
Let Psl[x,,...,x.] be a polynomial with nonnegative integer

coefficients, and set for all NeN g(N) := K + [p|. Then there
exists a Petri net 3. =(8,7, in, out) with m+3 designated pla-
ces !,1,,..0,1.,0, md b €8S such that

(1) ’i, is a b‘(l)-'m with d.’i’s“t'd pl“” sip::"{"i"ooc,i.’
o} for p restricted to {0,1,....1‘}.. for all NeN,

(11) Let, for u S, nelN, <> denote the set {u, A}n. Then

. n
(VNCN, V(n1,...,l-)eﬂl)[R(£, .]J——Iigij(N)) g

n.
@ Tfeap™ T, <omtee? o)
. =1 ueS\SiP

In particular, .
' n
(VNCN,V (n1 ,...,n') 4 { 0‘,1 ,.,.,'}.) [R(ﬁ’.ﬂijjbs(n) is

finite ] o

" s R S v A e A O i e RS e R T (e L A T T
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@19 s1ze(F)) = 0(aize(p) 1og(size(p))).

Proof: Take the net ' of lemma 7 and add & place b and a tran-
sition which has b as input-place and all uc 0° as output-pla-
ces, Call the new net qz. Together with lemma 7 this implies
(1). The number of tokens on o is bounded by the WPNC-property
of 12, and the number of tokens on each non-designated place
(= 000° of £') 1s bounded by g(N) by the construction of ' as
noted in the proof of lemma 7, As the designated places s, 1,,

eseyl, and b are only input-places (11) helds,

Condition (1i1) follows from the observation that both the num-

ber of arcs of multiplicity one and the number of places in F

are bounded by the sum of the degrees of the monomials of p

times a constant and that the code for multiple arcs in iz uses

space proportional to the code for the coefficients of p.
q.e.d.

The second modification we are going to introduce has the pur-
pose to 'blur' the marking on the unimportant places of a poly-
noaial WPNC sufficiently, preserving at the same time, however,
the finiteness of the reachability set,

Definition 15:
Let £ : N®—>N be a number theoretic function, T=(S, T, in,

out) a Petri net. 7 is a blurring WPNC for f iff }~has n+5 de-

signated places s,i;,...,1,,0,Cy,C5,e €S such that
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1) (Vllell)[Tu a .".mvc for £ w.r.t, 0.1,,...,1‘.0];
. i f XX XN} )
11)'(VN€II,V(n,,...,n.)eﬂ')[]:I<u>N<0> (roeeeste) ¢
n .

»
R(%, 'D‘;JJ)‘] , Where

0CS 1is the set of aon-dui‘gutod Places

(Note that the reachable lu'kingl coasidered in 11i) don't con-
tain tokeams om o;, oy, and o).

Lot q cN[x;,...,x ] be & polynomial with momnegative integer

- coefficients, Then there exists & Petri net Qg (8, T, in, out)
such that

(1) G, 18 a blurring WPXC for q with designated places s,1i,,..
....1.,o,c1,ca,o €8s |

n
(11) (Vn e,V (ay,...,0,) £{0,1,...,8}™[R({,, -D1;JON> 1s

: - finite]
(111) size({,) = O(size(q)-log(size(q))).

Proof: (1) Construct a A-WPNC ( for q, as in lemma 6, with de-
signated places s,1,,...,1_,0. To cbtain , ( 1s extended as
follows (figure 7): -

2) an erasing transition is attached te each non-designated

place u of {, 1.e, a tramsition with input-place u and mo out-
put-place, This is indicated in the diagram by a transition
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im $he .bex fo» (! which has only an entering arc.
b) add the places Cys ¢, , and e, and the transitions shown in

the diagram, When the net is started with one token on = this
token emables { to output tokens on o as long as the one token
received on ¢y from s remains there, As soon as it is transpor-

ted to ¢ @ is frozen and cannot produce any more output, Now
t. may fire up to N times if there are initially N tokeams on o,

thus gathering at least N tokens an all non-designated places
of Q,.. Then, finally, erasing transitions can generate any num-
ber of tokens between zero and N on each of the non-designated
Places, Obvioualy, the eraéins transitions don't affect the
WPNC-property of (] as they only decrease the markings. By the

construction of Qe, if ty ever is enu’bléd, the output on o is

frozen, so (. is an oN-WENC for q for all NeN, and it generates
any number of tokens up.to at least N on the non-~designated
places, Hence, ¢, is a blurring WPNC for q.

(11) For (n,,...,nm)e{0,1,...,N}m, let M>0 be a bound on the

- markings of the non-designated places of (!, reachable from
n
’ﬂijj‘ Such a bound exists as the reachability set of 2 at

the given initial marking is finite. As ( is frozen when t, is
enabled, M + N is an upper bound on the markings of the non-de-
signated places of Qe which are reachable from s;':[ijjen. But
this implies (1ii),

(111) follows in the same way as (iii) in theorem L,
d.e.d,
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VII, Reduction of BPI to FCP

The results of the previous sections now enable us to reduce
BPI to FCP efficiently, We prove

Theorem 6: _
BPI is polynomial-time-reducidble to FCP,

Proof: Given a triple (p,q,n) with nc N and p, qel[x)y000,x,]
for some m €N, we first construct the two Petri nets 3 and
@, as indicated in figure 8a) and b). Esch net comtains a copy
of the A-WPNC & for A of thecrem 2 and the bounded version
ﬁ of a WPNC for p of theorem 4 resp, the blurring WPNC 0. for

qQ of theorem 5 (The start-place and the input-places of the
latter have been primed in order to avoid confusion with the
corresponding places of ""n)' The places e, Cys and c, of 3

are needed to match the corresponding places in 0«, of a., which
don't get blurred in Q,., W.1.g. we may assume that @ and a,,;.

have the same number of places, If this is not the case a pri-
ori one can add further dummy places either to 3 which aren't

connected to any tramsition, or to @‘ within ag, 1,0, with

erasing transitions attached to them and comnected to the tran-
sition t, of (, (figure 7). The count-places in the two nets

'remember' the maximal imput to the polynomial WPNC's, Clearly,
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@ and Q‘, can be constructed from (p,q,n) in polynomial time

(note that in definition 10 the unary length of n was used to
define size(p,q,n)). To conclude the proof it suffices to show

Legma 8:
(p,q,n) € BPI<> <(L,, 8),(Q,, s> e FCP,

Proof of the lemma: We assume that the two sets of places are

ordered suitably, e.g. as follows: first 8, then the places of

the drn-cdpies (in the same order in both nets), then count, s',
1{,...,1;, and o, followed by e, c,s and C,, and finally the

remaining places in the polynomial WPNC 's, in any order and in-
dependent from each other, including place b of 6.

Assume first that (p,q,n) € BPI and considof' some marking a of

?,, reachable from s which contains c', n]',i...,n"l, k tokens on
the places count, 1;,...,1!, o, respectively. As the places 1,
...,1", received c' tokens each from ""n and as those places can-
not receive tokens from other places of fi, ﬁ, used up c' - n&
tokens from the place ij (for j=1,...‘,m). As \71), is a WPNC for
p this implies k < p(c'-n{,...,c'-nl'l). The marking on the non-
designated places of in and on b, e, Cy» and ¢, is bounded by

c' + max{||p|, ||a]} because of the properties of 52 (theorem 4),

Clearly, as the di-componenta agree in j& and Q,,, the same mar-~

king is reachable in Qdaa far as the places in "4;1 and s, s°',
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and count are concerned, Qa may now use ¢' - nj tokens from
each of the places 1],...,1' in {, and output any number of
tokens up to q(c'-n{,...,c'-n];l) on o, But as (p,q,n) € BPI,
st(C'-n,',...,c'-nl;l). In the final stage of ('s computation

0, can blur a1l its non-designated places up to at least c'
max {|pl, jql} and then reach a marking with no tokens on the
places o, cy, and ¢ of Q*, thus matching the given marking of

§i. As the reachability seta of & and @ are finite and there
1s no feedback from &, to J'n, B, 8),( d,, s> ¢ Fcp,

Now assume conversely that <(f,, 8),(G,, s> cFCP, Then a for-
teriori the projection of R(@, 8) on the places count, 11',....

1rs 0 18 contained in the corresponding projection of R( Qs ®).
Consider such a submarking of \ﬁ with ¢, n;,...,nﬁ, k tokens,
resp,. As J,‘Z is a WPNC for p we have OSksp(c'-n{,...,c'-nﬁ),

and each of these values for k is possible, But, as the same

submarking is reachable in (,, and as @, 18 a WPNC for q this
implies that q(c'-n{,...,c'-%)zk for each k with O=k =

p(c '-nl',...,c'-nl;l). As count may receive any number of tokens

between O and A(n) we obtain, therefore, p(c'-nl',...,C'-n,'l) =

q(c'-n,’,...,c'-n&) for all c'e {0,1;...,A(n)} and all (ng,...,

n'de {0,1 secesC'} . Hence, (p,q,n) € BPI,
q.e.d,
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We can now at once derive our main result:

Theorem 7:
FCP is docidable; but the complexity of each decision proce-

dure for FCP exceeds any primitive recursive function infi-
nitely often,

Proof: Each fast decision method for FCP would yield a fast
algorithm for BPI via the reduction of theorem 6, and would
thus contradict theorem 1,

q.0.4,

Corollary: The finite equality problem FEP is decidable, but
the complexity of each decision procedure for FEP exceeds any
primitive recursive function infinitely often.

Proof: Hack's reduction of the general inclusion problem for
reachability sets to the equality problem [8, Pe 122] preserves
finitenese if the reachability sets of the two original Petri
nets are finite, The reduction can be effected in polynomial
time, Hence, the same argument as in the proof of the theorem
applies, |

q.e.d,

We remark that theorem 7 and its ccrollary actually do not de-
pend heavily on the encoding used for Petri nets and polynomials
a8 long as the ratio to the particular code chosen in this the-
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8is 1s bounded by a primitive recursive function, In particu-

lar, we might use log(n) instead of n in definition 10 for
size(p,q,n).
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VIII, Conclusion and Open Problems

The Petri nets that were constructed in the course of this
thesis to demonstrate the co-putationai complexity of FCP and
FEP had a priori finite reachability sets. chkot:'s upper
bounds for the boundedness problem [16] show that the com-
plexity of the containment decision procedures doss mot in-
crease substantially in the general case 'hoh this information
is not given. Thus, the non-primitive rocnrlivo lower bound
for FCP and FEP 1is 1ntr1nni¢111y due to the containment pro-
perty for reachability sets vhich ~ a8 stated in the intro-
duction - becomes undecidable when we consider the class of
general Petri nets,

FCP and FEP are the first decision problems that are uacon-
trived and whose decision prododurol are known to be non-pri-
mitive recursive (as far as one accepts Petri nets and vector
addition systems as 'natural' concepts)(we consider BPI as
contrived because the non-primitive recursive complexity is
obtained by explicitly building in a ROA-primitive recursive
function as upper bound for the arguments; such a special ‘'de-
vice' does not appear in FCP or FEP),

Another subclass of the class of gemeral Petri mets for which
the containment and equality problem are kmown to be solvable
are the reversible Petri nets, It is pot difficult to see that
the reachability set of a reversible Petri net is a semilinear
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set [9], and the resulte of Biryukov [4] and Taiclia [18]
yield a comstructive unmiform method to obtain this semilinear
set. As containment and equality of semilinear sets are de-
cidable so are th&'corrolpondins properties for the reacha-
bility sets of reversible Petri nets, It is not known, how-
ever, whether these problems are also noa-primitive recursive,
In [5]; 1t has been shown that the reachability problem for
reversible Petri nets is cxponnqtial space complete under log-
space transformability,.

The concepts used ia this thesis do mot apply to the reacha-
bility problem because WPNC's are not forced to produce some
number of output-tak.nc; and 20 way is known to build 'strong!
Petri net computers for polynomials restricted to a fimite do-
-Ain In fact, the existence of unrestricted ‘strong' Petri
Ret computers for polymnomials (or evenm only for the squaring
fumction) would imply the undecidability of the general reacha-
bility problenm, contradicting the recent results of Sacerdote
and Temney [17].

Other 1n§ortlnt classes of Petri nets which have been studied
in detail are the persistent nets, and within this class, the
Proper subclass of coanflict free Petri nets [lo, 12]. It 1is
known [12] that the reachability sets of persistent nets are
semilinear, but no algorithm has been found so far to obtain
these semilinear sets. In [10], among others the complexity of
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the reachability problem for the restricted class of l-con-
servative Petri nets (which have finite reachability sets) is
shown to be polynomial space complete, Besides this special

case, no nontrivial bounds are known for the finite reachabi-

1lity problen,
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