LABORATORY FOR
COMPUTER SCIENCE

(formerly Project MAC)

» MASSACHUSETTS

INSTITUTE OF
TECHNOLOGY

fa

MIT/LCS/TR~186

A STRUCTURE MEMORY FOR DATA FLOW COMPUTERS

William B. Ackerman

This research was supported by the Advanced Research

Projects Agency of the Department of Defense and was

‘monitored by the OFfice of Naval Resea¥eh under
Contract No. N00014-75-C-0661

\

—/

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR-186
A STRUOTURE MEMORY FOR DATA FLOW COMPUTERS
by

VILLIAM. B. ACKERMAN

August 1077

Massachusetts Iastitute of Techuology

Laboratory for Computer Scisnce
(formerly Project MAC) ~*

Cambridge ' Massachusstts 02139

2

by

iWhWW#ththMdM

A data Hew computer iz one %‘Mmmurrmy of
MMM.WMM“M’OMM
sraph of the program. To huwlle arrays and dele stnactures afiectivaly, 2 dets flow computer
mthw.ma'hammhﬁw~mu”mwm
transactions. MMMJW&M«IM. A “cache” mechenism is
communioste enly through tin transaission of fwad sine "pachels® of dela.

THESIS SUPERVISOR: Jack 8. Denwis |
TITLE: Frofessor of Computer Sciance and Engineering

3
ACKNOWLEDGMENTS

I wish to thank Professor Jeck Dennis for his encoursgement and support
through this ressarch and for providing an lntollodunﬂy stimulating environment n the
Computation Structures Group. | would like to thank Glen Mirsnker and Lynn Mentz for their
heipful comments on parts of this thesis. The Laborstory for Computer Science provided
facilities for the preparation of this thesis. |

This ressarch was supported by the Advanced Ressarch Projects Agency of the Department

of Defense and wes monitored by the Office of Neval Resserch under contract no. NOOO14-
75-C-0661.

]

onses i rel soaag soel heselend daanl 37 deiw
: {gﬁ‘_‘

W peitaeu iy Glaior e ny gnteorgng 13} bag drisesa m

Tabip'otGontonld ' i s e B

e anmn vamge s it vl nesd) slew] s 9 abw 60
s
$
12
17

§ BE8asasgeray

-Appendix § | | "
e—— o e

sainmn wghe "%‘t‘:%%ﬁ Joontt 3

.

owrmph deaiow® freerell tednsvih sdl U ndogiue pew SWeRe B
44 te a2l edi S Benlinem e bag sensisag Ty

. I

‘z-:ﬁ?

:G”,‘~: ?J‘i ﬁ:‘?&f tfﬂfﬁ‘zf’ i. .:W'%’; A% 54".@3“32 w,“ga =%¢\‘$n P
EEER e sr.,f%giﬁ%f

Sesdt gkt o pmollnwasy % el il

o

i

¢

0.0 INTRODUCTION

A data flow computer is & mechine with architecture radically different from
that of existing computers. It can perform ‘computations - simyitanadusly on many different
parts of a progrem. AWMMMMvaQM&mnMcM
utilize all of them simuitaneously, sach cncuﬂm & different instruction. o

To handie arrays and other deta structures, » dets flow computer must have a
deta structure processing facility - and memory that: hes o similer. facility to perform many
operations concurrently. Such s dets siructure memery is the subject of this thesis.

A data flow camputer owes its great speed to its sbility to perform many
operations at once, sven though each individual operstion is no faster than.on e cosventions
computer. The same is true of the memory. The mamery to be presented here hes a
retrieval delay just ss grost as conventional memories, sinee 1o new circult technology will be
Proposed. However, it has an enormous dats trensfer rate because of ite sbilty. 1o handle -
concurrent transactions, This concurrency is mede. possible-by sn umususl -type of interface
celled packet communication. : ‘

Section 1 of this thesis is an overview of data flow computers and the type of
memory that such s computer requirss for structure processing. Sestion 2 is & treatment of
packet communication systems, shawing how their behevior is defined. In section 3 the basic
memory unit is described, slong with a "cache™ mechanism and an “interieaving” method to
improve its performance. In section 4 an implementation of the memory using shift registers
or magnetic disks will be siven, showing how the.dissdvantages of such devices can be
overcome through the use of packet communication. Sectign-5 exemines some sspects of the
processing unit that uses the memocy, snd section 6 sxemines: the: "desdiock” problem snd the
cost of overcoming it. Section 7 presents suggestions fer. future:rusearch.

1.0 DATA FLOW COMPUTERS

As the need increases for ever faster compulers, one technique for improving
performance thet has draws considerable intsrast in the fosl fow yors s o radicelly new
design known as » dpta figw spmpuler (6] {73 [11}118]. A comventionsl computer has only
one lacus of cenirel, thet .is, one peint in the pregrem o sy given instant al which
instructions are execules. Ability te execule mave Than b instvuction st s time can improve
performance significantly, and some computers use s insiruction lookshead to achieve this [3)
[9]. Howeves, the benetite of loohahesd methede: are Nimiled, and such computers are
enormously camplen. Olher sttempis {0 incresse thnlruction consurrency include * lruy
processors” [16], but sush machings e infieible e extrom ' Mbmnm.

Ammmmmmwwu.wmm
internal reprasantetion of the sewrce pregrom. . Insleed of repradenting the progrem as » list
otimtmchmhh.m«dhomm,hmukmﬂogg_mw
schema A dela fiew acheme is » divected graph whose Woded represent instrictions and
- whose arcs show the dale dependence’ song ineiructions. The erider of instruction execution |
is delermined soiely by the duts dependence - sn indiruction is ezécuted when ol of its dete
sources have produced resulls end ail of ils destinetions ere resdy 1o réceive deta. This
sliows meny inelructions Uwoughout the program 10 be exsculed simultsnsously.

The date in & dals flow progrem can be medeled by “tokans® thet reside on the
arcs of the graph Each orc may contain of mosl ore Tobon. mmm for most
instruclions is as feliows:

An instruction (sther then & merge or gale) is resdy for execution whenever ail
of its input arcs contain tokens and ol of ils oulput arcs aré ewply. When an
inelruction is exscuted; the iokens' on the input srcs are sbsorbed. The
function denoted by the instruction le compuivd, using the velues in the
sbsorbed tokens ae input dats. Ammm»-mmmuum
on mhwipui arc. '

7

There are a numb-f of ways of handling decisions and iteration control.
Perhaps the simplest is the use of special instructions M, T, and F. These receive a boolean
value on one input (the “control” lnptﬁ)mduulnoeomolthopmmofdnhfrom another
Iuput Their exscution rules ere s follows:

The M (merge) has a control input and two deta inputs labelled T and °F". To
'be ready for execution, thers must be a boolesn token on the arc leading to its
control input. Furthermors, the src leading to whichever of Hs: T or F input
matches thet boobmlobnmudhwcatohmmddtmm arcs must be
ompty. wmnn.mm-d.mmtommmmumnm-w
indicated by the control token are absorbed. Copies of the !onn at the
selected data input are placed on sach output arc. Input tokens ere not
required st the non-selected dats input, end if any sre present they are not

The T (true gate) and F (false ;ah) imtructbns have a controi input md a dats
input. Thoy are rndy for omuﬂon whonovcr both input qrcs conhm tokens
and ali output arcs are .mp!y Whon thoy uoﬂo‘x.cutod. tho inputs sre
lboorbod. lfthmmmmthmﬁmwrwtmmof
thdotalnpﬂmﬂmdonﬂnodpﬂm !fmt.mhhﬂnmplmd on

the output arcs.

Constants can be generated through the use cf hm)qm of ne lrgumms. An
instruction to perform such a function has no inpm arcs, 80, in sccordence with the execution
rule, it places tokens on its output src as fest as they are removed. .

Here is an example of & deta flow schems to compute the factorisl functiom:

Boolean inputs fo M, T, and F instructions are drawn ss open arrows. Tokens existing in the
initial configuration of the pregram sre drawn ss filled-in circles.

mmw-mnm-emmm-munmmm bhas a very
important property - I is gmgg This means that the output of the program is
dnhmkudonlybylhom mhwuhmumm-mmm Al
rmduwhnmrmﬂhhmﬁtwmm'mwm Momimcyfollows
from the facts thet

(I)ElchMmcﬂonpr@m.m&vﬂehho!mﬂmoﬂydhovﬂmof
MMMMHMMMMMEM ‘

¢z)mmmmmmmﬁmmmnmmmm.

(3) The execution rules, and fact (2) sbove, quelify the schema as a valid
interconnection of sutonomous communicating systems.

,.'9

It is sn established result that such an tnt.rcénml@ of.dotorminite- syshms is determinate
[(1na). R

1.0.1 DATA FLOW COMPUTER ARCHITECTURE

The memory systom and’ structuu pwmscr that nro tho cubjoct of this thesis
are intended to be pm of » computer of the type ducrlbod by Donnh and Mlsunn [6] [73.
Such a computer is composed of unis which use packe! commypication (8] for transfer of
data. The only means of data tranamission among these units s the. :rmmmaon of fixed size
mosugu cetled go_c__ "There is no clock or synchronim informﬂon.

The four main pam of tho data flow compuur ”e tho imtr%uon memory,
arbitration ne tworb Q ‘L“L md tribgglon notwork. For :tmclm procomn(. thor
struc trol!! md strggtgg x are oddod. ‘ :

distribution _ o arbitration

instruction
memory

functions!
‘ uni(hv

structure -
controlier

To oxocuh"a dah flow\ program, its schema is oncodod into the instruction
memory. Each cell of the memory contains one instruction of the schema. At the time the
program is loaded, each cell is filled with the operation code (srithmetic operation, merge,

10

structure operation, elc) and the address of ils mm The lstter are the cells to
which outgeing arcs point. The instruction colis also have rm registers to contain
_incoming “tohens”. When sil necessery recelver regitters become full, an instruction cell emits
an operation packat, consisting of its operation case, the dats frem the receiver registers, and
the destination addresess. |

Any given program has tmd number of imimhn cells, oach sending
owaunpmhodyw Mdmdmﬂmbvthy bitration
MW.MW#”M mmmm«mmam
mmm“wummuwm“nmhmmwmts
Alnmmummmmmmnum@wm
TM!MMM&MMMI&MWMNMMJ&Q;&
mm-mwmammmw-mammw
result. mranpbmmmmoMmeyMus
and sent to the sppropriste receiver ragisier of the spprepriste instruction cell. (The
destination address includee the receiver number.) I the insiruction is 3 structure operation,
Mokmmmmeummtchmywrum
result packets back during the course of its compulation.

The precading description doss net quile implament the euscution rule: An
instruction coll should wait until its “output ercs”, thet-in, he recsivers of its destinations, are
emply before issuing an operstion packet. Thers is no way far se inetruction cell to “see” its
destinstions’ receivers. The problem is romedied by using, where nacessary, acknowledgment
tokens sent from o cel’s destinations 10 the coll llew, The achnowisdges are troated like
invisible srguments, except thet they contain no date. When a cell is executed, it may send
result packets 10 some destinations and acknowietiges o bthers. A cell is not ready to be
oxecuted until it has received all necessary real asguments and all necessery acknowledges.
Acknowiedges sre placed in the program whers nesessary te ensure that, when a cell has
received all arguments and acknowledges, its destinetions’ receiver registers will 'be empty.
mmmmummmmmumumm
later.

i1

A constant need not be implemented as a separste node of the dats flow
schema. It can simply be loaded into the receiver register of the instruction cell that uses it,
and marked in such & way thet the inetruction ceil knows that thet register is always full,

An additional part of the data flow computer, not.shown in the preceding
cic!rm is the host computer. This is a computer of conventional design, which has access. to
the memory units. and control tunctions of the data flow computer.. It is used for diagnostic
testing and for initisl loading of the instruction memory end strusture memory. It does not
participate in the actual data flow computation.

1.1 DATA STRUCTURES

In order 1o handie arveys and dats siruciures v & dits flow computer, it is in
most cases nacessery 10 sllow singls tehions to have srlirs siructures as their values. (Some
programe which use srrays of fixed size, such as Fourier irensforms and other signal
processing eigorithme, con mehe @8 with srreys of Wniruclisns with one token on each arc.
However, this: approach i impracticel for vary Wrge arfays or fov dymawic structures.) For
The simplest typs of siructure thet pernits fult gamerslity i (s Bingry tree, which is
recursively defined: & binery tree is on clomsilary “Sijicl® from some sef, or is @
concsienstion of twe binary tress. Such tress form the basis for the progremming langusge
LISP. [4] [13] For definilonsss, the structures wsed in & dale flew computer will be assumed
to be binary trees.

m'munm’mdmmmmmn that the
computer cen handle, plue the speciel object nil. mmmmimm
integers, beolesn veluss, resls, efc,

The principsl operstion on o dets structure is selection. A simple selection
takes & structure and s single bit. 1f the structure is slementary and not ni, the result of the
selaction is undefined. If the structure is nil, the resull is il Otherwiss, the structure is the
concatenstion of twe eiructures, snd the result of the selection is the first o second of these
if the bit is zero or ome reepectively. A compoynd eeipction takes & structure and s siring of
bits, and gives the reeull of spplying simple ssieciions repestedly, using the bits in sequence.
The bit string is calied the selsctor. Let $ be the following structure:

,,,,,

13

1 4 pl 314

SELECT(S, ‘1) = 5 (a simple selection)
SELECT[S, '001°] = SELECT[SELECT[SELECT[S, 0] 0’} 'I'] » 4 (a compound selection)
The true "mesning” or "vaiue” of a structure can be defined to be the set of

ordered pairs of seiectors thet yleld slementsry vdundhor then nil, slong with those values.
Thus the structure S denotes the set '

{ <000', 1>, <001’, &>, <011', 3.1&, <t 5}
Nil simply denotes a substructure with no elementary items at all.
Using this definition of the meaning of a structure, there is a structure
corresponding to any finite set of ordered pairs of selectors and @lssientery velues (excluding

nil) such that no selector in the set is an initisl substring of snother. The structure nil
denotes the empty set.

SELECT[struc, sel] =
The elementary vaiue v if struc containe the-pelr <eel, v> -

Undefined if <s, v> & struc where ¢ is-a propee initial-substring of sei
The structure { <s, v» | <selos, v> & siruc) otherwive -

14

Structures cen be built with the sppend operetion. APPEND places # given object (structure
or elementsry value) enle & given structure with o given selactor, removing whatever
substructure previously euiated thare. In the sal-thaorelic medal,

Ammwd}-

[(struc - { <s, v> | one of sl or o is sn initist subeiring of the alher]) U { <ssi, new-vai> }
if now-val is slamentery. ' ‘

) (atrue - { <o, v | ne of a0} ov & in an initisk subelving of the other) U

{ <anle, v | %, v € naw-val] i new-vel is & strusture, insluding nil.

Latting S be the siructure defined previausly, APPENRES, 7, 01"} is

The subsiructure conteining nil and 314 dissppears.
1.1.1 REPRESENTATION 1N MEMORY

Structure can be implemantad on & dele flow computer in the same way that
they are commonty implemenied on ordinery computers - se linked lists of “celis” in & memory.
An slementary object is reprasentod by the object ilssif. A concatemation is represented by
the address in memory of a cali contsining the repressniations of the two substructures. In
either cese, & structure is repreconied by & emell anmnil of infarmation. The huge amount of
informetian thet constitulne the siructyre Heelt llee inslde this memovy, and the representation
is merely & pointer te this. The operation of sslestion ie quits: single. Cells are resd from

15

memory and the sppropriate halves of the dsta used, under control of the selection bits.
1.1.2 SHARING

Such an implementation leads to_th possibility of a ;inglo structure in memory
being shared (or partly shered) by several parts of the compulation. In a data flow computer,
two tokens might have the same pointer as their valus. This is of course very desirable for
economical memory use, but it mekss the APPEND.aperation difioults' The:problem is that
modification of pointers inside 1he memoey-can shangs. the.welus of structires other than the
intanded one, if structures have parts in common. [n. meny programing tenguiges, ‘this is
considered a reasonable and even desirsbie effect. For example, the LISP language has
imtr_uctiom to modify existing structures. In a data flow computer, howsver, this cannot be
permitted for reasons of determinacy. In order for a data flow computer to be determinate,
the meaning (in the set-theoretic sense given previously) of a token besring a structure vaiuve
must not change while that token roiidos on sn src. Since other instructions, including
APPENJ’s,cmbomcuhd\vaatokonruiduonmorc.APPﬂbmtnworchmo any
substructures that sre shared with other structures.

In the proposed structure proéoain(fecility, each cell has a reference count
which mekes it essy to tell whet substructures are shared. Whenever the APPEND processor
is tempted to modify a cell that is shared with snother structure, it mekes a copy of the cell
and modifies the copy instead. For example, if S is a pointer to the following structure in
memory:

1 4 i 314

where the number in each node is the reference count, APPEND(S, 7, '01'] yields .

16

1 4 nl 314

The node that originally had a reference count of two may not be modified, so a copy is made,
and its reference count is therefore reduced to one. The structure controller to be described

in the next section will perform these tasks.

17

1.2 THE STRUCTURE CONTROLLER

In this section we will outline the behavior of a processing mechanism that uses
the structure memory to provide a structure facility for the data fiow computer. The basic
behavior of the structurs controller is that it receives oponﬂon packets from the arbitration
network and delivers result packets to the distribution netwerk. It hoids the state information
for structure operations in projnu. and performs memory operations by sending packets to
the memory and rmlviu packets in return.

_ The purpose of this section is to show how the structure controlier will use the

memory, rather than to give s detailed specification for the structure controller. Therefore, a
number of design decisions will be made arbitrarily; For the most pert, the requirements of
the structure memory are independent of thess decisions. For exsmpls, the memory design
would not change if ternary trees were used instead of binery ones.

Some aspects of the design of the structure controller will be considered in
more detall in section 5. ' -

~ 1.2.1 DATA FORMAT

The memory space is divided into "words® or “celis™, aach of which holds one
‘node of a structure. Since the memory is used for the storage of binary trees, the words
representing nonterminal nodes contain twe. painters to elthar nodes. The convention will be
made that all words of th‘ memory will be divided into helves, called the left haif and the right
haif. Each haif has an "elem” bit bit.indicates whether it contains an slementery item (terminal
node) or a pointer to another word in the memory. If the hit.is-1, the haif word conteins en
elementary velua. The interpretation of that haif word.is then.the exclusive responsibility of
the rest of the computer, unless it is nil. The structure conirolier trpats sny slementary value
other than nil simply ss a collection of bits. Any type iniaemation (integer, flaeting: point
number, chanétor, etc.) must be encoded into the helf word along with the data.

The structure graphically represented as follows:

{h . afo! — 107]

T sk ¢ |
The: bit: st the: left: end:of sash-Ralt word:in e “Sienr® Ot

(A diffarent convantion: eauid-be used, ie: whish sach-slsmentery value takes an
ontire: ward: instuisd of hath s worsk The two conventions srw aqually pewerful, and differ only
slightty in oxsculion. The "heit‘werd™ comvention will Be used for muo

Al werde: of menwry thel are: not part: of » dlvuctirs are kept in o coltection of
free slovege lglp. (There: svw sovarad st Nols, rollir- e anuy i trdbe 10 maintain s high
role- of. pecessing. Vhis. point: wit be discussed: in section S85) Wenever the structure
controlier nesds & word in- order o craale & node, it tukes: it frow o of the fists. Whenever
8 node is destreyed; that is, sl peivters 1o it deappesr; the werd tomsining It is returned to @
free storage list. o ‘

19

Each node of a structure has a rafersace cpunt, which is the number of
pointers to that node that exist, whether in other nades.or in the rest of the computer. (The
lstter includes operands waiting in instruction cells-and pachels in transit through the
arbitration and distribution networks.) The structure controlier incresses or decreases the
reference count of each node as pointers to it are crested and destroyed. When the
reference count is decreased to zero, the node disappeers,se:it iis:returned to o fres storage
Nst. mmmtmh»mwmmmmmmm and 30 the
reference counts of the nodes pointed to must be decreased.

The choice of a refersnce.count strategy for memory management instead of
the "mark and scen”™ method commonly used in LISP sysiems was made for: three ressons:

(1) The mark and scan method requires a garbage collection operation which
must find every reference to svery struclure. :Since references exist in
Packets in traneit it would be necessary. 1o stop the-entirs computetion and
wait until olf packets stop mwmmw COMMENces.

(2) The reference coynt is needed anyway in. ordgr {0 implement the copying
rule efficiently. Whenaver the structura contrelier nesds:to:modify a node
% part of an APPEND operation, it may do.so safsly. i the reference count

_is one. If not, the node must be copied.

(3) The objoctions to the reference count method in many list processing
systoms, that it is diffkult to recover circular lists, doss not apply here.
Because of the copyruh. circular lists are never srested. -

1.2.3 THE STRUCTURE OPERATIONS

The structure controlier to be proposed implements the following program level
operations:

SELECTéatructure, selactor) - The selactor ia & bil string of definite length. The
siructure is: toased: undar contrel of the bifs in the selactor, sterting with
the inftreset Bik. A aese: bit shuets e elt offpring: and @ ene bit selecls

the right: The ibem-od the- sateched point bt nm ia returned,
whalher: it is slementary or 3 sibeivuchure. ‘

APPEND(steuchure,. oiriact, selastor) ~ Aplurme. & struchwre: similsr to the given
one, bub hewing the object ok:the: place apasified by the selsctor. Whatever
was of thek place in the aviginet structure is sheont in the result. The

~ object may be elementery or a structure. Any pert of the originel structure
that la aharedk witiv ciher parts of the comgulietion la not medified. The
controlior coplas part or ait of the originel siructre 8¢ necessary to be
surg thet this ia the case.

The sirusture caniralior cocognines the spacial cemstent nil which, while
elomentery, is aleo the sirveiure with-no seliictors. NIt i used &2 & terminal nods of a
structure to indicele et thave ere: ne: objects boralid et peint. Afy part of a structure
may be deleted simply by using the APPEND: aparstion to replace it with nil, end structure
may be crasbadi by sppmnding ssmething o il mmmu sonetont il is explicitly
svailsbie: 1o the peegrammen: for thess jiirpinns The | i eplimizes ol structures,
replacing %QW*MWM%&

Manmmmwntmmmm If any
mmmammmmnmmmwm.mt
of the result must ba: sppreprisiely incressed. MﬂwMMusﬁquu
value, the refersnce count musk e decreind: ummumwm such
nE&MMMMUWW&mmMHn“MN being
switchad are structures.

S TR

21

1.2.4 THE MEMORY OPERATIONS

The structure controllor communicates wlth ‘the. memary by sending command
packoh and receiving result packets. These packoh are _given names describing the
operation to be performed.

To resd & word of memory, a FET (Yatch™) packet is sent, giving. the address.
The memory returns a LOAD packet with the dats, Belwmen the FET and the corresponding
LOAD, many oth§r packets might be unf and received. This is a consequence of the
paralislism of the data flow computer: just se with the other functional units, the rate at
which structure operations are performed cen be increased by allowing meny operations to
be in progress simuitaneously. This concurrency is mede possible by the use of packet
communlclhon at the memory inhrfm The FET packet that begins.en operation and the
LOAD packet that snds it are distinct events and might be separated by a grest number of
other packet transmissions and roc'p!lom. Each LOAD packet is identified with.the FET
packst that caused it by mesns of the "tag", to be described later.

Each LOAD packet conteing the address of the word and its reference count, as
well as the data. The address is pmbnbly not used by the structurs. controlier, but is. included
as part of the specification of the memory module because. it is needed by the cache
mechanism to be ducribod in section 3.2. The structure controlier uses the reference count
in order to tell when a node may be writhn on without being copied (if count = 1) and when
8 node should be destroyed (if count = 0).

To increase or decrease the reference count of a word, the FET* or FET™
packets, respectively, sre sent. These are similer to FET, except that the reference count is
first modified. The memory replies to-them with LOAD* or LOAD packats which are similer to
LOAD packets. In some cases the structure controlier does not use the data in » LOAD* or
LOAD™ packset, but it does not reslly cost anything for the memory to send it.

To write on a word of memory, the structure controller sends an UPD
("update”) packet giving the address, dsts, and reference count. The reference count is

presumably one; but the specifitution 5F the memory module sliews an stbitrary count to be
given. (In an actusl implomemtation of a structure controlier ﬁmy. unhecessery fields
MhmmmuMNMMMWCM&w in
UPD pachets o rotelie st 98irens in LOAD, LOND®, QWM) The memory sands no
reply 1o on UPD pathwt.

There i anvther command that the mewory recegnizes. The CLR packet waits
until aif punding operstiuns o the given Word ore comsists, enil 1hen returns o DONE packet.
It is rot weud by e wirucions comeoher ot o, But Y reuired Tor operition of the cache.

1.2.5 THE TAG FILD

Every FET, PEY*, or TET™ pavkot s o Vioid coled the "tag” field thet
constitutes @ remindur Hrom-The virsters conroler 10 o, tofing 1t what 16 do with the
result of the Sporetion: MﬂMﬁdehMWoﬁm
rosult pathet. |

Consider the cese of & sinpis FELECT wetruchon. When the instruction cefl
,fmmmmmbmmmmmmmm the
structure, the SUloten; and 1hD-UEUreesse oF The e MUt <oty whith ars 10 receive the
result, MMM“MMMM%M&W:M
WWMWmmmmmmamw mmnd!othu
memory, and thin uss them when they come back in the result pachet. In the case of more
mkMswwmmeammmmMium:c
muummmmwhwmmmmyhmmm
that maks up the sirustors eperstion. mmumwmtmum
«tmnummmnammmmwmm
ond & Tow phinters. mmmummmmw&wwm

Tm.m"m»wmwmmmm Ore method is 10 include il
of it in the teg fisld of commends to the memory, 5o the structurs controfier dossn't need te
store sny information sbowt the stute of ongoing structure operations. Whan the result

a3

packet comes back from the memory, the structurs controlier looks at the entire packet
Includln. the tag field, decides what to do. next, snd produces. a-new gacket.to send back to
the momory This method (the ‘nwylm structure conirolier”: methed) is efficient, but it
requires sn oxtrmly wkb ‘dats path for sl memory tranesetions, and.it gives.rise:do very
difficult problems of avoiding dndocu. '

A second method is to store all of the state information in the structure

controlier. This requires that -the controlier have a memory willy . capacity of 200 bits or *

mofwmystrudmomdbn"ﬂmhhp@mﬂmﬂm. In this case only the
address of the blockof memory in which the stsle information jo.sleradimust -be-put in the tag
field. If ’256 simultaneous structure operations are gliawed, the teg: field only needs to be'8
bits. | : ‘

. In either cass, commands to the memory comtein s eg tisid. The memory
echoss the tag back to the contralier in the resulf packet, '

1.2.6 THE DATA AND REFERENCE COUNT FIELDS

The contents of pachmywd consists. of . dela field and a reference
perheps a bit to indicate thet the cell is on the free storage sk, and petheps type: indieator
fields for elementary values. All of these are significant only to the structure controller, and
are irrelevent to the memory. The memory can simply congider the: slels.te be:a hwwogeneous
field. lnpncﬁeo,itmulbout&tomww

From the memory’s stlndpdrit. the referance. count s simply part of the data

usoclatadwithuchword. mmummuummmmmumu -

the memory systom. dﬂ\ou.h the structure controlier will . .npvar. o0 &.negstive. relerence
count. Ina typlcalr resiization, the nfonm count fieid might be.sbout 8.30.15 bite long.

Incoming and outgoing packets that read or write & word of memory have data
and reference count fields that correspond precisely to the fisids in memory.

S L

Gowidensng eeadnn

There is e partiel order on histories: X < Y if X is an initisl subsequence of Y.
For example:

(133;9(113;4;7)
but(l; 25 4) and(1; 3; 4)do not satisty th_;c nhijon.jn;gitlm order.

Since histories only grow Ionnr . tim progressee and ;ynhnls already. in a
history never change, ahmoryutnllhrhhnthdumgrnhrthmoroqudtoa history
at an eorlier instent.

The length of port history X is denoted [XL.- The individusl packets of X are

XyoXg. « « Xog.

There is no defined time order mmt arrlvolc o;\.dlﬂmnt ports, so it is
mtorwmm“awmm Instead, & history srrey is used, which is a
collection of hhtoria.om per port. The partisi ordof on histories.cen.be sxiended to arrays:
AZBlfnchmtoryofAhcrnWthmoroguﬂtotho@"_” 0
historin, Notorybnrrm incrom a8 tima pr

- The description of how a system is expected to behave is quite simple. It is a
description, for every input history array, of what output histocy-arrsy the system will
eventuslly produce. “Eventusily® means in finite time for finite histories. For infinite
histories, it means that, for any K, the first K packats. will be produced.in finite time. This is
becsuse a systom which ls oxpoctod to have an.infinite output. history cannot ever transmit its
entire output in ﬂnlto time.

A ducrlption of tho dopomm of output htstwy arrays on input arrays is
called a M ggo_gﬂcotbn. ll is @ description of how a gystem is expected lo behave.
The major problems in the field of pmt eommmicatlon systems are proving that e system
built in a certain way oboys] ccrtain functloml _specitication, . lud proving that the
lntorcomctiou of systems known to oboy certain functional specifications obeys some other

ing history of B. Like

functional specification.

It tor any input srray, the funilions! wpeeificstion stetes ‘that there is only one
possible output wsrray, the system is mmwwm, ‘but that term
will not be used ‘here). In tait Tese Jwe ds & Tomitiun, say f, mappheg input arrays to output
amMMWMK“mM%WQMWWWIMMy be
produced. If turther mummmmmhwmw 2«,“ output history
£CY) will ummmmmwmwwmm (Y) 2 KX).
Mmmﬂbwhﬂthwﬂ:

K 2 Y » 40 2400

It theve 45 'more than one ugsl Tesporne T u given input srrey, the system is
nondeterminste. in thet ees a tmetion i wieo uset e 4t The Yenchions! spetification, but
10X) ie the sst of «if lagal Sutpt Wetery arreys. Fiumclons defining the specifications of
mmuwuuﬂammmwumm« |

T e Powsibie Mor wm intercommcion Of wonldtorminute systems to be
determinate. wm:mmmammmmmnm
network i net. mmum%%mm and its
function cen be Tompuled euphichily from the FundNons f #he cowpmente (1] .

2.0.2 DESCRIPTIVE ‘JRECIFIONTIONS

'Binon 28 Tejor S0k o1 v ‘systm dsuigner & 0 demonstrate thet o system built
in » cortain way siwys veriiin funcioms! wpeciticeliom, it i mecessary to describe in a
reasonebly formel way oW & system s Huilt. A wiving diagram is one fermelism, but it is far
too rigid and implenenistion-upondent. A highar lovel methuid s matiod. When o system is
sssemblud Hrom compunevits, ¥l ising % Pieckst commoniclti mn is of course easy
to descrise the intercommction, ‘teling MM&&WW mumochd to
oach Swr. wmmmhawﬁ&w ‘wpecification will be
given in mv»mm%mm mmwh muqa This

27

language is o subset of the Architecture Description Language [10] which is under
development. '

In the lenguage we will ues for giving descriplive specifications, packets will
look like dats records with a title and one or more, data fields, for example: “WRITE(3, 7)".
This format is purely cosmetic. In the actusl hardware impbmntdion. 8 packet is nothing but
a collection of bits. The fisids are simply. divisions of these bits inlo subsets thet the sender
and receiver both agree upon. The tities are just encodings of snother field.

ZOEANB(MEQ‘AWMTEMY

A functionsl and descriptive specification of a system called MEM will now be
given. MEM is a random sccess memory. with an input part IN snd.an-output port OUT. Two
types of packats may be delivered to it:

WRITE(addr, date) writes the data into the given address
READ(addr) fetches the data from the given address

The “addr™ and “data” fisids contain numbers that range over some finite and fixed spaces.
There is one outpd pachet type:

RTR(addr, data) -
(RTR stands for “retrisve™)

Every READ packet deliversd to MEM resulls in tranemission of @ RTR packet
bearing the address and the current contents of the memory. Every.WRITE packet stores its
deta in the memory. and returns no result packal. The initial contents.of aach sddress of the
memory is zero.

For a given input history, the contents of the memory may be easily
determined. The contents of each word is simply the dats field of the last WRITE packet .
having that address, or zero if there is no such packet. The function fugy reslized by this

memory is:

fyen

M X« gt Pistory snd Y = sulpat history,
100 = Y whore

101 « Who HeWRNT Gt DSCUMEHOS OF MEADI) ta X

[ATRaoar, dets) # the ™ READI-) in X is REAG(addr)

ol WD Jast WIRIVERSOUE+) s 3 Sdlore Tt AEAD
v, - & WTE0Sr, dote), ¥ here is such & WRITE

i Muumv‘m@%anm
uma.mmﬂma

Notation: mmﬂ;uvmwmwmmmm wder fiokd ond
anytiving ot ot In the Sa el - T

A Ren SpuastAtion of NENW winply Seiists of stating thet MEM restizes
fugw » thet is, thet is the input Nistory X is presented te it, it will svertuslly trensmit output

This wpucificstion says nothing explicit sboul The stetes of MEM. This is a basic
property of the history funclion approach to sysiem specification - sven for a device whose
purpose is 10 heve sislus; Soth us § Memory, thy spatiicalion Jons Mt mintion the states. Of
course, the memory dess Nuve stubss, il the stile & & fenction of e Tnput history. Since
enough information 10 delwrmine the stele.

We now show how the system MEM ey e bullt: The system uses a real
random SCOUES MOMOrY; With & Sapitity 6F one wird W such possible velue of the “sddr"

field of incoming packsts. We chooss some obvious correspondence between the values of
the “addr” fisld end word addresses. Each word can contein any of the possible values of the
“data” field of incoming WRITE packets. We choose some obvious correspordence here also.
The memory is initislized with sl words containing zero.

The algorithm of the implementation of MEM is as foliows: If a packet B
WRITE(addr, deta) is recsived, the deta field is written.inle mempry st the word:eddress given
by the addr field. 1f o pachet READ(sddr) is received, she. wordh el the!appropriste sddress is
nondestructively read, and e packet RTR(addr, data) containing the data fetched from memory,
is rotumod.

msmtmmhimhdbyﬂnprmmwﬂchmm “Memory" is
an array which ropuum the.actual memory.

Brocess starts ot A
ineut port IN.

utput port OUT
var commend, addr, data
array memory init 0

| wait for input

A: until packst is available st IN do;
command := packet fromport INy

| analyze input packet

if command = READ(--) then
l-tcommnd = READ(adde);
sondmaddr,mmy(dt»ntpmm

R]
igl command » WRITE(addr, dele)
mamerylotdr) = deta; ‘

galo A
Notes:

(1) The statements for receiving and tranemitting m "o my primitive. sughtly
improved versions will be presenied leler. '

(2) The expression RTR(sddr.deta) masns “a RTR packe! wheae fielde are filled with the
current values conleined in addr and deta".

(3) The "~-" in condilionsis hae ils ususl meaning. "I pachet = WRITE(S,~-)" mesns "if packet
is 8 WRITE packat whose first field is 3"

() The "ot packet = peitern” statemont is an sesigrment siatemeant thet sels the varisbles
appearing in the pattern to have the values of the corresponding fisids of the packet. “let
thing = WRITE(eddr,~~)" means “if the type of thing Is not WRITE, it is an error; otherwise
set addr to the first fieid of thing end ignore the second field”. ‘

We now memmmummmmtmwmcm. ﬂm.\n_nud to
show that the memary stale equels the system stale (as defined by the input history) under
the following correspondence:

For all X, the contents of memory address X for « given input helory Is

zero if the input history contains no packets WRITE(X,--)
Y if the history doss contain such packets, and the lest is WRITE(K,Y)

Proof by induction on the length of the history at port IN, For longth 2ero, all cells contain
zero by initializetionzand the history conteing no WRITE packats of sil. Otherwise sssume

3l

true for any history of length K and prove it for K+1.

It IN,,, = READ(--), nothing was written into memory: belween receipt of IN,

and le , 80 the memory state did not change. The existence of WRITE(-~--) packets did
not change either.

It INy,; = WRITE(addr, date), no memory cell other then. addr changed, and the
existence of WRITE(X,~-) packets did not change.for X = sddr. The contents of.memory cell
addr is now dats, and the fast WRITE(oddr.-) in the history_ is. now obviously WRITE(eddr,
data).

Next, we prove correctness of the implementation. If the input history = X, we
will show that f,.,0X) will appear st the output. This proof is also by induction. 1t X} = O
f““ = €. But the implementation specifies no output except in response to input. Now
suppose X' ® N Xg e XpMpy - Lotx-xlxz... Xy - Dylnducthnfmo() sppeared at the
output when X was the input history. When x,, , arrived, the system transmitted no output if
Xy,; Was 8 WRITE, and transmitted RTR(addr, memory(addr)) if Xy Wes READ(addr).
Therefore the response to X' is

fupdX) concatenated with
€if xp | = WRITE(--,~-)

RTR(sddr, memory(addr)) f x,, | = READ(addr), where the memory
state is that left by X

Now i 0CH = XM + 1 if x,, is READ(--), which is the length of the
response to X',

Also, if x) , = WRITE(--,--), FrenX) = fg(X), and if Xp.; = READ(addr), f, .0, (X")
= fuen(X) concatenated with RTR(addr, z), where z = the data field of the last WRITE(addr,--)

8
PR
= ap

Mum&“hm hhhh“#mm‘;
GeE uet B ogugng beg W digael B0 ot

The respanee 10 1 ks thasatare f S).

I AU W

msust

k21

2.1 NONDETERMINACY

Nondeterminate systems can teke a wide varisty of forms, and the problem of
formalizing the behavior of all ~pondeterminaste systems is fac. 100 complex: {0 be-ireated in this
thesis, Only the types of nondsterminacy that #rise. in connection with the structure facility
for the date flow machine will be trutod.

The principel Mnof nondeterminacy. that will arise.in packet memory systems -
is the removal of the requirement that the RTR packets be returned in:the same order as the
READ pachats thet gave rise to them. For example, the input history.

WRITE(1,11) ; WRITE(2,22) ; READ(1) ; READ(2) could resuit in
RTR(1,11) s RTR(2,22) orin RTR(2,22); RTR(1,11)

The system MEM is too simple to display this sort of nondeterminacy. For. exsmple, MEM
would return RTR(1,11) as s00n a¢ it received the first READ packet. It would not yet “know"
that it was about to receive » second READ packet which would give it the option of
producing its output packets in either of two orders. Later, we will exhibit implementations of
systems which can meaningfully take adventage of this nondeterminacy. For now, we will just
have to accept that such implementations (that is, descriptive specifications) exist, and
examine the form that the functional specification for such a system might take.

2.1.1 FUNCTIONAL SPECIFICATIONS OF NONDETERMINATE SYSTEMS

A nondeterminate system can give any of moral legal cutput histories in
response to a given input history. The A'fmction" defining the cycﬁ!!'z!, behavior is therefore
~muitiple valued. One way to handie this situstion is to treat the behavior of a system as being
defined by a relation instead of a function. The method to be used here, which is completely
equivalent, is to use functions whose values are sets of output histories. For example, in the

systom foo ey that we are developing,

34

o RITECL, 1)) WRETE(2,22) ; READX1) } READI2) =
{(RTMLLL); RTNZ22)), (NTR222) RTR(LLD)))

The situsiion may arise thet 1X) is emply for seine X. This means that X is not a
valid input histery, and the-behavior of the system is undefined. This is different from the
situation in which an illegal input gives rise 1o & welldeRined “error® résponse (packst) from
the system. An m’thMymWMMhswhmboh&mr is
undefined, but seme- sitosiisns; such as recsiving slkowisdgee for pechets that were not
sent, ere- 30 pathalogieal thay must simply b ssimed nob'te otcur. Furthermore, st some
levels of detell in the description of a system, It is comienisnt 16 ignare error conditions if one
can prove that they won't occur when the systam is funciioning preperly.

Ammmﬂnmmhmmamtm of

» function which maps input hisleriss inte sels dw Mstaries. It is ususily most

m»mnu‘mmwmmuwhmmamx.m

MMWMWWW#:M*%MM»&. functional
MWM

¥is in 100
®,00Y) ane
POLY) otc.

The rule for nmw.wmuum A systom reslines f if, given input history
X with (X} nonempty, it will oventually produce some outpil Nelery i 100.

mwmmwwmmmt obey a
monelonieity property as followe: '

35

NONDETERMINATE MONOTONICITY (ND-MONOTONICITY)

lanndeinputmmrbcmdQZP,tmﬁr
any output history X.in #(P), if Q) is nonempty there
is @ history Y in Q) with Y 2 X.

Roughly speasking, this means that receipt of a Iq.d input symbo! will never
make the system unable to procud Jegally, The purpose of the qualification "if #(Q) is
nomnpty thMtthmewmmmmth‘WﬂM-
un-bh to proceed.

We can now give the funclions NONORIermE
Mmehmmmmmmummm

- froven

If X = input history and Y = output history,
Y it in foguunn™) i

1y eonshh only of packats RTR(-- =D and .

(2) For olf uw.mmﬂotmmrsiax-m
number of RTR(addr,~Ys in Y, and

(3) For ali addr and K, the K™ RTR(adde,o+) in ¥, if it exiels; is RTR(sddr,val)
where lsst WRITE(addr,--) in X before K'* READ(addr) in X
is WRITE(addr;vel) it such s WRITE(addr,<<) exists, or val = 0
it no WRITE(addr,~-) sxists.before. the-K™ READ(adde) in X

The system NOMEM hes the property that the dete returned. in a RTR packet is -
the data in the memory (that is, the data in:the most recent WRITE command. addressing that.
cell) at the instant of the BEAD command corresponding 1o the RTR - At the instant the RTR
packet is sent out, another WRITE command might have aiready been received, but that WRITE
will have no effect on this RTR packet.

%
Example
input: WRITEGAL) READIA) WIRITE(AL) READIN)
et~ im0
At She instwt the first NN pushat was seturnadl, » WIRITE commend chenging

the dete rom 1 40 2 e ubsantly mmon given, ot e faskilin Yy, ooquines thet the velue:
1 be returned.

Here is @ roughnliine wF un implsmastiution of 2 wyelén wmhﬂ)

SYSTEM al (roslining {0

(1) When » WIRITE commend coms i, writens Siw wued of smwmery instently.
wm.mwmumﬁummm

form o IR wwcange, ovdl gt H ito atillor or quewe,
4@'%*“#&*“”“:;““:(3&7

time anal in vy wrdac, subjoct 49 A veslvictions thet:

o) mm&-hmamm '

®) m.ma. oo, ‘

The implomantation given shove il seipives ‘that cpmrations on the memory be
instentensous, 0 it is wot very usetul beceuse it dasent tehe advaritege of the deisy between
a READ pechat and e WTR pchet that results. “Yhi- dite ‘in the TR pethét must be the
cortewds of mmmummmmmm We would like the
systom #0 bs “ﬁmhmﬁMMﬂuWWﬁan
interval. Nere is an snampie of 2 systom that tukes Subh Tibeity:

37

SYSTEM 2 (purported resiization of frnarns’
(1) When a WRITE command comes in, write the word of memory instantly.
(2) When a READ commend comes in, put the message. READ(addr) in the
Pending Resd Butfer (PRB).
(3) Take mudfth%ﬂwlwmmth
the same restrictions s before, namely thet every
message is eventually removed and the butfer.is FIFO on
each sddress. When the message READ(sddr).is taken from the
Pending Read Buffer, fetch the dats from memory and form
Finished Raad Bufter (FRE) |

(4) Take mun.uo" the mlm any-time and in any order
subject to the same restrictions es befors, form a RTR
pachat, snd send It s output of the system.

This implementation does not reslize fugye,, - In the packet timing greph sfter
the definition of fyg, ., » the first RTR packet might have value 1 or 2 if this implamentation is
used. (The second RTR packet will siways have data velue 2.)

W might like the system to take even morg. liberty, by performing memory
writes, as well as reads, whenever it wishes. Such on implemantstion might be as foliows:

System &3 (purported realization of fo o, c)
(1) When a WRITE packet comes in, put the message WRITE(addr,dats)
on the Pending Write Buffer (PWB).
(2) Ssme as (2) in System #2, . : ‘
(3) Take messages off the PWB subject to the same restrictions
as before, and write the data into memory.
(4) Same as (3) in System 82, except that ther is an additionsl

restriction: thek re- mossege may be: lalwes trom the PRE &
wmwmmm
mm“mwmcz K

This: 19 181016 FOeEn: fguyry, . HEWOVAr, bath Systom o2 snd System 3 do
POSHEE fiugy s, H 10 WRITE posiat is ever sont te-the system whon. any READ/ITR transactions
oo in progress on that wand Thift is; before « WIETE pestet is sent, s RTR packet must have
been received for every READ pucket sont addrassing thet werd. Fortunately, it is not
ficult 1o guaramise thet thie requirament- s metr 1t o sy o nesdolorminete functions!
spechication for the “hest o the world', whih we wik éaf e “war”.

Definitions The yeer of & systum is that fo which the
the user ary the: eulpat perls of the given eystem, snd -

nuwdmummwmmmmmnmmm
Of frppuryy 10 WOk, e user must resizs: ¢ detarniitilp Rmclionet specificaion. In fact, the
user of » system should have s fow rostrictione: e s behavior s possible. Such
restrictions con gerwrally: be specified by requiring that the user resiize some nondeterminate
furction; just: as- e syston Resll dbes.: ‘M&ﬁmmmnﬁfhﬂm
Nwmbmmcmdﬁvﬂdw&m

The requirement thst NDMEM's user not ssnd & WRITE command when any
mmtrmmmmmmhmwmnhmm followmg
mmmmfmz

o

If Y = input history of USER and X = output history,
(note the exchangs of input and output so that X and Y
refer to the seme packel: streams Ir bott the system end ite user)

(l) X consiets only-of packets READ(~+) and WRITE(we)-+) -

(2) For all dt. for any WRITE(addr,~) in ;.M-Waf
Wrz precoding it in X:is W
. of RTR(addr,~)s in.Y . g

The fUnction fuo,ciqcen 18 @3sily seen to be ND-monotonic. This is because the
restrictions on the user’s outpul X naver become moes.stringent as Y increases. As Y
incresses, the proposition "the number of AEAD(sdde)’s :preseding it-in-is < the number of
RTR(addr,-~)s in Y* never goes {rom trus to felse; vo-the:sat: of-legel srrays X*don not
decresss. (If the 'S'hndh.pnnplmdhl =%, it would not-be:diDimenotonic.)

Wbcmwmmwmmt,wf&mmmfmn
eocmchdtoumorthdndimf To prove this, the important step is to show that each
READ(eddr) packet Wﬂu 8 RIR: packat canlpining:deta defined by the most recent
mmw.u)mtmmmmmummwm

‘ Let t = the.instent vm tummm comes-in. There mey be -
m,—)mmmmammmm,mdmmmmrm
memory unit, so its data is in memory word eddr. If there are WRITE(addr,—) packets in the
PWB at t,, the most recently inserted packe! .there. is the most recent WRITE(addr,—) packet
In the input stream. Thersfore, letting

the dats in the vm-dwmmm)mm e P ot time
D) = if there is such a packet L e e
| thoeorﬂmtsofwd;_&hthmymﬂ"mt,
we must show that the dats to be eventusily: returned in o RTR: packet is D, (). Let t, =
the instant when.the READ(sddr) pachet lesves the PRB: First, we show that D, (1) doas not
change from ty to t.. Since the READ(adir) packet bes shteored the system; it Fis loft the user.
Since the corresponding RTR(addr,~-) packet has not yst been generated by the system (and

&0

won't be untit after t.), it has not been recsived by the user. Theralors, there is s READ/RTR
transaction panding on addr, 50 the user is nel sending ey WRITE(eddr,~-) packets.
Therefore, whichever WRITE(sdir,~) peshet in s PWD s youngest witt stay youngest as
long se it stays in the PWR. 8n:seleng as-there- wve: ey WIRETElackir,~-) packels in the PWB,
Opusr d0es Nt changs. As long ss there are nn WRITEISMN =) pacimts in the PWB, D, = the
contents of memery, which dosen’t change either, becouss anly removel of 3 WRITE(addr,—)
packst from the PWE cen chengs the contents of memery ward addr. |

There con be: me iramsitions from ne WRITE(sddr,~) pachets in the PWB o one
or more pachele, hecause the wer is not sending any. The resiaining case 18 consider is the
dissppesrance of the lest WRITE(sddr,~~) pechet fram the ‘PWE: This pachel is clearly the
youngest, so D_ (unt prier 16 dlespposrunce) = the duty in the packel. This dats is written
into memory by rule 3 of the implementation. D, (juet sitor dissppearance) = data written
into memory = dete in. the pachel thet m W%‘.ga,)‘-iﬁ“«,‘x

Mtht,mMNM)mhththu are no
WRITE(addr,-) pachats in. the PWE, by ruls & o W Wnliewatetion Thersfore D (1) =
Dyaur(t;) = contents of memory word addr at .. But when the READ(addr) packet is taken from
the PRS, the memory weord is reed,.and We dete goss ifo s RYR(-) packet in the FRE.
mmummaﬁmﬂuhmmwmwumm’
to the user. :

This exsmple demonsivates s gonerel principle:

Whethar or not s given implementation of a system realizes a
anmmmﬁnmawmh-ﬂmr
roslizes some other specific function. ‘ e

There is no way to get sround this fect. There sre systems that cov;roctly
reslize useful functions (sven completely determinale functions) whet connected to systems
that obey certein rules, but behave in & totelly petholegicit wey etheiwise. Furthermors, the

o T T e PRI e e e
o3RRI

41

system often can't tell whether the user has broken the rules. In the case of system »3 |

above, the system would have been .sbie to tell whether s WRITE(eddr;~~) pecket came in
while & REAQ/RTR transsction wes pending en word: gwwmtm the :ymm has
mwoxofmwimvhﬂbﬂhmhm : -

The structure controlier and pachet memory system for a dete How computer is

such a system. Perhaps the most important example of the structure controlier and memory’s
dependence.on the behavior of their user is the-reference count ‘ind garbege collection

problem. The rules thet the. user (ia. the dets flow compuler) must obey In-order to- sssure

correct reference accounting are as follows:

(1) No pointer to a structure may be duplicated without giving s
- .. command 10 increans. the ghmem
(2) No enmto decresse the. Wmaﬁdm% given
uniess & pointer.is discarded.

These rules guarantee that the reference count for s node is st least ss grest
as the number of pointers to the node conteined -nywhoé. in the computer. (Actually, the
rules will be such that the.reference count ie.gxestly saquel:to the: manber of pointers to the

node. However, the penaity for too. high » refersnce: count:is simply that a useless structure

fails to be recisimed and wastes memory space.)

Now SUPPOse th. con\putor (that is, the -structure ‘controlier’s snd memory's

user) violohs the rule and. sliows the reference count to becoms too small. Everitually the

reference count may becoms zero while.a pointer to thanode still sxists- somewhere. When
the count goes to zero,.the memory system recisims the mede-and:puts it on:the#ist of free
m .- . ‘ ey

Two possibilities then arise. If on- immediate attempt is made to use the
“spurious” pointer to the cefl, in a SELECT instruction for example, the structure controller will
send & READ command to the memory. The memory will know that this is an illegal command,
that is, that the user has violated its specification. It can then signal an sppropriste error

@

cmumm»mhmmmmmmmt

K, on the okher hand, the cell is remaved trom the free sforage list and used by
the structurs contrelier ia hulid seme new-sirusiure iy he dime-4hw spurious pointer is used,
there is no wey the memery can tell thet o vielslion hes ocesved 1t has ne choice but to
process the mmunmmmwhmmm a structure
which is compiolely didtarent from whet wes intonded.

 Thia ia sal Ao sey thet the-deis tiew covpuder has ne way to check for errors
in the handiing of reference counts. Muelhods of deing ae will be @actesed in section 5.0.6.

2.1.2 MUTUAL CONSISTENCY OF FUNCTIONAL REALIZATIONS

Suppose & sysiem realines iy, contingent on its user reslizing f .., , which the
user does i the originel.systen coslives fyy . Done N-feliew et Whe reslizations actually
occur when the twe syslems are conneciedin aseivoiher? Jo &-pansible that they could both
Mmmwmmhm HMWMI“T Each is
the other's uveer. ¢

¥ eny vislskion dees acowr, thers must be o first ingtant of viclation. That is,
there is an instani {, whan.it first becomes true thet one syste (aay §) s an output history
which does not legally follow from its input history. Thare is & deley, Nowever slight (even if
it is only the delsy cavsed by prepagstion of eleciric currents through wires) in the behavior
of S. Thereiore §'s oulput hislory st , depends on T% euipul histury sfightly before t, , at a
time when T was not melfunclioning, s0 S connot blame s maltunction on T. Even if Sand T
‘both malfunction et precissly the sams instent, nelther:§ ner T knows ibbut the malfunction of
the other st thet inslent, and 90 noither malfunction can be-excused X follows that, if both
systems conditionslly obey their functionel specificetions, they will abey their specifications in
practice.

a

2.1.3 MONOTONICITY OF FUNCTIONAL SPECIFICAWWMM '

We now give an exemple of how. ol 0:define the functional specification of e
user. Suppose the system MEM hes destructive readout, so thet it requires that the user
rewrite any data thet it-reage. Suppees further thet for some:reusen:the same dsts must be
rewritten, and that it must be done immedistely, thet is, no other transactions may take place
ot pay adtiress between the resd and the rewrits. Hers is sn-attempt st a functional
specification for USER. Siace USER dossn’t know whwlidet toiwritaruntil it recsives the RTR
pnbt,uwiﬂroqdnthmﬂhtohammmoﬂhm

Y

fusen
Y = input to user, X = output from user

For all addr and i, the.i™ RTRIsddr) exiete.in Y. snd.ie. RFRteddrdate),
then the i™ READ(acdr) in X is iswnadistely foliowd i X by WRITE(sddr dats)

Unfortunately, this doss not require the user-to wait for the RTR packet after .
‘might send

(READ(1) ; READ(2))

~ Until the RTR(1,data) packet comes back, the user has not broken sny rules.
When the RTR(1,dsts) doss coms back, the user will have retroactively broken the rules and
be unsble to do snything ahout it. Since we would like to simplify as much as possible the
task of proving that systems obey functional specifications, we need to make the
specificstions reflect the types of decisions thet systems maks in practice. It doesn’t make
sense for a system to perform some operation or emit some result packet on the basis of an
input pockntg!hwin;lrﬂvodmdmtbﬂuabouﬂomm,wfm.udm sbove, is
unreasonable.

M

Fhe probiem is M#mek mm ﬁom this, refer to the

P QR dne) gt tios]
= READLL) ; READKR)) - mm

Now Q 2P, % is mmmwfmawmmmmm |
' ‘ 2 X

Y minputdo.weer, X=ouiput fromuser

For oll addr end i, the tﬂmma&.#umn

{ imadimtoty Tolowed in X dy WRIVE (it date)

it Aove is on- % RRGaddr,~ in ¥ sl it is RTR(addr date)
{ ihowt dn X Shane is me 4t T RGaddr ~) in ¥

This de oasitysoen 19 40 HiB-monstonic.

Sl i L T TR LR R R

45

2.2 PACKET ACKNOWLEDGMENTS AND SAFETY

Al of the systems considersd so fer heve had to respond to incoming packets
howsver fast they were sent by their user, and there was no limit to the rate at which the
user could send them. In the first implementation of MEM, the memory unit has to accept the
commands directly, and hence has 1o operate st unlimited speed.. System u3, implementing
NDMEM, seems & slight improvement in that it only hes to put the commands into its buffers
infinitely quickly, untii one realizes thet uniess the memory unit jtseif is infinitely fest the
buffers have to be infinitely lerge.

This is clearly unacceptabls; no intercennection of speed-independent modules

csn make such assumptions. Thoprobbmhmqtm No packet may be sent until its
destination is ready to receive it. The safety problem wlm st several levels_ in data flow
computers. Here we sre concerned with it only at its most microscopic level. The solution to
the problem is to acknowledge each packet transmission. That is, for each port transmitting
dats, there is another port trensmitting acknowledge paciwh in the opposite direction. Every
data packet must be acknowledged before the next data packet can be sent on the same port.
We will require all ports of all systems to have such sn acknowledge port.
(Even systems which would be safe without acknowledge ports will have them.
This is because of the menner in which packets are transmitted. A packet transmission is
indicated by a zero to one transition of » “request” signal. An acknowledge signal from the
receiver is needed to tell the transmitter 1o reset the request signel)

The implementation of the system MEM may be modified to acknowledge input
commands only after the transaction on the actusl memory unit is completed. This will mahe it
impossible for the user to send a command while the memory is busy. Of course, the output
port must also have acknowledges, since the system to which the RTR packets are sent might
be siow and need to be protected agsinst overruns on its inpul. So the slgorithm for AMEM
(MEM with acknowledges) might be:

(1) I a WRITE packet is received, update the memory (take your time!)

and then send an acknowiedgs on the inpul achmewiedgs port.
(2) It & READ pachet is roceiven, fotch detar from N5 amery o e

» TR pachet out.
@ n amwmmmmmm

Trowmission:of sshnowiotys puchuts iv Behasiteilly shwiter 10 trenemission of
“normel packate, and: con. e hendid i 1he sems way in.ho-upssifivetion of & systom. That is,
mmmmvﬁ m“ ww.u PON'Y and the input
schrwwivdge port X, . '

T
input purte = X, Y, output povis = Y, X,

(1) Y] = rumbser of READS in X

(2) Y, « RTWGadivpbotel wiivw B ™ READ iw X
o READIONN) o the est WRITEX40r <) beters i, i there is
“ ome, o WRITE i ate); or tel = i Mﬁnm
before the ™ NEAD:

(3) Xyl = [Y,| + number of WRITEs in X

(4) 0, = “sek”

B NI+l

6) P - 1 < Pogk<

nnmwmmmmmmmmmmm
(3) of fyyy - (It is very simiier to MEM) Parts (4),), en (6F conetitute the “Standerd
Acknowledge Restriction” that we will require all systems end gii users to obey.

a7

Standard Acknowledge Restriction (S.AR.) - wesk form

I X is an input port and X, is its acknowledge port,
(1) X, consigts only of "sck®
(@) Xyl < I

lincmodetde.hthpoﬂ.
@M+l

Gwnthdamtmﬂltcmbﬂh”hﬂfomdthn SAR., we cen
sasily show that they obey the following: '

Standerd Acknowledge Restriction (S.AR) - strong form

If Z is an input or output port and 2, i its seknewiedge port;
(1) Z, consists only of “ack”

ARG EQIARS

Proof: 1f Z is an input port of the system and an output port of the user, (1) and 12,] < 12}
follow from the SAR on the system (letting Z = X and (2} <42,).4:1 foliowns from the SAR.
on the user (letting Z = Y). If Z is an output port of the system end an input port of the user,
lust exchange “system™ and "user”. ' -

The SAR. is clearly ND-monotonic and hence admisaible ss pert.of o functienal
specification. R vt

In sny proof that a system reslizes a function, it suffices to show that it obeys
the weak form of the S.AR. contingent on its user obeying the strong form.

We can now prove that AMEM realizes parts (5) end (6) of famgn o that is, tho
S.AR in strong form.

Lot Y « gutput of AMEM and input to user, X = input 1o AMEM and cutput of user.

First, number of WRITEs in X
= number of sshe sent on X, In conequence of (17 of AMENPS implementstion
= Pty] - number of schs sent on X, i conssquence oF (35 of AMBNFS implementation
- Pyl - IV ’

Now [Y] = number of READS n X by (29 of ANENPS implementition)
© = X] - number of WRITES In X (by well-betuvedness of user)
= Xi- Pl e IV (derived sbove)
SPIsIPie Nt vomBAR for user)
-‘-MSWJ*‘

Also [X,| = number of WRITES i X « I¥,] (devived shove)
< rumber of WTEs in X + Y] (from SAR. for ueer)
« number of WIRETEs in X - number of NEADS In % Uy (2) of ANENTs implowentstion)

This proves the week form of the SANR, from which the sireng form foliows.
2.2.1 CANONICAL PACNEY COMMMICATION

Since the Standerd Acknowiedge Restriction marrewly limits the way
acknowledge ports sre hundied in the functionel specification of ¢ system, it is not uncommon
for the hendiing of T scknowiodis perts 1o be sinilarty Inited s the implémentation of the
system. Wherever possitie, sysiom implomentations wil receive snd tranemit packets in the
following way:

49

Canonical Packet Reception (RCVPKT)

(1) Wait until a packet has arrived on the input port (it might have drudy srrived by the
time this step is executed) take its data
(2) Send an acknowledge for it

Canonical Packet Transmission (XMTPKT):

(1) Send the packet
(2) Wait for an acknowledge

These operations will sppesr in. the system implementation language as
“functions® thet teke port names as arguments and appear in-sssignent -statements. The dats
conveyed by the := is the contents of the packet. Assignment statements comteining these
operations are like input/output operations in ordinary computer programs in that they “hang
up” the program until the packet communication has taken place. "Var := RCVPKT(port)® waits
until an incoming packet hai arrived (and then acknowiedges same). "XMTPKT(port) :=
expression” waits until the transmitted packet has been acknowledged. Programs may use
multiprocessing as long as no RCVPKT or XMTPKT operations can be simultaneously executed
by two processes on the same port.

It is sasy to see that any implementation using the RCVPKT and XMTPKT
operations obeys the Standerd Acknowiedge Restriction.

| Systems need not use these csnonical operations in order to be correct. For
example, the implementation of AMEM given previously did not. That is why the proof that it
obeyed the Standard Acknowiedge Restriction was so complicated.

Here is an implementation of CMEM, a system whose behavior is similar (but not
identical) to AMEM:

50

process starts at A
input port X

output port ¥
array memory init 0

var command, addr, data

A: command := RCVPKT(X);

if command = READ(--) then
let command = READ(addr);
data := memory(addr);
XMTPKT(Y) := RTR(addr,data)

else
let command = WRITE(addr,data);
memory(addr) := dats;

goto A

51

CMEM and AMEM behave differently in a subtie way. Suppose the user
transmits a READ packet and then refuses to acknowledge the RTR packet that results. AMEM
refuses to acknowledge the originel READ, and the entire system comes to & hait, since the -
user can't send enother command packst until the previous one was acknowledged. CMEM
scknowisdges the READ packet anyway (it heppens-sutomaticslly. s pert of the RCVPKT
operation). It then refuses to scknowledge any further command. packets untit: the RTR is
acknowledged, because it gets hung up in the statement "XMTPKT(Y) := RTR(addr,data)".

C&EMthwnatmhilbnlnMWMﬁMmm

‘ mmmummm% Umz&&ondﬁu
the specification of £, [section 2.2] epply to OMEM slea: Lines.1 end 3 are ditferent:

ren

(1) [Vl = number of READs in X
(3) Pl = ¥l + X - number of READs in X

fomen

(rumber of READs in X if = O or 1 ..
M= of (IX| 2 2 and [V} 2 number of READs in (X - last packet))
hmmborofmm()(-la!ngbt)fm‘ ,

Niflxl =Qorl
@ Ky= w(D‘IZZdeYAIZWdREADﬂn(X-lutmt))
| X1 - 1 otherwiss

This itlustrates the fact that correct analysis of the latency of a syshm can be
quito complicated and requires careful snalysis of the sigorithm. ' :

]
The ‘onty ‘Biftevence Setween AMEM el OKIEN erives if the user fails to

acknowledge ol RTR puciests, thet s, 4 N | = V] I ;| = 1Y}, 'ome cen wasily show that, for

Wogl=|

(To-prove this ‘for ONIEM, show W“ﬂw 272, e vewm 3*Wml < mvahor ©of READs
in (X - tastspacket) cuntamsur:)

The lnteway ‘of :a-apstem is e wanbiov -of Commeitls thet it can sccept and
scknowledge whose vesilis Heve not Sesn eckrowledged by e weer; that s, the number of
nMan’NsﬁmW mwmeﬁm boh-vior,
the concept of datency:-is mot-esey 40 detie pvischubly. A

Owe ‘systom for which it can be Uskined is ‘the FIFD, -or first-in-first-out buffer.
A FIFO of length ‘N (umd daving Jstency ‘N)‘is a-sychem with ome aput ;port and one output
port, which:reslisus ¥ dduntity MWW¢%MMM#; user

(1) M= win (B, Y42}
@YK
@)K e e NY

Am«whwzlmummm.mutmumm
following :pregrem:

procesees stort st A, B
output port ¥

var m
varp init 0 | queue populstion

A: untilp #Ndo
k := RCVPKT(X)}
store k at end of queue;
pr=p+lh
goto A;

B until p #0do
m = Hem taken from front of queuss
XMTPKTCY) = my
p=p-1l
goto B

For N = 1 this becomes:

process sterts st A
input port X
output port ¥

ver P

A: P := RCVPKT(X)
XMTPKT(Y) = Py
goto A

A FIFO of latency zero cannot be implemented by any syg!pm using the RCVPKT
snd XMTPKT operations, though it can be implemented with'a few pieces of wire.

Appendix [contains a proof that a series connection of FIFO's of lengths M and
N yields a FIFO of length MeN.

When systems ditfer only in their lstency, it is somelimes possible to make them
equivalent by adding FIFO's 10 various purts. For example, i can be shown that CMEM is
identicel to ANIEM with a FIFO of Tongih-one on- ¢ input. 1t it coulkd be shdwn that every
system X is squivalomt, excapt fer intenty, 1o 2 system X, dulined = having ietency zero, then
the lstency of e sysiem X ceuld be tharacterissd by the fongthe-atf the FIRO's that would
heve 1o be added to the verious ports of X, 10 meke & ianticst 1o I A pstem of latency zero
would have 1o e ore which rever scknowisdges sy it paciat onif i resulting output
packats heve bren sent sl sknowisdged. AMEM s such & system, 30 CMEM could be ssid to
have istency 1 on its Hs input pert snd 20r0 an its euipat port. It & ot ledr whether such
an analysis con be appiied 10 wenusterminate systons of vigniticant comploxity.

2.3.1 ARBITRATORS, DISTRIBUTORS, AND ALLOCKYORS

Three basic systems ere very important in Uw design of the structure
controlier and memory, ss well as 9ther places in dite How tomputers.

The ariiirgler s o nondulurminale syslom with N ingats and one Sulput, which
transmilts soch incoming peshet 10 the output. The srder of the pashets from sach input must
be preserved in the oulput sirown. The erder in the Sulput sireum of petiuty from’ditferent
ports is arbitrary. In sny ressonsble implementation it weuld dapend on whith input packet
errived first. Mmmmmmhmmmamm
by a superscript insiond of 8 subecript:

basic (zere letency) arbitrster f,,,

1!, X% ... XM are inpuls end ¥ s outpust,
x5, .. x"ncv“«x’ x"v‘w
mm-mezm Mis D
jeod ’
. (2) V1 € (1N}, B = number of packsts from X' in Prst {Y,] packets of Y
' mvnmwm-mmm«ﬂw&» R
is a svbsowence of Y.

55
Each incoming packst is tagged with its port number so that its source can be

identified in the output. This identification feature is used in a few, but not all, applications of
the arbitrator.

Arbitrators are the major._component 91 the nhltmm Mmh of the data
flow computer. The prine!pd use of th. nrbltutpr in ”!! Mructure memory is to allow the
address space to be deod lnto small pieces, with a separate memory module handling
transactions on each piece. The LOAD packets sant back from the several modules are
merged in an arbitrator, s0 that the entire interconnection of modules behaves as if it were

one memory system.

Arbitrators of nonzero latency may be defined as zero latency srbitrators with
various FIFO buffers on the ports. Such srbitralors are ussful in various places throughout
the data flow computer, but there is one plael where the orbotmor mud have latency zero.
This is in the transmission of packets from the structure controller to*th- themory. When the
structure controller receives an acknowiedge for o plcm it has sent to the: memory, it must
know that that packet is shead of any oﬂm pachh M ‘might mmy be sent to other

input ports of the arbitrator on thet memory unit, mmwmnomm section
5.0.4.

An arblirator of zero atency may be reslized by the following program:

process sterts at A
input ports X, ... X,
eputportY
ver p, input

A: wait until a poclwt is available on any input port.
lot p := thet pom
| this is nondeterminste!
Input o= the packat on port ps | do nat acknowiedgs yat
XMTPKT(Y) 1= <p , input>y |

sond scknowisdgs on port p;
goto A |

A distributor is o determinete sysiom with one input and N cutputs, which
tranamits incoming packsts 1o the cutput port selected by o data fleld in the pecket. Incoming
pechets ore seumsd Vs by of the term <port, detes. mmmmmw field
in the finel result. mmmma-mm

1t X is input and Y', Y2, ... Y¥ are outputs,

O ¥ V%) €t YA YE . YD

m vunm w‘;wmmc'f'umua,-am
@ =50 |

isi
B VIV, Y= date whers [* pecket 4> in X o <, dete>

Such & Gutriuuior may bu Wiglonorted o4 Tohows:

process sterts ot A

input port X

ouipst ports ¥, ... Y,

A: wait until & packet is available on port X
2 = the packet on port X; | do not achnowledge yet
lgt 2 = <port , date>;
m’..):-ddq
WMMMX‘: i
goto A

mmmmmmummmgbmmtrMm.m
FIFO butfers. S

Distributors are the principsi cornponent of the distribution network of the data
tiow compulor

An allocator is a nondeterminate. vmlhon of) dl(lrihutm' which transmits

incoming packets to one of several output ports. Eaeh packet k sent to. any output port that
is ready to receive it, that is, any port that has acknowiedged all previous packets sent to it.
An sllocator is normally used to und pochoh to a group of identicyl .units, always selecting
any unit which is not busy. Tho structuro controllqr of . dlh ﬁow ;ompuhr will typically be
_roaliud in the form of several identicel units in ordor to incresse tmhput Operatidn
packets from the instruction celis will be sent through sllacators to the structure control units.
(In fact, the other functional units of a data flow eovapntnr will bQ hw the same way.) An

N-output sliocator reslizes the following function:

‘basic (minimai lstency) allocator fauoc

16 X i input and Y%, Y2, YV are outputs,
oL X‘)ﬂm()(, Yo ¥ i

(n ZN:IY‘I-IXI

fel}
N
(2) Xyl =min {XI,N-1+ 3 vk}
kel
(3) Y', Y2, .. YN are disjoint subsequences of X

It may be implemented by the following program:

processes start at A, B

input port X
output ports Y' ... YN

- queue qsize Ninit (1, 2,...N)
var pop init N

A: wait until a packet is available on port X;

2 = the pachet on port X% { do mnot acknpwiedge yet
K 1= Hom of hoed of g

pop = pop - 1;

sond pactat 2 on port ¥*; { dawft welt for acknowiedge
yntil pep » O do;

sond schvowiedge on port X g

gote A;

B wait unii achnowledge is avelishie on sy part Y},
fot p 1= thet port;
{ nendeterminetel
tohe the scknowiedge from port Y34
putpsteniof g
PP > pOp + |j
golo B

The basic silecator given sbove daos nol have latency zero in the sense of not
WWMWWMM&MW-mh an
errangement would delest the silecslor’s purpsse. mmmmmmm
minimum lsiency thet mebkes sense.

3.0 THE BASIC MEMORY MODULE

In this section & farmal specification of the memory module “MM™ will. be given.
MM is the fundsmentsl building block of the pachet memory system.. Each .MM system-is a
“memory, somewhat like the system NOMEM described. earlier, which handles » specific eet. of
addresses. To incresase total mformtlon transfer rate, the address space of the entire packet
memory system may. be divkbd into m.!lnr pieces, with one munu haadling each piece.
The MM units are connected through arbitrsiors and. diglribitons nd form.s system which is
itself an MM. This is ma’mmnmw 19 the interieaving found in
conventionsl memory systeme. To incresse. the speed on individusl iranaactions an MM unit
may have a cache module "CM" copnecied.to it. MM with CM congected.10 it s itself an MM. -
This is “vertical® compoambn. and is quite similer to the cache memories found in high
performance conventional computers. '

MM has one input, port CMDI ("comesand in‘) teking commend packets from its
user, and one output port RESO ("result out”) returning results to the user. The memory
space is divided into worgds or cails (the tarme will be. weed. interchangably), sach of which
corresponds to one node of a structure. Every memery transsction refers to one word, and
every incoming or outgoing packet bears the sddress of that word in its address field. The
memory space is the same size as the address space, and: the sige is known to the user, so
there can be no "nonexistent memory word™ error. In most implementations, the memory size

would be 2" whers the address. fisld of every packst.is N bits.
Notation: FET‘*) meens any of FET, FET", or FET*. LOAD'® gimilorly.

Each word in the memory contsins a data field and a reference count field,
which are used by the structure conjrolier se described. in.section 1.2. LOAD'® end URD
packets have corresponding fields. Furthermors, FET‘®) packeis have a teg fisid, which is
returned unchenged in the corresponding LOAD'®) packet.

3.0.1 LATENCY AND INITIAL MEMORY CONTENTS

The specification of MM to be given below does not say enything about latency.
This is becsuse Wil's user is required to scknowledge every result packet. When this
happens, MM will acknowiedgs every commend peckst, regerdivss of whet its actusl Iatency is.
Hence, n socurete description of Mifs fatency s unnecossary. ‘

Initisl memory contents will siso be lsft unspecified. In the functional
specification of » memory, the definition of initisl contents arises in the specification of the
systom's respenee 10 o AEAD command thet was net precsded by a WRITE. The specification
of MM ol sesume tht this dees not eccur. In an sctusl date Hlow computer, o free storage
list will be genarsted when the eystem starts, which requires writing on svery cell.

3.0.2 INFORMAL BEHAVIOR OF MM

There ors § types of input peckats to MM, and & types of output packets:

LOAD(adkdr, dats, rof, tag) ‘
["ref® is the refsrence court]
FET*(addr, teg) increases the referonce count by one end retorns
' LOAD*(eddr, dets, ref, teg)

~ [Tret® is the reference count sfter the increment]

FET (addr, teg) decreasss the reference count by one end returns
LOAD (addr, deta, ref, tag) '
CLR(addr) ("clear”) waits until alf FET/LOAD, FET*/LOAD®, snd

FET"/LOAD™ transactions on the indicsted word have

61

completed, and then returns DONE(addr)

UPD(addr, data, ref) ("updats”) writes the data-and reference count
into the addressed word. It returns no result,
and hence uses no tag.

MM is nondeterminate as was the example memory NDMEM, in that result
packets referring to different celis are not consirained to. appear.in the same order as the
commands that gave rise to them. MM is further nondelerminate in that it may rearrange
LOAD'®! packets referring to the seme cell. Such nondeterminecy would .not heve made sense.
for NDMEM, since RTR packets with the same data end same address were indistinguishable,
but, in the case of MM, LOAD'® packets may have different tags.

Since LOAD'® packets involve a change of reference count and may be
reordered arbitrarily, the question arises: What hagpens. ta the reference counts sppearing in -
such pachets if they are reordered? The answer is that the result packets have reference
counts consistent with their own order, not the order of the original command packets.
Example: Suppose the reference count of cell A is 1, and the command sequence

FET*(A, T1) ; FETY(A, T2) ; FET™(A, T3) ; FET (A, T4)

is sent. Some of the possible resuits are

LOAD*(A, D, 2, T1); LOAD*(A, D, 3, T2) ; LOAD(A, D, 2, T3); LOAD™(A, D, 1, T4)
. or :
LOAD™(A, D, 0, T3) ; LOAD™(A, D, -1, T4) ; LOAD*(A, D, 0, T1) ; LOAD*(A, D, 1, T2)

The refersnce count temporarily becomes negative!

The reference count sppearing in any LOAD* packet is one more than the count
in the preceding LOAD'®) packet. Similarly, the count in a LOAD™ is one less than, and the

count in & LOAD is equat to, the. count in the: preceding LOAD'®), Some implementations of MM
will never reorder LOAD'®? pactwte reforring to: e suny sdiiruss, sithough they may reorder
those for different sidvassws. I this is the: case; e ruterencs count will never become
negative, which removes - nuwd for & sigr Bit i the reference count fleld.

Whn' the' user gives & CLR command, it must not send sny further commands of
sny type for the indlosted col, untt the correspomiing DONE pecke? hes returned. (The
W«mmm»wmmmm wmmmwm
wmmm&

Like: NDMEM, MK roguives: thut ne UMD commend be given while any
transactions ars pending on: the indicated cell.

3.0.4 FORMAL DEPTNITION-OF MMV AND NMOSER

Tiwew dufiritions: do' not show fatenty o sl any refurence to scknowledges.
The user is reguired 1o schnowiedge svery result packet and MKt is consequently required to
scknowledge every command: Both systems of coursy sbey thw Standerd Acknowledge
‘Restriction. The definitions do not consider the poseitiity of ilegut packet types or invalid
fields in packets. ﬁMW“WWWWtﬂ(Whm.&h
case obvious from content.

Note: in rules 2, 3, and 4 the zsroth DONE in Y meens the beginning of Y. The
N+1* DONE in Y, whore' N « the: numbser of DONEs int Y, meers the* end of Y. Simitarly for CLRs
in X. The intention is te let the DONE snd CLR puchets bresk up X end ¥ into intervals, which
makes it convemient to- think-of the entire histories as being precedisd snd ofiowed by DONE
or CLR packets.

63
U™
If X is input mdvisoutpm,vcf‘,mif

(1)ror.uu«.tmwum)mtmv-mmumm)
pachets in X

(2) For all addr, K, and tag, the number of LOAD(addr,--,~-tag) packets between the K
and K+1™ DONEfaddr) in Y = mmummmmmmxﬁ
and K+1%* CLR(addr) in X

(3) For alt addr, K, end teg, the number of LOAD (addr,,--eg) packets.between the
K™ and K+1* DONE(addr) in Y = the number of FET (addr,ag) packets between the
K™ and K+1% CLR(eddr) in X

(4) For ail addr, K, and teg, the number of LOAD (sddr,~-~-1ag) pachels between the
K™ and K+1 DONE(eddr) in Y = the number of FET*(addr,tag) packets between the
K™ and K+1* CLR(eddr) in X

(5) For all addr, J, and K, the J'" LOAD'*)(addr,-=,==,==) in ¥ is
LOAD'*X(addr,date,ref+D,--), where the last UPD(addr,-~~-) before the J*
FET{*)(addr,--) in X is UPD(addr,dataref) and is precaded by I FET'*Neddr,--)
packets, snd D = {number of LOAD*(addr,~-,--,—) packets} - {number of LOAD"
(addr,~-,~-,~-) packets) among the I+1* to /* LOAD'*Xaddr,~,~~,—) packets in Y.

tuannen
N@b«M@MN##M#M#

(1) For sll addr, elther the number of CLiliiatidr) pachets in X = the aumber of
OMEadir) skl in ¥, or -sise Hhone isSne-uere CiRia) in X thih DONE(eddr)
in Y, and there are a0 PETNaddr) or 4iPDiadir,) packels sfter the last
CLR(addr) in X.

(2) For ol addr, for any \IMaddr,~~~) in X, the nusber of FET® addr =) packets
proceding it is S the number of LOAD oy, e,-<) pachats in Y.

3.0.5 IMPLEMENTATIONOF M- LISING A RANBDM ACTESS DINIOE

Implosentation of M with o rendom access device is quite eacy. Assume the

process efpris of A
inpt port CMBI
var command, sddr, sate, vef, tag

A: command » REVRKTICMDI)
if command = FET(~~,~-) then |-FET - -soturn LOAD
igt command = FET(addr, tagh
XMTPKT(RESO) o= LOAD(addr, mom~delaladdr), mom-ref(acdr), tag)

oise if command = FET (--~-) then | FET™ - decrement ref and return LOAD™
t commend = FET (addr, teg)

mem-ref(addr) := mem-ref(eddr) - 1;
XMTPKT(RESO) := LOAD (addr, mem-dataaddr), mem-ref(addr), tag)

else if command = FET*(----) then | FET* - increment ref and return LOAD*
let command = FET‘*)(eddr, tegh v
mem-ref{addr) := mem-ref(addr) + 1;
XMTPKT(RESO) := LOAD*(addr, mem-data(addr), mem-ref(addr), tag)

sise if command = UPD(-~,-~--) then | UPD - update memory
command = UPD(sddr, data, ref);
mem-data(addr) := dats;
mem-raf(addr) := ref

& | CLR - return DONE
let command = CLR(addr)
XMTPKT(RESQ) := DONE(addr)

Koo A

86

3.1 HORIZONTAL INTEROONNECTIONS OF “MM” SYSTEMS
The functionel spacificetions of MM and is user have the usefid properties that:

(1) frny ond foppgrn 970 invarisnt under reordering of commend packets
roferring o ditferant words. That is, surh » reordering witl not sffect the

(z)fwntmmmmmm«mmm:
referring {9 dilferent words.

(3) tyy ondl {ypppen #ro invariant under resedering of LOADS! peckats for the
mmmwwummmummm
nfmm”mm |

(4) the behaviorsl properties of MM and ils user sre completely independent
for different words.

Property (4) mekes it possible to connact MM systems and their users through
distributors and erbitreters, snd stil! heve an MM system. The following connections are
possible: '

67

Muitiple memory connection

i

VU P |

e - o - e e — e Em e m e m—m- . m————— ol

- - —n - > - - ————

If each of tho small boxes reslizes fw (contln;ont on its user realizing
fm),thlu;odalpdboxndimfmforolnwaddrmm lfthouurof the
lmoduhﬂdboxruﬁm fm,onhmnﬂbox'amrodimfm

"For this to vork the d&strlbutw md .rmmor mt hmn. sddress fields ‘
longer than thet of the units. The distributor picks out N bits of all incoming address ﬂ.us‘"
ond uses them as the output port numbers. (For interleaving purposes, it might be most
effective to pick out the lesst significent bits.) Thoss bits do not appeasr in the address fields
of the packets that are sent to the MM units. The arbitrator inserts the input port number of
each incoming packet into the address fisld in the same positions as the bits that were
removed by the distributor.

This connection is one of the methods by which the transaction rate can be
incressed. Random access memory devices have the property that every read or write
transaction ceuses the device to become busy for some period of time, during which it cannot
handie any other transactions. For example, 8 MOS RAM might be busy for 500 nanoseconds
during every transaction, and therefore be able to handie 2 million transactions per second.
Putting a FIFO buffer on it will increass its lstency (ss the term was defined previously), but
its transaction rate stays the same. The only way to incresse the dita rate is to use many
memory units. If a distributor can handie 64 million packets per second on its input port, and
an arbitrator can handie 64 miilion packets per second on its output port, it might be
reasonsble to use 32 MOS RAM's, each in a separate MM unit. These sre connected to a 32

port distributor end s 32 pert erbitretor. The sverage rate st which packets come out of
sach port of the distribator is 2 sillien per secensl, whish is S rale ot which individual units
can hendle them. mmm;-mmmmm.sm.
tmmu“uanm The reirioval delay for
each item will stifl Se S5O nenossconds, but That is an wneveiduble consequence of the

mmmummhwuu-mdvmw
w&;«mmmuhmmnhdumwmmm. 1f
mwmmmmumMmmmmum:o
m.mummtymmmwhmmm
compietely processsd by Hhe Wik wmt. mmmumdmmmw;
xnwmmmmhMmmmhmhmaumw
rete nesr the masimum in the presence of senunlisom siulighodl Seammncy of commends for
each unit, uﬁ-mmmwmaummmmwm

Multiple user connection

This is just like the multiple memory connection, but with the roles of MM and the user
exchenged. If the solid box reslizes f,,, , sach of the interfaces at the top of the disgram
realizes f o, for a smaller address space. If sach of the users of this interconnection realizes
txaamen » then the coliaction of sl of them slong with the arbitrstor and.distributor realizes
fraanen O the lerge address space.

As in the previous case, the arbitrator must map the input port number into a
larger address field, and and distributor must remave the. corresponding part.of the address
field and use it as the output port number. Each of the intertaces st the top of the diagrem
reslizes an equivalent address space, and each uses a different subset of the memory space
contsined in the actusl MM unit.

This connection would be used if there were several users, each presenting
commends at such a siow rete thst one memory module could handie ali of them. Such a
situation could srise if several cache modules are used which have a sufficiently high "hit®
rate that the rate of memory requests arising from cache misses is low.

0

3.2 VERTICAL COMPOSITION AND THE CACHE MODULE

In the section we describe the cache module “CM™ which connects to an MM
system and, s0 connected, resiizes an MM system wilh the aems athiress space.

N e B Y R R

.k k- > - i e e koo o

o

11 the emall bex tebotied MM rodises £, , the Terge deshed box reaslizes f,, .
If the user of the large dashed bex reskons f ouuy o the USEr OF The smul box reslizes
fvmamen - |

Verticel and horizontel intorcomections may S8 sixad as in the following
oxamplos, since ™ oach 0see S wyviem bolng Inplomeniod is WL |

71

~ The purpose of a cache is to retain the data of a small subset of the main
memory’s address space, and return roquuh for data in that subui directly without reading
it from main memory. Simthcmhumhbudnathmthmdnmmory,itcmbo
buiit out of faster circuits and devices wﬂhout being prohibﬂivdy expensive. Hence any
nqmstfornddmlhnthhthuchc(n caant')kMondvoryqdckly 1f the cache
is sufficiently well designed that it has lhi;hhlt nto.tﬁomrlﬂ p.r'ormmof the momory
will be nesrly as good as that of the cache iteelf.

A cache must be designed to maximize the hit rate by holding those memory
items that are Kikely to be addressed. This is ususlly done by sssuming thet the addresses
being used vary slowly with time, and so, when an item is referred to Once, it is likely to be
referred to again ‘soon, and should be placed in the cache. Therefore, when an item is
sddressed which is not in the cache (a "cache miss”), the dstum is fetched from main memory,
placed in the cache, and siso returned to the user. Subsequent roquuts for that datum will
be cache hits.

The size of the "items” that the cache contains affect its performance. A cache
for the main memory of a conventional computer may use rather large items consisting of, for
exsmple, 8 consecutive words. This is effective becsuse’ references to momory especially
lmlructlon fetches, tend to be locslized in space. When a cache miss occurs on sny word, »
block of 8 consscutive words is read from main mmory and loaded into the cache. Since
references in the immediate future are likely to be In this block, the hit rate is increased.

72

The structure memory for a data flow computer has no such .Iocnlity' of
reference. Therstore, the unit of cache organizetion will be the nEviduel word.

Placing sn item in the cache ususlly requires removing some other item. The
most populer strategy, and the one that will be used heve, i the “east recently used” (LRU)
strategy. Esch reforence 1o a ceche item is noted in some tort of reference tsble. When
space must be mede in the cache for @ new datum, the fiem that hes been used lesst recently,
that is, has gone the longest time without a referéee, is choeen. |

. When a write command is issued, the item in ﬂn cache is updated
approprhtdy tnmcwhoor;mww thMWyhm.ycm.dmo
Thhtochvimmwna'wmw mmmwm lnﬂud.thoihminth'
cachowi!!s&mpiyhmwndahomhmmMQMMMMM'M
mmtbodisp!mdﬁwhcm,ﬂaﬂmmmmM This method hes a
mmmmmmmmummmmwro through”
method.

1t is cruciel that tiw cache be sbie to determine very quickly whether or not it
contains given word. Since its memory spscs is much swelier Then the full stdress space, it
must store the full sddrass with sach iem. Whon a commend is raceived, the cache. must be
sesrched for an Hom with the given address 1t i mpartent that the. sesrch be conducted
quickly.

A popular method of organizing the cathe for rapba searching is the "set
associative™ memory [12]. The ceche is orgenized as an array of columns and rows. The full
MWicmlwaﬁhﬂanGMMaprnmbty '
much grester number of rows. . Each item in the cache ls. consirsined to correspond to the
same column in the full address space ss its cwn column in the cache. Tharefore, to search
for a given item whose full address is known, the dﬂr;u is saparsted into row and column.
It it is in the cache, it must be in the seme column st its column address in the real memory,’
¢0 only that column of the cache need o be searched. Furthermers, anly row addresses need

n

to be stored in the cache slong with the items. The column addresses -are implicit from the
position in the cache. : -

This organizetion works well for a suprisingly smelt number of rows in the
cache. For example, the mein memery cache on the 18N 370/168 computer has only four
rows. (The number of rows is relerred to as "cache depth”.) To determine whether a given
item is in the cache, only MMWMMhhM These can essily be
done simuitanacusly,

The column number of a word in the full sddress space is typically taken from
the low bits of its sddress. The row number comes from the: Memsining bits. This allows
consecutively addressed items to reside in the cache in-adjecent columne of ong row. '

Example: Suppose the full address: space:-contsins 4096 sddresses, and
mmummddﬂu ﬂmowosmuuthobwdhﬂofthooddrns
is the column number.. The cache depth is three. '

column number

row sddrass 551 560 543 504 444 425 A28 425
dsta A B C D E F G H

row address 412 417 447 313 314 315 270 241
data | J K L M N O P

row address 242 242 242 242 246 271 365 413
data Q R S T U v W X

The cache holds the item with address 4472, with data "X". When a command is
received requesting the contents of location 4472, the address is divided into the row (447)

7%

and the column (2). Gelumn:2 of the: cache: is- them: seerched. for: 447, 1t conteins 543, 447,
and 242. 447 is-compaveswith- these:thres: numbeve:simultinouusii: It metchies: the second of
them, so the: dete: sssaciated: with it: (K)-is: retusmed:te; the:user:

When: & new: ilem: is: to: b put: into: thie: cathng. it ooluswy number is known in
used item. For sxempley.if: aw ontry:for 2104wt linieruulnd; coliawr: & is: searched. 1f the
least recently. used:item:is: 314)it: isromoved:. Ii:ite: el bitt ie: owy. an-UPD ‘packet is sent
to main memory,. conteining. the: sddrass: (31448): amd the: dete: (M The: row sdéfess is then
chenged to 212.

The: determinstion: of which: item: in: 8: column: was- lewst: recetitly used can: be
Whenever any: Mmi&m&; MT‘IM5bedﬁbiwm?d others in its column

Because: each- operstion in the: coshe: iwolivas:enewimelisn of an: entire: column,
the cache memory: itssi should: be: organized: s0: that: saoh: culuwn: is: s “word”, thet is, the
entire: column: ie: resdor written ot once:.

3.2.1 DESIGN-OF CM:

The: fumstionsl: specification: of Clitiis: vary: shepler it must: rewlize fo through
its "top” mt“mfwwm “Bottow™ portic.

75

fou

It (CMD1, MEMI) = input ports, and (RESO, MEMO) = output ports,
(RESO, MEMO) € f o\ (CMDI, MEMA) if

(1) RESO € f,,(CMDI)
(2) MEMO € fy cenlMEMI)

An implementation of a system realizing fey Will now be given. Each word of
the full address space Is in.one of sight states dencled N, P, P', Q, @', R, ", and T.

N - The word is not in the cache at ail. (Since the ceche is much smalier than
the full address space, most words are in this state st any instent.) There
sre no pending cammands from the user to the system. There are no
pending commands from the cache to the mein memory. ’

P - Space has besn reserved in the cache for the word, and st lesst one FET®)
has been sent to main memory, but no LOAD'®) has come back. One or more
FETAL0AD™® transactions are pending to the ceche. Exactly the seme
transactions are pending to the main memory.

P* - Same as P, but a CLR packet has been received from the user. One or

more FET'2)/LOAD'®) transactions, pius & CLR, are pending to the cache.
The same transactions without the CLR are pending to the main memory.

Q - The first LOAD™®” has come beck from masin memory. A CLR packet will be
sent as s00n as main memory is able to accept it. Zero or more
FET/L0AD™® transactions are pending to the cache. Exactly the same
transactions e pending to tha main memory.

76

Q - Same as Q, but » CLR pecket hes buen recsived from the user. Zevo or
more FET'Y2000'2 iransactions, phws & CAR, are pending 1o the cache.
The same irsnsections without the CLR we: pemiing to the mein memory.

R - The werd is in the cache, but soms FEFSROAN™ wusctions mey still be
in progrese in main memery. AMMM““IUWM
No CLR pachet hee been received frem Whe user. 2src er more

FET'® /LOAD!®) transactions are pending to th ciches. The same

mnemnmhumm

R - Seme oo R, bt » CLI¥ paciiet heis Moow reselvnd frow: the user. Zevd or
more FEFSR0ANY (rensactions, pius & CLI, ove pamding to the cache.

T « The: werd is traly in the: cache. mwwmmnm
cache or from: the caslve Yo the weiw memevy. -

The nuemt stoter for & wird ww-Ser T, dipanding on letfer the word is in
the cache or nek. I state ¥, otk commande du aried opert madiilely By the cache without
any communisation: with: main. memery. v sliole 15 @ty coWwand ew the vser causes the
word to undergs: iransitions: thet svertuslly rbiuit e s Saing: is slals 77 1 the commend is »
FET®, the word must be read from main memery, sné the siste goes tiwough seme of the
intermudiste steles. wmmmmmuubmhﬁmmsuor In
dmmmnmmmunmwmmr nmuu.uu-
“modify” flag. fov et wensie:on, aw UPS puckiot I sowtt 1 Male mevaevy:.

~ The spasifications. of MW and ite aser requive ThWt the wer accept all result
pachets from-WE Mt is orly reuired io: sctopt somwandy whew the rusulls of previous
commends Neve bauw. steapled By: the user: (siNaugh o oficiort Wiplomentation of MM might
must sccept packets from mein memery, st MEMI, overs when mein memory refuses to accept
eny further commends threugh MEMO. CM sometimes must weit for memory to accept a

77

.command. While it is waiting, it- may refuse to sccept further commands at CMOI, but it must
siways be willing to accept packets at \EMI CM may sssume that any packet sent through
RESO will be accepted.

The reason why CM aliocates a cache cell for an item and putk it into stete P ss
soon as the tirst FET!® command comes from the user, is to avoid s dndlock, thet is, o
situation from which th. system cannot procud. If it simply sent the pockot out through
MEMO and did not aliocate the cache cell until the firs}. LOAD™® packat came back, it would
use its own space more .mcionlly. but would be in denger of dndbck. (P colis are uulou.
since they do not contain dsta.) This will be OXM in section 60. .

In the following ducripﬂon of tho cache *oﬁlhm. the manipuistion of the
counters to determine tho loest recently used Itom is not shown.

STATEN

FET*Xaddr, teg) at CMDI - Creats space in the appropriste cache colymn,
Either use an emply space (this situstion can only arise, when the system is
first storted) or remove ?hi least recently used item in state T. If no item
is in state T, wail until one enters stale T, not accepling. any packets on
CMDI while wdhn;. (ltems in othor states will. progress to state T.) When
the itom to be. removed h found, write it out if its "modify” flag is on, by
sending an UPD packet. ot MEMO. If main memory is not .accepting packsts
at MEMO, wait until it dou. Then creste a new item in the ceche with the
given address, “modify” = 0, state = . Leave the dete and refersnce count’
fields unspecified. Also, send a FET'®! packet, identicsl to the incoming one,
out through MEMO, to fetch the data.

CLR(addr) at CMDI - send DONE(addr) at RESO.

UPD(addr, data, ref) at CMOI - Create space in the cache as for FET'®, perhaps
sending an UPD packset to memory. Then create & new item in the cache

78

mmmmw*-x.upmmmmfmm the
command, and state = T. | -

LOAD'* or DONE st MEMI -cin’t occur because no transactions are pending in
main momery.

STATEP
FET<*Xuddr, tagh st CMOL - Send the seme pachet at MEMO.
CLR(addr) at CMDI - Changs to siate .

UPDtdsir, date; ref) &t OWEX - mmmmmmn; in
the cache.

LOAD"#Xeddr, dets, ref, tag) st MEMI - Dapasit the daie snd reference count
irte the cache: word, and send the same pechel eut ot RESQ. If the main
mummm.mmmwem.m
mmmt wm.mtm.ua h

mam«mmmmmmmwhmm
STATE P

FET(®), mwmum-mwwm.etmmhuamzm
trmacﬁonm

LOAD *Xaddr, dats, ref, tag) st MEMI - Doposit the data and reference count
into the cache word, snd send the same packet out st RESO. If the main
memory s accepting commands, send o CLIiidd]-8t MENIO and chenge this
cache item to state R’. If not, change to state Q.

79
DONE ot MEMI - can’t happen, since no CLR has been given to main memory.
STATEQ
Note: CM does not accept any command at CMDI whenever any item is in state
Q. Q is simply a temporary state that is waiting to send a CLR(addr) out through

MEMO and go into state R,

FET(*’, UPD, or CLR at CMDI - can't happen, since cache is not accepting
commands.

LOAD'® at MEMI - same as state R
DONE at MEMI - can’t happen, since CLR has not been sent to main memory.

Main memory becomes asble to accept a command - Send CLR(addr) through
MEMO, change to state R

STATE Q°
Note: CM does not accept any command at CMDI whenever any item is in state
Q. Q' is simply a temporary state that is waiting to send a CLR(addr) out

through MEMO and go into state R

FET (*’, UPD, or CLR at CMDI - can't happen, since cache is not accepting
commands.

LOAD'® at MEMI - same as state R.
DONE at MEMI - can’t happen, since CLR has not been sent to main-memory.

Main memory becomes able to accept @ command - Send CLR(addr) through

MEMO, chengs to state .
STATE R

FET{*Xoddr, teg) at CMOI - - Update the reference count in the cache, and set
the “modify” mwmmmm‘um‘ Send LOAD'*Xaddr, dets,
m.m)mmmatmmmwmmad
the cache. Note: ct the instent this happens, there may still be
rzr‘*’n.omwnmmmmmm it so, thoss FET®
packets were eerfior fhen this one, but the corresponding LOAD'®? packets
won't be returned until lster. This is the circumstonte which causes the
mrdsy:mwwmmmwﬂmsmm«m
different from thet of the FET'®? pechets, A

UPD(addr, data, ref) st CMDI - Update the cache, set the “modify” bit. Note: if
memmrmmmmtmn,nmmmumm
mwnmﬁw"m“mmmm

CLR(sddr) st CMDE - Change to stste R'..

LOAD'®)eddr, dets, ref, tag) st MEME - Ipore the “ref* field in the pachet.
zmm.wwmmmmmmmuhmmn
LOAD™ or LOAD". Do not set the “wodity® Mdmuhmymny
knows sbout the reference count chengs. Send LOAL SXader, duts, newref,
m)wommo,m.ma-mwmmmm
cache.

DONE(addr) st MEMI - Chenge 1o state T.

81

STATER

FET{®), UPD, or CLR st CMDI - can't happen, since user has o CLR/DONE
transaction pending.

LOAD'®? ot MEMI - same as state R.

DONE(addr) st MEMI - send DONE(sddr) through RESQ, change to state T.

STATET

FET*Xaddr, tag) at CMOI - Update the reference count in the cache, and set
the “modify* bit if the packet was FET™ or FET*. Send LOAD'*addr, data,

newref, teg) through RESO, where data and newref are current contents of
cache.

LPD(oddr. data, ref) st CMDI - Update the cache, set the “modify" bit.
CLR(addr) st CMDI - Send DONE(addr) through RESO.

LOAD'® or DONE at MEMI - can't happen, since there are no pending
transactions in main memory.

3.2.2 PROOF OF CORRECTNESS OF CM

A proof of CM's correctness Is generally similar to that of the system MEM
given in section 2.0.3. The memory state required in the specification is the contents of the -
last UPD packet in the input history. One must show that, for a cell in states Q, Q", R, R", or T,
the data in the cache itself is the same ss that in the last UPD packet st CMDI, and, if the
modify bit is off, this data is in main memory also. For states N, P, and P, the correct data is
in main memory, that is, the last UPD at CMOI hes the same data as the last UPD at MEMO.
These properties must be shown to be preserved for all state transitions, and it must be

82

shown that all legal FET® commands will get the correct data. Furthermore, the effect of
reference count modifications resulting from FET* and FET™ commends must be taken into

account.

83
4.0 IMPLEMENTATION OF MM USING A "ROTATING” DEVICE

“Rotating™ memories such as charge coupled device (CCD) or "megnetic bubble”
shift registers, or magnetic disks, are rightly considersd to be. essentislly unussbie for the
main memory of a computer because of their excessive retrioval.delay. In o dats flow
computer, totel trmtbnntohuimpwtmtacrﬂorbnumkﬁwdwmmwtho
disadvanteges of these devices largely dissppesrs, making. them perhaps economical as & mass
store. On the other hand, further impravements in RAM. technology: mey render these shift
registers obsolete for most appiications. This section. is. predicated on the sssumption that
CCO’s or bubble memories will be economical and ussful.in the packet memory system.

Ina mhﬂn(mmry, tho data is structured.in a riu which “rotates” pest a

“read/write head”. Equivslently, one may think of it ss a fixed m and a pointer rotating
around the ring, with memory transactions permitted only on the cell currently pointed to. If
the addresses of words correspond 1o fixsd placss on the. ring, it is possible to predict when
any given cell will be pointed to. Commands from the user .cen be stored in & memory
somewhat fike a queus, sorted by position, so that the pending transaction st the head of the
vmhdwm(wnudydw&y;)ﬂnmﬂuﬂhopdﬂhfwmm This will make
optimal use of the availability of dats from. the CCD.

There are a number of CCD architectures currently in use. In the “"line
addressed random access memory® (LARAM), only a smell part of the device shifts at full
speed st any one time. The rest shifts and recirculstes st s much lower speed in order to
conserve power. The intent is to make the device beheve somewhat fike o random access
memory. To relrieve any one item, one finds the section in which that item is stored, and
directs the CCD to shift that section at high speed until the desired:item is found. While this
is happening, the other sactions are shifting much more siowly, so this- architecture is not
. officient when many items ore being sought st one time. It is hrdon not suitable for the
type of packet memory system being considered here.

Two other types of CCD's sre the “serpentine”, which is simply a long shift
register (it “"snakes” back end forth on the IC chip), and the “serisl-paraliel-serial®, which is

84

simply a collection of interiesved shift registers. These two types differ only in engineering
specifications such as dels rete and pewer comsempiion. They bS6th behave like long shift
registers, and hence ave suitable for the type of memery under discussion.

Thers are & romber of impiementation considerations thet must be taken into
account in designing & retuting packet memory. Por exemplé, & number of shift registers, one
for each bit of & dete wovd, mey De Weed, so et & oW duts word comes into position on
each clock pulss. On the oiher hund, o single sHif¥ register might be uied, with each word
stored serisity, or any arrangument Detweer these two extremss can be used. One might aiso
Use an unususl corresponderce Between adiress snd S reghktév position. AN of these
considerations are irrelevant 16 1he structure being considurod, s we Wil sssume the memory
is @ ring of full words, ordered by eddress, with sddress 3000 foliowing the highest address,
mmmmmrummamm mmmm-ﬁonn
oquiveient te this.

hmmmMﬁthu”W ronrdossof
what type of device it sctaslly is.

Punding transections (thetl is, pechels recoived st CMUIY ore stored in the
transaction list (TL), which is presumebly mucih.oniilior’ thew the mémory Tteslf. The TL is
presumably resiized with # random sccuss memory device. In order to svoid moving dats in
the TL unnacessarily, it hes & ring structure: just ke the memory. Tranéections are placed in
the TL st or neer the same anguiar position se the Pauition i memery of the word to which
they refer. muunnm:nmmmmmwnmm
to many conesculive adiresess: of memery. S

Lot €XD be thiw function mepping sddresses in the entire address space into
the corresponding sddress in the TL. This is celled the heglt Ranction for ressons that will be
oxpleined ister. €XD is just the integer pert of the quetiont of X dividsd by the ratio of
memory size to TL size. m-mmmm&mwm«mu)mm the

opﬂnonm«ammmdx

-

When & command is received for lddnn X, the command packet h plncod in
the TL at address €X», or the first free sddress thereafter if €X» is full, Auuming [
uniform distribution of addresses oppurinc in commends, the TL sMuld be uniformly - filled.

As the memory pointer rbhm throu;h tho mmory, unothor pom.r mlntdnin; nbout tho'
same anguler poﬂﬂon, roMu thmqh the Tl.. pkldng out tho mxt tnnuction to porform.

The TL is organized much like the wdorod hnh hblo doviud by Amble and
Knuth [2] ; with modifications 10 allow for ih circuhrity and for tho he! thol itom are being
removed from it. In an ordered hash table, each item has- & hash address. It is placed in.the
table st its hash address or in the contiguous Mo! itoms after the hash address. This
block is in lhcronlng order of data vaiue. This _oidoﬂng makes it possible to determine
whether an item is in the table much more quickly than in a conventional. hash teble.

Although ordered hash tables are intended ﬁor entirely different applications
than the transaction list of o packet memory, ‘the concept is well suited to this application,
The “vaiue™ of an item in the table Is the word sddress. sppeering in the packet.. Let a(P)
‘denote this address for packet P, snd cali it the’ "CCD sddress”. The “hash address”
corresponding to CCD address X is just XD, doﬂnod esrlier. (Hash functions are usually
dnogmd o be random, but thal property is not desirable here.) The hash address of pachet
P is therefore €e(P)>. e

Because the' TL is a ring instead of a linear list, . different definition of order is
needed. The concepts of “graster than” and "less then” are replaced by-"clockwise from” and
counterclockwm from®.. Since any .item is ‘both clockwise and counterciockwise from any
other item, tho order of two itom must be defined relative to @ third. This is done through
the use of intervals denoted in ordinary. mathematicst notation. %, Y} is the interval from X
clockwise to Y. If X < V,.it has its. cmtmy‘mnh‘f XD Y, X, Y] is the set of numbers
from X ub to the highest address, and tﬁon from zero up to V. "Opon 'dndk“'hbll open”
intervais have their customary measning, that is, [X, Y) means X Y] oxclwvo of Y,etc. X, V)
and[Y.X)audnrlmemofmhoﬂnrﬁx’V '

Th. ordering of hash addresses and word addresses is oxpressed in terms of

whether Or not en stement is in an interval. Z € [K, Y) wasne that if one sterts st X snd
moves clockwiss, one resthes I before Y.

mmmmmwuhnhm,amwm“cm
an item’s hash sddress to the Hem iteekt, wﬂaﬂmumeﬂmﬂﬁlmmﬂy
“smallor™ toms, that is, iows whose hash addressss ey coumtercisckwise from this one. This
is best ilustraled with s diagram. MMM&M“%WM
be one digit. mmmmnmmat T trauwestion list has: 8 colis and is
drawn ss @ circle.

Colls O and 6 are emply. Coll 2 contabw & pachet with eddress 16, whose hash
address is 1 but was dispisced because coll 1 is full,

It ie possibie for the transaction-#it to:contei severs! packets referring 1o the
same CCD address. Spacificelly, the following configuraiitng sre possible: ’ |

One or more FET'S) gackete. Whan the COD: putwter reaches the sppropriate
mmmwummmm»mwm.mu
LOAD'®) packets. :

One or more FET') packets, follewed by & CLR. When the 000 pointer reaches
the appropriste address, the LOAD'S) pachets witl be sent out, followed by

87

A single UPD packet. The date will be written into the.GGD when the
. sppropriste address is reached.

Noothtrsmu aramlbh. Thbhmithng&moumhw
mmpnhtwmthnnfﬂ‘*’wmmm&mmh;wm o
UPD s eiready peading, the new. one. simply. repleces. the oig one,.J1. o, FET')is given when
on UPD is pending, thq (dota ie taben diceclly from-the pending: UMD packed and seturned in &
LOAD'®) pacet.

Intuitively, the rule for a well formed transaction list is that the lines
mmmmm-mwtm_mmmmwcmmmmt never
cross each other or pass over an smpty cell. If an item with CCD address 43 were placed
into cell 6, this rule would be violated, since the line from 4 to 43 would cross the line from 5
to 55. The insertion sigorithm must instead put the 43 into cell 5 end move the 55 to cell 6.
Furthermore, sl items with the same hash address must be ordered by CCD address. In the
example, 16 is clockwise from 11.

To insert an item, start ot its hash address and seerch clockwise until sn empty
cell or a cell containing an item with higher (more clockwise) CCD address is found. In the
former case, insert the new item. In the lstter case, insert the new item after meking space
for it by pushing the old item, and sii those contiguously following it, one space clockwise. In
the example, insertion of item 10 would require pushing 11, 16, 25, 32, and 55 clockwise.
Insertion of 42 would require pushing only the 55,

Whilo incoming command packets are being placed in the TL by the above
procedure, packels are being removed and sent fo the CCD memory. This is accomplished
through the use of a trensaction list pointer (TLP) which rotates clockwise roughly in
synchronization with the CCD address pointsr. When the the CCD pointer points to CCD cell
10, the TLP points to TL address 1. Since a packet for address 11 is found there, it waits until
the CCD pointer = 11, removes the packst from the TL, snd performs the indicated operation

on the contents of CCD address 11. The TLP is then immedistely advanced to the next
memzmmmmmmmunmmmwwnm- 16
Ntbnrmﬂumwwwmﬂnmwm ﬂn’m’lhommtoa
and the prosses canlinugs, -

ﬂnrmdu&ammmnmamwbmmm”fora'

woli-formed iransaction Net. K 16 is removed fram #he sxemplé Uat, the fine from cell 2 to
umzsmtmnmuu.mmmmmdmmwmw
Therefore, the regionfrem which peckels are remeved & diidore 19 be the “removal region”,

uuumummm.mmu-&w&m&umummun _

the removal region. Mrmdmkmummwlumdby the
“removal pointer” w.-wunmu.mbym mmumls thaonmpb
loohs ke thie: :

removal region

- = {RP,

Whenever an item is removed, RP. is st to the: hash. address of thet item. In
the example, sfter 25 is removed, RP will be est to 2 (25" MM“TLP will be
advanced to 4. ‘

The rules for a well-formed transaction list cen now be given formally:

(1) V j, k € TL address space, if j » k and TL(}) w empty = TL(K),
[€(TLND,j] ¢ [CaolTLND, K]
(Thet is, the interval from the hesh address of an item to the item itself is never
MMWHM!MMNHMMMMML&MWWCM)

@QVje[RP,TLP), TL()) =emply
(That is, cells in the removel region sre considered to be emply.)

(3) V j, Kk € TL address space, If TL(j) = empty # TLK) and | € [RP,TLP),
j €[€a(TL(R)D , k] ‘
(That is, the intervel from the hash address of an item to the item itself does
not contain sny empty celis not in the removal region)

(8) V j, k € TL address spece, if €TL(ND = €a(TLKND and j € [€a(TLLKND , K)}
then &(TL(K)) 2 «TL())

(That is, if two items have the same hash eddress, the more clockwise one has the higher
CCD sddress, i.e. ol the peckets having one hesh:adidress sre ordered by CCD address.)

(B) Vj,k € TL address space, ifj €[€o(TL(ND , k) and oTL(j)) = a(TL(K)),
thenVme[j,k]} oTLim) = oTL(j):
thhmw{th»mxchMthMhmwytoboswﬂmt.
whon & sequence of adjacent FET') packets snd .« CLR are found, it is possible to
return the M”m followed by a DONE, mmm there are unseen
packets elsswhere referring to the same CCD aderess.)

(6) V j, k @ TL address space, if j € [€o(TL(HD , k) ond o(TL(}) = &(TL(K)),
then TU(j) wes plecedtin the teble balere TN -~ = = = =
(That is; the HemewWith the same COD sddress ere ottiersd by-agu, the youngest being
most clockwise.) This property makes it possible to return @ DONE packet as soon as
a CLR is encountered in the removal scan, since the packets are encountered in the

The insertion sigerithm requires some cers when-passing through: the removal
region. If the scan sterts outside of the region and then enlurs:the:region, the Hem-is placed
in the first cell, and the region is shortened: Iy :oni-e0-thut-thet celils no ionger part of the
region. If the sten bogine inthe region it not-inits Siret:osl;#he seen skips over the region
and starts after its end. If the scan begins in the first cell of the region, it skips to the end if
its CCD address is greater than or equal to that of the itam just past the end. Otherwise, it is
inserted in the first ceil andthe region is shortened.-

91

removal region
To insert: _D;Alhhz
22-27 . putat3 set RP =4
0-33 . putat3,eet RPmq
“¥xs out st 6, push the 36 and 43
36-42 A put at 7, push the 43
43-77, 00-07 _ putato

The aigorithm for inserting an item into the TL is given in appendix III A. If the
TL siready conteins an UPD pachet for the seme eddress, it instead performs the indicated
action, perhaps modifying the UPD packet and perhans-transmitting. s packet at RESO.

The removal sigorithm is somewhat simpler. The.TL item: pointed to by TLP is
next to be removed. The CCD pointer indicates the cuerent itam available ot the CCO output.
From the standpoint of the sigorithms for bendiing the Ti, the CCD pointer must be considered
to be inexorably advencing under comirol of an axternat agency. The.sxternal agency is the
clock controlling the shifting of the CCD shift cegisler, or, in the: case of o magnetic disk
memory, it is the information being reasd from the disk’s timing tracks,

The fact that the CCD pointer is synchronized to external svents means that it

cennot be integraied fully into-o sysiem using the pachet communicstion principle. It must be
be used in the interfece. The design o euch.an interiste is & common problem of digital
system design, snd is beyond the scope of this thesie. We will assume that the interface
between the synchronous memory dewic and the: peckel eystess:gansiels of ports CCDI and
CCDO. Every time the CCD advances 10 8 new address, an ADDR packet containing that cell’s
address and dats are sent to"‘tho systom threugh mcg:m. It the system fails to
schnowledge the ADDR pashsts fast enough, 50 thet the COD is.prevented from sending one, it
may either drop the pachst or wait until the CCD hes shifted sli the wey around to the seme
sddress again. After the system receives an ADDR packat ot CODI snnpuncing that an address
has been reached, it may tranemit o WRITE pecket et COBO, giving the address and new date
to write. If this packet is not tranemitted MMQM be toe lale to write the dats
into the CCO. hﬂ*mﬂn@ﬂhdhwmmmwmm*&
until the address is reached agein, and then witles the date.

Wasting an entire rotation time whenever the ssynchrenous part of the system

can’t keep up with the CCD clock may seem drastic, but it degen't mn very often.
mmmmmmmmmmmm“mococmx.
there is the possibility that it mey be isle: mnummmmnnnsymm
such that the probabiiity of this heppening ié vanishingly smell. If #his is done, it is possible
to prescribe drastic remedies when it does occur, without significantly degrading system

The sbove description of the:interfece to ths CCD may be somewhst simple-
minded. mmmmmmmmmmwmm.mummmu
given before the previcus dete from the sams sidriéss is avalleble. This means that the
protocol whereby' the system issuss s WRITE pachet only afier receiving an ADDR packet
besring the dets might net.bo appropriste. ‘In thé'ciise of » CLLF or other shift Fegister, the
problem cen be solved by having twe “aps® oh the ‘registir: ‘o for reading, snd another,
one or two bile ister, for writing. In the cab of u disk memory, the prbilom is more serious,
and may require thet the disk ahnounce eaeh sddravs dfightly batore the data becomes
svailable. The necessery modifications to the ssynchronous part of the system will not be

R B iRt a2

treated here.

The rotating memory module then looks like this:

AN
AV e |
i :
' X device
! cCDO «
. N
T

The removel aigorithm waits for an ADDR packst st CCOI matching the address
contained in the packst in the transaction list pointed to by TLP. When found, it performs the
indicated transection, perhaps sending a packet out st RESO. It then sets RP to the hash
address of the item which was just processed, which may shorten the removal region. The
item is then erased from the transaction list, and TLP is advanced to the next position. If TLP
now points to an item heving the same CCD address, that item is processed also, using the
same data. Al trensactions giving the same address ars handied in this way. Any reference
count changes are noted, and the modified reference count is written back into memory with a
WRITE packet at CCDO.

When TLP reaches a cell which does not contain a transaction for the same
address, either it is for a different address or it is empty. In the former case, the system

94

waits for the CCD to reach the new address. In the latter case, it sets RP = TLP, destroying
the removal region, and then advances both RP and TLP, in step with the ADDR packets that
glve the CCD address, until it finds a transaction to perform.

The algorithm for the rotating memory is given in appendix 111 B.

5.0 STRUCTURE CONTROLLER DESIGN CONSIDERATIONS

In this section we will sxamine o m of the considerstions that must go into
the doci;n of an efficient structure controlier. ' :

5.0.1 CHECKING THAT THE CONTROLLER OBEYS Fyppccn

The structure controlier never issues mmwm the reference
count is known to be one. Since this is so, there can.be no iransastions pending on that ceil,
0 the requirements of fuyuey ore met. This ia contiogeot, of.course, on the rest of the
computer correctly rnﬂm fmm A refersnce count viglstion. by .the computer
could lead tomwopmtbdmummmonwokw ‘

5.0.2 PRECISE REFERENCE ACCOUNTING WITH IMPRECISE. REFERENCE COUNTS

In checking that 'm satisfies the nnd; of the stu:m controller, there is a
point of possible danger that needs to be checked. Since LOAD'® packets may be returned
from the memory in an order different from thet of ,ttn,,FE“I.‘;*\’ugm it 'was shown in
saction 3.0.2 thet the refersnce counts returned-from the memory may be unususi, perheps
even negative. Is it possidie_for this to lﬂbrfﬁtﬁ"m!ﬂ'“" menagemsent mechanism? The
mworism,abngnth‘folbmm.hoboyod:

After incressing a reference count (with a FET*), do not pass the result to any
destination until the corresponding LOAD" has returned.

For example, if an instruction cell indicates two destinations for its result, the
reference count of the resuit must be increased with a FET* heforg the.result is sent to the
destination cells. If one of those cells is a SELECT that issuss & FET™ to-reduce the reference
count, the FET* must sct first. Furthermors, It is not enough to.rely. on the zero latency
srbitrator to be sure the FET* gels to the memory, before the FET". The FET™ must not be
sent untit the LOAD® arising from the FET* has returned. This is accomplished by not sending
the result to the destination cells untit the LOAD* hes been received.

It is sasy to see that no coll wilf falt 10 be recisimed thet should be reclaimed.
At the time the last "owner® of a coll issues & FET™ to discard it, there are .no other
wmmwmeﬂ,nmwmwkmmeMwmt
reference count, which is zero.

To ses thet no coll will be sccidentully reciiimed that shouldn’t be, consider »
cell with reference count 2, owned by instruction cells X and Y. Suppese X performs a
structure operation thet discerds its copy, so thet'a FET™ is issuod. We must show that if ¥
does not discerd its copy, the LOAD” thet arises frem X's operstion will not have reference
count zere. Mﬁymm'mmmm&bmhﬁdecwma
FET™. mvmmmnmmmwnaommmmmm
first. (That is, the reference count should sctuslly g6 up 193, then down to 2 and then 1.)

The memory receives the following sequence ot CMODI:
FET(odtr,X) 1 FET*(odr,) & FET(adae,
mmnuwumm-m&mn{mmbnwcu.}mrm
LOAD (sddr,—, 1,30 § LOAD (adde,=,0,¥) ; LOAD"(adek—, 1, 1

Mm1mmuemmmuar.vmmmmmww’u&. --Y) has been
returned.

5.0.3 MEMORY LATENCY

MMs latency wes left unspecified only for the purpose of proving correctness
of MM and its user. When actusily implementing ‘a practical packet memory, it may be
necessery to build a high degree of latency into some m in order to obtsin good
performence. For exemple, 8- “roteting® implementalién of Ni-using s charge coupled shift
register mey be designed to heve hundreth or thotsands of commends panding at one time,

T R N W e TN,

9

aithough its correctness does not depend on this.
5.0.4 THROUGHPUT AND DISTRIBUTED PROCESSING

~ One of the fundamental principles of dats flow computors is that, if onou'h
parallelism exists in the program, a computor be obb Qo run arbitrarily fut for a given logic
speed. To do this, it must dntribuh Iho compdaﬂon and bo frn of bomonocks If a dets
flow computer could only have one mulﬁply unit, lhui \vould be a bottleneck, since it would
limit the rate at which muitiplies could be porfomed. The date flow concept must not place
any restrictions at all on the number of multipliers that a computer can have (although sny
given computer of course has s fixed number). There must ol even be bottlenecks in ports
through which packetls must pess. If every multiply operation packet. had to pass through one
input port of an allocator on its way to the multipliers, that would bo unacceplable, since Iho
logic speed places a limit on tha rate at which packets can pass Ihrou;h s port. For examplo
it a port could handie packets 100 times faster than & multiplier could process them and il
packets had to pass through one port, it would mesn that no more lhon 100 multipliers could

be ussfully employed.

In the case of simple functional units such es multipliers, it is not difficult to
avoid bottienecks. Muitiple functienal units may be used, and the uﬂtratbh and distribution
networks that connect them to the instruction cells may be designed 1o be free of bottlenecks
snd thus maintein any dosirod throughput rate {5] . For the same reason, muitiple structure
controliers sre used, nch with its own porls connected to the orbﬂution and distribution
networks of the data flow computer, Also, muitiple mamory units are used, because the total
memory transaction rate is ;iutcr than can pass through s single: pair of CMDI/RESO ports.

It is not bossibb to compartmentalize the structure operation facilities as cen
be done with simple functional units. Connoctiu sach structuu controll.r to one memory
module is not correct, because nch structure con!rouor must havo access to the entire
memory address space. The structure controuors must be comdod to the memories through
an interconnection M.L'!!L consisting of arbitrators and distributors for packets going in-each
direction. Command peckets from the structure controliers have part of the address field

removed and used to select the output wtﬂtMMrm,quu‘dom for the
multiple memory connection in section 3.1. In tis way, sach structurs controlier “sees” the
mmmmmmmmmuumofthmm
space. The commend packels from the differsmt siructure controllers sre merged in
m-t«.,mmunmmmhhmmunmmmmuum
will be returned to the correct controlter. mm out of the RESO ports of the
mmymmM&tMMmhmmoﬁMtqfhw,lnd
«Mrmm“hmmwummmm

mmm

_ sC $C ,

D1 removes and - A2 inserts
uses part of input port
address to select 4 inte address
output port | |

/ DI\ A [A2\

&/ \a/ \m/ \&/
Al inserts v D2 removes and
input port " uses part of
into teg tag to select
(excopt UPD | ’ output port.
packets). ' |

The treatment of address fields and tag fields is symmtncd One could think
of all pending structure operations as occupying @ "tag space”. Just #s each memory module
supports a small part of the total Mmmu&hs&w‘m controfler supports a small
part of the totsl tag space. Thojobofﬁbmemeﬁmmtwwhhtomttnontwo

99

address space availsbie to each structure controlier, end to make the entire tag space
available to sach memory unit. - o

It is not necessary for the network to:piace the distributors before the
srbitrators. Such a network would heve s size proportionsl te: the-product of the number of
structure controliers and the number of memory units, which may be excessive. It is possible
to mix arbitrators and distributors in a network in such s way that the eize is ressonsble but
bottienecks are avoided. |

| . Bacause UPD packsts do-not heve a tag field .and do not give rise to result
packets at RESQ, it is-necessery that the arbitralors: and distributors cerrying packets from
the strusture controliers to the memory modules (ihose ishelied Al snd D1 in the preceding
diagram) have lstency zero. This is e0 that, when s structure controlier receives an
acknowiedge for an UPD packet, it will be gusranteed thet the packet hes psssed through the
arbitrator and.is thersfore: shead: af ‘sny packet thet mey subssqusntly beintroduced into
write on a cell, theteby compleling the croation of a structure.. When it receives an
acknowledge for that UPD command, it assumes that the structure is compiete, andd so it
returns it to the rest of the computer. An instruction cell:in the:compuler; heving received
this structure, may fire, causing a SELECT operstion to be genersied. The allocator may send
the SELECT operation packet to ancther structure controlier, wiich then sends out s FET
packet with the same address. If there is buffering before the arbitrator that merges packets
from the two structure controliers, the original UPD packst might still be in such a buffer, so
the FET packet passes through the arbitrator first. If this happens, the old data will be read,
rather than the new date supplied by the UPD packel. By making sure that the distributor
and srbitrator have latency zero, the UPD packet cannot get stuck in a buffer. When the first
structure controller receives an acknowiedge for the UPD pachet, that packet is known to
have been accepted by the arbitrator, snd hence it will precede sny subsequent FET packet.

It it is not feasible for the interconnection network to use distributors and
- arbitrators that have no memory, it is necessary to put tag fields in sll UPD specification
passing through the network. An "adspter unit™ is placed between the netwark and each

100
“memory module. The adapter passes sil pachels through sxcept UPD packets. When it
receives LiPD(sdidr, dats, eal, tag), it sonds 11PDiaddr, date, suf) S0 #he memory and UACK(tag)
back to the interconnection network, The siructune controlier dass st seturn # structure to
the rest of the compuler until it hes received LMMOK saglias fer all LIPD commends that it has

sent. mwmm:»m«mﬂmmﬁwkm routing
networks and is hoyang the soope of dhis Ahasie.

To maintain just one free storage list would creste » bottieneck, so each
structure contralier hes ane. Mikeneusr o elmcture qonivplior apeds o werd in order to
supplied in an mMaﬂuMﬁfm s

The sources of he sinasns &t AIDE are shep the wirusture controfiers, each of
UIBO pards are connesied 4o the 401 porls twasgh ¢ ealiaction o siGsaitre end erbitrstors
called the LD aalwprk. The puspaee of dhis mebuerk is 40 maluiin- s supply of fres cells to
sl controliare, aven if apme coniraliens’ MMMMMM.

UNI UNO
(from UIDO) (to LIOY)

UNI UNO
(from UIDO) (to UIDD)

Each structure controller, in addition to performing structure -operations,
maintains a froe storaga list. Whenever an acknowiedge is received on UIDO, it tekes & cell
from the list and tranemits It in & UID packat through UK. Since:s reference count scheme is
used for recovering unused celis, the controlisr watches for. wards whese raference: counts go
to zero. Every time it reduces a refersnce count by issuing s FET™ commend, it:exemines the
LOAD™ packet that is returned. If it shows a reference count of zero, the word is reclaimed.
This involves placing the word in the free storage list and, since whatever pointers it
contained ere destroyed, reducing their reference counts if their- elem bits-ere off. If either
or both of the lstter reference counts go to zero, thase words are retlsimed by the same
process. ‘ g

The procedure is recursive, and is sn unplessant type of recursion because the
completion of each operstion cen produce two more operations .to perform. Although the
recursion always terminates, a huge smount of. storage may be required to hoid the list of
words that need to have their refsrence counts reduced. The.prablem at its worst can be
obumd in the case of a large tree, no subtree of which is shared with anything eise, whose
root node is discarded. All nodes have en initisl reference count of 1, so, when each node has
its count reduced, it goes to zero, meking it necessary to reduce the counts of both of that
node’s offspring.

To implement this procedure by simply issuing two FET™ packets whenever a

102

word’s reference count goes to zero (thet is, whenever a LOAD™ is received bearing a count
of zero), would creets an intractable deadiock préblem becauss of the proliferation of packets.
lmtco&thMoMMbthMMyhddﬁMofuwwdshodd
be trested at the time the word is placed on the fres storage list. The pointer to the left
offspring will remein in the word while it is on the free siorage st. The recursion in this
procedure is under control, since only one new operation is crested for every operation that
is complated. When a word is taken from-the free storage list, the reference count of its left
oftspring is reduced, which may cause one or mors wards 1o be rectaimad; before the word is
used.

The memory management sigorithm is ss foliows:

(1) Whenever & word’s: reference count is reduced; sxamine the LOAD™ packet
that is returned. - It-it shows o count of 2er0, st the word on the free
storage lisk and, if the: slem bit in it right hilf ts 2oro, roduce he reference
count of the wend peinted: to by et fall. This ‘may caose this step 10 be

(2) Whenever an: acknowiedge is received from part (D0, gst a word from the
fres: slorage fist and send the petket tROGIddr, W Wit Nalf) through UIDO.
(The contenis of the left luif sre: sent simply to avold ‘en exira mmory
reference.)

@)Wﬂm:ﬂkwmmﬁndmduvnmdo.tﬁ the
pecket UID(addr; obj)- ot port UIDI and scknowledge same. Mis the
address of the new coll. }the-elem bit of g is oY, redics the reference
count of the addressed word. This may tauss step {1} 15 be invohed.

103

5.0.6 MAINTAINING INTEGRITY OF THE REFERENCE ACCOUNTING MECHANISM

The possibility of an error in the reference eccounting end: cell management
mechanism is a troublesome problem, because, as. explained in section 2:1:1; it is impossible :
for the memory to detect a reference accounting error by its user. Furthermors, the effects
of such an error are unpredictable, end may show up.in-completely unreisted parts of the
computation. However, there are a few mmthatmbodouhm the probebility of
such an error being undetected. ‘ v

 First, oll calls on the free stocage list can be marked.in some way, perhaps by
bit reserved for this purposs. Any reference o @ merked: seli-olher then for the purpose of
removing it from the free storage list is a detectsble srror. Also; the:free storage list can be
organized in such a way that cells are added et one end snd remeved from the other, thereby
maximizing the time thet 8 coll stays on the list once it is put there.. If a cell is erronecusly
recisimed while a “spurious™ pointer to it exists, it will then probably still be-on the free
storage list when the spurious pointer is used, 50 the.errar can be detected.

Angthor way of checking integrity of reference counts is to conduct sn "audit”
of the entire computer. This can be done st the end of the computation, and st any point
during the computetion. The host computer must dissble sl instruction cells and wait for all -
pending operations to clesr out of the structure conirollers. and.ihe-routing networks. Al
reference counts can then be checked sgainst the contents of the input registers of the
instruction éolls.

104

6.0 THE DEADLOCK PROBLEM

The structure controller and cache module that were described previously were
both required to have a-lerge capscity for stete information which would be unnecessary if
one could slways be sure that the device lower in the Nlerarchy would accept a command.

In the case of the structure controfier, the genersl behavior upon receiving a
result packet from the memory is to perform some transtormation on the data in its state
memory and then send a new command packet. ltsMstmmdeh dispensed
with, and the state information placed directly into the tag fiolds of the packets. When a
result pachet is received from the memory, s "memdryless™ controliér’s functions would then
be simply to perform e transformation on the pathet itee, forming & new packet which is sent
to the memory. The resson this feils is thet one cant be sure the memory wont decide to
return seversi result packets (perhaps ol pending oies) before it sccepts sny more command
Packels. Suppose this happered fo o memoryless structure coniroller. It would have no
place to put the result packets if the memery unit: isnt acoupting eviy more commends, so a
desdiock would occur. The problem is thet the ‘controlier has vickited the rule that it must
slways be prepared to accept the resuits of all pending operstions. A structure controller
mma*mymmmwmmwwmm results of ol
pending operstione.

A similar problem erises in the cache modkde. If & word is not in the cache and
s FET'®) pachet is received, o coll is immedistely siloceted for it snd placed in state P. A
FET{2) packet is aiso sent to mein memory 1o fetch the date. Until the deta returns from the
memory, the cell in the cache does not have dets in it, so it serves no useful purpose. It
might seem to meke more sense to aliocate the cache cell only when the first LOAD'® packet
is received from the memory rather than when the first FET'® packet is received from the
user - that is, 1o bypass stete P altogether. The problem is that the creation of a cell in the
cache may require writing out the cell’s former contents. If the cell is crested in consequence
of the LOAD'®) packet coming from memory, the cache may heve to send a packet to memory -
in response to a pachet from memory. If the memory sends such LOAD'® packets but does
mtaccoptmyrop“n.thcnehwoddhwcnop&mtowtmodoto.soadudockwould

105

occur. The cache implementation given in section 3.2 avoids this problom by reserving space
for the LOAD® packet in advance. 1t an UPD packet must be sant-to the: memory, it is done
in response to input from the user rather then from the memoey.- This way, if the memory
anourlly refuses to accept the UPD, the cache cen simply refuse to accept input from its
user.

In both the structure controlier snd the cache, the cost incurred as a result of
this problem is an amount of memory equal to ol the pechels that can be simultaneously
pending in all lower levels. In the controlier, this is the state information for off concurrently
executing structure operations. In the cache, a call might be in-state P for every
FET®)/L0AD® cycle that is pending ot that. instent, Since -a cellin state P is useless, the
cache must be that much larger then it otherwise would be, for s given level of performance.

In the case of the structure controlier, the memory space is needed somewhere
in any case. If o great number of memory trenesctions can be: ‘ponding simultaneously, o
"rohﬁn('mmory suchuwudow&odhmﬁan%hmmu«d. a
memoryless structure mmkmmmmwmmmwnm is stored
lnthn(qﬂoldsmtudoﬂh.m But the tegs of pending memery Bperations: must be
stored in the transaction list of the rotating memory, so whatever spacs wes saved in the
controller is used up in the transaction list.

Why, then, would a memoryless structure controlier be more desirable? The
reason is that memory space lmido the controlier is much more expensive than in the
transaction list. The controlier must be able to process information as fast #s the highest
level of the memory hisrarchy. If that highest level is a cache using high speed (and
expensive) devices, the controller must be equally fast. The rotating memory is at the bottom
of the hierarchy, 5o its transaction list can use & siower and less expensive logic family. |

‘ In order to use s memoryless structure controlier or s cache which does not
use “P" cells, the memory system below the controller or the cache must obey the foﬂo\ving
“fixed latency law™;

106

Whenever a result packet is tranemitied st RESOD, the device must accept »
packet st CWOL 1 that pecket Js sn UMD, it must stcopt yot andther, imtil it
has takon one thet is vt (PO, amuivuma”ﬁwmw lccwt '
snything further 4t RESD. ’ '

The resson UPD pechets are & special cese is that they do net generste any result, so the
system should be sble to abeord them in unlimited nembers.

Some memory syslems obey this law. A reniiom actess implementation of MM
clearly does. A rolating: imslomentetion cen wisd, shw s travsaction Hiet has fixed size.
Whenever an item is tehen aut of the TL, enctiur- oan e insertedt {ThW tplementation of the
mammmamuaummmmwnwmny be
moditied to do 30 |

The systems thet do net cbey the fiwed latency tew sre the horizontal
composition of N units and-the cache. The Frmor-iiudes ¥W intercshnection network
between the structurs conieoliers sl the membdry Wilts. “In-the tass of the horizonts!
interconnuction of umits eush of which Shuys 1he-Hing TWINEY 14w ‘WIon one Uit transmits a
commend. If the command is sddressed 10 a differsnt WV N Whan 16 one that trensmitted
the result, that unit might not be eble to sccept R. mumhamymmumh to
share the wammmﬁm '

In the case of the cache, meintsining & constent #umber of pending transactions
in the cache and memery combined requires walmeiving ¢ cowstint number of pending
transactions in the memery sions. Fer every vweult Pt traniwiitted by wain memory,
another command must g from the cachs 10 main memery. HOwews?, suth tommends only
occur when there are cathe misses. If the ceche rums into unususlly good luck and gets a
continuous siring of cache Nits, it would not send conmmnds 16 memery. In brder to meintsin
constant latency, it weuld heve to refuse any result pettate Wom wemory. This could result
in some transactions remaining pending indefinitely. Whits this probebly won't céuse a data

zosisse o o

16

b tiam Bl 2 ‘!

@améﬁzﬁ} 5 O aavewr il sen

m ﬁ»«ésﬁ» 2 o dnemuniow

'(*%&L = whs ik 1 0 Beulaens

R e e ot g 2 A i‘%%w ﬂw

e

guons sl m o KA e eeat g eirti v

s of Apmee fsbweess fed bavigvd sesteml giehoas

i Yot

s b o st groniemey etiond

bl meiToR tﬁ‘k&wﬁm wolt efan il o ziwg e

3 e oo bebesa & {2
i % sirpl met A ohegn "@ﬁ&%?ﬂ@" gy :w?;%a, braminitis

welr ot »«%»w% W m% seTgn g WY ghwnh
o g e s beaes s sd S ESeant meldog Avgitech et

sellodnes owlnrs seshomemeny s Bl o

108

7.0 SUGGESTIONS FOR FURTHER RESEARCH

One of the principsl problems remeining in the sres of the design of systems
using the packet communication srinciph is i develdpiment of & pricticel and systematic
procedure for construgting iNoUules that cart Be Broven 16 Mbet givin functionsl specifications.
An important 160} for thiw teuk is the develspment-of ¥ rigirods snd concise Architecture
Description Lenguage (ADL). With the heip of the ADL, the tesk can be divided into two parts:

(1) Development of a proof methodsiogy so thet systems expressed in the ADL
can be proven to meet functionsl specificstions.

(2) Development of a system construction methodology so that systems
expressed in the ADL cen be constructed with confidence that the physical
device will reslize the ADL expression.

For this purpose, the ADL must be simpls enough 1o correspond neatly to the
hardware devices invelved, but powerful encugh t¢ mehe prools involving history errays
tractable.

Another remaining problem is, of course, to develop functionsl specifications for
sl parts of the data flow computer system, including the structure controller, and give proofs
of their correctness. The functionsl specification of the computer itself (thet is, the structure
controlier’s user) is needed, among other things, to shiow thet no reference count violations
will occur.

An efficient structure controlier needs to be designed, with special attention to
the needs of programe that sre likely to arive.

The desdiock problem needs to be exemined cersfully, to see if it is worthwhile
to build 8 memoryless structure controtler.

109

REFERENCES

. Ackerman, W. 8 Interconnections. of Determinate Systems. Computatien Structures Group
Note 31, Laboratory for Computer Science, MIT, July 1977.

Amble, O, D. E Knuth. Ordered Hash Tables. The Computer Journal 17, (May 1974), pp
135-142.

Anderson, D. W, F. J, Sparacio, R. M. Tomasulo. The 1BM System/360 Model 91: Machine
Philosophy and Instruction Handiing. [BM Ree. end Dev, 11,1 (Jsn. 1967), pp 8-24

. Berkeley, E. C,, D. G. Bobrow. The Programming Langusge LISP, its Operation and
Applications. MIT Press, 1966, |

Boughton, G. A, Routing Networks in Packet Communication Systems. S. M. Thesis in
Preparation. Depariment of Eloctrical Engineering end Computer Science, MIT.

. Dennis, J. B, D. P. Misunas. A Preliminary Architecture for a Basic Data Flow Processor.
Computation Structures Group Memo 102, Laboratory for Computer Science, MIT, Aug.
1974,

. Dennis, J. 8, D. P. Misumg, C. K. Leung. A Highly Paraliel Processor Based on the Data
Fiow Concept. Computation Structures Group Memo 134, Laboratory for Computer
Science, MIT, Jan. 1977.

Dennis, J. B. Packet Communication Architecture. Proceedings af the 1975 Ssgamore
Computer Conference on Paralle! Processing, IEEE, New York, Aug. 1975,

- Keller, . M. Look-Ahesd Processors. ACM Compyting Surveys 7, 4, (Dec. 1975), pp
177-198.

110

10. Leung, C. K. Architecture Description Language. Computation Structures Group Memo in
praparation, Laboratory for Computer Sciencs, MIT, Aug. 1977.

11. Leung, C. K. Formei Properties of Well-Formed Data Flow Schemas. MAC TM66,
Department of Blecirical Enginesring and Computer Science, MIT, June 1975

12. Madnick, S. E, J. J. Donovan. Operating Systems. McGraw Hill, 1974,

13. McCarthy, J. ot. al. LISP 1.5 Programmer’s Manusl. MIT Press, 1966.

14. Patil, S. S. Closure Prqmﬂcs of Interconnections of Determinete’ symm Rocord 01
the Project MAE Canterence on wmammm New

York, 1970, pp 107-116.

15. Rumbaugh, J. E. A Paraliel Asynchronous Computof Architectuve for Dnh Flow Programs.
MAC TR150, Dlpartm-n! of Electrical Enginuﬂnl and Cu\pubf Scbm MIT May 1975.

16. Thurber, K. J, L. 0. Wald. Associstive snd Pursliet Processers. ACM Computing Surveys
7, mmn.un).ppzts-m

111

_ APPENDIX 1
Proof that the concatenstion of two.FIPO buffers is a FIFO butfer, and fengths sre additive.

This proof is given not becsuse the statement is of fundamental interest; but as an example of
the method of proving theorsms stiout the behevior of systems, showing acknowiedgments in
detail.

Let a FIFO of size M have input-port X and output port .
Lot another FIFO of size N have input port Z and output port Y,
mdmu-mozmtummz,um

X X, vy,

From the definition of the first FIFO,

(1) 12 = min { ¥], 12, + 1}

@1z-x
(3))| = min { X1, 2] + M }

From the definition of the second FIFO,

Q) Y =min (171, 1V, + 1)
®Y,-7
(6) [Zyf = min [|21, V)l + N}

112

Case I: SuppouleSIYAhN

By the strong form of the. Standard Acknowledgs. Restriction,
oither |2} = M o |He [Z.ltl

If [Z] = |Z) « 1, them.. -
ll.la.%%km - MMW&%
ia < i (from 1)

N ARY
= IYpl # N <Xf, which is 8 mmnummwﬂ.! ~

= m»mmmmr
o Me=min {J, Nle1]) - GromM . ion e
Xal = min { X, X| + M } (trom 3)
S Pl = | (sjacaM 2 0)

WIS YA+ MeN mmﬂmmuzm
2 Pl min { KL, Yyl + Mo N) S

Cass I1: Suppml!l)ﬁlld-ﬂ
I 12 = 12,1, then

izl = xi from 1, since 2] » |Z,] + 1)
ISV +N (from6)

& WIS, ¢ N, which is a contradiction, 50 we must-have: il wiZ,] + 1
iZl =Yl +N MGMR‘UW
.~.|2|-N“l+N+l

S ARR RS wmuzm

S N=Y i+ (from4) .

izl < X (from 1)

SN+ SH
o~ WI-MH(N»WJ*”
Dl =min (B,) ¢ MoNT (Grom Bonditybn Myl ¢ N

In either case,

¥Vl = min {], ¥)f 1}

113

Yi - Xi (from 2 and 5)
(Xgl = min {X], [Y,]+ M+ N}

which are the conditions for the interconnection being a FIFO of length M + N.

114

APPENDIX 11
Algorithm for the cache.

Actual lookup in the cache is not shown. Instesd, the special fun;tiom
cache-dats(addr), cache-ref(addr), ceche-staleluddr): endk cecha-modieddr) sre used. These
are treated as though they were arrays, and sre assumed to be defined whenever the given
address exists in the cache. In-cache(eddr) returns irue if the given address exists in the
cache.

Can-creste{eddr), where addr does not exist in the cache, telis whether it can
be created, that is, whether some cell in its column is unused or is in state T.

If can-create(addr) is true, creation-celi-is-empty(addr) tells whether the
former case hoids, and, if 90, cpche-createladdr) performs the insertion into an unused cell.

Otherwise, coll-to-displace(addr) returne the address of a cell in stale T, selecting the least
recently used item. Cacha-rename(oid, new) performs the replacement.

' processes start ot Q, A
input ports CMDI, MEMI
output ports RESO, MEMO
ver cmd, item, addr, data, ref, oid-addr, p
var m init faise | tolls whether to wait for input from MEMI
var memofieg init trus | true when last packel sent at MEMO hes been acknowledged
var memowait init false | true when need to send something on MEMO
var wait-pkt | the thing to send |
var create-flag init falss | true when need to create a new cache coli
var create-pkt | command that led to creation
var new-addr | adidress field of creste-pkt

115

Q: .

wait for acknowledge on port MEMO,
take the acknowledge; -

memofiag := true;

goto Q

A:

until memofisg ar packet is available on port MEMI doy

m := false; | becomes true if should take packet at-MEMI
if memofiag then | is memory ready for command?.

if some-cell-is-in-state-Q-or-Q' then | see if need to send & CLR
addr := address-of-a-cell-in-state-Q-or-Q
memofiag := faise; ‘
send CLR(addr) on port MEMOg o :
if cache-state(eddr) = "Q"then. | chenga Qo R, Q' to R°
cache-state(addr) := "R" '

else
cache-state{addr) == R* "

slse if memowasit then | see if need to send FET'A) atter creating a ceil
memowait := faise;
memoflag := false; ;
send wait-pkt on port MEMO

else if create-flag then | see if trying to create a ceil
if can-create(new-addr) then | is some cell in its column empty or in state T?
crosto-flag == false | yes, will create the cell |
if creation-celi-is-ampty(new-addr) then
cache-creste(new-addr) | old cell emply, just put in new address

116

old-eddr 1= coli-to-displscalnew-adkr) | find col to displace
it cache-mod(oid-addr) then

memofiag := {aise | write out previous comtomts ¥ necessery

send UPDioid-addr, cache-delaieid-addr), cache-rei(id-ater)) dn port MEMO;
cache-renamgfoid-addr, new-addr)y | creets the new colt

| the new cache cell now exists

if creste-pht = UPD(----~-) then | what commend caused the creation?
lat croate-pkt = UPD(<-, dats, ref} f“ﬂﬁ oW ﬂw&ﬂﬁy
cache-modinew-adde) 1= trygy
cache-data(new-adir) 1= date;
cache-ref(new-addr) := ref;
cache-stetelnow-adir) = " :
olse | commend wes PET'® -
cache-mod(new-addr) = false;
coche-state(new-eddr) = "P";
wait-pht = croats-pht; IwMﬁMhmy
memowait := true
else: .
m := true | con’t creste new cache coll, must walt
oiss | ‘
wait for pachet an MEMI or OMDL, lot P« thet purty
if p = 'CMOP then

| #++++ process packet from CMDI #4444

cmd := RCVPKT(CMDI);
it cmd = FETYe,-) then
It cmd = FET*Naddr; tagh
i In-cache(addr) then
if cache-steteladdr) = “P" then

117

memotiag := false; | state P, just:send it onward
snd cmd on port MEMO
else |stateis Ror T
it cmd = FET*(--,--) then | need to updste reference count?
cache-ref(addr) := cachevafladkr) » 1; - -
cache-mod(addr) := true;
XMTPKT(RESO) := LOAD*(addr, cache-data(sddr; cache-ref(addr), tag)
oise if cmd = FET (~=,-) then
cache-ref(addr) :» cache-ref(addr) - 1;
cache-mod(addr) :-,m' .
XMTPKT(RESO) r= LOAD (addr, cache-data(addr), cache-ref(addr), tag)
XMTPKT(RESQ) = LOAD(nddr, cachardeta(sddr), cache-ref(addr), tag)
olse | state N
new-addr := addr; | set flags so cell will be created
create-pkt := cmd;
creste-flag := true
else if emd = UPD(-~,--,~-) then
lst cmd = UPD(addr, data, ref);
if in-coche(addr) then | must be state R or 7
cache-date(addr) := date
cache-ref(addr) 1= ref;
ceche-mod(addr) := true
olse | state N
new-addr := addr; | sot flags s0 coll will bs-crested
creste-pkt = cmd; -
create-flag := true
oise | must be CLR
let cmd = CLR(addr);
if in-cache(addr) |state P,RoOr T
it ceche-stete({addr) = "R" then
cache-state(addr) := "R° *

118

sise if cache-stateladdr) = "P* then
cachs-sistolodds) = °P*
alse | stote T
XMTPKT(RESO) := DONELatidr)
olge | stete:N S
XMTPKT(RESO) = DONE(uhir)

| #4444+ ond of CMDI processing +++e++

else
m = true | pachet wes from MEME

eise
m = tryes | momotiag: was: off, must Handie MEME inpol

if m then
| #4444+ process packet from MEME ++ee4

item := RCVPKT(MEMI)
if itom = LOAD N v o-) then
let item = LOAD X addr, dats, ref, tagy
if cache-state(eddr) = "P* then | krow it is in coutwe
cache-dateleddr) := daty :
cache-ref(addr) := ref;
it memofiag then | con send pachat ot MEXK?
memofieg := fahhey lyes
send CLA(addr) on port MEWO;
cache-state{addr) :« "R"
else .
cache-state{addr) = Q" | no

119

eige if cache-state(addr) = *P* * then

cache-data(addr) := dete

cache-ref(addr) := ref;

XMTPKT(RESO) := item;

if memoflag then | cen send packet st MEMO?
memofleg = false; | yes
send CLR(addr) on port MEMO;
cache-state(addr) := "R* *

oise
cache-state(addr) := Q" * | no

olse | must be state Q, Q", R, or R ,
if em = LOAD*(--,~-,--,—) then | update ref and send LOAD
cache-ref(addr) := cache-ref{addr) + 1;
cache-mod(addr) := true;
XMTPKT(RESO) := LOAD*(addr, dats, cache-ref(addr), tag)
oise if item = LOAD(~=,--,~,~-) then
cache-ref(addr) := cache-ref(addr) - 1;
cache-mod(addr) := true;
XMTPKT(RESO) := LOAD (addr, data, cache-ref(addr), tag)
olse
XMTPKT(RESO) 1= LOAD{addr, dats, cache-ref(addr), tag)
slse | must be DONE
lot item = DONE(addr); ,
if cache-state(addr) = "R" then | know it is in ceche
cache-state(addr) = T
olse | must be state "R* *
cache-state(addr) := “T%
XMTPKT(RESO) := DONE(eddr);

| #4444+ ond of MEMI processing +++44+

120

goto A

121
APPENDIX 1II A
The insertion algorithm for the rotating memory.

flag = false | becomes true if TL aiready hes UPD packet for this address

P = <a(X)>» Iumpdntﬂ-hphmwﬂauy'
i RP » TLP ond P = RP and | hash addr = stert of removal region?
(€a00> » m)>g;lﬂ)'<m»l_ho_ﬂ

TUP) = X; | ineart iom ot P -
RP := RP + 1 mod M | shorten the removal region
pop = pop + 1 | update TL populstion -
olse :
if RP » TLP and P € [RP, TLP) then | hash address in removal region

P:=TLP | advance to end of remeval region
lrmatmtllﬂndwtyuﬂoronmnmdmbn
until P=RPand RP # TLP) or TLP(P)mempty or flag=true do
| see if TL sirsady has UPD with seme CCD address
if a(X) = o(TL(P)) and TL(P) = UPD(--,~~,—) then - -
flag == |;
cise

it (€(TL(PND = €a0)> ang o(X) < ATLP
or €aX)> ¢ [€TLPND ,P] |is X-"smalier” than the current item?

g

then
Y := TL(P) | save item from TL

TUP) =X |insert X here

X 1= ¥ | ineert saved item in next cell

(which pushes sverything past here)

122

P=P+1modM |advance P to next cell

| tind out whether to insert X or process it directly
if not flag then | insort it

It P = RP gnd AP » ILP | antesad rompuatvagiont -

TUP) = X; o et om kP

RPmRP+1medM | shorten the removel region

TUP) == X | insert itom ot P

pop := pop+l | updete TL populstion

sise | prosess it directly
lot mP) = UPD(eddr, data, ref);
= UPD(—,—) then S
TUP) := X 1mmmmmw
olse if X = FET(=,~) then ’
lot X = FET{~~tegk | FET, gat the dets
XMTPKT(RESO) w LOAD(addr, dets, ref, tag)
else if X = FET*(—,--) then : :
lot X = FET*(--tegk | FET", wth-u.mmm
TU(P) := UPD(addr, deta, ref+1); '
XMTPKT(RESO) = LOAD *(addr, data, ref+1, teg)
else if X = FET™(~-,~) then
lot X = FET(—tegh | FET", got the dete snd updete ref
TUP) =P v date, raf-1%
XMTPKT(RESO) := LOAD (addr, dets, ref-1, tag)
else ‘ | must be CLR -
XMTPKT(RESO) = DONE(addr)

123

APPENDIX 111 8

The rotsting memory algorithm.

Rrocess starts at A

input ports CMDI, CCOI

output ports RESO, CCOO

var P, X, Z, addr, dets, ref; tag; CCD-sddr, popln‘ﬂo,'ll-cmd,

arrey TLsize M

A:

CCO-data, CCD-ref, CCO-newref, TLP, RP

it TUTLP) = ompty then

RP = TLF} | destroy the removai region
while TL(TLP) = empty snd TLP # €CCD-addr> do
TP=TIP+ 1 modM | edvance untl catch up to CCD-adde

RP = TLP | keop removai region destroyed
| look for input pachets
itpop 2M-1
then | TL nearly full, can't take packets at EMDI
Z := RCVPKT(CCOI) |mmuamtp.cuwmm
lot 7 = ADDR(CCD-addr, CCO-dits, CCO-ref}
CCD-newref := CCD-ref ,
else | can accept packet on sither port |,
wait for packet at CMDI or Cebl.ut P n-thd pod _lmndohrmimto!
if P = 'CCOI" then

Z 1= RCVPKT(CCDI) | .oe'.‘:prpiem at CCOl
et Z = ADDR(CCD-addr, CCD-dets, CCD-ref)
CCO-newref := CCO-rof

olse

124

X = RCVPKT(CMDI) | take packet st CMDI

R e L T T
| + insert or otherwise dispose-of X
[+ (from eppendix 11 A)

' S444 0444450444803 0 44000004444

| perform ail transactions matching CCO-addr

(

whie TLUTLP) # ypmly s TLITLEN = CCO-pde

TL-cmd := TL(TLP) | remove trensaction from list .

TUTLP) 1= smpty;

pop = pop-1; IWQTme \

RP = €o(TL-cmd)®; lmmmmmﬂr

MP=TPeimdM

if TL-cmd = CLR(CCD-oddr) then
XMTPKTORESO) t» DONE(OCD-oddr) ..

&_‘!_ Tl-cmd » FET(-,"') M
XMYPKT(RESO) :» LOAD(addr, CCD-dala, OCP-newref, lag)

sise it TL-cmd = FET*(~-,—) then
lot TL-cond » FET "(adidr, tegk
m«wnwm
MMM»MMMMM)

eios if TL-omd = FET () thep
lat TL-cmd . FET (addr, tegk
CCD-newref 1= CCO-newref - l; :
XMTPKT(RESQ) = LOAD (addr, OCD-date, OCO-newref, teg)

125

else | must be UPD
It TL-cmd = UPD(addr, dats, ref);
XMTPKT(CCDO) := WRITE(addr, data, ref)

| rewrite reference count if it has changed

if CCD-ref # CCD-newref then
XMTPKT(CCDO) := WRITE(CCD-addr, CCD-data, CCD-newref);

goto A

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project .
Document Control Form Date: /73 795

Report # L<-5TR-)¢

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
ﬂ_ Laboratory for Computer Science (LCS)

Document Type:

JX(Technical Report (TR) [Technical Memo (TM)
O Other:

Document Information Number of pages: ¢ (130 -fmacs)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
X Double-sided A Double-sided
Print type:
O Typewriter [(] offsetPress [] Laser Print
(] InkJet Printer \ﬁ Unknown [J other:

Check each if included with document:

O poD Form O Funding Agent Form E\ Cover Page
K Spine [J Printers Notes [OJ Photo negatives
O Other:
Page Data:

Blank Pagesy page numbes:

Photographs/Tonal Material wypage numben:

Other (note description/page number) .
Description : Page Number:

Tmace mpez (| - 136) v T TLE TAC{J&” 19@ %N‘H’BLANK
(123-132) Scance JXRoL]COUERJ ‘T(P.’/\»&J TRELS0)

Scanning Agent Signoff: ,
Date Received: _) / 3 /95 Date Scanned: /’/ 3 1 4S Date Returned: /’ 1 195

/|
Scanning Agent Signature: O‘MA/V\&\/\ '/{/\/u Qﬂ{gw

Rev 9/84 DSALCS Document Control Form cstrform.ved

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the ML.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

