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One of the most difficult tasks facing computer scientists is that of
demntummmmmmmmmmw»
correctly. As computer systems have gréwn in sise and complexity, the
pProdlems of system design and werification hswe hacome incressingly acute.
Formal specifications, which aze peecise descriptions of a system's function,
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CHAPTER 1: INTRODUCTION -

1.1. System design and specification = -

The i‘ields of computer hardware and software both deal with the
same i‘undamentai goalx building systems to pert'orm desig“nated functions. ::_A
'hardware system is constructed from physical componei;ts .While a software
system s realized by writing programs in 2 language Vimplemented on some'
computer As both hardware and software systems have grown in size and
capability over the years, their structure and _gvy;erg}ioqﬁr,?_};tave grown
tremendousiy in compiexity. This has rnade the task oi‘ desig,ning _systems
increasingly dii’ticult especiauy s0 t‘or large. hi;h-performsnce systems, It 1s
important that both system designers and users have coniidence that their
systems peri‘orm their functions as intended. System tggtir}tg,,,deb\tuin& .and
modification constitute a significant fraction of the time and expense involved
in designing systems.‘ The issues of makin; certain that a system being
designed will operate correctly are thus of particuiar importance to both

hardware and software system designers

{

Varifying | the logical correctness of system designs “has Dbeen
accomphshed in practice mostly by | "seat ot' the pants" techniques. ‘ The
drawbacks of such an informal approach are clear: _one cap be intuitively
certain that a system design is correct but this is far froxn a guarantee of
correctness 'rhere are numerous "horror stories" about, systems that had to be
redesigned or scrapped because their designs had serious concegtuai errors that

went undetected in the verification process. Such errors indicate a lack oi"



understanding oa the part of the designers as to exactly what functions the
systems are supposed ﬁmwh@“ o hav''a’ sound Manding of
the way a system operates, and in order to be sure that it behaves correctly,
it is necessary to make use of m:mmzwm‘amw
function. It is for Just this reason t}ut thc Mum of Zformal
specifications has arisen. Specificstions are mmm of the behavior

wils . ad

desired ofasysmmmdasymumwhwwvmmu that it

¢

satisfies its speciﬁcations t.o. mates as u u inmm to bohnn. 'rhm m

e

lﬁ“ T

two significant benefits that may be realized by um fomax sp.cmaucu. :
First, it becomes possibh to develop fonnal vcrﬂicahn wmxo;m which
makes it reuiblo to provo tlut synonu are eorucuy W m uzfm their
intended ‘tasks. Second fomm dasenptiou pmvitio a modol through which

g
ERP PN PP

complex systems can be better mcmood. 'riuu. tho tax of mm duign
may be facmtated through tho stmly ot‘ form vm :peciﬂcation and

verification techniquu.

Forml wﬂcction uchniqw mmz hc nnd le wniwu;
‘considering thc natum of tho :ymm MM MM For huq. canmlex
‘systems, the spacmutw may m o mﬂm a8 10 _make cotrectasss
proofs intractably difficuilt. Homm mu mm m h alleviated Dby
treating only ‘those qy:tom that misfy‘ "ntc- mm. Bv um.-uu oa
appropriaté system coniiraints that must h mhﬂd, m m mnzu‘y clauu
of ‘'systems that Kave imore oxdnrly ‘and mucwud Wwﬂh no rul ucru'ieo
in functional caéahmty. 'rhroush Jndicm use of thh eomt of nructm‘od

system design, the mum duuncr ‘can bo mnd of mrkxn‘ wnh mtom
that can be more wﬂy und.xmod. ducribod and v-rxmd. :
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Formal specifit:at‘riéns'-h‘ax‘re been the éeniéi' of much research“a'ctivitly
Vithin the software field [Rustin, 1972; Liskov and Berzims, 1976]. In
‘addition, an entire discipline known as structm'odproyamming has arisen to
study ideas of structured system design and their ramifications on the
programming process tﬁijkstra,f‘ 1972; Wortman. 197'?] iigweVéf, there has
been relatively little reseatch in corresponding aress of the hardware field.
One might explain this difference by saying that there is a much greater
concentration of theoreticians s]ié’diiliiih‘f 1;xsoftwarethan hardware, but

there is a more crucial undeﬂying reason. Design costs for haidwai‘e systén{s

ET0

hive long been overshadowed by the costs” of ‘inaterials, fabrication and
assembly.  Once a machine is into ﬁrd?l’iiétié“n. ‘the design process is ended; all
further costs lie in replication and - ma’in'tﬂjx’i;ﬁée.’":"‘ For ‘these. éiiéﬂd'nﬁc reasons,
the physical construction of systems has been the deminant factor in hardware
development. With software, on the other' hand, design-costs have always
predominated; since: everything is realized: on m - Moreover, -software
systems are designed for specific mutmim 15 thvw&ﬁcms -t0:.-be handled
are changed, then the programs  must:often  'de rewritten ‘or -redesigned.
Hardware systems are genmeral-purpose in.that-for.s chidnge in application it is
the program: and not the machine that is modified. -Software is thus far more
transient than ‘hardware; which makes design cests em%é'ﬁére»imp'ertant‘ for
software, - It is thersfore mo womder that the:indtiatives for-studying design
and specification msthodologies have been-strongést ia the software field.

The rapid ::cfevelop;xﬂxévﬁts iﬁ semiconductor technologyover “the past
few years are beginning to alter a\e economic balance 1n \' ‘hérd'ware

development. Integrated circuit 'chips can be mass-produced at extremely low



cost. Constructm eosu for hmlwan mums arxe dmmau d:amttcally as
new fabrication techniques are m intn m Stm Mgn cuu are
rematning essantially the same, thsy are hncomm mare and more st&ntﬂmm
in relation to system development. 'rms m tlut lysum duign uchnxques
and approaches will souy be on the cujting edge of hapdware technology. For
large and coniphx symm, whoa lq,ical fnmml are upocuuy dgtﬁcun to
comprehend and work with, tho ayproachu to m mn are even more
crucial. It is thcrtfon important to open up a thorangh tnvstmuon of
formal specification and strucmrod system dutgn Jnathodol

gies for hardware
systems. And sznco much of the mmaivo m th;a Aarea has come. from
software research, it u wunl to loak for ways to, gm;r new. uchmlogiu
used in sottwaro design to tha hu'dwm mw

* A particular class of systems cailed packet comamsuicstion -gystems,
‘which aze descsibed in the next ssction, has beex vhesen ss the domain Tor
the research pressmted hese. Packet commuiication syetems are based.on a ‘sat
of structural properties which prowide fon::the Dutlding of large,
hl&hemtermoo systems and which. alse support the development of a
theoretical framework for formal specification and werifioation. ::In this thesis,
‘we shall develop techaigmes far formal mawm of packet
communication -systems. Ws shell also: taks 2 look -at how the formal
specifications may be amplied towards verifying the legidsi correctiess of these
systems. Becowse these has been 20 litle formal study:né; methoddlogiss £or
hardware system design, spectﬁca&ion and verification, the research here may
be considered as the first step 1n & ngw direction. |
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1.2. Packet communication architecture and its background

Packet communication axchitecture is a set og..»;.;princﬁgu according to
‘Which systems may be designed and structuxed. . The systems satiafying these
principles are collectively. known as -pecket gommuBicgtion systems; - for
brevity, they shall also be. called pecket sysiams. As ipsmoduced by Dennis in
[Dennis, 1975b], = packet systems . are . essentially intercommections of
independently functioning units that interact only by unding each other
packets of information. = The infq;m;,ﬂog centained .ip & packet may -have

arbitrarily complex structure.

In this research, we have tsken a particular point of view,
regarding packet systcms as being physically composed fromhardware units.
Some of the important eoncepts underlying packet commttrication architecture
are particularly advantageous when spplied to--the ‘design and ‘implementation
of hardware systems, It is equally valid, -though,. ta implement packet .

systems in software, There are no exis

ing techniques: for - formally specifying
or verifying packet systems viewed from. the.-software standpeint; 50 . our
work here lmay also. be seen -as -an -advanes in -the study Qt&:.«ﬁ\sofwv’are
specification as well. .
There are two particular notions from the study of structured
programming that are directly supported by the principles of packet
communication architecture:  modularity ‘and Mlerarchy. These nétions play a
large role in the suitability of applying formal ‘speciffcation techniques to

packet systems.
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mwwuamxmmmwmmwmmw
composing mmtmmmuudm The basic ides is that the
use of a module 15 separated: from' the imtéradl wwmmmum
In this way, & motulé sem be'dévaléped it changed Withiows ‘affecting other
modules.  The omsept: -of ‘modularfly 'are - distusmid 1’ meore "detail 'in
{Myers, 1875, Yourden, 1078; Denunis, '19Y8b]. ‘Axekasiply of a mechanism
for -supporting mumyu software “systems 15 ‘the 'mation nrdm
abstraction [Liskov amd ‘28lles, 1974] A désirsdie danigr ‘goal for modular
systems is “that  individusl ‘modules be a8 ‘Seificontained ‘dbit independent as
[ “among different

possible. This goal can be realized by W”
modules as simply . structured as pessible.. thaughsiclesn; well-defined
interfaces. . Although the. advantages of MeIMLY SINMRIN Ausmems aze cleer,
problem. Wa shall Bot.investigate this aroblem bage. .. .. . .

the issues of .ds

The netich of Murdrchy 1élates 1o how systents iiky be viewed and
_ | system” s obe that' Wiy be sttatifisd
into " different levels ‘of comceptusl’ detsfl.” ~Bih'’ levél “makes use of
mechanisms whoss imiernal QeGifls ‘aré hfites “wwal ih fower levels. ~‘Eaéh

described. " A ‘Nierarchiéilly structete

mechanism within the system is used at higher, mors abstract Tevels than
where it is defined. In. this way, Jow-level detall is.ieclaied .se that it will
not interfere with. highar-ieval MM viens. o5 the speem.. —The. basic
principles apd concepis.of histaschy in .systems. haup hesn; preseniod L) Pannas -
[Par;_mg, 1874 Pm A878). . e



The properties of modularity andhierarchy insho s&Stems in ge'nerslv
easier fo understand and work with, Each xnodulo in a hierarchical and
modular system has a set of neighbor" modulas with which it communicates
The behavior of a given module dapends on the conventions by which it
interacts with its neighbors, but it is completely indepsndent of the internal
characteristics of the ‘6ther modules in the system. Connquently. the designer
of a module need not worry about what goes 1nside any other modules. the'
only relevant concerns are the internal construction and the interf ace
conventions for the particular module being fesifnod In this way, design'
{nformation is paititioned slong the boundariéé’of ‘the modulés, insulating the
system désigner f rom irrelevant detail. Thisinsulitton “{s ‘further enhanced in
hierarchical system stfuctures. E‘ach levcl of abstraction in the hierarchy is
isolated from the other levels. The designer of amédnle has ‘to know the
external beHavioral characteristics of the subliodulss from which the module.
is ‘composed, but the {ntérial structures of iﬁo‘“mﬁmodules sﬁoﬁm be totaily
irrelevant to the design of the given Modile, * Thus. systéms that are both
modular and hierarchical have two dimenslons alonz v_vhich design details are
partitioned. = When theé structure of ‘a E’s‘iﬁstex‘nt“"'ﬁrsventsffcortain design
information from affecting areas it does noioonccrn, the system oesign ‘is
simpler  to' ‘understand. ~.‘Gomceptual " siwiplseity: s~ an - important design goal
whanevensmmcmm vwmum are: to- e dakiten into accom'n_.--

Although the concepts of modular{tyand ‘hierarchy have been given
far less thebretica’f‘";’eiifention'"‘{n relation ‘to hardware than sof tware, they afe
almost universally regarded as fundamental to good hardware design pracuce

Hardware systems have for a long time been bunt up from modules such as
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adders, mmthMMmuammvmef
otr-the-shei:mmtnmam Atsm Icml c!
abstraction, a tntcal mtcmcompm is mpcad d t W ‘some
RAM storaco. 1/Q d*rtms and intwfm M  Each ot these componsuts
can betmudaawmmmmmwmum
For example, the processor has is submodules an agder, various registers,

gattng mgic.mmmmmm Mammdum

can 1nturnbctwmm mmmmmmmm
design exhibits hierarchical sad madular ~ In gemersl, these

B

properties are mm by Mlipnt W M‘ﬁ. but M are ijcun o

achxeve when W hm WMM systems. Im such. as virtual
memory, multi-user enviroaments, parallel pogmamming aad the sharing of
data amom&fmmmmtmmwmw
implemented in practice either hy simulating them. ia_ seftware or by. adding
Dew compoRents as a(mthom to a basic Vu ann machine. .. the
tnteractions among thue adhd Components am anyiiu , but modular in.
nature, which is ope of tho rums wny hm mgmtn; sxsms are. SO
difficult to build. Ptcht

$h R

k] . ¥ e sl b .}‘s,é.
provides direct mmmt for Merachy ana m,eduhzity

Packet. spatems are both mnduler ‘and. Mesarchiesh in structuze. The
modules in a pacies system: ” sapiy the isdependently: spesating - units dvat
comprise it. Wm can easily be pmm 0 that thgi: modules
correspopd; to the cnmwuunm mm W& m of the system.
Further, tmmammmmmmwmm
modules that fom a packot symm to be \qul Mtvumny as muma tha
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may themselves be decomposed into interconnected component modules. This
hierarchical property of packet systems provides some oi‘ the major conceptual
foundations of the approach to specii'ication and veritication that will be
developed By making hierarchy and modularity ’ explicit packet
communication architecture ‘not only facilitates formal specii‘ication and

verification, but in addition serves to encourage good system design practice.

e

One of the most important design goals i'or packet systems is that
the modules within a system operate as independently as possible In support
_ of this goal, it is required that modules communica‘te. 'with eech other by
passin.g packets asynchronously This principle eliminates the need for a
centralized control facility to coordinate the action of all the modules, which
greatly simplii‘ies system structure. Moreover, it provides for concurrent
operation oi‘ the modules, leading to enhanced syetem performance. A module.
‘while awaiting response i‘rom other modules in order to peri‘orxn certain tasks
can busy itself with other tasks for whic‘:shw the required responses have
already arrived. An operation may proceed as soon as the ini‘ormation it needs
is received as opposed to what happens with conventional architectures. in
which operations cannot be peri'ormed until";they are explicitly initiated by
the sequential control. It is this distinction that provides for concurrency and

thus allows packet systems to make rnore erfective use of the available

resources than do conventional large systems

The microcomput_er example glven above ~@xbibjts a number of
hierarchical levels of abstraction. It may be noted that the interfaces between

modules at different levels of the hierarchy have completely different
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characterlstics. M the top lovel. one deals with trmmlssion ot applications .
data. within the mlctoprocoaor. mrcroinstructlous are passed and at a still
lower level, it is huic logical slgnals that are pusod and gatod In dxgltal
systems as they are currontly doﬂ;ned lntorfaco protoools depend on tho speed
at which the varlous modulos procm control and data sl‘nals 'l'his

4

dependence limits tho degreo of modularity that can _be oo}}igyod tn oaistlng

systems, slnco a modulo's lntorface wlth its outddo world is not free of

internal speed and tfmlng considerations.

Packet sy:toms m not subjoct to mch wnitanons; one of thelr
important propenios is tlwt the tlmlng chmrlstlos of; an lndivtdual modulo
in a packet system do not affoct tho opontloa of any otlux' modnle A
module ln a packot symm can bo royhood wlth m unit that porforms
'the same task ordors o! magnltudo tm or M M tho ett‘ind module.
and this change wm not alter tho logiral funcuoniu of tho syxtom. Packet'
'systems are thus mod lndomdont. which romom fmm tho dosigner the
burden of havln‘ to uko into ccoount tho lpud ‘f{d,) t_'lmln{ﬁ?ropertlos of
| system compomnts ln order to muro loglcal oorroctnm. Spad mdependence
enhances tho de;m of modularity 1n a :ysum and thus providu an. addltlonal
velement of structurm; in systom:. which furthorﬂ muts'sw;:stom do:sls.;gn’ and
vem‘icauon. It should bo noted that a mtom must oporoto asynchronously ln
order to achieve tho goal of speed indopondenoo Packot systomx, smco they
are speed independent, can accommodau a unitorm protoool tor communlcatlon
of packets amohg their component modules. ‘l'hls unlformlty of interface
provides the basis for the method of system spocﬂ‘lcauon that will be

described here.
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" The idea of building ‘systems by connecting independent modules

under an asynchronous and speed-independent discipline is not mew. An early

- exposition ‘was given by Muller [Muller, 1963]. There was a 'ixiajor reSGarch

effort several years later directed towards rnlizing aystoms that wero to be

15

physically © constructed ' from  hardware units' caued macromodules

* [Ornstein, 1967]. . Patil has investigated logical designs for modu'lés‘ With

which asynchronous systems may be ‘built [Dennls and Patu. 1971] and more
recently he has been working with applying progrmm’ble logic arrays to this
task [Patil, 1975} All of these designs differ from packet communication

“architecture {n that control signals and @ita values are passed through the
- systems separately, tﬁ‘veﬁng on fwo distinct Bots of communication pathways

‘ ‘ln packet systems, the’ aottons of control and data arc unu‘iad enmtnating the

need for -separate pathWays. This is yot anothor respect 1n which tho

principles of packet communication architecture ao:v_o to vsimplify system

-structure,

' “'Since 'packet systems operaté cémcurrently, a significant area of

application for packet communication architecturé lies in realizing computer
' ‘systefus that provide direct support fof inmm pmmnmu If different

‘parts of a program ‘can be executed in patallel, then it is advantageous to run

the program on- a machifie fof which the ' ‘hardware can overlap their

execution. In this Way, one can optimize runningspood and utilization of

" resources such as" memory, procossind ‘elements and poriphoral dovices T’he

stu&y of data flow computation has procuoly thls goal in mind Data flow is
the representation of programs “in such a way as to make the data

dependencies and ‘inNerent ‘parallelism’ oxpucit-. “Given any two ‘operations 0,



and O, in a data flow m, it W be Wm‘ from ‘the
program stmmu Mm- O, m h m mm D;, whether O,
needs results of O, in order w bc mwmd. or . whether. .0, and Oy are
independent (can be ~dome in mmﬂ) W ﬁow Wlmmu has been
treated extemi\nly in ﬁu mmtm; for both. exposition snd references, see
[Dennis 19758; chg. 1975] W‘m m hull geone into sudying
‘ desu;ns for machiau that can directly and oicisatly exscute data  flow
Programs [Rumblugh. 1975; Donnil. 1974 Depais, 1877; N‘ﬁlﬁolw 5;
| Plas, 18761 On such a machine, thete is B0 sequencing-ef instructionss an
instruction may be executed any Hme aftar its. ope Mﬂfamh'
This 1s essentially the same principle as the one undezlying, the operation. of
modules withiaaplckam;iam e conoapta. of packet systeams have
been directly influenced by the ressarch ia developing . architactures to
implement dau flow.

The conceptual compatibility between the ideas of data flow and
Packet communication architecture ylelds a natural conmection between them.
In a‘"packétj‘ system, tho activity that takes place within a module is initiated
by the amval of m- amoprmo date.packats. 'rm. is ng explicit uwmm
of operations tn data flow programs, and it should be. practical to implement
vthem on systems that do not require ordered. seguences of instructions as their
Programs. = This is _Ome of the motivating tm Jbehind the conception of
packet communication lrchttectun Most of its concepts a;c far xm Dew or
original but it is tho ~combination that w ttnn;bh for. mzmgdata
flow computation ia h;:gwan. Conversely, dswa flow is a natural way to
represent préjgn#s : }hlt_ “wiu run On  Processors Wacoordlp.g 10 .the




‘principles of packet communication architecture, ’i‘hus. there is a
commonality between ‘data fiow and’ packet systems thst srises because they
share similar: goals .and principles. W s

“There is one more property ot pscket systems that shouid be noted
here. The behavior of a packet system (or oi‘ any of its moduies) is
observable in terms oi‘ the packets it sends out in response to the packets it

"

receives. In generai packet systems are nondeterminete. which means that
given the packets received by a module. there may ‘be ’several distinct but
equally valid responses to the input Nondeterminacy is one of the ractors
that make the behavior of packet systems dii“i‘icult to understand and
formalize. * This will have a definite besring on the approach taken here

towards’ specification and verii'ication

.
i

'i'his' conciudes‘ the overview of the besic Adeas of packet
communication architecture._ The principal reaspn gnity Peckqt systems ‘were
chosen for this research is that their design is structured in" a way that
supports system specitication and verii‘ication. ’rhe next section presents an
overview of some oi‘ the ma,jor concepts and techniques that have been

developed i‘or formal specification of computer program; and s.xgtems

1.3. Formal specifications

Much of the research concerned with formally describing the
activity within computer systems has deait with programming language’
specifications. 'rhere are essentially three basic approaches to describing the

behavior specii‘ied by a piece of program text: axtomstlc. denotational and
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operational. Each approach may be amuod o mﬁm the correctness of
program taxt as wou as urvtu asa pure ducriﬂ&w uhtch.

Axiomatic specifications capture the,-:;m‘raf eXeCcuting & program )
by comparing properues of the system statc wora and aftar execuuon The
paradigm "if 'assertion A is true bet‘ore progrm uxt 1’ ia execuxed then
assertion B is true aftcr Pis oxacutud" ducribw tlu mng of program text
P. Special rules ef mforenoe are sct up to &escrtbu uu meanings of yarious
combinauons of program um in mm of their Wu‘ moanmgs; mese
rules incorporate tbe basic ummuc gropaﬂos of wastmcts such as, imation
and condittonals. 'rms ap;roach bocm mwn mrom the wpork of Floyd
[Floyd 1967‘] and Hom [Hom 1959] ip which it was used to prave
correctness of sirnpla ﬁowchart-nko programs that maaipulated integers. The
assertions thcy used related values of pra‘ram mnhhs. ’i‘-h&ro has been a
sudstantial amount of more rocent rumch I mmauc Mications
Dijkstra ‘[Dijkstra, 1376] hes “built up an cntiro MM@W of Wammmg
around the ideas of axiomatic spocit&cauon. thnkl aad Grus [Owicki 1976]
extended Hoare's tachniqucs to parallel m& thﬁh' mrtions mde use of
auxiliaty - state variables to kcep tnck ot inurpzucoss coordination. Greit‘
[Greif, 1975] took a dﬂ't’oront approach to pnraud mrmx, using a parual}

time-ordering on events to express coordination

Denotational specifications mptum thc effect of a program by
viewing the objects thcy modol as abstract mthmticai nnt.mes This
approach providu a formal mathomattcai Mrim of the cemputational
notions being trcated A.n wly denotaﬂemi tpproach to mcificauons fcr
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pProgramming languages was the application of a mathematical férmalism

known as lambda calculus towards describifiy the semantics of Algol 60

‘programs [Landin, 1965]. The best knowt work ifi denotational specifications
has followed from the research of Sébtt and ~ Stiachey [Scott and
Strachey, 1971]. Mathemati¢al results frém lfatiiicé» ?f:%ory are used in the
construction of complex domains over which p}o{nm “are represented as

functions..  Programs are- proved. equivalent -by shewing' that their functions

coincide. A tutorial ‘pressptation of the mm.cmy -approach - is given in-

Operational specifications ‘deal With the chinging states within
computer systems ‘s computations are performed.” This is done by means of a
state-transition model in which a-state rcprﬁe‘nf‘s iﬁférﬁ:&‘fion' presen{ in the
system at & ‘given moment in time. The .it‘wn of a {program is captured by
the - sequence ‘of transitions of the model. Thé ' uqticxme ‘of ‘states the model
passes - through as a program is executed defities ‘thé ‘actich of an interpreéter
for the program. The-idea'of using such an inté¥préter €6 define the meaning
of programs in some language origimated with McCarthy [McCarthy, 1962). A
well-known approach t6 cperational spécificationé is the Vienna Definition
Languwage (VDL) described in [Wegner, 1978’5], whidh dses an )"tﬁtérﬁre’t‘er that
manipulates ' tree-structuréd system states. Dennis' Common Base Language
[Dennis, 1871] is similar, dealing Wwith ‘incte‘general diréted graphs in place
of trees. Another approach to° tnier‘atmiﬁf"g spebiFications “i{s due to Parnas
[Parnas; 1972]. This approsch distinguishes two Rinds of operations: those
that yleld state information, and ‘those tHat™alter thé state of the system.

Parnas applied his approach to operations on abstract data in programming



languages; this was extended to the domain of systems in. [Rolinsen, 1875].
Verirxéatiop is achieved within an operatiopal framewesk by peowing that the
behavior of the interpreter in question is equivelent to the bebavies of oae
thatv is known to perform the desired  fupction. The ideas underlying
veriﬂcat{on ‘by _interpreter. equivalence ware dJeveloped by  Milner
[Milner, 1871] and are also presented in [Wegner, wzu;

as software specification, -thers has been a subwtastisl amount of study of
computer hardware description languages »(C&BI-.‘;). The approaches taken
towards hardwarg spcciﬁcation have boen m eptirely opsrational. The
languagé APL, befm it was ever implemented a3 a Jrogramming language,
was used as a hardware description language, to specify the gperation of
IBM/360 computers [FM, 1964]. Amother CEDL, called ISP, was develeped
by Ben and Newsll [Bell and Newell, 1971] to describe the operation of a
large number of differemt computers, Both of thase CEDL's descrive their
target systems at the instryction set level, treating. Jwachine words as a basic
data type with mams for hyte extraction mmmmgc .and
logical funciions, On the other hand, the language PMS, which. was . alse
developed by Bell and Newell [Bell and Newwll, 1971}, describes the structure
of computer ,.wstem An . term of thmmmgms, memories,
controllers and I/Odevwcs This is an axunple of a CHOL describing systems
from a higher-level conceptual point of view. BDL . [Dietmeyer, 1974].is an
example of a lqwet-ml CHDL that defines zheSMr,,ptAv»elew,mh, as
multipliers by‘speg;fyigg them as, jnterconnections of basic lagic gates.
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Most of the CHDL's have been daveloped with two particular goéis
in mind: automated system design, andsystexn testing by means  of
simulation. However, the microprogram certification project at IBM vhas
developed .an approach to ha‘rdwari syétem specificiition that is directed
towards formal verification of system desigh {Bfrman, 1874]. For both the
instruction execution level and the microprogram lével, a VDL-style interpreter
is used to ‘iupply ‘formal Spoeiﬁcaﬁm. 7' 'Phése ‘¥wo interpreters are then
proved equivalent in exactly the seme "way that correctness is proved in
operational specifi¢ations for programming languages as descrided above.  The
proof - techniques for - this approach  are  additionally described in
[Leeman, 187§5; Leéman.' 1977}, Rumbaugh takes a ‘similar approach to the
IBM group - in proving the -correctness of a data flow ' processor
[Rumbaugh, 1875]. - He shows that an interpreter: for -his machine is°

equivalent to one that models the operations in a- &atd:flow language.
1.4. The approach to bg presented

The research in specifications that has been reviewed here cannot be .
directly applied to the task of formally describing and verifying packet
systems. The pxingipal -reason for this is that conventional techniques are not
equipped to handle the asynchronous. operation of..packet aystems. . The
concurrency in packet systems makes it difficult to verify their correctness:
in order to establish some property of a packet system, it must be shown: ti'ue
for all possible sequencings of packet transmissions aad receptions within the
system. Most aexisting techniques. for formal spescifications do not. lend

themselves to this kind of task., Moreover, the notion of sequencing of
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actions. which is fundamental to nearly an tho amoachqs that have been
taken towards t'ormal spacmcatioxu, 1s not proum in thc context of gacket

fxs

systems

There is a descriptive formalism, Petri nets, that has besn dswvelopad
specifically for specifying asynchronpus: hebavinr withitt systems. - Petrl: mets
[Petgrson, 1877] ave ;dizecied - g2aphs - in,; which marieera: called - tokens : pass
along the arcs and. through. the vertiees 10 model thacocourgsmce of ‘Varions
events. . Although .they have recsiued . mueli: sttengion in /. this m
(Patil, 1970; Hack, 1876], they cannet e dirently -applied 10! Venifying pacicet
systems. .Petri nets conmey only comtrsl.imformation for use in: coerdirating
concurrent activities; the.nature of these activities;is mr:mxmm ~In
Particular, they do not- treat data. valuss $hat ave. pagsed:. within patket
systems. Also, although- many mathematical apeperties: havie leen -estatilisived
for Petri nets, po.methodolegy: has  besn: mummmw
system verification. Most of their pnctical Mns have been in
connection with simulating uynchroms bchavios rathcr than provins
Properties of systems.. Far. these rmu,mm de Aot seem. to meet the
goals of specification and verification. of packet systems,

Within & peclost systems; the ‘oddles™ reéeivé ‘and process’ ‘friput
packets, “:gexerats - new - packess - for - oufput .dnd’ +mend’ them' out, all
asynchronously -and i parallel. - The Kind-6f appioech et ‘deeims most suited
to specifying this kiud..of -Wshavidr: is basically® operattons} in fature: “The
state of a packet systemr @esorides wiiich puthwts have been passed ‘between
which modules {(and muyr-4lsc cdnvey:any-sosrdination nfefmation’ relevant 1o
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- the correct 5?““““ .of the system).: - However, -unlike conventional
Operational models, the transitions bstwesn states nesd 1o be governed not by
an externally supplied sequence of instrustions to be peacessed by the system,
but rather by the presence or absence--ef. packets as needed “for processing.
This means that an ‘029!&.3103&1 model for a packet system must take into
account the many possible sequences of.axecution.that. could:arise from the
flow of packets. . 1

Déscﬁbing the internal operation of )ackat systems is not sufficient

AR

by itself for verificatfon purposes. " There “must be a’ method for
- specifying the logical function a system’ {§ oxpected 'to porform 'rms function
eoncerns the systeny's tnput/otutput behavior as seen by the outside world in
~terms- of packets receiVed and sent out. Of’“iiﬁe”’t‘vhrcﬁé'ﬂ'iiiﬁds; of‘ appfoaéhes to
specifications ‘as disclissed 'in ' the previous §ecﬂon, " 'k’a%dehoté‘nioxiél ‘app}roach v
‘seems best suited for our ‘needs becauss ii Ean be easily tailored to describe
sequences of packets that Nave been 'passed Vetwoen various ‘modules. Because
of this flexibility, a denotational approach will also' interface nicely with the
“hierarchical structuring of packet systems. Thus, we shall be working with
two kinds of specifications for packefsysfema - 5&;&&3;51’isxieci”fications to
- describe the .internal operatian, and denotatisnal spiicifications to describe their
-behavior in relation to.the: outside -world.. Vesifiostion: of corréctness for a
_Packet systeam will be: ‘demonstrated by proving M ‘these tvm ‘gots of
specifications for the system ‘agree wuh each other.

‘A “tecent research effort is specifically directed towards formally

describing the structure and behavior of packet communication systems. The
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descripiions ave expresesd ia a formallsm caifed ADL (ffchitecturs Description
Languags), which is introduced i {Leung, Y977 Thers @ Wi ways in
which & system may b Sematbet 8 ADG: ‘stroctaially and’ behaviorally. A
,arucmdﬁmmwmwhw as an
interconnection of -medshes. A DekivieraF<deiciiption I ax operational
charecterisation’ of: the: systemy's- Smtetactivs 'With W' outside world, descridiag
rcceptm MMM«WM The notation
the underlylsg sementics are siso. bussd o the yeincigles of dae flow. As a
first umhwmummaaxmtm ADL is beth
helptul @d (lluminsting. _However, the copeept of Mecilying the. interpal
'omnmunmmmmmwmumm
framework. This ides, which has not beea studied previously, is crucial for
'wnrwummormnswmmm
The development of this concept is the mest sigailicant comtribution af our
mel spprowch o W meed in our. trestment for
spoclfyiuth-maqmtwmwhmmn\lﬂ
thntmcmummrmum

dmrtM&.MMﬁmmm%M The notion of
mrmtmh%“n”xhwmm
composition of packet systems is also presusted. - Chipter 3 predints the
denotational part of the packet system specifications. The bepavior of a
mntmcmutmwyatmu-mmﬂmw;m:
itmdvuulnntuﬂtluwmmﬂumhumtouthm
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Chapter 4 motivates and defines the central concepts of the ressarch, giving
~ an operational chl'ractcrﬁatio,li of the actkms that take place withii; a packet
s&sfom. Chaptor 5 shows how the specification model deveioped in the two
precedin.g chaptcra mqy be appliod to tho task of mu‘ylng eorrectness of
mkot systoms Thm sample systems m provea eorroct, and a theorem is
prmntodhahowhowthcmodelwbudmphﬂodinmtdncw



2.1. Overyisw

mwmmm«mmmmmu
wiuboclucumodiaw ‘WMMymmdnnik:twsun
and devolop s mm for formally mu M structural é;npoimon of
such a system. We will also informally introduce the concept of correctness
for packet systemas. mmmymmtwwmmpm

corrwtmmnhmmmm&!ud&

Packet commuaication architecture is a discipline dealing with a
special clus of m known as p-chc cym: Packet aystems are
composed of independemtly functioning units, ksown as modules, which
interact only by passing information to each other. The imformation is passed
in the form of units called packeis. There is no centralized faciiity for
coordinating the actien of the modules. - Data processing and communication
within packet systems are asynchronous, and the various modules operate

concurrently.

In a packet system, the various modules are intercomnectsd through
one-way data paths known as channels. A channel connacts two moduln. in
a specified direction and is used o pass data from the first moduls to the
second. Channels leading into a module ae called fnput channels for the
module, and channels leading out are called output channels. A packet system
has its own set of iaput and output channsls connecting it to the outside




world. The other ends of these channels are never explicitly designated.

The structure of a packet system is determined by the way it is
composed from modules and channels, and always remains fixed for a
particular system. Modules and channels within a system are uniquely
named. Figure 2.1-1 depicts a packet system DAS composed from three
modules D, A and S. There is one system input channel X and two system
output channels Y and Z. The internal channel U connects module D to

module A, and channel V connects module D to module S.

v

R}

Figure 2.1~1: A sample packet system DAS.

All data treated by a packet System appear in the form of packets,
which are passed along the various channels of the system. Each packet
carries a value of some type. The modules in a packet system all have the
same basic principle of operation: a module receives packets on its input
channels, processes them internally and generates packets to be sent out on its
output channels. This principle applies to entire packet systems Just as it
does to their .individual component modules. Packet systems are data-driven

in the sense that the progress of a computation in a packet system is
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determined by the ‘passsge of mm thmm x.po WYtem.

There are two ingredients which together dederming the behavior of
a packet system: its structure and the behavior of .its modules. “Thus, -for
. instance, in order to descrive how the system DAS -acts, ong must fivst decide
what the modules D, A and S do, Wae ‘now Aescribe the hehavior ‘of these

three modules,

A, upon receiving a pagiset frem its .impmt:ciesumel L), «6lils om0 ‘to “thve 'vilne
and sends out the incremented wvalue as a packet on its output .channel Y.
Module $ beméu identically exoept far .subtracting ome instead of adding.
Module D duplicates tha packess it receives on X, sending out identicel copies

on U and V.

Given thm Mscrtpum it is not hard to figure out how system
DAS acts. Anymmt mnt*rmx«mmwmnuwv
The packet passed on U will be incremented amd ssmt out on Y; the packet
passed on V will be decrementsd and sent out on Z. Thus esch packet
received by DAS amu twom to hms ;Mm value one
gréater onY an;:l ’a‘.ga‘_.cka;ot with value one less on Z.

It may saccur 10 some zeaders here thet: thess cherscterizations are
incomplete. ‘Thon A8 ambiguity. da ew wisat heppens ‘when ‘seversl
Packets are 10 be Rrogesssd in ssguance: .in wiiet Grder arve Testlting ‘packets
generated and passed? Jn our exampls ‘we 'ean residve such ‘questions by
stipulating that the zelative order of packets oa @ thwnnel is $iways presarved.
Precise maethods for -dealing with questions of i uature will be ‘descrivetl in
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the next chapter.
2.2. A closer look at packet systems

In this section the workings of packet systems will be examined in
greater detail. The first thing we discuss is one of the fundamental
properties they satisfy: the internal resources of a packet module or packet
‘system may be allocated and utilized in any aicittsry'manzié}:’ as long as the
specified operations will be performed con'ectly Consider; for example, the
system DAS from the previous section when ift’i is in a state depicted in figure
2.2-1. An input packet with value 2 has been received on the X channel and
processed by the D module, leaving coples of the jiscizét on channels U and V.
Another” packet with value 5 is still waiting on channel X to be processed by

the system.
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Figure 2.2-1: A sample state of system DAS.

There are three actions that should now be perforxned within the system:
(1) module A a‘osorbing and processing the packet on channel U (2) module S

processing the packet on V; and (3) system DAS accepting the packet from



channel X and initiating its processing in module D, The crucial property of
Packet systems exhibited here is that these thres actions may be performed in '’
any order, serially or concurrently, and the cersest oFenmtion of ‘system DAS
will be completely independent of wh.auwr parw.mhr ordor is choun It is
this property that mkcs the behavior of packct lyttems gemunely

asynchronous.

We can gain a bettar understanding of the action of packet systems
be taking a more detailod view of the opcnuon qt mpir compongnt. modules.
When a module receives a packet from one of its input channels, it begins to
process the packet tt_r;@m)ly. SOmcumuthc only _effect of the packet's
a‘bsorption is that the rnodnh's internal ltatomy changs. Ia general, though,
the module's spmnqci may require that {t generate ane or mors packets to be
sent out on its outpﬁt channels in reply to the packet received,. The
sequences of packets generated by a module in reply to a packst received are
said to be the module's response to that pucku. It is important to note that
a module's response to a particular pnckot may dqnu on previous packets
input as well as the- Mnam one.  There hay be an arbitrary finite delay
between the time a module receives a packet and the time the module
generates -and sends out 1t3 response to that packet. The fact that packet
modules and systems must be able to _tola_r_a't‘of;‘imch delays is an essential

consequence of thgi_r.qugghrogggg o,porg:_ign,‘_

There is a special protocol that must bo fulfilled in packet systems
for the transmission and ‘receipt of mkets through thc various modules and

channels. Suppou a chanael C connocu nodulo Ml to modulc M2 as
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illustraterl here:

M

Figuro 2.2-2: A channel in a packet system.

It is desirable for medule M! ‘to have some ‘way of knowing when it has
successfully sent a:packet out on channel C." The cdfivéntion that has been
adopted is that whea a packet sent on C from ‘MI 1h réceived by module M2,
M2 wiil send a signal to-M! on chamnel C ix‘ the Féverse direction to indicate
that it now has the packet safely in hand. 'Suéh”a signal is known as an
ackrz_ovgleﬁgc signal, 1t is. notuntﬂerwaim&mkmhdge signal for a
~ Particular packet. that it knows.it is done with she:pracess of generating and
sending that packet. .Thus, from. .the peint- of:wiew:of 4module M1, there are
_three discrete staps in the transmission .of a. mckc;; yncmtan -sending-and
receipt of acknowledgment. . It should .be. med that: module ‘M2 cannot
generate output to packets it recei«v,es, from; channel C.unsil it has sent back
on C an acknowledge sxgnal for those packsts Thero is a caveat with regard
to acknowledge signalsx although they are sent 1n ro;ponse to every packet
transmission in a packet system we regard them as pqrt of the hardware and

ot available to be manipulated by systcm deslgners o

The channels in a packet system are -assumed to have: certain special
characteristics as transmission media. -The first, and simpisst, is that any time
a packet is sent out on a channel, it will- aventually :be received: at the:other

end. A packet generated to be sent out from some module ih a packet system
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can never be called back. This maeans that whmr nmmammmtes A
Packet to be sent .out, it will seceive an mmmm paclmt,
‘within some finite span of time. It is unumd ‘that the channals never
"break” and that acknéwiedge signals will alweys e Jecsivel by the
appropriate modnhs Faflure of muehlnm tnr ‘the m of werification,
invalidates me emtu m mm:tten The .m nf fault tolerance .in
systems are bqy:nmi the ;scqope af this sessarch.  Thag, pecket :samanunication
- arc}},itecture zq;mm that every MMM, some zZaodatle:mmust
actually be sent out MW mm Kinite uu dnterwdl. It
’59;‘“‘1 be noted -that Sthis regnirement .is-a sonsidemstion «if cormetnass uﬂwr

A ssecout] Ampontent ‘puoperty of Gliansihlsis -ttt It 'a mmiiitle Teceives

@ Packet :from -ome A€ 419 duyint reheamils; &-MW mﬁtmw sent
-out .on thit thanee] at -wmbke prewltas tme. s i .

may ‘Dot Tesstwe u Paoket Mom shaneil S hilies eataie W1 had’ diresty st

shat padket out .on L. %wdwmmhmtm

RN

,}«

& third cinucmhtir: o‘rchnnmls.ts thlt theymtu FIFO quauu
which meansthcttfthenmdnhﬂl mmamx n\;tvfo{n channelc
and tmmmmtymnvnc“nmnm M‘MZ must
rmiwandwknnwmthmy. mmmmmmmpm that
mo lmit 0. the amber ¢ peckitts That ciai Be i W Wanndl T &t 'any given
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Physically speaking, this assumption is not roauzablo 1n ganeral because no
real devtcé can have infinite capacity. lot alone a high—spoed transmission
medium. Howaever, if we assume the unbounded buffortn;, then we rule out
the possibulty of system doadlock coused by packots pmng up in cortain'
channels and lnhiblting furthor packet output 1nto those channels Unbounded

‘buffering ‘is thersfore a conventont assumption to make.

Ftnany. we. shan assume that tor oach channol in a packet system
there is a designated sot (type) of packets that may be passed on the channel.
For examplo. one channel may carry only intqgor packets w}ule another
channel may accept only packots that oonsist of an omploxqe ‘name together

wtth a correspondtng 1dentification number..

There is an extremely important property:of packet systems which
we will be treating, nunaly,nopdgtggmjmx, A »moduh- or system is said to
be nondeterminate if its semantics: allow. two-.or more distinct possible
responses to a given packet input. A simple example of a nondeterminate
module is one that models the toss of a coin. It has one 1nput channel and
one output channel, and its Tesponse to any packet received will be a single
packet with either the vsluo "heads” or the wvalue "tails." The choice is
arbitrary anu independent ot thg inpyt packet. . Nong.gtonni_note modules and
systems }aire very difficult to wark with bocguset)u -multiplicity of possible
resu‘ltsv‘ is cumbersome to model mathematically. We. w'ul._o_xpu;_c;tly allaw for
nondotgrminate module_s and systems .tn__oux_','tuotment.

A certain cliss of nondeterminate system ‘bdehavior will be of
particular interest because it arises fréquently in the design of 'psc‘ito't systems.
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This kind of behavim' concerns the mlatma nmx of mkqts sent out on a
channel Con:idcr a mtmn m which tha mk af mtu and sending out
packets in response to inputs taken from a specific .channel is relatively
complicated or .time-bonsuming. One would : naturally Wish to allow the
processing of distinct i‘np.uts‘-ta prooaed concnmny ir msaible, B}xt then it
may turn out that raspénses to a recent input will be ready to be sent oit
before responses to inp\;is receivéd eaﬂier Mémwr, it cannot be determined
in advance whether or not such cuttmg ah:ead hch.whr will actuany occur,
It is possible to impose a synchronizatxon dhdyune tha wm fnrco the outputs
into a desired order. but in doing ao all the advamagu of asynchronous
processing of different inputs axe lost. Thus, if tha system #ppncatmn and
design can tolerate “"cutting ahead," it is wiso to allow n. In maral then,
nrovmxng for nondeterminate behavier that ‘inwolves ﬂffarent ’alternat.ive
orderings of gemerated output packets ‘should often in practice become an
attractive design geal for packet communication architecture.

2.3. Corractixm

The mnotion of correctaess for packet systems bears a close
relationship to the ways the issués of system smxcmnng and comﬁmmoh are
treated within the framework of packet' communication architecture. At a
very intuitive h\‘ml. a system is correct if it satisfiu certain conditions laid
out for it in edvence. For packet systems, these conditions take the form of
behavioral specifications. As we he.ntibﬁ’éid in the mmg dhaptér, a i;éékét
system's behavior is observable by the way it responds 10 “its inputs. More
precisely, the behavior is a relationship between inputs reshived and outputs
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generated in response to those inputs. A packst system, therefore, is correct if
this relation satisfies a given set of specificitions. “Fhe nature of such

specifications will be discussed in detail in subsequent sections,

It is important >to note that one cannot prove correctness of a system
without some knowledge of iﬁ internal mmuwsum is viewed as a
"black box" (figure 2.3-1),

SYS

. Figure 2,3-1“: 'aué&;vbox' !'1.0!4‘39\';.!; 93%&,0& .&u@"-

then the only thingé that can be seen ard xiackitb ontorlng and lchving. There
is simply not epough information availabla to. determine whether or not a

.system is behaving correcty. Since modules gperate asyRcl
_arbitrary finite . delays, ome. cannot tell if additigpal

mously apd with
output = packets are
forthcoming. For. sxmpln, ~suppoge a. .systam .Dbas already sent out all the
Packets it should trapsmit in response to some particular input, The module
‘only appears to be behaving correctly, since there is no guarantee that an

- invalid - packet will be unexpectedly sent out later.. Even if this were

- determinable, obsarvation alome coujd never suffice.to decide whether the

system would respond correctly in all situations. The only way to tie down
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" Figure 2.3-2: Internal view of the same packst system.

If we view the symasbdngruum&msd&ummt modules,
then the followiag mmmm correciness mm evident:

A packet syseam is correct iIf its given structural
decompusition satisTies the behavicral specificstians for

the system whenever the component mwodules satisfy

their own rcfpec:m MMM apacirms
The notion of a system's dscomposition sathifying « set of specifications is not
yet formally &efined; it will be treated i detail ia -Chapter 4. The notiva of
a module satisfying mciﬁcatlons is simply that of a physical device acting as
intended. The above correctuess principie defines only a relative nature of
system correctness. An obvious quutlon that arises is how to establish ‘the
correctness of the modules in order to show the gystem correct. We already
have the answer to this m:‘ Just as with the szystem itself, correctness
of the component modules can be established only im terms of their own
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respective 1ntorna1 structures.

A significant ramification of this approach is that packet systems
and modules are really two different views of the same thing: a module is
revealed 1o be & sysem when one  examines:its internal structure, . and
ignoring the composition: of a packet system is Just the satte as regarding it
as a module. - There is an underlying source fer this odaceptual unity, which
is that. packet commupication architecture supporis-the: Mtersrchical structuring
and composition of systems. .-Packet systemss-ean (asé ¥hould) be designed 50
that there are distinct and well-structured lovolwotf-'&&ﬁ:ftién'. “each level

consisting of systems built up from simpler modules. In this sense, our

G T

AT

- fundamental correctness principle for packet sysm;u supports a top-down

verification methodology in which correctpess: pesofs are. broken down level
by level into thelr matural logicsl and. conesptwal;comstituents. = Logically
distinct lines of argument are isolated s0:that. they gapmot interfere with one
§n_q;her. Thus the notion of moduwmmm system : structure ' is

carried through in the approaches we take to correctness and verification. -

It may seem for a moment that there is a potential infinite regress
in working with smaller and smaller modyles within .-Mum. -‘but this can
never arise. . Therq iz always a waell-defined bettom hmw the hierarchy in
Which the modules are ;maxdad,xgs:-‘zmphmun peimitive operstions such as -
adding and gating. At this point, corzectness has been rsduced to the way the

primitive functions are defined.

Our  approach to correttness and verification of packet systems

allows.a system to be viewed in two different ways: ‘Infernally. in terms of
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its structural eompoﬂtion' from modules, and externally, by concealing the
internal workings. The idea of distinguishing betweea internaland éézternal
views  of systems is closely related to the notion of data sbstractions in
programming languages [Liskov -and Zilles, 1874]. 'As we shall' see in
Chapter 3, it is faisly straightforward to comstruct BéNavioral specifications
for a packet systemn viewed externally. Howewer, in order to establish
correctness of a system, we need to M'Mthﬂ %W"-ichanéﬁérization
agrees with the system's structure. It is & Qifficult task. to formelly describe
the behavior of a eystem in terme of its izternal comiposition. We shall
address this task in Chapter 4.

2.4. Structural descriptions

The only means we heve used 35 far to describe the structure of
packet systems is through infermel biock $tagrams. If any general assertions
are to be made involviag system compositien; m wiil'need a more precise
vehicle ‘for - structural deseription. - -Suéh- o teclinique “is introduced in this

section.

The structurs of a ‘packet system may be” faolleled in very
straightforward faivion by a &frected graph-in ‘which hodes representing
modules are comnected by ‘directed ‘arcs repidsenting channdls.” Figure 2.4-1
shows. a sample packet: systom segetisr with the &irected graph’ thiat models ‘it
Note that ‘the directed graph has ani 9xtra fode labeléd “4". This gives
explicit representation to the system's "outside world™ which serves as both
the source of system input channel X and tha. farget of system putput channel
Y. The graph may look like just another stylized drawing of the system, but
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F‘lguré 2.4<1: K packet system and its diracted graph.

4
it ic a mathematical object of. specific characteristics,, Formally speaking, a
Gaitected graph is an ordered pair of the form (N, A) in which N is the set of

its nodes and A is the set of its arcs. Each arc in A is an ordered triple

containing a source node, an arc nanmie .and a ;node An arc aeA has the

Bk 2

form (a.source, a.nams, a.target). For oi’mplg.thcmph in figure 2.4-1 is
the ordered pair . |
({x,D,E,F}, {(x,X,0), (D,P,E), (,’E,\,Q;E),.Z(F,R,D),_(E.Y.a:))).

It is easy to see fhat for each node n in the directed graph we can define the
" gets of arcs leading into and out'of n. Thése seti ife given by - |
inputs(n) = {a&A: ““a".fa“r;got % n) and outpiits(n) = (deA: “a.source = n}.

' The directed "graph charatterization thus mathematfcally "specifies how the

modules in a system are interconnected.

There are two additiomal propérties’ of packet 'systems that can be
{ncorporated into our formal Stﬁciﬁi’al'déﬁcﬁﬁﬁi\éﬁ “¥Ffrst,"We can model the
packet type restrictions for the channel_s by associating a type description ‘with
each channel. Second, we can specify packets initially present on the
channels with an initial packet sequence for each channel. Both propgrties

are handled easily in the directed graph model by adding extra fields to the



arcs.

The above mathematical model for packet system structure may be
sugared into a structural description hmm The dwscription language we
use here is patterned after the structural portion a! ADL as presented in
[Leung, 1977]. For the system we have besn discussing in ‘this section, if we
assume that all channels carry only integer valued ww: and that there is
one packet with wvalue :mo. m&taﬁgr present on chaanel R, then Vﬁa formal

description of its structure may be M ‘as ‘Toows:

System SYS

inputs X(integer)

outputs Y{integer)

internals P( ‘mtmr)., MW). a(iatmr)
Submodules :

D tnputs X, R; mm P
€ inputs P; outputs Q, ¥
F inputs Q; outputs R
Inftially RO ‘
While descriptions of this form do not explicitly name the saurce m target
modules for each channel, these are very easily dstermined since each internal
channel in the system must appear exactly once in a submodule input list .and

exactly once in a submodule output list,

This section has presented structural specifications for packet
systems. The next two chapiers present a model for behaviaral specifications.



CHAPTER 3: SPECIFICATIONS FOR PACKET MODULES

3.1. The slice relation approach

Because of the way a packef systexh u 5uilt up from component
modules, the behavior of a system will be a mmiqﬁ -Of 4ts:structure and the
Sehavior of the modu}e; in it. In this chapter we.shall develop a method for
formally specifying the behavior of packes medules. .Specifieations defined by
this method will be called external specifications because they describe the
behavior of packet modules, without considesing - theid: internal + stréctural

composition,

A packet module has a fixed number of input channels on which it
receives packets to be processed, and thebé ars a fiked number of output
channels on which it sends out packets in responss to the inputs it has
received. A formal behavioral spectfication for a module must be able to
rigorously determine for ‘each input exactly what 13 a valid ox'xtpﬁt: response.

Because packet systems are in general n&iddtci'n'iiiiat'e.i “the potential

Instead, we shall supply external specifications for‘a module M in the form of
a relation EXT, that formally ' relates Iaputs to the  semantically valid
corresponding outputs.  Such a relation will Bé called an external

characteristic relation for the module M.

The most obvious approach is to use a relation from input packets to

output packets, but this does not suffice in éven the sim’fﬁestcm: consider a
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module ID that “doss nothing," that is, sends out its iuput packets untouched.

X Y
— IQ  ——

Figure 3.1-1: The tdentity module iD.

The identitf relation 'EXT@ on packets defined by the equation
(@) e DT itasd oy it £ g

does not completely describe she dehaviar of the module D, If ID receives as
input a packet with value 1 followed by a ‘pscket with vame 2, thm'e are
two different pouibh -pesponses: |D can send ‘out the 1 faﬂmvsd by the 2, or
it can send out the 2 first and the 1 later. Thus a specification for ‘the
module must describe the sequencing of pockets.in avder 0 completely capture
its behav1§r For example, if we iatend fot the aodnle 1D % preserve the
relative order of the plckets it receives, than ita ‘belavior would e correctly
specified by the identity relation EXTy taken over the domein of sequeaves of
Packets rather than individual packets. Such Aequences are required dn
general to describe the behavior of a module when it depends on a Tmemory of
préviou.s pagke;s received in order to decide how to yespond 10 a. given ppacket.
We therefore nesd to 49@01@_% -mathematical machinery for manipuleting
sequences of packets. We will use the term stream to. denote-a sequence of
Packets. The mathematics of streams will be discussed {n the aext section.

In general, the behavior of a module 'is specified dy a binary
relation that relates presented inputs to v;lm -output responses.  For the
module ID, we see that presented input may -be correctly -modeled by a stream
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of packets passed on the input channel X. For a module with an arbitrary

number of input channels, in order to model presented ‘hu;{ii we need a

separate packet stream for each input channel. We thofofore define an input

slice for a module M to be a collection of stfééxu;. one for oach tnput channel

of M. Similarly, an output suce has as tts oomponents one stream for each -

output channel. Thus the formal specit'icattons for a module M will consist
of a binary relation botween lnput slicos and output slices 'rhts relation is
called the characterlstic relation . for M We reserve the notation EXTM from

now on to denote the characteristlc rolatlon for a xnodule M. - The slice

relation approach to module specifications is not ortgtnal, and a 'corrésponding '

definition may be found in [Dennis, 1973;]‘ e

As an example. an input slice for the module J shown below is a

1

pair (U,v) tn whtch u and vV are packet streams for channels U anda V,

respectlvely; an output sllco for. J lus tho form (z). whero z is a packet

stream over Z.

U — z
v IJ—-———*

Thus the characteristic relation: EXT, for J will have elements of the form

V), @)).

Slices distinguish the time ordering between packets passed on each

individual‘ channel: but ‘mot between packets ‘'on ‘different channels. It may

seem that crucial behavioral ‘information is lost by not imposing a total

ordering on all packet transmissions into and out of a module, but this turns
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out not to be the case. If a packet pl is sent out on a channel Cl n_s@c
Packet system before packet p2 is semt out oa cm.ulcz, ‘there is no
guarantee that pl will arrive ahead of p2 in their race to their respective
destinations. This is because mnch:mus Pacicet tymcm ,mxm . RO
4constramts on transmiuion times am.g channels, anowing for differeat
channels with diftmnt charmistia suitad to their md.s Thus, the extra
information ahtaiuad from inmmuam mht ardanx; is rendered useless by
the properties of channeu in a packet commumnna sysxm. 'n'ae use of
slices in our model, thcn, pmvidos exactly thn M ntmd for proper
behavioral speciﬁcations.

3.2. Streams and their operations

In this section the huic defmmom, epcnuom and ma%hemaﬁcal
properties of streams m laid out in detail. m d’ m technical nlmrc of
the material mWhtheMmmmmmmdmm

Appendix.

For any arbitrary packet module, we take as given for each of its
input and output channels a mﬁ-dtfm& » spwe (set) .ef packet values that
may be passed along that chanael. The space, which we call a chasnel space
for the chanmel, is idemtified with the chaumsl and sheves the sams name.
Similarly, elements of a channel space are identified with packets pasced on

the channel,

We will define a straam 10 be a.-sequemas of packets passed on a
particular channel.  Individual packets in a stmeam 2 Will be zeferzed te by
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expressions of the form z[ i] A stream z will be denoted by an expression of
the form (z[l], 2[2],...). Strnms may be finite or (coummy) infinite,
The size of a stream z. written #z is the number ot peckets in it. Two
streams are equal ﬂ' they have the same size and corre:ponding packets in
‘them are equal This means thet a strum u uniquely determined by its slze
and by its elements and their orderiu. 'l'he space of meuns for a channel Z
is denoted by Z*. Formally, we have:

Deﬂg: itijon: A set S of natural numbers is said to be an initial segment of
the natural numbers iff for any 1 € S, J < 1 implies j € S.

Definition: A stream over a space Zis a function mapping some initial
segment of the natural numbers into Z. ~The space of all streams over Z is
denoted by Z=.

Definition: The empty stream over a space 2, denoted by € or by (), is the
unique stream over Z having empty domain and no elements.

Definigon: If 1 is in the domain of & smam Z,5WE deﬁne the i-th element
of z, denoted z[1], to be the image of i under 2,

Observe that 2[i] is undefined if iis not in the domaip gt z, and that if z[1]
is defined then z[J] is defined for all j g i.

: Lvden T E o
Derinitggg: ~ For any stream 2, the size of z. denogted fz. is the number of
elements in the domain of z. It the domaln of z 13 mfinite then we say
#Z2 = o

Note that 2[1] is defined if and only if 1 5 1 < #z In particulax, 2[1] is
defined for all natural numbers if and enly if #2 & @,

Definition: Twom-emszudz’uesamwbeequd written z = 2', iff
#z = #2' and 2[1] = 2[1)foralig#2. . .
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Definition: Given two streams z, Z' over the space Z, we say Z is a prefix of
2', denoted Z PREFIX 2z', if and only if

(1) #2 < #2 and

(2) 1 £ #z s> 2[i] = 2Z[1].

Definition: For any stream 2, If k < m < #2, then Z[k:m] is the unique
stream of size m-k+l such that 2[k:mJ[1] = 2[k+i-1] for each 1 in its domain,

Definition: Given streams z and Z' for which z PREFIX 2', we define the
difference 2' - 2 by 2' - Z = Z'[1+#2:42'].

Definition: For any two streams 2; and Z, over the same space Z, their
concatenation Z; @ Z, is the unique stream z of size #2; + #Z, satisfying
2[i] = (if i < #2, then 2|[1] else Z,[i-#2;]).
There are two stream operations we will use which count and find
particular packets in a stream: count{p,2) is the number of packets in Z
equal to packet p, and index(p,z,J) is the position in Z of the j-th occurrence

of packet p. They are defined by:

Definition: count(p,z) = card{(i < #2: z[i] = p).
Definition: 1index(p,2,J) = (if 31 < #2: 2[1] = p & count(p[l:i-1],2) = j-1
then 1 else undefined).

This is well-defined since if such i exists, then it is uniquely determined.

Two more important relations over streams are the subsequence axid
merge relations. A stream 2, is a subsequence of stream Z, if the elements of
Z; occur in the same relative order within Z,. They do not have to occur
contiguously. A stream 2 is a merge of streams z; and 2, if and only if 2,
and Z; occur in Z as disjoint subsequences and together exhaust Z. All merges

of Z, and Z, are of length #2; + #2,. The formal definitions are:
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Defimtiog: Gimtmmz,mdzgwummz.mmz; ua
subsequence of Z;, denoted Z, SUBSEQ 2, tf amd only tf ﬁun m a mnmon
rthatmap:thodendnolemtomedom&ncfzgmﬁtw ‘

(1) Ky < kg ®> f(k;) < f(ky) and
(2) for each k ¢ 'ﬂx.‘ z,[k] = Iz{f('k)]-

A function f utufymg propertiss (1) and (3) wﬂl h alhc an muniba
MysuMSM&c&mﬂndamzmaWsz

which is formed simply by arrenging the elamenis of Z. jndexed ws in
increasing order. |

Definition: Gimmmmz.zg,zgmgmmz.mwzu
amrywzlmuuuwuqutzmmmnmum
two disjoint subsets, one dafining 2, a&moﬁzﬂmmw
defining Z; as a suhnq\unm of Z.

Thn"concmdu the presentation of the fundamentals of streams.

Yooy

-3.-3. Examples

In this section we exhibit some elementary packet modules with
their specifications. The first module we descride is the distriliute ‘mdilicls D

{ R
>

Figure 3.3-1: . The distribuse podule 0.

Input slices for D belong to S' (streams over S) md untput :ums balong to
R"x Y= (pair:ofmemsomRandY zuyacthnly) mavuusthespac-
t‘or the characteristic relation EXT, DS ((S’) % (R' x Y')), Within a packct



system, module D has the general function of distributfng- packets through the
- system to places where they need to be routed. There are no restrictions on
the type of packets that may be passed through D. The bﬁ?txaﬁa‘f of module D
is to pass unchanged copies of input packets from § »ontp' both output channels
Y and R. The response of D to an input stream ¢ is the generation of two
output streams r and y identical tos. As with all the modules we describe
here, this works for infinite stiéims as well as finite streams. Thus the
behavior of D is defined by
((s), (ry)) € EXTD <-> rasyss,

We give a couple of oxamples of the bohavior of D showing input streams ]
together with valid responses r and y: ‘
$ = (8,1,6,4), r = (8,1,6,4), y = (8,1,6,4)
8 =(1,2,3, ..., r=(1,2,3, ...0,'y = (1,2,3, ...,

The négatlon module N (figure 3.3-2) processes- boolean-valued
packets, sending out for each input value b apacket whosa value is the

logical ﬁqsation not(b).

X ™ Y
L

Figure 3.3-2: The negation module N.

An output stream y will be a termwise negation of the corresponding input
stream X. Formally, EXTy ¢ ((X*) x (Y*)) and | |

(%), (y)) € EXTy <=> #y = #x and y[1] = not(x[i]) Vi < #y. .
An example of the behavior of module N is:

4
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- X = (true,false,true,true,false), y = (fﬂu.truﬂ,ﬂ;_lu.{g‘ly.trnq).

'n,u} adder module A (figure 3.a-a}~=m;.up:ﬁnwmm packots
in correspanding pesitions in. its mmmm X and 1, adds: tﬁo pitys -and

e

sends the sums out as a stveam on-S. . PRI K I TS

R A — i

Figure 3.3-3: The adder module A,

If one input stream is longer than the othcr, thc oxtra packm absorbod from
the longer input stroam are not rcﬂuctod m th. out)ut response. Thu is
specified by EXT, ¢ ((X* x R*) x (s')) and - |

((x,r), (9)) € EXT,. (=) #g = min(lx. ﬂ') gnd 3{11 x{i} +* rt’fl Vi n
As examples, we havm |
X = (8,1,-6), r & (3,-5,6), 8 = (11,-4,0
X = (4,-9,0,-18), r's (), 8= () :
x = (1,3,5,...,21-1,...), r = (2,4,6,...,21,...), 6 = (3, % 1¥;...,8%1,.. ).

A slightly more complicated module is the cumulative sdder module

C (figure 3.3-4) for which uch packat ;awcud for cutput on Y is the sum

of all packets rocoivod on X so far.

X EY .

T

Figure 3.3-4: The cumulative adder module C.

We specify the behavior by EXTc ¢ ((X*} x (Y*)) and



- 51 -

B,

Ux), ty) e EXTC <=> #y . i and yu] . § X[J1 Vi < #y. |

As examples of the action of C, we have: »

x=(42 -1,0, 63) y «.655 12);
X =), y s () _
X = (1,3,5,7,...,21=1,...), y = (1,4,9,16,...,1%,...).
One of the modules we will be discussing later on is the feeddback
modified first module F (figure 3.3-5), which handles integer packets.

Figure 3.3-5: The feedback-mogif ied first module F.

Packets input from U are copied direet‘ly ento output channel Y. "In addition,
the value of the first packet input A;rox’n U ur there is any) s suitably
modified and the resultin.g value is output as a pecket on V For the purposes
of this example, we shall say that the ﬂrn« packet value - is modified by
adding the number four to it. The -béhavior of F 1is specified by
EXTr ¢ ((U") x (V* x Y*)) and
(), "(y.y)‘) € EXTp <=> y = u and #v = min(l,4u) and v{1] = U[1]+4 Vi < #v,
A.s examples, we havex
u=g, v -e.y-e(emptystrelms);
us=(1,2,3), v = (5, y (1,2,3).

A module with an interesttn; logical function is the true gete T

(figure 3. 3-6). which peirs up integer deta inputs from channel X with
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boolean contral. uniuu. fmm chan#al C. If the. cm#ml w value: is true,
‘the cormpondiu dawinpnt from X is Mcmton Z It tMmtml si‘ntl
is false, the data packet is discarded. ThmmommlmdsmC‘ﬂnaxa
out specified elemeats of the data stream X, Cnmmmmu.

and X and Z may mn-chaotwmnm-.wm

Figure 3.3-6: The true gats T.

The behavior of T is specified By EXT; ;“‘%(ixfx C9 x (%) and

((x.c). @) « ExTT <= # = count(trus, cll]) .. ..
“and m] -xﬁmm m wt g .
"As examples, we hm“ ‘

%= 1,2,3,4,5), ¢ = (true, falsa.truc.'cru,fﬂu) z: - (1.3 &
C X = (6,7, ¢ = (Ffalee, tieutrue), T = (T R
X = (8,9,10,11), € = (false,trus, true), Z = (9,10)..

The above modules are all determimats, mférwinmnshm
there s Mmev*MMMM&W

behavior is therefore functional. Our specification ti:imﬂme w be appn.d
to nondeterminate modules as well, as mwm L c

w

The nondocotmmm mrsc mm J (ﬁu. 3.3-7) m out all the
Tiwr i
pacKets it receives from immt channels U ad V aate mwt chnml Z. The

relative i ofMonmhofUmVummtmm




coming from these two channels are arbitrarily interleaved on output. There

is no restriction on the type of packets that may be passed through J.

'} IJ —

Figure 3.3-7: The nondeterminate merge module J.

We may specify the behavior of J by EXT, € (U* x v-) x (z-r» and

((U.V). @) e EXTJ <> zisa merge ot u and v,
where the notion of a merge of two streams was defined in the previous
section to be a stream containing the two ;iven strearns as disjoint
su‘osequences " The size of an output strearn z wiu always be the sum of the

stzes of the corresponding input streams u and v

As an exarnple of the behavior ot‘ J it itis given as inputs the two
streams us (1 2) and vs (3 4) then there are six possible valid output
responses: (1,2,3,4), (1324) (1342) (3124) (3142) and (3,4,1,2).
The output response (1,4,2,3), however, is not vaud since the relative
ordering of 3 before 4 in the input ltream v has not been preserved on

.f

output

B

In practice, a wide veriety of nondetetxninate behavior can be
realized by constructing systems formed by interconnecting various determinate

modules with instances of the rnodule .}, In this sense. the nondeterminate

merge module J is often viewed as a canonical source of nondeterminacy in. -

A

packet systems



3.4. Evaluation

. We have .seen  how - the. ssiieq-relation - approsch - to - module
specifications works for some simple cases. In this section we address the

question of appucabinty of our mﬂw 40 ggrc complicated modules.

The examples we prmnto& mam only mbu of ahmentary types

(integer and boolean). Ome-of “the arehs of fie:
architecture 1s that systams w ba 3“11}'

i To Bt rr

are arhitraxily complox data structutos. xuch g’(md mxds. Data items
in  the various ficlds ot' a stmtm-vg% mpg:g.t may,  pe. progessed

‘.i-e w"t
isF

concurrently in different internd soctiops qf A sysum Direct support  for

Bl S

Pantn 1Ay
handling packets with arbxu-aruy complox fstruct\u;o u cqmlly easy in our
PR LS abac - ELE Fe a.{lﬂi e
specmcatlon model All that noeds timbjg ,%dﬂn&?ﬁm upd pu;kqlt
operators for buﬂdin‘ and docomposiu structures, and this is well understood
Trorenvenad o %o stqmens oo o8
and straightforward: %tmctum are unxftuuy labeled cartesian . producu of
sl ogerdi AR,E ® ¥ Ras 0T AT

their components, and basic operatiom on. :tmctum uavo boon found m
DA ey e e O 0

programnung language% for a long time. -

v B e}';«
sLE By

'rhe buic quomon to be discuuod hm u how effoctively our
il i *w-*" i

specification techniques can model tha functioul cmbumu of module,s that
are to be physically realized in hardware within packst syncms Wo claim
that tle sucb-relatién &acripuvo foxnulim hu mfﬁcicnt pomr of exprossion

Hamror rmoalayn iy T

to“model ‘the behavior ‘of any realizabie pucm module. ‘I‘hore are uvoral

faétors that’ sibstantiate this claim Our uchniqm allow: thc uso ot arbitnry

£ Fgrar S LA C e s,‘ oty
mathexﬂaucan? d“oﬁnod funcdons and prodlcam on mm valuos m nr“ms_

T

Basic operations on packet values may be composed through tho uso of
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conditional exptessions and ro'éir‘dbn on streams. - Tﬁsm at our disposal
the functional capabilities of the textual language used to model data flow
schemas in [Weng, 1876]. Thus, from the wmofmm vomputability,
the suce-rolation approach can modol bchavior of any dodrod complexity.

B

Moroovor, a modulu chanctormic rohtton acu as a prodicato that asks of an

output sllco "u thu a oorroct ru)onn w tho pnunud mput?" 'rh\u.

oxtorm charactcrmic nhuonl m ﬂu way our modol ncthomaucauy'

dotormlm eorroctnou ot modulu in mht mtom

B

The above arguments say- nmhiu about the eompquity of behavioral
descriptions in our model. It is an unfortupate fags that as processes one
wishes to modol mcrouo in comploxity, the ortort roquired to formally

specu'y thcm incrouu ovon moro rapidly Although thu appnrs to be the

case with pack.t modulu u wou u wnh oompum pro‘nml. it u hopod that
the hierarchical oomposmon ot' pnclmt sysum can roduco tho structunl_

A5

comploxity to - bo handled u‘ not thn mmhm eoinplexity. Bchavioral

.‘

speclfications tor tho structuul conpodnon ot p.cht mi:dulu mto systom

5 . 3

are truted in the following chaptor
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4.1, Intarnal speificetions

'rho oxmd mctﬁmﬁm éacribcd in thc pravions chapur

comtttuteafo:mdwayotmhowammhmmmt with
'ns outsidc world mmmmtmmmwmumta
system is corroct whmmr u umﬁu itl auml Mic&ﬁau. As we

[ ¢ 1 RO
mentioned earlier, corroctm of a ;ymm mt be mbnshnd by ouuido

" observation alone it is’ Wm m m*mm ‘ of a system

in order to prm eermtm

szcturauy apakin;. a pu:m sym eomml of a conaction of.
component moduln inmaonn.cﬁd by channols. m gbthlvior of a- system is
'deternumd by tvm thdm itl ctmtnu nd tiu m d tts comnuant
‘modules. A rama mmu a mc wum wmch is M -num;'
kon these tmmmumnuauuamwmmwnummm for
the :ystem uumttoxmmm‘smmm&mmxemd

composition.

Inordertoshowamuhhmmt.mn@smmbatakcn.'
First, one must produce a set of internal specifications for the system. These
internal specifications then must be proved equivalent to the system's external
specifications. ‘m logical reasoning involved m is that the component
modules are assumed to be correct from the bq‘innin;;this mumption. is then
used throughout the system corr_ocm @rodf. If one wishes to demonstrate

the correctness of a component module, it is decomposed structurally into its
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own components; this module's eorrectnm is vcriﬂed in the exact same
manner as the entire systom. In this way tho hicnrchical sysmn structuring
provided in packet communtcatlon archltocture mpports hicrarchical

structuriu of mum verification,

i

, 'ro formany dorive the mternal spocit}cgtiow for a packet system,
| two ploces of mformtlon are nndodx ( 1) s ;trucmnl dmrimion of the
'syatem, and (2) the oxt.rml spociﬁcations for ?ach of its component modules.
It is not necessary to oxmtno tlmcomponont qodm internally, since they
are assuhmod correct. 'rhe intomll specifications will take tvhe_;d,cg@ic;l form

as the oxtornal :poctficatiom. namoly a tpinm rplatm ‘betwesan input slices

and output slices.

At first glance; coming up with ‘titernal -spéeffications for a packet
; Wstqm mﬂf um 10 :be a straightforward. tesk.. mw for example, the
system Sl shpth in figure 4.t-1.

Figure 4.1-1: Systen S1 acts by fanctions] copostiion

“Suppose that modulo F applies a function f to mh packet value x received on
. by DA

"X, sending ‘thé’ rommng val\u f(x) out ‘as a packot on Y If F preservos

* packet ordering, its charactérimc rolation b(f; would conmn au ordered pairs

((x), ty)) for which " y 18 the stream obtained from strum x by applying f to
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each packet of X in sequence. In other words. _
((x) (y)) € EXT; <=> 4y = #X and y['l] = f(x[i]) Vi € #y.

If module G applies a function ¢ in the same manner, L.

), @) € EXTg <n> 4z = 4y and 1] = oyliD V1 < f2,
then it is easy to see that for each packet entermg the system sl, ﬂrst f and
then g is applied. The behavior of Sl then. is the tunctional composmon of
modules F and G. 1t is therefore a trivial matter to show that the mtemal |
specifications for 1 match tha characteristic relation . )

((x), @))€ EXT; <> #2 5 #x and 2[i] = :g‘(‘fo’énj’)-)‘ vi g #.

One could ‘take a far more éompncated exunple. such as e system to compute
roots of guadratic equetions which is compond rrem moduha thet take squere
roots, multiply by four, divide two values, and the lik.e ‘There would be
long chains ot_ ~functional gemposition, . but: preducing: internal specifications
would present na major problems. . Even for- s mindetevmisate systeft, one
could simply compose relauons instead of funictons. - §6::1%° seemas, at ‘1sast so
far, that internal specifications are simple indud to determine.

There turns out to bdbe a very large fly in the ointment.
Figure 4.1-2 depicts a system structure for which functional or relational
composition is of no use whatsoever, The, ayclic. interconnection  structure
imposes mutual data dependencies between channels Q and R. Packets passed
on channel R from moduls B depénd on the packéts received by B from
channel Q, while the packets passed on Q depend on sarlier packets received
by module A from"elﬂunnel R. Itisa Mnctly mmm task to express the
stream R in terms of the remainxng m'eem X, Q ‘and Z since packets passed
oanulngenereldependonpacketsprMoudymonR. .This kind of



_ particular pressnted input is,characterized by a f

- -

N.

prmm e —--
B i -

Figure 4.1-2: Cyclic dotl'dop;n&ncios -

dependency introduces mutually murdww oF equitions: expressing the
channel. streams..in terms of one another.. @illes Xahn,[Kshn, 1874] has found
a way 10.50ive systams of this Xind thjoUgh the use. of A Mathematical theory

~©of  fixpoints. - His techuique, howeves, Tequires that the modules be
determinate, and thess. is no straightforward ‘way 10.apply his technigues to
. nondeterminate sysiems. The task of deriving: internal specifications for a

packet system is a challanging probiem, and.a pew &ppigach is required,

The approach we will be asing ‘15 babed on'ax- operational view of
systems. We model the operation- of a-systemx' by recerdésg- the progress of a
computation in a series of internal aystem .states. . The sysiem's response to

internal states, which we call an execution sequence. .ln general, there are a

~ large number of possible execytion sequences. that correspand to a particular

t0 prove must be. showa to held over all possible sxecution sequences that

f introduces some of
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the basic characteristics of execution sequences.

4.2. Execution sequences (introduotory)

The progress of a computation in a packet system isfmoddlad'.by the
successioh of internal states in am execution sequence. We will be defining
internal states so that a mu meorporm for each chanmi the cumulative
stream of packets m«d to bu puud on tlw cmmi. This- dourminos, in
particular, for each state th. lnput suce pmtd te thn system and the

output mmwmmwm
Aprwmmmmwhm is- that' one- can

construct a syxm;n state that: Tepresents the computation: mnmx to
‘completion. For sich a stats, the output siice: réprusents one-of' the- systém's

possible ultimate responses to-its: pesented fnput; Suci®sn: eXecution: sequence
will be said ‘to reelize: that perticulsr’ output reigéase 10 thie: system's

presented input. It will' then be a' straighitférwurd - task: to' produce the
system's internal specificatioas, which are.givep. by. the. relation. between input
slices. and . correspesiing: outpus slices reslized. bjt soMme-SXeCULIOR SETUONRCS.

A partkular kind of phy‘ﬂcai event we wisk to ‘model in an
execution sequesity s the transmission of ‘a* packet on. sorfie- cliannel. The act
of a module sendinig a packit out on a chanmel fiay o0Cur- at’ any  moment
between the time the packet is' gemerated by  the module and the time' the
module recetves afi‘ scknowledge- signsl ‘for the-pecieet; For sijgfven: imstent
of ttmcjv duting such am' interval, the packet:may or miay-not: Have besn sent
out alresdy; and e canmot determine which is‘the case. TlHus, owr exeeution
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sequences will capture two kinds of evonts:! gonciation , of a packet and
receipt of the acknowledge slgnal. : Bocause we do xidt' know the aétual
moment of transmission, a packet will be regarded as only potentially present

on -the channel during the interval between these two events.

Each state in an execution sequence {m'ustjrihec't' the relevant events
that have occurred in the system. The events described above are associated
with particular channels, s0 we may partition state information into
components relating to the individual chan:;gh in the system. To model a
state, We give for each channel the cumulative sequence of events of each
kind (packet genera.tion and acknowledgniént) that have taken place. Packet
generation events are handled by giving the stream of. generated packets for
each channel. Since the ,Mnals act as FIFO qusuu. the packets that have
been acknowledged are always given by a prefix of the generqted packet
stream. We call this prefix the acknowledged puﬁx )‘of') the stream. Thus
every state in -an execution sequence consisu of a gﬁérated packet siréam for

each channel together with its acknowledged }nﬁx. S

Anofher significant property of execﬁtiqﬁ sequences is that they are
to exhibit the behavior of the comj)onent 'médiilés of ;hev sys;em. At any
state, for each module the generated packet streams on the module's output
channels tmust constitute a valid respdnéd by ‘that module to the lnp\it packets
it has receive'd (and acknowledged). | | |

A transition from one state to} the next in an exe¢ution sequence
models the physical occurrence of a module rmivi‘ngv new input and

generating new output packets in rosponse " It there are no more packets




generating new output packets in rnpom It thm aro no mrn packou
wamng to be Mhod by moduks m tkc sym thi m suto wm

remain constant

We now give. some examples of exscution spqusnses: for & pasticular
system S shown in figure 4.2-1.
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Figere 4.2-1: A sample pachet systew S

J is the nondeterminate merge module and Fis the fepdback. modm,nd first
module; both of thca mocmu were descrived in the previous chapter.

Nondeterminate systems such as S may generats different output rasponses to a
given presented 1nput. This will bo unocui ia our mplu.

An execution sequence 1: ropmm by & tlbh iz which tho QWS
are the internal states and the columns correspond to channsls. _Each entyy in

the table is tho approprmc stream or m«d m wm\ » hmvy dot
marking the end ef the acknowledged prefix.

Execution sequence 4, shown m figure 4.2-2, models a particular
response of system $ to the input stream (1,2) Won channel X, We
also give a corrcpontuq series ofsnapm that mnmmthoiptmﬂsymm ’
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states during the computation.

state X U v ; Y
o . 12 L] . .
1 1'2 Ol . .

2 1.2 1. 5 | el

3 12. 1.2 +5 el

4 | 12. | 120 | <5 | el2°

5 120 |12.5) 5. | .12

6 12. 125 5. | +125

7 12. 125+ 5¢ ] 125.

Figure 4.2-2: Sample execution sequence Av for system S.

The snapshots, shown in ﬁgure, 4.2-3, -depict the first 'seiren’ internal system
states captured in execution sequenée A. In state 0 the sequence {1,2) of
input packets has not yet entered the system to be proceised and no packets
have been acknowledged (all the heavy dots are at the left-end of the channel -
streams). In state 1, the first packet (with value 1) ha.s been received and
acknowledged by module J, and a copy has been generated to be sent on
channel U. This copy is, by the time of state 3,-received and acknowledged
by module F. F generates a copy for output on Y, and also a packet with
value 5 (1+44) for output on V (since the packet 1 was the first packet
received by F on U). In state 3, thginpﬁt packet 2 will be passed by J onto
U, and in state 4 it is generated as output on Y. Note that no further packets

are generated for channel V. By state 5, the packet with value 5 has been
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processed by J, and by state 8 it has been passed through F. State 6 shows
that system S's response (1,2,5) to its input (1,2) has been completely
generated for output. By state 7 (not shown), these packets have been sent

out and acknowledged by their outside world recipient.

We now present another execution sequence that models the
response of system S to the same presented input stream (1,2). Execution
sequence B, shown ixi figure 4.2-4, is identical to oxecution sequence A4

except for states 2 and 4.

state X U vV Y
0 012 . ) X ] c‘
1 1'2 01 ] .

2 12. 012 L : . .

3 120 |12 | o5 | .1

4 12. 1.25 5e el

5 | 120 | 12.5| 5 | w12

6 12 125 5o +125

7 12 125« | & 125.

Figure 4.,2-4: Sample execution sequence B for system S.

From state 1 to state 3, this execution sequence has module J receive and
process the packet 2 before module F processes the packet .1, reversing the
otder of these two events from the wajr‘ théy were in eiecution sequence 4.

Similarly, from state 3 to state 5 here.> J takes inﬁ the packet 5 before F
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processes the packet 2. The snapshots of states 2 and 4 for execution

sequence B are shown in figure 4.2-5.

Y e ——

Figure 4.2-5: Snapshots for execution sequence B,

Observe that the two duunct execution uq\unccl ‘A and B model two distinct
computations for the mhm S, both nnnuu in the same system response
(1,2,5) to the presented input 1,2, ‘On the other hand, execution
sequence C, shown ' in_figure 4.2-6, moduls_a emuum in which the
system produces a diff-uat reqoue (1,5,2) to tho same input. This sequence
is identical with execution aqu.nco A through m 2, but now module J
processes the packet 5 from chnn;ul v hdm it takes the packet 2 from
channel X. This wtn‘m is Whn& M m chnso in system response.
Snapshots for the romlm mm 3 thmm 6 fcr execution sequence C are
shown in-figype 4.2-7. . . . oL ach

g

| - It is important to notn that at uur timo duriu a computation in a
packetsymm.apnmmthabunmmwbomtomonsomo
channel nuy or may not act\ully lmn bnn unt out alrudy Artcr the

packet 13 acknowlm we know it hu bun unt out bu; before
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acknowledgment it is only potqntially, on thg chaml "Potential” packets are
guaranteed to have been by some futiiig' time .eventually passed en the
“channel in the relative order given, but we can draw no stronger conclusions.
This means that in all the mapsh?ns we have depicted here, the packets
shown on the various channels wm at the indieated time only potentially

present.

This concludes our informal introduction ‘to execution sequences. In
the next section we shall motivate and discuss the properties that will be

used to characterize them formaelly. .

4.3. Properties of execution sequences

In order to formally define execution sequences for a pockot systexn.
we need to. careruuy motivate and discuss several wwm ﬂux chnrac.tnrize
them. We shall be using as an example a pmiquln nqckct system C
composed from the modules A and D as shown in figure 4.3-1. The left half
of the figure shows thi system structure pictarially, while thn :mu half is a
textual repfeééi{ition that provides a formal strnctural “ doscription of the.
system. ‘-Once we ch‘araéterize execution sequ'cnces for C, {ts internal
specifications will be the hinary relaticn Wmln mmed input slices and
'the corresponding ontput sucea that are reauud as the systems response to
the given input hy some execution sequence. This, —of courlo. will provide a
formal behavioral specification for C expressed .in terms of the above
structural descfiﬁﬁon of C and in terms of the chanctoriiﬁc relations EXT,

and EXTp for the component modules A and D. In thé previous chapter, we



' Systenm C
X Y " inputs X(integer)
e ~ outputs Y(intager)
e  internals* S(integer), R(integer)

Submodules
A inputs X, R: outputs S

D inputs S; outputs R, ¥
Initially R<0> "

e - - - —-

B o it s e =

Figure 4.3-1: Realization of a sample bockot system c

specifically defined the external specificationis for A and D, but in our
treatment hete the characteristic relations shall be viewsd' abstractly.

An exocution sequenco is a umo-ordorod progrmton of 1nternal
 states of a packet system, and a state givos particular 1nformation about each
. channel in the system. Tho state informuon for a channel Z at any given
moment contains, as we mentioned earlier, both the stream of packets
generated to be passed on Z and its acknowledged prefix. The space of
streams of packets passed on Z-1s denoted by Z* and’ includes infinite as well
as finite streams. For any stream Z e Z*, we denote its acknowledged prefix

by 2%, A channel state for Z will then be an orderéd pair of the form (z,2%).

Tho state information for a system is simply the collection of state
information on all of its channels For our uxnplo system C define the space
CSYS' o be the cartesian product of the channel packot stream spaces X’I S,
R* and Y*. Elements of CSYS*, which are callod systom suces, are denoted $
(the dollar sign is' pronounced "slice” !) and are tuples of the form (X,s,r.y),
‘where X, 8, r and y are streams of integet packe(s. A ‘system state will
consequesitly be an ordered pair of the forii’(3;8%), where the" acknowledged

prefix $% of the slice $ is the tuple whose components are the acknowledged
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prefixes of the respective components of §.

We have alresdy q.e'firiéd input qud;l output slices for, moduhs.rn a
packet system. . The nica af hput slices for a' 'm"m“‘u the. qu:tuun product’
of the channel stream spaces. er the module's input elumlu output slices are
similarly built up frm tho modui-'s output ch;nncl strum spaces. For the
module A in our example, thuo tm spuca are AlN' = (X* x R*) and
AOUT* = (S*); for the module D thcy are DIN®* = (S) and DOUT- = (R* x Y*).
The same thing cam be done. for the sysiem G W :Vispswiag it as & medules
CiN® = (X*) and CQUT® = (Y*), Thus, tha. characiesistic selmions. for tha system
C and its two commcnt modules A and D are glvon by EXTc < (X*) x (Y®),
EXT, ; (X* x R') x (S')) md EXT 0 S ((S') X (R' x Y')) . We wﬂl have
((x). (y) ¢ EXTc n' md only it tho outpm stmm y u a vaud response to the

input stream X undor the semantic promtha of thu mtom C

Execution sequences for a pecket system. will be of the : form
(¢, $%)), where 1 takes on - natuzal FUMLEr Values - starting. from .2ez0. $°
will be the agknowledged prefix <of, the i-th system:slige ... There are a
number of semantic proparties whigh.an axecution. saqusnce: must satisly in
order to corroctly modcl the action of a packct symm. WO describe them
‘here in tarms of thc sample packat symm C nottn.g that the gonoralization to
arbitrary packet systcm presents o dm’xculty | For tho system . C

components of smm slice 8 are dcnotad hy & (X.- s, ".- i)

The first cendition an execution: W must; satisfy- is thas. there
be a valid initial svmstam .To-express. the propexty:. that. no packets have
been processed at the start, we requise that.ihe inisial sate (Seife’> hwve an

-
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empty acknowledged prefix $,%. The components of,'% Ncorrespond’ing: to input
channels must match the presentad input slice. . In our case, this means that
Xo must be equal to a givea stream X of inputs. And it must also be the case
‘that the other components of §, agree with the initial configuration defined
by the system . structure. For systam C; .this muires “that: we’' have

$0 ® Yo = € (empty streams) and ry = (0) (stream of: one ‘2ero-velued: packet),

An execution sequence is supposed to reflect a system‘s response to a
particular presented input sllce and thls input slice appears in its entxrety
'wlthin the initlal system slice So In order for the executlon sequence to
realize a response to pre‘cisely' this input end nothing more, we must have at
'each system state the identical input siice as at the beginnin‘. whlch for the
system C means that X ® X, for all i Physically, this requxrement amounts
to the outside world suspendlng additlonal lnput to the system unttl the

system completes its response to the tnput already prmnted

The third condition that must be. fulfilled l;svangreement with the
semantic properties of the componentmodulesof ' the sysiém. " What this
means is that for all states it must be true of each in’odule:'that the paoltets
that have been received and acknowledged by that module are related through
‘the modules characteristlc relatlon to the output packets generated by that
module.” In ouf system, the semantics for the A lnoduleﬁ t‘mpose the condition
(%3, 1), (8)) € EXT,, and the D module forces ((s ) (r ro, y,)) e EXTp. (The
reason we speciﬂcally remove the streaxn ro 1s tﬁat 1t represents a packet_‘

stream that 1s initlelly present but is not generated as output by any module.)

These conditions must hold for each i indexing some state in the execution
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~sequence, starting from the initial state with 1-0

The fourth . preperty that shouwld -hold withia an: esecution .segquence
is rather complex. Wa wish -to state M‘ﬂl seguipement that state
transitions within. an eXecution aseguente mAust .agmee wWith 1the :aystem
- structure. Each state ($;,, $.,%) must follow from its predesessor <§, $;") in
a manner cousistent with the physical arrangemant iof the isystem's clanhels.

back. For each channel Z in the aymm. pucluts can cnly be added in geing
| from one state to anothar. ‘Mqreover. since the chamls act as wmo queues,
new packets cannot disturb the relative order of pnvions pacluts 'l'hns for
each channel Z the channel stream Z; mm be a cubugnenoe of Ful for all 1.
| This require_ment also holds mately fpr the acknowkd.godproﬂxu on qach
.channel, slnce acknowledgcd packots cannat become nwknowlm 80 we

must also have 22 a a subuqucnce of z,,‘ for g

;t would greatly simylify the tochnical develapmant in the
t‘ouowing aoctton if we could strengthen thts fourth comuuon to require that
Z, be a preﬁx of Z,, rather than any snbseqxunce As it stands npw,' we are
requiring that a ﬁedula can only ;énd_ out addmo:ul ma in respon;ato
new input pacl-mts‘ rot.:eiv«‘l,‘ Insisting ‘on”; a prefix property would impose a
time restriction on me mtqfvals from packot gmor;ﬂon to packct transmission,
forcing packets - be apnt out on channols in thc oxu:t -same order m which
their respective woccsm of goncrmon wcra mmmd Unﬁortg{xﬁutoly_.v "this
turns out to be too strong a stipulation. If a module such a5 M

(figure 4.3-2) receives from its input channel X first a packet p and later a




packet ¢, it may very well take M longer to produce a packet p' in response

to p than to produce a packet ¢' in response to -q.

X [ Y

Figure 4.3-2: A module M.

This could occur naturally in applications such as a cache/bulk memory or an
information retrieval system. In order- t‘oi M to, derive the benefits of
asynchronous operation, its behavior. .should be spacified.. pondeterminately so
that either stream (p',¢") or (¢'.,p") will be a-valid response to the input stream
(p.q). Figure 4.3-3 depicts the two corresponding exegutien.sequences, which
should both be valid, |

‘state X Y state. X~ Y

0 pq o0 | '__P}l 1 -
1 Peq | ' 1 | pra | e
2 | pa | we | 2 | par | o
3 Pq- | p'q’e 3 | pae | a'p'e
(0 O

Figure 4.3-3: Two execution sequences for M.

In execution ‘sequahce (a), channel stream Yy, = p" is a prefix of channel
stream Y2 = {(p',q"). However, in sequence (b), the packet ¢' has cut ahead of

the ‘packet p' by the time state 2 occurs. This is legal, since the p' packet is



only potentially present on Y during state 1. So for uquen.oo (b), y, (p" is
a subsequenée and not a preﬂx -of y, " (Q",p') In fact, thera is no way to
realize the response described by execution uquenco (b) if we insist that Yy,
be a prefix of y,. We need the generality of the subsequence relation to
realize "cutting ahead" behavior of this pature in mckot systems. Thus we
cannot strengthen the requirament that each channol stream in an execution

sequence be a subsequcnce of its snccessor

We can, on the other hamnd, "md'uthtn‘- this subsequence property to
use the prefix relation in the case of acknowlelged prefixes of channel states.
'fhe "cutting ahesd" behavior as ‘describéd sbove ‘caninot’ occm' withisi the
acknowledged prefix of a channel ‘stresfn, ‘sikce ‘we know that all ‘the packets
here have alroady been pessed. This means'thaf fi any execution sequence,
the only way z,,* may differ from 2 is through the appénding of newly
acknowledged packets to the end of the stream. 'nnu b A 'can:m.ot be just any

subsequence of Z,,%; it must be a prefix,

The fifth and final condition thet must be satiafied by an execution .
sequence is that no chamnel may receive mmmmcm for a packet that
was never genersted as output to be sent on th.ct Mul. This is guaranteed
by requiring that for each i the acknowlm m:inx z,.,‘ must be an initial

segment of the previous stream Z; on all channels Z

The nofon of execution sequences that has been developed here
models the progress of a computation wmun a2 packnt system, but tharo is one
ﬁnal element that is misingz the idoa of ummte result of a camputation

We must monufy whon a mkot sym ﬁnbhu nccuu to m tnaut as well
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as handlo the cases of mﬂnite mputs and mﬁnitc ru)onas to tinito inputs.

This wm ho dono by dcvoloptu the compu of umm and comploumu for

‘ oxocution uqunnces

- For any packet system, we may define a relation PRECEDES on fs,ystem

states by @, &%) PRECEDES ®, 3% m (8% PREFIX 8 and §; SUBSEQ 8)).
' Intuitively, 1ncrouing valuu with rupoct to )neri:eoes indicate forward
ﬁprc(rm or a compuution Mthin a pack.t mun. In parttcular.
81 PRECEDES S2 muat hold whcnovcr lystcn mto 82 u rachgblo from system
state SI in somo eomputation through thc proe‘utu ;; addmonal packets
‘We may observe that PRECEDES is tmzmvo rohtlon.‘ runnermon. vy
:condition (4) abovo, an oxecutton nqucnoo h mnotontcally tncrmln; with

respect tos PRECEDES. An uppor bound of an oxocution soquonce. then.
: ’eorresponds to a compntation that hu progrmd at lust as far as all the
states in the soquencc. whuo a lout npp.r bound indlcam that no extraneous
computation u taking phco Wo define a Ilnut of an cxocutton uqucnce to
‘ be a lout upper bound wtth roap«:t to thc PRECEDES rclatton. .. ‘rhux. a limit
of an oxacution uquonco eormponds to a mtam mu 1n which all the
| computatton spociﬁod by tho nqnonco rtuu to oomplction Thu notion applies
»to inﬁnite as  well u ﬁnito eomputatlom We use the notation'
lim {(s.. s‘)} ’“&, {(8.. s'>} to donou uu umu (hut nypor bound) of an

execution uqnenco whon it is woll-deﬁnod and unique.

It may bo obarwd that thc PREFIX rolation is a partlal order and
that for any exocution _sequence ((&,, t,‘)} tho nqmm (8 ') is monotonically
-increasing with rospoct to PREFIX and alwm has a uniquely defined least
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upper bound §,° = nlg? {&‘) These facts are pmvod in thc next soctian.
However, lem upper ho\m&: are not nmﬂy m&i deﬁned wlth respect to
PRECEDES We therdore need some aéditioul mpeniu to be ntisﬂed by an
execution sequcnce in order to guarantes that limits exm md ere well

defined.

Consider a system sute (8. 3‘) in which l‘ u a propor pretix ot $.
The nonempty differm slice 3 3‘ mld upnuat plcluts that have been
generated but not yet acknowmad. Sueh a m m never rcpr“e#t a.
complete compumwn. :tm it sp-dﬁu mew wm mamng processing by
various internal modum It the :ysum is to funy zupond to its inputa all
the packets that have been generated at any time dnrtng a computation must
eventuany be ecmwleued We thul dnﬂne an ex.cnﬂon soqnem {(3;. Si »
to be complete if and onmly if for uch 1 there oxists a J such that
$, SUBSEQ 3, 'l‘hu J will ho the stlte by chh timo all packett that have
been generated by the time of state 1 will hew been sent out and
acknowledged In general, in any state (8, s'> for which § = s‘ there are
no generated packets waitint tot prowdn‘ and acknowledgment so the
system cannot p.rform any further acttons Wc prove in the next soction
that any compm exectmon nqnenm 6(8.. 8.‘)} hu a unique and well
defined limit (8., S, for ‘which s., s..‘ This mult will be knawn as
the Limit Existence Theorem. 'rhus the notion of a mmatton muning to

completion within a packet system is always well dtﬁned.

The umit ot a oomplete ‘execution uqutm should always repreunt

the state of the symm upon completing iu ultinm output mpenn to ‘the
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presented input. For a given input slice, we call such a state a limit state,
and we say that the slice consisting of the streams for the system output
channels in a limit state is an ultimate output slice. The presented input slice
and the ultimate output slice may each be finite or infinite. If either is
infinite, there will be infinitely many states in a complete execution sequence
and the limit state Will not be one of the states in the sequence. We shall
adopt the convention that execution sequences will always be infinite, If
both the presented input and ultimate output slices are finite, then the limit
state will be an element of the execution sequence, and all succeeding

elements will be identical to this state.

There is a class of pathological conditions under which the limit of
a complete execution sequence fails to represent the system's ultimate output
response to the presented input, Consider the case of a module M

(figure 4.3-4),

p Q
Lo

Figure 4.3-4: A discontinuous module,

which outputs the empty stream for finite input but which echoes any
infinite input stream. The external characteristic relation EXTM is given by
EXTy ¢ ((P*) x (Q*)) and |

((P), (@) € EXTy <=> (#p < = and q=e¢) or (¥p = = and q=p).
In response to input streams p; of increasing finite length, M will not send

out any packets at all, and the limit of a complete execution sequence
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- modeling this behavior will £xhibit an empty ultimate output stream Q. But
this disagrees with M's specified nonempty respapse to infinite input, The
Problem lies in the way EXTy.is specifisd; we. may avoid this byrpgmnu
that all modules in packet systems be coptinuous, which means that the
Tesponses to an increasing sequence of {aput streams must tend to an
aﬁpropriata,, well-dsfined lmit. . When this is the case, we are guarsnteed
that the limit of a complete execution _saquence doss in fact NWU gapture
the system's ultimate output regponse. |

We Bow &ave descrided- @l the rélovaas: characwristics of exeoution
sequences. The mathematical development follows in thie mext sectiom: -~

4.4. Execution sequences (formally) =

We now, give the formal char % $ak-the notien of execution

sequences that has been developed. First, wo show an examples afterwards,

et

we give the definition for the general case. Consider the sample system C;’
which was discussed in the Previous section and is shown here again:

C T System C
- inputs X(1integer)
. outputs Y{ intager)

internals S({integer), R( 1n‘%i*9:r)

-

Wm BT <l S R e S
K inputs X, R; outputs S
D inputs S .owkputs B, ¥
Initially RCOY T

——-’---“{

1
]
'
1
i
1
!
'
'
'
)

]
]
1
1]
’
]
]
]
]
1
[]
t
[}
[ ]
]
)
]
L]
[ ]
1
[]
—~

L
. &

Figure 4.4-1: Realization of a sample packet system C

we have the following characterization:
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An infinite sequence {(($, $)) in which for esch natural number i
$° = (x9, 88, r? y?) is an acknowledged prefix of § = (x, 8, I, ¥} will be
an execution sequence for C if and only if thc touowtu fivc conditions hold:
(1) [initial state] $,° = (€,,€,€), 8 & Yo 5 &, Fp = (O)
(2) [input suspension] X, = X5 for all 4
(3) [consistency] Vi: ((x,‘, r‘). ) e EXTA snd (s, (r i~Tor y,)) € EXTD
(4) [FIFO] $® PREFIX $.,% and §; suasso '$,, for all {
(5) [connection] s,..‘ PREFIX §; for all 1

An execution sequence {($;, $%)) for systam C :is . commote if. and only if
Vi 33: §; SUBSEQ $3. , | L

Note that although the PREFIX ami SUBSEQ rsIauons were defined over streams,
they are being applied to s‘ystem sllcos here. "f'he 1nunt is for these relations
to be taken componentwise over all’ channef strdms whfch meaus that one
slice is a prefix of a second:if -and ,nnb' if-each: componant akannel .stream.in
the first slice is a prefix of the matching chansneliséream in the: second ‘slice.
Subsequences are treated in the same way.

The above formal characteriution of cxocution sequences for the
system c may be extended to srbitrary packst sysums with no dit‘ficulty.
The formal structural dofinmon for a psckot systsm u of the general form

" system SYS ‘

inputs W(---)}, ..., K(===)
outputs Y(--=), ..., Z(===)

internals U(===), ..., V(===)
Submodules

M inputs P, ..., Q; cutputs R; .. 8

Initially UCudd, ..., VCvB>,. Y<y0>, ..., K20>.
The parenthesized items are channel packet types and may be ardbitrary. (The
use of consecutive letters in ‘the alphabet ‘sépatated by ellipses, such as

P, ..., Q" allows an arbitrary number of items in botwson.‘ so tfmt )for
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example a submodule M of the system may have any ] number of input

channels.)
The generalized deﬁnﬁitions now becomae:

Definition: A sequence {(§;, $"} of system states for a system SYS whose
structural description is as given above wm be an execution sequence for SYS
if and only if

(1) [initial state] $,2 = (¢,...,€), U = u0, ..., Vo = VO, Yo = ¥0, ..., Zo = 20

(2) [input suspension] Vi: W, =W, .., X% = X

(38) [consistency] For each module M in SYS we have

: ((p® vosns 8, (tiro,.. -+$-%0)) € EXT v
(4) [FIFO] $® PREFIX s..,' and §, sunszo $., for all i
(5) [connection] &.,.,' PREFIX §; for all §

Definition: An exmcution sequence {(§, $?)) for.a system SYS is mmplote if
and only if Vi 3j: §; SUBSEQ : K3 '

We will thus be able to give internal specifications for any packet systéxn.

The relations PREFIX and suéssd_ were defined in section 3.2. We
now proceed to derive the basic mthematicﬁ mpcnies for ‘these two
relations and the PRECEDES ralation. This wm M up to a proof of the Limit
Existence Theorem, which states that limits exist and are well-defined for

complete execution sequences.

Lemma 1: For any space Z, the PREFIX relation is a partial ordering over Z*.

Proof: The reflexive and transitive properties ave clearly satisfied. Now if
z PREFIX Z' and 2' PREFIX 2, then #2 < #2' and #2' < #2, so #2 = #2° = N, which
means Z and Z' have the same domain. But then for 1 £ N we have
z[1] = 2'[1], which means z and 2' coincide over their common domain. This
forces Z = Z' and establishes the antisymmetry property, completing the proof.

Definition: A sequence (Z,) of streams is said to be monotone if for each i,
2, PREFIX z,,,.
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Lemma 2: Any monotone aequenco (z,} of stroanu hu a unique and well
5 defined least upper: bound, :

Proof: Each stream Z; is a function that°may be regarded as a set of ordered
pairs of the form (k, Z[k]). Let Z-be the sei~theovetis union.of all the z,
Then 2z will be a function, since any two ordered pairs (k, z,[k]) and
(k, Z[k] must coincido (by motiotonicity). * It is immediately apparent that
2eZ* apd 2 is an upper bound for (z;) ‘under. BREFIX" Moreover, 2 will be a
least upper bound, since any upper bound for {z} must contain all the 2
' set-theoreucally and hence their union Z. Finany nnsquenm follows from
the antisymmetry property derived in Lemma 1

-Lomn 3: PREFIX is & subrelation of ‘SUSSEQ:

Proof: The insertion function required by the torual definition of SUBSEQ is
simply the identlty function.

It is easy to see ‘h!‘: ‘hﬂ 5!’3,55‘1- W"% %”ﬂﬂﬂ“'@ﬂ transitive. However,
it is not necessarily antisymmetric! Con:lder the two infinite streams {0011)*
and (0101)™, .each comsisting of m:may aMeny oerds and ones. ° These
streams are di.stlnct but each is a subhqmnce of the other. Thus, SUBSEQ u
not a partial ordering relation. o

'l'he relations PREFIX and SUBSEQ both apply to streams, but the
PRECEDES relation Wﬂk e taken .over Thannel states; which ‘'we now define.
Definition: A channel state for a chanmi Z in .a packet system. is am ordered

pair of the form (z,z‘) in which 2. M 2% are smequences - of - packets..and
z® PREFIX 2. :

Definition: : For ‘two: channe’i‘ stites (2,28 and €2.'.,.z,,,‘) ‘we say
(z,Z,®) PRECEDES (zi,,,z;.,‘) if and-only if’ & SUBSEQ z,, and Z® PREFIX Z,,°.

Definition: A sequence ((z..z,‘)) of champl mtu h atd t be monotone if
and only if (2,z") PRECEDES (z,..,z...') ror all i, '

Definition: A sequence {(z,2%) of channel states is said to be complete if
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and only if Vi 3 s.t. 2 SUBSEQ z,

It is extremely important to note that thc m mns& au- t@ be a
. partial order hecam of. its SUBSEQ componant: . This.is:eaakiy sem im ke case
of the twio chantidl: stetes” <mm‘°, mu«aﬁo-r‘r'** o, datn m‘m; an
M T&?gm mm au d&mnct
_and sech pressdes the ‘ottar,; s 4hé. dntisymtmensy pampersy fuile ‘e, “Thus

inﬁnite stream and an cmpty aeknow

sx'ﬁ

’least uppdr bounds for a monotom ﬁq e? lunncl sum an not

necessarily well detined. Howpwg Wf mammm to
guarantee that the least uppen; HoMNde- eXim:: a0d: a9 AT The: fpklewing
thepzem prowes this faet,. . , . - . s

Theorem: 1If ((z,2%)) is a monotone and complete sequence of channel states
amdif 3, e ”ﬁv wy.mhnﬁMM%szmmwm'
; 'equgl to. ‘zth!z&) b i P e e >

.Broof; .Since Z, is by dekinitien: wwmbgnﬂﬁw{&“hﬁw hewve
| (1) L V1 28 PREFIX 2,
Now given any i, by conphteniu we have

(2) | ) 7, SuBSEQ 2f™'"
But 23 PREFIX X 2o, which by me 3 implies =~

(3} o iade Wz., PRI
Siace: SUBSEA e trensivive;: w}sﬂ HEPiyS

(4) 2 SUBSEQ Z,.
- The eombination of equations (¥} 'aid (¥) (z,.z,,) a8 ﬂt tfppcr
. bound 1Or ((ZZ%) wwler’the PRINWDES rifdfitn. ' ' A

In order to show that this upper bound is in fact a least u’ypor

bound, we must establish: that foz.any mmm;« whieh,

(6) - -« Mg (a..;'a PREGEDES ar®; e
it must be the case that (Zgi2e) PRECEues g.z‘) Now oquation (6) im?““
2, SUBSEQ 2 ana Z¥ PREFIX 26 mﬁmmmm“« (z;"fmm be
a prefix of the upper dound I ie. o

L

EE RS SO N ;

i i
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- (6) | z,, PREFIX 28,
But since (2,2%) is a'channel state, 2% PREFIX Z, 50 2, PREFIX-Z, which implies
(7) . - %= SUBSEQ 2. '

The combination of equations (6) and (‘?”) pields the result
(2.2,) PRECEDES (22%), so we now have established that (2,2, is a Ieast
upper bound for (2,2,

The proof is not yet complete. smce the PRECEDES relation is not
necessarily antisyxnmetric and we must therefore explicitly guarantee the
well-definedness and uniqueness of the least upper bound we produced This
will follow directly if we show that for any channel state (z,za) whenever
(Z5,2,) PRECEDES (2,2%) and <z,z“) PRECEDES (z,,,z,,) then it must be true that
2=2% a2z, Now 2, PREFIX 2% PREFIX z, implies 28 = z,.  Also, the
combination za PREFIX 2 SUBSEQ Z, implies #2® < #z < #2,, and this "squeeze"
condition forces #z_‘ -_tz.f But since z% PRERIX T, we must-have-z® = 2. Thus
z2=22%a 2,, which sets up the required antisymmetry condition and
guarantees uniqueness of the least upper bound. This completes the proof.

All of  the -results establishaed here have béesi:-stated for individual
channels in a packet system. -However, we may apply them to ‘the internal
behavior -of an entire system in a rather striightfeorward mafiner.. ‘As -an
example, a system slice $ is a préfix of a slice $'.df and -only if each
component stream in $ is a prefix of the corresponding component stréam in

$'. All properties of the PREFIX stream relation are just as valid for. the

~ PREFIX slice relation. Similarly, all properties of the stream: relation SUBSEQ

hold for slices. Moreover, all properties-of the PREGEDES’ relation on channel

. states apply to system states. In particular; the féliowing theorem, which we

call the Limit Existence Theorem, holds:

Theorem: 1If {($, $) is a complete execution sequence for a packet system,

and if 8§, = oSup. (8%}, then oSUR “{{8,, sax} is' Well - defined - and ‘unique
and equal to ($,, $,). E
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‘We mow give a formal definjtion for the notion of continuity,
which was mextionsll in the yreévious seetion. Coutinuily is .a property of a
module's external Wﬂ: Mgﬁen.so we define it for binary "rfl;a'_gions
over slim o
Definjijon: A rolauon*vmsucuhceaumsitwhaaevsr S f o340 {3.}
wherethom{t&d!mmtmlxtu foranl then

(8,8 €~ (=) aam(&)dmmmt
(1) (S,.S;') € ~ for m iy

(2) 8 SUBSER 8, for all 4 and
m"*&tﬂ aunmww

4.5. Chisravtertuntion of tixtwmal v mtm “

" Now thet ‘we have' defined edscuiion sequences for any ~packet
system, it is simple 10 produce 4 syatem's dmsexnal apecifications.: The internal
specifications for a. pavkes .mystem SYS eve:d bimery:velation INTgy fiom. aystem
input -sliges- 10 - system. uiput alices, Wiich. e call; the system's énssrnal
. churacteristia redatien. For she sample-system C we have Sesn disoussing, we
have m&cmmm and 4be intermal specifications may de-formally
chavacterized by £(x), {y) « INT; i end ity if ;there: is a cemplets jexecution
sequence {(6, &%) sar G such thet X5 X a4 ¥i =Y, where Mg and:y, are
defined by Sy = (X W Fo, Fe) and §, # noéug 8%) = ® (X, 8 Fuy Yo). - Note
that X represunts the iaitisl input sressnsed to. C -and that ¥, tepreseass: the
ultimate output yielded Sy C. We qan eussily gensvalize this te an arbitrary
system by qmttrying tho condnton xo = X over nu input channols X and

quantifying ths. candmon Yo ® Y ‘OVer au output clunneh Y. Note xm the
definition of iNTgys is in effect parmetcriud by the structural description of
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system SYS and by the characteristic relations of the &mpbnant modules in
SYS.

The development .ot internél s;;ecifiéat;ox;s fo; packet $&stems is now
compiete. Wa have two ways of formally describing the behavior of a packet
system: exterpally, in terms of its interaction with -the outside world, and
internally, in term; of its ;trucmra and compesition. Ws can apply .this to
_ correctness proofs by observing that a system $YS is corssctly realized by its
internal structure if and only if its (external) characteristic relation EXTgys
and its internal characteristic relation INTgyg are idenidoal. A correctness proof
for a packet system will therefore consist of a demonstration  that each .of

these two relations is contained in the other.

, Aside from the obvious application to system 'verifigation, the- formal
.specifications we have developed for packet systems. ara vﬂuabia.z Ain achieving
a . frequently overiooksd objective:  understanding e bgmvxoz’, of these
systems. Our operational approach lets us model the activity within a system
.step by step. The "dot notation” tables for executionsequences are a useful
pedagogical tool, aiding in. a person's Qomptm;igggjpgﬁo[ what goes om. in
packet systems. It is hoped that even without gaing. through a process of
formal veriiication, designers of asynchronous. : mnm;Mmte systems will

find the techniques .developed here to be. of assistanece  in building packet

systems.



n: msm wes discuss’ tiie: spslitatton O7’ our spectfication model
to the problemy- of proving packet: systems: cofrecy. - ‘A ‘puckiit “system fs*an
fta internal spedifitatons. < Shok ‘e syster will e cirrest ff 1t alio sattstids a
SIvEn. set: of extesmel sperifivetions: - Cébredindss‘of ‘& Dacidt systent, taréfbre,

: atwwm@nuw““ i ‘utid rhﬁofexwi'ﬁal

"

. specifications - A e T wwe o tewe w s b cnd

Tomwmmudammsymm onamustshowthat _

. 1ts ext6Tnal  Clsaactaristic’ Yelation BTy et i Siheemal CHardctir
e cotnctln. WWMWWMMMV the
Will be woved:ay shiowig thet. for any-coiplens Smidlition sequenice for' SYS,
the: initial Vet slick-and: mmm {Baits stard) w A6 are s%y
EXTgns.  We sl this®b conststency Jorttsh of' the’prvof, i ft Vrifies
~The other: tnchesioty'- siites they al “befavibe WtOwe’ By~ Yhe ' extdrnal
specifications may be reslized by some complete execution sequence. ~THis is

ic relation

called the synthesis portion of the proof, since it involves construction of an
appropriate exscution ssquence to realize each instance of system behavior.
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The simplest example we can give of a correctness proof is for a
system D composed from two copies NI and N2 of the negauon module N

described in section 3.3. The structure of this system is shown in

figure 5.1-1.

,System 0
inpats. X(boolean)
z outputs Z(boolean)

i
1
ll N2 —> internals Y(boolean)
~ oL ‘ 7 submodules
'
]

N1 inputs X; outputs Y
“'NZ inputs Y; outputs Z
~1g|1ti,a_nx empty

Figure 5.1-1: A simple system ID to be proved correct

The behavior of ID is triviali any boblean packet value coming in om channel
X is twice negated, thus remaining unchanged. ' Simce: both. N1 and N2
preserve stream ordering and since the ch‘a‘nnel‘s are ‘an FIFD the system 10

sends out on Z the identical stream received on X So to demonstrate the
correctness of ID, we will have to show that it:s internal characteristic
relation INT,D matches the external characteristic relation EXT;o <; ((X') x (Z'))
given by ’ B
| (%), (2)) € EXTpp <= 2 = x,

For the component modules Nl and N2, the-extarnal -characteristic relations
CEXThi € ((X®) x (Y®)) and EXTyp g ((Y*) x (%)) .are.given by

((x), (y)) € EXTy, <=> #y = #x and y[1] = not(x[1]) Vi < #y
and ((y), (2)) € EXTy, <=> #2 = #y and 2[i] = hot(y[i]) Vi < #z.
Note that all three channel spaces X, Y and Z are equai to the set

{true, false} of boolean values.



We can z‘m'muy mtc the cotuctxuu thmom fox the given
‘ reauzauon of aym tD The dofinmon of the relation INTyp is iacorporated
into the fouowing Mumnt

Theorem: ((x), (@) € EXTp <=> ((x), (2)) € INT,5
<=> 3 a compiete execution sequence {(§, $%)} for ID such that Xp = X and
Z, =2, where Xo 4aad 2, are defined hy So (X0, Yo» 29) and

$o = Sup {8‘} ® (Xpy Yoor Za)-

We recall the Mimﬂms of execution uquahce aml oomplﬂemss, stm'mé them
for our m;m system D: A sequence of the m-{ts,. $%) in which for
each i $2 = (x¥ y3 z%) is a prefix of 8 = (x;, ¥, 2) will be an execution
sequence for 1D if and only if the tomwingﬁvc conditions hold:

(1) [initial state] 853 = (ee€) Yo=2 = ¢

(2) [input suspension] X = Xp for all 4

(3) [coasistemcy] ((x%), () € EXTVy, w0t ((y*): (@) vmm for all |
(4) [nr-'o] (%, $*) PRECEOES (5, &%) .for all §

(s) [connocuon] $.,® PREFIX §, for all 1

An execution uqmnc. {8, 8")} fm’ ID is complm u ;nd only 1:
V13J s.t. 8 S&SF.Q 8,' ' Ntm that wlunwer thix is tme. the Limit Existenec
Theorem guum%ou that we will also have - {(O 8‘)} (8,,‘. $.%),

h = .
where $§ '&% {&")

The statement of the correctness theorem: for the system ID is now

complete, and we &re ready to begin developing ¥ preof.
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6.2. Proof for the system ID

- We must show W_that for the systeg io. tne {@;teg‘nailjrelatton :EXT;D
and the internal relation iNTy. mtncties “The consiltency portion of the proof
>:inv°1\res showing that INT' oS EXT;D, which memj{t}x'at , t‘qr any complete
execution sequence for ID the mmn mPli% Xo ‘and' she ﬁl&imm output 2,
satisfy the characteristtc relatlon EXT,D. In provtng tml. we need to estabush
a particular property that will be an 1mpottent tngredient 1n all our
correctness proets This property‘ ‘which we. shali gall - tm Limit sue Lemma,
. concerns the size of -channel sequencos tn a umit étate for ‘a system
Essentiauy, it asserts that the size of each chennel stroaxn in the limit state of
an execution sequence is tle Hmit of the #iiss of“the’ Strde‘m“s for that channel
as one proceeds through the states in the Wcutfdn &huence” Noté that this
property is not limited to the particular system ID: but rather holds for any
system we will wish to prove eorrect m I.tmit Size Lémma is proved by
" using the least upper bound property of the um; ;tet; :o egubhsh the least
upper bound property for the sequence sizes. .

Lemma: In a complete monotone 's'equence"if(z;, Z%) of channel states for a
packet system, if z, = oD {22}, then f2, = sup (#z}) :‘i'wpa{#z-@-}

‘Proof: ~ The sequence {#23) is a nondecreasing sequence of natural numbers
and must either be eventually constant or else increase without bound In
the first ca.e, there exists a j such that Vk)J fi,‘ = #z, . _whxch implies
#22 = sup (#2%). Now for any k»j, the combtnatton #z,2 = #2® and
2 PREFIX 2z forces z® = 2,8, Thus 2z, = oSup {z%) k ?,,;za | and

¥z, = #22 = sup (#2%). \

In the second case, sup {#z%) = o, We claim #z,,, . If this is
false, then  3N: #z, = N, But then (Vi: z3 PREFIX z,) implies
(Vi: #28 < #Z, = N), which would make N an upper bound for {Jz;‘)‘.
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contradicting sup {#2*) = =. Thus #2, = w = Sup_ (Iz,‘) _ o
Now by the Limit Existance Theorem, we  have
(20 2,) = o {(z,, "), which implies Vi: (, z,') PRECEDES (25.2.). In
particular, V1Y :; Mzm, % Vi # < n,,. ‘which makes #2_, an upper
- bound for {#3;). Buh. Wi 3} MEEFILE; npligs VisoMg™ < &, 80 any upper
bound for {#2) must be an _upper. bound, far {h,") and must therefare be no
less than the least upper bouad #2,. This makes ”, a least upper bound for

("} a&wﬂlufnr(’lw whiehcomtihmor

goroziar;g I kéw and k 5 #z,, ‘then thm oxisu n x mh that #z," > X,

Proof:  Suppose that for all i we had #0 < k. This would imply
- Ve #2® < k-1, which--mallee’ kel an’‘ubper’ Bodnd ‘for (#2*).  But by the
 Limit  Size Lemma, &, is the. lgast upper. bound, s we: must have
22 S k-1 € ki which contsadicts he hypothete for finite k.

~Now that we have proved this: Hmax: the. consistency. proal Lor
system. 1D, t;nwh mmmmmmmammw .all
others 1o dmmmamm&mm

Consistency pragl:: “W*mw&mmthammamme
statement of the correctness theorem for D, we must show that if x = g, and

2w 2,, than (00, @)F & EXT,," ﬁuuﬁmumaoiﬁyﬁz-x 1e.
2 = #x Ma;&i}mx(m} i<,
so we must verify both a,size Rroperty. Cl!d ». olamens. praperty of z,, .

We first m M:by the: inpuat suspension mﬁ an. execuﬁan seQdende,
X, = X = x for ali 4, nmqulaphgwx,.nag. Inwncux.p(, Xy & #X,
But then ‘we luvc v

- Nm{ﬁ;,) asn
= Ig,, (I.SI-)

= sup(#y;) (I-SI-)

= sup(#x?}) (W EXTNI)
= 5, u.m R

= ix

[a DA
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which establishes the desired size property.

~The element condition ‘is'’ equally easy. For any natiral number
k S #2. by the corollary to LSL we hava 31: #22 > k.. Now.wg have
2[k] = Zu,[k] B
¥ wz8[k] (since Z¥ PREFIX 2
. = Z[k] . (sinoe 22 PREFIX:Z)
= not(yi‘[k]) (vy EXTNZ)
"= not(y[k])  (since y PREFIX y)
= not(rot(x® (k1)) (oy €XTy;)
= not(nat(x[k1))  (since x2 PREH)& x)
= X[k]. , L : o
This is the required element condition, and the consistency portion of the
proof is now complete.

P

‘The above mmcy proof”fmy smar 40 be reistiwiy ‘intricate for
such a-trivial system as 1D, but it really isn't,” An we reauy had to do was
set up two simple chains of equality that traced the sAnternal dase -paths, and
applied the behavioral properties of the s%mpdnent Modules. Fo'f noncy_clic

systems. this presents no real difficulties

RS
i

The synthesis portion of the eorrectness proof for ID involves
 showing that EXT 0 ; INT, 0 For each " given input stream X and  each
corresponding output stream 2, we need to° wnstrﬁct sﬁ execut’ion Sequence for
ID to realize the appropriate system behavior Thus, ;iven st,l:eims x and Z for
~which ({x), 2)) ¢ EXT.,, We must realize the mm ‘ehavior of 1D by a
matching execution sequerice $o,.. 3,, i1 which” each’ »system “state $ is a
: 3-tuple (x,. y,. Z) of dotted chaxmel States.: ”(The dot ss ws mentioned eariier.

LR

separates the acknowledged prefui from the xest of a chaausl st;rm)
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Our strategy is to produce a general order in which the component
modules absorb and process packets. The order we choose for these actic.ms in
the system ID is as follows: (1) Module N1 receives a packet p from channel
X and generates its negation not(p) for output on Y; (2) Module N2 receives
the not(p) packet from Y and generates a packet with value not(not(p)) = p for
output on Z; (3) The outside world receives and acknowledges the p packet
from Z. This sequence of actions is repeated once for each packet in the
presented input stream X. Thus the execution sequence we shall generate for

the given streams X and z will be cyclic of period three.

Synthesis proof: Given streams X and Z for which ((x), (2)) € EXT;5, we note
that this means z = X. Let k*#X (note that k may be infinite). -, i let y be
the wunique stream of size k for which each element is given by
y[il = not(x[i]).
For each natural number i starting from zero, define

(0) $3, = (X[1:iJex[i+1:k], y[1:ile, 2[1:1]e).
This formula gives every third state in the execution sequence. For i=0, it

reduces to the case of the initial system state
$0 2z (X, o, ),

since the stream segments indexed by the expression [1:1] = [1:0] are all
empty.
For each natural number i starting from one, define _

(1) $3.2 = (X[1:9]ex[i+1:k], y[1:i=1]oy[1], 2[1:1-1]¢) and

(2) $3.; = (X[1:i]ex[i+1:k], y[1:ile, 2[1:9-1]e2[i]).
These two formulas give all the system states whose indices are respectively
one more and two more than the multiples of three.

Together, the formulas (0), (1) and (2) define an infinite sequence of system
states $o,...,$,... which may be verified in an extremely tedious and extremely
straightforward manner to in fact be a complete execution sequence for the
system ID. We will not g0 into the details here, since the remainder of the
proof is neither interesting nor illuminating. We shall, however, make some
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- ‘comments about the execution sequence Wo Just constructed |

First, we make some observations Jabout‘me stgtes In the i-th state
given by formula ( 1 ), the i-th packet x[i] 1n :)‘mxinput st;eam X has Just
been absorbed by module N1, and its negation is seen as a newly-generated
(but not yet acknowlidged) packet bn’channel’ Y denoted by the "oy[i]". In
- the correspording (i-th) state given by (2); this’ packet i;as been received and
‘acknowledged by N2, end N2 his guneratel a new packet with value 2[11.
This ‘state is followed by the f-th state ‘given by (), which reflects the

o

- acknowledgment of the z[ 1] packet by the butside world.
YT EEE A2 PR § AT Y < I
It the size k of the input stroam X is ﬂnite, then the above
: oy e oadl U
. sequence of system statod wm repeat ondlocsiy aftor 83., Au mtes fx'om this
. Y, Mt 1T :

" point on will be identical namely
(*) | | (x- ye 2o ) |
In this terminal state, all the mm«m&ﬁuw TWee ¢ processed  and” a

complete response has been passed to the outside world Since the sequence of

Iy wlimes Bl
“'states is eventually constant in this case. the umit 13 precxsely this repeaung
2 ‘“‘5&‘: [P '};’}5,}

"terminal state. In thc case of an int"inm input stxum x the states m the

int‘i’nite sequence ate all dtstinct and the terminal mte given by (* ) abova is
ot it el slel

‘the limit even though h doos not actually occur wnhin tho sequence In

FrS ST

V'either case, we note that the output stream z wiu be xdentical to the input‘
t :[.,E:‘fw bt ‘.: ‘ ‘ﬂv Ty A ’\,x “

"stream X by the hypothosis ((x), (z)) € EXT.Q
P : : IR L I

Y
@' ‘

enhaust all possxble sequences for the system lD hgwovq;, thgy are sufficient

to roauze all legal behavioxs for ID given by EXT{Q-
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One trx_vial oburvauon now. eomplam . ;b.ox.;grraqtness; praof for our
realization of system ID. sinco all thrn channols X Y and Z accept only
boolean-valued packcts. there h obvioully no conmct betwaen packet type

r'estrictions

The proof given here may. seem, lengthy, but:the crucial logicai and

mathematical arguments are brief ‘qnd‘_sg;gmtggwa:g;q}mg Place where iwe

.took the :unqﬁqngl compqsigio§ of the two L Regations. te.;; yield:--the
ider\xtityv_;rel;t}i&olnﬁ was in the final step of. thocommmmum of . aur proof,
wheh w; used tha_ ptpn;ijn-ﬂt(mux[ k1)). = xfk]. . Qther: systems. without
cyclic data dependencies in their intarnal ztruct\u'e are proved in similar

»

fashion to sausfy the appropmte compoﬂuon of the oxternal characterlsuc -

l

relatxons of their compontnt modules ' m the mxt secuon, we prove
ST ,,{ R S LA

correctness for a system with cycnc structure

6.3, Cozrcemacr a cyoummm

One of the sampla packet systems we have alraady worked with, the
'system c composed from the adder moduh A and the distribute module D, has
a cychc mterconnection structure In thxs systom sl}cwn agaip. .in
figure 5. 3-1 clunnels S and R form a directed cycle We shall prove the
correctness ot system C in this sectian It is not hard to give an informal
characteriutlon of the system behavior Iniuauy. module A pairs up the ﬁrst
packet value input from X with the zero packet on channel R, sending out
the sum to“both Y amd R by way of module 0. This sum, onoe passed around
through R baek into A, is added 10 the next packet input to A t‘rom X and

the new sum is cycled around again on channols S and R In this way, _we



- 96 -

' System C
X by inputs X(integer)
et o outputs- Y{integer)
: internals S(integer), R(inteqer)
Submodules

A 1nNts x, R. outputs
D inputs S; cptputs R, Y
Initially ROY -~ ©

c

T T S,
LT R R )

1
t
1
[|
1
1
1
]
]
]
]
1
f
|
1
]
]
1
1
]
]

. Figure 5.3-1: The cyclic packet system C

can see that module A computes a sequence of cumulative sums of packets
' taken from the system input stream X. Thus t,he behavlor of C is to send out
on Y a stream of cumulative sums of packets taken in on X. We wish to
prove that this is indeed the case; to do this, we shall make use of the

'formal speciﬁcation technjques that have been developed here.

We have previously given the extemal characteristic relations
EXTy ¢ (@X* x R) x (S%) and ExT., € x ®e x Y-» for modules A and D.
The telation EXTD is defined by |

(8). (r.y)) e EXTp <=> r= y . e,
and EXTA is defined by
(06r), (5) € EXTy <=> #s = min(#x, #r) and o[1] = X[11+ FL1] V4 < #s.

The external speciflcatlcu for the mm C miﬂenﬂml .to ‘those ‘fo”r.' the
cumulative adder module C described in Chapter 3. The extermal characteristic
relation EXTc ¢ ((X*) x (Y%)) is defined by R

(), (¥)) € EXTc <=> #y = #x and y[i] = Z ;[JJ Vi< #y.
F

In proving the correctness of system C, we must show that the system's

internal characteristic relation INT; is precisely equal to EXTc. The following
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correctness theorem for C incqxpoum the -deﬂnitiop»af INTe.

Theorem: ((x), (y)) € EXTe ¢ ((x), (y)) € INT; : . ,
<= 3 a commtc execution W (s, &) for c snch that "o = X ‘and
m-y, .mn xf, ‘std 'y, are defined by $ = (Xo.‘o."o-Yo) -and
Pltu?l t} ‘ "xhv 'u- LT Yb) '

Execution sequences for: system C ‘were fotmaily’ defied in Section 4.4. We

reiterate here that in an exocntton nqumco {(3'. t')) tor C, esach system

ISV S

- suce $ ‘has tho form t s (X, 0,, r,, y,), wd uch aekaowledged pref{x $® has

ELEERE S

the rorm $% = (x ‘. &,‘. r‘ yd). ‘We are now rudy to (i;volop tho correctness

2P Tewssy
P S .—-'.J\Mm«,-“

proof for sy:tcm €.

’rhoro are two lcmmas we shau nquirg that du} ,with the
preservauon of a ccrtain kind of chuul mu nhtiouhtp u an oxnuuon

sequoncc for tho lysmn C‘ ls ukcn to m limn Lonun 1 13 a buic property
i .; aw : t
of least upper bounds of nqucncu of natiral numbu Lcmma z which we

S T A SO

call the Minimum Limit Lemma, auows us to draw a signim:ant conclusion

about the size of mwn éhannol sttum in tﬁ- ﬁmlt stato of an oxecnuon

sequence. o
Lemma 1: If (k) and {m) are nmmm ssquences of natural ’i{ifhbers
and-k, 'S Tor. edohiil, wnd 10 k-= SUPN) swd w i sUPPN}, Ak <'m. "

Proof: For each i-ves have k < < m, unaumhmmr (kY and
is therefore no less than the least upper W k frvem

lemma 2: If {k,). (mQ and (n} are nandecrming sequences of natural
numbers such thet ' w.min(m.m) for al 1, ind if: K4 sup(k), W = sup(m),
LR sup{n,}. thun k = min(n n).
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Proof: Vi: k S m, so by Lemma 1, k < M, Simmwly. k-< n, s k mln(m n).
We now show that strict inequality leads to a‘'comtradiction. If we had
k < min(m,n) then k < m and k ¢ n, so 3il: k < m,; (otherwise k >-m for each I
would imply . k 2 m) \ and 312- k < Niz. Ncwl‘or 1= max(il.iz) ~we .have
k <m <m and k < ngp < n, so k< mm(m.,n) 2 k' < k. The result k < k is a
contradiction, which forces k = ‘min(m, n). ‘ ‘

We 'now pi-ocead with the x@gm,_pjodx of the Aeo:p:rectv:pes\sj proof for C.
Consistency proof: In this part of the proof, we - will use the abbreviation
LSL to denote use of the Limit Size Lemmas." If. we are given a complete
execution sequence as in the statement of: the, Thearsm, +we must show that if
X = X5 and y = y,, then ((x), (¥)) ¢ EXTf‘c.a -This is true; if anc_\ only if

#y = #x and y[1] = Z xm w g 0y.

s
so we shall verify both a size property a;xd an qlgment praperty of y,. By

the input suspension property of an execution soquenc;, X;: % Xo = X _for all {,
s0 we must also have x = x In particular. Ix = #x, Now we have
o = sUp{#y) (ISL)
= sup{#s"} (by EXTp)
#s, (LSL)
sup{#s) (LSL) _ :
sup{min(#x.2, #r.2)) (vy EXTA) e ~ Lo
min(sup{#x,*}, sup{#r}) (by the Minimum Limit Lemma) :
= min(#x,, #r,) (LSL). ,
If #x, < #r, then we have #y, = #x = #X, which u the desired size
- property. : Otherwise, (*) #r, g #x,,. ‘and' we have - - R
o = #r, R
sup{#r} (LSL) -
sup{1+#3®} (by EXTp)
1 + sup(#s®}
= 1 + #s, (LSL) .
1 + min(#x,, #ry)  (from thggpteyiﬁggg chain of :eguguneg!)
=1+#r, oy ("), “ | .
which can only be the case if #y, = #r, = @, But (*) yields o = #r, < ixm.

L]
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50 #X, = . . This fozces #Yy-= #xq, ® w; which .yields: the desiped " size
. property in this case as well.

“The elemant candttion is straightforward to establish We need to
‘show that A o
Yolk1 = 3 nmw S

jol
Now for any k < #y., the cort;nary to LSL implies 3i: k < #y, . Since
'y PREFIX y, and y¥ PREFIX y, We have Ym[’kI y-'t&] 2 YKl
We can now work with the particular system state mdexed hy 1. We_ have:
yi{k] = Ca{k] by’ mﬂ) S Ty RN : e
~ = gl{k] - (since 82 PREFIX s} :
XAk} + rAk] " (by EXTR) -
X[k} + r{k] (since ri‘?'{iﬂfﬂxﬂf’,) R
x[k] + (0082)(k] - (by EXTp). ..
X[k] + (0@y)(k] (by EXTp)
Rgl k] + (0Ry)[k] (since xoax)
Thus we have ylkl = xotk] + (GW,)IR]. which yields the paxr of equalmes
(1) " SRR 7 4 5 EE ¢ & and_w"_
(2) Vidl: yi[k] = Xo[k] ¢ y‘{k-ﬁ
We now claim by induction that for all k < fy,. o

LA

yik] = 2 %03k o

il
The basis step is prectsely equatlon (1 ) aove md the 1nd'dction step follows
directly bys- - i m SR : EE s :
(%

.m = %olk] + Ylk-1] = Xo[k] ¥ ; xoL4] = Z xom.
{3

in which the second equahgy is. the;, mdactive hypothesis and follows from

equation (2) above. But this now gives us the result
K

EOESTOEDNENEI
which 1is precisely the required element condition.. This completes the

consistency portion of the correctness proof for C.

Note that the inductive argumert was necessitated "b}"“tﬁe"éydlig structure of

the system C. In. general, a eyclic system requires induction of some ferm in
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- order to establish that its external characteristic 're‘i‘a‘tion" is satisfied by a

- .complete execution sequence,

For the synthesis portion of the proof we need to construct an
appropriate executlon sequence for the system c gtven an input stream X and
an output stream y The sequencea we construct here shall repeat in periods

of four states. as we now show

Synthesis proof: Given streams X and Yy for which ((x), (¥)) € EXTc, we
must realize the internal behavior of the system Ch by an appropriate
execution ‘sequeit"ce-.“ 'Let ks#X (note that k may ‘be'”»‘intinite). and let "@"
denote the stream concatenation operator. . ‘We procesd - to 'comstruct’ an
execution sequence $,,...,$;... in which each _system state S is a 4-tuple
(x;, 8, r;, ¥;) of dotted channel states
For each natural number i/ starting from 2zero, define

(0) 84 = (x[1:1)-x[i+1:k], y[1:1]1., (00y)[1:i])-y[i], y[1:i1:).
' For i=0, this reduces to the case of the initial sy‘stem 3tate
$ = (-x ., +{0), )
“l-'or each natural number { starting from one, define
(1) 8453 = (X[l 1=11-Xx[1:k], Y[l i- l]-. (09,‘/)[1 i] yli:i-1]. )
(2) $4.2 = (X[1: 1]-x[1+1 k1, y[l i- 1]-y[1], (OOy)[l 1]+, y[1:i-1]- ), and
(3) 84y = (XLL:ATex[1+1:k], Y01:11e, COOY I 4334010, YET:1-120y01D).

The above formulas (0), (1), (2) and (§) define an infinite sequence of
system states $°, »$j,... for which it is again both tedious and stratghtforward
" to verify that it is in fact a comp*lete execution sequence for the system C.
As before, the gory details are omitted here.

We now make some observations about the sequence that we just
‘construated. It is cyclic of period folir and ‘corresponds to a particular order
of system actions. In the states given by _fofm‘itla (1), a packet has just been

absorbed byi_ the A module from the R thannel. The states’ givei\ by ‘( 2)
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correspgnfi 4to‘,mo¢nts;~ A processing .a gackotm input ehangel X. Ia these
states, the wvalue of this input packet isv added. 10 the: packet: recensly. taken
from R and the sum is seen as a newly-genarated pachet on channel S (not
/yet acknowledged‘&). deuoted by the “-y[k]" In the states given by (3).
module D has absorbed a pae)mt from channel S and this packet is newly
"visﬂ ‘o in the states for the channels R and Y The states given by ( 0)
reflect packets output by the system C havmg bnn acknowledged by the

PERRE

.. outside world. . « .o PRSP EE SR

) If the size k of the input; szmm X.is finite, then the abeve
| seqnsncé of .systam: states will repest: M w au.,. A stamtrom
this point on wm be equal to the limit sme R L x
Xy Yo, (00 = Y‘!:)ﬁ

in which all' the iaxm: pacms ‘Kave- betn prdcesud‘ and a complete response
has been passed to the outsidc Wctldu _ sum thc sequenm of states is
eventually constant in this case; the: limit: is mw RIS maﬂng term’ihal
_state, In 1ha case of an’ infinito input strtam x, the stazes in the mfinite
sequence are au diqﬁnct and  this temiml mmn tlu liatt evew though it

does not actuglly occur within the sequemce. .-

'I‘}us cbmp;éiés the correctnessprqf for me system C.
6.4. Proof for a nondetarminafte,systam

_ The correctness proofs given in the twa. preceding sections have
dealt with modules and systems that are explicitly determinate:.  ©ur

~ techniques, though, have been designed. to handle nendeterminate behawior.
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This section contains a correctness proof for the Sample xib:tdete_rminate system

S depicted in figure 5.4-1.

_System S :
inputs X(integer)
. Qutputs Y{:iantager)
internals U(integer). V(integer)
Submodu!es '
¥ inputs X, Vi om:puts U
F inputs U;. outp,uts v, Y
Intt%a?fy empty-

x

e b B s o et I

Figure 5.4-1: A sample nondeteminate l system S

This system, whose behavior was discussed in the last ‘chapter, is composed
from the nondeterminate - merge module ,"J'.a'nd, ‘the feedbm:k modified first
module F, both of which were described inir;ection‘ 3.3. ' The nondeterminacy
in the system's behavior arises from module J passing on its butput channel U
an arbitrarily chesen interleaving of the packet streams taken from the two

input channels X and V.

We can mformally characterize the behavmr of system S in response
to an arbitrary input stream X. If there are no inputs on channel X, then
nothing can be done, and the empty. stream is “output on channel Y.
Otherwise the first imput value is taken by modute 3 amf eventuauy passed
“on channel U, This packet is output on Y and a packet with Value four
greater than the given value is sent on V back to module J, where there is a
““race" between it- and the second input packet. If it wins the race (gets
‘processed and output by J first), then it is output on ¥ and no further

pPackets get sent out on V. If it loses, it finds itself in successive races with
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successivo immt poem trom X pntﬂ it finally wins, =Thus, the sysjem S

L SEAEINATYLD 6

outpuu an et m anm packets in the order in sz + 38 PE‘?’EE‘Q’ as
input, but also outputs a packet with value four greater than the first input
‘packet. This extra pecket may appear im the output at ~any place after the
first packet in tiu stm W\fﬁow m'ocn& to _prove, thct the syqem S
behaves pncialrwiw mm specificatitm mﬁa ‘

fpidt )353

., We tepest, the, wiamons of the oxumd charactefistic relations
EXT, ¢ ((X' W K (I}m;}uq gmfr g ((U") x (V* x Y')) for the moadules J
and . The relation EXT; is defined by -

e r"ww o e

(W), (vyy)) € EYT'; <-r> y s U and #v . mn(l m) nd v[i] = u[i] Vi < #v.

f,an.gLEXTJ “*MM h@ wHd L e sk v mendws e oo 2l
TR ra%gf(@f‘m&‘*)*“ a.pange of W.endoViou et
. Note that EXT, is satisfied, precisgly whamofust #X sofvwand Xiekd. v «dodwrias

»‘ﬂﬁ-igml subseguences of U apd 1ogathas: cRRMID.alk the vistmentyief y; FUr the
 System § as, aﬂm ver bhaug EXTs. & (047) 2 A¥M0h: i ddads () 163 EXTy wlll
hold if and only if both % and y are empty or if M oppe 7ooeaasds Juy

#y = 1 . #xasad y[l] -x{L] andyhawg e of X a:;d (X[ 1 J+4).

L Tl s ot g

‘We now sme the mrectm thoorem for our realization of the system S .

»y meette Tlsiiu

“Lhieorems (00, € EXTg €8y (6x), GFF € T Frv o700 w1 oo o
<> 3_a complete, execution. sequence:{(&. $31)forqS: snch that Xy # .idad
)'m -y. where X aad Yy, are defined "me"m:‘f‘" Yo Yo, Ygl and

{m .e? oo ! x('}i‘l 2L i
w {(xw’ nn s:
_ ¥ “ 314

. fromnwe Wome core o, ey gewin ol el ters g
vIn an execmiqu seqpence for. the system: §,- &ysiem sAates: are- of -the ferm
- ($bsi :) whpre s 5 (xw “o V,. Y|) Mi ‘;”" (xm- “f? Mﬁ} y‘g)“ 2z The: oMy

AT VT TIS 3 SRR URERS S FERNE § /£ ¢ B CRF DU AN TR B 4 LM

LIV U e o P NV
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property that should be stated here is consistency:

(%2, v), () e EXT, and (WD), (v, ¥)) € EXT; for all 1.

There are a few interesting properties relating to least upper bounds’
and execution sequences which we shall establ’ish;ﬁbeforg going into the actual
details of the correctness proof. These results are contained in the fmlnwing

lemmas.

‘The ,folloWlng lemma is called. the Sum Limit. lemma and asserts
that the least upper bound of the termwise sum of two sequences is the sum
of the least upper bounds of these two sequences.. The Sum Limit Lemma
will be used in the consistency part of .'.t;he - COrrectnass: _prmtf-for"syszefn S in
.the same wﬁy the Minimum Lixh;i;t,,l.emma was. used inthe :correctness proof
for system C.in the preceding section.

Lemma: It {x:), {.v,} are nondecreasing sequemces of matural numbers for

‘whxch x = sUp(x) and y = sup(y,) and if we define the sequence {s;} by
s-i = x+y, for each i, then sup{s) = x+y.

Proof: If 3kl Vidkl: x=x,,, then x=x,,. If Ik2 Vid>k2: y,=ykz, then ysy,,. If
both of these hold, then for k = max(kl,k2) Wwe have '
Dk =) 5 3 X4y, = xbyy 2 8y,
sup{s} = s = XY ® XtV = X+Y.

‘Otherwise, {x;} and {y;} are not both eventually consta?nt S0 at least ome of
these two sequences must increase without. haund. If it is {x,)} that is
unbounded, ti.en xazw, which ‘gives us e

sup(s;) = sup{x,+y,} sup{x,} 2 X =z .°+y = x+y.
This completes the proof. ' " N

~ Before we get into the actual correctness proof far systém,_;i. there
is one more preliminary resixlt that needs to-te established. Suppose a packet

system 1s in a state for which all packets have already beén acknowledged. o
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(In terms of "dot notation,” all -the .dots for this: state will' he at the
right-hand ead- of their streams.) ‘Wn;mlg"m to infef from this that the

system is in a limit state, i.o. has finished tts um:aata raponse to the

* presented input. In other wordc

PLemmar  If $=8"in an exécution aqucm ((S;. 3,‘)} ror a given system.
then. 8, = %= g, » u?‘(gbi} Tt BEETACI: EHTRE

el

Unfortunately, this is ot always true. There are circumstances under which
‘the notion of “ultimste’ response® is Rb¢ will Géfined.. Consider &' module with
~-one - imput -chaanel and one éuxyut, ehatinely and sippose thaV Af 4t-is presented
the input stresm @), them either Of the ‘twi oulplt streams & or (bc)
- constitutes a: Valid: resposise, If-Gie ‘mélule’ CWPts ‘4 Packét with “Value b,
- then .it.:may.cbe considesst as mmfmnww% m Erput packet ‘a.
But it cannot be determined whether Of fot:thie pitket ¢ - -wilt cofre But
subsequently, 20 thete & we. way %0 Wll- m e m:ie‘ ‘has ymm m
ultishate ottput, Le. flnished mpemmg i) ﬁs umn. 'rhls kind Ral‘ ,nomly
occurs if a moduh anow: two Msﬁm ummt' output  respansps ‘Q Some
given tnput succ and ope. Qf ARese - mamm s @ peefbiod! sthe. othe&aw’lf
we can rule out suax situstions; then ‘the ooumon stated above will be

,,,,,

satisfied.  Accordingly, we define a " module to tg, b wrict df . tts. behastor

- prohibits .one outpat ﬂiml&mé bejny a-poufix of another #f:thérd - is” some
: i gBy i SIIANT awEa (0 s L 00 Tl
input slice to which the two given ouwt‘a;iﬁm are distinct valid responses.
: S S A S A T Rt St S

B S S P T

Formally, we have » | \ ,' e o

finfiom: A medule M iy striet If whenevar 'we Tave (S Siow) € EXTy
434 (Syims Fims) € EXTagy 1000 S PREFIX S 50p1108: Bt &'
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All determinate modules are obviously strict, and:fany modu-le :tfor. which the
sizes of the output stieams are functtonaily determined from-the inputs will
also be strict, This includes the nondeterminate merge module J We now
state the corrected lemma.

Lemma: If all modules in system SYS are” strict, and if $; = $2 in an

execution sequence {(§, $*)) for SYS, then §; = $3'= §, » ‘"SElFJ , {$2).

Proof: For any possible system state (8.1, S,.; ) that can follow the given
state j, we must have $2 PREFIX 3,.;‘ PREFIX §; = s,‘ which forces

(1) $3 = ,..‘..
Also, §, = s‘ PREFIX. s,., PREFIX $;,;, s0
(2) $; PREFIX $,,.

Now equation (1) unplies that for each module M in the system its mput
slice remains unchanged between state j and state j+1 Equation ( 2) xmphes
that M's output slice at state J is a preﬁx of Ms output slice at state J+1
But M is strict, so its output slices at these two states must be equal Since
“this holds for all modules in the system ﬁimultaneously. we must have
'$; = $,,. Thus no successor state to j may dtft‘er from it, so the state at J

must be a limit state This establishes the desired result

We call the above lemma tho Cutoff Lemma because 1t "cuts off" an execution

sequence once all packets are acknowledged

We now proceed withv the main body of the correctness proof for
the system S. We must prove that the external relation .EXTg coincides with

the internal velation lNTs. The proof —‘divide‘s/;'into the two usual »portions.

Consistency proof: Given a complete execuuon sequence (<s.. S‘)} for S, let
X=X, and y =y, To show ((X). ) e EXTs. ‘there are two. cases to
consider, If Xx=€, then the initial ~ state  must be given Dby
(%o, Ug, Vo, Yo) = (s,0,5,), s0 by the Cutoff Lemma We. have Yo =.Yo = €.
Thus EXTs is always satisfied in this case. Otherwise #x 2 1, and we have
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the following chain of equalmes for the size condmon: N
‘ #. = sup{#y) (LSL) R o
o= sup{ul) by EXTp)
= #u, (LSL)
= sup{#u} (LSL)
= sup{#x2 + #v?) (by EXT)
o= sup{#x2) + sup{#vd) (hy tm;ﬁpm Limit. Iamma) :
8 MRyt WV (RSL). o SVT ¥
Now we also have L
T vy sup{#v,} asny ‘
sup{min(1,#u®} (by EXTe)
min(1,sup{#ud)) (by ihé’mai‘;num‘um,it Lemma)
min(1,#u,)  (LSL). :
NowbyEXTJ.#uo'--#xo+#vo=#x°+0)0 Thusluﬂzluo>1 so#v # 1
'and iiy 1+ #x which is the requxred size conduion L
" To establish the elemem condmon. ‘we muat show that y[ LJ = x;l] and y is a
‘merge of X and (x[l}M) We ﬁrst note that vgﬁ P 3 (by the inmal state
property) and v, u € (as proved above) ap there xm;st be a state l for whis:h
vl = ¢ and v, ¥« €. Now by the connection property,; i ‘ PREFI& Vi, .50
v, = €, which by EXT; implies ua * € But by EXT, a5 lox;g as v"‘== € we
have u, = X3 PREFIX X. Then since u,‘ # € and U PREFIX U, we must have
u?(1] = u1] = x[1]. Now for any n 2 i, U® PREFIX u,® so U211 = x[13:
thus, by using EXT; again we obtain y,,[l& = u,,'[l] ) x[l]‘ Since this holds
for all n > i, we must have y [1]= x{1)} - S a
What is left to show is that Yo Is a merge of X and <x[ 1]+4> We have
already showii that there is a staté I for which u‘[l”]’ # x[1]. Then by EXT;
we have, Vv * (x{ 1]+4).. Now by completensss:of the:execution sequence there
must be a state J for which  X; SUBSEQ xa d v, SUBSEQ va Since
x;® PREFIX X, = X = x and since #v“ < #V, s 1 for all j, this means that for
the J we Just chose we must have X = x and v, = va ] (x[l]+4) But now
by EXT,, y hust be a merge of ><,a and V“, whxch means u 1s a merge of X
“and v, = (X[1]+4). Now we use the completeness property again given J.
there must be a stite k for which 'y; susseo u® By EXTF. Vi = u.,‘; and by
another use of cumxﬁeteness there is a state m such that yk SUBSEQ y,. . But

n

s ;
PEF I
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then y,2 PREFIX Yo» and Dby tracing a transitive chain of spbseqpences and
prefixes we obtain u; SUBSEQ Y, SUBSEQ Y. l-‘lnally. slxtce X and <xfl]+4) occur
in y; as dis,jomt subsequences. they must occnr in y,, ag disjoint §nbsequences
But X = X, and (X[1]+4) = v represent all the p,ackets that can ultxmately be
passed on channels X and V, so all the. paclgets that can ultimately be passed
on channel U are contained in u;. Simtlatly, .all the packets that ca
ultimately be passed on channel Y are contamed ixt yk, Thus y is a merge of
X and (x[1]+4> satisfying EXTs, which completes the consxstency portion of
the proof. '

The element condition " ‘was extremely dlfftcult to vertfy. because we
had to go tracing the progress ot‘ 1ndtvidual packets tluoqgh the system.
There seems to be no readily avallable methoﬁ to: slmyllfy this pml‘ despite

the elementary system structure

For the synthesis part of the pfroot‘ tt‘ the systems input and output
streams are nontrivial then the esecution seqqencgs wtll repeat in periods of

~three states. The construction is now given.:

Synthesis gx_f_o_g_{: - Given ((x), (y)) € EXT;, we " must constl'uct a complete
execution sequence to realize this behavior of '$ internally. The" execution
sequence will be of the form #$,,..,,$,.. in, JWhich. each system state $; is a
4-tuple (Xx;, uj, v,, Y;) of dotted channel statgs. If X = € then we must have
Y = € and the required execution sequence will have all 'states identical to
(e, -t *, v). Otherwise, #X will be some ” k>0 '(we allow the possibility of
k=eo),  In this case, y must be of size #y = kel, - There must also be some
finite index m such that 1< m ¢ k#l and y[m].= x[1]+4.. Moreover, the
concatenatxon of the rematntng elements of y must satlsfy
yil:m=-110 y{meItkel] = x,
which means that
' y = x[1:m-1] @ x[1]+4 @ x[m k] |

(We are abuslng notauon here to let "@" concatenate packets wtth streams)
We now construct our execution sequence for X a#nd y. The streaift 'V is
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defined by v = (R[1)+4),
" ‘For eac¢h natural number i from zero through m-l inclu:ive, deﬁne
(40)785 % (X[1:1T-xL4+1:K], X[1: i1, v, X130,
Whem 1:0 this tea’aces to me case ‘of the ihmal symm mte o
: . . 30 i (o . ;",:).L
For each natural number i from one through mel mclusive. dafine :
(A1) $qp » (X[1:47. x{m k], x[l i- 1]-x[u, -v(x 1], x[1: 1= 1] D and
(42) 85, = (X[1: 1]-x[1+1 kY, X[1:43e, V117, x[1:4- 1]-x[1])
We now define the specific system states
(B1) $3nz ® (x[1:m=13ex{m:k], X[1:m=13ev[1], ¥[1]e, X[ 1:m=1]0),
(Bz) $amg = (X[1: m-l]-x[m k], x[1:m=-1J0v[1]., v[l}- x[l m-l]ov[u). ‘ gnd
(BO) 835 (x11:-11:%X{mik], XC1im-170v1E, V1T, xtx m-l]OV[lJ ).
_ Finally, for each natural number: { 2 m+l, define’ . 3
(C1) $3.0 = (X[1:4- ll-x[i k], x[1: m-l]ngl]Qx[n 1-2]-x{1 1]. VLIJ,'
x[1:m-1]0v[110x[m:1-23+),
(CZ) 33.. = (x[1;1-1]-x[1:k], XILM-I}@VEWth M Ie.
x[ 1:m=130v( 11ex[m: i-21x{1+1]), and
(CO) 85 * (x{1:1-110X01:K), X[1in-1090 1 Tox(mi- 1’1. viid.,
x[ L:o=1Jovi1LI0ximsdsd)syi2 s
When i 2> k+l, formula (CO) generates the system state
$5 = (X, X[1: ﬂ-JWEll@xﬁ-n‘v&J' V«I&J' x[lxmﬂvtllﬂl k=)
which is a lmit state for system. S, ’ o

The above set of formules generates o mn-@éﬂm lnnmta sequence of
system states ... 8;... for which it is-émce wﬂn ‘dndn\ighwning to ’Writy
‘that it i3 a complete emm seqwm for s :

‘rhe formules we have just giveh: roqutm sothe commernit in order to
be properly unders(ood Tha execution s!quence constructed above consxsts of
three parts (4), (B) and (C) Part {A) co:msm to the first m-l packets
from X being passed through the system and out on Y. In th& st&ﬁs‘gfwm By
formula (Az ), module J has received a packet from X and is passing it out on

chgnnel U Ia the states givan by formula .(42), -modude ¥ has adsorbed this
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‘packet and is passing it out on channel Y. For the ﬁrst packet F recelves, it
" also sends out on chanmnel V the value of this packet 1ncremented by 4. The
states given by (A0) corrupond to the outddn world rocciving an output
Ppacket and acknowledging it. Part (B) handles the processiiid ‘of the one
~-packet passed on chammel-V. In state (B1}; ‘this packet is absorbéd by J and
~passed on U; in state (B2), it is received by F aiid‘ passed out on Y; and in
‘state (BO), it is received -and ecknowledged by the cutside world. Part (C)
treats the processing of the remeining inpat packets from the m-th on: the
states given by fermulas:(C1), {C2} and-{CD) vérrésy

ind -respéctively to those
&iven by (A1), (Az);‘ad "(AOQ». et

The proof of correctness for the nondeterminate system S 1s now
RIS TS VT RE TR SR

'compleie. We shall talk’ about more general proof techniques in the next

section.

6.5. Proving corrcctr;@u of more woomnhx p.ckot systems

So far in this chapter. we have g}}v«n ‘correctness proofs for three
particular packet systems. An three systems are rather simple in both
behavior and structure, but a lot of mac‘hingrgwlra:s‘_ to ,H!_ manipulated in order
to verify them. There is a slgnificaxrt” prbblem that arises in considering how
to apply the techniques that have been developed here to larger, more useful
systems. As systems increase in complexity, Vt;xeir.y fbrrnal descriptions and
correctness _proofs grow more cor‘npl,ex. at a much farsggr rate..  Proving .the

correctness of packet systems that are substanu,quy larger than the  toy-sized

ones we treated may thus turn out so coqplicated as to be of dublous
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practicahty The only remedy for thxs kmd of sxtuation 1s to somehow reduce
the complextty of packet systems as they are seen. from within correctness

proofs. We now address this issue

f

M_uch, of the . complexity in. our correctness: proofs comes from
setting . .upc -execution sequences. . However, jexe¢uiion . -seguences. . were
introduced into our model to handle one particulss charactaristic :of ‘systam
structure, wlrich -is cyclic interconmsctiondependencies... When a ‘system's
structure is acyclic, its internal specifications may be.characterized mruch more
simply than through sxeqution sequences. ,We ‘shall prave: that ‘the internal
characteristic relation of an acyclic system may be yealized ;asf"a?agappropvwe
functxonal or relational composition of the external chargcterxstic relauons of
the component modulcs Consider. for axampls the System, SYs Allustrated jn

| ngure S. 5-
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Figure 5.5-1: An acyc]ic packet system.
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Suppose that the exterfial specifications for the modules A, B and C are given

by the respective characteristic relations EXT,, EXTy and EXTc.  Let us also

assume that the module A is determinate, which makes the relation EXT,
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‘functional over ((W*) x (P* x Q*)). Then thero are two stream functmns,
ap: W= « Px ana agq: Wr » Q*, which togothor characterize the behavior of
module A, The internal characteristic rolatton INT svs for systam SYS is given*
by the composition o

((w,x), (¥,2)) @ INTgys <=> Ir: ((x,aq(w)), (r,z)) € EXTc & ((lp(w) £, (Y) € EXTa
This compositional characterization relieves us of the noed to go into the

complications of execution sequences with the acycltc system SYS

We can give a general formulatton of how the internal
speciﬁcations of any acycuc packct system can bo characterized ~as -an
jappropriate composition of the oxternal characteristlc relations of  the

component modules Our formulation has one condition on it: the external
CE 20 LIS
characteristic relations of the component modules must all be conttnuous.

-Continuity was defined in the precedlng chapter : The formulation is

contained in the statément of the followtng theorem:

Theorem: If an acyc_ucusystem SYS has the structural dascription

System SYS s
- inputs Wle==), ,,,, X(~ws)> =
outputs Y(---), ..., Z(---)
internals U(=--), ..., V(=w=)
Submodules

M inputs P, ..., Q; outputs R, ..., VS

Initta]ly Uu0>, ..., v, . Y<yo>. owey 1€20Y,
and if for each component module M the oxternal charqcterisnc relation EXTM
is continuous, then
((WpaoX), (¥s2)) € INTgyg <o> 3 Uy ¥ M ((p,. D, (r. ,8)) € EXTM
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One has to examme the statemen.t o{ the theonm carefully in order
Hto observe that it in fact characterizes lNTsys as a.composition of the external
characteristic relations EXTM. The ~crucial point is the existeatial
quantiﬁcatmn of the channel streams U,.,v through which. the EXTy. relations
are composed Ptoving the theorem rqqu,tres two directions,of argument. The
"left to right" unpucation asserts that ;tven a comglete exccution .Sequence
realizing an tnstance cf the behwior of SYS the;e are annropz:hm internal
channel streams connecting the input to the output m a manner ntisfying all
the EXT, relations. This will be proved by ustng the Ltmit Existence
Theorem and the continuity of the EXTM. ; Note tlut tms part of the proof

does not use the assumption that the syztem structure ia acyclic.

lThe reverse 1mplication asserts that anything reauzed as the given composition
of the EXTM must also be reZlized by a complete execmicn sequence for S¥S.
This direction of proof is more difﬁcult and we x;eed three preliminary
lemmas in order to prove it. Lemma 1 is a simple property of insertion
mappings that realize mmu-mmm of other streams. Lemma 2
asserts that a subsequence relation between strum is uncftected by the
Presence or absence of certain packets in the sthania ‘fmma 3 asserts that
in producing execution sequences for the proof of the thcorem one can

always find a seguence of acknowledged prerixes so as to assure completeness.

We now proceed with the lemmas and the proof of the theorem.

Lemma 1: 1If f is any insertionm, then f(i) 2 i for all i in the domain of t‘

Proof: The result is obviously true for i = 1, Inductx\relx, if _wp assume . it
true for i = m, then we have f(m+1) > f(m) > m, which implies f(m+l) > mel,

7
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Lemma 2;  If X SUBSEQY and if ‘there is 'a m < #X such that
x[1:m=1] = y[1:m-1] and X[m] = y[m], then x SUBSEQ Y,  where
y' = yl[l:m-1] @ y[mel:#y]. o ‘ ‘

Proof: For any insertion f of x into Y defme the funcnon 8%
9(1) =ifi<m then i else f(i).

& is an insertion of X into y which Ls the idenuty mapmng over the first m-1
values By Lemma 1, g(m) 2 m, but y[m] " x[ug] Tules out q(m) =m We thus
. have both g(m-l) = m-l and g(m) >m, which imply that m is not in the range
of & This fact together with the fact that y[i] = y'{,i 1] Vi)m. makes the
funcuon h defined by

h(i) s if i< m thon 9(1) else 9(1) l
an msertxon of X mto y whlch proves the lexnn;g,

: ___mu If (¢} is a sequence of streams sguch that ¥i: ¢, SUBSEQ ¢, ,, and if

c = sy {c,} is uniquely defined, then there is a sequence {c*) -of streams

such that Vi: ¢ PREFIX ¢, and Vi: ¢® PREFIX'c,;® and sup (#c®) = #c.

- Proof: For each I we shall let ¢ be the longest prpﬁx of ¢ that is also a
prex‘m of all the € following ¢, More precisely, let

. m 3 SUp (n S#cacllal = cllin] Vi>i)
and‘ ¢ = cllim] =
Clearly, {m)} u nondecrusmg, %0 ¢® PREFIX-C,,® and c? PREFIX €, for all i. If .
m = sup {m} = sup(#c%), we must-show m =.#, Since it is clear that m < #c,
this will be proved by contradiction; we,sh.al,lﬁ assume m < #¢ and show that
the sequence {C;) has another least upper; bound under-SUBSEQ besides C.

If m< #c, then there is some I for which m = m and ¢, > m.  We
shall <claim  that the existence of this i forces the existence of a stream C'xC
such that ¢’ SUBSEQ C and Vj: ¢; SUBSEQ C', comtradicting the unique definition
of ¢ = oSup {c.}. First.observe that :

(1) - ¢l m) = gl1:m] (V3 k1) = C.U m].
Now take any J)i. since ¢; SUBSEQ ¢ (by- ‘trangitivity of SUBSEQ) we have
#c; 2 #C, > m. We first claim that :

(2) | .~ ¢f1:m] PREFIX C, |
If this is mnot true, then there must be some n <m for which
c1:n-1] = c[1:n-1] and c¢[n] # c[n]. But then Lemma 2 implies that
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o SUBSEQ (R whe;e c = c{l.n IJ @ c[m-l #c).. -Sjape the  value: ot: &, 18
independent of oyr .choice of j>1 (by ecmqgon (,J,)) this. ,makqs c' an. ﬁnger
‘bound for all the ¢ beyond G, under SUBSEQ, and hanow,. for .4l the ¢ But
¢' = ¢ and ¢ SUBSEQ ¢, which makes C' a lesser upp.r bound than <, givin,g us
the desired eonmdxéuén ’nm &kia‘blmm aquation (55 HOURE LR

There are How e c&e& to ‘condiger. ' 'ft c,[ml] " c{ml]. then
~since équa\mn (2) tmplies c,{l lﬂ ¥ e{‘l ii]’ Wo tan’ apply Lomm 2 to oﬁtiln
€, SUBSEQ €', whdre''c’ W ¢[1:AT @ c[‘m?.lc'f “Dhervilse’ c,tmn‘ . c[m‘i) ‘and
since m+1'> m'w u,, ‘there must exist a k> J l’éi' w‘iﬂch faﬁi] " ctm‘i] But
B1:m] = é1:m} = c{1:m], 50 a8 1h the first Ghie e’ "‘ﬁ‘{i’n ’m‘i\‘rg"é.( suaszo c‘
The transitivity of SUBSEQ then ylelds AL R

- ¢ SUBsEQ’ & si:mo e
In either case we must haVe ¢; "$UBSEQ ¢'” Which makés ¢’ ‘ai upper bound for
~all the € under SURSEQ “But:e’ M&Qa“&fﬂdn ‘ptcdudes the Wasired
contradietion, - Thws it is . impassiblei to:hive 5 Py 50 W' mm have

m = sup {#c‘; = iz,, _This oongahm the prqn; g v

Proof of 1he- Ms(-&m»% ‘this half & thi"ifm‘w."wﬁ“’ao\“ﬂbt \lf"’ithe
assumption that SYS is acyclic.: Supposb-{(w,.x}4Y; 58 € INFiyg. ~ This titbéns
there is a complete sxecution sequendce Tor SYS Tosll#ing the slice (Yr .2) as an
ultimate output response to the isput slfce WyeX), SR
, If the exeeution wequesicé:is given s {684y, "fien: the Timit-state
is given by (84, 8,5 where $,'= o £8AY. " Trie dimiiv ke $ WY have
the FOIm (We,.iXg, Ugrie Ve Yori2l)e W cliltin $liatit,,... V. Tate the désited
.V for Whick: m ‘the' mmt’ﬂ\ﬂw m %ﬁr‘?ﬁﬂm& yitattdhs
‘are satisfi®d, - 1 | SR
Fer - each mocule ~‘M with- umit chinmis’ .....Q de ‘Gutput ‘chafitiéls

"""""" N“ Lo ;i:,sg FRGES 5

(1) (p, ,....q,‘) mnx*'(a;.,'. 3 .?‘)* wEoe e
(2) : (Fiveee ) SUBSEQ (M)3ns8y) famdi© |
(8) o U g ) (i) € BXTgit-
Applying the Limit Existence Theorem to thése dices, e hive
(4) P, m"“ ) Cpi®....q %), and
(6) - Frn8) = su'a'é‘? “{r,... )} 1s"the unique l’u'b.. )

80 by continuity ‘of M_ mt have ((p....,q), "(’r....:i'))» € éXT“. -whjch 13 the desired
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result.

1_";99{ of the theorem (<=) Suppose we are gzven a stream for each channel
of SYS such that the external charactérxstic relation EXTy of each module M is
satisf fed. . We need to construct an appropria&e cpmplete e:.ecution _sequence
for SYS If SYS has ~acyclic structure, then we may order its channels
Cl....Cn so that if there is a path from Cl to oy through the system, then
Cl must come berore C2 in the ordering. For each channel C in turn, taken
according to this ordering, we must construct a sequence {<c,.¢; a)) of channel
states such that the limit state for Cis (c c) where c is the given stream for
C.

Each channel C is either a system imput channel or else there is a
module M for which C is an output channel. In the former case, we define
{6 = (c. c[1:1)), where ¢ is the given stream for channel ‘C. From this, i
must follow that "gggc s {ci,c;H) = (c,e). 'In the ‘latter case, all the input
channels of module M ‘have already had ‘approp&xigtg‘ channel sequences
constructed, so we already have a sequence of acknowledged prefixes of input
slices for M, ordered by the PREFIX relation and with a .umique l.u.b. uhder
PREFIX. Since the given stream c for channel Cis related to this unique limit
through EXTM. by continuity of M there axists a sequence {C} of channel
streams for C such that ¢; SUBSEQ ¢,, for all { and such thatc = sugJ {c} is
uniquely defined. ‘Moreover, EXTM is satisfied at ‘each state i. By Lemma 3,
then, we may define the sequence {C;3} such that for all i, ¢;* PREFIX ¢; and
¢;® PREFIX c,;3, and such that sup {#c;%} = #c.- Thus ¢ = P:#?x {c®}), so in

this case, t00, we have ?&p {c.c®) = (0.

In this way we construct for each channel .a sequence of channel
states for which the given channel stream is the limjt. This gives us a
sequence of éystem states satisfying all the requirements for a complete
execution sequence except two: the initial state property and the connection
property. = The. initial state property is.in:a semse - trivial, since given any
system SYS there is a ‘corresponding system SYS* consisting of matching
modules connected in the same way such that the behavior of SYS' is
"identical to that of SYS 1nternauy as well as” externally, and snch that the
- initial state of SYS' is empty, with $; = (g,...,€). .SYS' is easy to describe:. its
' specifications' are identical to those of SYS except for an empty initial state
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and for external characteristic relations defined by
($rne Froat) € DT <5 gt * Shiout @ o amd (Spin, sm)«EXTM.
The m property d&s 16t Rold tor’ﬁwmm cnn.m'm:te«l
" above, since €. % Is Net necessarily & pretiz of €. " However, we may
~ intetpolate & chanitel state €e® berween ze’,c,"r sﬁd ‘(c,,,.c,,,*) so that the
connection propesty f® Wi’c& It we define ¢ = q., é’." = c% tﬁm we
Rave  C¥ PREFINE, ¢ m@ PREFIX €,,%, g ma;c, susfszu ,,,,
¢ PREFIX ¢ amd ¢, % PREFIX'¢'. Tn this way, .tho roquim& oxecuuon
sequence is em&wtmmuw symm &t:wun mh pgu'
of existing system states. This completes the M e -

. With proper ust of tiis theovemr, we cam grestly mmy éomctness proofs
since aeyclic pacm wma m be saaeif}n m mtﬁdd mwh mcre easuy

through the use of pelatiomal and mem skan hy.ﬁwuhmg

v Loy
RS S

Mthznemmm o

S ks

The hierarciical styucturing of pucket syglems: M us ‘toe-apply
at:ychc“ stmymmm muniqw even to im'iﬂeaﬁu af Systoms with &irected

1 EX VIR LZ
cycles Smce a packet mm m an- mtemm“q; commm quu-lgs
any poition of a-symtestv: may be tweld viewed as & systém. The mmr ‘Sysiem
S shown in ﬂguur 55-3 has a ﬂmy cum*plcx stmctu;fe inclmﬁng a d:ires:ted

iYilés

cycle between aw&u,lss F, G and H. W’e can greaay slgxplify this_structure
for proo{ purpeses by regamiing the; m #Smﬁn& of mwodules A, B,
C,Dand E as a W mtem SI (ﬂgmv &5-3)? "rhe sysrém Sl is adyt:’uc
and easy to sgecify, its intcrnal cha::acter,isttc ;dﬂi@n lNT Sk is an appropriate
_ composition oﬁ the: external: charavteristic: relations: for: the mmles kf &;fc,, D
and E. But “the mnctples of pac’ket commﬂmcaﬂon architecture auow us to
treat system $1 as a module whose axtonal chqrmi&ﬁc rolatiﬂn« %;is
‘precisely NF;,., © Thus we tan reduce the stricture of* system“‘s-"tomﬁv*as

T

ih A
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A more complex system structure.

Five modules forming a system S1 within S.
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‘Figure §.5-2:
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- Figure 5.5-4:
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shown in figure 5.5-4. For the system S, our acyclic simplification technique

has reduced the structural complexity by -one-half.

It is possible to carry our technique further by treating the portion

of system S consisting of modules F, G and H as a system S2 (figure 5.5-5).

LT e e e % e e = e A e W e e = o wom e S - - = -

v

v

Figure 5.5-5: A second system S2 within S.

This manipulation simplifies the structure of system S enormously, reducing it

to what is shown in figure 5.5-8.

P T -

=<

v

~

v

"
]
[}
i
X ! sl Y]
j
]
L]
]

Figure 5.5-6: Further simplified structure for system S.

This structure is acyclic and therefore simple to characterize. It may seem

that we have reduced our proof to the point of triviality, but this is not the
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case, The only way to determlne the specmcations for the cyclic system S2
is through execution sequences; thus, the proof for system S has been
essentially reduced to a characterization and’ebrrectiiéss proof for the new
system S2. For a general system. structural composition techniques such as
these can greatly reduce the complexity of correcmess proofs. but in the
presence of directed cycles there stm 1s no way to avoxd the 1r\tr1cac1es of

execution sequences

We have just seen. how the structure ot a packet system can be
‘simpliﬂed for proof purposes by "collapsing” 1;__,0krt,;ous_f_,,i of the system into
m°d“1?3-, Using this technviquc together. with  the tkeore,m we ~_§;:ovod about
~ acyclic systems can greatly rveduce the complexity of .packet  system

verification.

In this chapter, we have shown how:- our' model for specifying
packet systemskcan be applied to proving them correct. There is no question
that ’the ‘correctness proofs presﬁentedl here are. complicated even for small
systems. Hcfw’ever, part of the complexity found .in these proofs was
contained in the development of a basic set of lgmmas that can serve as
_ building blocks for other ‘p_roofs.- There are :3 number. of approaches to
generalizing the proof tecbniqoes, .thet_ have beenprmted here, and we. will

descripe some of them in the next chapter.
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CHAPTER 6: CONCLUSIONS

6.1. Review of the research

The basic task of this research has been the development of a
methodology for formally describing the behavior of packet communication
systems. The work here was motivated by the notable difficulty of designing
computer systems and, more specifically, in making sure that they act
correctly. Consequently, one of the major goals uhderlying the specification
techniques presented here has been suitability for formal verification of
system correctness, We have taken a particular view of systems: hafdware
systems composed by interconnecting smaller units. The research presented
here has been a first attempt to formally describe and verify the behaﬂor of

systems viewed in this way.

The class of packet communication systems is distinguished by a
number of desirable system structuring properties that facilitate description
and verification. Our approach to specification depends on the ﬁroperties of
modularity, hierarchy, speed independence and uniformity of interface. Until
now, the principal benefits under which packet syst.ems have been promoted
have concerned the fact that the asynchronous, concurrent operation of packet
systems allows for faster system performance by allowing for more efficient
scheduling of the available computational resourées. This document has, for
the first time, identified those properties of packet communication architecture
which make packet systems well-structured and amenable to formal

description.  Appropriate use of the concepts of structured system design
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makes it easier to design and understand systom even without formal
verification; with formal methods, syatem oorroctncu cm be mathematically :

demon‘strqtcd as well,

Systems may be viewed extornally. through their interaction with
the outside world, or internally, in terms of thelr coxnposmon from sqaller
components, From an external point of view, tho belnvior of a packet system
is  the relationship between sequences of mchutnnsmittod on the system's
_ input and cutput chantmels, The denotstional appioach we have taken towards
external specifications for packet systems is elegant precisely because it gives
» dtrect mathematical expression to thess ‘sequefices of packets; the formal
-descriptions that constitute our exteriisl specifications contain no cxt:aneous
notions that would omly serve to occlude the relevant behavioral properties.
Thus, ‘the use of mathematical operations “én strcams provides an appropriate
level of abstraction to aid in the formal ducripﬁon of systexn behavior.

Donoutlonal spocifications may be providod for modulos at all the
hierarchical levels ot abstractlon in a packot s;stem 'rm: glves a complete
- formal doscription of the behavior of tho systom and an the component
modules in it, from the top level down to the primttivo modules at the
bottom In order to verify the system it must be ahown that at each level
the given modules are interconnected 3o as to pcrfotm tho correct function.
‘Because of the great difficulties involved -ln providing a denotational
" characterization for the behavior ofaninmoonnoction of | nondoter;ninate
modules, ‘én' ‘operational approach to system ve}iﬂcatlon was cfxosén; There is

no  existing methodology for formally deacribing composmons of either
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hardware or sottwm syﬁem, lot alom vcrifytu Shem. . W;th the .notign of
vexecutian scquencu t!a uham af a system can be expressad in termps of
| the behavior of its component modules and the way they a;ce stracturally

fitted togethdr By Mung Mm aad nomuminato symms in a
umform fm thc ruarch hm Mmm a mmml mnavation 1n the
' field of symm syocmmaon ‘

A.nothu advanugo of our t‘gm ition..g

OR4 OB S¥stem
w‘h@fw foF.doscribiag: the

they are built up directly from sequances :
:‘:hannhgl’s_.’ TM’ basic notlon is ap . sffest!
) interr‘u-alm opergtion 'éf packet syxiqps since it matches the: oceuzences; that: are
being modelod Moreover, for nondetexminate behsnior,, the. momens. at. which
a module . n;gc;du which of seversl Momu.vg ~actions %Mo&q is- saptured
by tho way we have defized the etion. of ¢ profixes,of shwmnel
T packet -are Iegarded as

bemg made whlm the packot'a reeeipt is acknowhdgod An the notions

R & 1 IS £ 4%

[ £ B

streams. Deci‘si‘ont based 0B the arrival of a partiul

embodied m cxmm uqmma tor pucm systom havc been devaloped in

n*w

‘suchawayuwhm:wmmrwmmmﬂwﬂmnm o{ the

systems. 'l‘mu omcutioa soqmnw as pmm here not cnlyj dmribe system
N :f? w5 N
behavior and auow for foraal mumtm but also support appropriate
s R ST R E R L0 A

conceptual abstractions

S

N ‘ In addwon to the bast: develqpmugﬂ 0“1'»“ §peciid
have demonstnm it: applicabﬂtty to verlficaupn Y%, wgakiy, out, corrpciness
proofs for thm amph Packet systems. In ‘hﬂ _COur

: oﬂh&m progts, we
stated a'%d, P’°’M,-! ‘Bumper of auxiliary lgmmgs,, ,Some. of .these, Jemmas,
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arcmtect\u-o; we have oxmbitod a huh-lovel Mcripuvo formalism for

SEEE

. specifymg the 1amoct%on of pocke! modulos ud qm: w!th the outsido_

world; we havo fom&ad tho con«pt of wha it aoqxu for a systom to be

L e 3 IRV

composed from nodu!u and how its oponuon may bo dotmod in tqrma of the

‘!\;

LSRRI S

behavior of tho oonwomt moduks; ud m havo hgun tho dovozopment of

7 SIS O TR iGegUA
methods for fornd vu'moauon of tho ooructnm ot mm mwms.
ghom BTy
- 8.3. Future work D GHERERST T

I RN -V REREAE SRR YR S

Tho work hore has oponed up tha wAy for A ;roat ooal of fur,thor
research iato :ym Mﬂcmoa na wﬂncmon. 'rhoro m two principal

areas opon tor tuturo u\mmﬂom tho uu ofttrum “and m'onn operations

. : 23

in external Mtkm&ou, ond goneruint&on of oar )roof mhm::uos to more
e 14 ’ iy SEET I B T S D ¥

complox systems. '

There is Ro way to reduoo _the lgomglgxity of the extgrnal
charactertstic rehtlou of modulos wmm e mh§ ;ymm but it u fouibh to
) ﬁdevelop higlroreiavol dmrt:mw fornuunu for ;guun; ptmms and .their
operations. Recall, for example, the adder moduls . A, o Which, _ adds
corrospondiog yocm tron m input chcnmll X M R to yiold tho packots for

its Ddahavior by tho rolguon EXT,

SRy R

its output M §. We eiur ¢

deﬂned by - o e L .
((x.r). (t)) € EXT,. <-> n . min(#x, #r) and 1[1] . x[i] + r['l] Vi s n;

at a higher level, we lhould be ablo w vhw thuﬂgolqtjop u a functional

operation on streams, expressed as 8 = X + r, Of course, in ordor to use such

hlgher-levol Mtptmu proﬁtably m proofs, we woum nood to dovolop a

methodology for porformxng vmom mu?ipumum on. thom. - wnn mch a
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methodology, it seems that correctness proofs can be i'urther simplified by
bringing the level of formal description closer to our conceptual view of

packet systems and their operation.

There is even more roorn for further .,_, fesearch in studying the
development of a general proof methodo}.ogy. for verifying packet systems.
Given a particular packet system, it is a iengthy exercise to work out the
" details of a correctness proof, but a general proof methodology would yield a
systematic approach to the art oi‘ proof ;eneration. V\‘fe“now discuss some of

the issues involved in abstracting the correctness proots we devised

All of our correctness proofs have both a consistency part and a
synthesis part. The consistency part is set up to show that for a given
execution sequence, the system input and output slices satisfy the external
specifications for the system Since the externai spociticatiqns are . given in
terms of streams, the consistency part consists ot‘ showing that various streams
satisfy desired properties. ‘i-"or our proofs. these ‘_prop{ertiesi,;reiate .to the size
and elements of the streams. Accordingiy, ) the consigtency portion of a
 correctness proof is often divided into two partsz . & size condition and an
element condition. The synthesis porticn of a correctness ,Proof entails the
construction of execution sequences to realize given system behavior. These

two parts, consistency and synthesis, compose the framework ot a correctness

proof for any packet system.

In order to produce a correctness _Proof for. the gemeral case of an
arbitrary packet system, one must develop a set of toolg for handling the parts

of a proof mentioned above. We now discuss each of these parts in detail.
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For the consistency portion oi' a corroctnoss proof we noed to
establish chains ot oquaiities connecting tho various system input and output
streams, Construction of such chains, of course. is accomplished thxough the
use of the external specifications of the componnnt modules of the system.
With all but the most trivial of symms, uparato chains m\m be sot up to

handle the sizé and olemom proportios of the chonnel streams

In our pzoofs or the systems C and S we msde use of special limit
lemmas to comphto the sizs chsins The Sum Limit Lommn, for example,
asserted that the iimit oi‘ a tormwise sum or two streams is, the sum of the
limits of the two stmmx Mathemticany spoaking we may view this
‘lemma as stipuhtiu that sums snd umits "commute" | undor appropriate
" conditions. S’nch a oommutativity propmy ossontiauy states that the termwise
stream ‘sum operation is continuom in a certain mthcmaticai sense. For an
arbitrary packet systemi in goncrol conﬁnnity iommss snch as these are needed
in order ‘to establsh relations among stroms in 'a systems limit state frcm
corresponding relations that hoid i'or inmmediato mtes A fairly large class -
of arfthmetic and logical opéerations satisfy tho dosirod continuity properties.
I may be wise to rostrict the class of pscknt systoms to include oniy thoso

'belrzviors fot which the size psoportics are continuous

Thero is an ontiroiy dirferont conceptual cbstraction associated with
the element properties in a consistency proof. In order to reiate particular
output packet valuas with corresponding iaput packot vaiues, it is in general
" necessary to trace the pussgo “of individuci pockots throngh the intornal
channels of “the system. . This becomes a difficult tssk even with rolativoly
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simple systems such as S, since the transmission and acknowledgment of a
packet are traced through an entire series of applications of the system's
connection properties and the specifications of the component modules. In
order to obtain a general proof methodology, it is essential to develop some
formalism for describing and deriving properties of the packet transmission
pPathways within a system. In the system C, for example (see figure 5.3-1),
we should be able to formally state that any packet received on channel X
will be passed thréugh module A onto channel S and then through module D
onto both channels R and Y. By a judicious use of appropriate descriptive
tools, a high-level formalism for manipulating properties such as these should

be achievable.

There is another approach we may take towards consistency proofs,
In the characterization theorem for acyclic systems given in the preceding
chapter, one direction of proof did not require that the systems be acyclic.
We proved that in any complete execution sequence for any packet system,
cyclic as well as écyclic, if the external characteristic relations for all the
modules are continuous, then the system's limit State satisfies all these
external relations simultaneously. It may seem that this result would make
consistency proofs almost trivial, but centinuity must be established in order
to use it This alternative approach, although it does not reduce the
complexity of consistency proofs, may be more suitable for developing a
generalized proof methodology than the ad hoc approach used in proving the

three sample systems.
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For the synthesis portion of a correctness proof, there is an approach
to proof methodology that follows as a logical outgfowth of the conceptual
notions available to the system designer. It is the designer's task to realize
certain desired behavior through interconnections of various modules, whicl"x
means that the designer must envision how packets are to be routed through
the system in order to achieve the intended actions. The designer really goes
through a conceptual simulation process of the system's behavior. The logical
framework for a synthesis proof is thus already present as one of the
elements of the system design process. Again, for a general proof
methodology, one would need to develop some formalism for describing
sequences of routings of packets through the various modules in a system. In
the particular proofs we presented, there was a regular, cyclic structure to
these routings. It is reasonable to expect that a similar regularity be present
in the internal behavior of more complex systems. Exploiting this regularity
should turn out to be helpful in constructing synthesis proofs for packet

systems.

As we mentioned in the preceding section, the lemmas we developed
for our three sample proofs are suitable for ‘use as more general tools.
Another area for future research is a determination of the scope of their
applicability and the development of a more comprehensive set of tools for

system verification.

In general, the study of specification and proof methodologies for
packet systems (and perhaps other kinds of structured systems as well) appears

to be a fertile area for additional exploration. The current research is really
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only a first attack on the problem of formii doscriptioxi and verification of
systems, but thq approaches preéented :hofe should foiht ‘tho was' for further

investigation.
) 6.3. Parting ;hot;

A detailed development of a pi‘c‘ket' 'dstém}:'vbffﬁcétion methédology
based on the ideas presented in the preceding séétion 5 not an :eé.;y" task, but
there s a far more difficult problem to be considered. The complexity of the
systéms that aré studled will always be a constnining factor for formal
specification and verification, since formal descriptions grow in complexity
faster than. the systems they describe. The use of the acyclic system
characterization theorem and similar techniques can help reduce the
complexity inherent in many systems, but this reduction will not make
complicated systems simple. Proofs for systems significantly larger than the
ones we have discussed may be unmanageably difficult in practice to
construct in their entirety. Thus, any specification methodology whose only
goals deal with formal proofs will have limited practical application to real
systems. No system designer is going to slosh through all the intricate details
of a proof for a system that he already "knows" is correct. Moreover, proofs
can contain errors just as much as programs or system designs. However, our
scheme 1or packet system specifications supports the hierarchical factoring of
systems into components that approximate the .designer's conceptual view,
Execution sequences and. packet streams in our specification model are useful
tools that may be manipulated ‘by a system designer to test out and to gaix;

further insight into the operation of packet systems being designed. In this
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way, we toel that t!u conccpts that luvo heon dwdnpcd in our research can
be applied ) atd signiﬁcantly 1n tha - process of designln;, using and

understanding pcckct :ystems

In summary, the research here has opemd up a new area of formal
specification and verification of computing symms, both hardwm and
softwarc The origiumy of this watk is particu

ly evideat in the context
liques .that have been
developed here are useful in their own right and alse help point the way for
future work ia uaderstanding and fotumm

of hardware system design. 'I'he amhﬂ and.
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