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Abstract data types-are the basis of an emerging methodology of mumrpmgnmming The
only existing languages supporting ab _types directly, CLU :xnd- Simula, both require

N ?’;;.:‘;;“”.‘ 3

compacting garbage- cotlection, -and thus: they are not suitable ‘for many applications. This
thesis presents the design of -a new. language mponm ‘shetract'data types; the language
requires only a run-time.stack, and not garbage collection. “Fhis-mew tanguage, calied’ ASBAL
(for' “A Stack Based Abstraction: Language”), is based on:GLU,:and -borrowsas-many features
}as possib!c direcﬂy from it. Virtuaﬂy every ﬂgniﬁnm m of CLU is earrled over - into

poggrs ihate .
“of size parameters to

‘types. ‘Also, a ' Timited fadmy for dynmk sorege dliccation s Incorporated in ASBAL to
compensate for the removal of a garbage: collected: teap. Tiis: M)v tﬁm tist nud graph
‘stouctures to. be. built within. the framework of the stack-while:preventing danghing references
as:a “side-effect” of compile-time type checking. |

Name and Title of Thesis Supervisor: o  Barbara H.Liskov
| | ‘ " Associate Professor of
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1. Introduction

In recent years the correttness of cocmter progrims%as bacome a topic of growing
interest. One approach ‘taken- to enh:mmg' m ‘Is the fdrmuhﬂon ‘of design and
programming: Mhodolagies It is hoped that tHfrécuness

'%be tchlevad by usiﬁg appropriate
structure and diseipline in the prograsiming process. T Sin “Bbstract data typesl is one of
the techniques being developed. Abstract dutd'tyjes appear:| é itiing for sinfpllfying proofs
of program correctriess, and seem to be hatdtal’ for M ih n programmlng and. in
*.cormunicating among thémselves about program

LL Motivation .

To date only two programming !anguages have been implememed that provide and
»enforce the abstract data type disciphne directly in tm hgguge- CLU [Liskov77], and
extensions to Simula [DahlBB] However, ‘both hm& Tequire ‘compacting garbage
collection. The main difficulty with garbagc collection is. the embarnsslng pause” which
occurs whenever the garbage collector is invoked. ‘Such a pause is intolerable in ‘real-time
systems such as operating systems, process control programs, etc. One way to eliminate the
pause is to use ﬁarawl"ilswe"ﬁ"of inichémissitat. [Raker7?, ' Dédt h’lﬁ: “Barth™n garbage
~ collection techniques. These methods have“tﬁ! eftect ‘of spréading the’ pause out uniform!y
over the normal processing time. Unfortundtely, efficien

4 ﬁfl‘ruéf garbage collection probabiy

requires special hardware, and’ ¢ thereforé ot !uiuble fat', m appucations, especlaily those

A e

relying on existing hardware. lqcr!m&ﬂ:l garbipe coflection lppears to’ ‘be more promising.
but both paraliel and incremental techniques for ob jects of different sizes (we say varlable size

objects) copy from one ob ject space to another. Each space i3 one haif of the total free memory;
thus the maximum amount of memory usable with the parallel ar incremental techniques is half
of the actual memory provlded This severely m aﬁﬁmmm pmslbte on most
machines, particularfy mini-’ and micro-comg f;'_;_ rs, wh{d,, gj;w,gmﬂaddrm spaces,tq,pegm

1. We éssuine the reader is' famluar with_aﬁstricjt; data typu. For those Jess well versed in the
recent literature the following papers may be helpfut: [Liskov77, Wulf76a, Liskov75, Guttag75).
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with. Another drawback to garbage coliection: is that the mym aystem might be
~ a prime candidate: for using abstract data types. Claarly umm 1s part of the
- memary management sydam. If the language which allews ome 40.yse.sbstract data types
*, ‘requires garh@gglm,m thet lxnguage. cannot:he 1weed 40 mrite. the: m.~=,édiector.‘
Or\'e'misht hope that a usefa subset.of the Wmmmm collection
could be used to write the garhage qollector. wmmmwm GLy or
, Simula they. depguq,m.- Aresge. cojjection entirel _ :
. We feel t’hgt the. ldttm mnm parbage. collectio maum parallel '
garbage collection into computer hardware, , As the mg m contingies.$o- drop,-and the
cost of of software predominates, it: may pay-to deuble mmmm mrh"e paraliel or
incremental garbage. coflection, and thus make avatiable ‘shagant and powefPif mnmﬂving
languages that ease mftware dﬂehpmut ‘However, in the: MM far: -”lmu
“the added hardware coit ummt be Mm mmmumm we feel mher
'sotuuon is in order - this thesls we: prosent a m . o W incorporating
.abmcc data types in 2 menser  thet dow nat m M .

12, TFhe Goal

., Pascal, and PLAZ Rather th designing-this new lang

We have.designed a.new language with. abstracs sate types:that will vun with-anly a
_Tun-time stack. This stack is similar to those. mnmﬂa@m hwmn Algol,
as a basis and have mcmtnud on rewining .28 M}ﬂ‘ in m,g; ponibh To
understand what we- hwdm m mtmﬁ W;‘ Arbage:;
CLU. '

L wm:ouz speclal m:ks, that 1s. We feel that mekq nf this sort m hetvok;ed and an
elegant sotution found thitt dides not involves milks-or Asbeitl
2. For some applications static aliocation might be appropriate; we did net lnmtlgate that

approach. However, see the wggamom t’or furﬂnr nmeh ﬂn lnt chapter for more
commevmabeutn R
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18 CLU alrd Garbage Coﬁection-

The coincidence of several :parts of the semantics of CLU makes garbage collection a
necessity. The basic unit of information in CLU is an object. Every object has a type, and may
be manlpulated only by the operations of its type: this is the key to abstract data types.
Conceptually, ob jects exist independently of pregrams, and once greated are never destroyed. A
variable is simply a reference to an: obp:t.tlwus,aaame for {t. "It is important to ‘realize that
variables do not contain objects, but . rather. object. referances,. implemsnted by. pointers or
capabilhie&- Two. variables ‘may refer to the same ﬂbject«-we -say -they share that- object.
- Objects may__referf._to. other objects, so.objects can be.,slm'ed by objects as well as by variables.
This_' is useful.in.building hierarchical, graph, and. list datx structures. Furthermore, cyclic .data
structures. can. be. built, thus. implying that. refersnce somnting will oot suffice to reclaim all
unused storage. .Because variable. ;mmqemg mﬂu garbage eoHe:tm is needed
. to prevent fragmentation a&uqnge. Ui orts R

n CLU, assignment, argument- mmm maf results are all accomplished
by transmitting ahject references;ne obmmnsm Forsxample, in
the variable x is made to refer to the same. object as that referred to by y. The ob ject referred
to by y is not affected in any way. In the case of argument passing a similar thing happens.
The called routine is given references to the argnm being pas to it. This is not the same

as call by reference the al%ed routine does not have aa:ea o the varlables of its caller.
However, the ob jects passed are shared between the caller md the ca!led procedure Therefore
any modif ications to the objects wm be visible m the caller |

Any procedure can create new ob jects at wlll and these ob jects are stored in the heap
References to ob jects can be stored in other objects and alao returned to the caﬂer directly. We
will call the ob ject semantics of CLU the objm-ammd Wmh

In sum, CLU ob jects must be llbu«d in a hup beause (a) they can be of
unpredictable size, (b) thelr slze can grow over ttme wuhout bouﬂd and (O their lif etime is

1. A heap is a global, garbage collected storage area, like that of Algol 68 [WijngaardenT77).
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indefinite. Garbage com is requimd because cyclic. stmctnm can: btbuik. Compacting
garbage colection: must. be used to prevent fngmm of - M buaun varhbk- size:
_ob jects are used. N ‘ S e et e T

1.4. Our Approach ‘ o

El

 CLU's mejer contribistion -is the-sWitracy-diita typé'Tacility, -nok the: objédibriented
view.. It appears shat the wwwmqsm S Wb requileliNAY Tor' Farbage
collection; as outtitd:above. PUrieps e Caib e £ $odil kﬁt Aa8ities- withoat the
object-oriented view.: As wmuwmm mﬁww arrive
at: is a; symthiesis «of /the tratiitionat: wmmm Wﬁm skamg
objects is-ehnvinated, mmammww? e fions

ob jects in: variotes Fiirdven <isaplion 450 ‘
" may be-manipuisted: -Ouepenpase 5 3-Spph )
possuble We 2all our. resukting design: 'A:Wf
ASBAL: - Weahuwm SRERNPROc |10 SR esied
concentrated on - tiv :Sewasics? Tm anidismnd ‘o W e )
improved for-a pmw mmmmm

4 2y . -‘,‘I 2w B L

I. 5 Related Work

The goals of the Alphlnd hngmgedu!gn gmp IW lppuf m be very simitar

. P T NEEn sy, Lbans 2l P B854
to ours: Alphard hn abmct data typu md Tams with’ :nly ,amf ever, fdphud is stifl

il e é ,n., umr,af L D

under development and it is not clur how simtler , i mlly are. We smpect
S5 A g l“i, 3 f v&«; s§ ¥ 7 .‘fk 5: »1 3 ’F»‘ £igu T '
there wm be stgnifiunt diffm - Of - ;é " :

T he ELAS ki re

| wmmb Wuif16c)”
The !anguage Euchid [Lampm'm is ahu mﬁlﬁ 6r;hud to our. work We are

E ; i R CORRTTT = B RS I N S
especially indebted to ‘Euckd for the cu;qm of. lfmﬁﬁi\vmﬁm and coihcﬂons. lee E

Wi aign oydE ‘*‘i’iﬁ i} sxa2 w0

Mphard Euciid is not" ijac:-oﬂeuud. Fu nhumnﬁ. was not. Mhﬁy deslgned to
provlde abstract data typu, although they can be Mmmu mm& Euclid

i x'.'_;‘ e *ff‘“ﬁ“ 5 "‘5'}; 2%k
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places more emphasis on provability than we do, and on systems implementation features.
- Euclid is a more complete language than ASBAL, but our intention _was not to design a
complete ready-to—use language '

| The language Simula is also somewhat related to ASBAL Simula could be described
" as CLU’s ancestor, and CLU is ASBAL ancestor so the relationship is one of progressive
development No specific feature was consciously taken directly frorn Simula in the desrgn of
ASBAL, but much was taken from CLU _ S

The language ‘most closely reiated to ASBAL is oi‘ course CLU since it was the

starting point of our design.

1.6. Outline

This mtroductory chapter is followed by five chapters. Chapter 2 introduces the basic
semantics of ASBAL Iaying the philosophical and semantic foundations for the rest of the
esign The third chapter extends the basic futures nith two inechanisms taken from CLU:
iterators and exception handling Chapter 4 i‘urther extends ASBAL by adding parameters to
abstractions. The parameter mechanism of CLU is oopied but a significant new feature is
added - size parameters The f ifth chapter investigates a topic foreign to CLU , dynamic
aliocation of ob Jects without requiring garbage collection ln Chapter 6 we summarize our
research draw conclusions and make suggestions on how our work can be extended
mentionmg other approaches to our problem deservnng mvestigation
There are two appendices which more completely del‘ine our- ASBAL The first
appendix gives a context-—f ree grammar with explanations of the various productions The
second appendix outlines the basic data types and their operations.
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: .2 Basko Golwqyts

Thls chapter pmems many fundmnmﬂ um o!' ASBAL We begln with a

 discussion of the pbﬂmaphy bohmd ob Jocts md vurhm iﬂ pmnmmtng hngunges point out
particular upects of thu phﬂaophy thlt diml,lw ollr dqﬂm in the des(gn of ASBAL,

1%5‘}‘%-"\ gEvEn

and arrive at the buic mmm of vtrhblu fm‘ Asm Fm thh we chelqp the semantics

Pt wlmege

of procedure invuuuon uugnmmt. and m mm of ebm. M‘ter a discussion

¥y 3"“‘ st F r3 wphsy -r*-* f o 'ig

of implemenmim techmqlm. we pruem n examp ege guﬂnmm to lﬂumte the material
P 2 wln - Ay, el s
introduced.

21. Philosophy of Objects and 'Vamblu |

Variabies in tndltimal pmgmmkg hngmges me two mt)or ‘functions: they
provide a naming apl’bmty. xnd ﬂny pmtdem'vm mm (ise nurage space).
, CLU, with Its objett—oﬂemed “view, sepanlu m fm mpm lme the lnformtuon
" containers of CLU. (CLU variabies ok umymm ‘of ‘dbjects. ‘We generally say the
| ;T‘vanable denotes or rcfcrs to the object.) Obpcu hlve mwindct‘mw.' Iifulme, and may be

SRy IR TR T =3ﬂ E

x referred to by man’ywmbles lt once ‘Heuu. m mmgedu Mgeilleuted ina
heap. with’ varhb‘a beiug polmm m me m tl\tyim: o b&’eﬂm’ rel'cr to other
h objects and genem! gnph :tmmm d‘ qt;jecumaﬁowed u

" Some ob“jem hlve tlm-urﬁngpmpem we uy“wao objnwau nutablc The state

of a mutable ob ject " the set of prepam?a n m wm pom«m *um For example, the

' ﬂﬁbstracttype smck ts«muuble Thesmuram ummmw obaum ini. A
push or-a popmume:t Mk m gmnamm mmm amfurempﬂness
will not change the state. of a stack. ‘ '

. Immutable -objects are those whose properuu do not vary over time. Most
mathematical valuu are immutlble as are their mmpuur llnguage ‘models. (The values not
the variables in which.they are stored!) For enmple integers, rul numbers, characters, strings,
and ‘boolean ‘viiues are all immutable. "The integer ' is " mmocable object. 2" is 2’ no

" matter how you shice it, and ‘2'.can never be changed eoanym integer. -
The sep:ration of the naming and storage functions of variables acmeved by the
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ob Ject—oriented view leads to a clean semantics. But probabty the most lmportant reason CLU’s
. el i S TR

ob. Ject-oriented semantlcs is attm:tive ls thst peop'e seem to think in terms of "ob Jects The
very structure of language, with nouns (naming objects) ‘adjectives (describmg the properties

PRY & ot Legeers 510G LELVER AN R4
of ob jects), and verbs (descrlblng the use of ob jects or l:heir hehavior) seems based on this view

of the world. If it is indeed true that people thlnk m terms of objecu, then Iinguistrc forms

.....

that enable people to program direcﬂy in térms of ob| jec‘ts cou!d tead to better sof tware desngn
I R e T
and’ imp1ementation by being more natural fnr!people to use.

U of course, the kind of objects to be found l'n t:rograrﬁming concepts are highly

abstract, of ten mathematlca! in nature So etim'e rernains much structure to be built to model
real ‘world ob, Jects and systems 'l"his hck of structure eﬂows the l‘reedom necessary in a

'general-purpose hnguage For domain speciﬁc systems (e.g.. medical dﬁgnosisf mnre structure
R~ 5 0% i
may be desirable because it embod!es useful asstmpﬂmi aud prevents "reinventing the wheel

»»»»»» R Fe b
for every speciﬁc taslt Howevér ASBAL !s fo be The abstract data type

%’aa u

facilities allow one to bulld specla!ized systems by accumuhtiﬂg a library of type def initions

-; ,,r»

“and procedures relevant to the appliattton Our modeling of objects must extend to abstract
data types to be useful. For this reason ASBAL is designed from 2 very general point of view
‘with respect to types “Fhis m may make our descﬂpums of mmtc ooncepts seem very Vague
It is hoped that the miny small examplu we give wtl! help oﬂ‘set the abstract descrlptlons

2.2. Vniables in A&BA"{. :

As was, discussed in the ﬂrst chapter our. hug mm in the m at A&BAL is to.

,obvtate the need for p,rbage collection. ~This,. we..anguad, . ireplies -either.. static- or
_ stack-allecationq;w ‘We exphained that.ous inyestigasion. is restricted to stack allgeation.
.CLU-style ob Jects cannot be stack-allocated in an hie. way, because they are very
genera| structures. We have decided that the bett apwveds for A&de. 1s to-store ob jects in
- variables similar to traditional varia“biei The sim ‘7 sth!;h bod directed our cholce Al
., other mechanisms we cepsidered were mmmmsm olsjects in variables is not
as’ ice as the mﬂ-—b‘lown ‘bb jecf-—oriented appmch o CLiJ t:rft‘g lt appears to be the best we
can do. The assignment, procedure call, and:.component: -ebwbn mechanisms were: designed

very carefully to help offset the limitations imposed by working in a stack. Here is a summary
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- of the ob ject mterpmtaﬁon
- , | A variabk- contnim an ubject An object hu a :ype. md n m a variable; a variable
N may only contain an object whooe type is tﬁe same as its own. WM nﬂl be used only to
B _Cha"ge whnch ob ject is :tored ina varhble. An aaignmcat effectiggiy demoys whatever ob ject
prevuous!y existed ln a vartable, md cretm a m np'pct in mm Tac n " ge, the state of
an ob Ject rhe ob ject must be passed (umlg the ,pmcgdun Im'outim machanism) to an
operatlon of its typel An operation that clungu an abjsct’x M lg njd to Wc the ob )ect2
We emphasize that uslgnlng toa nmble gs not the mme as mw;g the ob ject it

| contalns This is becaun muuble objscu may havc prqnmu defined Mp‘y their. creation which

| - may never be changed later For example camk;er an mm that modeh amqmobilcs
. At creation the make model. and serhl mmber m tpeeifad' thue propertie of a car may
never be changcd after it is created Onthg other ?mnd the number of p;uengers in a car
and locatien of aqr can chmge qmte frw "; : ‘ yroperti
of its state, oniy some of these prcpenies an be ehaug;d by mumion 'However. if a car
: vanabte is asslgmd a new. car, ¢ll !he pmpemu hght bm from thme of the previous

car.

,,(ofaararepart_

Fie

where only refermces tocompomms are m m an objaet

Several consequences of this ob. Ject interpretation of varisiles shaukl e mentiored. In
CLU, assignment is system-defined: it is an implicit operation. This 4s fecause a CLU
| atsigrivent evstatls only copying an cbject reFeredi riitver Hke ‘capying & pointer or capability.
On ‘the other i we Tust-construet &n mﬁwmmm this niétw ob ject
- 'replaces’ thie one- previously residing in- mmm Theéotiseqien 'ﬂfthlsflct witl
bthpbmd 4 thve nmmwm - :

l Recall that the abstract dan xyge methodology ;lhm euly thc aperations- of a type to access
or update the represenitation of ob jects of that type.
-2 The only:mutabie objects anesipuerds:and woram: Joet “them. Allimutation
is accomplished by -mutation of records or arrays. Mutagion J'A!l &mmﬂw since the
mutating operations are atorsic.: That is, the fmml muattng apemuam cannot be
WmMn it other, mmm R :
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Another consequence of the ob ject lnterpreutlon ls that sharing of components is
disallowed, beause components are dlrectly contained in their parent objects, rather than
being referred to (pomtéd to) as in CLU.  For example. ln”gi. two elements ol‘ the same array .
may be the same exact object, and any modification to thla shared eomponent object via one

access path will be visible via the other agcess path. Oug abjerts cannot share components in
this way. (The addition of polnters to ASBAL. restores tlm;bllity to share, so we are not
giving sharmg up completely) ‘ . T .

A rather obvious result of our semanttcs ls that the llfetime of an ob ject is bounded by
the lif etlme of the variable containing it, rather than peﬂg bquncled as in CLU.. The ma jor
* implication of this is that ASBAL routines will not be able to_return objects in the sense that

CLU procedures do. ln CLU procedures return, re[m‘m: to objects; hence, previously. existing

ob jects may be retumed by just copying. referemes o thm »ln ASBAL we are restricted to
constructing new ob jects to be returned. -

The binding of an object’s lifetime to;.lhai intgmmnh!g variable, along with:the

storing of components within ob jects rather .than ¢ ely, Toquires a new mechanism for

. selecting components. In GLU components. can be selected by just returning them since only a

reference is returned. On the other hand, our returns always create new ob jects, $0'returhing a

component cannot be done in the same sense as in CLU: we can only construct a ‘copy of the
component Therefore, without a new rmchantsm. oomponen Eob jects may never be matated,
although new component ob jects may be substituted by ope '
Since we should be able to do anythlng with” component 'objects that we can 'do with entlre

‘ tlons on the contaming ob ject

ob jects a new mechanism is required to allow mutatlon ot' eomponents A new klnd of module
* the selector, is intraduced for this purpose; it ‘will be &escrtbed in a fater sectlon of this chapter
A fast consequence of our semantic model is that ob jects cannot grow dynamically, at
least not without bound, because they are restricted to the storage alloeated for the variable
containing them. - This leads to difficulties when trylng to lmplement abstractlons that are

SN i

conceptually unbounded. The parameter and area mechaniams to be presented later are largely
devoted to solvlng this problem

To sum up, variables in ASBAL are containers for objects. Objects have a type,
which indicates how they may be manipulated, ie, what operations are allowed on them.



_ Variables are also givm a type, indicating whu .type: of abjects. M l!wy mn Variables .
) will be implemented a3 storage afocated: in & mcu. thve. o jpet: inverpretation: we espovse.
puts hmmtions on' how that stqrage: my ﬁu MM. Tinmgr ‘m eropces De
| oblects and heap tﬂmﬁod ohjeeu ate-

D ouwr o&mrmmmmm mnm;,wuwuamm-medd ob ject. in-
the variabié uulgmi‘é‘n destroyed and' s M’*ﬁﬁwﬁmwm&s plw.*
(2 because objects are swred i v:fm,m Wm m cmdng an
e object;
() there can beno stmmgw &mamvm«muof objects among
'-ubpctsmd*vars“'“”-“
(4) the lifetime of sn object is. WMM«F&WM:;W it;
(8 and, the mwmwy&nwwmm&w’ acidble contaiming it

T‘M next. few ‘secttons: of :aﬁu,,m "W“l t&e o
' 'dmﬂ and: pfem Mmﬁ i s . _

. [ : L Lot RS A

] 2»2& :Declarations: and- M

| ' Programmustbaabietoreferw*mm;
vanables in ASBA‘L wm be glven nypu mm fogr

| to dmmgmh ehem from ntm uud ferm 4 ; mdm! MW?‘ Pmm |

time ln ASEA’L &dubtm M m&u

4 VAL X: foo. | A _ : .
_is used to do thls ln themmph zmvmwwﬁeumm;m the name x.
A newly created: variabm :voeum By & declaration; ‘ jet; it: ts m error to
'attempt to use jt. (We hanmtosa:;ayut W;“‘F . Yo ”Jeman easily

extend the form of :mwmmwmwmma onw
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var x; int, y: bool;
or : "
var x,y: int;

2.2.2. Variable Initialization

~ We define our declarations to create new. variables, that is, ones. never before known or
used. This definition prevents confusion over 4whether a “new’”. variable contains an oki.ob ject.
It does raise two problems, however. The first is that memory allocation is required - thls‘ is
discussed in the section on implementation hwmfﬁwmpm&'m aeoondproblemis that the
bits initially in the storage allocated for the variable may not represent a legal ob ject of the
type of the variable. There are two solutitms to thls problem. "One ls to store a def ault ob ject
of the-declared type in the variable as part of the actlom taken for the declaratlon Thls can
be done for user defined types as well as sym-provlded ones by requirlng each type
defmmon to have a routine ot‘ a partlcular name (tnu. sayl whlch wlll store an inltlal ob ject in
a variable given to it by the system Thli solutlon guarantees that varlables always contatn
legal ob Jects (assuming users do not write crazy init routlnes'l But unfortunately. it cannot
guarantee that the ob jects are :enstblc. slnce nnstblllty dependa on how a variable is used
The better solution is to conslder attempts to uae an tmlnltlalized variable as illegal
and to detect such attempts with a combinatim of compile—-tlme and run—time checks Exactly
what checks are requlred is dlscussed in the rection on implementatlon later in thls chapter

2.2.3. Constants

It is sometimes convenient to have a_holder for.an.object that cannot be assigned to
after initialization, and that does not allow the ob ject tobe mpdified. . We call such holders
constants to corltraat them with.. varjables; .they .are similar . to -congiant -objects. in. CLU.
However, we allow constants of mutable types, such as constant arrays. Since a constant
physically contains the object stored in it, modifications can easily be prevented by dlsallowlng
any write operations to the storage allooated toa oomtant. We wlll aee later that _we can.pass a
variable to a_procedure but’ have the prooedure consider it to bé a constant.’ This:is the real
motivation for constants - prevention of undesired modification to ob jects.




20

A constant definition is similar to a varhbte declaration, except: that the object to be
stored in the -constant must be specified. Thus, in a constamt: m wgln the desired
name, type, and the object to be stored. in the constant: ’

const n: int = 53;
const i: int = j * k;

const a: arraytint]) = nray&eruuw)
In an implementation there is Tittle difference between a mmd:t Wrm acmmm is
essentially a write-omce variable:

2.2.4. Scope and q;: Form of ASBAL Modules:

To gain an understanding of me scope of variable aml constant mames, we must
'~ consider the general form of modules in WL The mm modules of ASBAL are the
~ cluster, which impkmeﬂtbtdm aburmwa and thtmm; mph ,:apmedural
| abstractlon

A cluster defines a data abstraction, by gjmg 3 upu-mm (of tew shortened to rep)
 for the abstraction bemg deﬂmd, and implementations of the m ‘The. operation
implcmentattons take the form of prooadum, but htw the acded m, to convert ob jects of
the abstract type to and from the rep type. Imemﬂ w my be M the cluster. lists
which of the operations may be used ouum the c!umr

; A procedure has a huder and a My. the body bumg u: Hst of. staternents. The header
gives the types, and names. of the argumb ‘the typu of any mm returped, and other
‘information to be'described later.

.Each abstraction is impienmwd i terms of lower: level: Mmm The overall
structure is a hierarchical decomposiion, withte tighest’ levet abstractions:at the top, ard the
‘lowest level abstractions betiyg types and” procedires: Batit- mmw “A module is an
implementation of an sbstraction:! Becaust an ststraction: 15 enfire unty e, 3 free standing

‘1. A module may impkmem a class of refated aburutm m!m than & mtwmtm (see
the chapter on parameters). - :
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mathematical ob Ject modules are conceptually :eparate and lndependent2 For example. there
another module to supply those variables

This model is somewhat contrary to the more common block-structured ‘view of
programs in at least two ways. Flrst, the block-stmctured vlew leeds ;o large monolnhic
programs, and the whole goal ol‘ modularity ls to Prevem sucll hrge prognms Second we
allow only local varlables. not global varlablea Thls supporu modularity by maklng module

dewnry et

relatnonshlps more expltcit any data that a module w!;}hes to access must. be passed as
arguments to that module Since each pmcedure defines a- dlstinct abstraction. and every
abstraction is implemented by distinct modules, nothing is gained by defiming:procedures
within procedures. In the interest of simplicity procedure definitions in procedures are
forbidden. - However, hievirchical” riesting: of * stiiféfient groaps ‘withiin ‘& procedure is quite
desirable, so it is allowed and encouraged: - ot 7o “ gl
What scoping of ‘naihes is- propt:iTor" this ‘fnodular - 'Hewpolnt? Without' local
. procedures there is little reason to allow varlable namu and constant names to be obscured

(reused in nested blocks), especlally since prooedures are not expected to be very large
However, it is often helpful to restrict the. scope of cessain; varisble (or constant) names to an

inner block, such as a loop, rather than an entire: procedugg; this helps indicate the purpose of
the variable. ’ e o -

- Our no-global-variables pollcy makgs . programs. .more ;. modulas, but makes.. some
. . The mwadvm«o& global
data is not having to explicitly pass it to every pmedumamtc might use it. An example of an
ob ject niormally made global is the symhnl.talgl}_e of a compiler. . Assume we must implement a

“compiler in a language forbidding global data. . Let us,say the compiler parses by recursive
~ descent. Onlya few routines directly access t@ggmbqlnblq;however,&bewmbd table must be
_created at the highest level and passed explicitly through many routipes.that never. use it at all.
" These intermediate routines only pass the smuhkdwuiumw levelsto use. We

programs a little more awkward when global data is necessa

2. This has nothing to do with separate compllatlon. however. Modules may or may not be
separately compiled: we do not wish to pin this aspect down.
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- feel the modularity gained by forbiddmg ghbal data’ more than effm the inconvenience of

- J:requtrmg extra wrmng for some pmgrum. RMg ‘W data s m} to d!minatlng

implicit ‘module interdependmciu. Bloek structun h uu! M in M gluhdﬂdm is. However,..
once all data’is local there is little potm to biock :tmcm far mmmmm:

" Even though ail data should belocal.wearguctintmﬁnknm should be global.

"It is not useful to restrlctthempe of medwu.md hﬁukmhmmmm - it may
b‘force absttactlons to be re—implememad my 'ﬂnmﬁm we am M module names

“are global ‘We neither requm nor pmhibﬁ ethu' mfm mlding tin rei&ﬂmsmps of

 modules - such modulemmoumm mfm uwmmamm |

2.3 - Procedure Invocation

- The previous m&oﬁ discussed. vmm Mm& mechanisms: for storing
and holding ob jects. We now continue. with procadsise. insocs oo, which- aﬂm the creation of
- new objects.and. themaaipahum .of old. gnes.. mmmMmigmt.

2 3.1 The Different Clm of Argmnu )

‘ The wholé point at* pmebdum &wmmwm A set of actions that
~ form a logical whele' is ‘greuped together and’ viéwed a5« siwgft abstract action. The basic
actions are mutation of objtcts and assigmmnt to m Since all data is’ Yocal in ASBAL,
“the key o0 prwedm! abrstra mm that is, the

“'We can ""“W”‘M us four di fdihsﬂ’w n MAL The first
| ¢lss is constant avguments. A constant fgudint to & routive
directly modified: by the routine. 'We wﬁP see Iiteé that = proeedure

mcumtouan

- constant abject’s- not changing state, mmmhwm&pﬂn from some other

argument to' the object that aflows it to be mstwved. - Mmtﬁrmapﬂnms.a
constant argumtmb&m hrmm e v ASBAL. Mmmn if all

1. We reserve the word. pcmmmr for * ﬁmm uu. M md.’uﬂy dtlungulsh bwveen
arguments and paraméeters;”
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arguments to a procedure are constant a'rguments or result arguments (see below), then the
procedure is functional; that is, it does not modify any of its arguments

The second class of arguments is objm cr‘nmim -An. .object argumem gives access to
a particular ob ject, allowing observation and mutation of it. Hosvcver the variable _containing
the ob ject may not be accessed, and therefore max not be asslgned to.

The third class of arguments is mrtable argumnts A variable argument is a variable
passed by reference. Therefore assignment to it Is allowed, as 'well as access to (and mutation
of) the ob ject it contains. The difference between variable a
-exactly the difference between assignment to a vartable and muuﬂon of the ob ject | it contains.

Argugents and object arguments is

The last class of arguments is result crgumm A result argument isa variable which
may only be assigned to. The purpose ¢ of result arguments is the construction of new ob Jects in
vanables that is, assignment This includes initialization a8 well as assignmem ‘

Ob ject and variable arguments (the seoond and third classes describedl are not very
" much different from each.other in implementation Both would be implemented by passing by
reference. The only difference is that a variable argument may be assigqed to, and an ob ject
_argument may not be. This slight distinction i3 not \vorth the complei;ity of two separate
argument passmg modes. Therefore, we chose to dispense with one and keep the other: we
retained ob Ject arguments, and eliminated variable arguments, i‘or two reasons. First this s the
more conservative choice in that less access is given to arguments: Second, ob ject arguments
more like CLU’s argument passing mechanism. - In CLU, object referances are passed, by value.
The effect is as if immutable objects were passed by value, and mutable ones by reference;
except, the variables of the ‘calling proeedure cannot be affetted by the dilled procedure in any
way. However, the object passed is shared between the procedures, and hence mutations of it
performed by the called proceduré will be ‘visible“ to the callifig procedure The decision of
which class of arguments to keep is not all’ that fmportant in the’ long run, but has affected
later decisions such as the selector mechanisri ind alinsing detection '

© Now that we have séttled on the classes of arguments - constant, ob ject, and result - we

need to devise a syntax for expressing procedure definitions and invocations. Let us first
describe & simple scheme Which we will impme m ina mol'hent -
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2.3.2. A Simple Scheme

The simplest apﬁmch to defining prm is to Mu: header in each definition,
much like the procedure headers of Pascal. In the header we m the bcsi name, type, and
class of each argummt For example:

p=- proc(comt wx: int, var y: sreaylint), mnm
The above header slys that procedure p takes four argm two constant trgumems. w and
~ 'x; one ob ject argument, y; and one result w"ﬂw W pis not allowed to mutate

or assign tow and x (integers are not mussble objects anyway); p my mutate 3, but not assign
“to it; and p must assign toz,butmtyrmamkbé‘mm Mby feference is used to
“implement all three kinds of arguments; the difference. m ﬁm B what the called
. procedure may do with an argumem -'not how the ngm ttpused
' Procedure invocations take the usu form: the name of the procedure followed by a
parenthesized list of arguments. For example, a ol of ﬂn pﬁm&m pw ibove might ook
~like this:

p (L, i+5,a, b);

The types of the arguments must match those declared by #. Furthermore, access constraints
may not be viotated. T’hmeonmu may nutbepuled umwwlwmsms as res

arguments
2:3.3. Returning Vaiues vs. Passing Varlsbles

The shhple scheme outlined xbove is perfectly workable, but can sasily be improved
uv;pan.v The main thing to notice is that Me is no explickk assignment. Al assignments are
,accomplished by passing a variable by res. (Presumably ,ﬂgm types have operations to

assign to a variable of their type. In a mmm are magical, since all other
| aSsignments rely on thém.)' However, the ymtm" invecations necgssary for each ass'ignmm
are tedious to write out in the simple -schcme, md they obxcure what is happening since result

‘1. We admit the useof var ﬁawmwnummmw mm«ltopnrallel
Pascal. Anyway. we do not wish to get involved in purely syntactic hisues.
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arguments do not stand out.
_ It is possible to separate result argumenu by wrmng them on the Ieft-hand slde of a
v’ symbol to signify asslgnment For examp!e. we would write:

var b: foo,c bar;

= qix,y);

cwrin;

a:=pi(b,c)
where in the simple scheme we wouldmlr:ve written:

var b: foo, c: bar;

q(x,y,b)

riz, ¢,

p (b, c a);
~ assurhing these to be the types of p, g, andy

P proctypeifvir foo, bar, res TD ~

- proctype (var T2, T3, res foo}

r: proctype (var T4, res bar) .

The use of "=’ shows mare clearly what ts{&qmgon, , ,

We can make a further improvement, however. If we had to declare a variable for
every temporary result, our programs would become qum cluttered with extraneous Val’hb‘es
and declarations. We can get around this problem .by having the mﬂu albcete temPOf"Y
variahles Adding this feature allows us to_ rewrjte the quve exupple amd ellmtnate the
temporary variables b and ¢ ‘ '

-a = p (qix,p, r2 )

varrable the compller will allocate a temponry va[bbht;g thg prgpedure to wrlte into, and
then the temporary will be thrown away (i, never accessed again). So, if the variable a were

never used again in the example, we could eliminate it, giving 2
plgxy, ) '

The end result of puttlng res arguments on the left, and having the compiler allocate
temporanes is syntax quite similar in appeerance to CLU. In fact, we encourage the
-programmer to- think of procedures as retuming objects instead of belng passed ‘variables to
write into. The overalf picture of this final scheme i3 that t‘e camng procedure gets the effect
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of ob jects being retumed and the calied procedure sees variabies whlch must be assigned to.
This is a good compromrse between abstraction and eﬁ‘ iciency T‘he only constraint is that the
- size (or at least an. upper bound on m of all ob jects to be returmd must be known before the
call, so that the ‘actual variable used can be created. How we 6&! with thls constraint will
become clear later. ) . :

To encourage thinking in terms of returning ob jects, we put the ducription of what a

p = proc (const wx: int, var y: lrnﬁint}hemm h}( M
The ob jects to be returned are given names because the procedurebeing defined views them as
variables. Therefore, we now call the result argumems of o proadure mum wtablcs ‘Notice
that effectively all we have done is segregate the res arguments

Now let us consider how to express the returning o{ gbym in ASBAL. In principle
we could use a return statement like CLU 's, which ﬁlxe;a Md m ta mm This would
be implemented by lmpliclﬂy doing a»ignmem! "?g E!:e ret‘nm vﬂ""‘
|mphc1t assignments might invoive the copymg of hrge obpm into the return variables.
Instead, we allow objects to be built incremenuily in the rewm virubies. tnd simply say

fC(lll'“

However, these

to return from a procedure We view the returmn vuﬂabies as bemgummuaﬁzed on prucedure
entry, and any return statement in the procedure is comideref wbe a use of afl the return
variables. This allows us to use whatever mechmm airendy exiits for dming the use of
uninitialized variables to handle return variables as well. " sam M the underlying

‘mechanism of returnmg is the passing of variables (whethet MWWW dectared or
| the” synﬁx?ﬁ”w Gl ca think ‘o - returning
: "?bbjects, a’ view ‘we’ feet is ‘more natural’ e Slamepbba e Taliag e g ol oL

' :compﬂer created). ‘However, we dFfatige

A g, e g

2.3.4. Mufltiple Returns

ww

In most Ianguages. procedures maAy retum only zero or cne things We remove this

."—'i 1;4} &yg;, PN s 94 ».u e M‘

restrictlon because it is arbitrary and sometlnm copnter

TProC ucme, in that some procedures
. most naturaily return more. than one. abjecr. Of course, we pmjde mbh gnhcﬂc forms for
"usmg this feature. T‘he return statement Itself need not be exmded since we are depending on
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.as.signments to get the .return objects into the return vimblu, as previously ‘explained.
However, some syntactic form is necessary to designate the variables to receive the return
ob jects. The multiple assignment statement, which wﬂl.be discussed in detall in the section on
assighment, is used for this purpose. Its geneni formis

var;, vary, .., var, := invocation;

The header for a procedure retutnlng more than ‘one ob pa ‘would huave a returnis clause of the
form : S S et -
returns (vary: type;, ..., var,: type,)
where the types may be factored. For eximple:
| returns (x,y: int, : char)

The order of the variables ¢h tﬁe lel’t side in the “multlph aalgmnem statement is the
same as in the returns clause of the procedure header. This panlk!s ‘the* standard
eerrespondeme of actual and formal arguivients to m The Teturns clause may be
omitted for a procedure ret!mtlng no dbjam, or : '

. returns()

may be used. .
2.3.5. Aliasing

We have not dealt with the problem that arises when the same object is passed to a
procedure in two different var posit.iom. or in both a const and a var position. The problem
is that not altiprocedures are prepared to’'deal with overiapping variibles. The problem is
compounded - by the fact that there are:variables that leffectively): ave subvariables (eg.,
records and-arsays), and overlapping subvariables present the sme difficuky. :Furthermore,
the fact that each argument has a. different aame-in the called -procedure tends to make people
forget that two names might refer to .the :ame object (or overlapping objects).  We call the
prot;lem .aliasing (after Buclid Hamn'mh Wesbelieve thut aiissing: 'shoukl be illegal.: One
very good reason for prohibiting: ablasing is: that: Wwocan cuusd an abgument to mysteriously
change into an entirely different ob ject from that passed Consider the following proccdure
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P - procia: maytﬂ, K:'t);
al10] :- .. ; |
At
;’nd‘ P _
Ht is reasonable to think that (a) p has no effiect on: xmt“ﬂ R0 ik In m"boﬂy,
and (b) that after the second mﬁmmwm in. However, one

~ could call # in this way:

. p (b, bl10)); . , «
Kssuming that both arguments are passed by reference, wy: s Mﬂww to c(mfl in
the body of mmm x. See [Lampun¥l] tor mmnnmfmm should
be prohibited.! -

Most casss of aimmumumm&mmm
run-time checks, eg., that two array indexes sre dif fevemt lﬂhﬂ

f (ali), al »;
and so on. Wewmup&mwhumhm»pmmmmmmm
~ itmplementation, and wiawptnd tmmbwmmumm amm; as we
encounter them. |

2.4. Assignment

Here we thescribe how 1o change -mamwwu'ma variable -Am_; operation
procedure invocstion, resure: varinbies fwiich wase Mmﬁk Wan the: anly'
assigmment mechanism. k*muummwwﬂmm

| var = ingocation;
that is. variables being asnigned a compused Wﬁ wiiulle is: phsait 46 the outirmost
.prmdure catled. *Q& V&ﬂ hMﬂ Mﬁw an really. mms.

l There are no implicit afgum in Asux..uumm mm Mm thc number
of checks required to prevent slinsing.




even if they are not explicitly written out. For example.
' X+y
reallj means

TS$add (x, y)’ | o
where T is the type of x) What about assignments of the form _

vary = vary; ? o -

There is no invocation there to pass var; to! This probhm can be handled in three ways.

First, there could be a system—defined automatic oupy operation performed This is
what happens in most languages. lgnoring difl‘ering stora;e formats. etc. the implicit copy
performed is essentially a bit—for-bit copy of the oonwtts of the storage allocated to var2 into

the storage of var ,v We call this operation a ut-c;p) A bit—copy worlts f ine in the ab's_:e.nce of
| abstract data types. but with their introduction a problem arises Any assignment creates 2 new

Rty ; 53

ob ject; a bit-copy creates one wnth the same state asithe ppe in the right-hand variable The
problem is that not all types should be copied in this way l-’or example some types may require
all the existing ob jects of the type to have different« states, :othat each ob ;ect is detectably
umque In the presence of pointers. it is not é:: v:hethei'ma pointer which is a component of
an object to be copied should itself be oopied or whether the object pointed to should be
copied. 1 Thus, an automatic copy primitive is not feasible '

The second solution is to have aii assignments .

" varmexp,

mean

var := T$copy(¢xp)
(where T is the type of both exp and var) whether cxp is a variable or an invocation This
“has the unfortunate ei‘i‘ect of doing a redundant oopy whenever ap is not a variabie
Furthermore, the redundant copy operation is hard to optimize away because users write the

copy operations, and are not constrained to malte them easily optimized |

pr A tv,-i‘.

We feel the best solution is to insert no extra copy ia assignments of the form

1. This is called the copy problem and will be further discussed when' pointers are added to
ASBAL.



wr:-lnm
and to take

vary = varai
to mean

.TScopy(wz)

Thetypeofrtcop’tsmmedmbe

proctype (const T) returns (T); : ,
lfanasngnmdmnm&msnﬁ&hmﬁmmmwaﬁmm
not exist, then thcpmgnmislﬁerm
LauspdntMawadMMnhanm Fmt.every
| operatmn mnpmm:mmﬁﬁpmdmmmbhm from one
 variable to ancther. Tmummmmmmmmxammdm
; demonstratcd the firat solition to be infeasible. Second, the =" symbol tas a non-uniform
meanmg While wesmmmmmmwmmmwm.

lan:quemnms,mfednmummmmuﬂubm Whtlsgained is a

savmgs in efrmuopmm mmmumm ,
o Thermmmprmmwmmm
X -p(x ;-
Here p receives x as an afgument m two m one h mdtbh. md one is write-only.
~ Fhings couldgetmllymeuednpm,mnmmhmw One way to
solve this problem is to transiate it to
x := TScopy (p (x, y);

similar to the mmamprmmpm mammuammtmh

- because it is nowhere mr asobviomnwonwha&ammwﬂhew and when

it wmnot Thewmmmbwmuwamymm”abp Thenafter
p returns, a bit-copy s performed from the temporary im0 x. A bit-copy works because the
state of the object in p is unabmm@f&’&m&mhnfme the
obgectinthemmryismlmudtgm
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- 24.1. Multiple Assignments

Ina previous sectlon we lntroduced the ldeu of retumlng more than one ob ject from a
procedure We need to be able to assign those ob jecn to varltbles The form of asslgnment
statement for this is

vary, vary, .., var, = invocation;

To .extend this to its logical (and useful conclusion; ‘we afso allow simuitasfeous multiple
assignments of the form |

var;, var,, .., var, -up,, cx;z, - cxﬁn. e S '

Each variable var; is to be assigned the corresponding exprmlon expi. and all these

assignments are to take place simultaneously. To prevent confusion we require that each

expression either be a variable or return only one object. In case of aliasing, the. same-trick of

using temporarles works fine. For example, in o op -
X, ¥ = q(z, rly), x); .

a temporary would be allocated for the result destined for x. On the other hand one is not

needed for y, because y is not an argument t0 ¢. ‘

" One partlcularly nice construct the multiple nslgmnent mtement ﬂlows is

X, y:=Y X
It is hard to decide if this should just swap the bits of the objects stored in x and 9, using
. blt—copies which is both efficient and semantically correct. or whether it should invoke t‘copy

twice,! which is more.consistent with our above rule about assignments between variables. We
-._belie-ve it is better to be consistent (i.e, to call tScay). A mew operator could be used to swap
the ob jects in variables, but we will not explore such.pessibjlities here.

1. For “x, y‘ - Y. X;" two ,temporgrles; mlght.b‘e'l regul:ed, however, it is not dif ficult to have a
compiler notice that one of them is not needed.



2:4.2. Declarations with: Initialization:

One last useful asstgnment statement is a. dcchuuon nith mmaumm (or assignment
" with declaranon) This form- of smem-m auom one: eo m aud um to s vmable in one
: I .

' step Here are two exampm.

var x: foo = p @,
var x; foo, y: bar :=.gft), r(u);

A declaration with initialization is eff*oetivelyl a shorthand’ for a ‘déélhration followed' by an-
assignment Thus the second dechnummwehwm ’ -
var x: f00;'y: bars ’
= ), rlu);
which is inr this case equivaiént'to
' var x: foo, y: bar;
X = qlt);
y:= r{u);
Constant definitions, which were introduced: ip:a. prawi

as declarations. with. initialization. The only: wfmmmm never hc assigned.
to again.

25 Access to Components of Ob jects

The: previous' sections of this chapter have deait: with mechanisms: for mampuhung
‘objects as a whole; here we discuss’ the additional mmm my«fw mipullttng
components of ob jects. Tmmm actions that can Ye-parforme o ‘olijucts: objects may
be created, they may be observed (read), and they may be mutated. We desire to be able to do
all three to components of objects as well a3 to entire objects: Creation i3 no problem. A
component of an object is either created when thc objlet is cnued. or is cmted by a

L In Chapter 4 we will see that there can be an lmpemm difference between a ‘declaration
with initialization and one without. However, for now, or the declaration with
initinliiation to beeepmﬁm 102 declirition’ rmvymm
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(mutating) operation on the ob ject. Records are an example of ob jects whose components are
~ created with the objects themselves Arrays exhibit the other behavlor the addh ancl ‘addl
operations allow new array elements to be created dynamlcally (Records and arrays will be
described in more detail in a moment) Abstract data types may display either ‘or both
component creation behaviors, they may always possess some components but create (and
possibly destroy) other components dynamicall’y
Reading components is already taken care of as well Since all ob jects having:
'components are built from records and arrays, and records and arrays have operatrons to read
their components, any type can provide operations to read any components it may have of
course a type imay not make all components availabie externally and may return information
derived from the components rather than the components themselves However. reading
~ componetits. is always done by returmng ob jects This is unfortunate. because returned objects
are always copies - always new objects (Remember tltat return variables must always be
~assigned to) Thus, returning does not allow components ol‘ ob pcts to be mutated only copies of
the components may be manipulated
It may seem that storing a mutated copy baclt into a data structure is equrvalent to
mutating a component of the data structure, and this is ol‘ten true However, many data
structures do not allow cornponents to be replaced at w1ll in this fashton As an example
consider queues; perhaps we can observe the member at the front of the queue. but we can only
_insert new members at the end of the: queue " An even better example Js. items that must be
mutated atomically rather than by separate reading then writing;"semaphores and other

synchronizing data types fall into this category. les .are sufficient for _observing

components but a special mechanism is needed to allow t;uttation of components.

In a previous section of this chapter we indicated that the operations of an abstract
data type are procedures. We now design a new kind of module, the selector, which is also
allowed as an operation of a type. Here is what a selector. dnes. A selector is_given an ob ject

from which to select a component and possibly some au ar;umnt.r to describe which

component is desired. The selector then proceeds to calculate whatever array.indexes, etc., are
required, and eventually executes a select statement. . The select statement indicates the
component ob ject to be made available for use. What is returned to the caller of a selector is



: select any of t,heir lacae! v&rhbm (o:
cannot create dangling refm ef Mxm A M . Creates 2 Rew object in its
’ return vanables procedum can nwer store ub_pct mfm in m «m '

‘ selected from vars shwﬁ be var, ie, mqbb and " mpa

 property is automatically inherited from the inceming, m F
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notanewobpct.bntnthcrzdumpmqugmm That is, an object

-' "reference is returned) The selected component may hgﬁ 2 mw to a procedure,
| Wand can thereby be muwuh Hemer, mnm_nmm mum may Aot be

‘ iiasslgned to; onky vartabm may be ndgnd L3

Simeamfﬂmmmwwmohﬂhmqam we must guard

| against any danguug referencas. Potamﬁxg a m M llhu ope: of its Jocal variables

rather than a compomnt of t:he ob ject ka&MfwMWha dangling
reference when the desmptm is retrned. Wc W&hb@ ring that selectors never

‘ ,»m MMWMWM

There are two minor painu o ‘mention n : m,: First, comporents

of m’i 'should be const.

5 B v

Therefore, a selector does not desmwbeber bebpct wm}'mbmn or var; that

mutate the ob ject being sehmd fmm; mmwpaumusm imidetheselector
for checkmg purposes. The nmd potm Is that a m M not mutate any ‘auxiliary

- argumcm Therefore, aﬂawxiﬂarywmﬁmhhm

Theformofasdcctwdcﬂnmmis

nam-selector éuml ’”‘l' """‘2 typz, ..,m',m)a!qgflm nameg: typeg;
) :tatcmm.c '
emlum; v :
The name,; fort>0 anthe&&alﬂuyaﬁmm&whﬂnd’ﬁhnhﬂfm The ‘of
type’ part m‘mtesmecypcvrmuapuu&em &u&nmmhhomy legal

"in a selector) takes this fori:

sekct wpressm

’rhc expression: ummawm«wwa mm

ltishar&ru“ﬁ&eﬁﬁméi“m&m&mmaua ‘

 selector. We could use

selector_nametobject to select from, auxiliary _,—, i - ,,
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to be like procedure invocation, but we feel it is better to wrlte '

object. selector_namelauxiliary arguments) |
to be analogous to records ‘The latter form alse Kas the advtmage of making the object being
selected from stand out. If the selector takes’ m luxmlf’f arg\bmu. the Pifﬂ“hm‘ mY be
omitted, leaving ’ ' : ‘ ' '

object.selector_name |
which is just Hke a record component sefection.
|  In many cases computing a- selection can ‘e expcnslve Therefore. we provide a
mechatyism for saving a sefection; it fs ttie wﬁwweemm B S ‘

with class name == exp do’ B e

statements
end with;

where class is const or var. If the class is.var, then the selection must be from a var. The
name- stands for the selected ohject within'the bodj of the with statement, and is treated
according to the declared class. A scope i uied bechiise extra: checking must be done for safety.
To prevent mutations -of the contiining’ object fwmammymg the selected object, all
arguments to invocations ln the body of tht with' WM are ch&cke& for overlap with the
selection. ’ - ; SR

For example, say (bounxded) queua are imphmmud as'artays. If the front member of
a queue is teld in a saved selection, then the quede may ‘ot bé Modified until the scope of the
with statement is exited. This is because an element of an array (the front member) overlaps
;vith the array itself (the queue). The checking to prevent’ this iliul’n& ‘Is done using the

normal aliasing detection techniques. (The checklng may be dlf ficult to ‘accomplish at
compile-time, however) The with statement is’ smhr to the Witd-operation in Euclid.

Now that we have described the essentidl nature of selectors and selection, let us discuss
where selectors are appropriate and . where they ‘dre not. Selectors are to be used to mutate
objects stored in a sutrouniding dita structure Without ‘disturbing that structure. The types
" having selectors will usually be Gnes that store"data“iterhs and relationships between them, but
do not manipulate the data items dlrecﬂy. Good examples are Jists, stacks, queues, trees, graphs,
‘etc. Selectors should defintrely:not be used o access: components:that cannot o should not be




mutated. Furthermore, selectors should not be used merely to make access more efficient,! for
this can lead to (effectively) exposing. the representation amd thus Hmit the range of
"imp}emematibns of a data type. For example, consider the functions Mﬂ.wmimﬂ arg on
~complex numbers. Implementing any of these functions as a selector forces that component of
compléx n.umt‘;ers to be represented explicitly in the representation. Hence, pelectors threaten
the uniform reference principle [Geschke75, Ross68]. Thus, the specifier of a type must use

caution when deciding whether particular operations should be pracedutes or selectors.
We now describe reconds and areays. 1t is important to understand their semantics, for

they are the principal types used in defining Wd‘ m data tmu. A record

~type has named fields, each specifying a type. For example.
recordla: int,

b: bool,
c ralph]
Each neld name defmes a seleceor with the spectmd mme;thc tmof m yelentor is
seitype () of type of field from record type . :
Record components may be changed. The openmn fpmld.um i: uad to update the
named field of the record. The type of put.ﬁddﬁ.mm is
proctype (var record_type, const field_type);
- The .new object is constructed using the field. typeScopy qpenuon. ‘whith must exist for
JSield_type to be usable in a record. For omvm record put ope \,m !’W"' a sugar. one
may write ‘ - |
expy ﬁald...nam - expz, |
‘ mstead of
- record_ typeSput_ﬁeld..name (expy, expp);
~ Notice that record put operations are “magial® atomic. mutating sztom. Records also have
‘copy and equal operations; records are more fully described in Ap Kh; H ‘
The oniy other operation on reoords B Creation. Thjj mmt be written out without .
giving an order to the Fields. We feel lt;!s mwm of the figids a3 being unordered, and

1. Sefectors do save a copy eperation over procedures returning an object.
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) the user may not hwoke the record crute opemlon dlractly lnsmd thefe is a speclal form

calied a record constructor wlvlcﬁ allows cmtlon of%%o?& ob jects ln an order—lndependem way.
A record constmctor takes this form: ’
. record_typcslﬁcld_uaml: expp,
' field_namey: exp,,

ﬂald namn cxpn

{x- b ak . . (O

... The field names must all be. pmnp;exml; MMM m e ms ammnmd in

the order listed.’ 1 Suequ ields may be mwm (copies-of) MW chpuby writing:.
' Jield_ nama,ﬂcld..um g, XP g e e :
The record construetor invokes tbagmm sopy gpmms for each expmnea -which is a
variable, and for each expression
An array object is a sequence of obpcu. of a sln‘le type indexed sequenmlly The
sequence may be empty, and can grow and shrink in size dynamically. Amys have a selector to
index them; it is called fetch, but there is a shorthand for indéking lrrays “Ian element with
index- ¢ currently exlsts in the. amy e, then a(!) selecu tlm elameng. q dou thc unsugared form
afetch (. ‘ - e
' An array vartablc an hold only certaln nmy ob)ect: af its type More sgeclrlcally.
each array varfable has associated wlth it m lnterval of the lntegers. and only arrays whose
indexes are all in that interval may be saorod ln tl:e array | varhblg. ch emphaslze that the

indexes of an array ob ject and those allowe;l l‘or an array mlable are both sets of consecutive

; 'integers) The allowed indexes for an array varlqyle are, set wb?'- LI ls declared _and_never

1HEED. 4

change thereal‘ter Thus. an array varlable of type m%lfoq;lpw,hlgh] can be. asslgnad any
array ob ject whose elements are foo’s, and whose indexes are al g}egtgrthanm equal to low
and less than or equal to Aigh. The type of the array objac_t is ;gr;x[fog) {This difference in
the number of parameters and the ' notation \plll beg xplained n the gh;g;gr on farameters)
~There are operatlom on_ arrays that qu Addlng!md yemoving elements from the
hugh or low end (l e, growing or shrlnklng tlze arTpy one elemmg at a time at elthpr end) (addh

1. For ASBAL to be well-defined, the order of evaluauon is llways spedﬁed Unless explicltly
memioned thmt order {s left vooright. . . ol il
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and add)), trimming toa particuhr range cf hdm (trim), Auerying the size (:tze) low index
' (low) and high mdex ﬁig&) shmtng the dmts (ux,.lew) aad ‘replaciny the elements (store).
This last operation store, has a mgar simim fn th:t for tbc rwwd m m& We may

- write

exp,[expzl - exp 3
in place of

array_typesstore (exp,, expz, exps);
‘Both forms mean “replace the component ‘st indéx nimber upz #h the array cxp, with a copy
of exp ;" See the appentix for a complets Hist'of smymmms v

Arrays were designed in this (somewhat unusus® way to be convenient for use as
: rwnsemumof Mmdmtyp!s ayd to'previn "m@ﬁﬁm Slements. However,

iﬂtptceand

they are a bit more expens

in time.
_2.5.1. Examples of Selectors

Su}pﬁose' we i{ad‘a‘ﬁlabstuc.t type usbcmm.mmy ‘which associates pairs of integers
We represent an associative memory as an array d‘ mmmds; eanh fmord has two components,

" one for each integer of the pair 'l"hm the repmenum type d m tmnnmry
cluster is

array(reeord{ﬂrst, second: int}; 1, 100]
g assuming a maximum of wo elements is allowed. The We memury is to have an
operation tpdate wmch wifl chmge the uend dlmont efa pﬂf hnd m the ﬁrst element.

v pdale will have in it a statement Hﬁe ‘ ’ ’

a[index] second 1= new;
which is a sugared form of
© RTSput_secondl(afetchlindex), new);
~ where RT is’ recor&ﬁrst. second: int]' ‘Thus, we have shovm howa nhcmr may be used.
" Ldusnwmﬂd«maa@kﬁaqpemnmm a bank account

record file." It is convenient to design the structure used to aceess the indiyidual account records
of a bank independent of destgnlng the records m“’* Of course the two -designs
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interface in the area of the keys used to mrch for the records, but except for the keys (and the
size of the records) no propertles ‘of the records affect. the deelgn of the access structure. -
Likewise, the access structure has no real effect on the properties of the records. Letus suppose
the file of al account rewrds is a (rather large) objact of type acwuwue, and that the type of
the  individual -Pecords 5 acoment.revord; “Since m mdr are mutable. we. deslgﬂ
acconnt._file with a sefector of type ‘

- seltype (key.type) of account_record from account_file ,
This allows us 1o realize the separation of accels from:‘tse: > This sepiration contributes to
abstraction by reducing dependencies among different types. In the ubsence of selectors, we
would be forced to implement: ait update actiohs o itcount records as operations on account
files,”and present the approprme key every time. Furfhermore, the access' would have to be
recomputed -every time. Thus not only sre mere tipe’ ‘dependericies created (by maklng all
record updates go through file operatioris), but perfurmance fs reduced as well. (Remember.
though, that perfmnee arguments aiotre do'not- piﬂ?yming lelector) 3

On the other hand, if a selector is used to aeeustlte‘reoord:. then a restriction is being
placed on every’ implemientation, namely that ccotint ‘records Tnast be represented explicitly in
account files, and that it must be poaibteforpr&gnm w eﬁiu mnt records dlrectly once
the records have been selected - | '

’2.5.2. Summa_ry.

. We have presented a hew module. the sclcctor, destgned speclf tcally for ASBAL'
ob ject interpretation semantics Selectors allow components of ob jecu to be selected dynamlcally
and passed to procedures to be mutated A type has :thel ultlmate control Jover the components
of its ob jects, and need not allow them to be selected Fnrthermore, only the ob ject can change
the tdenuty of its components. since selected componenu mey not be asslgned to. (Selectlons
produce ob Jects ot variables) Records and emys were Introduad as prime exarnples of types

1. Notice that selectors do not nlu my olf &hepmhhnu mllted wlth accessing - obpcts on
external storage; ASBAL assumes all objects exist in. &Munlﬁormly acoessible address

space.
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Aprov:dmg selectors. We afgued that m mmﬂmhhm ;pamlgly SO as
to avoid havmg typesdcpmd mmm.wmw ' '

: 2.6. Tinplementation

Now we came to the question of how to implement sl of these: eatures.] First, we are :‘
going to allow recursive (and mutually recursive) procedures, 30 & atsok of ;provedure activation
- records is required. . These frames (as we slto call the activation pecosds) aee very much like

. those used to implement hw Mm Algol.and PL/1. ‘Encls frame contains the: storage
far the (local) variables and tmpmsf mm -antivation 4o which 4t corresponds.
Since a finite (and umaﬂ;;mm number.of variphies ave “Mﬁpm it is possible to
give each variable a fixed offset from the beginning ﬂmm wivich can be very efficient
on many. machines. As for arguments and retumn yagi Mﬂ MM by address.
The slots for these addreues,m 2l be at fixed mwmm the start of
the frame, since the argument addresses may be. pnt ondhe. Jop of -tive -stack by the:calling
procedure before the frame is.created.

Using fixed offsets in this way fails only for joca) vm and-temporaries whose

dile-time.. (However, descriptors. M 5" peinters to those-parts
of a variable that are aliocated at run-time, can stif be norid. . weffeets- From the start of
the frame) Most types have a ﬁxed size, and we will not ﬂm the mechapisms for using
types of varying size uutilthcchapm on purameters. On the other hand, ‘we present the
implementation now since it af fects other parts of the dmga of A&BAL

Most cases can behmbd by mmmw mtﬂf norage on the
top of the stack as soon as the. size is kmum (Thk WBW%mgh a pointer at a
fixed offset in the frume) Thue are on!y mmw tktsdusnot work perfectly:
dedaratmns wuth inithlizm tnd Wiu in the aidﬂe &‘ m As we will see
later, the size of these varhbuc my nut be kmn umﬂ jmt Man :he proedure which is to

Seivp

size is not known .al. co

1. We assume the reader is f:trly familiar with implementation uduﬁqw for stack based
programming fanguages; so-we mmm MMWMW!& do not present
' specmmmsarm ;
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initialize them is invdked Unfortunately tMs ls af;er a“ tfle arguments to the invocation have
been computed if any of those arguments are thameives temporaries, then allocating the space
for the return variabks at the top. of the stack: wﬂl*rmk’in*r"hﬂe when the temporary is
freed. Let us prcsent a simple example to demo@tnﬁ the cmtlon of these holes in the stack:

var x foo := p (qly), r(z))
where the size of the Soo is not known until just befm'e p is alied

(D The stack starts asin part (a) of Figure 1, wiﬂrrmd”’z Mthe current stack frame.

(2) A temporary variable 7_g is allocated, anid ¢ huﬁed—ﬂb)

(3)  Another temporary ¢_r is allocated and r is aMftc)

4 Space for x is alocated and p is called (1d).

(5) The stack is left as in part (e) of Figure |, with a. hpie begween x and the rest of the
variables,

Thus we see that the simple scheme will leave holes. m ttmmck “There are three solutions to
this problem The first is to ignare it; this is not agood ldu for more and more holes could
accumulate {eg., in recursive calls) and cause considerable waste of storage. Still, it is not clear
just how. much storage-is wasted, and it may npot payt&mvmtthis particular waste. The
second solution is to’ bit-copy the new variable- after ltls crgted,moving it to the beginning of
the hole, and thus eliminate the hole. This need nqtbg mr‘ldgm in terms of code because

many machines have a suitable block transfer instructicn; he

considerable processor time and memory cycles. .

er, the copying might use up

The third solution is to use two stacks rather than one. '!"he basic idea is to allocate
temporary variables on one or the other of the two stacks 50 that peither ends up with holes.
Let us call the stack !W:ﬁ the usual frames and docal mﬂn sariable stack, and the other
one the auxiliary stack.! It is clear that in ordet:to end,,upﬂm:_m holes on the variable stack
the temporaries used for a call must be on the auxiliary stack. A symmetric argument leads to

1. The auxiliary stack will have to be set up into fmuue.ﬂ, ut its frame pointers and
stack pointer can be saved in the variable stack. Thus all housekeeping information is kept in
the variable stack with the auxmary stack used only for mmg umporary variables. -
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(a)

(b)

(c)

(d)

(e)

hole {

Figure 1. Scenario of

Wmm

Emaf worx: &n-pw M

initial Stack |
(stack grows downward )

Stack during call of q

Stack during call of r

Stack during call of p

Final Stack
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the converse fact: that to avoid holes on the amtmary stack, lcmporarles needed during the
computation of intermediate temponry values must be put on the variable stack. What
happens is that we alternate between the stacks according to the nesting depth of a particular
temporary in an expression. Let us examine another scenario to illustrate this scheme. Wg' will
_go thfough'the execution of |
“var a: foo = p ( q(r(), s(t0)), u(v({» );
The evaluation is strictly left to right. Figure 2 shows a sequence of relevant snapshots of the
stacks. It is not at ali hard to figure out which temporaries should be put on which stack if one
works backwards from the desired final conf iggration Note alse that the use of the two stacks
is purely for the evaluation of ekpreésgons ;&Mn a procedure. Any pfpcedure that is called
~during the expression evaluation can put its local varfables and- temporaries-‘on top of ‘either
stack so long -as it cuts both stacks back to their previous state befose returning. Notice also .
that bath the one-stack and t_wo—sta& schemethmdle multiple returns easily, by allocating
* more than one variable at once. | | '
It is not too hard to see how to implement two stacks on a computer one starts at low
_addresscs and grows upward, and the. othu M%high addresses and grows down. There is
' some time and space overhead involved In keeplng two stack pointers and frame pointers
instead of one each, but there are no severe technical problems. So, we have seen that two

stacks are better than on,e.1
2.6.1. Variables

_In either scheme (one stack or two stacks), a variable' is a contiguous. block of storage,
at lea;t cq‘ncepm‘aﬂy; 'For variables whose size is known, storage is albamd at fixed offsets
from the beginning of the frame (in the variable stack). For.thos'e whose size is not known,

1. Implementations of Algol 68 have many of the same difficulties found in ASBAL. (See
[Branquart70] for a description of the problems and their solution) For example, some space
reserved by loc generators in Algol 68 is more easily put in the heap than on the stack. It is
possible to put all space from loc generators in the stack, but in ASBAL we must resort to a
heap, second stack, or copying the space. However, ASBAL does have an advantage over Algol
in that it does not need a disphy, since it has no local procedures. .
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(a)

(b)

(e)

(d)

(e)

(t)

(g)

{h)

(i)

Figure 2. Scena
Execution of ‘var a: foo := pl g{r0, stOD), w(v) )

Initial Stacks

Just before caliof r

Just before call-of t

Just before cait ot-s

Just before call of q

Just before call of v

Just before call of u

Just before call of p

Final Stacks

rio of the Two Saack Method
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empty

empty
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tqg -

- elg
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- space is reserved at a fixed offset for whatever information is necessary once the variable is ‘
created. This can all the' variabie fixed size parts. and sioks for the sizes and addresses of its
variable size parts, which are filled in when the vatuble is aﬁomsed The figure at the end of
~ this section shows a possible layout for stack frames.

2.6.2. Selections

. ]

A selection can be implemented as a pointer to (or descriptor of) the ob ject it denotes.
Slots for. these pointers are easily tlbaud uwmmmwm have tﬂxed size and
are of finite number. Even better, the number of selections is apparent from the text of the
program. Thus, allocation for selections is no-problem.
| Checking that selectors do ot select o local itein, etc:;is. more challenging. A compiler
can perform the. cheeks by,;neiysis of .the expression given:.in: the select statement of the
seiector. The expression must be the-object to select from;-or. (miote usually). a: selection. from
that ob ject. The other checks {(eg., th_atftheauuiihmw -are not mutated):are handled
by other.checking mechanisms: with no- spacial qasing:: Savedselestions tin the.with seatement)
present no more prablems shmuguhrmmdnwwme ;ame way.

-2.6.3. Nested hloeks

Instead of using a full frame for nesmd biocks, itis probably usiest to append their
fixed size space to that of the enclosing biocir.s, making omhrge fixed size biock Of . course
blocks at the same nesting depth can use the storage in different ways ""‘9";‘3’?1“’.9’ of . them
can be active at once. The part of their storage that Is unknown in size can be managed in
stack f.ashion:;allps:ated beyond mewfmthemm, and:cut back when the nested
block is exited. These are well known techniques.- . - o SRR

2.6.4. Checking if Variables are Initialized

Now we describe th“e"cﬁ&ks necessary for insuiing ‘variables are always. 'iniitia‘l‘ized
before use. First, let us see how much a compiler £an check It is clear that truly sophlsticated
checking might invotve complicated analysis of ‘the cont

¥ flow of a’ program However, we



makes

%

) ‘would uke to knp the mlym to 2 mtntmum mn. we o 0 c;llcd “structured
Prosfammiﬂg comtol-fbw mwmu gmq] W the  analpsls, T}n qmcal featme of

such statements 13 :m:mwammm;wmw o.a mnbh size.
Thecompﬂer can keep & record of which variables are yi ned 10 In every biack. From this it

is fairly easy to combine the information, separsting mmmm

(1) those dcﬁﬂttdy initialized at every use;
(2). these defimitely wninitiolised stsomewse;, - . i
(3) and mmmummmmmmmm

Al ‘;

* The first class is all right; the second indicetes an: inosevect pregrane:and the tast cleas requires

" the insertion of run-time checks. For suh wariibisef the duat-sh, the sompi)
bit of memory in the Tun-gime stack frame to e rused 2 i indicatar-of mmr variable
- has_been initialised. These bits-all stust in tht‘wm M*ﬁm places on the
: questiombk mmmmuwmﬂ uﬂpw tﬁ‘b%uﬂt, Even if a

r'aliocates one

variable is.used and aasighed 20 in menypisces thiventrs soty-wil-be Ierted in Chly & Tew.
This, along with the fact that mmammumm mm nitxchines),
means that there is little run-time overhend. We Feel that the overhead is well worth it,
particularly when debugging programs. Notics that this same scheme checks for initialization

of return variabte: all. we need do B m those, urpbh o m uninitiphized, and view
the retm'n statemcnt n 2 use of tﬂ of ﬂn retumn VM

‘ﬁzs 5. Anmng

The checks. Wuwmlnw mw ona ;imple

' inducttve principle: if there is no aliasing when mem e, nowe of its

arguments or return variables overiap), and ail local variabies of ' m daspm (none of them
overlap) then we can guarantee that mm« » M in. the mmaom it makes. The
compﬂer does this by mklng sure that mm MWM in the calls p

‘Tolmpmntalm(dmmnﬁamwdwhkhmmuof
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variables overlap, and which do not. The Eu’cli&;:repou't [Lampsonm gives a very detailed
definition of which variables overlap in that language. We will be content with a less formal,
more intuitive description. First, it is obvious that a variable overlaps with itself. It is also
clear that a record overlaps with any of its components, and an array with any of its elements.
This carries down through all jfevels, so. an array of reoprg; overlaps with any component of
any of its element records. On the other hand, if two vauabies do not overlap, such as two
local variables with different names, then none of -their whoomponents overlap either. When
two variables overlap, one must contain the other; hence, when two variables do not overlap.
they are completely disjoint.

How do we exiend aliasing detection to ”genenl sggectlons? First of all, any selection
comes from a particular qbgect in a particular- vgmbk ‘We need only check selections from the
same object. An ob ject and any selection from it are conside;ed to overlap Selections from the
same object generalty requtre a run-time chi!ck “This’ eheck ascemlns whether the two
selections overlap physicany in storage The startfhg nddress for each selection is always
available at rppftime, but themlergg“t!mvof uchmustbepmvlded in additlon to the starting

addresses . |
| Ina later chapter we will extend aliasing preventloq to cover.the use of pointers. Our’
aliasing detection methqum based on those of mimm

2.6.6. Sumtnary

ASBAL requires one stack to be maintained by its run-time system (but may do better
with two). The stack frame for a procedure activation contains the local variables references to
the arguments and result variables, and housekeeping information (return address, old frame
pbinter, etc). For most variables, fixed offsets into the current frame can b_e used. Some
variables require a certain amount of descriptive information (descriptors or dope vectors),
mainly those whose size is not known at compile-time. Figure 8 shows a possible layout for
stack frames. . _

Argument passing is by reference, ie, the addressu (or descrlptcrs) of arguments are
passed to a procedure when it is invoked. Returned results are simply extra argument
variables; the addresses of the variables are passed. Most of the checking for aliasing and



.
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E uninitialized -variables is handled easily. at compib;-tm am‘! the run-time checks do not
amount to much code We conclude that our scheme is abotlt as:e_fflcient as possible given the
level of saf ety we require and the future;m \uﬂs in MW

2.7, Programming Example

In this section .we will present a programn,}m .example to help illustrate the
fundamental ideas introduced. in:this chapter. ‘“The example ‘1§ ‘#’ type definition, but since
clusters (the form of type definitions) have procedure.and, selector definitions inside them, all
three module types will be illustrated. Laterwe Wil see’that ‘using ' more advanced features
allows us to write better definitions for the tape we now: ppesent. but at this .point we are
_ restricted to the most basic of fextures. : S

There are. two essential parts to n tlpe |

iefinition in. ASBAL. the rep (representation)
type and definitions for the operations As in CLU, we group these together in a smgle
module called the cluster. The syntactic form is: BT

type name = cluster is nams_qf_opcramu:..cxporud

D ARp -, rcp.tm ;
operatiort!__ttagte = proc ... ;.

-~operation_neme = selector ... ;
end type name;
The procedures and selectors may be mixed. There nlap %may be lntemal procedures and
selectors; an. internal opention is one that can be calledmly frbm within the type definition.
‘Internal operations are distinguished by the fact that tbey do mt appear in the list of exported

operations.
2.7.1. Bounded Queues of Integers

In this first example, the task is to define and implement a new data type, a bounded
queue of integers. The operations'of this type and their functionality are listed below.



create: proctype () returns (queue)
co -=(cmmammyqum’

insert: proctype (var queue, const !nt)
' (invests ‘thye trteger at the-end or ‘tive quieue)’

remove:  proctype (var queue) returns (int)
(removes the front member of the queue)

is_empty: proctype {const queue) returns (booD
: (mummﬁ.adm&&g&twm .

is_full: proctype(const queué) returns (booh
(returns teve if and myamwm

size: proctype (const quewe) returns (int)
(returns the number of members in she quene)

2.7.2. The R-epmﬂtm |

_ It is easy to decide what representation to use fur this m An am of 100 integers
- will hold the members of the queue, and wmt'emnagdk circilar ‘buffer fashion. One
index will be maintained: the position of the first. mm‘d' the queve. Tht”memben will be
stored in order of increasing indexes in the array, medob 100. Thg size will be kept explicmy.
Thus our type def inition will begin:

' queue = cluster is create, insert, remove, is_empty Mnﬂ. ltne-
tep = record [first:int
size: lnt,_
q ath
at = aruy Lint; 0, 99];

end queue;




51

2-7.5; The oper.“on‘ e

We will write the create. W‘“ Hirst. mm the ﬂfftmt the rep to be
zero, the size to be zero, and fill the whale army. "J‘h ;qm. Eﬂnm i fl;@ for efficiency;
it does not matter what it is filled with in this case) The mmm is presented

. 3 & 'F’é)
below: , e

_create = proc () returns (q cvt)
Qs-tpp{fw& I
silg- o

&tﬂill (o, 0 lm)
Omm = SESRNS EHLLT T

The notation cvt (from convcrt) lndk:ates a varhble or obmtim whose type is viewed as the
nedi ‘outside. the module, and the np type inside. Of

i s
w%&m ﬂ'mmpe by context.

abstract type (ie, the type being d ¥
;¢ P "'i‘“fg{‘g
course it is only allowed in a- modiile
The expression ar$fiiiilownum denotes an array objla. AR ol ohpee: m are copies of {
% hw;t [ : %

(made by uslng tScopy), for all Indexu in the nnge% MM m chisive
is not negative. (Camng ar$fill with a negative third ugmt is mm.m what hgppem

;,,‘, ’*"R’"" L3

. will be explained in the next m?w)m?mm iy o, retwy

abowr, for convenience, the end statement of a pmudundau an lmplldt returg. .
Let us mveontos!zc.u_mm.and is_full.

size = proc (const q: cvt) retarns (s. lat)
. s_q.s‘ze; TR ;.‘,7._'15: Lo
end size; . '

Dy

is empty = proc (comst q cvt) retms (e: bool)
e := (qsize = 0);

end is_empty.

is_full - proc (const q cvt) retuﬂu {: lnol)
f := (q.size = 100);
. end is_full;
‘Our integers and booleans are like those of any other language; details are in the appendix on-
data types. The use of =’ in ¢.size = 0 actually indicates a il of ‘intSequal (gsize, 0. This
use of syntactic sugar allows us to extend symbois such as ‘@', ', ', %', ¥/’ etc., to abstract types.
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Full informauonon!henmnmmh"ﬁmhm'mw_f, o
Now let us maﬁmm

mm~m4m¢mmmmma
if gsize = 00-them error end if;
var index: nt :-W'bqum
qalindex] = val, -
q.size = qsize + §;
end insert;

The *//° is a sugar for typeSmod, that is, the m tor rerokincher) qperation of the. type.
Notice the use of supmd array and record m 3 operations. The wnext
chapter will present a mechanism for signalling and: mm now -we will

write error to indiate ﬁnt awhn chezbs:hm m

remove-pm(urs,cm MMM;
if q.size -émmwi'” ”
- member e qafq firnk
girst ;= h.ﬁm»ﬂﬁm
qstte -qtﬂe 1 g .

>Fin'm m are ﬁx&m aﬂ‘ ﬁ u‘e Q’muﬂlﬂ (T‘I e ~
typeSnot (expr)).” . ‘

varq queue -queuqtcmce()
if ~ queueSis_full (g qu(q.fwuiﬂ. ,,
if ~ queuetis_aupty wmmamma—nﬁ
var s int -qumﬁa(q)' | iy

This data type(quwe)mhmwwwmm mmmmm;
exampksdnhmrdﬂmmmm o a ‘
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28, Conélusions

|  This chapter, has deakt with the. fundamental -semantics of ASBAL, a_language

| intended to preserve as many, of.the sbstraction..fenturesof CLU-as is ‘possible under the
) con#tréint of a ;iacl,x-oﬂented semantic qumm :We started with: the:notions of
varuables and ob jects. We then. wept into. ﬂum and the ayntax. for procedure call and
return. - Aliasing was discussed, and- rules formed to prevent: s mrm A-satisfactory
solution to the problem of uninitialized variables was presented, and an lmplementation
outlined. Next, the mechanism of assignment was expiained, followed by a discussion of
component selection.  After discussing lmplemmutlon we. prgunnd an example to illustrate
these conccpts The groundwork haj beun hld fof g more advanced  features of
'ASBAL. The next chapm' wm :mm&m tivo new femm:: umm and exception handling.




3. Two Extensions

In this chapter we extend ASBAL by the addition of two new futum - iterators and
exception handiing: Rerators infroduce 4 new Kind"of slidirattion, and are implemented by a
new kind of modute. mmmmmmmmmwmmm
modules; it changes them from phitiel Puncihs s Vel b by allowing them to specify and
deat with exceptionst cases Weﬁﬁwﬂm uk is WCLU and then modlfy it as
necessary for ASBAL: : A ‘

3.1 ltentou

| Amajorgoalofabstncﬁeuhprognmmhgtswmvechtpngmmmerawayfrom

- details and into Ming at a high oomepna! m Pmedm pw:?vm functional (or
procedurall abstraction, and clusters provide data abstraction. Ancther useful kind of
abstraction has been identified, the control abstraction (Liskov"?, WMJ The only sort of
,cmtm!ﬁﬁ%mnﬁdfukammﬂmmmam based on the
itcratorsofCLU Akmpbuthmhukptm

Kb genemionafthenqumced‘mhmswhmm. :
(2) operating on the data, and
(3) testing for completion

 Iterators provldea modular mydgmm&gﬂumafobmmbeopermd on. In
CLU, anﬂmtwgmuuaammdebjamwmpandmmwyafabop The
crucial point tsthtumwgmmewdmm#mobmata
time. Thiswinuummmbyfmmmhmw }
Letusnywehavemmwcm.m:. Furt!wwppmethatmanyofour
vprogramsthatusebinary.tmsneadmammmmwdammmmﬂgmorder If
.wgareglvenuperuﬂmsmfmhmekftmdmm&aqunhokvattheIeave‘s,'
in the desired order by keeping a stack of trees. A loap to do this might book ke (in CLU)




t: tree ;= tree of interest; .
st: treestack : ’Mck&mn O;
while mo#? R
iftisa lcaf o
then
loapbody
if treestackSempty (s
- then more :« false;
else t == treem:kspop (s);
end .
els’e
tremaéispush (u. rt;lat m« oft)
tow feft: subivee #3: N M s
end : P
U enid;

Thus the stack of trees is used to ; : ' ﬁghg m;ﬂmd whk.h have not been

generated. Writlng thls code out for every loop is mewm l’!ﬁﬁ% many
details. If the type unary_tm offered an iterator called leawes, we could write the above loop
. this way: - e

forl: leaf in binary_tresblesves (D-de - =
o loop body

 The vartable Lis called a loojt vcrlablc, and s Ioal m the (Qg statement.
The for Ioop is more to the point. ngd jepends 9@@: denail, tm,ic!gu the w;hile Ioop
In short, iterators provide better abltncthn Iterators can also be.more efficient than loops
_‘written ‘out, because they can be opggam of a W{[mg Nhave access. to the

STy ,;s ijt-"*}*?,. AL 3

- representation of ob jects of the t;pe The dgm of the Yerator leases sight look, like this:

B Y
=N




leaves = fter (b: mmy.xw mm
if bis a leaf
then yieM (b);
du
ym m;
end,;
for & lexf in mnmmmgﬁ o
yileld ();
end;
end;
end leaves;

The recursive fterator makes our m more tbm m ﬂnm a W o the genmtion
algorithm that was obscured in the while uvp. Msuwm the ueunm vmton .

is iess efficient Mnmwwmuggmmw
upon implementation detaihs,

. L““““’““‘”“mmmm Wmmmdm in
: mgmtmmﬁ:mwm R : : .

(M the for bup colly the ferator;
(2 the ierator ytelds objects mmmmnw
- (3 the loop body is exetuted mmwmmumm yielded by the
. iterator; : ‘
4 thutenmrfsmmd whet ummwmmw
(® the tterator rmtm, ertinal ﬁnhup

T gy 1 )

Noute that tﬁtb@pWyHeﬁmewMuMWMMwmﬂy Also,
the nemur ¥ dlways resimed ]mafur“ifaiu wda m maam nmbm tmact
Thus iterators are a form of corowtine. mmmmmckwwmem
run, but iterators are sufficlemtly restricted that they can be impluwented with a single stack.

(Iterators run in a single stack because of MMM of resuming they use) Let us
detail the transformations made to the stk for Md‘ the basic sctions Rsted above.
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(1) . Iterator call - the arguments are passed-and‘a new: framels setfupfér‘the iterator, just
asina procedure call; ” oo bmaeed
(2) Yield - the loop variables, which are created at this polm uu!eu they are of fixed size,
~ are set to the objects being ylelded, the-iterator’s resurie address'and frame pointer are
-+ pushed-en the smek, and:the for-ledp- WWWM the environiment reset to
‘that of the iterator's-calier; (metice: that. mumzm ‘even tmgh yieldrng is
semantically the same.as reraing) R T e
(3) Loop body - the leop Myemﬁmmm any’ temponry ‘inforfiation on
" the top of the stack, beyond the dearatorls frume; - o
4 Resume - the stack is popped back doyn to the itemors I;ame and execution of the
iterator begins agaln at its resume addren, wtth its mvtrenmem restored; -
(5) lterator return - the iterator returns to its caller executlon oontlnues after the for Ioop

s i Sig e
eret i

';Thus, a yield is a kind of aand 2 resume s & kind of raurn. both are a spechl case of

coroutine yesumption. -

As the example demonstrates, iterators may contain for foops, even ones that call the
iterator recursively. This is useful for wtlklng* reamlvedm mtktﬁre& *Although we did not
show it, it should be clear that for loops cal}bl nwesl wuh m dlfflr.uny '

Another feature we did not mention is that a for loop can t::%terminated in other ways

than by the iterator returning. The loop body an execute a epecial statement called break,
which terminates both the body and the iterator, continuing execution after the for loop. The

" body may also execute a return statement, which terminates the body. the iterator, and the

routine with the for loop, all at once.
S.1.1. .Implementing Kterators for ASBAL

“The description above hai been of lteram . they appeer in CLU here we will see
what Form ﬂerators take in ASBAL. T-‘Im of aﬁ‘. our cafl mechanlsm can be trlylally extended

b i

 to include calling iterators. Tterator returns are ‘abio trlvul, being the ume as procedure returns

Yielding is a little more complicated. Semanuali;"n yleid is like 2 return However. it cannot
be implemented as a return in ASBAL because returning in ASBAL always create new ob jects;



_ semntlcs of CLU mzmtohelpusdeﬂgnmf« ASBAL. mmﬁ :

" “for iterator deﬂmmms and for loops in ASBAL Then will be more m of _iterator
deﬂnmon and use at the md of the chapm

“an iterator should Mab&mmnmdmwpm.mhnmmuof an

array. Thismm:mmmw!ahﬁwm will be
evaluated to ob jects, as is done for selections: '

yield (exp);
yidd (exh, czpz, s €% Pl

,We also md a yumsmmaMMMva mm ey mm same form
_as procedure headers), which defines the order of the itemi:anl:their ‘types. 1t Is wseful for the

iterator to control whether the objects it MMW constor var I the' bp body so the -

‘ yicgd‘ clause includes that Mnm Hucmmm

i = iter (const l.b'hm -ylelds teonst int); -

or
i-iter(coﬁstf foo,vnbhr) ymwmnma.m

‘orevem.. .. ;
_l-iter(comtmt.ht)ymﬂ)

Now, let us consider the. formofﬂveforbepm Thegeaw&lfm myaswell follow
CLU’s. TthMMMbhmmquMﬁmwl
variables; the declaration wiil mummmmmmmwmum'sor
vus, Here are some examples:.

. .- forconst x: int in-.. do mm
. for var x,y: int in .. do .. end for;
fotmux,rtnt nrz:tnﬂn du uitu;

The formsofthebteal:mdnummvum .
brul_:
and | L S

return
3.1.2. Summary

- We mtroducedthenotionofanimmunwiamm”mud at the
,aform
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3.2. Exception Handling -

In our earlier dlscussion of procedures we ornimd one Importam aspect of procedural
abstractions. A procedute, iterator, or :ele&ar“ mighi ndlﬁ m caffer of an unusual or error
condition. We unify the terms unusual and cmr n the term mcpuou (or exceptional), after
Goodenough [Goodenough75l. In this. -sectipn, ‘we' Firét exuniing Ctv's exceptlon handling
mechamsml and then proceed to modify it for ASBAL, in much the same spirlt as we did with

iterators in the previous actlm : s C

3.2.1. Exception .Ha_ndllpg in CLU

Any procedure or iterator (we say routine for shord in CLU may .ngnal exceptional
- conditions to its caller: The CLU viewpoint on the meaning of such stgnals is this: a module
signals to indicate that it cannot perform its duty as a. good abstraction. This might be due to
an incomlstent state of an ob ject. beuuse of bad argpmﬁ. hecau
because of a system Hmitation (eg., out of memory) Of course, it mwy less odiously indicate an
unusual but predictable muation, such as end_ .,(uc The simplest semantic view. or what a
procedure does when it sigmls an exception ts that it returm a different and distinguishable
kind of ob Ject to its caller Each excepﬂon the pro;edurg mlg!;t want to.signal can be given a
different name and a list of ob jecu can be sent along with [the signal to further describe the
, condltion - | '
 The procedures caller has the option of Agndling exceptions signalled by the
procedure. If the caller has a handler for the ‘exception, then it Is executed, and. execution
continues after the statement to whi;h the handler was attached. If. the calier. does not have a
handler. for the exception therv the alhr ﬂgmb ay

. of a hardware failure, or

“' ‘Kmﬂm called Jailure, se glng
along the strlng

1. We note that this' upa'.t of ELUhts begi mb t to change, s0 §o not considgr what we say
here to be def initive about CLY. However, mw’of tﬁegyed\amsm is expected to remain
the same. We trust that any further work with'A wolild' adopt any lmprovements made

by the designers of CLU.




uncaught exception: nam_of..nrtgmd_cxam
Here is the format ef a statement withl handier block m

statement,

-except
when mcﬂtm_mml Acadtn,.

wben mﬂtou_mz m«z,
when exception_mamey: handier,;
end;

A handler block handles only exceptions arising from invocatiens i the statement to which it
is attached. Handler blocks may be nested, since a m with a hardier M is considered
to be a statement. If more than one handier Is &Mfwm m m Iundkr blocks
are nested, the lnnermmt omtaka pmudm L oo ~

 This exceptton hmdnng mu:hmtm nmfmm wd nn :u.mas in several

ways:

(l) Handlers are tumlty associated with bbttsd mm«ﬂm‘ bctng embied by

~ something like an on statement. , :

(D Execuﬁﬂgaﬂgmtmmauy:umMWMe,mdnmymtbe
- resumed.

_ I Theemtrecaﬂstacktsmtmrcﬁedfarmmmmapmoeduremustbe

prepared to handie all stgnﬁﬂntmigﬂmfmmymnum dkecttyz

Having handfers natkalty usech«d wm« bbdu et m was dnun over dymmic
~¢Mn:msmnummwawmmmm mrmt in all
‘cases. Sigmaliing ahvays ammemmmmquWMcmmmt
with CLU’ vkmmm:mlmmmmynmwpﬁm as asked.

1. To help in debaggtng, if a procedure does not Mﬁaun, then it wfahm, undmg '
the same string as it received, instead of "uncaught exception: failers” - |
2 It is safe not to handle an except . only whew it jo cornin mmﬁm quemon
‘will ot raite that exception. For exa 10, in I 20eC thow % = pis.and. I, :
whmdkmeexcwon fwdmﬁwh;m :
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Th.us. a procedure is saying *I give up"' when it signals.
Let us go through an exnmple Suppose we have a type queue with an operation
called next which returns the member at the front of the queue and removes it at the same
time. Clearly. queuesnm cannot work when applied to an empty queuel Letus say queueSnext
' can signal an exception empty. The dbﬁnmm of glmutm mlght look like (in CLU)

next = proc (q: queue) returns (element) signals (empty);
if ¢ is'empty then signal emptr end . :

fixupg -
return (old Aead of q)
end next;

Thus, we see that a sigmls clause is reqmnd ln the pmondm ‘header. Hm are -some
examples of such clauses:

signals (foo, bar (int))

signals (bletch (int, int, bool) )
‘The first one states that the procedure can sighal two excepions: foo, with no ob jects, and bar
with an integer. (Factoring is disallowed here because it leads to ammguny) To send ob jects
. along with a signal, thcy are Imed as in the yleld mtemt:

stgnal bar (D, |

signal-foo (i+ 5,242 x> 5); | |
A call of«q_iteueS_next and handling of the exception empty might look lil;é ';gm (again in. CLU):

begin '

X = queueSnext (q);

end;
except
when foo: ..;
“when empty: ..;
when bar: ..;
end;

1. We are not considerlng parallel processing situations whefe such a request mlght hang tmtll
another process puts an item into the queue.,
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If a signal mdswm:mmmmmmemmwmle
following example shows how this is dane.. ' '

v'°

begin
ot |
when oh_foo (xy: int, z: beel: bedy of dendler;
:nd; .

In CLU, the semanucs of mdmg obm wmu mwanmmmum:nm ob jects.

Pt

the caltof tmmnmm«mmm Mle:
. in fterate (x) do

executed ystasifapmeedureinmmw Mmmdmmt is

end;
exeept |
when iterate signatlscuff: dandler; - - -

If a signal statement is executed in the for hup bdy &euy m m lnd the routine
' containing the for loop are terminated all.at once. mu »mm the bodys
catching an exceptton as ln )
for .. do '
stqtcmm;
© except
when oh_fox: ..;
‘end;

end;

If oh_foo is signatied by some routine invoked in statement, M the hmfdhr Mil'be'exe_cuted :

1. Actually, the handier may chm to égm the. abgnw mtlulr m mm tudgr can
peruse the syntax in the appmdtx '
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~and the execution of the body will continue. Auumlng we have shown all handlers. if ok_bar
is slgnalled by some routine calied in statement, the body and the lterator will-be exlted and a

more global handler executed (if there is one).

3.2.2. Exception 'Handli‘ljg‘in ASBAL

To transfer CLU’s exception handllng features m ASBAL we need forms and
semantics for signals clauses of routlnes headers. slgnal statemems. and handlers Signalling is
basically like. returning, but the items sent along with the slgnal will probably not be handled
the same way as’ return variables For one thlng. lt !s wasleful lo allocate space for ob jects that
might only be signalled once in a while. Another polm s that these objects are always the
initial va’lues of some new variables and constants: those declared for the handler of the signal.

- The best approach to sendlng the ob. jects appear:m be to leave them on the top of the stack.

Unl‘ortunately the space at the top of the stack overlapa with the varlables of the

signalling ‘routine. The ob jects will- have to'be computed fmt and then copled to that area.
" Uniike the case of retumlng. we will probably be wllllng to pay the prlce ol' copylng items .

down onto the top of the caller’s l‘rame when they are to be slgnalled sloce exceptlons are
generally rare compared to returns. Thls leads us to 2 algnal statement lllre CLU s, except that

ours always creates new ob jects. just as our returns do. Thua we write:

signal foo (10, b(3n;
signal bar

The signals clause in procedure and iterator headers glves a llst of types wlth no names, JUSt'
as in CLU: ' '

signals (foo, bar (int, arraylbooil))
 signals (bletch (int, int, bool)

~ Once the calling routine has the signalled ob jects at the top of the stack, the transfer to the

handler is semantically a Jump, but objects are sent to plug lnto the handler’s varlables The

handlers variable list wlll take the same lom aa tlsat of a Mre headeu asgument list
part. For example




except’ when: fosr(comnst i: int, br bool; varcoleed;.. = 000
ety | ”

(i) the ewprauenr in the sw m (!f’luy) WW l‘wm; qucts in

......

_ rouune; ' RS Lr ER)
(3) it prweedt to thnt tm mk W lut‘m Jown .
' (usmg mt—oqm» ‘then

- Thu iszlmm wmmw
‘ too palm‘ul Tﬁe mi‘ammma M*_h?t

fixed: offset slots for thv*obpct:, wspaw wtasﬂud dﬁumm ﬁg’ wm The
ohjgctstharreﬂlygoonwpufmemﬁmbtmmwmmnny,mmfmed
- tor thnmgh pomttm. wmuﬁ’ all: ammwﬂiﬁnu:t@vmgm Fhus,
" there are na overwhelining, implementation wamm enoepeion: Handling
mechmum, mwgh it dmaﬁmhwrmw




| mechanist borrowed from CLU, wd ietié’ additioh
we have been suceessful in triii:ferrlng a good‘ f&hfi’ éLU m AsKAL
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3.23. Summary

We have examined CLU's exception handung mechanism in detail. Based on this

© examination, ‘we designed parts of xsém. to petform the & ume function the structul:ed

notification and hanﬁlfng’ of exoeptlom. I-‘ommn!y Tow clunga were needed ln the
" 'Munhm was required Agnln we feel

33. An Example Sorted Bngs of Stringl '

This section presents another data type definition: a somd bag of strings. Thts data

- type might be UM for. corsputing the frequency-of m of different - werds in a sample
of text, and,.printing. them out in: Wmmm W Is based”on the

example in [L&kov'l?]) hlete is. &ﬂthm
create: ) proctype() returm(bag)
"(create a new empty bag)

insert:  proctypelvar btg. const strlag[.z(m sw (full) :
(insert the' string into the bag; sighal full if m is no more room)

count: proctype(const bag) returnslint) o |
(total number of items in the, hg, qmmttng repumqm)

size: . proctype(const bag) retlrm(flt) ‘ "
(total number of distinct items in the hg.,l.e.. not counting repetmom)

increasing* itertype(eonst bag) yields(const gﬂn([.z)]. ind) :
_ (generate each distinct string in .Ahg. m. with its repetltlon count, in
alphabetical order) = -

- The type string in ASBKL isa sequence of cham'.ten. of eolmt. strlng varlables must put a

Lot 5.

limit on the maxtmurﬁ ‘size’ itring they can ‘store. ﬁut l: the mson for the Fanmeter '20' to
the string types ‘above. (The % in lﬂng(,ﬁl' will be exphainec tn the noxt chapter) A stﬂng s

different from an- amy of -charactérs i’ that its contents nnmt be ehmged le strlngs are

e
immutable: * Strifgs are whole vakiés even thougﬁ ﬁlé!' lnjl‘vldual characters can 'be ‘actessed.
The usual operations on strings, such as substring and index, are provided in ASBAL. A full



-list of string operations is in: Appendix II. -
3.3.1. The Representation

N Therepremmtonwewmuuforhag&nabmm MMW&Mna
smng with a count of the number of times.that siring has been. inserted: it the bag,. Al nodes
.-v ,' to left of a given node contaim stﬂnp which siphabetic mmm;mm with
the given node. Qf course wem«lﬁo kmu moﬁmme@mmm tree in
order to compute size and count efficiently. This: '!nphnhq is:then: Whhg like this:

record [count: int,
size: imt,
t tr'ge]

© We will maintain -the-tree in-an ariay, using avesy indenes:as"pointers™ to-the subtrees in the
- nodes. (We must put & limit:on:the nomises:of: distict:bems: irn-a: bag:: Wis-willuse 500 in this
- example) This adds stuff to the rep.type: (Tobevelly-closn-about it. we woult define the tree
part as anothertypebatwadmmw 1e-eRnmpl : mm

rep = record [count: int,
size:  int;
root: mbranch,
tree:  anl;

- an = array [node; 1, 500);

node = record'{s: string{;20,
left: mbranch,
right:  mbranch;
num int};

mbranch: = oneof fempty: null;

branch: hlﬂ;
The type mbranch is short for Wbmm 12 ummmm;m by an
index imo the; army A oneof type is a discriminated unian, somewhat fike the variant records
of Pascal twmhm A oneof- objeet isa mg(am of mrww ‘Mong, with an ob ject of -
the correspondmg type (Thm are operations that m an objact of some type: to a oneof .
object with an appmprim tag. They and mmmﬂﬂhm below)

A

3
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i

' Allocatmg space for a oneof variable is easy;, Just. M ﬂny.zmtmum of the sizes of the

varlous possible types in m fields, plus room for the tag. -

Let us start with the cruﬁ WMW’?W*M set all the counts to 0, and
initialize the array. . B B3 s

Create = = proc () returns (b: cvt);

none: mbranch :« mbranch. make_nmpty 4nuw e
n: node node$(s: ) : e T
leftt . none, o
right: none :
gy Eme}d I b W iy
b -I‘OPS(count.O S T
- size 0,
root: none,
tree: ansflll (h,l.!ﬂm
end create;

The ™ means the empty (or nulD string. The creste opeuum shows how to make a oneof

value from a non-tagged value of the rgm mmy&nm m [ ] thu case the
make_empty operation. (This operation calls the copy operation of m‘?ﬁﬁ)

Here is the lnsert gpenggn mm e d AT

lnsert proc (ur b: cvt, const 3 mjmm “m't
' "biroot = insert] (b, s.b.root) exeaptwhufuﬂ:d*nlfull;end;

gn" M TR ISRE IR
insertl = proc (var b: rep. eonst s stﬂn‘[ﬂ(ﬂ. root: mbnnc&) n}ugqs (m- mbnnch) ngnah (full
- tagease neot in - b grH T CEIAS Wil
tag empty:

ms add_node (b, s)




tag branch (comst i: int):
m = root;
N -um
‘f S$ans Cge : — s ,"'f??"*
then
nnumber = nnumber + I
bmu,-hm»l, _
- elseif s <ns
muﬁirmm
“else n.right = insert (b, 3, wright);
el if;
end with;
MM S
exuptwtufuﬂ:ug;dmﬂ;ut ' !
endtmml.

add_node = proc (var b: rep, const & mmm&r M aigluh (Fuld);

if bsize = 500 thew signal foll; end if;
bsize .= bsize+ | .
b.count :» hmm:»l ,
none: mbranch :» mmm_mcm LR
btree(b.uw - M(s. 3,

" ‘number: 1,

left: .  none

ngm. nonel;
“br. wmmmww

This opcratinn mlmrstu the use of mml prm M h.""f

cluster); it also W Wu m*w o o 4 ‘ Fiwim

ob ject. &mmmmmwwmmmam»hwmenmatm

name has the- dhcﬂmlmwd type Thhilﬂumwy wgm sweef can be mutated.
" “We aiso see a reai'use of ummmmmwwmmm

The count and smmammwm

i”mexpomd by a




count = proc (b: cvt) returns (c: int);
¢ := b.count;
end count;

size = proc (b: cvt) returns (s: int);
8 := bsize;
- end size;

" The last operation to write is the iterator increasing:

increasing = iter (const b: cvt) yields (const string, int);
. for const s: string. i: lnt in Increulngl (b b.teot) do
yicld {s,.1); 5
end for;
end increasing;

lncreaslngl - ftef (eomt b: rep. br: mbranéh) yields (const strlng. lnt)
tagcase br in :
- tag empty:
tag branch (i: int):
with const node == b.tree(i) do : ‘
for const s: steing, | it in lmunguh. nodc,kft) do
yield (s, p;
end for; . '
yield (nodes, node.number); (-
for const s: string, | int in increasingl (b, node. right) do
yield (s, 9;
end for;
end with;
. end tagcase;
end increasingl;

Agam we see a recursive intemal operatlon and use of the mugq statement, At the top Jevel
our ermre type definition looks like this:

iy .
i




bag-chmlsmmmﬂu.m
. Tep ey

create -,
insert = ... ;
insertl » . ;
- add_node =
count « . ;
stze = ... H
increasing = ... ;
tncreasingl = .. ; :
en‘ hg' e F PUT Ry

Here mmmmmormmmmwmmwz
{x "srr‘
b: bag :» bagScreate (); N

gHineet b, S g Ve (N A
"8 ‘M-WW/WM oy

n: int .bqtmat(b?

for const 3: strim l. int in bagincr
?ﬂm&’?ﬂf g b, LET
end for; '

3.4. Sunimiry

This chapter tas pmnd ierators and m W fw ASBM.. "These two

R u&.&;& " ,
cmptersmﬂau-twenddmwmw mma-mormm
wQﬂﬂexpmmdmmU&mmbMﬂﬂﬂww
it with an original feature. for handiing types with sbjets of dynamically varying size. - The
foﬂawmzcmpmnmmmmwmwuﬂuw The
rmmwammmdmwmmmm
-inthenact

o
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4. Parameters

~ This chapter presents the ASBAL mechanisn for pmmlzmg abstractions. We
begln with an examination of parammg: ln CLU. Wg then.: ;borrow and. umd CLU's
mechanism modifying it to suit our needs. The. m;jor um -made is. for parameters

relating to the sizes of objects in ASBAL. We have ml goals. in. extending CLU’s
mechanism for ASBAL:

D | to make programs as independem of the sius of their data ob jects as possible and to
~ allow sizes to be determined at run-time; ,
(2) to relieve the programmer of the burden of mm of the sizes of variables, and
to transfer this burden to the compiler and run-timé iyuem. but,

(3 to allow the programmer ultimate control over the sizes of varhbles

After bresenting our parameter mechanism, we give an extendedmmple using it. We close
the chapter with a discussion of possible implementation techniques.

4.1. Parameters in CLU

Here we discuss the parameter mechanism used-in CLU. " We start with the slmplest
and most strongly motivated case - parameters to chlwm. We present a full example of a
parameterized cluster-, and then move on to ptﬂihe&ﬂtﬁg &‘Iﬁribﬁtﬁcﬁau.

4.1.1 .Pr!r-ameters to Type Definitions

Let us say we have wrltten a cluster to implament Queues. of imegers A while later we
find a .need for queues of - strlngs, s we write a new clusur to lmplemem them borrowlng from
‘the previous cluster. Some more time passes, and we. f!nd we need queues of customers for a
simufation program, so we again ndnpt the queue-of hnegers cluster Th!s copylng and
modification could go on forever. What is- wrse. if some subtie bug is found in the: origiml
cluster, a lot of effort is necessary to find and correct all the other clusters that copied its code.

‘One might imagine using a fancy text veduor or macro processor to help in this




| correction and updatagm However, wmmﬂmﬂnm&eﬂudm
abstraction generator: am«mmmumnauw
Fmexaﬂphuemﬁmnm:wmim*luwym%rthem

< mwummm%wuwﬁﬂﬁw . Th |
mmmmtuewdm
mmmgpam:me
wtthmexample@h@l.m

queue M{ti”dhmndq.m
™p = mﬁt} '

-m»mw

WM

, i‘uMWMaW ‘
el zve types. fﬁhcﬁuu-ﬁws&m

eng = pnc(q:cﬂ,xﬁ
Mtﬂ.ﬂ

' deq = proc (g vt reterns (0 signall fempry;,
¥ repSsize (g) = 0
- then signsl empty;
mmmm&
T3 “ !
end deg;

Mummqamm
(M-G
endempty
end queue;
Tmrammmmmumtttygd’mm mwmmmam
‘pargmeter awgmmhmswmuaqm mwwtype!fw.
AL
say?thmextmawufqupﬂm _;_mmu

sl HAR L eHE

S X TMmmﬂsuwwM mmmwmm a

.....
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- legal because quéue[lnt] I3 a type, 30 it is a legal parameter to queus, etc. ‘The representation is
.chosen to be. pruym - this. dmum that -2 s W 40 it veere: tn actual 'type
;spedﬂcationl inside the cluster definkion. The craste qperation simply returns an-empty.array
(representing an empiy queug). Fhe sng. opermiien:adds s.pew elemsent %0:the high end-of the
array. Notice that £ by itself is.a uuwmam hesder of the.engoperation, It
is alsa legal to declare variables 0 beof. %&WMMWM this to drive home
~ the paint that ¢ really &s. muh; typeapecification: syithin the: dsﬂnmou of queus.~The

 deg operation is symmetrical to eng, exoapt. Hhatait mw ey, indicuting: that- Rs' caller
tried to remave an element from an empty qucue. Tbnn)mm R test to see if a
queue has no members.©

4.1.2. .nesmcﬁom

- In order to demonstrate fmheﬁmm will add Some M“opeﬁmns to‘the”qcmu :
cluster. One nice operation to have is copy. We would like copy to call (3¢opy on eich: element
of the queue. Of course, this means that we c;n only copy 'lnutt] i e has . co” operation
maﬁd ) ‘CLU. A resiriction defines

(which it need not have). For this reason r g

AAAAA

cbpy proc (q. cvt) ;'etums (cvt)
. Where t has copy: prectype(t) returns(t) ead;

return (repScopy(q));
' end copy; :

The call of arrayltlScopy (impﬂclt in repScopy) results in calls of : tsco”; since aruy[t)scopy‘
requires a copy operation .of , we must require that operation of our caller. Restrictions
- complicate type ‘checking, but are necessary. The wm elam an llso require a ptnmeter to

have several openuons. ;nd an gut . '

1. A type specif ication is the syntactic descrtpﬁm of a type.
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 types. (The keywovds proc, iter, and m are ot used for this patpmn because syntactlc.

-+ - avbiguities resuit).

= definve ¥ type generstorsortedibay; wiieh: canbe:

Theubmccmvphmammtm‘ .' jif”t‘*"dwmt'havea

copy epamthen then: uil-the:otiver- uperations:of mew hmm&?ﬁwpy In

. some cases it is desirable %o put a: restoitton: o i the opén
;‘MQMMMMWWM!&*W

.7 ordered type: In: mwmwmamm: mthan o
o .andanmuu!muw.mmlsm:mmw B

- sorted bag: » cluster fte typed Is .5 - :
: whmthask.quakpmwmwem

end sorted_bag; _ -
We can st.m..ptit further restrictions on the type parameter within: lnd%ﬂdu&l operations if
... needed. - Thus, & ooy operation for tire sorted "bag ‘thisnir WoulS' retjuive- £ 0 have a- copy
_’ 4.;3{ ?anmttersa tq. me Iﬂd ltumm :

| JustasctumanhWMwmpwmm Comldera
bubble sort routine ‘that uies an my of any ‘ type and mt? it The same
msomngthatmmmmmudfmm %u&mmhﬂm -

sort routine:

1L We“‘wwld reﬂyﬂkewmmnaﬁwmm&mdqp!t.Mtauweun

. requite.in. 3 restrigtion-is. the-eptyact functlonality: Piisurilly, torgantithiot & Srders the objects

would mimmummmmmdmmmmwnamuma
- compiler to mmmwmm»ﬁmmmemm o



| ‘sort-proc[t t;ge]h at) , '
Mthmlkpm’pdwmmmd;
u%t"'lﬂiﬁﬂ? -

' typc_nam(pamums to l,jn)tam vl 4 30:0peratie

4.1.4. Other xum of Parameters

. In CLU, most mpimmmmwwm " This “includes
integers, characters, strings, reals, bookiu; sk ovkille.: DR W ﬁ&v«yuseml (there is
~ only one value of .type: aull; somull 1s: useless as-a: parametér type). “Evry’ distinct sét of

~ parameters to a parameterized abstraetion ‘ramsits: Ie''h ORMEr dbsirdction: “This theans that

queuelint] is different from WM&.MW'&M vt the m&m "

, fw-clular(x,y:ht].. e S e ,

then fool1,2] is different from Sfodl2,2]. In like fashion, “&mt sets of parameters to
proccdures and iteratess mmmmm;m S
... There is a goal-that type: checking: e :possible:at complle-time; Whtch “requires
. instantlation to be possible. at W Thierelowe, - parameters -may not be tompoted at
| run-time. However,. it:turns. out that even-ifall: W*W -complie-tirne tnﬂable '
_instantiation is not always posible st-compilestime. < Wi -dipbiguity: will ‘be WW i the
section on .implementation MMWNMthms

[P B T IR S

4. 2 Panmeters for ASBAL

ASBAL can borrow all of CLU% pﬁfm mechanlsm ‘with no ugmr lam changes
However, even though’ that' iechanism works Tig, it ‘ts'not convenient for what wm be the

most widespread use & paiam ih A‘s%ﬂ‘. ik ""”'f’a Mﬁm monai: "we must allow

lllllll




because every size must be specified explicttly, md ead\mef siae panm; wm result in a
distinct type. This resukts in a distinct set of cluster qerstie ;_jdrmam (akthough most of
the physicalcodefortheopermmaanbemmamu!mtwemm)
| The ma jor difficuty is that binary (and higher order} operations on ohjects of different sizes
bgcomehnrdmzxmbmma%mymnﬁm&yﬁ”ﬁmmwkww
and fmﬂsempm Mw&.mummbmmmawm

of different sizes simuhmom&y because ubm of dﬂ’fm dmm ef m lypcs.

) With: thep sliferation of paratheters, expresilons | ¢
strings as an example. We could not write ’
v s;=slil t '

... {The V' is a sugar for concat) We would be forced. to say

s = steing( 10008 coppiateinglionitonmentia@iia, ;- - ;
. to ga the cypmmmﬁ & :ivadl. size 300 amd: ¢ haid alne- 56:« mmmmmn
.. statement would look i wrikten sut ke the ene above: . . 3 SR
s .s*mgmm;.plnw g
Of course it is possible to extend the notation for mmwxq” N20850)), but the
'mtonnatbnumabwﬁbm SIS R LA :
‘ Having each set-of mmmmmm (or procedure; etc) separates
_ types too finely. Firssof all, it.conflicts with abistekction; Tiwiiohijadts of many types come ina
- variety of sizes, inmany cases iofimises-¥istiskles harve fined +isis: (otause they correspond to
+.-storage aliocated in the stack)~ sbjects are comceptanlly of uilisiivded ifve. ‘For example, there
- ave strings.of any Jangth:goeater thin or-equil:te 2ere. - Bisw i it pirt OF the conmeptual type
,nﬂmmmmmmw vatid. e oGIABING Movige Tor varisbies.
If we require every. abstraction eobebmmdod mmpm‘mmww m on the

- abstractions just to make the Mplemqwm work out. an n‘r o me tMs conflict Is to

’constder objects to be unbounded, md um%}eh imperfect modsls
) " contain, Thts Ieads to attﬂbuﬂng mmmm Moy The
cannot wannwmofemmmmgmmmmfwmm
In sum, size will be declared oniy for variables, We find | :




task is to design i:onvenient 'synucticf forms for expressing . size infnrma'iion‘ where it is
appropriate, and to allow such information to. e omitted We it 13 not necessary. The exact
, technique is to, introduce a new class of parameters to types, size parameters. These parameters
"are distingnished f ram_(_‘;,‘l,{.y—sgle parameters (which we qurp,;ggu paramsters) by being: Jisted
after a %' in the paranitit;i Iist.\ Sltepamm ised_only with types; rou,tibes_ukz only
regular parameters. Also. size parameters are ahyay; integers; no othet.typ_éa- seem useful
enough to Justif Y the ldditioml mechanism thgig‘ A tion would require, o
) ] Mlﬂﬁd in previom chapters. Aruy
takes two size parameters, indicating the minimym l“!ﬁ' boypd wdmximum Aupper bound of
ob Jects storable in an array variable; string takes one gize parameter, indicating the maximum
length ob ject a string variable can hold. Amysnnd strings are ¢ the only basic types of varying
size; all other types of varying size incorpen.te them ln thdr representation, aithough. possibly
'through many Ieveis of data abstractionl Tl;g implementations of both. arrays and strings
insure that objects too Iarge for a variable of their. ty?s o hold are. not. as&igmdr to. the
variable. Attempts to make such iilega,l ssignments cause.. an. excegtion, failure("variable
ouevflow") to be signalled Furthermore, the img » tath otamy& insures that the ob jects
in array variables are not grown beyond the limits of their eonuining variabia. if such an
attempt is made, the variabie overflow exc@tion Is sigmihd To make such exceptions
avmdabie we wiil provide a mechanism for querying the size parameters of a variable This

qpammz

.. Two examples of size parameters have alread

mechanism can be used. to check sizes before assighments or grow|

43 The'Size'Paya'métef'Mééhlnism

aning introduced some of the basic concepts and features of size parameters, we now
go into detail about their use. This is more eastly done by going through the syntactic forms
“used for specifying size in t_ypespecs,' tnd the restﬂctims imposed on which forms may be used
with typespécs in dif fei'ent positions. ' ' S |

1. That arrays and strings are the oniy sources of ob jects of different sizes is simiiar to the fact
that all mutation is accomplished via records and arrays.

2. Of course, one can just attempt the operation and then hnndletheexwptiqn. but.it.is often
better style to prevent the exeeption L 3 ohcurrenee '




mmmmﬁ
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4.3.1. Size Spec}f{ers

Afm;ﬂujmwaﬁnmmfmnm;dapm There_

«!o:-zmm mmmwwumwmmum

.z«[’e{f gt .&—ﬁﬁs’!g“ﬁ @l g

""h‘t‘ Niﬁ&“am Amrkm«l as a
slzespec wmmmmum\mmmm orumaumeu
A;v‘mmi Mmmanmamumwmmmkm

 The other form of steepec is i, muaum‘mmmumd
r-s:mpxs T Mmmasmhu v, wﬁun ?mnm the stze of
, Mth’mjhm teukeone
argwinent, an’airily. Ttbefm pmwmqumﬁumkm the
size 50 a3-Wot 10 castse an overfiow in growing the dnay. ‘ﬁemu," Mnke a

p-mhamwmw A

| ifxnm‘um-

emlp,

: Theexpnummgtm’muswmmuumdﬂumlwmpn

run-time. <Tmmdmummmmmg,@; Bbighta): the first is
thesized&enr%udhmdhmmmmm-tﬂnmywmm the
varnbk,) . s e S SRLTRIE. S STa 3

L. This notation was sisggested by the use of 7 in Alpha mww el



4.3.2. The Kinds of Typespecs

There are three forms of typespecs in ASBAL. The ﬁrs form is alled the vartable
typespec ( v-typespec) because it is used mainly in varubh doclaratiom. All the sizespecs of a
. v-typespec must: be’ exact mespec:. 50 that the ml spuu required for a variable can- be

* computed and’ allocated. We will detait all plpeq whm each fprm of - typespec is used below.
. Here are examples of v-typespecs: , - ‘

string(;15]
- stringlu(x)+v(x)]

CarrayiiNe 1, 1000
arrayling; 1, 10¢ +5]
arraylint; f(x), 8)
arrayling; foolx, y), bar(y, +2) -

The second form of typespec allom exact or t-uuspecs to be used, and ls called a
-‘vabtyﬁapcc (for-variable or #' cyptim for short. It is uud where any size is allowed or size is
irrdebm but where: qaaiymg is not anwal V-éypapou are'a wbu of n—typespecs. here
ares same we-typespécs that are not’ V-typespecs:

' : ’ string(;e] T o
arrayling; ¢, 10}
arrayling; &, v(x)]
~ arrayling; 1, 4]
- arraylint; u(x), 5]
" arraylint; s, ¢)

We allow an abbreviation for typespecs all of whose sizespecs are ‘s’ the size
;-panmeter part of the parameter list may be omitied, Iucludmg the % Furthermore if such
* omission results in H’tﬁebnckeuunbedrqipedumn Hm ' '

: aﬂ’&yﬁnt x, ¢] ¥nd strhgt +] ; | | ;
arrlylint] and strlng
respectlvely :
_  The third formofwuthemmtmoftﬁethmﬂmpm maybeused
in.it. This form is called the mr?- pcspx (for varlaplr, s, o0 ud Lypupec). Va-typespecs are a
subset of v#?—typespecs (and hence V-typespecs are alo a subest of vei-typespecs); here are




Ssome vai-typespecs that:arenot- uwmmpm:

- .stringl;Men]

arcaylint; 1, 2high)
- arraylint; Yow, ¢]

B amvaylint Tow 2kigh)

(There are many more: comhmaieu: of @dm in. yadap

w433, :Howq‘jpe-sm_ ctPication 9muud

Now we discuss: which form of typespec is uned MM Mc position, and .the
-meaning attached to- it:in:that-position. -'We- wiudoz different groups:of
“-symtactic positions. B ' '

4.3.3.1. Arguments to Rousines

(and in this etle only amplk»m ‘

‘acceptable. "The use of:a- ?nmupee atlows that mm .
-example: s Gy hrE Aty
P = proc: (var a, b myunt, I Wl’ s : x
end P

ln this. case, both a and b mmt be mpnf intagers -Jower
bmmds are-not restﬁcmd. Iud mad mmﬂnm m S
via the exprmims a?Mg& mdr&!lughs As Mﬁr g ie 2o

1" However, side—-effect free.expressions. mwkjngxm o nuﬁms, and mlng only
_~built-ip operations, are- tobeapmpiiestime ot
2. These bounds are the: bum&sof the o
S ?%smubemmwisx pettut bi
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pa ptodttgpdenralﬂat;eemt a2: 40 signalstovertio
. where t hag octypeieonst ). raturnalt);
ate :mytt :, %T;?iry ‘ :
lf alhigh:~ stbiugh(xd) <mml(a23
- then: slgml pvetﬂow .
endif " e
fqrmt&:thamm%.’?ﬁ R
atsaddh(al x)
. em'!%r'

~ The test in the if statement is: ‘Doescl have enwgh room foraoopyof uch element of a2?"

The elements iterator ‘for amys producu eed: element m the Array from the loweet to the

hlghest

4332, Return Variables

Arguments are the mmt obvmm mg mvm use for size parameters
iments. allow. Mh@mxw handle objects of any size
conveniently However, there are also some situagions. whme fhexibility. in the size of ob jects

‘ ~ because size pafameters in ar

returned by a procedure is . helpfnL For.this senson. we allow the aize parameters of return

'vanables to be determined dynamically;. :peqﬂaﬁ. these size parameters may be:computed
from the arguments to the precedure being.calind. For-comprehemsibility of ASBAL programs,
we require that any size cmyuuc;on fm m varisbles: mot. mutate syguments: ‘of the
procedure being called. Thu is done by, mm”&mﬁ the-argomenss in these
- size expressions.

| Consider a gmgeduq d;m wm M*m arrays together to:form a new
xarray If it is known that the new army. m&m beaniarged, it is ressonable to' creste zg.e
'smallest possible Array, ;hetpgm;mmw Mnmﬁo avoid any - wam wonge
Here is the skeleton qf such 3 progedure:.. e ~

q-= - proc (eomt al, a2: ain®) returns (a.'.i: aWW«lhﬁsm(m»
aint - erny[lnt] ,

end G

Determining the size of return vmablel on the fly has some complications, however.
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Recall that return variablesare really spwlfm for- mm imby the cauer If the
variable passed in is.a my.ﬁmman:mm' é-mechanisms presented
in- Chapter 2 aliow for deterstftion of 156 temporar , ation of arguments to the
-invocation “creating” the temporaries. -In fag, wmsm Wd wnh flexible
return variables in mind. On the other hand, if the nrhbkm nn the return variable is
‘not -a temporary we may‘tave a conflict-of wlze. TA~ehollmmist e Bon *ﬂm at run-time, ‘to
compare the size of the variable being pasud in with the Site. yue _"; ‘the:procedure header.

At this juncture.we have an opﬁm we may mmz mmm‘ exactly, or just
-that the variable passed in is at feast as big as. the one we wou xez from the return variable
specification. We have. chmm m be ﬁexible and albw my rigble. of sufficient. size. We
delay discussion of the hasis for this decision- tmﬂl mm ﬂum mehumm has
been presented. : ‘ S

Two questions remain: what do we do.if the mgamm falls the
run-time check outlinedabave? Our m m ﬂm m hr!o hwe tile tnmum being

o agml fa:mm“smmmam , o S

- ‘Because of the tun-time chiecks often nwm m variables my be
~expensive. -However, webelieve that' ﬁhe ‘Comriion ‘s OF | m mtum vnriahies ‘will be
handied at. compile-time. Tive: ressen % Y coupitie-tiene 'hultks will oftén sf Fice u chat most
types taking size parameters have:sizes which m‘ﬁ‘i Poture variat "’d‘ such. a type were
- constsusted using the-minimd amaount remory; i tolikinot ¢ grown therestie Thererm we
believe it will be more common for the user wmt‘ythemefﬂu nmbh to be returned by
~passing .an argument Sor perhaps 2 pavemerh -t Wi pioe hﬂm ‘than having the
_pracedure eompme the .size- eelf. - Wc*&&w M m vEpresbions mgd © mvcy the size

m&kéﬁg !hewt Hmum:m —
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P = proc (const n: int, ..) ..;
| "v"ar x: fool;n]; |
x - qn,..)
end p;
q- proc (const i: int, ... ) returns (a: fool;i));
| end q, | o ‘

We grant that it may not be at all easy to duign a compiler mrt enough to pcrfqrm this sort
of optimization - we are merely pointing out that the optimintion may be possible in many

_cases
4333 Declarations

* There are two sorts of declarations: those-with initialization and im wiihout A
~ declaration without initialisation must use'a v-typespec 30’ ﬁnt worage can be allocated for the
- variable being declared. Any !xpression evmung w an meger s tiiowed for computing the
- size parameters.

_ Declaratlons with initialization are more compﬁcated because we have the opportunity
to reduce storage requirements: we can permit the ‘vartable to be the exact size returned by the
procedure being inveked to initialize the Vambie “Thus we aflow ¢- and ?—sizespecs in the
typespecs for declarations with initlaﬁzatloﬁ - Any parameter specified by a s or ?—sizcspec
- - takes. the value computed by the invocation for its return variable; any exact sizespecs in the
declaration with initialization are kept as'is. Therefore, the normal check necessary for flexible
return’ variables in assigriment may have to be performed in dechrations with inmallutlon as
well; the check can'be omitted if all sizespecs are »- or ?-siu:peca Conmm definltions follow
the same scheme as declarations with initialization.

. Here are some examples of declartions and constant def initions:



var n: int 1=-300;

var a: areayling; 1,n];

varb: sreaytint) wmveaylintiStil 0,1, 50V;
- var c: arrayling; 1, %ghl wfool);

const d: arraylint] = b;

const e mythi;’l 00 =,

The Iow and “high bounds «f amuaumaaamm MM of the
array returned by foo mhm.Mthth wpthin mdmtegnrhdw
R 1y o vy T T (R >

writmg cPhigh. The boumnfdmﬂhclm&”m»h wmacm fail
unless ¢ -has at most 100 ¢lements. ‘ | j ~K‘ :

uu Repfuennﬁoa‘!’m

oY Shs

The typcspec fuﬂnmmmtm(mw)ﬁaahmmhen vww
variables of the type hm defined can be allacated. Mzﬂi;hg pasaseters Jn the rep
typespec must be dmgmwmmmmm However, arbitrary
-expresslons are aﬁowad o romputing & ‘ P
of the sburact type. Ay w 3 mm m-mum e ettt frae
Mgnnlled when reps ‘sae expuahn " mm. bt
signaiied to the creator of the varigble, Lo

o Theheader furnmmmm_ sameters;takes: .

| | Mg - elwster [ regular psempter. izt ;3
Theidifori>01reth!m9flhsm
the rep type aud oeher q

available to the opemms T Mpmm mm ahsteact size
"parnmeter mmes ‘are not per cluster jnstantistion, e miher denm ' |
'mtousetmnmlacmm
Let us introdmxn\, xampie il o
and reptypes Aumf«thumtht%hmmmm we need to
implement them using arrays of characters. Here is a skeleton of part of the string cluster:




string = clusterf denl is ..
. rep = array(char; }, lgal, :
. size = proc (const s evt) retums (n Iut)

e repBstaet®dy s
cendsizg BT

Notice tha;r :::::n J‘;;er;ttm return; the size qt‘ m»g not. thn sze nf the. mtable
Now we come -to the qugstion cf what ¢- and. ?-W mean. when - written 'in
W what, dog; #yingls] or stringl] mean?. - They
merely: mean that those abstract size paramefers are, pot m M’!‘Io and.in the case of
P-sizespecs, t-hat,'those .abstract sjgg@pa, -y e queried, g, x2¢:if .x were.declared as
stringl?}. In every case where the size of the rep must be kuown. all aburact size purameters
The only potentlal confusion left is the meaning of_thc typespea rep and cvt. Rep
takes the size purameters of tﬁe abstnct type; the mﬁ' \L;"the rep tm o!.':?lngd from
giving the abstrﬁct type ‘those size plumetm As m CLU‘ c;t iu”iu“st a shorthu:d /for the
’ ‘absrract or rep typespec at the interface o a routtne. with a converslon ]tpplled at the
" appropriate time: dovfn for incomlng ob jects. a;& J;px Lfo;“‘outgomg ones Theref ore, cvt takes
~ the same ‘size parameters as the abstract and’ rep typespecs do. ' Notk:e that neither rep nor evt
f ‘requires Statement of reguhr type parameteu. the mguhr typo parametm lre tmpﬂclt in the
" instantiation of the cluster. The converslom up, and d?}:tﬁharre the ume semantics and
implementation as in CLU - they cause Tittle or 9TV pe. action, bust m used merely to
change the compiler’s “point of view" on the type of an object. é :
To illustrate the use of cvt, consider the procedure mplﬂ ot onr axample string

. . FwA T [ . S
cluster: RN

_ typespecs for the abstract type.: For examp

' wrl! be available, so the rep size panmeten. '

concat = proc (eomt sl, $2: evt) returns (s%: cyt{mwie(d)tWStize(S2)l);

end concat;

Notice that the arguments (s/ and 32) have been down’cd before the computation of the size of

s3. 1f we had occasion to create a temporary variable of type rep. in the string cluster, we
might write |

var x: replin] ... ;



which would becquinkn&:ﬁ

var x: ;rray{ch;r;;l, nl;
.except that the latter cannot be up’ed It cann_g ?S,W ; ecatise w involm inversion
of arbitrary functions in the genen! ctw. this is. %o beca , },’ Mmom on the way
in which the rep type demds on the abstract type's dm M r, my amy!clurl

can beassigned to a mp nmbie (pmuad mmmmmmmw a

B 5;31 SISt

2 i
o

ﬁ* mesizesofthe&rfng vamuﬁmn&&nmmn@u& in the

cww’*i EEENE St

I AERER g Ny

caen i Gy wphdob B *‘qu« a;g-n tur ey oWty 3
4. 3.35 OM Boﬁm hmm N S
N N T LRt b BT I Bicx

There are a few other posmons m roudm W “?"
’ are the typcs of panmeters m routinu. hwmur o
; 'buol and type. whkh Invc no_ stze panmelm.
ob jects ylelded by an mrmare v:-f ey M, {gﬂ

o size is a!lowed but t""?re‘i»! no‘me fo: ?-simm here. y m

S i «&ﬂ“

R

m g enforcs, or any

hold for th@ types

Lof clau‘ses from rouune h;adm N o
EURE W0 O EEN IERTEE L
signals (fou(my(iﬂ-l,t]) b&r(stﬂng)) -
mnmwm SSE
.. of string- ... oty e
bieech prodx. ml.. _ e e
edgar - seketu{-ﬁag: bool]

Y [EAE
Ql[ A
" 'y e = 3 IR Lo i
&8y 4 yigs 2 I3 R0 B sy B TSRS *




_ return variables:are. glm ‘ve-typespecs, bt iy
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4;3.3.6. Typea of Routlnes

P A
3

A situation sllghtly different from routlne heeldu::flg ngk,",{ ress
the arguments, etc, in the typespecs of routm (Le.. proctype’s, mrtype's. and ulty”s) The
_typespecs for routine types should aliow. full type checking, 30 typespecs for arguments, returns, -
yields, etc., must all be given. The argument typapea are vs-typaspecs, shere-being no use for
?—sizespecs in that posmon (A routine accepts either a pamwhr size, or any size) leewm.
o diaek: nﬁ*;ﬁén i ¢4, not expremom.
only compile-time “expressions are allowed: ‘s ‘thitt #s M’W§Mm can be dom at
compiletime as-possible. Thirs the type of strilig9co an» B e
. proctype (m“aﬂng,m mw St
which is shortfor e

- proctype (const m-hg[;t} Wﬁﬁ’mWﬁ”
Yields, ngnals and of - typespecs are all handled just like return variable typespecs. That takes
care of all the special ttams in typespea of~ routines. Here ﬂmﬁm mmple routine
typespecs : . e

proctype(var lrrny[bool*l,t] const sttin'[,ml)
itertype(const array(int)) yields mm.(.m) o
mymum MW e

4.3.3.7. Actual Type Parameters 3 : e

_ Now we come to the writlng of typespecs for ml t!pe p;ngneten of abstractions,
eg. the ¢ in array(s). These are a!ways v-typeapm (with one ueeguon) 30 thnt variables of

gbbe Akke vone gl in o2 B

the type can be ‘declared. The exw s thct gﬁpegaum I ptr.. The type ptr h:s to do
with polnters which are discumd in the next : ; homnr lq us qxphln here how ptr "y
different. The type gencrator ptr is’ usod for typdpomeu. %gq akes as a panmem: the |
" type of object pointed to. Since the me of a jndgpender of the slu of the gbja:t
pomted 10, #- and ?-sizespecs are al!owed ln typapea usuiiﬁa‘sé ganmaen to ggr Af m reading
Chapter 5 it should be clear why this wm work

Here are some examples of typespecs used as panm




_..on strings

arraylarraylint;1,1003).

recordia, b: umman
ptria, arraylinti

ptria, recordia, u»'magn

"Pfease ignore the f‘im pam to ptr for now; the m plmm is thc om discussed
Cabove :

4.3.3.8. eraﬁonm

There is one Impmmonwhm WthMM of - cluster -
' operations. In this pasition. sl Kinds. of trpmpers ses aiswank, vos: slae perary

completely irrefevant. Hmﬂtt is. common.te write the show M‘zw Jov-chaster
operations, omitting the size pacameter . part..comglesely.. This: gives programs a nicer
appearance, but is not 'mem'ht It is alo cemm to use i’ short namethat: i3 equated to a
,w?-typespec for examplg! %Jm: asraylel. Akammmmm operztlon

5 kstring[ ,201$concat
“stringl:#J$concat
stringl;?len]$concat
stringSconcat
(This operation aiso has an infix fom: !’J in elumnpmﬁa Mnsmn for rormmg

operatmn names.
4.{.' An Exampk Clust_er --Sqmm:u g

“The header forﬂw sequeme cmm is
seq = clusur [t type; n] ls nuu add!'a a@dl. eonmt, m m!, tﬂm

“31;&3

rim, !m. mﬁﬁ, MM . ; laggm;

i TR

, whmthcsmpy pmctypc(mt)m(&cﬂ: L
o sequences have many of the mm o m WM are ot m
(tﬁeir sme camnot be cﬁ:mgw Tis mww um m Wm uy presenting
operationsafewatattme ﬁutfmt MW : : ‘
rep = arraylt; L, n);




Thus sequences wm be modelled by arrays. Thu s mnmpm b'cwn ttey are similar in
many respects. - : : L o

~ null = proc () returm (s: cvtl(;0));
$ := repScreate (1);
end null

The array create operation returns an empty array; its argument spedﬂes the low bound of the

array ob ject returned, Netice that it hMm Mﬁm
var x: seq(t] := seq[tBnulI()

because all x could ever hold is m;mptym Al other. &quences are too'big to fit in x.)

addh = proc (const s: cvt, e O returns (new: evd:ipfuu(ﬂol])
new := repScreate(1);
for const x:'t in repSelements (3) do
rep$addh (new, x);
end for;
repSaddh (new, e);
end addh; -

The addh operation returns a new sequence with one more elemsnt at the end than the one
passed in, therefore the size of the returned ob ject is one bggor than ‘the #ctual size of the
argument sequence. (Notlce that this is not mﬂly the same as ‘l'm I') The elements

b o

opemlon is an itetator that genentu the elements of an sirey: 8 ) m from the first to the
fast. The addl and concat operations are similar to addi. - '

add! = proc (const s: cvt, e: ) returns (mw- cvt!m‘siulmm
new := rep$create (1); e
repSaddh (new, e); SR
for const x: t in mpSehmenu () do
rep$Saddh. (new, x);
end for;
end addi;




concat = pm(m e wmcwwnwmnpwnn
_new := npmmﬁm

d e ff«““' R

-1 s’u"’?‘;

repSaddh (m. x); ,
end for; IR T i
for const x: t in repSelerments (s).do ' R TRy
: repsaddh (new x) ,
end for; -

' end comat o _ ‘ : .
- Now we present the opemm mx pm m?m m lnpnts. remh, reml,
and trim. : P

 remh = proc(mt;.ﬁ'vﬂ returne tnew: ¢
n: it .npﬁug(ﬂ
Jifnel | R A
then signefempty, . 0 o
else L k A . »: ¥
' neiv-up&cru&e(l) ‘ e
. index: int w1
whife index < n do '
~repSaddh (new, index);

i -s:m«m (empty);

end iF
endyemh;. .. . . -

reml = proc (const's: cvt) retms (new- evt(mxw-m) si(nh (emgty)
. Rt = repSsipeisd; :
ifnc«l N T e
' then signal empty, -
else oo
new := reyicmu (l)
~ index: int := 2;
_while index <= ndo T
‘ r:p&ddh(m.im}) oom
end while,
end if;
end rem};

(Max is used to prevent a I’ mm vessi m W whet an m m« is.passed to

retained. Trtm returns whamer pomnu ot the wwm m nmbetwm the.
bounds.
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e LT

trim = proc (s: qvt, low; highi int) refurns- (new: cv&m!gh—lowlm
start: int := max’(l, low); :
n: int := rep$size (3);
end: int := min (n, hlgh)
. new = repScreate-(1); . R L -
: ,for const § int in lntSfrom_ﬁo.by (mrt.m;l Ddo .
Kpti&’dh thew, s 111
‘end for;
end trim;

The from_to_by irerator generites the imaegm from m nm argumem tbmgh to its second
argument incrementing by the third argument; #t is like an Algol for Ioop
Here are the selection operations: first; last , Jetch, and elements.

flrst-u;eptor 1) of £ from zmmm o
*if repSsize (s) = 0 o e e
hen syt b Pt g i
else select s{1]; B S R R S
end if;
—end first;

© last = selector () of. ¢ from-x: utwm
n:int := repssile (s); :
ifn=-
' _then signal empty;
else select sin];
end if;
endhst;

fetch = proc (i: int) of t from s: cvt dguh (unge)
G <D 14 > repSsize(s)
‘ then signal range;
else select sli};
end if;
‘ end fetch

; The vertical bar i.u sugar for the.er. mmnm voisor’,

_ elements = iter.(copst s:axt) M(Mﬂ“ ¢
for const e: t in repSelements(s) do _ ;
iyl ey
o end for;
“end elements;

Notice the use of the array iterator elements to implement our own iterator. It would be nice to



92

be able to assign sequences, 30 we define a copy operation.

mw:-s; . i
The capy operation will often be this simpie, but then trbm fw!”a ﬂnre more must be
- extra restrictionont o | RS B

equal = proc (comst r, 5: cvt) returns (eq: bood

‘ whmtmwtkmwgﬁ;m; i e
eq e (r = g) l ,‘
return;

end equal,

* Notice that we use the ummm M;mmmwwqmm of ¢ to
compare the arrays element by element. Now we write th /s
length = proc (comst s: cvt) m (& int); |

| := rep$sizels);
end’ length

- It will be helpful to see mwmu w

First we define a few-
5100 = = seqlint; 1033.
si_ = seqlint; +J;
silen = seqlint; #en);

Now some declarauom
a: siloo;
b: $i100 := slmmﬂl 0;
c:si_ e b; »
-d: stleny := ;
if d?!en 0 then ...

First, & is uninitialized, and has room for sequences up to 100 integers laug ’ﬁn next variable,
b, is the same size, but hashean ansigned the nult seguence:’ m%d‘r‘mm
dynamically, it can hold only the nult soquemat' @M &'WM wm why size
should normally be speciﬂed in dectarations) The s ; &;e i@i::h;em its Siu un be
queried by using dﬂen as shown in the if statement. Hmm& oW




aw=ald, =
~ b :=si_$addh (a, 5
AF si_$last (b) = 5 then ..
var j-int := 0,
for const i: int in si Se!ements(b) do
J=je iy
~ end for;
Nouce that the first line calls the :iIOOScontat operation.

- We have defined a complete type generator for muenoes This example is atypical in
that it has no mutating operations. ‘We chuse this over a ﬁﬁttahlg type because it demonstrates
more of the parameter mechanism, since it returns more things. and tends to aliocate the
minimum storage possible (Allocating the minlmm for n ble types is not always desirable,
since they may need to grow later. Furthermore. even if the ob jects are lmmutable larger ones

may be asslgned toa variable Iater of course the styie of use is up to the prognmmer)

45, lmplemen-tetion

Here we discuss how to implement ASBAL's parameter mechanism We first explore
techniques for the régular parameters. these methods are borrowed directly from CLU. We
then consider the addmons necessary ror sue psnmeters

4.5.1. Reg-ular "Partme’ters _

The most straightforward idu is to pass plnmeters As extra arguments in calls. This
works fairly well, except when procedum and iterators are passed around as'objects. When an
instance of a parameterized prgcedure or iterator is paaed around, its parameters must be '
stored in the ob ject, since they are not avaliable when it is calied. Ltkewise an operatton of a
pa rameterized type must carry the parameters of the type around. :

This dif ficulty suggests what we call the macro llnphmenntibn of parameters " This
implementation actually wbs&tutes the actual - pummeters iﬁ and eomes up with separate
procedures.{iterators, seiet’tors. Clusters) for each dlstlna set of mmmters - This would seem to
be inefficient in terms of memory use, but can be good in some situations. Its main advantages
are simplicity, and the ability to do better optimization of code once the substitutions have been
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4.5.2. Iinplementing Size Parameteu

Now we turn to the question of impluneuﬁng ASBAL's sue parameters First of all,
they are not true parameters to the type. aad %PP‘" e@[y as dummies, or in positions to allow
allocation of memory for variables. The basic technique for handling size parameters is to
store the size information in the variables. This method leads to a nice lmplementatlon of x?y:
Just fetching a component at a fixed: d‘fset from ehe beginiifg of x, very slmllar to records.
Because the sizes are stored with_ the Vvariables there are no. ﬂtﬂblems of. sﬂouting space for
size parameters dyn&micﬂly the. space has alrady been mened In ugh variable. (The next
section. will discuss storage fprmats far variable size obpcts in more dmﬂ) in the case of

abstract data types defined- by usgrs. the undeﬂying sizes ot' amys and smnzs must be kept for

the use of procedures receiving the components as argumu etc. I-hwever, the abstract size
B ‘:parameters must also be kept, for’ querying md for. the size ‘checks required in passing
- . pre-existing variables as return variables (seethe-nexuecuon and Sectlon,i.s.f_.'og).

4.6. Analysis of Costs of Size Parnmeters o

There are two ma jor costs associated with size parameters: storage overhead and
processor time, and: both areé. somewhat depem«t on-the actual storage. :epresentatlon used.
Therefore, let us consider the storage effk.hncy of poutbb represemattom, and the extra
processor time required by size parameters. Part: ® of Figure 1 shows the most general
storage format one using poimers This format is simple to use since items are always at
compnle—time known offsets within substructures, although considerable indexing and -
indirection may be required to access a deeply nested item. ‘More efficient forms such as the
l linear format of part (c) of the figure are possible in many cases. Sm:h a mfeﬁ' format sn\eps
memory and cuts access time because the polnﬁn do not have to be stored or followed.
However, the linear represenntbn 1s not sufFicient for all’ cases. It Is better to adopt a general
representation using pointers - we believe that a single storage format should be used
thraughout the system. Having multiple formats in the system would be bad for the following

rea SOﬂS




smtsmm
a) Let this be part of the foo cluster: e

fOO - I:IW!Q [M ’mm’ “ou '
rep rewv(ft: ingf;
SRR W«m

end foo;

‘b> Let x be declmd ummm;umm;mwm

. 1at.abatract size m
anobstmct gau Rerometer .

mx' ' h O' ﬂ S el b 80 .

" Stéragé for charactérs of @

MTRITITY N0 & ¢
. Storage for charastens.ofib. i:] o
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(1 code generation would be made more complicated; -
(2 if multipie copies of moedules were made, eathy hm; one mnge formt. moduhl:ity -
~would be threatened; - , S e a .
~ (3)if, on the other hand, modules could hwmn;mage format. the code would: be

larger, or. mterpm!te execution: m:mm o
(4 the entire _.mnmmfmu mmssﬁamm>payorf mngm' be small.

Thus, the optimization to a fumm more: mm the pohnr format may not be worth the
‘complications it lntrodum e ‘
Given that we will.use the pointer - storage: format, ‘et us examine the cost of size
_parameters in detail. ‘First, let us see how wuch: siorage ‘overhiend-is introduced by havlng size
parameters. The storage overhead for size purameters constits of “one integer per abstract size
parameter per- objest of: b abstract: data type,plus ‘one poftiter for each array or string
component. - It is hard to assess just How much impact this overhead Wil have, because it
entirely. depends .on._how often variable’ size ‘dbjects ‘are used, ‘and whethe_r' the arnys and
strings.in them tend to be large or small. Dope vectdrs-Wive:besn accepted in many fanguages,

~and size parameters are only 3 generalization.of dope vectors. ‘We believe that the storage

' overhead for size. parameters is- acceptable. - Besides, ‘this overhieid is: uitavoidible because size
- parameters can be determined. at run-time: Therefore, wwggﬁt that- swrtxe overhead ts less

. of a problem than pracessor time.

In examining processing overhead, we consider the bit-copy operation nm‘ For fixed
_size types a bit-copy can:be accomplished with a blotk move; provided poimers to components
are represemed -as-relative offsets; and al cumpormu -are- patked together linearly. (Both
provisos are possible, and the of fsets can be detenmined at comple-time) With care, the
components of an object of a variable size type cah be packitd together in a sjmlhr way,
although the of fsets will generatly be computed at runtime; and the order of the parts accessed
through pointers (ie, offsets) may not always be the same. The time when care must be
exercised Is in the initial copstruction of the nbmm ‘the: components will- mver be
-moved later. The only information that should be stored at a fixed offset in the stack frame
- for var'iables of a variable size type is a pointer to the ob ject itself in the dymmlc part of the
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frame; in that way a wmwmm fm is achieved. , C
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4,7, Summary

The f lcxlbllity gained with size. panm:'t oan be expensive. . However, size
parameter; are really just a generallutmn of the bounds of. arrays,. and many.of the same
| implememation technlquu ;pply Notk:e that If size parameters are. required to match exactly
in assngnments. we have a scheme very close to tm nhm xg is part of the type. However,
. we have avoided several dlffk:ultles mocmed vnqh havmg :m begm of the type of ob jacu

() We do not have different operations fer ob jccu of different sizes; -

) -and thus we have prevenwd an explosfon of pamnetm to opeutiom

(%) We know expﬁcmy which partmetm must be oomptle-tm lmown, and whlch may be

‘computed at run-time;

(4 and because types (as opposed to sizes) must be complle-tlme known, we avoid having
run-time type ob jects (i, objects of type type) at run-time, aithough- we do require
run-time size information;

(5 and, agun becauie types are compile-time known, we can perfom all the difficult type
checking at. oompue-ume. ' " :

~ Although it is a mafter of epinion, we feel that separating size information results in a cleaner

notion of type and helps to separate abatract concerna frors smplementation detatls. - Overall, we
-are certain of Lbe usefulness of regular m and bolieve that size parameters are also
helpful in programming
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B. A“Il and Natm

In this chapter we present a mechanism for dymk storage allocation. It allows
 programs to bulld general graph-like dita structures m’uqumug gnrbage collection o
~ much run-time overhead. Furthermore, the use of thw mfw can be prevented at
"cempikeﬂm Our presentation’ begtm With areas, the objmcti ;hapﬁm mnge allocation.

‘The discussion’ ofafus!sfoibwedbyadacﬁpébndw th!objectsuned to name
ob jects aflocated in areds. We then present details of & uﬂug areas and pointers; it is here that
the techniques used to prevent dmguug references are devsloped. N '

After prescming the area and pointer mechsnium, we dimmthe impact of the
| mechanisms on aliasing. mmeqt on the copy pro 90, A0d. Qrsent a variety of methods that
| might be used to implement areas. Lutly we &ve m p 40 ilgtrate the use of the

mechanisms.

SI Areas

An ares; mamm‘awm w m a stack frame,
somewmt like an array. The idea is that the m--w ‘ot this M dyn;micany..

request. Areas are bised on the collections of Euclid tumpson’m but there are several
lmponam differences. The. ‘ma jor; dif fevence wmwmw m of a single
type, whereas wmummmmmmm *Thus st area bounds
only.the tatal amount of me mwmm& of W)utu éf ‘each type
separately, as collections would. This can lead to better storage 3 :
The simplest allocation method is to allocate ob jects knuﬂy from one end of the area

' to the other. No reclamation is done; because areas are in the stack, the space for an entire area
an be reclaimed when the frame it is in is released.2 When the size of a requested allocation is
larger than the remaining space, the allocation operation wil fail. This allocation technique
brings out the sknlhrlty between amsmdam*p: lmpmgmdymmﬂy using the addA

1. We will discuss more wphiuuted tmpmam m for mm Iater’ m this chapter
- However, the general properties of areas will hold true for any
2. Again, we will outline. mmum schemu that do more ﬁe.g.. rechmation) hter
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or addl _operations; areas.allocate new components dynamically in'liké fashion. The similarity

ends there, however. because arrays are:Womogenveus aggregatis'and sreas are heéterogeneous.
* Potnters-are used: to access ‘objects afloonted in aress Foﬂowlng & pointer is not unlike

‘ index ing an array, but a polnters type includes the area in which the ob ject polnted to resides,

and the type of the object, for safety. Thus the type generator ptr (for pointer) takes two
parameters: an area-and’ a type; pt'r(a.ﬂ means & pointer w;m object of type ¢ in the area a.
Wil be di;cuued in more detail

(The type generator ptf and the use of areas. upa

ENENRE O

" below) The allocauon of ob jects in areas is peﬁonmd by the operation ptdc.malloc It takes

one argument an ob ject that is copled to. produce the newly allocated objoct The new ob ject is

. created using $copy. The type-of ptricitiSailacts. -

proctype (const ) setuens (ptriagd)

- where a is an area and f-dsia-type. Alloc stgmhjdhm(“eru out of memory”) when there is not
_ enough memory left tn the-avea to aliocate an object of MWW If @'is an area, then

» - varp; ptr[a,lnt}u- pirinintiSaliac(®;. N g
is a legal deglaration. mth initialization. Its effect:is NMM integer In the area 4, and set
the pointer variable # to point to that newly allouted integer. In this case’ the new lmeger Is 5.
Corresponding to alloc, there isa setemr devef, med to access objects albated in
areas; the type of ptrﬁu]&duq‘u , L : R
seltype O of t.from ptriat) tlgmk (m_pohw) : o
where a is an area, and ¢ is a. type. Dcrcf sigmbs bed_peinter when given a null polmer to

follow (The null pointer will be discussed below.) An unwgnred use of dcrcf is

ptrla,intl$deref(p)

The standard selection sugar allows this to be written as

P deref < ‘ N |

However, there is a spectal sugar for dm[ whlch is more convemem than either of the

' previous f orms

pt . , ‘
There is no free operatlon to release previously allocated stonge. Fr« would be unsafe. or if
safe, prohibinvely expensive Having free and requiﬂng afety would amount to. requiring
ob Jects to be reference counted, and still one could not truly free cyclic stmctures without first
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- breaking the cycles. We feel-that reference counting is:t00 axpensive.to justify requiring it for

~all areas. However, partisuiar. apeas can.do refecance MMMW from the
. compiler; there woulkd still be no. explicit free-opezation, hut-setting: a - W wﬁuﬂptr might
. cause the. ob ject puviwﬁym hbym mnum

' 5.2. Pointers v

For each area ¢ and each type ¢ there is a mnr ty ;m(a,tl The ob jects of that

pointer typeare pointers to objects of type { in.aven.s. ’I:bmmﬂnmﬁmuofthe type
" ptriat); in addition to ailoc.and d«cfwhkhmmmw wehawr

(3) equal: proctype(const ptr[a.tl, ptriasd eetueni (oo = retuens true if and only if the
two-pointers point to the same ob ject ti.;the same Jocition in the:same area);

(4) copy: proctype(canst piriasl retuens: (piria, < cogies its megument (the poiriter, not

(5 null: proctype O retwrns (ptrias))  alwags renins the'nefl pointer,# pointer which
_points to no object. (Remember that fmwmm fil and sigmls an
exception.) |

'There is a sugar for ptt(a.ﬂsnull() it is :mptr Netia m ﬂu umes no destgmﬁon of
‘pointer type - the correct type can- h obtahld fmm ampt n the ‘case of nilptrf,
which will always signal bad_pointer anyway.: The wm& W are alloc and nilptr.

5.3. Using Pointers and Areas

Up to this point we. have described some feamm 'of areas and 'poinms, but have
omitted several crucial points. A goal in the design of the area mechanism is safety In
particular, we desire to prevent dangling references Mmly mtplie-tim ebecks Prevcntion
of dangling references depends equally on several differént parts of the deslgn it is the
- synthesis of these parts that achieves our goal of nl‘ey. and not the individual parts.

' The technique used to prevent dmgllng rel‘m is buiaﬁy the foﬁo\msg We use
the symacnc scope.of each ates object mdeﬁne X ﬁmmk. muc seope of the am object at
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’ Tun-time, e, we arrange thugs such- tlm ﬂn aren s my nameable where it will ‘exist when
the program is run. We also arrange for any object that mlght contain (or try to construct) |
references to ob jects in an area, to have the area’s name u purt of its type Thls "trlck anows _
ferences at mapue-ume, Thus, we use the
togetuwchufﬂnchecking,wmcan ’

standard type checklng to prevent dangltng
standard type checking restrlctions of the

53.1. Area Creation E o '_ '7 .
Areu isa type. and areas are queceuf the mm Thesum epermon of the type
area ‘is areaSnew, which js-used to cregte mm ?Mt ‘operation takes e argumems. a
string (describing what sort of area: mnwxmu 40 be ‘vied.! g, “imple" or
“ref,counttd'); and an integer (desenibing. the size of ;the-arex to be created, eg., in ‘words, or .
bytes, o some other standard unk such.as the:size of an Wb, Tiitts the type of areaSneo Is
| : broctype(e?mt, string, int) mnsmwpnh(m_;umu(ﬂﬂngw -
The exact meaning of :both. of MIWMWWIM number and kinds of
area. management schemes, and their names are determined by tNe language - lmplemematlon
the unit storage size is determined :by ummmm ‘and the meaning of the size
argument. may depend on-the area management scherne chieten, ay well. ‘Of course’ tmtnm
may signal if its arguments are improper (e.g. the size is negative). ER
Although area isa. type. we do not-aliow. Mahbwtmam in fact only two things
can be done with areas: they may be created, and: they:may be uved a3 ‘wetual parameters Area
variables are a l?ad idea because area asslgnment is dangm—ma;ﬂgnmm could result in
dangling references to the are.a written over by MW P
' Since there are no area variables, a special statement is. used to.create new’areas, tbe '
new statement. For example,

" new a: area = area$new ("simple”, 500)
Creates a mew area 4, of the “simple vartety and of slze 500 units. The new statement is -
intended to ‘parallel constant definitions, and the scope of the area introduced in a new
statement is the same as the scope an tdentmer ina oomunt deflnition would have in the same

1. See Section 5.6, which is about !mplementlng areas, for sevenl area management schemes.
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i We mentioned .our-mesived of mmwmnmtw
depending on.an. uumw' . Sopy ' ‘

by requiring. any type mmmmwmﬁvmuvm 'rm areas are
,not glopal and . dqpendmgn Mmuwwww e um Hst that
'wm aren, oy, umummm mmnwm illoatd: 55 that

L

M’dwd- B . ;‘_; o l) "‘l b g.,,w%”y; LY S e R ,* ; ,,,
. M"eﬁ . & . »;,» " R %
ummm @mmnm{u W e ~‘ S A R

nﬁﬁﬂﬂiﬁﬁ@
- node = mwm

[ C R TR o ST ST R EE NG e e g Lo balis
mbtmry_hw o | .
. v o

- R £ S BLoRRELY SR R : .
= R b <5 .4 ad: @B et 4
- g nad R VN Ry R R W Ry I R A L e e e e
By (22O GRS, T ol v N

Notice that the type node u Mn. CLU

but we fmd them Mul,m m? o th Q »v . 0.be egps nd;

.—rg‘ﬂ?
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if their (possibly infinite .pedﬂum are tbeume.‘ A protedure that used a binary tree as a
: temporary data structure mlght fook ltke thu. ' ' R

foo-proc

bcgin ,
const a: area = amtnew( slmple n)
bintree » blnary_tret*h. itk
- bintree$.. .. -

. end;

end_ foo; ,

~ The other thing to notice about uwy..rm is that it takes ¢ as a pmmem» i! must do 3o > to use
ain its representation. R A

Why are no other uses of areas other M@Q M? As was nrgued

_before, area variables are dangerous because assignment of areas isan ijmon!rolhbb source of
dangling references. Other uses of areas, such. as storing them in data unlmu'es. or passing

them as arguments, tend to destroy the static soup!ng requtnd o that the compilg-tlm checks

to prevent dangling refmnm will Wurk Bumu. ‘sina mch} d)mamlc posmom may not be
“used as parameters, and ptr takes the area pdnud fn&oin paumem these dgmmic uses of
areas would not be 1\¢1pl‘u1 the usefuhen of lren depen&t cﬁ poimer types. and if in some

A F S P e

context the type of pointer; into'an area cmmt be expmud nothtn;g un be done wlth the

ﬁy\;>;

~area. In sum, there is no way for dangllng nfemm uo arlu from dlt; stmttures becausc the

type of the data structure dependtng oh an area ‘annot be expmtpd :nywhere thg area does
not exist

5.3.3. Closing the Loopﬁoles

As demgnstratqd above, d{,:_ ling tﬁm am arise from dua structures.

| However there are more possible. soutces of dangling: selorences. For eumple. the procedure
| ptr[a {18 alloc 1s clearly bound to the area s, and we would not ﬁktthttpm to be usable

1 This rule is the same as: that-used in-‘Algel 6. Sntﬁﬂmufdehm fot an algorithm for
checking type (mode) equlvalmce



where a does not exist. One might think, 'Thc aren & is named in wm‘ out ptdultcllu.
thm Is no danger.” Hm, tpm isa. mm Mm m pmudun

deflmtlon e e
- foo= proeta am](msu tnt) rmm(m) |
The assignMQ statemmt below is pnmmblylﬁh
p := foolal;
where a is an area, and the type of p is
proct’ype(couu iut) returns (int)
. ;T herefore, we can write. . . : ,
var p proctypt(mn int) mm(m)

ST A BN 13

The code’ pktured above my mm a dangung rﬁm LX ﬂn arm o; that refcrence Is
hidden in the pmﬁmwm’ émﬂg We sy mmmm

>,
N RS

Y rea dcmdsmthuam,ifnmcruuSmm&Mmm

T with other objects, we would like theqpear mwnbm e on aress.
Mesc rouunes typadonfawé;:mﬁm FuWﬂnmq Mﬁt
' | proctypc(muﬂnhrmw IR ST
" and'that of ptrta8derefis S |
seitype() of ¢ from ptries) aumud..pumﬂ -
and both types refer to a. To prevent dungling referonces of:thecswt exhibited by feo sbove,
we prombu routines from ukmmmuamwhnahm tlntamaspunof
~their type.. Thus cMMﬂvmwwrﬁﬁt siting o

A ,;i;ﬁﬁammmm access

ohibiing rowsions Mke fas. I the.type of &
guting daes not nw 10 a0y Sresa:then wmmmwmm be pund
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‘-through the routine’s interface. And if no objects dependhg on an area are pgssed through a
routine’s interface, then there is no point.in the, sautine's nhiagth! area ﬁ ) parameter in the
first place: if the area is to be used only louly the remmc gm; ggfwell crqme an area for its
own private use. : Lok Sl

Another loophole is the use of arés as anacmaipanmetér in a position requiring a
type. For example, if an abstraction has a type p'amneter' t, it may declare variables of type ¢,
arrays of type arraylt], etc. Previous restrlctlons we have made prohibit the use of areas as
variables .and their stmge in data: structures. - Therefore; -we ‘Mtist ‘make o ‘sdditiona)
restriction that area.may.pet be used as:an:actusd wpuhm A

534 Summnry oot

| Here f*a‘ré the restricmim wemdetopt?evema’mgﬁ:& referenw |

(1) areas, once created may only be used as ucmal panmters, ,
- (2) if a routine takes an area as a panmetcr then that area must appur In the type of the
routine. eroneens b e .

ks) area may not be used asan actua! tgge ptmneﬁgr

hqugh_p ter 1ypes, may, be... Thus
array[ptr[a m isa legal type. but bar(p] mm g n; m: cgpg,, pteiasl is not, ,,ﬂgggg@&h&g what
meaning can be attached to polnters as panm gnngy,) ‘ B ; : |

~ With the restrk:tiom suted above there i3 no Mg way of mllowin& a_dangling

ref erence in ASBAL However. it ls poulbie o w Ly Mﬂﬁ refma that can never be
followed Consider thls fngmentofcode' i : !

B e g o N
o RE ¥ TR TELA
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" new a: area -W'W.m;

35 e m»’h W‘MMW ms e
- type ptﬁbvhlﬂ' R e ;
3 "'&.,"E € m' 2
"’P WWMWR&W

e
T

crre ‘ermm black mm*mm bmiﬁ‘&e indtixtization of ¢ will
remain. That pointer wii be: dungling buckuee ftipchith fo Whets, Wi Y e deitroyed.
However that pointer can never be accessed m»mmmmw cannot
Abe written outside them black (the scope of §. Em ﬂmthmia a loop,
there is no way to “r nere
invalid, |

5.4. Poimersand Al . T
R O A TR '*ms*?“-i*}éo STt ORI AP R A

TR

With the aédMﬂmmwamuamiMmmeCLU‘ |
We gain many advantages: shatifg, mmﬁwwﬂmmmm wegﬂn

o muymémp mxnavgmmfri’ sbiaction ;
same type What kind of aimihg riﬁﬁ n “have M m Ow tppmdl is
fLampson T/ Aliasih miu suatommmdmm not all

sy g ad i g 3 il ” !”“med 50

: nochecksaremademyatawmdag Muwaﬂmwww
sotftwoderqnemedmmpuduwmmhummmwno_ |
checks are necessary iftb!pmmMmM mmmm«mi'
pointers of . tMmthhdeMmmm Thlﬂnﬂng
possible through pﬂntushn«qmuubndummmmmm“,
object in an area is never destroyed by having another ob ject written over it; objects in areas
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may onlybemutated (Thu“bmuuﬁk:nbmw:n&mbeaﬁtgm to)

- Another problem, which was: mentioned * whert: ssfections and ahasing were first
d_iscu_sscd in Chapter 2, is.that iwnng -an olrject:-as & conet ‘does: not gusnantee that’theé ob ject’s
_§ta te will not change. This is bacause the object may be scomsible via anothier path as'a var,
for example, by fallawing a chain of: pointers. Howevar, sven thuagh a const #iy be mutated
under some condi@s_, there is a simple condition undey whilch! it ¢an be guaranteed not to be
mu'tated: the object .is not‘allocahed m'lnearea. Tests for aliasing alweys éatch overlapping
objects residing :in the mvambh,w«if wﬂm&&uﬂmhgnﬁ a variable Is
.-accessible, .as a censt, then we can be sure it will.not be mukated.- The allasing’ detettion checks
| performed before proceduse calls: gumnm this. On the-other hand, if the object I qucsnon ,
is in an area, it might be mutated via mmmmmm used to access it but its
|dennty can never change because the iaaplis& vaziable {t'vesides in:can never be mgned to.
This is an advanuge of dereferencing w0 mm of e varizbles. '

_ _ Note that if an object has o mpoRen _ctbit are w in; a8 area; then its componmts
can always be replaced by. repm tbc m@ them; ‘we. lete no useful ability’ ‘through
dereferencing pointers to ob jects. msmd of. {0 variables. The major disadvantage of sharing
in ASBAL Is the same as its major dlmd\mm la cw *siuﬂng makes verification and
proofs about programs difﬂcult., by requiring more compiex axiems and proof rules. The
complication of proofs mum from . sharlag oIS, a1 38 1& .unsolved pmbkm cofmmon to alt
Ianguages having pointers or sharlng o )

55. The Copy ’Problem

| When presented with an object to copy:that: contains pointers, should we copy just the
pointers, or ,thc ob jests. pointed t5 as well? Thtmuﬁmmtwa require copying the
~ objects 'poiﬁted to, and other types forbid-t.. As.discuseed Y theuoond chapter, the only
A solution to the. problem is to have each Lyp- provide a apy operation, which does the
appropriate. thing for that type. N e o

In CLU, a capy operation will uuully copy - the obﬁcu referred to instead of . the

ref ere'nces. but both sorts of copying are provided in many cases. For exampile, CLU has two
copy operations for - arrays, called copy and copyl cof:y does a full, recursive copy while copyl




- ..t,;@euumoﬁ that.-type.

- PRy, MW weuak dutiwiigw of 4

copies. only‘oﬁjcct“m However, mmmmn CLU, whereas they are
‘ always eagm n Mw» luun we:have: WM wm wwm can

;awwmm m«m hmw wiakiod W icias sl sre
oo this sort. This gives.ws: ﬂwm mwm e
<, feRch: corponent um '“!WMwum o

.- is usuaily, desired; .

- Tmmmmmwmm whick we calt mwm
.sslmoblm Incgenaral there ym ierarcivyof cquivelmer mwﬂ'mw: :ype. and it
%na ataﬂohvum Mm*“wgw;. o these twe ol jeets
;i m ammm a* mmwmm S D o Wer: akier:
equivalence of the:siamen af whbjucta- s mzu T O R ‘

g, D . T gl o 208 g
*'-"WW““W”MMfmmu - of the

. Mmm for 3ot 1t 18’ 000 strong: w mew R
structures, mmhtwemwpmmu. , . it

5.6. lmpleme,miag A_rennd Pointers

‘ @urmgmﬂm dnmwrbwsww

ilra stack frame. and

_ taken from & W peol separate: fromy e aatl” This &
run-time support code, but has more: flexibility. For MM coult grav re b‘&ks of
storage automaticatly if thetr ofighwt seunt Wit wiid U ‘KiNed stbé bibtks would be
. allocated; and: the-blocks- used by-an:srie woutd' be: raftiiiid 66 o poet of Tree bibcks When the |
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area .was destroyed. Thus, very emdent norage management would be posslble. One could
‘even go sofar is to copy cumnﬁy inacoessil ”‘nmmb n-ling mm;e devices to get
an effective ihcreasé ‘in ‘address space. An" dMappmuch is to: lmplummt a
single heap in which alt areas aliocate thetr i ‘jlm. Tﬁe obm efkuch lm couid be chained
together to be freed when the area is destroyed. e o

Somewhat orthogonal to the source of the ma’m m;emem The simplcst

““““ BN

- scheme has been mentioned before: linear allocmon wmv uo reclamation.: However, areas could

reference count their ob Jects; alloc and the pointer copy: m tould haveé code to maintain
the counts. (The compiler would kave to. hg& inn poisters.that are destroyed, however.)
With more sophisticated run-time support, umm collection schemes could be

nmplemented 1 Our goal has ‘been to avoid the necessity of #M Mm but that does not

mean that we cannot provide it when asked.

coilection Poimcrs can be as efriclent as mchinc lﬁmm. md a“mtion within areas M!d
not be slow area routines will. most. likely be hand m«l in ammbly huguage. Argummts to
‘the routines will be in terms of machine addresses, e(‘fuu, and numbers rather than types, etc,
because they will be called by ohject code and nat directly by users. The ability to tailor storage
v'mana_gement to the task is probably the biggest ndnmqe of areas over a global storage

management scheme.

1. The main dimculty is supplying the information requiud for traclng See Bishop
[ Bishop77] for applicable partial garbage collection techniques. Perhaps these techniques could
be combined with Baker's ideas on incremental garbage collection [Baker77), or with' the
transaction file methods’ (Dmh‘n Barth77] to provide areas that do local, incremental
garbage collection.



5.7. Exan'aph One - w :

We now pmut t&e ﬂrst 9(‘ our m :
‘,sx SN f.‘:\(xs .C?' w !», FREd f‘x L3 ~e

the qum is cmptr the met gnhllr-

, aull lf M oa!y if
B o0t J ﬂ {9}f§f i?tu'i" ' .
, %ﬁﬂg Swe Figure 5 for the
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Figure 5 'l‘he Qpeue Cluster E

queue-chsterhum ::typd cresite; insett, remove,
, ~ where thas copy: proctypelconst ) ss 2

rep = recordlfirst, last: ptype];

ptype = ptr'(‘a’, element];
element = record(next: ptype, member: t
create = pfoc O returns (q: cvt); |
- q = rep${first, last: milptr);
end create;

insert = proc (var q: cvt, const x: O

- YAE P pype iw MmMWMM unplr member x));. |

Iquirat-nilptr_
then ¢first .= p;
. elseqlalﬂanut adl
end if;
‘ qhﬂ "P-
end insert

PRSe T

remove = proc (var g: cvt) returns (x: t) siguls (empty);
if qfirst = nilptr
then signal empty;
else
X := g:firstt. member;
- qfirst := g.firstt.next;
end if;
end remove;

members = iter (const q: cvt) ylelds (const );
var p: ptype := q.first;
while p ~= niiptr.do
yield (pt.member);
p = pt.next;
end while;
- end members;

end queue;

1ns
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5.8. Example Two - smsm

This mmnaMWﬂwmhMt hmmmmn |

This reprmnmts ‘rfﬂnm#muvﬁﬂwm by an
aren, and arraymdaunpiudbym Figure 6 pry mmm We feel the
new mpkmnmnwnaummmmmm Mpnmmm the
array containing mmmnumhwm gmmm
whetu:henme'm «m««nm A
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Figure 6. The Sorted Bag C} i

bag = cluster{a: area, t: type] is create, insert, count, size, increasing; -
where t has copy: proctype(const U returnalt),
: equal.lt proctypefcbibl € 1) returmutii :

rep = :ecort[count int, o
- size: int, : o
pnode = ptria, node] o S
node = recordelement t '
" count: int, .
'dt: » Pﬂw.ea';
-rlght- pnode]-

create = proc () returns (b: cvt);
b= repx{count: 0, siz¢'0, root: ﬁw"
end create; :

lnsert = proc (var b: cvt, const x: t)
b.count := beount + I; : D
const rew_ptr: pnode, alloated bool = insertl (broot.x)
b.root := new_ptr;
if allocated then b.size := baize + 1; end if;
end insert;

insertl = proc (const p: pnode. x: t) peturns (q. pnode, aliocated:bool);
if p = nilptr
' then
q := ptrla, nodel$aliocinode${element: x, count: 1, left, rlght. nilpte));
aliocated := true; '
 elseif ptelement = x
then pt.count := pt.count + ;
elseif pT.element < x _ ' o :
then q, allocated := insertl (pt.left, x); : \
else g, allocated := insertl (pt.right, x);
- end if;, ,
end insertl;



Hé

| Figure 6. (continued)
size = pm(mbaﬂmuw _
s:=bsize;
endsiu;
°mt-pm(amvmm.,gw
c -bm
end count;

increasing = iter (const b: cvt) yieids (const't, dmt)
for const e: t,.c: int in increasingl (b: ”.
yield {e; o)
end for;
end increasing;

"""’"P"Mmmu ,

fﬂ'm e t,c:m ”M )
yieki (e, ©;

- end for; :
yield (pl.element, pt.count);
fwmn,;:m,,

3‘"‘“ pa .
Iend incml,

e
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‘5.9, .Ex'nmﬁle 'l'hree . Symbpl Tible |

Our last example is.a new one. Thc { P
b ek b "f,(?‘ é,}'{l}‘,r;{; NIRRTy
presented to allow comparisan with Alphard. A sfmbol table p«fm . mpptng trom strings
(representing idemmen) to attrtbute gb’m in & b ] “ the p

header

symtab - clulter[a area, lm" type] is mm h,_dcfmed
" eI ek

' when attr Im copr pnetyp(uﬂumm nd;
and a description of the operations: LR bivalane

: create: PM(]pc O returns (symmb) e - .
CI’GIM a new, m ‘M m
insert: | pmtype (' ar .,;g R

inserts a new symbolwmm
: i;_definé;lé. ectype (i s ~ . R
 returns true lf md ouly ('3 ﬂn .,M b “Ms,ﬂ*u bbﬁk lcni

. -entef;hlock jwoctype (ur symtab) T ;
E ' performs whatever chésping is Hhecen ”“'furdmbhck Evel |

,m .1 'f-g.f.,;?"i” a\ F

Ieavé;block proctype (ur symub) tt(m (midquwi ' :
. flushes symbols of top W and dréi Bk ' level; sigmals underflow if

- ‘Wﬁmwmww- i mw
. Ioolt;upz "&Y”Q‘“‘*ﬂ of aitr fehh m , i
. - selects the Iumdﬁ?&m Jrenc ﬁf "’f" mh not.pn.mu '

there the syMbol 14-iet i thitable =~ !

A hash table will be used to ook op the sythbols ﬁ‘ﬁ!g?hk We will use a linked: list

for symbols hashing to the same bu%mzm Mmmm nfm such a fist. Each
entry in one of these lists will be a pomm s thc‘dm gu;u;mre for om .grmbot This. data
seapam AL a b T

structure consists of the name of tl? !m Q«M m mm« mtrlu made for that
symbol. Each block 1 represented by the list of the mbels deﬂmd in it, and the blocks are

stored in a stack.” An actual statement of the MMﬂiﬁemb more clear:




: HRLFE

‘18

N

See Figure 7 for an examph of ‘h W% oy
performed Here are bejef

EOE I o uw; e 7 __f?%»g.!ﬂ g ; “9«:" aets
ommwrmm.g- ST T

D cmmvmm;m a(atackia
Wsmmm

?'ii’ft w*‘é i EEREUE SR

o (5) empty proctype(umt nmk(a.t!) m

B erWs!r aiNg WFWW

EEAI 90T NE LA T

mm have been
,Wmﬂﬁm
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]

Figure 7. A Snapshot of a Symbol Table

Below is a drawing of the representation of a M n@k after tt;e folming gperations have
been performed on it: .

create

insert: a, x1

insert: b, x2

insert: d, x3

enter_block

enter_block

insert: a, x4

insert: c, xb

. enter_block -

insert: f, x6.

leave_block
(Assume that a, ¢, and f hash to the same_ bm u;d list. md “stack are implemented with
linked lists.) ) R

jevel 3 ‘ [ B ‘.\2
blocks
' th‘.‘O&Q.;’” 3 "J :

5*
JRRESR
- . d B . 1
. L ] ) X3
- N .3
1 ' . ) x5
e heieees
i E 3
L / =
— ) R




D cons’ mg,,«m,' %m, oty

mmtmmmﬁuwmtmmnmefm
of the Hat; ,

themchmmumdtmm

3 memmu«type(m,m yleldo(t)
mmmamunm

Nwmpmttmmdmmm urutuﬁm.

create = proc (- returns (5: cvt)
S .M“em lp.

ThuscrcauremrmamhdubhubbckNLMWMMwemptyhash

tabte and a single b block with no spllbols. : ’ '
mzmmummummmmmm It

worksumliam. S O T T R L '

(l) mempuzmnmhedmmmmwmwkum _
(2 if the symbdhpmmﬁmmummwmm a new -
attr_entry ucmu&mmmmdmmmmw
(3 4f the symbol is defined mmbh&mmw;mm
4 if the swqmmamwmnawfnmm;wun
ssmwmmmmsm»wwm
® lamy the symbomm on the latof m fﬁ-ﬁfwtﬂmm
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thrib: ai) algmals (defined);
const bkt_num: int = hashisym); . ’ R :

varp p_;ym_;nt‘- nibtr s
“for pte = Lo s

 insert = proc (nra cvt conist srm. strlng.‘

O break;
" else signal defined;
end if;

- end if;

; end for;
if-p = nilptr
' then o

P pﬁh, sym,mtrylta!bd .

sym,,antryﬂ:ymhot sym, :
o stmeke mﬂwﬁ& o
attr_;tktpush(pf.stack, uttr_mtryﬁleul: ‘ sJevel

const, newblk symmt - xymwmp bM&Wsymbow
bik_stkStop(s.blocks) symbols ;= s
end insert; - ' e men

The operator cor (for conditional or)evaluates lts ucond u;gnment only if the first argument is
false; its value Is the logical or of its arguments. Thereisalsoa: caai operator: conditional and,
~and it evaluates its second argument only if the first aWB tma. The.regular and and or
operators are sugars for calls, and therefore uhuys cvahme m&mrgumm The cor used
~above prevents our following a null pointer. '

The rest of the operatiom, ts_dcﬂnod, mm.b!ach, lcaw..btocl;. and loohup. are
straightforward Notice that l«m_bloch must thm l\ny lii :y;mbol deﬂni!lom for the block -
_ being exited. However, it does mot thm may an uapty :’-uth. in this sense a symbol, once
entered, is never deleted '
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Iookup mlfcmwmlug);of}m:r

is_def ined -MMamwwmﬁ&M
fot const p: p,sym_ent in m«! ;

end feor;
d = false;
end is dcﬂmd-

enter, Mock pmfvn s evD);
} : m{m W»

in

s. levei =slevel ¢ ;-
end enter_block;

b
R

leave mk-m(v«ammm T
1F slevel = 1 then signal underflow; nd if: spatin e i e
slevel := slevel - I;
for var q: p_sym_ent in ‘
attr_xksmmck)'
end for;,
end leave M

fér const p: P
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| .'5 10. Comparison of Area- and Steclz Based Progumming

There are. aomldmbh dﬂfm mm thusters: for objects in the stack
and_ one; for n&zmgo be-aliocated in-areas. . Unlertunately the: tsser must plan ahead because
abstractians. designed for the one storage mede.will uwyhemenﬁk to operate in the other.
The reason is. that stack- and area-based ubmalom take. dﬁimt wplnmetm sack-based
abstractions will use size parameters, end M am will metieut one area a; a
~ parameter, but not usually any size parameters. -Hlowever, 4f: tbtmuen is examined more
closely, it appears that stack- and area-based ubmton will almys be dm‘erent abstractions,

’ : R ‘ T e lttdt-bued eburactlons will
. alwa)’s be béund” Whetm ‘m k iat vt a

- types wm umuy be on’boonded Often_just this
" differeivce is enough to-cause the fﬁmtion‘iﬁtles of§ e F 3 to be defined dlfferently for
stacks as opposed to areas. Another dlﬂm‘hfbﬁt amys"wﬂ! be used‘ to represent lists in
stack-—bﬂed &b!tm'.tm biit Whﬂked Hists” with | e : bg.n:ed in areas. This matter
of bounded vs. unbounded abstrtcﬁﬁw ‘néeds Tiirther réselrciv.f ST

501 Snmmary

‘ We have presented areas and polnters. featum thet add dynamlc storage allocation
and list processlng capabilmes to ASBAL \mhout reqwlrgng glrbage collection or great
run-time overhead Our pointers are safc- they may never point to garbage Polnter safety is

' guaranteed by compile-time checking whlch prevents fol any dangﬂn&re{emces We

'possnble implementatlons for areas Lastly, we pruen,ted three progra mmin examp!es two

were new implementations of previous examples, and one m a new c!uster We believe thot
the concepts behlnd our areas may be useful ln other hnguages beﬂdes ASBAL
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6. Summary and cm

.. does not. mwmm Our-ajipy
extend - i a3 neededti; The' najor cm m%ﬁ*tﬁe aniliielying - semantic” mode! of
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RFU TRy
We have deugncd pngmnm ha;nqa mg abstrnct data types that
sdhi il A 0 CLXY 232 ‘Basis and change or

vés ‘many of the

wmwmwwctvwwh%mm angum

necessary: i obviise mmmwm Bt
S 2 \ . o "'4 ii;;u,r : RS F S ’ L
_ﬁ(l) Selectors ;mh;qum far accessing objects qoptaimerd, within athes objects; -

- ;Mv&mmmm but handiing

2 Siu pammem's -a tm ;
gm Deded; shae; prramaters mmﬁm where

I %. sue aum‘!’ Red, ‘

Of the three extensions, two are just génenlimbm of cmly mqim ideli,’ from their
presem use to the mlm of abstmt data typea Sem'swﬂu reurd and array component

WRteTsy {55

o 'acces;. and sizé puamrs generaaur amy m &nd dap: naon.

" becatibe the ob ject-orie
*“account. “For eximh.ifwmbdehhmfm mmm pnblem ww!d ot

C Tn theabmceofxrmdnwh&mﬂ:mﬁdﬁgkhw

.....

* Areas exténd the' hnguage m quite a dm’m dm Théy are an orthogonal
addition to the Basic ASBAL premtsd in Glnpun 2 bt l-hnm lms were tdded so easily

3L

ted semantics of mmmmm zaklng areas into

 arise. thwttheouprprobhmﬂm&hgahbbhna deﬂmdmgyfornltypes

faw"'oa.s VRS

cant] m«!nt. T'he area

mmim m’m T ‘ b’m i3 & g L oaig "‘3’* 4
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61 sm’emm for Further nm .

There are many areas of possible irther investigation

Ianguages supportlng abatnct dau

" An implementation would glve direct‘evidenqp of ‘zmq:t 3
worthwhne and emclem enwgh lnpng:fiee. jeve thal

‘mlghtbeworthwhne | Y R TR
o A more ambmous undenakln‘ mld bg %m to. A&BAL for . ;mems
| programmlug, although tny tation wonid need -£9. extend.

are some systems progrunmln; futum ;htt [ added fo,

Vm-
tﬂ“r’"’mntraned excin’ﬂem o amﬂy Iangmge forzh(odm nn;a_fe opmuom. such as

 control ‘bf input/output Jevica and sp‘ehlhmhnm (ef., mhe memogy) prpceu

swapping, and ‘Other features for bumhg %ﬁf;m Ie;ei panne! programmmg_
constructs; P NE

(4) user-written - storage mamgemnt puck:ges, pombly in the form of new

. implementatione-of the area typ&

‘ Anofher suggestion for further Hivestigution iy icotpotation of our area and poihter
mechanism in other languages. We believe our scheme has.merit independent of ASBAL, and

7 wmar -5 A g e : .

Bt Por’ exampie memor'y' ‘a’iléc’atidn lnvo%ves the unufc %
of memory words to an arbitrary “

bitrary e, Mugh wock o
“ often and" how. waﬂ “&B PP .
'Mmqmwmmm Is

“TL&dpsenTN for one te&miqué bypuﬁng
simple but inadequate, because there is not mh control over which programs may use it,
and how they use it. |
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t;'wou'%d be interesting to see if nmmmm Comparison of our area
mechanism with its parent, Euclid’s collection mm&wm The size
parameterschemecwld:&obemmmm ".‘MRuahlﬂy.
»umghmmrd géneraftiation of ‘the dope miﬁfa““ e, €77 g e -
R € dm ﬂm&*' Sentch Is (0 desigy ‘: m m-ﬂnm guk u AQSNBAL
* syfithests of M@L‘G ‘Chistet Rhd the mﬁ““ o gk : of tyg Ws. Each type
L anager woald statically m’%m
2 “ﬂdhge‘ The tsei's m s ﬁ.é“‘xéack wouid

> le‘ ] L?f‘i SILE

%’meamebm wiﬂm that

JEOIEN MY EAEE 3 L X TN

W"‘e’ typed ﬂbyct ufm wmch

128y yiatoigeaon ton Lt viw bos o
!!iif!wﬁ? 0 A TN S A

distribute - only referenw to its. ebjacts. the ehjla mﬁ be iqn p(lm storage.
"”“*—‘"W the Méﬂ!nal 'lﬂﬁ‘:ﬁ.‘i o ﬁiﬁ wwﬁ,ﬁaﬂ'ﬁ 3 «wé e II‘I l thq

SREC

beum u.e twew

FE I L £ w1 fandasl AT
mamtgers2 Sﬂﬂ. we hw rom
sweld h{in @8 b4 h

PERERLE

62. leusiom ‘ f . ,
. 3 ) A . . p i :‘ ,'_:1‘; ’Ei‘: iy 2 :
' We believe we' were succeisful in Wamwmm types that
doesnotrequiregxrbagem m-cmn-mummanm

oy ,;};hwphicsl Mwhkah ;,;.%amm

P . % q T e e e
LA P T A I T S . oL EALN
RN A A Rt B SR A 1S

1. Theaﬂmttmdwuemwmwmwg"
simple; the type managers would iwn complyse ' respa
2otrinmMgenvont-OF ob JOo oM NN type. *
eﬂ‘mmumw&%ﬁmw%_;f ¥ o
" waish “queudd: of iy Iype. m#w&u‘é e, g i

Wmmwmm

3 owgs % REeT CE TR LY ’,,_4» .
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"+ ASBAL does not have the ehgam or cw But we did not expept 1t would. There
appears to bea mde—d‘f besm elgame gu Mm 9 w gfuem on the other.
CLU’s semantics achieve elegance through the use of a simple and pm'ful amtlc model.
which unfortunately requires fairly wmphx m—-ﬁm support. We htvc tnda.t away some of -

5&{@(

that elegance for a more efficient run-time muhaaum. Humu we mw tried not to
compramise - some. more: mm;mxcw. Qm,.pm hu bpen toward a
completely type-safe bntutme- t, e-2afety bei |

traditional Ianguagu. for example Pucal. ln flct. CLU h m comphx Ehan Pascal (and
. similar languages) but more because it hu a pammpr thap beuuse of abstract
 data types! Yet ASBAL 'is more complex than CLU. ‘\;u ufm the source of ASBAL's -
cempkxuy i3 the conummd‘ ranning - within.a MMW% Mmmged
heap. In a sense, we have built ASBAL o mwmww onus
by our requiremenu -

ASBAL represents a synthesis- of ideds from several hnguages, and several semantic
models, We feel the synthesis was profitable, and hope that our work may suggest and
encourage more investlguthn in the area. '

l Pascal -has been criticized on  the grounds that it 15 to0 slmple in this respect. no. Paml
_program can deal with arrays of any size.
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1. Syam am

m“mmm,cmmdm Tmm::muudis an
extensionoﬂha umrmw mm’ “nm ‘spwclal syt ‘j mdnncr mntng is as

[l ] - °"°'°"M ’m{' of & produetions .

{ } mmMmeuwwmatmmmmm

BEE I -Warammthm‘:]b’gma&omw’or‘b;

() —uremdt&voupitmmdmm o

e - used to mm the h«m% oi cwhmmn (a Mormd) from the
| ‘ngm-hm-mnhudmnmx

: mmwwm WMWW HWWM m tormind
(oxue&inu mwmm Sl we




[N P, 5 e s B o B b s e apes, KT R e Rt e iyt T el -
G i e el Bt e e RROR IR . s Tin it e ;
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l.l._’l;'n;malSyyitix. ‘: . _ A, grn
L Modees

cluster | |  : > id = eluster [ fcpm flﬂ* t[ mmc“"\' 3 ]
| { mtn}upﬂwnT%*i}}
c!ustirmoduh{ cw

clustermodule  => procdet | iterdef l.qai}
prociel =l -W'[*ms-fi‘wf M}FW]

T L %

terde DY - iter [ tgarme Jranss [y nW]

- [r,suktm;}mm o }x

seidef .~ »iankctw’Ffm'ii( l&‘adypi‘{ it qtypo} ])
.' ofstyp.frmw:,quf«n’g [roarﬂewm ]bodyond[ Ik
, llz Pmam ami Restrictions
fparms ->[fp.mn.m{ fp.rmm}]
; fcpa‘r'm's | ->[[fpamu.m{ fpnmﬂm} “;m ]]
fparmitem > ids : (int Iboolldm'ltypcllm)

The above three productions ere for formel parsmeters (lo i} definitions
except clusters), formel paramelers to duohn, ond the items in formel
_ perameter lists. '
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e ot »«m}nm»{.m}}z
sparm => exp | atype

~ The productions for aparms and qnm ore for actual #i;'aﬁﬁton. which may
be exmoom, or type m M% w@d s MM

_restrictions B wm 'Oﬂﬁdbﬂ { m restrict m }s lyer : |

restriction =>id Inl restrict’ { .th'k:t }
restrict => ids : ( Plype ityns. 'm)
113 Arguments Returns, Yelds, and Signels .

fargs . | ->([mm{ m-m}gll

E | “taitem o ->(&!;!: lm) “'%M{W ?M‘} -

.frets . | -'>’ntw‘n_s‘( [Ms,dwq{gﬁwgw}],

tylditem o ->‘(«‘ "d m’%)*‘?"{*ﬂﬂ'} RS

P = riek (| frtant . v

fsigs .. =>signals(feigliem {"’W‘}) sty

e it oimeda]

The .above-productions are for for ; vidt ibts, yielde lists,
and c&mh lm: Tboy are mw«mmm

1.1.4. Sta;temcnts

body : ->{Wu}{imm:}

equaf!é' -> id - ‘gp ‘

et
SR 'assign




. decl

assign

while

for

131

it
| white

' | with

;Iexcapt
| return ' o T

| yiaid

| soloct . b e it E

| signal

| invoke

| tucm", ,. M
| bresk
l new

=> var ids : qtypo{,ids qtym}:-oxp{.;xp}

‘tlnrids tym{ .idl;tm}

| const ids : qivm{ .'d' q'ym}-m{ J’ﬂi}

In the first and third productbm for decl, m‘im of identifiers on the left
must equal thonupbwdoxprmiomonﬂ'rw

'->ids -oxp{ exp}

' Thoro must bo elthor one Q:prudm, or es mny cxprossiom os thou are

identifiers.

4 ->ifoxpthenw{wiwmﬂw}lemm ]e“d[if ]

. wmnupdobadymfm]

=> for fordac! § ,foraml}famdcwm[ for ]

|for[ ]Inlrwokodobodyend[lor]




—_—
‘ with ._ »m(mim,id-ntm“EMF
,mm "MW{ m;}f”&}“ |

MM unm.‘mmww ’

mnaﬂ;v | »mm[cw}em
| imuu) stetoment

'lnﬂnﬁrﬁwodwﬁmu“hmww““ﬂy%m

" types of objects in the sems erder. Tiw' dbiohd produstiow is used for
immunqmm:d‘“w‘*ﬂmam :
mmmhnwmmwj sl .

~ oftherssrm => otivers ( const id : glype: ) : stelement

' : | |M€t) dm |
.mwmmmhambmwmmum;
s s the neme: of W istie |

. begin - v»;-wmmmw

. e z-»r -»n‘)r

select - -vmtm

‘m "“‘—lwﬁ"‘*}«l«“ et
;:&ém},_'.

"f""f“..' ‘”W“Ls(\"m’"%‘%ﬂ-': rstpe
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L YRR R &

There may be only one others arm per ugan statement. All tags must be

~ accounted for in each tagcase statement. AR tags named on the same arm

break

must be for the same tmlndﬂn!yudthhcﬂydodvodbdonmhr must
match thet type.

=> break

"->newid:nm-oxp

The expression must be an invocation of aulnow

.Seversl of - the. above. M ore- m in particuler contexts. The

. ntm ﬂdmﬂh lagal: only in procedires: ahd Rerators; yield is legal only

LS. Expreulom

_.exp

.snmmmmmmmbmmumm only in for

=> exp bop exp e
| uop exp

- Hexp)

uterst oy
| selexp

* latvpe sl apame ]

lup
[down -

The last four productiom of cx[a md oxydnkg;; thoy ‘are for routines. The

special rouﬁnes ‘up and Mn e M only in clusters and coﬂvort

i belmn the abstract and rep types. . Cy

selexp

-> id

Jexp. id[(oxp{ oxp} ]

| Iexptoxp]

jexpt
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literal

- boollit
nuliit

ptriit

These ferms are (in ordork o veriakie, selaction, arrey indewing, nd pointer

L YAV/]
L+1-1a

B A L Rl kel b |~<l~‘-l-l~’-l~°

|8 |cand e
I1]cor

The operslors on mmmmﬂm prévedence. The operaiors in the

+ Siest Hine Silnd most Ngitiy, Wove W thE: scidif-fess tightly, eic., so the last

Hine binds neal tighlly:- mmmmmmmw o,

xopyep2 m'(xapy)uz‘;!rwﬁﬁ?ﬂm&a(yuzr

‘->-'~

=> intiit |;ch.ru'1 l.si-m | boottit | it { prewt

lq'm'tm m{.m}l

'lq'mttmo oxp : oxp ]

| atype 8 { ide : comp { ,in:om } )

Tvnmmmmrdﬁmn!uﬂrmwm Mhaﬂwobrm

The T oxpy : oup; .mz....cm,,rm medns an sersy with low bound

uvo.-ﬂnm.m1MWhmmm The
‘[cxpo .xpl upzrbmmmmiy‘”%mma%wv




1.1.6. 'l"jpu '

type -

ptype
itype

seltype

fpargs =
fpargitem
. 'fpréts '

| ids

,. - [ fpargihm{ fporguom} l)

e R R Rt st s e

| =>int

| bool - _
| char , Lo L
' null:

| area
|“""l[wxp]
|‘"‘7['mnxa,m1 T

:l'ﬂ”“’[“‘ fYP'{.Hl:!yp}] ’
oneo (e stype {6 tm }1 .

"d [‘wm'm ]

,lip*vpe. |
| itype gt |
| seitype I T

levtliexp)
Iptr[id,atype ) -

-> pmfype fptf!! [btps_ak_ lIllbl ]7

=> jtertype fp.'” fylds [ m” ] Lo e nn

- seitypo [ !pargc }ofslypo fﬂl Q'Yﬂ‘{ Ml‘ ]

. "i'\i“ .

.>( varleomt)qtypo T e

L returns ( [ stype { stype } ] )

S )

135

The productions of type ere for thoss po.nm where ». v-typespec is

requirbd.
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LL7. Star Types

o stype B o -»hi

'Mﬂ![[&m]]
. lmlyls!m[ span, wf}

| record [ ids : sm-{.s& xtw.}]

?n%;;‘;, :

lllmf[hls cstype { , bk .m..‘}j

| l'd[muf]

| ptype
| itype
| seitype

lcvt[{;;pam},m{gi

e '*"*M ol

sparm . - W |+

| A"“?#'kmd“rww
L.18. Quuticnuaﬁ:arSm‘l’m ‘

atype C - im
. | bool

| char

RL D

l ares.
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- stf‘i:n( [[aqpmn]] R
_hmy[qtvw[swmqpim}] e
| record [ ics q.,,,.{'m qt,,.}]'
| |oneof[idnqcm{,w. q,yp.}]_
| .lw[qp.m.]"
| ptype

|itype
| soitype

- .Icvt[[mp-m{.wm} ]
_"v|"P[[mp-rm{ Q""}l]
lptrlid,atyps ).,
s =t} [ {en} 1
‘aparm - oxplndh g

 The nontorﬁndwpoxpands to vc?-tymn ond ﬂd’s -
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- L2 Syntactic Sugm

There mmnwwmm-m for nprmsi invecstions. These

forms are catMW&&Mzmma
type of x (i.e., its typoud.ﬂmdhgpm,rm

Sugaer

X.n

X.n =2
x{y)

- x[y) =2z
X %% y
X*y
x/y
x/ly
X+y
x-y
xHy
%<y
X <=y
X =y
x>-,y
. X>y
X' ~<y
x~<-y
X vm y
X~ my |
X&>y-
x&y
x|y
-

~ X,

1.3. Reserved Words

and char else trom
area cluster elgeif has
array const end it
begin cor - exc m in
bool cvit foise int
break do = for is

cand: down

it L]

M,y)& RIS =

ﬁm and T o the syntactic

it



14 Termlml Symbols

R R

Joohe
“letter
»digit_
intlit
c.hafll',
Cstrlit
char-_r#ﬁ
' p_rinfing

special

octal

- l.u.r |

Al |zr-1 L

J"Ol l’ R | s ‘ ; b~ R

->0' |7

S g ih\:. a0

=> digit { d&git} '

| {chlr__ropl } o

4’}

- prlnﬂu f\speciat

-> my ASCII character wch M 378 < ochl value. < 1773

it s R

- R ropro”nh

|- X represents "
I X represents \

it ,"«’W HMMW*M)

e X nprmnh FF (form feed)

e STy r‘p;;ithR(cwm return)

|v % represents VT (vertical tab)
-Iochloolllochl L

139
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Ix. MMTmﬂm

ety

wenmmmammmwm Mmﬁrﬂdncnbelhe
 special notations used. The erguments h m@m sbjects, not the “syntactic
expressions) ere celled ‘argl’, ‘arg?’, ﬂc., or just te w # thers is only one. If sn
operation signals ‘foo’, wewthathoms. mwgﬁ&%!&%’mmmk&omd
where there is no ambiguily. MMMM ooy ,"Miﬂﬂnﬂlﬂmh
mcmwwmmummmmmauﬁ#mmm ' _
Some definitions inveive restrictions. a:%&mmnma 'is ‘sither a
standard where clause, oroimm
where each T; has oper_deck;,
which is an sbbrevistion for ' !
 where Ty has oper_dec!, .., T,, mm T
Seversl definitions wil involve tuples. <A tupler is; wriften .<s
components of the tuple, snd &, is calied the " tompenent. A

an n-tuplc We siso define hmmi sy F ”~ ST
5'20(‘!1‘1.1 Q“?)Iap, P l’ S k T

A =Biff (Size(A) = sia-ca»nmusisnxq-q;
<a,. i ST AR ST S
Front(<a, .., b, c>) u <a, ., b> 7=
. Taﬂ(q,b, .,c>)u<h....,c> o x E
~ Tai%a) s A and. TRy -t ‘

Occurs(A, B, iy-m EW- eu% RM - ; n

Lastly, we say tuple A'Sceirs ot I B 1 i tipl

1LI1 ‘m_‘.,u.' ‘ :l | o
There is only om, immutable object of !manll.hm;h;lﬂ.

cqusi:  proctypeiconst mul, mell) returms. oed
Always rctums true.

copy: | pmtype(m null) veturns (null)

The obvious copy.



.. or: "proetypo(mtboﬂ.bool)rémi

P

14

E 11.2 : Booléans\

There are two, immutable objocls of type bool, denoted by true aﬂi hbe. They r.prmnt the
logicat truth valm

v O ey

Cand: proctypétconst bool, bool) return (bool)

;.-.4 >

not: proctype(amt boo) rei

S

The ‘standerd h;tc.ﬁmctm
' .°§‘5"= Pmme(msttooi, bool) mmi (bool)

o ;;‘.EQUM returns true m its orgumnh ore the: o |
copy: - proctype(comt bool) returmm | '

Copy simply coples its trgumnt

I1L.3. lme_g,ers

. Objacts of the type int are immutable nd’ nprnont u wbrm of the mathematical
, _)ntegers The subnnu (which may differ wma oach pant ) I8 ...
[Int_Min, Int_Max}, where Int_Mins-2!541 and lm_uinzm-f An fmm exception is
signalled by an operation if the result would lie Mdda Aive. inlorval - -

add: proctypelconst int, int) returns (int) signals (overfiow)
sub: ©  proctype(const int, int) returns (int) signals (overfiow)
mul: pmetypdumst int, int) returns’ ﬂnGWM)

]

-Thq standard lnmr opemtm.
mi nu§: proctype(eomt int) returns (int) slgmls (ovorﬂo\v)
| Minus returns the -mptwo-of its armnt. -
div: p'ﬁié’iﬁ:e(cénst iut, int) ;éturns"(fhi) mlm(wo.deb. mrﬂ'o;) ;

Oiv computes the quoﬂont of argl and arg2, i..., tho integer q such th-t '
(3rj0 < r < jorg2)) [argl -qtar¢2+r]. hro_di%oocmlf g2 = 0.

R T R R DT 7 - =
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po'wer: proctype(eemt ht, int) returns M) signals Mnm mm)

Thlscommﬁuﬂl nhudtoﬁnxgim Mm-l WM'
'Joccursﬂurgz<n., R s s e

mod:  proctype(const int, int) returns (lnt) dgnds (un_dlﬁl-. mﬁu)

This computes the integer romainder of divideg qz n qz; i.p.. the result is
argl - argZ*dN(lr'l ag2). ZONM M%’S !!’la'er T :

from_to_by: itertype(const int, iat, int) yields (const int) sigmals ¢ wro. st

This iterator yisids, in succession, argl,ml 4;:;8,@‘1 +gammmmmt4
value to. be vyielded, x, uﬁ;ﬂn h’n&auﬁ’ﬁ?v (x<u321\uﬁ<0)'
Zero__sfcp oceurs t’l ll"a -0 TR

. proctype(mat int, int) Ntum M‘ LR I
le: | _proctype(mu Inf, int) returns {hool)
equal:  proctype(const int, int) returns (bool)
ge:  proctype(const int, int) returns (beol) .

8t proctype(const int, int) returns (boeh)

Gpy: proctypeiconst int) returns Gm)

o Ti;o oiwio.us copyulrdhn.

" HL.4. Chmcters o ‘ SR o T L

The objects of tm dm are M and w Mrs Evcry
8mplemenuimn is’ assumed to prowdo ot lnsf 128 ehanchn. bﬂl no mu !hm 512. Cheracter
arenumberodfromommw Top,mdthm farlhoehuehr
lype. The first 128 charactars are mm&mummm : |

FEERR IR

i2c: proctype(const hﬂ m (dm) w M_ch-r)

12¢ returns the cheracter numbered argl n tho berin
occurc itf the argm h not Mhu unp ga.am_m




c2i:
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proctype(const char) returns (int)

Rbiurns the numb-r corrospomﬂﬂu to ih ﬂumonl.
it: pmctype(oonst char. char) retlmu M)
le: -~ proctype(const char, char) returns (bool)
“equal proctype(mu&.&gm)m (bogh ;. -
ge: _ proctype(const char, char) returns (bool)
gt: proctype(const-char, char) ‘Fetiris (boot)

'The ordtfm. rﬁiﬂom oomichnt with the numborh 0! chpnchn
copy: proctype(eoast char) returns (dur)

' 'The obvvous copy ¥ |
. IS, sungs |

Strings are immutable ob]octs Each string nprnonts ) lup!o of .characters. The ith

character of the string is the ?hgm &hm Th:Sideret » string: must be » legel
integer; if it |s not, then a failure exception s signalied. Furthcrmo. ] vwiabh declared
string[i): mést be dble lo ‘store strings whosd ‘size Uoc: ot exceed n, snd may possibly store

larger strings ’

size:

indexs:

indexc:

c2s:

- R egke

| pmtype(eqnlt string) returns (int)

‘Returns ther'sizé of the tuple roarmﬂﬁn. Ih afgdﬁ’mt

proctype(const s&ring, smng) ntum (lnt)

The operation returns the hut h\dtx of M lr|2 occurs in aul (Notic. that this
‘means ‘1 nmummf ifﬂ s’ uwfr

mmi’

Lt

nol occur in ar;l. then O is
rol‘urned

proctype(eonst string. clnr) retuﬂu (lnt)

54

, Indexc returm the least indox st which tho l-lupb <lr'2> occurs in argl If <arg2>

does not occur in argl, then O is retirned.”

‘proctype(const char) returns (string)
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concat:

sppend:

fetch:

substr:

. resty

s2ac:

ac2s:

chars:

' proetype(mst uuy{char]) retms (stdujl
_VAc2s is the invam e# s2uc. Th %k m . '-

 Returns the string represenied by the 1-luple <srgl>.

Ty R

proctype(const cmn string) returns (min)

Concat returns the stﬂm for’ which arsl H er¢2 is l'h. Wﬂion.

proctype(const string, char) m ) o

S ETITE PRI

This operahan returns the stMWW*ﬁi ﬂ’ﬁ!ﬁ’

.proctype(mst mtng iat)m,‘_ '

Fetch retums the mﬂ‘ . Gheracter .of  akgl.-. M MO0UrS - 1! (ar52<l)v

 (arg2 > suze(.rgl))

proctype(m string, int, int) ntm W WM muﬁvo du)

Substr . returns  the string. . uprmd by the tuple of size
min(arg3, siu{ar;l‘) g2 + 1) which occurs st M g2 inergl. m occurs if

(argz< 1)v(-r;2>du(mi)+ 1) m_dummnm«o

oMY 7 1 < L1 o4

pmmmaahg WMWM

| "Equwn!ent to subsMar;l a-;z. .fzw»,wm Mh ;w"ﬁ?'lau.n.

proctype(comt string) returns 1my£elm})

This operttion crestes s new srray, tht m of m e iho choncim of the
argument. The !owt Jbound of the -ruy b 1, nd e size d«ﬂgmhnho(vcl). The
ith elemant of the mly N eh- tﬁ‘ ebcraehrofﬁnm -

;g,g,r'~

- 4he seme order
as in its arzumnt Thus the ith. Mr of the result h M«ﬁiMﬂl) - pth

_element’ of the wgmm

itertype (const strhg) yhlds (mst clur)

* s * ) e

' This |tantor yiekls, m ordor, each chcnchr « m w

#4:
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e proctypﬂmst string, stri"‘“)retlmw

Lty

ie: pmcypam‘*ﬁ*_j'ﬁ .cmg}mm(m» T
sqush  proctypelcomst string, string} “{;W’ 5 vk L

ge: proctype(mmlu striﬁ ){”g rhaadhb-cros REEID ORISR
gt "”‘“-*proctypeteonddﬂng. ﬁ 1) returns (bool)

?%‘; ,iﬁ??%? SO AR

These use the ususl lexicographic: mw‘&vm ordmm for charactors.‘ The it
operation is equivelent to the fomm Mo:

‘j,e‘.ig

| k = prociconst x, y : string) returns (less: bc'l)

. var mf‘”ﬂkw int e

if size_x <= size_y
then min := size x;
‘ln M - “u.. ’
end if; g
for const i: int in. Iattfrom_ﬁo_by ﬂ.mln D dq
lfx[l]<yfll S .
end if; : it
- end for; .
less := (sm.x < slxe_y) ‘ : , '
‘end k; e . S I ‘

copy: Pmtywm't “ﬂlt) ntms(strhp ’ C

| Tho obviom copy

[

The array typo generator defines: on Tlte MN’W For every lypc T there is a
type lrray[T} Arny objocts sre muhblo. Th. Ohh Q‘ . mq W mms Qf

» l anmtegnr Low. cdlod Iholo\vbomd,md e
atuplomsoiobbcboﬂypo‘r cnlhdanobm:.

»w. atmd.ﬂm Sive v SizwlBite) ant High sLow's Sige™ L. \‘Hmt ta think of the components
~of Elts-as_beitg rumtiered froni Low; 'so we'deting e srray Jhd¥ik ‘61 the " component to be
(i - Low + 1). Each array object nmmmmmm First, e Size, Low, snd High -
must all be legal integers. Secondly, Low end ch e boumbd by the size of the verisble
containing the array. ijod ‘Any attempts to M“M “‘Mﬂﬂ% result in a feilure
exception: failure(“illegai_srfey”) in'tiie HFSt cilia, snd ilkrél*variable overfiow™) in the other. A
variable (or object compomnt) of type arvay[T; i, h} M be bb 1o contain array objects with
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Low 2 | and Hi'gh < b; it may be sble to contain hr;er mm H »m;myz-h mnd #0.@ variable,
‘grown with addh or -addl, or shifted with sat_low, wthy,M !ﬁ. Ml f the - Mlbh would be
exceeded, then failure(“variable: worﬂow") is?ﬂgﬂlﬂqd, mmm R

For sn.srray ‘A, -we should wﬂh WA' 'Ec" to mrh Elh m Qf thli object, but '
subscrtpls will be dropped where the mehﬂon k d‘lr ‘
: ‘Note that for il array. m N {otiwr
stales of the arguments are mfmm’ﬂwu ﬁhﬁn’ﬁ rwocution

We use tha shbrevistion AT. br»ﬂnw

create: proctype(const int) returns (AT)

This returns snarday iaﬂmeﬁ M’ owie- el el ENe:

new: proctype() returns (AT) _ e g

Equivalent vto crolh(l)

low:  proctype(const AT) retarns (int)
high: - pree&nn(ewt AT) m em)
size: - proctype(mn AT) MUm ﬁm)

' These opentiom nwmm Mﬁmm
set_low: .proctype(w AT, eomt int)

Set_low makes’ Low equal to ugz This npnntion may involve physwy shmrgg the
elements of the array in storege. However, biock meve instructions -sveilable on many
mchms con be. M&n mmmm

. trim: proetyye(var AT, eomt int, int) olgnb (booudc. n&nﬂmﬁm)

This opention makes Low sque to »;z. m?m' Elte aque m th. tuple of size
minc:rga Hngh' - org2 + 1) which occurs in Elts’ afh‘n m -tow' + 1.1 That is, every
element. with sreay_imdex lm Ahan arg2,.0r..graster. then:dr: equdl 40, 9g2:+ org3, is

remowed. Bounds accurs if, {org2 <.Low)) uAmwww w ‘ocowrs u_
args < Q

1 ENs’, Low’, etc, refer fo the stats.prier 10 invoking the-gperetion.
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RS I

| . P@'!P«Mﬂ int, int, T) retuﬂu (AT) signals (negstive_size) -

vmehum%pMyMﬂntmm ‘

R ELETRY .

Fill returns an erray for which Low is argl. and Elte is @ ('m(o. arlz))-luph in which

~-remmdhicowo!‘m neah?w ”Mﬂm to get the

fetch:

~ bottom:

.top: .

store: ‘

.bmmi W order. mmmﬁww P et

sel!ype(int) of T from AT slgnlls (bounds) ‘
<%

Fotch selecls the obmont ol ar;l wlth .rroy_indox ar'Z Bounds occurs. if

: ,.;(ugaqmw(ﬂz«'»mh). Lo ey e e s

. seltype(} of T from AL lignalo M)
| seltype() of T fm AT ngy (Ml

These operations select the sloments. with wmn Low and Jullh. respeactively.

Bounds occurs if Sizo =0,

| proctype(var AT cvmt tnt. T) slguh (bomdn)

where T has eopy. pmtm Wmm

Store momatsamwtmbmmmm&htm org3 is the element with

| eermy_index erg2. Tiopy: is g de epgg*’#b wrgument.” Boumde. occurs i

«s-mgz qm v(vtzﬂigtv).

proctype(nr AT, const T)
where T has copys pnctype(eﬁit T& mm

=

This operation mok» Em tho new tupb Elts s <ar|2> Tlcopy is uud to creste the

v -Mwm =

proctype(nr AT eomt T) _ - : B
* where T has copy: ptoetype(cuut T) ntunu (T) .

* This operation mmc Low equel to Low® - 1, ond Eltc the tuple <erg2> » Elts thopy is

- used to crests the “new componemt. mwm .ruy_jnd.xs of the

f-- npmmmim) T S :

rerv:ih:

proctype(var AT) returns m slguli (bomds)
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 permuted.) Records are mutable objects. The stale of a record of type record{ld: T g = 1t Tp)
is an n-tuple. The: it component-of the tupie: b of type ;. mﬁﬁmm Is aiso called the
mompomnt w«m M&ﬁﬂ'i. ....f"ﬁ,,i v,,mm*wu I

‘ create'

ld“ o

 Put_Jdg

| prost:lpe(m RT. emt Ti)

s W

pmtmegm T T SRNMMED |
Mhere each T b-&smwmm&ﬁmw g

Th's opoulion roturm 8 new record with the tupb Gor;l. s mN> s its stot- lt uses
T,CcOpy to copy oy crnh is not wm hhm&bﬂ J;- 4. b jmplicit-in the
record Cwﬂgdﬂf. L sl ’*‘.“fi»‘,--.;%'; R UL

Jdtypq)qf;[, fm RT S

This operation ubch the ld;-componoﬂ! of its «;mnt 'rhm is an ld, opmﬂon for

‘each Id;. _' - fhe S0 e

This 6pmuon mekes the stete of #&) & 1ww fuplewivich ditferes from the oidsin that
its ld‘-compomm e copy ‘of arg2’ m(h uolu Tpeopy Thon h ] put_ld, operation

R ‘for,,actﬂd; et f.s... SR a’ an
proctype(eomtRT RT) returns (bool) el e

oﬁuilﬁ

copy:

wheu each T; has squal: pnetypdmst T., T‘) Mlmu (bool)
o:;{'s" r’ v.,f

Thii operstion compaces. the, Juping qg q:;bﬂ q‘@mﬂt by compomnt ‘using
TiSequal for the ld,-componont I all the mm rctum uturn tme. the result is

;em Mu tﬁw«m L3 m R

proctype(eonst Rﬂ reumts (RT) :
where unh Ti has copy: pros oy ‘l’ﬂ mmﬂp : R
Frpe T2 g ey aket Wais e

| This oporotion returm a record whose state ls s eopy of tho stlto of the orgumont.
s F m«ﬁwmmww [disco
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I1.8. Oneofs

i‘,r‘:—:g,.k"< P ﬁ :

Thqu quwdw dofMlMMu\ih mwm runww.m Hllype
pairs <(id;, ). s (I Ty, whers il the id's ar- diatine! sech in-e
type oneoffid: Ty, .., Id,: 7,1 (The user may wﬂh !hk tyyt with tho ptin WMOd.) Onoof
_objects are immutable. Each oneof ob)octk""f prasuitod by » peit“ (Il X% whe of 't
The Id; part of ‘the’peir is cotedt’ th fag; ‘st % To™ il
oneof[Idy: Ty, .., Idy: T ]toOTbolow S

muke_ Id;: pﬁct”mn?im% el
' whm Timmpy:mm'&) Gl s

This opeutmn returns the oneof object !or the pai ﬁdp ﬂ'ﬂ), uth( T{8copy. Th.ro is
‘a make ld, opcntkm for o«:b ld,

S

is_Id;: - proctype(comt O7) returns (bool)

This opernhon nturm true m thc tu of argl io !6' Ih ﬁo L3 Jmpﬁeﬂ in ‘the tlgcue
statement. Thcrﬂt wn ts_Id; Ogerution for duch m, . ‘

- velue_td; meypeo of T mm ugﬁs m_w

If the argument hs hg Id;. thk selects tho vduo part of the qmnl Wrong_tag
occurs if the tag is not Id;. .This opunﬁon is uud Wy by the u‘ase sh!mnt.
There lsavﬂuo_ldthrooch ldi R Ty

ki ER
equal: PMtype(comt OT OT) returm (bool)

im’r‘. ﬁ) nwm tbebl)

“If the tags of the urgumenis are dvffcmn},«ﬂbn Mh m H:ihe tags are both
ld,, then the result is Tiloqml appued to tho vdu- parh cf tht nrgumonh '

copy: proctype(mstm)mmwﬂ .

whm each T‘ has copy. pnctyp«mu Ti) retms (T,)
2

- Thls opentiom re!umc .,m ijod ﬂhh W dil: Mzmt. md o value
part a copy of the velue part of thoarwmnt lfthtubld.,thon!hcopy icmod.
using T;$copy.
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- 119, Pointe,rs

type T, ptr[A, T] is a typs. The representation of poih

The pomtor type generator defines an lnﬂnﬂo class of lypeu For oach ares A, anq, sach
#Fs is Fot doﬂmd oxplicmy, but implicﬂly

through the behavior of pointor objoch. Poinlor objoch sre WM Ws abbreviate P“’[Av 7]

nolpgr:

alloc:

deref:

equal:

copy:

.wmwwW

pm,xypee—) 'm.‘.. e

"vTh|s openhon retgrns a qoinm;.that p@m tomo object; Thtroioro, it is equal’ only to
‘other null pointon of the same type, ond cennol- ho«duohnmd '

,proctype(eonst T) returns (PT) s!gnils (fdhn(stﬂng)) |

where T hu copy: proctype(const T) returns (T)

This operahon creates a copy of argl in sres A, returning. a pointer to the newly

. created object. The copy is made using T8copy. . Fellure occurs if the aree canmot
‘conteain the new object; the string signalled is “srea out of memory™. _' ‘

seltype() of T from PT signals (bod_pomr)

This. operahon “follows™ a pointer.to the nb}oct pointed at. Bod_polnlor occurs if the
null pomter is dareferenced.

proctype(const PT, PT) returns (bool)

This Operahon returns faise unless argl and erg2 point to the same object, or argl and
arg2 sre both null pointers.

proctyée(const PT) returns (PT)
This operation returns a pointer equal to its argument. Thst is, the resuit points to the
same object as the argument.

11.10. Areas »

new:

An area object is used for the dynamic sliocation of other ob]cc‘h.'

proctype(const strlﬁg, int) returns (ares) signals (bed_arguments)

H
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Thvs operation returns s new area. Argl is used to: m whet: sort‘ of sree
management scheme: is desired; and arg2 is for size. MWMW is
mvphmnhtion dapendent. '

: li . Proceduns, ltm &wm

, Fbr‘e"tch procediire; ttoutw mm tw- thomm ummmmy,
and equal: Creasle ts not avsilable to: the. user;: its use: himhﬂwm and: run-time:
A system Copy pr»umbly does not copy the object oedu lﬁﬁw mm o descriptor.

1 mththasmm%WW' wisiderad
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