ok MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

(formerly Project MAC)

MIT/LCS/TR-191

SPECIFICATION AND VERIFICATION TECHNIQUES
FOR
PARALLEL PROGRAMS BASED ON MESSAGE PASSING SEMANTICS

Akinori Yonezawa

This research was supported by the
Office of Naval Research under
Contract No. N00014-75-C-0522

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139




Tius blank page was inserted to preserve pagination.



MIT/LCS/TR-191

Specification and Verification Techniques
for

Parallel Programs Based on Message Passing Bemantics

by

Akinori Yonezawa

December '1977

This research was supported by the Office of Naval
Research under contract number N00OI4-75-C-0522.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge _ Massachusetts 02139



-2-

Specification and Verifioation Techniques
for

Parallel Programs Based on Message Passing Semantics

by
Ainori Yonezaws

Submitted to the Department of Electrical Engineering and Computer Science
on December 30, 1977 in partial fulfiliment of the requirements

 for the Degres of Doctor of Philosophy |

Abstract

This thesis presents formal specification and* verification techniques for both serial
and parallel programs written in SIMULA-like ob ject oriented languages.

These techniques are based on the notion of states of individual ob jects which are
defined uniformly in serial and parallel computations. They can specify and verify the
behavior of data and procedural objects in multi-process environments, thus overcoming
some of the difficulties in dealing with paralielism which characterized previous work on
formal specifications for abstract data types. Among others, the specif ications and
verifications of a bounded buffer and air line reservation systems are given.

Using a model of a simple post office, we illustrate our specification and
verification techniques for systems, such as operating systems and multi-usér data base
systems, which are characterized by complex internal concurrent activities. It is
demonstrated that -the specifications of the overall functions of the system which we call
task specifications can be dertved from specificitions of the" tndeual behavior and
mutual interaction of the subsystems.

A method of defining states of individual objects as mathematical functions is’
suggested. . o '

Thesis Supervisor: Carl Hewitt
Title Associate Professor of Electrical Englneering and Compmer Science




Acknowlredrg“cm‘_ents

I would like to express my deep gratitude

to Professor Carl Hewitt whose. patience and . insightful ‘giiidance constantly
refired my enthusiagm for this research. His numerous suggestions and
advice have been invafxible thr&g‘hw? my raduate work’ at MIT

I would like to express my special apprec:ation |

to Professor Barbara H. Liskov whose detailed and flluminating comments on an
early version of the draft considerably strengtherved. this thesis, and

to Professor Joseph C. R. Licklider whose warmth and encouragement have
always been valuable sources of support.

My first year graduate work was supported by the Japan Society for the Promotlon of
Science (Nihon Gakujutsu-shinko-kai) ‘and ‘the Japan Foundation for the Education and
Training of Information Processing (Nihon Jyohoshari-Kyoiku-Zaidan).

This research was conducted at the Laboratory for Computer Science (formerly Project
MAC) and the Artificial Intelligence Laboratory, Mrissackusetts Institute of Technology,
under the sponsorship of the Office of Naval Research, contract aunsber NO0OI4-75-C-0522.



CONTENTS

1- Intro&“ctlﬂn o---oo-oo.trou'o-uomo.lco-o-.o-oooooooaoooooooooo-oaooooo9

1.1 F ormal Specmcat,lons and Verificstions ...... eesesessenesensasiasns '...\.. 9
1.2 A Model of Parallel Computatlon sesssersnstsacecnssrssernnsareresessanne .. 10
1.3 Local State Approach ceeveserresasasenssesssssassssnsnsanesnsarres ...... 12
1.4 Contributions of the Thesis ..........cicccurreerciiniorrieseesescesseses .. 13
1.5 Outline of the Thesis ................... eeerereessnneesssenesssnnnassesesesrans 15

2. Conceptual Representations (YT TV Y T YT Y PP Yy PP T T Y 17

2.1 Introduction ............cceeeuuernnen eessessasestissenesaerssnenasatsanassssssne 18
2.2 Conceptualization of Data Structures .................. ceensenaenisenes 19
2.2.1 Keywords and C-packages .............cceeeee. B N 19
2.2.2 C-SEQUENCES ......ccuvrnerenecranierecerscrsssorsesesssssssssssassasssssessanseses 20
2.2.3 Unpack Operations and Dot Notions crsavssesessassace vossassnesresnisesee 21
224 C-collections ..........coovvmniiviinniiiinierncniisenanes veresssnees veraesncerenenns 23
2.2.5 Pattern Matching ....ccoevviiiniiiniiiiiiiiineucinceicniineiiicresscsieneee 24
2.3 Specifications of Data Structures ...........cccecvvericrvnnriccrcccnenes 27
2.3.1 Queues ........ociieiiiiiiiiniiiniiiieeene eereeeaeteesensasaseene 27
2.3.2 SeUS ceuiiiiiiiiiiiiiii s res st e s s easssessssessaretansnnsaranne 29
P R BN 1 U 31
2.3.4 Symbol TabIes ......cocuvvreerienrinrensenrreraensessenssnenssersessssasssnesanes 33
2.4 Relationship to Other Work .........cccceeeveerivenenneerencecenseneensenees 36
2.4.1 Algebraic Axiomatic APproach .....ccccccceivuiiriieciirniineniieeniannee. 36

2.4.2 Abstract Model Approach ...........ccovvvviiiiiiiinisinsinenioninee 39




-5-

3. Behaviors of Actors (A Model of Computation) ... 42

3.1 The Actor Model of Computation .....ccccceceerreeenrreeecrenecernnnnenes 43
8 10 X ot PPN 44
3.12 EVENTS ittt e sresersere s snesasneaensasasneasesans 44
3.1.3 Computations .......ccvvviiviininniiiiieiniiniinninieessreississerssecssseenses 46
3.1.4 Level of Detail ...occvvviiiiiiiiiiiiiiiieiiiiiiiiienneinnessnnessesrensenssasens 49

3.2 Time Variant Behaviors of Actors .......c.cccceeivvnenncriirccicasinennns 50
3.2.1 Pure Actors and Impure Actors .......oovviiiiiininnneiicaieranieiescssnaes 50
3.2.2 Pure Queues and Impure QUEUES .........ccoovvviriereirennnnninreennnnnnnn, 51
3.2.3 Sources of Impurity and Uses of Impurity ......cccccoeeviinniinnnnnnn. 54
3.2.4 Four Types of Interactions between Actors .......cccoevvevenvnrnenennnn. 55

4. Specifying Serial Computations ..cccecescsccecscecscscsees B8

4.1 Capturing Time Variant Behavior of Actors ......cccceervverecenneenn. 59
4.1.1 History of Messages and States of Actors ..........cccceeernienninnnnnenns 59
4.1.2 SitUATIONS .e.viviiiiiiiiniiiiiiiiiiieicrniiseneireienisensarssssrsrasrsnssssrseses 60
4.1.3 States, Identities and Conceptual Representations ..................... 63

4.2 Types, Views and Conceptual Representations ..........c..c........ 65

4.3 A Specification Language ........... teteevenrernsaresnsenrrsrnsnenssnsnenrns 66
4.3.1 Specifications of EVENtS ........c.ccovivivnrenincnrnncnsinneannes TTTTTPN 66
4.3.2 Specifications of Actors (CONtracts).........ceriveverrerinncrcassacacennns 70
4.3.3 Validity of Assertions in Specifications ...........cccvievnivnienninnienes [}

4.4 Examples of Specificalions .....ccecevvrrerereerenrsrreeirencrsecseesssorenens 74
4.4.1 A Contract for Impure QUeEUEes .........cccoevvrieirinicineirnnniniiiiiannnes 74
4.4.2 A Specification for a Message-Change Interaction ....... seiereresenne 75
4.4.3 A Specification for a Target-Message-Change Interaction .......... 77
4.4.4 Contracts for Generators ..........cccevreinrenriaserrasrecassvrasassssscnesass 78
4.45 A CoONtract fOr average .............voveveveveireriueneieeneensseensensenneenns 80

4.5 Relationship to Other Work ......ccceiceeeereenccrenneeenceeecreeceneennens 81

4.5.1 Behavioral Specifications .....ccccvivriiininiericicnsniincrciisisceiessieenens 81



4.5.2 Burstall’s Work ........cccvviveiiiiiiiinnnnenieenieenneseiensesssressseesssenens 82
4.5.3- Rich and Shrobe's Work ........icciiieiiiiiinieericicciertnennnneeeeenecennes 82
4.5.4 Floyd-Hoare APProach ......iic.civsicisisnivesinsvensossecessansesirensonns 84
4.5.5 Algebraic Specification TechRiQUES ...........ceiveevreeerssuerueenrnns . 85

5‘0 Verifying Serial Comput&tions --o_o--ocogggoo,,yc.osop‘.ccoi..87

5.1 Symbolic Evaluation ............. SRRSO PO ORI -1
511 Overview .....ccocveevvuivennnnns ievesrssareeses cosrssedivarteieinnivanesene Veecress 88
5.1.2 Partial Descriptions of Situations ............. teeredenseisenransisnnens ceses 90
5.1.3 The Method of Reasoning (Uses of the Trans-situatienal Rules) .. 94
5.1.4 Variables and Identifiers ........esiiiveeivreesseesorivsnesssrsaneniesnssnees 97
5.1.5 Examples of Trans-Situational Rues ..........c.ccevevnrrernecierencrnes 101

5.2 Verification of Actors Behaving as Procedures ................... 102

'5.2.1 Symbolic Evaluation in the Context-of Specifications .............. 103

5.3 Verification of Actors Behaving as-iformation Sterage ...... <111
5.3.1 Tmplementation Invariants .......cc...coveunee. risubdasiecdsassareasansrsses i
5.3.2 Establishing Event Specifications .........cccevvveeeeens vessesivensinesres 115

5.4 Discussions Related to Symbolic Evsluation ......... sonsiss veivees 120
5.4.1 Situational Descriptions vs. Predicate Transformations ............. 120
5.4.2 Applications of Symbolic Evaluation ..v...cesiviiinecrnerninennnens 122
5.4.3 The Frame Problem ................. Perrerecisecitetesiseiasesionsinsersnsoasne 125

6. Specifying Parallel Ccmputationl ssscsegcvscsscacassnes 127

6.1 Introduction ..........ccceeeuenn. vererarsaneass .. 128
6.1.1 Communicating Parallel Processes .............. creeerestencutiicantesrona 128
6.1.2 Local 5tates ......ccocvvverreeevsneeesrenn. ........ terverrendnrereereannnsanans 129

6.2 Extending the Specification Language .................... vesseesersnas 131
6.2.1 Instantaneous State Changes .......... tieruvirtresessnietnienernisensnsanes . 132
6.2.2 <Noxt-cond:..) CIAUSES ......c.cceereuerreriiinireivierinssensiennenn. eeeaeens 133

6.3 Examples of Specifications .......... Sessessecarens vereisensenseisnennocees 135



-9.

6.3.1 Modeiling an Air Line Reservation System ........ saseonsrnsansrnannanas 136
6.3.2 A Specification of Semaphores .........cccceeevrrevvnrrerirennerrenneannnns 139
63.3 A Specification of a Bounded BUFFEr vovvvrvreeeereerereeneseeeesaennns 141
6.4 Behavioral EQUALIONS ......eeeeverervevrerrreeeesessssoseeeesssesssnsessns 145

7. Verifying Parallel Computations .c.cceeecereessessceseee 148

7.1 IntroduCtion ..........c.coieerveemrsesennnessnnenssnsnessssssssssssesssessesses 149
7.2 Serializers ..........ccouuuune. rereesesesarsresenns terseesernnsenniarnesanesnsanes 149
7.2.1 Concept of Serializers .....eeeevrereveeersiverrvsssiseresssesesseennnssesnnsees 150
7.2.2 Behavior of SerialiZers .........eeeeerveeunvieererusseresuseeenssssenseensennns 151
7.2.3 One-at-at-Time Serializer (An EXample) .........ccovvvvrvvnrenneernnnnn. 154
7.3 Verifying Implementations of Actors | .....c.coeeeerveeveeecenecenennns 159
7.3.1 ‘An Implementation of an Air Line Reservation System ............ 159
7.3.2 Verification of the Air Line Reservation System ...................... 163
7.3.3 Establishing the Implementation Invariant .........ccoeeeeieereernnnnns 167
7.4 Verifying Implementations of Actors Il ....cocoeeeeereeecreneeenennnnes 169
7.4.1 An Implementation of A Bounded Buffer ...........cccvvuurereennnnn.. 170
7.4.2 Verification of a Bounded Buffer ........ccccoceeeruueeervnreennnenneenenns 176

8. Modelling a Post Office LA A R A A Y R N Y R R R R A Y YRR Y] 181

8.1 A Model of a Simple Post OffiCe ........cevvvveeeeererennrcereoncorennses 182
8.1.1 Overview of the Model ........cccuiiuniveirenirenerenerneenreressrencesnenes - 182
8.1.2 Interactions at the DOOF .....c.cevuviiiieiiunirnrrieniiiienrerreesenrecesnennns 184
8.1.3 Interactions at the Counter SEction ..........ccvevvverecrnrennrnrernennns 187
8.1.4 TInteraction at the Mail BoX COMNEr .....cccuvvinrvrnerenrersrnneneencennnns 189
8.1.5 Assumptions of No Implicit Interactions ..........ccoveuvevvenvennennnn.. 190

8.2 Task SPecifications ......ccccvevveeiiiiiiiiireeeeeereensesesennssessnnssrsnnes 191

8.3 Verification for the Task Specifications ........ccccveersrersevnvennn. 194

8.3.1 Verification for Customer’s Guaranteed Return without Letters .. 194
8.3.2 Verification for Guaranteed Collection of Mail vvvereevevenneernnnsns 197



-8-

9. Conclusions and Future Research ...'......f........;...'. 200

9.1 Summary and Conclusions ..........cccceruenerunerncs ; 201
9.2 Future Research ..............ceuueeneee ctesssasssassssrssessisansnssaessans 202

10 B‘bl‘ography .......l.“ll.l..'.l..l“..'l“'"..”..“.....'“. 204

Appendix |. Derivation of Axiom (5) vesasaserenssesusssinsussssresssnasin veene 210
Appendtx ll. Limits of Algebraic Specaﬂcabon ....... tesseseesratesessaranns 212
Appendix lil. Recursuon, lteration and Loop Invariants 215
Appendtx V. Convergence of omptyvom-qunuo-mt»-umtho;' cosaneneeese 218

Appendix V. Another Specification of One-a-at-Time Serializers 220




1. Introduction

1.1 Formal Specifications and Verifications

A program specification is a description of the desired program behavior. It is
necessary to specify what task the program is supposed to perform and what effects
(side-eff ects)- are caused by carrying out the intended task.

Program specifications can be written in languages of varying degrees of
formality.  Although informal languages, such as natural languages, diagrams, and
combinations of these, help people to convey intuitive ideas about program behavior, their
inherent ambiguity is a drawback. In order to rule out the possibility of ambiguous
interpretations, program spedfications should be written in formal languages. When

formal specifications might be difficult to understand, they may be accompanied by



-10 -
informal descriptions of program behavior. _

- Formal specifications play an important role in the construction of reliable
software. They also provide designers and programmers with an exact communication
medium for discussing the properties of program modules in various phases of software
construction, such as initial design and coding. Furthermore, they can be used as
documentation during the maintenance phase. A formal specification can be viewed as a
contract which describes the agreements between the implementors of a program module
and its users. The users of a module rely only on the properties derived from its formal
specifications, while the implementors need only satisfy the requirements stated in the
specif ications.

Program  verification is the process of proving that a given program
(implementation) meets its formal specifications. When a program module M is built on a
collection of submodules, their formal specifications can be used in the verification of M.
Actual programs (implementations) of the submodules need not be used.

1.2 A Model of Paraliel Computation

This thesis is concerned with the techniques for formal specification and
verification of both serial and parallel computations.

In order to discuss specification and verification’ techniques, we must clearly define
the computation model on which the execution of programs is based. The computation
model used in this thesis is the actor model of computation{Greif-Hewitt?s, Hewitt-Baker77},
which can be roughly characterized as one obtained by generalizing the computation model




used in SIMULA-like ob ject-oriented Iangua\gesI to include parallelism.

The fundamental objects in our model of computation are actors, which unify
procedures and data structures. An actor is a potentially active object which becomes active
when it receives a message. No actor treats other actors as ob jects to operate on; instead it
sends messages (which are also actors) to other actors. Actors behave like data or data
structures as well as functions or procedures. For example, a push-down-stack actor pops
up and returns its top element when it receives a (pop:) message (if it is not empty), and
when it receives a (push: @) message, it stores @ as its new top element. A factorial actor
returns 6 when it receives 3.

The only activity possible in the model is message passing among actors. More
than one transmission of messages may take place concurrently, which models parallel
computations. Since processors and processes can be viewed as actors, muilti-processor
information sy‘stems‘ and computer networks are modelled by actor systems. In particular,
distributed systems2 and communicating parallel processes can be easily modelled by actors
or systems of actors[Yonezawa-Hewitt77, Hewitt-Baker77]

The concept of an event is fundamental in describing the model of computation

_precisely. An event is the receipt of a message by an actor. A computation is expressed as
a p'artially ordered set of events, where the order relation represents the temporal “precedes”
relation. Unordered events can take place concurrently. Thus the partial order of events

naturally generalizes serial computations (which are totally ordered sets of events) to para!lel‘

1. Besides SIMULA-67[Dahl-et-al70), CLU[Schaffert-et-ai75}, ALPHARD[Wulf-et-al75) and
SMALL-TALK[Learning-Research-Group76] are examples of such programming
languages.

2. Distributed systems are multi-processor information processing systems which do not rely
on the central shared memory for communication.



-lg-

computations.

1.3 Local State Approach

1In this thesis, we propose an approach, cafied ‘the [wal state approach, for
specif ying the behavior.of actors (objects). In general, the behavior of ah actor in response
to a message depends upen the past history of mgusmimbfme actor. By defining
the state of an actor A as eguivalence clssses-on the past mesiage histories of A, we can
specify the behavior of A in response to a message M in terms of:

() the state of A before A receives M,
(2) a set of mutually concurrent events caused by the event where A recetves M and
(3) the state of A after A receives M. ’

Since. we assume, in.the model of comptitation, that ¢he order of message arrivals
at the same actor is always total; the state of an mﬂsm well-defined in both serial
and parallel computations. Consequently, the: behavior of an actor in both serial and
parallel coniputationx can be specified in-a uniform manner.

We use the term “local”.to emphasize that our approach does not rely on the
notions of the global clock and the giobal state of a system.) The use of ‘global states is
often motivated by the use of non-deterministic serial computations &s the ‘underfying
semantic model for paraliel ‘;omputanons. This leads to counter-intuitive serialization of
unrelated ﬁoncurrem events and a large number of possible cases in mnlyling properties of

I. The global clock is the unique time reference available within the entire system. The
global state of the system at a given time t (by the global clock) is a vector of the states of
system components determined at the same timet. .




-18 -
the system.

In our approach, the behavior of a system is specified in terms of the individual
behavior of system components and their mutual interaction. Such behavior and

interaction are described by the states of the system compohents determined at their local

- times.

1.4 Contributions of the Thesis

Based on the notion of local states, the work presented. in this thesis has made

several contributions to the area of program specification and verification.

(1) Formal specifications of Abstract Data Types with Parallelism and Side-effects

The importance of abstract data types[Liskov-Zilles74] in the construction of
reliable software has been recognized and two approaches to the formal specification
technique for abstract data types, ie. algebraic axiomatic{Zilles74, Spitzen-Wegbreit75,
Guttag75] and abstract model{Hoare72, Liskov-Berzins77) approaches, have been proposed.
Yet none. of the techniques of these approaches are able to deal with parallelism and
side-effects. These techniques are only applicable to data ob jects without side-effects and
they fail to.specify the behavior of data objects which are used in parallel computations
(multi-process environments). Our specification techniques have overcome these limitations.
Formal specifications for an air line reservation system and bounded buffers will be given '

as illustrations of our techniques.

(2) Conceptual Representations
We have developed notational devices called conceptual representations to describe

the states of individual actors (ob jects, and data structures) at various levels of abstraction.



-4 -
Pl 2N
3

The use of conceptual representations reinforces the notion of data and procedural « ob jects
as abstract entities whose lmerml structures are Mdden B! sepantlng the states of an
ob ject f rom its identlty. conceptual representations can express shartng among ob jects in an
mtumve yet ngorous manner. Thus our speciﬁation hngusge wtth s use of oonoeptual
represematlons has flexible and powerful expressiveness.

(3) Symbolic Evaluation of Programs written in Ob ject-Oriented Languages

| Symbolic evaluation is a process which abstractly executes programs on abstract
data. As the major tool for program verification, we hive dﬁelope&a method for
symbolic evaluation of programs writﬁen in SlMULA—Ilke ob pct-oriented languages. Our
formalism based on conceptual representauons embles us to deal wlth the difficulties due
to ob ject sharing which often arise in veﬂﬂcatton of prognms wrmen in ob ject-oriented

languages.

(4) Specifications of Systems with High Internal Concurrency and Tnsk Specifications
Little work has been done on- speclfying and verﬂ‘ymg the behavior of a system
characterized by complex concurrent activities of its subsystems Operatmg systems and
multi-user data base systems fall into this category In order to mustrne our techniques f or‘
dealing with such systems, we give a model of a slmple post office where a number of
.customers and mail-collectors are represemed as internal concurrent activities. We show
that the specnﬁcatlons of the over-all functions of such a sysnem. which we call task
specifications, are denved from the speciﬁauons of the indlvidual behavlot and mutual
interaction of its subsystems




1.5 Outline of the Thesis

Chapter 2 introduces conceptual representations, which are extensively used in the
work presented in this thesis. The precise syntax of conceptual réﬁfebentations and their
uses | in writing formal ‘specifications of abstract data types y_im piril]cllsm and
side-effects are exemplified. Further, algebraic axiomatic and abstract model approaches to
the Speci_fication of abstract data types are discussed in the light of our approach. (This
chapter does not use the actor model of computation.)

Chépter 3 gives a precise account of the actor computation model on which the
discussion in the subsequent chapters is based. It also describes certain characteristics of the
behavior of actors which must be considered in the development of specification
techniques.

Chapter 4 presents our specification techniques for serial computation. The
separation of the identities of objects from their states is explained and how this is
incorporated into our formalism is illustrated before our specification language is
introduced with examples of formal specifications. Several other approaches to program
specification are reviewed. ‘

Chapter 5 describes our method of symbolic evaluation and illustrates our
verification techniques for serial computations based on the symbolic evaluation method.
The application of symbolic evaluation to other domains is also discussed. .

Chapter 6 extends the specification language introduced in Chapter’ 4 to cover’
p'afallel computations and illustrates our techniques for writing formal specifications of
ibstracf data types with parallelism and side-effects. The notion of local states of actors
(ob jects) is discussed in detail'in the beginning of the chapter.

Chapter 7 presents our verification techniques for paraliel computations. The



- |5 -
verifications of air Ime rcservation systems and bounded buffers are illustrated

Chapter 8 contains an actor model of a simple post offioe, which is an Intultlve
example of a system with high internal concurrency. We.show that the internal activities of
the post of fice meet its task specifications. _ :

Chapter 9 makes the concluding remarks and suggests future research.



-17-

2. Conceptual Representations

Conceptual representations occupy the central role in the formal specification and
verification techniques presented in this thesis. In this chapter, we will explain the basic
idea of conceptual representations by illustrating how specifications of conventional data
structures are written using conceptual representations. However, as will be seen in the later
chapters, conceptual representations are used to describe states of actors of a wide variety.
In the later part of this chapter, existing specification techniques for data structures (data
types), such as algebfalc axiomatic ones, and an abstract modellappmch, will be discussed

in relation to the techniques based on conceptual representations.



2.1 Introduction

We will use conceptual representations to ny a wide range of data structures at
various levels of abstraction. The motivation in developing oonoepmal representations is to
provide a specification language which serves as a good interface between programmers
and the computer and also between users and impléinentors. A “Yood™ interface !ﬁnguage |
- shoukd allow programmers to easily express and understand their intuitive concept of a data
structure and how it behaves for various opentlons. For example, the "language” of
diagrams using boxes and arrows is a very good kanguage in which people can exchange
their intuitive ideas about the sharing relationships among objects. However, such a
language is not rigorous enough for the computer to understand without many hidden
assumptions. The specification language based on conceptual representations introduced in
this chapter is rigorous and yet able to express graphical intuitions about data structures.

Different degrees of awareness about the implementation of a data structure are
required in the different activities of implementing a system such as the initial design,
coding, and the subsequent evolution. Conceptual representations are flexible enough to
express only the details which are important in each activity. As mentioned above,
conceptual representat!ons are not oonfined to spedfylng data structures. They are used to
describe states of both procedural and dau objzcts and aho used to express views and
summarles of behaviors of such ob jects. Examplu of such cuuapuui repraenutims will

be found lnthelaterchapm[e.g..Chaprdehapmal




-19 -

2.2 Conceptualization of Data Structures

In this section, we explain syntactic constructs of conceptual representations using
simple examples. The BNF syntax of conceptual representations is given in Figure 21 at
the end of this section. |

2.2.1 Keywords and C-packages

Let us consider a simple data structure, a cell, which contains information that can
be retrieved and updated. In order to express a cell which has its contents, say 10, we use
the following notation

(CELL (contents: 10)).

This is a conceptual representation of the cell. ~When this cell is updated with new

contents, 12, its conceptual representation becomes
(CELL (contents: 12))

A word "CELL" in the above conceptual representations is an example of the keywords
which express the conceptual types of data structures. The keywords are always spelled in
italic capital letters.

In addition to keywords, another syntactic construct, conceptual packages
~(abbreviated as c-packages)‘ is used to express more detailed information about data
structures. A notation "(contents:..)" in the conceptual representations for cells is an example

of c-packages. C-packages are useful to distinguish conceptually different kinds of

. The syntax of c-packages are borrowed from that of packages in PLASMA
[Hewitt-Smith75, Hewitt77]



" lower case italic letters followed by a colon.

'20?
components of a data structure. For example, 3 node in st structyres of LISP has two
conceptually different kinds of compormu.thear—ptnmd theedr—pan. The following

(NODE (car: 10§ (odr: 12))

“expresses a node whose car-part and cdr-part It;e 10 and 12, rupectlvely (cer: 10) and
(cdr: 12) are c-packages. Selectors of packages (eg. uranddr)malwaysspelled ln the

Suype

When the detafls or specification of ‘some components of 2 data structure are
unmunnmmwmmmmMMWMmy ’
be placed in conceptual representations. Famthmwmtm
whose car-part is I3, but cdr-part may be anything,

(NOBE. (cer: 13) (odr: 7))

may be used. We call the question marks used 'this way dumsy element notuations.

222 C-sequences

There are many data structures which are naturally viewed as a lineas sequence of
components at some levels of abstraction. Qpeues, stacks, arrays, tabhs -and etc. are
examples of such dm structures. To express such conceptual sequences of components in
daté_ structures, we ué a synncuc construct, W NenCe (abbreviated as
c-:eguenccs).' | | : | |

1. Specifications of forms in ALPHARDIWulf-et-a76] are M in nerms of mthemmcll
objectswchuseqlmlndm -



-2-

Let us consider queues to sée how c—muenouare used. Programmers envisage a
queue as a linear sequence of elements which sré enqueued at one end and dequeued: from
the other end. Suppose that we have a queue consisting of three elements, I, 2, and 8, where
1 is its fromt element and 3 is its rear element. th[l 23).thlsqueue is

expressed by the following conceptual representation:
WUEUE (1 23))
Whmanewelumntﬁammduﬂnmmdofﬂmmmmhexpm as:

(OUEUB 123 4j).

2.2.3 Unpack Operatitiny and Dot Notions \
In order to express a queue which has an indefinite number (including zero) of
elements, we use a c-sequence variable, say x, in conceptual representations as follows:
 (QUEUE [x))

Ix is an abbreviation of the "unpack” operation on x. - -
In general, Kexpression> is equivalent to weiting out all.of the elements of the

c-sequence denoted by <exprsssion> individually, mmmm x denotes a
c-sequence [2 3 4] Then

1) = [10234] = [1234)
whereas
(1x] = [1-[23411 ¥[1234)

When y denotes an empty c-sequence [},



- 22T -
()= 10] = (1}
Thus (QUEUE ,[lrf]),!s equivalent to (QUEUE E])-which is-the conceptual representation of
an empty queue.
Letusboknmoreehbmnemnplud‘coaapmﬂnpmmdquwa
which use unpack operations and c-sequence variables. The twe conceptuat representations:
(QUEUE(S 1z])  and  (QUEUE [z 9))

express a queue whose front thSbeyﬂnMd‘:andamwhme
last element is 9, respectlve!y Furthermore

~ (QUBUE [tx 8 ty))

expresses a queue which has 8 as one of its elements. When the elements before and after
8 (Le. 3x and ly) in the queue are unlntensung thefolbvtngconapwglrepmmnuon may
be used.

(QURUE[.. 8 .))
".." inside the c-sequence is called a dot mmmon J In general, dot notations are used to
indicate only the existence of an indefinite number- (including zero) of elements whose
specification is not important in-a c-sequerice or c-coflection. (Cf. 224') Dummy element
notations may be used as elements of c-séquences. For example, 1 conceptual representation:

(QUEUE[? 3 4 5)) | |

describes a queue whose front element is unknown ( or unimportant), and the rest of whose
elements are 3, 4 and 5, in this order.



2.2.4 C-collections

Another syntactic construct of conwptual repruentatlons ls cmmptual collecuom
(abbreviated as c-collections) which are used to represem a eonoepmal group of oomponents
in data structures. C-oollections are different from c-squenw in that the order of
elements in c-collections is unlmportant. For examph. a c-eollection (2 3 7) is equlvalcm to
both {27 3} and {7 32}, C-collections are also different from mathematical sets in that
multlﬁle occurrences of the same elements in e-mllecﬂummtmpmunt. ,;Em'» example, a
c-collection {2 2 7} is not Fequivalent to {2 7}.

A simple example of conceptual representations using c-collections is

(SET {3 4'8))

which expresses a data structure of the type “set” whose elements are 8, 4, and 5 An
indefinite number of elements of a c-collections can be expressed by the unpack operations
and c-collection variables. Thus a general form of the coneepwnl repmenutton for the

data structure "set” may be expressed as

(SET {ix}).

C-collections may be described by using dummy element netstions “7" and dot notations “.."

" in the same way as c-sequences.



- 2‘ -
2.2.5 Pattern Matching

Unpack opentlons are extremely uscful in pmem mtchlrgg‘ of c-sequences and

c-collections. Below we will glve basic examplu of pmem mu:hmg, inmd of presenting
the matchlng algorithm

Suppose that a c~uquence of four numben 198 Olmu:lm Igaimt the I‘oilowlng,
patterns, whereu.v.and w are pattem (orfree)varhbbmc—w

W,  uimmnbe 98 4]
(2) [tvsa) v mast be [1 9)
) [w), " wmembe[t988

(4) [fu8 W] uvand v must bp‘:u 9]@‘[4], respectively.
(5) [1984!0], umh[].

Suppose that the same c-sequeme matcbes lgllﬂ;t the f@lmmng m where M and N
are pattem (or free) variables on numbers.

€)M 1], M and u mast be 1 and [9 8 &), respoctivaly.
(7) [luN) Uand N must be [1.9 8] and 4, respectively.

But [1 9 8 4] does not match against the following pattern:

(8) [MN)

Some patterns may have more than one matching case. For example, when [1 9 8 4]

' matches against

l. The use of pattern matching in our specification and verification techniques will be
exemplified in the process of symbolic evaluation in Chapter 5.



-95-

(9) [L % MUv], there are three matching cases:
Case-1: u={}, M=9, v=[8 4]

Case-2: u=[9], M=8, v=[4)
Case-3: u=[98], M=4, ve(]



- ”}j’f

Fig. 2.1. Syntax of Conceptual Representations in BNF

<conceptual-representation> == ( <keyword> ) l (mm )
<keyword> = % a word in the upper case italic fomt £

<conceptual-constituents> == <an-entity> | <c-sequence> | <c-coflection> | «-package-sequm
<an-entity> == % o single conceptual entity, which is ofien an scter % |
<c-sequence> = [ <juxtaposition> | |

<c-collection> == { <yxu§ostuon> }

<c-package-sequence> := <c-package> | <c-package> «:—puw

<c-package> := ( <selector> <conceptual-constituents> )

<juxtaposition> := <element> | <element> <juxtaposition>

<selector> im Zuumifhbthbummfmwhcm ]

<element> == <empty> | <an-entity> | <c-sequence> | cc-eollecﬂom I
<c-package> | <unpacked-c-sequence> | <dot-notation> | <dummy-element-notation>

<empty> = % an ompcy min, 4

<unpacked-c-sequence> == IW | !«mvu’bbb
<dot-notation> = ..

<dummy-element-notation> == ?

<c-sequence-variable> := % an identifier in the lower case roman fom %



-97-

2.3 Specifications of Data Structures

In this section, we exemplify how conceptual representations are used in
specifications of data structures. An abstract data type [Liskov-Zilles74] or a data structure
is specified by the functionality (domains and ranges) of the applicable operations and the
effects of these operations. If the data structure may be created by users, how it is created
must be also specified. In specifying functionalities, a notation “error” is used to denote a
set of error messages which warn users of operations that an error has occurred. We

assume that data structures are not changed by operations which cause error messages.

2.3.1 Queues

As suggested in the previous section, we use conceptual representations of the

following form to express a queue.

(QUEUE [..])

A complete specification of queues is given in Figure 2.2.



Fig. 22. A Specification of Queves
FUNCTIONALITY ;
i) CREATE-QUEUE: - =—> guome

i)

v)

EFFECTS:
(1)

2)

3)

()

)

(6) .

 enqueues & new item atthe rear end of the queue.
~ ries to dequeve the front element of the queue.

if the queue is empty, an error message is produced.
ISEWT: que —> boleex

ichecks whether or not the queue is empty.
CREATE-QUELE() ==-=> couwm o
ENQUEUE((QUEUE [1x]), A) ~—> (QUBUE [Ix A)
DEQUEVE((QUBUE [])) -—-> ERROR
DEQUEUE((QUEUE [A Bx])) ~~==> <A, (QUBUE [Ix}P

IS-EMPTY((QUBUE []) > TRUE

IS-EMPTY(IQUEUE [A D) —> FALSE



2.3.2 Seti

A typical use of conceptual collections in conceptual rqwuenuuom is the data type
“set”. The following four operations are associated: with:the set typc. :

FUNCTIONALITY: .
i) CREATE-SET: ===) sef
)creates an empty set.

) INSERT: ¢lmmi X sel ===) st

itries to insert an element,
iif the element is already in the set, no ef fect.

lii)VDELETE: element x set === set or error
-triahodelehunelemanfmuu.
.iftheelenmismtintﬁelu.m

iv) INY: element x set =--=) boolean
. checks whether or not an element is a member of a set.

The effects of these operations are formaily described in Figure 23. Note that the
membership of an element in a set i3 expressed succinctly by dot notations in c-coflections.



Fig. 2.3. A Specification of Sets

EFFECTS: -
(1) CREATE-SET(). ~—> (SET'{}) -

(2) INSERT(E, (SET {&x})

if xm{_E.} == (SET{b})
if x{_ . E_]} =—=> (SET {Ix E})

(3) DELETE(E, (SET {ix}))

frxmilyER) > (SET{ty b))
fxa{.E.} == ERROR

(4) INT(E, (SET {Ix}))

ff xu{_E.} > TRUE
f x#{.E.} > FALSK



233 Arrays

The following five operations are associated with the array type.

FUNCTIONALITY:
1) CREATE-ARRAY: integer x tnteger —> arrvey or error
itries to create an empty array with the specified lower and upper bounds.
ithe first integer should not be greater than the second integer. .

if) STORE: array x integer x item —> array or ervos
. itries to store an item with the specified ‘iridex

iii) FEVCH: array x integer —> item or ¢rver ..
stries to fetch an item with the specified index
the index should be within the bouids.

iv) BOTTOM: array —> integer
,retumsthg lower bound.

v) TOP: array —> integer
;returns the upper bound.

To express arrays, we use conceptual representations of the folbwlng form:
(ARRAY (loss: 1) (Migh: h) (elements: {..[i A).}))

where | and h are the lower and upper bounds, respectively, and an item A with the index i
is expressed as a c-sequence [i A] in the c-collection of the (elements: ) c-package. The
effects of the operations applicable to an array is given in Figure 2.4.

Mutlti-dimensional arrays can be expressed easily by modifying c-sequences in



Fig. 2.4. A Specification of Arrays

EFFECTS:

(1) CREATE-ARRAY(, h)
f 1Sk, ===> (ARRAY (lom: ) (Migh: h) (olemenss: (1) -
Y I>h ==> ERROR ... . - .. beund erver.

(2) STORE((ARRAY Cow: 1) (Mgh: h) (sloments: (1)), i, A)
i i>hor i<l, ——> ERROR L , ound evver.
A 1SISh and x= (M1 (I 1102] . . : i . when the ok cloment alroady exists.
| > VARRAY Use 1) (brhe:h) dobowrats: (Bo1 [H:A] te2)))
ff 1$ish and xw{.[i1]-} suahen the i-th olomons doss wot exis.
—> mmu..mmum‘iwm»

ettt

(3) FETCH((ARRAY (low: 1) (Mgh: mm&&a : ,
if i>hor i<l, ——> ERROR |  deund errer.
If 1$ish and x={.[iB]..} == B g
A 1SiShand xA{.[i?]..] =—=> ERROR = ;whon the i-th element is not found.

(4) BOTTOM((ARRAY (los: 1) (Mgh: h) (lemonts: {.}))) =3 |

(5) TOP(ARRAY (los: i) (high: h) (eloments: {-}})) ==> h .



-83.

the (elements: ) c-package to include more than one index. l-'or example, a two-dimensional
array may be expressed by a comepma! repruemation of the fdlowing form

(ARRAY (ow: 1) (high: B) (olomonts {01} A} = 1

2.3. 4 Symbol Tables

As an example of specifications for more. W dita: structures, we give a
speciflcatlon of symbol tables [Gutng’ﬁ. Lmdon-gl-tﬂﬁl smm are often u.ied in
wrmng compilers for prognmming languagu which have ALGOL-tike block structures. A
symbol table records pairs of an identifier and its auﬂbuee: The same identifier may have
different attributes depending upon where the identifier ts used 51 Block structiire. We
assume the following six operations are applicable to.a symbol table. No operations except
ENTER-BLOCK are allowed before the most global block is entered. The cmuon of a symbol
tab!edoesnotimptytheenteﬂngofthemoughbalbhck. ’

FUNCTIONHLI TY

) CREATE-SW-TABLB ==-=> symbol-table

icreates an empty symbol table..
;no block has been entered yet.

) ENTER-BLOCK: symbol-table ~-—> symbol:table o
,set up a new local mmlng soope.

iii) LEAVE-BLOCK: :ymbol-tablc ——> :,nkl nblc or error
itries to leave the current block. ;
df the current block is outside the most global one, then error.
jotherwise discard the current block and reactivate the most previous scope.



-84 -
iv) ADD: symbol-table x id x attribute --=> symbol-table or error
~ triestoadd a pair of an identifer and its ambun

if thecurrentsoopelsoutsldethenutglohlbbck.thmerror
Af the identifier is akrendy declared in mealrr_mtbh:k.thm error.

v) RETRIEVE: symbol-table x id -~-=> attribute or ervor _
itries to retrieve the attribute of an identifier m the most recent
iblock in which the identifier is declared.

Af it is not found, then error. "

Asa conceptmheprumudon for the symw uble. we use the folmlng notation:
‘ (sY. IBOL-TABLI [!!l’
x is a c-sequence whose Mum empty or c-packages of the form
" (block: [!7”

which conceptually represents a block The order of c-pukaga in x cormsponds to the
order of blocks. That is, the last c-padmge in x eon‘espmds to the most rewnﬂy entered
block. y is a c-sequence whose elements are pairs of an identifier and its attrlbute. Such
pairs are expressed by a c-sequence. Fer exnimple, suppose that ini 3ome block identifiers A

and B are declared to be real and integer, mpeﬁvdy Then ﬂnml representation
for this symbol table looks like:

(SYMBOL-TABLE [ ..Blck: [-. [A M] [' hhpr] ...]) ...l).

Using conoeptual representations of this form. a spedﬂcation of symbol ubla is written as
depicted in Figure 25.




-95-
Fig. 2.5. A Specification of Symbol Tables

EFFECTS:

(1) 'CREATE-SYMBOL-TABLE() - (SYMBOL-TABLE[)
(2) ENTER-BLOCK((SY MBOL-TABLE [W])) ~-> (SYMBOL-TABLE [tu (hlock: [D])

Q3) LEAVE-BLWK“SYH BOL—THBLE m == ERROR
Ienvlng the most global block (without ermnng).

(4) LEAVE-BLOCK((SY MBOL-TABLE [tw (Mock: [.J))) ) ==—> (SYMBOL-TABLE [tw))

(5) ADD((SYMBOL-TABLE [)), ID, ATT) ---) ERROR .
;adding an id-attribute pair mmmm most gluba! block

(6) ADD((SYM BOL—TABLE {4 (block. [lpdn])]), !D, ATT)
if pdn ={.. [ID 1]..] e ERROR :!D ls llrud] dechred in the current block.

if poirsw[..[107]..]
—) (S’YHML—TML![!I’MM(IDKTUDD

(7) RETRIEVE((SYMBOL-TABLE [tt)), 1D)
if to[.Glock: [.{IDT}].] - ERROR
ithe identifier is not found in any blocks.

i t = [..(block: [.{ID ATT] Ix}) ly] and y o [-(bleck: [.JID 1).])..] —> ATT



2.4 Relationship to Other Work

In this section, we discuss the refationship of our specification techniques for data -
structures presented in this chapter! w some mmmm sashe afen. ' We have chosen
to consider an algebraic axiomatic approach and an abstract model appmch boame these
two approachu are in clear contrast to ours and atio well stisdied. An exoallent mrvey of
specification techniques for abstract data types is found in m:w—zmum ‘Other
approaches such as Pamau mte madnne model" [Pams'l?] m l.ho reviewed in
[Llskov-zmu'lsl

-2.4.1 Algebnlc Axiomatic Appmclu }

Algebnlc axiomatic mh&nm studied by & number of researchers
[(Zilles74, Spitzen-Wegbreit?s, Guttag’ls. Wegbrett-&pmm‘lsl In this appmdl the effects
ofoperatlonsonan objectofthedantypebemgspedfbdmexpmged lnuermsof
equations of ‘the operations. To compare their ‘approach with ours, we ;guem two
algebraic axiomatic spedﬁaums, ane for quenes. (which. s t Mﬂ'led version of
[Spitzen-Wegbreit75]) in Figure 26 and the other for symbol ubhs (whk:h a shghtly
simplified version of [Guttag75]) in Figure 2.7. )

All the axioms given in their spedﬂatiom in Figure 25 md Figure 27 are easily
derived from our specifications of queues in Flgure 22 and symbo! nblu in Figure 25.
[For the derivation of the axiom {57 in Figire 28, see ‘Appendix 1] We believe that
specifications using conceptual representations are often easier for programmers to both

L. In this chapter, we assume that data structures or data types are always used in serial
computations. Our techniques for data structures (or abstract data types) with parallelism
and side-effects will be presented in the later chapters.



-87-
Fig. 26. An Algebraic Axiomatic Specification of Queues
FUNCTIONALITY: omitted. |

AXIOMS: .
(1) IS-EMPTY(CREATE-QUELE()) = TRUE

(2) TS-EMPTY(ENQUEUE(Q, A)) = FALSE
(3) DEQUEUE(CREATE-QUEUE()) = ERROR  ttenipis to doquene an empty quone.
(4) if IS-EMPTY(Q) then ‘DEQUEUEGENQUELIE), A)) = <A, @

(5) if ~IS-EMPTY(Q) A -DEQUELR(Q) = <B, Q>
then DEQUEUE(ENQUEUE(Q, A)) = <B, ENQUEUE(QY', AD

construct and understand than algebraic axiomﬂc specifications, because in the conceptual
representation approach we describe directly andmnhueffem take place in data
structures (at the conceptual level) when the operations are appM, whereas the algebraic
axiomatic specif’ ications d_escrjbe the effects of -the operations Mz and implicitly in
terms of refations (or equations) among the operations. Jn patticular, the axiom () for
symbol tables in Figure 2.7 is expressed lntetmsofa recursion of RETRIEVE. Such indirect
specifications are often difficult to grasp. Thus the author and reader. of an algebraic |
axiomatic specification of a data type may be less confident as to whether or not the
specification completely describes the desired properties of the data type.

Recently a serious problem in . the algebraic approach has been pointed
out{Majster77l. The problem is that there are some ciasses of abstract data types which
cannot be specified by a finite set of axioms for the operations (equations of the



-98 -
Fig. 27. An Algebraic Axiomatic Specification of Symbol Tables

FUNCTIONALITY: omitted.
 AXIOMS:

(1) LEAVE-BLOCK(CREATE-SYMBOL-TABLE() = ERWOR

(2) LEAVE-BLOCK(ENTER-BLOCK(symieb) = tymisb
(3) LEAVE-BLOCK(ADDfsymiab, id, sttrs)) = LEAVE-BLOCK(aywiob)

(4) RETRIEVE(CREATE-SYMBOL-TABLE(), i} » ERROR

(3) RETRIEVE(ENTER-BLOCK(symisb), id) » REVRIEVA

(6) RETRIEVEW*. id, aitrs), kﬂ)

if Wd=idl, :
then attrs
else RETRIEVE(symish, idt)

operations). To avoid this problem, they must use axfom scAemiats instend of infinitely
many axioms. This vioktes the finfteness of the axiom set Which is an important
assumption of the underlying theory for algebraic specificitio techniques. Our conceptual
' representation approach does ot have such & problem, becausse, as. mentioned above, our .
techniques destribe explicitly what effetts the ‘Operations cause to data structures. (In
appendix II, a data type which cannot be expressed by a firiite set of akebulc lxiamof
operations is specified by using conceptuat representations)
Furthermore, the current aigebraic and mxtiomatic




-39 -
important difference between data structures m @g_efm and data structures with
‘side-effects. (This difference will be explained in Chapter 8).....As will be seen in Chapter
4, the specification technique using conceptual representations can easily express this
difference. For further discussions on the algebraic approach, see Section 455, Chapter 4.

242 Abstract Model Approach

B. Liskov and V. Berzins (Liskov-Berzins77). have been developing an abstract
model approach in the area of specification of abstract data types. The construction of its
mathematical foundation is underway [Berzins?6] Int this approach, first a certain set of
well established data types and mathematical ob jects [eg., sets, sequences, tuples and etc] is
chosen. Then new abstract data types are spedﬁid in &erms of ‘such chosen dau typu or
already defined abstract data types. 4 _

As an -example, we give an abstract model specification of arrays cited from
(Liskov-Berzins77] in Figure 28. Objacts of thc type orrayft] are represented by the
following tuple:

tuplellow: integer,-

high: integer,

clements: thﬂndex integer, value: tm
Comparing the specification in Figure 28 with the one given in Figure 2.4 which is based-
on the conceptual representations, one is struck by the similarity. In fact, in representing
objects of -a new data type, the roles of sequence, sets and tuples in their approach
correspond to those of c-sequences, c-collections and c-packages in our approach. However, |
in the abstract model approach, the operations applicable to objects of a new data type are



-40-

Fig. 2.8. An Abstract Model Specification of Arrays

FUNCTIONALITY :

OPERATIONS:
alloc(il, 12) =

~ bottom(a) =
top(a) -

store(x, i, a) =

fetch(l. a) =

getval(elementi, i) =

If i1 < 12 then {low: il, high: i2, elements: <}
ebse error("bad array size”)
s denstes an empty saquonce and {..} denotes o r1uple.

alow
a.high

if alow <sisahigh
then { low: a.low
high: a.high
elements: addfirst{{index: i, value: x}, a.clements) }

if alow s is a.hlgh then getvamu, )]
else error("index out of bounds”)

if length(elements) > 0 then
if elementsy.index » nhen elements;.value

else getvakbutfirm{slements), 1)
else UNDEFINED

lements; means the first isom of the sequence donsted by "elements”



-4 -

specificed in terms of procedures defined on pre-defined data types. Getval, addfirst, and
butfirst in Figure 2.8 are examples of such procedures. In the conceptual representation
approach, we do not use such procedures in specifying the effects of the operations.
Instead, we rely on pattern mechanisms of keywords. c-sequences, c-collecttom and /
c-packages, which have been exempliﬁed by a number of spedﬂatiom. |

As was pointed out in the previous subsection, our approach is extended easily to
cover data structures with side-effects. The extendability of the abstract model approach

remains to be seen.



-42-

3. Behaviors of Actors (A Moddof Oomputation)

In this chapter, we introduce the model of deterministic computation on which the
discussion in the rest of this thesis is based. The first section mainly contains definitions
and intuitive accounts of various concepts and notations employed in the model of
computation. The second séction describes the characteristics which must be considered in .
trying to construct formal specifications of computations in the model. This section

contains the classification of interactions among actors.




-48-

3.1 The Actor Model of Computation

The fundamental ob jects in our model of computation are:actors. - Computations
are carried out through message passing between actors:. -An actor is'a ‘potentially active
- object (procedure) which becomes active when it receives a message. Each actor decides
:tself how to respond to messages sent to it. No actor can treat other actors as ob jects to
operate on: it can only send a message to other actors _ _

Messages are also actors. An actor may be created in the course of computatlon or may
exist in the begmning of a computation. More than one trammusion of a message at a
time in an actor system may take place.

A collection of actors which communicate and cooperate \mh each other in a goal
oriented fashion can be implemented as a single actor. A system of actors can model
various kinds of information processing schemata from ordinary sequential anthmetlc or
symbolic computations to highly distributed parallel computations includmg computer
networks of varying scales. Furthermore, it can model problem sqlving activities by a
socnety of expertstHewitt77]. | o

A number of concepts in programming systems can be captured by simple concepts
in the actor model of computation. For example, traditionally different kinds of entities
such as data, data structures, files, and procedures are unified as a single kind of ob ject, the
actor. Control structures such as recursion, iteration, and coroutines can be viewed as
particular patterns of message pasiing [Hewitt77] Furthermore, calling a procedure,
returning a value, retrieving and updating data structures, and synchronization and

communication of cooperative parallel processes are achieved by message passing.

1. For example, to get the i-th element of an array A, an (i-th:) message is sent to A instead
of doing a fetch operation Alil



-“-

An implementation of the actor model of computation ha; been realized as a
programming language PLASM A[Hewitt-Smith75, Hewitt77] The syntax of PLASMA s
so designed that its underiying semantics is transpaveat; © © -

- The above intuitive account of the model:of  computation wifl be made more
precise below. o A

3.1.1 Actors

An actor consists of two pam. script (octiau) and uquatntam: Its scriét is a
| description of how it should respond to messages sent to it. Each actor has a fixed set of
messages by which it can be actlvated When 3 message that does not belong to this set is
sent to an actor, the response of the actor is undeﬁned The acquuntanees of an actor are
a finite collectnon of actors that it directly km: cbout An actor A can send a message
dlrectly to an actor B only when B belongs to the acqnalnunecs of A. The script. of an
actor can be realized by a PLASMA program for the acmr The acquaintances of a newly
created actor C are the set of actors which are denoted by free identifiers in the PLASMA
program for C at the time of creation.

3.1.2 Events

An évem Eis .ddined to be the receipt of amq{'m M by a rarget actor T.:
The event E is expressed by a notation of the form

I We use the terms recenpt and arﬁval' of a message i,nterclungeably throughout the
thesis. o L ,



- 45 -

[ Te==M].

A message contains a request of what the target actor is asked to do and it may also
contains a continuation actor which is the destination where the reply to the request is

supposed to be sent. Messages are often expressed by notations of the form
[request: <request) reply-to: <continuation>}.

The request usually consists of a tag which indicates a task to do and the data necessary to
accomplish the task. PLASMA packages are often used as requests. For eximple, to request
a queue-actor to enqueue some actor A at the end of the queue, the package (enqueue: A) is
used. To request a2 queue-actor to send back its front element, the package (dequeua:) is
used. The continuation actor may be omitted in the message when it is unnecessary. For
‘example, when the p'urpose of a message is to return the result of a fask, or the reply to a
request, the message need not contain a <continuation>. In such cases, messages are expressed

by notations of the form
[reply: <resuit>]

When a continuation C in a message is unimportant or obvious from the context of
discussion, we make only the request part explicit in expressing an event. So the following

abbreviated form is used

[T <= <requestr] for [T <== [request: <request> reply-to: CIJ.

Furthermore, when it is obvious from the context that a message contains only a replying

result, we use the following abbreviated form.



-46 -
LT <= cresui>] for [T = freply: <resuit]].

Note that the above abbreviated forms use single shafted armows “<=" instead of double
shafted arrows “gmu", In the subsequent presentation of this M the terms ,'-'rﬁuest'f' and
"message” will be usédlntcrchanggbly,wh;a we are.not interested in the continuation in a.
message. o |

A primitive event is an event which ucuvaesmctlyom immediate repl'y without
causmg any mtermediate events. From this deﬂninon we can defme 2 primjtive actors A
prtmmve actor is an actor whnch always causu a prlmmve evmt whgn lt is sem a message.

As we have noted above. different control strudumes in programming languages
are viewed as different patterns of message passing in the acvor model of _computation. In_
fact, such different pattems of message passkng oorrupmd to d!fferem _patterns of
" continuation in messages. The patterns of contmuaum for recursion, and iteration are
found in [Hewmm and for coroutines in [cmf-umum The fact that‘ continuations are
sent together with requests allows the unification of control flow md data flow into a
universal flow of information, message transmission. Consequently, this unification allows |
us to describe computations solely in terms of events. |

3.1.3 Computations

A computation is defined as a partially ordered set of events, where the ordering is
strict and transitive.- A physical jntuition. for the ordering #:that an event E precedes
another event E’. We call this ordering the precedes order and denote it by "->". Then a
computation is a pair <Ev, "-->"> where Ev is a sét of events. The strictness of the ordermg

imposes the constraint that any event E does not precedes itself:



- 47-

VE, ~E --> E).

The partialness of the ordering allows that some events E; and E i do not precede each
other, which means that E; and E j may take place concurrently. We assqme that each such
ordered set of events always has the maximal events in it. This means that every
computation has a set of initial events.

Our assumption to model physically realizable computations requires two kinds of
finiteness properties. First, for any two events E; and Ej which are ordered by "-->", only
finite numbers of event can take place between E; and E i Le, the set {ElEi_ ->E->E j} is .

finite. Second, each event E has finitely many immediate successor events. These two

finite properties do not rule out non-terminating computations: they only exclude infinitely

fast computations.l

The precedes ordering has two suborderings which reflect more detailed physical
properties of computations. Suppose that E is an event in which a target actor T receives a
message actor M. Then the event E triggers a response (or action). This response is a
finite set C of events. We can view that the event E activates the events in C. Thus we
call this type of ordering the activation ordering and denote it by "-act->". So V EE in C,

E -act-> EE. The activation ordering is intended to describe the notion of causality in
computations.

Suppose that more than one message is sent to a single actor A in a computation.
In our computation model we assume that one message arrives before another. le, no two
messages arrive at the same actor simultaneously. Since each arrival of a message at A is |

an event by definition, if we fix a target actor, we can always introduce an ordering among

I. Hewitt and Baker gave an proof for the impossibility of such infinitely fast
computations in [Hewitt-Baker77].



- 48 -

events which have A as a target actor by arrivsl time. We call this ordering the arrival
ordering with-respect to - A and denote it-by "~arr=>,". |
The important property of the asrival ordering is that it -is-a tofal order: each
evem_,ui a compwtation.can have at most: one immediate successor event in terms of the
arrivall ordering, whereas it may have more than one le event in terms of
the activation ordering. o _ | |
A nested activity is a computation ﬁqtﬁnf»ﬁth.t request event RQ of the form

aie

L7 <= [roquest: roquest nr‘r'* contimationo T}

and ending with thciéormponding réply event RP

[ continuation> o= [reply: GhecrondtT}
The set of events cbmlstlnj of the nested activity is the set:
{E{E=RQVE=«RPV(RP > EAE->RQ)}
When a continuation is not contained in the mesage.the nested activity is undefined.
There are many activities in operating systems and distributed computing systems
that are not nested. It should be pointed out that one may find sany non-nested activities

in the real Qoﬂd. The model of a post office given in Chapter 8 is an example of such

non-nested activities.



-49 -

3.1.4 Level of Detail

The behavior of aﬁ \‘actor sysfétﬁ can be described at varying levels of detail.
Computing the factorial of 3 can be viewed as a process to input's and to output 6 at some
level of detail. At this level of detail, an nteranve way and a recursive way of computing
the factorial of 3 are viewed as the same comg\pm Sang difference between . two -
implementations of the iterative factorial may be detected at some finer level of details.
There may be many implementations of an actor ‘which satisfy &’ given ipecification. Such
implementations are viewed as the same implementation at orie level' and 'different ones at
another level. At a finer level, some computations which may be viewed as a serial
computation at a less fine level may be revealed to be paraliel computations. |

In order to descnbe the behavior of an actor system we nee:l to choose a level of
detail accordmg to the purpose of descriptlon The description of the behavnor of an actor
system at the lowest level of detail is gwen asa compumion <Evp, " -> > where Ev is a set
of all events which take place in the actor system A level of detail is decided by criteria
with which a subset Ev is chosen from EvQ. Sinoe any e events E, and E jin Ev are also in
Evo, if E and E, i are ordered by -->" in Evg, the same ordgr relation holds in Ev. Thus a
partially ordered set of events Ev is a "sub”-computation of Evg Choosing a subset from
Evg is done with various criteria which are decided by the purpose of descriptlon For
example, first we select actors from the set of all actors in the system, and then all events
where the selected actors are involved as targets or messages are chosen f rom Evg. Another.
'example of the criteria is to select events which meet some patterns such as the beginning
and ending events of nested activities.

The notion of primitiveness defined in the prevtous subsection is reIatlve to the‘
level of detail ‘chosen. The event whefe the factoﬂal actor receives 8 is prlmitivc at. the

level of detail where no events taking place before the arrival of 6 at the continuation are



-50-
counted. An event where a data base receives a query can be viewed as a_primitive event

at a very high level of detail. Thus 2 dau bue an be eomidend asa primitivc actor at
that tevel. '

3.2 Time Variant Behaviors of Actors

In thi,# section we. discuss tlmchammmofwridulum which must be -
taken into account in formally specifying the behavior of an:actor system.

3.2.1 Pure Actors and Impure Actors

All actors are classified into two ate;oriu depending upon theit behavior Actors
which belong to one category never change their behavior They always give the same
reply to the same request. They are alled pun actor: Acmrs whu:h belong to the other
category are called impure actors and their beh:vior may change with ume. They do not
always give the same reply to the same requut The folbwing more predse definitions are
given in terms of nested activitics.‘ | '

An actor T is pure if, for the same memgc M the event [T <=m M]
always causu (preoedes) the same reply event.

objeats '



-5 -

An actor T is impure (not pure) if there is a message M such that the event

[T <== M] does not always cause (precede) the same reply event.

The “sameness” in the above definitions is used.in the following sense: two actors are the
“same” if they are behaviorly equivalent.l Two events are the same if they have the same
target actor and the same message actor. |

From this definition, it can be said that a pure actor behaves like a mathematical
function. An actor which generates random numbers is impure because it returns a random
number in response to the same message (next-random-number:). A cell-actor is another
example of a simple impure actor. A cell-actor accepts a message (update: <naw=content>)
which updates its contents and a message (contents:) which retrieves its contents. A
cell-actor may change its behavior because it can give different answers to the (contents?)
messa'ge, depending upon what it contains at the moment. An actor which behaves like a
function + is a pure actor. The plus-actor always returns the same number, which is the
sum of two numbers sent to it. Another example of a pure actor is a sequence-actor. One
can retrieve elements of a sequence-actor, but one cannot change its elements; instead a

. completely new sequence-actor must be created. So a sequence-actor is pure.

3.2.2 Pure Queues and Impure Queues

To illustrate the difference between pure actors and impure actors, let us consider a
pure actor and an impure actor, both of which behave like a queue. Both pure

queue-actors and impure queue-actors accept the same two kinds of messages: one is (nqg: x)

. For example, number actors which behave like 1 are behaviorly equivalent each other,
but their identity may be distinct. The LISP functions, EQ and EQUAL, are impure and
pure, respectively.



- 52 -

which is a request to enqueue a new elements x, and the other is (dq.-) which is a request to
take out the front element of the queue and return it with the remaining queue. However
if the queue is empty, it returns a complaint message (exhausted:). The important |
difference between a pure queue-actor and an impure queue-actor is whether or not a new
queue-actor is created when (nq: ..) and (dq:) are sent. When (nq: x) is sent to a pure
queue-actor PQ, a new pure queue-actor PQ’ which has x as the last element of the queue is
created and returned. The original queue-actor PQ still has the same elements as before.
When (nq: x) is sent to an impure queue-actor 1Q, x is absorbed inside IQ and enqueued at
rear of the previous elements. So IQ itself is extended and returned. No new queue-actors
are created. (See Figure 31)

" When (dq:) is sent to a pure queue-actor PQ (which is not empty), a new pure
queue-actor PQ’ whose elements are all elements of PQ_except the front element of PQ is
created and the front element of PQ and the new pure queue-actor PQ’ are returned.
Again the original PQ is intact and has the same elements as before. When (dgq:) is sent to
IQ (which is not empty), then the front element of IQ and IQ itself which now has the rest
of the original elements are returned. No queue-actors are created.

It might be helpful to see a LISP analogy in understanding this difference
between pure queues and impure queues. Suppose that a queue is implemented as a list L.
Then sending (nq: x) to a pure queue-actor corresponds to (sppend L (list x)), whose result is
a totally new list constructed from a copy of L and x. Sending (ng: x) to an impure

queue-actor corresponds to (nconc L (list x)) whose resuit does not consist of a copy of L.



- 53 -

Fig. 3.1. Behaviors of pure queues and impure queues




-54 -
3.2.3 Sources of Impurity and Uses of Impurity

The change of behavior of an actor A is caused by the change of information
used in computing the reply for a request to A. The change of such information is caused
by the computation takihg place before the reply event occurs.

Roughly speaking, the sources which may change the behavior of an actor A can
be divided into two kinds. One is the activation of A initiated by messages which have
been sent to A. The previous activations of A change the information stored inside A. For
example, a random number generator usually keeps some internal values u;éd to generate a
random number. For the generation of the next random number, such int.e'mal values are
changed during the generation of the previous random number. In the case of impure
queue-actors, the history of the previous enqueuing and dequeuing operations determines
the reply for the current dequeuing request.

The other kind of source is the computation initiated by messages which are not
sent to A, but to some other actor B. When the computation initiated by a message sent to
B changes information shared by both A and B, the subsequent behavior of A may change.
Sharing of information sometimes happens inadvertently. When an actor A is created,
some internal constituents of A might become known to other actors outside. For example,
suppose that a new array-actor A is created by extending the upper bound of an existing
array-actor B. If B receives a fequest to change one of its elements, the computation
initiated by the request will change the subsequent behavior of A, beﬁuu all elements of B
are shared by A. There is another way in which internal constituents of an actor A become |
accessible.  After an activation of A, the some internal constituents might be released
- outside as a result of the activation. Such released constituents become directly accessible
from outside and information stored in them could be changed without sending legitimate

requests to A.



- 55 -

Uses of an impure queue-actor are "destructive” in the sense that each enqueuing

or dequeuing messages sent the actor changes the current status of the queue. If one ‘wahts
to update tﬁe queue and still keep the previous status of the queue, the behavior of pure
queue-actors is desirable even if it is costly in terms of both space and time. Sometimes the
impurity of actors are necessary.  For example; in order for mrmtlj«mnning processes
to comtﬁun_icate with each other, they need some actor which behaves as information
storage through which they may exchange information. Such information storage may be
contained inside each process or external common storage to which concurrent processes
have access. This kind of impurity of actors is indispensable for communicating Parallcl

processes.

3.2.4 Four Types of Interactions between Actors

Suppose that an actor M is sent as the request part of a message to a target actor
T. This event initiates a computation where M and T are involved [i.e. an interaction
between M and T]. After this computation, there will be no chinges in the behavior of M
or T if both M and T are pure actors.. If M or T, however, are impure actors, the
subsequent behavior of M or. T may be different. Interactions between two actors M and
T are cIassnfxed into four types, depending upon the presence or absence of change in their

future behavnor

No-Change-Type: Neither M nor T change their behavior.
The interactions initiated by the following events:

[ tactorial <= 3]
[ create-array <= 4]



- 56 -
[yglorgc = [ARRAY-I ARRAY-ZH -

are examples of this type. The objecive of this-type of imteraction is creation of
new actors. Neither the foclorial actor-nor the number-actor 3 change their
- behavior, but the resukt of the: computation; a- number-uctor ‘6, is created and
returned. The cresterarray actor alwaysicreates an arniy-of the size specified by the
request message. . The merge actor creates-a new sofsed afrays whose eléments are
~ those of the two sotted arrays. ARRAY+1 mnd ARRAY-2. I this case, neither
ARRAY~-1. nor ARRAY=2 do not change. - o

Target-Change-Type: T changes its behavior, but M does not.
This type of interaction often takes places to modify information stored in actors
which behave like data structures. For example,

[CELL <= (npdate: A} |
[ IMPURE SQUEME ¢s (dnpisawe: BY]

are of this type. The behavior of A or B do not changeafur the interactions.

Message-Change-Type: M changes its behavior, but T does not.-
Examples of this type of interaction are initiited by events such as:

iy T

[ sort <= ARRAY]
[ empty <= IMPURE-QUELE].
When an array-actor ARRAY fs ‘fent to the sort actor, the same array-actor ARRAY
but the omp(y actor does not change its behgviof,

iy



-57-

Target-Message-Change-Type: Both M and T change their behavior.

Examples of this type of interaction are often found in situations where some
information is removed from one actor and transfered to another. In Chapter 8, we
will model the activities in a simple post office in terms of actors. The interaction

among customer actors, collector actors, and a mail box actor in the model is of this

type.



4. Specifyiqg S_exjigl Computations

In this chapter, our specification techniques for serial computations are presented.
Since our model is so constructed that serial computation is naturally extended to parallel
computation, most of the concepts, notations, conventions and techniques introduced in this
chapter are not only valid but also necessary for the specification and verification of
parallel computations. In the first section, we introduce basic tools for describing the time
variant behavior of actors. In the second section, we briefly discuss the role of conceptual
representations in our model of computation. In the third section, our specification |
language for serial computations is explained and some issues of specifications related to
"side-effects” are discussed. In the fourth section, examples of specifications written in our

language are given.



-59-

4.1 Capturing Time Variant Behavior of Actors

In order for a formal specification language to be effective for our model of
computation, it must be able to describe the time variant behavior of actors. ‘The ability of
our specif ication 'Iahguage to deal with this aspect of actor behavior is based on concepts

introduced in this section.

4.1.1 History of Messages and States of Actors

As we have seen in the previous chapter, one source of the time variant behavior.
of an actor is theAhistAory of computations initiated by. messages sent to the actor. If the
" whole past history of messages sent to an actor A is known, the subsequent behavior of A
in response to a given message should be predictable. Thus, it is desirable to know the
history of messages to specify the behavior of A. However, it is not practical to enumerate
all possible histories of messages. Two actors with different past histories (sequences) of
incoming messages sometimes show the same subsequent behavior. Thus we can partition
the set of histories (sequences) of messages sent to A -into equivalence classes according to
the subsequent behavior of A. By such equivalence classes; we:can define the notion of
states of an actor. That is, the state of an actor A at a given point in time is defined as
equivalence classes on the past histories (sequences) of messages sent to A.. If A is in the
same state at a dif ferent time, the subsequent behavior of A will be always the same.

The state of an actor which behaves as an infdfmation storer is often defined by
the contents of the stored information. For example,‘ the state ofb a’cell-actor C at a time is
defined by the contents B of the cell. This definition of states isk a special case of our
definition by equivalence classes on past message histories. For the content,s‘of the cell can

be viewed as the most recent ‘update message (update: B). The (update: B) message



-80 -
- represents the class of histories (sequences) of ‘mesiages sent to°C-whith have an (spdate: 8)
as the most recent update message N

Some kinds of states are not mtunlly expreued by the contents of stored
mformatlon For example states of a data bue whlch is being aocessed by a number of
concurrent processes are not expressed natunlly by some med informtion in the data
base. The states where processes are updating or retrieving lnformation in the data base
may be expressed as certain monitoring mechani:ms atto.ched to the data base. but such
mechanisms are dependent on the implemenution of the dan’ ‘bate. ‘When the states of a
data base are defined externatly [i.¢ independently of tmiplementation],: our definition of
states is quite useful. The state of an air line reservation syRess discussed in Chapter 6 and
that of a post office i Chapter 8 are examples of states of wctors which are accessed by
concurrent processes. | S .

Equivalence relations which determine states (e. equivalerce. classes) are -chosen
according to the purposes and level of the detil of the-gpecification. - States’ which are
different at some levels of the detail of the specification muy be the same at other levels. -

In Section 6.4, Chapter 6, we will discuss an alternative way of defining states of
actors by continuous functions.

4.1.2 Situations

To incorporate the notmn of states into the formahsm for speclﬂcatnon and .
verif Ic\atlon we need a notion of suuauom A situation is the m“ate of an actor system
at an instance of the loal time‘ A notion of situatlom which assumes the global state and
global time reference 7 7has | been proposed in the | area of Amﬁc;al

1. We will discuss the local time in. detail in Section 6.1.2, Chagtsr 6. .



-6l -

Intelligence[McCarthy-Hayes69, Hewitt75). Our model of wnpu;atlon allows parallelism
which is realized by concurrent message passing. Since .instances-of concurrent message
passing (i.e. events) may take place totally independently, it is quite-unnaturai to assume the
global time reference and global states of the system. - [Local camputations carried out by a
PDP-10 at CMU are irrelevant to computations carried out by a. PDP-10:at Stanford even if
two computers are connected through the ARPA network.]
| In our formalism, states of actors and actor systems are ilivi;i used with reference '
to situations. From this viewpoint, situations cgnge considered urefgrencgs of the local
time. For example, the contents of a cell-actor C chanééi from time to tlme__‘:fq{c;qrqmg( to the
‘update messages which have been most recently sent to C. Suppose that thé contents of C
is 3 in a situation 8 where C receives (update: 4) message. Then in-the next situation S’
where C receives the message (contents:), the contents of C is 4, (See Figure 41)
By using a symbol 8 to denote a situation, we express the contents of C in the

situation in the following manner
(contems C)=3 in B

We call a symbol such as 8, which is used to refer to a situation, a situational tag. .

Fig. 4.1.

[C <= (updat: 41]

>




Uses of situational: tags -comidcnblj increase the expressive power of our
formalism. For example; suppose -that we have MWWM queve-1 and
queue-2, and that some event takes place in-a sitwation Sy, msm denote the
situation after that event. -Then the question:and’ Rssertion:of whethér or not the kngth of
qml1squﬁmthadimm8mumu’fm '

(lengch quouo-l) = (length W“"z) "' spnst', :

By distributing the sitational tag Bpm'tftﬁi same itatement can be made in the following

two different ways:

(engeh (qweve-1 in Boo ) . a..,a. W!’a m»

-F

Since situational tags allow us to relativize facts, relations betwesn facts holding in different
situations can be easily stated in our formalism. l-'or example. an assertion that the length
of queue-1 in. S‘mst is greater than the length of quuo-l in S re is stated as:

(Uength queue-1) in SM) > (acuu. queve-1) i_q- 8 ,,)

This kind of assertion is quite useful to show the termination of prqnms Furthermore a
question: about the identity of the queues is easily stated as: S

(qugurl in spost’ is~eq (queve~2 in spre’

Situations are f requently ljeferrrgd't‘p'a,s the time’of mgmvd.”mly at the
time when an event takes place. We use the following notations to refer to such-situations.



-63-

Sii([T <== M]), Stt((ovqnf))

4.1.3 States, Identities and Conceptual Representations

An actor may change its state fromsi'tuatlonkto situation gnd different actors may
have the same state in the same situation. Thus, ih deve!oplng a specification language, we
must distinguish the state of an actor from its tdmmy.l |

In order to describe states of actors in our - spetiﬁci&ion language, we use
conceptual representations introduced in Chapter 2. Identities of actors are expressed by
syntactic constructs different from conceptual representations. The most general form to
express the fact that an <actor> has a state expres;ed by a <conceptusi representation> in a

<;ituation> is as follows.
(<actor> is-a <c9mp!ud-rmmn!;ﬁon>) in (litu_m

For example, suppose that the state of an impuh queue-actor Q which has three elements A

8 gnd C is expressed by a conceptual representation:
(MPURE-QUEUE [A B cn |
Then the fact that Q has the above state in a situatﬁn 8 ;“ expfgssed as
(Q is-a (IM PURE-QUEUE [AB C))) in 8

- It is very important. that the role of conceptual representations in our specification

1. We assume that the identity of an actor never changes.



- 64 -
language is to describe only states statcs of actors. but not to represent identities of actors. (When
we introduced conceptual representations to give ?‘ormal specifications of data structures in
Chapter 2, the separation of states from identities was not made clear.]
| A pred:cate "is-a” is used to assocme the sme ef an actor with its idcmity. In
order to dif ferentiate identities of actors. a predicate -eq” and its negatlon form "not-eq”
are used. Since mamy attors may have the samé state in the ame stmation when the

i

f oﬂowing assertion holds,
Q isa uueykw [;a o -in m o
it may of m‘ay_:nvoxt be‘thp;ése thpt
Q iseq Q.

When the sharing of actors is involved, the separation of states from identities in
the formalism considerably simplifies the process of keépliig track of changes in situations.
For example suppose that two dnfferent cell-acmrs G md H oonmn the same unpure“

queue-actor Q in a situation 8. Thisis expressed as:

_____

. (His-a (CELL (conmm: Q»)

Q i:—a (IM PURE-OUEUE [A B C]))

Then in the situation §, an actor D is éhﬁueued'at the rear of Q. A description of the next
situation 8° can be obtained simply by.changing the uate-of Q into

(Q is-a (IMPURE-QUEUE [A B C D]}



-85~

and the assertions about G and H need not be modified.! This is an example of our
technique of manipulatiqg assertions which wiﬁll%be‘di;;cussegl_/ggftgp;lyely in the next

chapter.

4.2 Types, Views and Conceptual Representations

Before going into the details of our specification language, it would be interesting
to consider the roles of conceptual representations in the actor odel 6f computation.

Actors are the only ob jects in the model of computation. Actors are untyped. We
do not assume that actors are'ihtriﬁsiq!ly classlfied into syubd}tegoﬁries‘ such as types and
modes. There are two reasons for this. One is that actors are objacts in an abstract model
of computation, hot ob Jects in prog}amming l;aqgéaggsyhlqhﬁpﬁep have types and modes
for reasons of reliability and implemntation'eff;détztcy.’ Another rm. which is more
fundamental, is that we like to emphasize the behavioral view of ac;or;.l That is to say, we
like to be able to use two actors interchangeably and indistingtﬁihablj ;;s long as they show
the same behavior with respect to some purposes: and environments where they are
primarily used. Also the same actor should be able to behave quite differently for different
purposes and in different environments. In other words, we should be able to take 'a
multiple view for individual actors. We believe that such muttiple: views ericourage one to -
employ flexible distribution of computing power and inteMigence such as potymorphic
operators[Greif-Hewitt75] and. the negotiation style:of-programming using coroutines in )
writing programs for distributed systems{Yonezawa-Hewitt71} and Artificial Intelligénce

. To insure the validity of these assertions in 8’ we need certain rules which will be
discussed in Section 5.1.3, Chapter 5. -



- 66 -
research[Hewitt75). Thus it seems benef icial ta allow a single acmr to have a broad role
which wouild bé narrowed by mposmg a strtct type on it. e
Con’c'eptual repre’seﬂtations provide us with the means toexpress not only states of
actors, but also multiple views and summaries of behaviors Such views and summaries

expressed by conceptual representations facilitate the understanding and implementation of

the behavior of actors.

4.3 A Specification Languege

In this section, we explain bas!c oonstrucs of our specification language for serial
com;mrations anid also discuss some issues of the time varhnt behavior of actors rclated to
specification languages. The specif ication llnguage premmd in thls section wm be
extended to include parallel computauons n Chapter 6

4.3.1 Sbeéifiéations of Events

A “specification” of an event is a formal description of-effects caused by an event
which takes place in an. actor system. Roughly speaking, the-effects of an event E are
described by the next event caused by E and assertions which hoki in the situation where
the next event takes place. The choice of the next event from the set of the subsequent
events caused by E is determined by the level of detail and the:purpese of the specification.

A general form of specification. for an: gvent in our spetification language is
written in the following notations:



-67-

<event: E

'(Can;i:
{pre-cond: .. assertions ... >
<caused-event: E' >

{post-cond: mrtam - )

>

E is the event whose effects are described. Since the effects of E may vary depending
upon the situation where E takes plaée. the descﬂpﬂd‘n of the effect may4 be divided into
more than one case. The assertions in the (pre-cond:.> clause state the prerequisite which
has to be satisfied in tﬁe situauoh where E takesr,plac'e., ‘When vthe prerequisite is satisfied,
the event E’ in the <caused-evem::.> clause m ggg gla_oe. and the assertions in the

<post-cond: ..> clause hold in the situation where E' takes place. - More formally,

for E, _
if <assertions-in-precond> in Sit(E)
then 3 E

such that E --> E’ and <assertions-in-posicond> in Sit(E’)

The prerequisite stated in each (Case-i:...) clause must be mutually exclusive. From this, the
above notation can always specify the effects of an event deterministically. The <event: ..>
clause need not contain all possible cases where E might take place. (in other words, the
logical union of the prerequisites for each case need not be universaily true] When E does
not takes place in any of the stated cases, we assume that:the caused effects are undefined.
The scope of names and variables in the above notation is always local to each (Case-i:..)
clause. That is, the same names and variables in different (Case-i: ...) clauses do not have

to refer to the same object. Names and variables appearing in the expression which



-68-

represents the event E are global to each (Case-i:...) clause. )
Though the above notation is broadly applicable, we often use abbreviated forms
for events which initiate nested activities (cf Secuon 3.1.3. Chapxg: 9. Suppose that the

o

event E is of the form:

[T ¢== [reques: anlru. C]]

and the corresponding caused event E’ is of the form:

[Comimnim R . -

where R is the actor which is received by the cmﬂmnuon acwr C in the musage of E.
Then we may use the following abbreviated form.

<event: [T M}

(Case-i:
" {pro-cend: ... sssertions ..>
Creturn: R >
<pou-eoui ssserlions .>)

>

For example, the effects of an event where a-cel-actor C which has the contents B receives
the retrieving message (contents:) is written using the abbreviated form as follow. [Note that
there is. only one case to be specified in:this w ‘S0 the (Caseds.) notation can be



-69 -

<event: [[C <= (contenis:)]
<pre-cond: (C is-a (CELL (contents: B))) >
(return: B D
{post-cond: (C is-a (CELL (contents: B)))>
Other abbreviated forms are obtained by omitting <pre-cond:..>, <caused-ovent:..>,
{return:.> or <{post-cond:.) clauses. When an event has no prerequlsite,'the {pre-cond:..>

clause may be omitted. For example, the creation of a cell-actor does not have any

prerequisites. Its specification is written as follows:

<event: [[ creste-cell <= A]
<return: C* >
<post-cond: (C is-a (CELL (contents: A)))»
where create-cell is an actor which creates a new celi-actor and A is its initial contents.

In general, in our specification language, underlined words such as create-cell are
constant symbols which always denote a fixed actor. Non-underlined words which denote
aﬁ actor are free variables and can be used as pattern variables in the process of symbolic
evaluation which we will discuss in the next chapter. The notation <actor>® means that an
<actor> is newly created and is not is-eq (cf. Section 4.1.3) to other actors created before.

When one is not interested in the assertions holding in a situation where the
caused event takes place, the <post-cond:..> clause may be omitted. Furthermore when one is
not interested in the caused event, the <caused-event:.> or <return: ..> clauses may be omitted
too. For example, when the contents of a cell-actor is updated, what event is caused or -
whether the caused event might take place or not are sometimes not important. In such

cases, a specification of the update event may be written as follows.



- 70'

<evems: [ C ¢= (updm- )
<pre-cond: (Cisra ,scsu.mm B))h) )
<post-cond: (C is-e (CELL lcontents: k)» » S

432 Specnfncatlons of Actors (Contnets)

Every actor has its awn finite fixed set of message tgpes that it can_accept. For
example a celi-actor accepts two types of messages, (conmux) and (npdate: <new-slemend>),
and a queue-actor accepts two types of messages, (ng: <new-slement>) and (dq:). A
specification of an actor A must contain the spﬂidtm ﬁﬂ mfeach of which is
the receipt of one type of messages that A can aceept. R sﬁould also contain the
specification of the event where A is created if it is pmble to create A during
computations. o

As an example, let us specnfy the beh:vior of pure queue-actor (cf Sectton 322
Chapter 3) in our speclfication language First. we descrlbe the cration of a pure |

queue-actor.

Cevamt: [ croate-pure-quene <= {J]
Creturn: Q" >
<post-cond: (Q is-a (PURE-OUBUB (])) »

This tells us the followmg three thmgs.
l) A new pure queue-actor Q is created by an event where the crooto-puro-quouo actor
receives an empty sequence actor [}
2) The creation event has no prerequisite. »
3) States of a pure queue-actor is expressed bj conoeptuﬂ tepresentations of the form:
(PURE-QUEUE]...])) in the specification.



- -

Next, we specify the enqueue event where a pure queue-actor receives (ng: <element>).

<event: [ Q <= (nq: A)] ‘
<pre-cond:. (Q is-a (PURE-QUEUE [Ix])) >
- Lreturn: QQ‘ > -
<post-cond: :
(QQ is-a (PURE-QUEUE [ix A)))
(Q is-a (PURE-QUEUE [1])) »

This -tells us that: ,
1) A new pure queue-actor QQ is created and returned,
2) A becomes the last element of QQ and the rest of .QQ's elements are the same as those
of Q, and
3) The state of Q does not change.
The specification of the dequeue event can be written in a similar way.

In addition to specifications of events associated with an actor A being specified, -
thé specification of A may include some felar.ed information which is necessary or helpful
for using and understanding the spe{:if ication.  Definitions of -auxiliary conceptual
" representations used in the specification, definitions of .attributes or properties of -A and

certain rulesl

concerning the validity of assertions used in the specification are examples of
such information contained in the speciyfimtion. In_the case of a pure queue-actor, for

example, the following definition of a property "length” may be given in the specification.

<property: length-of(Q) = length{ix]
where (Q is-¢ (PURE-QUEUE [Ix])) >

Length-of is the newly defined property of 'a pure queue-actor and length is a function

1. Such rules will be explained in the next chapter.



-72-
predef med on conceptual sequcnces This deﬁnmon says that lcngth—of of a pure
queue-actor in a situation where its statés is ekprased as (Q ia—c (PURE-OUEUE [Ix])) is
obtained by calculating length{ix]. i , o

We often use the term “conitract® instesd of "sg ‘ﬁ it """t\o emphasize the fact
that it is an agreement or a “treaty” between the lmplemen:qg of a\nacwr (module) and its
designers or clients, and also between its anpm Iﬁd iuisen. Users of a module M

should rely only on properties stated in ‘the contract of M. On the other hand, when

implementors construct the module M, they are required to satisfy only what is stated in the
contract of M. In the process of symbolic évalaatioh’of program which uses a module N,
only properties of N which are derived from'the contract of N should be used. In Figﬁre
- 4.2, we give a contract of pure queue-actors. It should be noted that the soope of names
and variables in contracts are always local to speciflcatlﬁ% of events, def initions, and rules.
For example, Q in the first <event:.> clause in’ Figurf 4.2 does: not neoessarﬂy denote the
same actor as Q in the mnd Cevent:..> clause. : ‘

43.3 Validity of Assertions in Speeiﬂm :

There are two important assumptiom about usemon in specifiutions of events.
One assumption is that states of actors whnch are not exphcmy stated in specifiuuons are
unknown. That is, we assume that we do not know how an event E effects actors which are
not mentioned in the specification of the svent E. This assumption requires that effects of |
an event should be stated in specifm Is ‘explicitly &s-pessibl in accordance with the
level of detail of the specifications. The other as . is-that assertions are usually .

valid only in the situations where they are stated. If the state of an actor A is given in a

-s“a( e

<pre-cond:..> clause of the specification of an event E and the siate of A is not-given in the



Fig. 42. A Contract for Pure Queues

<ovont: [creste-pura~queue &= (1]
Creturn: Q%

<post-cond;: Qis-e (PURE—OUEUE (])) ) >

<event: [Q <= (ng A)]
{pre-cond: (Q is-a (PURE-QUEUE ['x])) >
{return: QQ* .
(pést-cond:
(QQ is~e (PURE-QUEUE {Ix A))) -
(Q is-a (PURE-QUEUE [Ix]). RE

<event: [Q <= (dq:)]
{case-1:
<pre-cond: (Q is-a (PURE-QUEUE [1)) >
<return: (exhausted:) >
<post-cond: (Q is-a (PURE-QUEUE [} > )
" {case-2:
- {pre-cond: (Q is-« (PURE-QUEUE [B iy])) >
lreturn: (dequcued. 88 (rm-QQ"')) )
Cpost-cond: -
(QQ is-a (PURE-QUEUE [by]D) -
(Q is-a (PURE-QUEUE [B ty])) > »

<property: length-of(Q) = length{ix] -
where (Q is-a (PURE-QUEUE [x))) >



-4 -
corresponding <post-cond:..> clause, we assume that the m%quafm the event E is
unknown. It may or may not remain unchanged. For ;;:ample the state of a pure
queue-actor after the enqueue event does hot chamgE: muané in-the’ contract of pure
queue-actors in Figure 4.2, the assemon gbout ;he;ute of L gure Qleue-uctor

(Qise (ruu-wwt num” R

is repeated in the <post-cond:.> clause. Since a pure queue';hc?agtdoes not change its state
after the creation [from the definition of “purity”) this repetition<of the assertion may be
superfiuous. But there is no way of kndlﬁng'ﬁuﬁe;’ ot vt ti\eﬁacwr being specified is
pure. e

4.4 Examples of Specifications

In this section, several othcr m mmplu orspeafmnons (contracts)
written in our specification language are glven "Some of the Qations given here are

followed by the corresponding PLASMA impleiestations. . - -

4.4.1 A Contract for Impure Queues

In contrast to the contract for pure queue-actors in Figure 4.2, we give a contract
for impure queue-actors in Figure 43. As discussed in Section 3.2.2, an impure queue-actor
never creates a new queue-actor in response to (ng:..) or (dg:) messages: instead it changes its

own state.



-5 -

Fig. 4.3. A Contract for Impure Queues

(et)cnt: [ create-impure-queue <= [1]
{return: Q* >
<post-conditions: (Q is-a (IMPURE-QUEUE[]) > >

<event: [[Q <= (rq: A)]
(pre-conditions: (Q is-a (IMPURE-QUEUE [!X])) >
Sreturn: QO
<post-conditions: (Q is-a (IMPURE-QUEUE [Ix A))) > >

Cevent: [Q <= (dq:)]
{case-1:
<pre-conditions: (Q is-a (IMPURE-QUEUE [})) >
<return: (exhausted:) >
<post-conditions: (Q is-a (IMPURE-QUEUE [])) >)

{case-2:
<pre-conditions: (Q is-a (IMPURE-QUEUE [B ty])) >
<return: (dequeued: B (rest: Q)) >
<post-conditions: (Q is-a (IMPURE-QUEUE [ly])) > »

4.4.2 A Specification for a Message-Change Interaction

As an example of specifications for the Message-Change Type interaction (cf.

Section 3.2.4, Chapter 3), a contract for an actor which empties the elements of one impure

qQueue-actor into another impure queue-actor is given in Figure 4.4.

A PLASMA

implementation of an actor which satisfies the contract above is given in Figure 45. This

implementation will be verified against the above contract by the technique of symbolic

evaluation in Chapter 5.



-7 -

Fig. 4.4. A Contuct for w‘mwrm

Cevant: [-M___-mm:m« a1 0211
{pre-cend:
Q1 is-a (IMPURE-WBUB [!llm
Q2 is-e UHPURE-WQJS {hﬂ”
(Q1 mot-eq Q2) > !
creturn: (dome: [Q1 Q2]) >
<pest-cond;
Q1 isa (IHPURE-OUEUE []” o
Q2 is-s. (b2 1) 2>

——

Fig. 4.5. A PLASMA ofowiy-mw-m-m C

(empty-one-queuve-into-another =

(=> [=ql =q2] itwe impure quones ere recsived by owy-mm-mao-mum»
;and bound to ql end Q2.
(rules (q1 <= (dq:)) : .sthe deguening message is sent to ql.
(=> (exhousted:) ;if ql is empty, the eomplaihl message is received
(done: [q1 q2])) ' sthen emptied q1 and extended Q2 are returned.
(2> (dequeuned: =front-of~ql A 4l is net empey, the: frons eloment of ql and
(reat: =dequeuved-ql)) ithe remaining quene are received
' ~ jand bound to front-of-q1 and dequeued-q1.
(§2 <= (ng: front-of-ql)) - L srent-ebiql s enquoned at rear of q2.

(cmpty-om-quouo-mh-mﬂnr <= [dequeved-q1 q2])) ) ))
"~ ;dequeued—ql and g2 ere sent to W—cm-mlm



-7 -
4.4.3 A Specification for a Target-Message-Change Interaction

As an example of specifications for the Target-Message-Change Type interaction
(cf. Section 3.2.4, Chapter 3), we give a specification for an interaction between a vender
who sells some goods and a customer who buys the goods. The state of a vender who has

some amount of money and goods with him is expressed by conceptual representations of

the form
(VENDER (bills: {..})(goods: {..}))

The state of a customer who is carrying some amount of money and belongings is expressed

by conceptual representations of the form
(CUSTOMER (bills: {..}){belongings: {...}))

Their interaction is described by the event specification in Figure 4.6.

Fig. 4.6.. A Specification for an Interaction Between a Vender and a Customer

<event: [V <= C]
{pre-cond:
-V is-a (VENDER (bills: {ibs}) (goods: {ig Is})))
(C is-a (CUSTOMER (bills: {Ibc Im}) (belongings: {8p})))>
<return: C )
{post-cond:
(V is-a (VENDER (bills: {Ibs Im}) (goods: {Ig})))
(C is-a (CUSTOMER (bills: {Ibc}) (belongings: {Ip Is})))
(worth[1s] = total-amount[im]) »



4.4.4 Contracts for Generators

A generator is an actor which behaves like a sequence of the poulble answers to
some problem. When it receives a (mest:) mesnge, a next answer is generated. As
cxamples we consider two actors which sucoessivdy genmte mcreasing squares One is a
“stream of squares”. A contract for each genentor is given in Figure 17 and Figure 48. In
the first event specifications in both contracts, | and u denote the lower bound and the

upper bound, respectively.

Fig. 4.7. A Contract for Port-of-Squares

<event: [ creste-port-of zgu_l_r s <= I Il]] '
<pre-cond: (1 Su)>
<return: PS* > '

~ <post-cond: (PS is-a (PORT-OF-SQUARES (low: 1) (high: u))) »

<event: [PS <= (next:)]}
(Case-1:
{pre-cond: (PS is-a (PORT-OF'SOUMIS (ose: k) (“‘L (V) B
<return: (exhgmsted:) >
<post-cond: (P§ is-a (PORT-OF -SOUMES (ow: k) (high: k))) >)

(Caze-2:

{pre-cond:
(PS is-a (PORT—OFW ﬂo-: ) de o)
M <uw>

<return: (12 PSS¥] >

<{post-cond:
(PSS is-a (PORT-OF-SQUARES Uow: | + 1) (high: v)))
(PS is~a (PORT-OF -SQUARES: Uow 1) thigh: uPP ) >



-%9 -
Fig. 4.8. A Contract for Stream-of-Squares

{event: [cruh-sknlml-gﬂw <= [ v]]
{pre-cond: (I $u)> _

<return: SS¥ > . ‘
~ <post-cond: (SS is-a (STREAM-OF-SQUARES {ow: 1) (high: u))) >>

<event: [ SS <= (nexe:)}

{Case-1: o ’
<{pre-cond: (SS is-a (STREAM-OF-SQUARES (low: K) (high: k))) >
{return: (exhausted:) > . .

<post-cond: ($S is-a (STREAM-OF-SQUARES (low: k) (high: K))) )

(Case-2:
{pre-cond: ) .
~ (SS is-a (STREAM-OF-SQUARES (low: 1) (high: u)))
f < u)>
¢return: [12 SS) >
{post-cond:

(SS is-a (STREAM-OF-SQUARES (loss: | + 1) (high: u))) ») >



4.45 A Contract for average

In this subsection, we give a contract for actors-whose behavior dcpends directly on
the history of incoming messages. Obviously such actors are impqrg An example given
here is a contra_c;k-for_,;the avg;ggge - actor, whigh: retusns the average of all the numbers
which have been sent to it. The contract is given in Figure49. A

The conceptual representation (AVERAGE [..]) for the actor expthy represents
the history (sequence) of aff the fiumbets which have been rcceived by the actor This idea
is similar to that of Clint[J973] who mmgmwﬁdm stack” to have the
history recorded as a kind of comments in program texts to aid the -verification of
programs. The function woruo-ol in the; cgnmctinﬂgurfis is defined on conceptual

sequences.

Fig. 4.9. A Contract for avenge

<event: [ creste-average <= 1]
Creturn: A¥® >

<posi-cond: (A is-a (WERACE [I]))) »

Cevent: [ A <= (nesw-element: N)}
{pre-cond: (A is-a (AW ERAGE [Ix})) >
Creturn: A D
<post-cond: (A is-a (WERACE [Ix N})) »

<event: [ A <= (average:)]
<pre-cond: (A is-a (WERACE {§x])) >
return: average-oi[ix] >
<post-cond: (A is-a (AVERAGE [Ix]) »



-81-

4.5 Relationship to Other Work

At this point in our exposition, it would be useful to discuss our specification

techniques for serial computation in relation to other work in this area.

4.5.1 Behavioral Specifications

Based on the actor model of computation, I. Greif and C. Hewitt [Greif-Hewitt75,
Greif 75] have developed the behavioral approach to the specification technique. In their
approach, the behavior of an actor (or an actor system) is specified in the form of axiom
about events and the precedes order relation. Axioms describe the kinds of events that can
or must take place and the order in which these events can or must occur. Axioms describe
conditions which must be satisfied by computations.

This approach can deal with the time variant behavior of actors and parallelism,
but makes no use of the notion of states of an actor A [which we have defined as
equivalence classes of messages sent to A). Therefore, for example, in writing axioms which
specify responses to a message sent to A, the previous history of computations of A must be
written out explicitly. The lack of the notion of states in their approach makes
specifications long and difficult to understand. In particular, axioms for the behavior of
impure actors which behave like data structures tend to be very complicated and unnatural.
[imagine the axioms for impure queue-actors.] The reader of such specifications of a data
structure could understand only through reinterpreting axioms in terms of his intuitive
~notion of ggt_es_ of the data structure. In our approach, states of actors play the central roles
in specifications and they are described by conceptual representations concisely, clearly and

yet rigorously.



4.5.2 Burstall's Work

By extending Floyd-Hoare{Floyd67, Hoare69) approach, R. Burstal{i972] has
proposed some specif ication and veriﬂcatinn technique§ »;whicn are able to deal with list
processing languages with “side-ef fect” primitives mch as rpha and rplacd. To cope-with
the problem of side-effects in list structures, he uses a special notation for linear list

structures. For example, a list structure:

x a y

| i

i ' I

s T B R i S e MO

is expressed in his notation as follows.
(x =8> y -B=> uil)

Though one might find some similarity between Burstail’s notations and those based upon
conceptual representations, it is difficulkt to accommodate his notations to a wide variety of |

data structures.

4.53 Rich and Shrobe's Work

C. Rich and H. Shrobe have developed a speclf ication language for LISP which is
used in their LISP understanding system[Rich-Shrobe?Gl In their system, the reasoning
techniques used to deal with the problem of side-effects in LISP are along the same lines as
ours. However, the clear separation of identities of objects from states of objects (cf.



-83-

Section 4.13) is not realized in their formalism. Thus specifications in their language tend
to be long and are difficult to use for other programmiﬁg langhages. For example, let us
look at an example of specification given in [Rich-Shrobe?].

(S pec-for: SWAP
(Input: PAIR-1)
(Output: PAIR-2)
(Assert:
(ID PAIR-1 PAIR-2)
(LEFT PAIR-2 [RICHT PAIR-1))
(RIGHT PAIR-1 [LEFT PAIR-1))))
SWAP operates on a LISP pair to exchange its left element and right element. No new pairs
are created by this operation. In the specification above, names PAIR=1 and PAIR=2 denote
the same pair ob ject P, which is stated by the first assertion in the (Assert:.) clause. The
reason why they need to use two different names for the one object P is to distinguish the
state of P before the operation from that of P after the operation. In our specification
language the SWAP operation can be written without introducing a different name for P.
Using a conceptual representation which describes the state of a pair ob jgct. a specification

for SWAP is given as follows.

<event: [ SWAP <= P]
<pre-conc# (P is-a (PAIR (lefi: A) (right: a.))) >
Cpost-cond: (P is-e (PAIR (lefi: B) (righs: AY)) »



4.5.4 Floyd-Hoare Approach

The tradmonal Floyd- Hoare approach[l-'loyd67 Hoare69, Hoare'lz Igarashi-et-al75,
Suzuki’5) to the spectfncauon and venf mnon of programs h has been limited in its ability to
deal with programs which change their behnvior For example, the sharing of data
structures in simple ALGOL-like languages is difficult to treat: “Suppose that in the
following code x and y are two- and one-dimensional arnys. mpecuvely '

yex3,} S ;:,;dio;c-éfxisabarédbyy.
x(3, 4] = x{3, 4] + 15
Their assignment rule cannot derive the oorreavahnofy[q after the above code is
executed. The reason is that the value (ie: state) of an program \firial?ie‘ is not
distinguished from its identity. - o '
Furthermore, the lack of the separation of stutes from identities makes it difficult
for their approach to deal with specification and: verification of programs - written in
SIMULA-like ob ject-oriented languages. For example, thelr fermalism is inadequate to
deal with the following simpie piece of SIMULA code:

queue-1 : - new creste-impure-queue();
queue=-2 : - queus-1.enqueus(2);
queve=-2.enqueve(3);.

In the next chapter we will demonunte haw this klndrof code is treated in our formalism.

L. In the traditional Floyd-Hoare approach, variables in assertions denote literal program
variables. Thus the vaiue of a program variable should be considered as its state.



-85-
4.5.5 Algebraic Specification Techniques

As discussed in Section 2.41, Chapter 2, algebraic techniques [Zilles74, Guttag?5]
have been developed for the specification of abstract data typesfLiskav-Zilles74). In the’
algebraic approach, all operations and procedures are specified as functions, which leads to
a serious problem; the purity and impurity (cf. Section 3.21, Chapter 8) of data structures
cannot be easily distinguished.

~As an example, let us consider an algebraic specification .of queues given in
[Guttag75]. Important operations on a queue are ADD and REMOVE, whose functionality is

as follows.

ADD : Queue x Integer -—> Queus
REMOVE : Queue --> Queue

The essential part of the specification is given by the foliowing equation:
REMOVE(ADD(q, i)) = ADD(REMOVE(q), i) (=)

where q is not an empty queue. In their interpretation, operations such as ADD and REMOVE
always create' new objects and cause no side-effects to the objects that they operate on.
Equations of operations such as (x) define congruence relations over the word algebra
constructed from the operations and objects. Thus in their approach, algebraic techniques
‘are-used to specify the behavior-of only pure actors (immutable ob jects).

There is another interpretation. If we consider the domain and range of
operations as sets of states of objects, equations (axioms) of the operations can define
congruence relations over the states of objects. In this interpretation, algebraic techniques

can be used only for impure actors (mutable ob jects)



In either interpretation, the algebraic approach has difficulties in dealing with
both pure actors and impure actors simultaneously. ‘Techniques' developed by J. Spitzen
and B. Wegbreit [Spitzen-Wegbreic?, Wegbreit-Spitaea’5]. have the same problem of
distinguishing the purity and impurity of data structures.



-87-

B. Verifying Serial Computations

In this chapter, our verification techniques for serial computations are presented.
The first section describes the method of symbolic evaluation which is the ma jor
instrument in our verification techniques. It also contains a detailed explanation of our
réésoning method which can be employed in environments where computations may cause
side-effects. The next two sections describe our Qerification methods, each of which is
applied to different types of actors. Then, to close the chapter, we refiect on our method of

symbolic evaiuation and discuss its application to other areas.



5.1 Symbolic Evalu;tion

In this section, we will describe our basic method of symbolic evaluation, the ma jor
instrument of our verification techniques. A simple example of symbolic evaluation of
PLASMA code which involves sharing of actors with sldeeffects is gwen at the end of the
section. Although in this thesis we consider symbollc evaluatxon pnmanly as a tool for
program verification, it is also useful for other purposes such as program testing,
debugging. optimization, dependency analysis, perturbation analysis etc. 'The thapter

concludes with a discussion of some potential applicatiohs.

5.l.l. Overview

Symbolic evaluation is a process which abstractly [symbolically] executes programs
on abstract [symbolic, as opposed to “concrete”] data. When a program takes numerical
input, the symbolic evaluation of the program does not deal with concrete numbers such as

123, 1776, and 1984, but rather with symbolically expressed numbers such as "nl", "n2", and

m".
Though symbolic evaluation is an extension of ordinary execution of programs, it
differs f rom ordinary executian in the following paints.
| () The only_properties of input that can be used are-the ones. specificed as the
prerequisites of a meodule being symbolically. evaluated. [Eg., input numbers are’
required to be positive integers.)
(2) When the symbolic evaluation of a medule M encounters an invocation of some
module N, the specification. [contract] of N is used to. continue the symbolic
evaluation. The implementation of N is not used.



- 89 -

Symbolic evaluation can be viewed as a mechanization of the process of a human
programmer tracing a program without using concrete values to understand the
computations expressed by the program.

In symbolic evaluation, the code of a module is interpreted step by step according
to either pre-defined semantics of language primitives or specifications of modules invoked
in the module. Eafh such step is triggered by the symbolic evaluation of an expression in
the code which corresponds to an event [cf. Section 3.2, Chapter 31 The state of the -
program [code] at each moment before and after an interpretation step is referred to as a
situation. The symbolic evaluator! has a data base to record what events occur, what facts
hoid and what is assumed in each situation. Facts that hold in a situation § are recorded
as assertions associated with 8.

Since each expression is interpreted on abstract data, when a conditional expression

is interpreted, the subsequent symbolic execution path must split in the usual,

fashion[Deutch 1973). For example, consider the symbolic evaluation of
if (P x) then ... else ...

After the symbolic evaluation of the expression (P x), the symbolic execution path splits into
two branches: one for the then-clause and the other for the else-clause. To start the
subsequent symbolic evaluation, (P x) must be assumed for the then-clause and -(P x) for
the else-clause. If the evaluation of (P x) has no side-effects, the assertions holding in the
situation where (P x) is evaluated are inherited for both clauses.

In essence, symboiic evaluation is a process which abstractly evaluates the code

1. In this chapter, we assume that symbolic evaluation is carried out by a hypothetical
system. -



Fig. 5.1. A Situational Tree

/ /\

forward alang the execution path.and produces 2-tree structure whose nodes correspond to
situations. At each node of the tree, assertions which hold in the correiponding situations
are entered.  We call this structure a situations! tree. {See Figure 51] The assertions
eﬁt.ered in the situational tree are used as the primary source of infermation for answering
questions about the implementation. As we shafl hhvue.wﬂﬁnﬂm of implerentations is

carried out by using such situational trees.

5.1.2 Partial Descriptions of Situations

In order to illustrate how assertions are handled in a situational tree, we
symbolically evaluate the following piece of code.

-8 -

(queve=-1 <= (ng: 6)) ;queve=1 receives a message (ng: 6)
-8°- o

(queve=-1 <= (nq: 8)) iqueve~1 receives a message (ng: 8)



-9 -

S, 8% and 87 denote situations before or after the events corresponding to
statements in the code. We assume that two distinct impure queues, queue~1 and queue-2
have been created before the situation 8 and assertions about states of the two queues are

already entered at the node for § in a situational tree. See the diagram below. .

|

S : (queve-1 is-a (IMPURE-QUEUE [3 7 11)))

| (queue-2 is-a (/M PURE-QUEUE [2 4}))

|
With these assumptions, the first statement in the code which expresses an event
[[queue-1 <= (nq: 6)] is interpreted. To know what effects are caused by this event, the

symbolic evaluator first looks for an assertions about the state of queus-1 at the node for S

in the situational tree. It finds that the state [or conceptual type] of queue-1 is expressed as
(IMPURE-QUEUE [37 11))

- From the form of the conceptual representation [i.e,, from “/MPURE-QUEUE"), the contract
for impure queues in Figure 5.2 is referred to. |

‘The event expression [[Q <= (nq: A)] in the second <event:..> clause in the contract
for impure queues in Figure 5.2 matches against the event [ queue-1 <= (nq: 6)]. Also the

assertion
(Q is-a (IMPURE-QUEUE [ix]))
in the <event:..> clause matches against the assertion
(queue-1 is-a (IMPURE-QUEUE {3 7 11)))

which has been entered at the node for 8. Thus the whole second <event:.> clause can be

instantiated as follows.



Fig. 5.2. A Contract for Impure Queues

<event: [ create-impure-queue <= (1]
Creturn: Q% > '
Cposi-cend: (Q iv-a (IMPURE-QUBUE(]) > >

<event: [Q <= (ng: Y] |
<pre-cond: (Q is-a (IMPURE-QUEUE [Ix})) >
Creturn: Q > :
<post-cond: (Q is-a (IMPURE-QUEUE {iIx AJ}):>>

<event: [Q <= (dq:)]}
(case-1: :
<pre-cond: (Q is-a« (IMPURE-QUEUE [})) >
{return: (exhausied:) >
<post-cond: (Q is-a (IMPURE-QUEUE [D) >)

(casre-2:
<pre-cond: (Q is-a (IMPURE-QUEUE {B ly])) >
<return: (dequeued: B (rest: Q) >
<post-cond: (Q is-a (/{MPURE-QUEUE {lyl) > »

<event: [ queue-1 <= (nq: 6)]

<pre-cond: (queve-1 is-a (IMPURE-QUEUE [3 7 11)))»

Creturn: queue-1) S

<{posi-cond: (queve-l is-a (IMPURE-QUEUE [37 11 6)))»
The symbolic evaluator enters the assertion in the above <pest-cond:..> clause at the node
for the next situation 8”. Also it records what event took place between the two situations.
See the upper diagram in Figure 53. The second statement in the code expresses an event
[ queue-1 <= (nq: 8)], which is interpreted in the same way as above. The effect of this

event is recorded at the node for the next situation 8” as shown in the lower diagram of



-93-

Figure 53.

An important point in the manipulation of assertions described above is that the
assertion about the other impure queue actor, queue-2, is left untouched, neither copied nor
modified in going from 8 to 8” and 8”. As the diagrams in Figures 53 show, the
situational tree thus generated by the symbolic evaluation does not contain assertions about

the states of queue-2 at the nodes for 8° and 8”. In general, a situational tree generated

Fig. 5.3.

|
S : (queue-1 is-a (IMPURE-QUEUE [3 7 11]))
|  (queue-2 is-a (/MPURE-QUEUE {2 4)))
|
[ queue-1 <= (nq: 6)]
l ~
S’ : (queue-1 is-a (IMPURE-QUEUE [3 7 11 6)))

s| : (M is-a (IMPURE-QUEUE [3 7 11]))

| (queue-2 is-a (IMPURE-QUEUE [2 4}))
I[Iglﬁﬁ'i <= (nq: 6)]

sl’ : (queue-1 is-a (IMPURE-QUEUE [3 7 11 6])
ﬂgw_u_e:_l <= (nq: 8)]

sl” : (queue-1 is-a (IMPURE-QUEUE [3 7 11 6 8)))



- 94 -

by symbolic evaluation is only a partial description of situations. When one needs to know
states of actors or relations hokding in a situation, which are netexplicitly asserted at the
corresponding node in the situational tree, one must rely on the reasoning method described

in the next subsection.

5.1.3 The Method of Reasoning (Uses of the Trans-situational Rules)

In this subsection, we will illustrate how situational trees are used f er the reasoning
in our formalism. In general, questions about a glven sntuatlon are answered by reasoning
backward. That is, to answer questions such as whether some assemons hold in a situation
8 or in what states some actors are in 8, a situational tree is looked at f rom the node for S
to previous situations. ;

For example, suppose that a situational tree. shown in -Figure 5.4 is given and we
want to know the state of Q in a situation 8. First we try to find some assertion which
describes the state of Q at the node for the sntuanon 87 Since the given situational tree

does not have any assertions about Q at the node for B,, we look for assertions about Q

backward along the branch of the situational tree. [See the dotted line in Figure 54 An

assertion
(Q is-a (IMPURE-QUEUE [2 5 4)))

is found at the node for 85. However, all we know at this point is that the assertion holds -
‘in S5. but we are not sure that the assertion holds in 8., because some events which
destroy the validity of this assertion in 8, might have occured begmn 83 and 8. So we

must check on such events.

In order to know what events nullify':vthe validity of assertion, each event



-95-

Fig. 5.4. Reasoning Backward l

83 (Q is~e (IMPURE-QUEUE [2 & 5)))

/’\
_/ \

8¢ 8,

.specification in the contract for impure queues shown in Figure 5.2 is examined. If in the
specification for an event E thé state of Q stated in the <pre-cond:..> clause is different from
the one in the corresponding <post-cond:.> clause, the event E nullifies the validity of the
assertion. In fact, [Q <= (dg:)] and [Q <= (nq:..J] turn out to be such nullifying events.
The process of finding the nullifying events can be saved if the contract contains
an explicit statement which indicates such events. For this purpose, we may add the

following clause to the contract for impure queue.s.l

<for-assertion: (Q is-a (IMPURE-QUEUE [.]))
<only-af [eain;—cwnu—are: ’
{LQ = (ng:)], [’Q = (dg:)]} »
This statement says that the vahdlty of assertions of the form

(Qis-a (I M PURE-OUEUE (" )))

L. <for-assertion:..> clauses do not have to be placed in contracts for actors. They can.be
placed in some global place to which the symbolic evaluator have access.



-96 -

is destroyed only by the set of events appearing in the <only-affeeting.> clause.?

In our formalism, assertions of the form

(Cactor) is-a <conceptuai-representstion)

can be inherited from an ancestor situation Bi to & descendant situation 8 j if the following

two conditions are met:
(I) The events specified in the corresponding (for-amnmt....) clause. do not take
place between 8, and 8 '
(2) At the node for the descendant sxtuauon Sj, no assertions about the <actor>
have been entered which use. the same form of conceptual representation as used in
the assertion being inherited from S, |
By virtue of the second condition, we do not have to keep adding events to the
<for-assertion...> clause every time we implement a new actor which changes the state of the
<actor>. For example, suppose that an agtor_ emplying-queve which empties the elements of
an impure queue-actor is implemented and that its specification is given as. follows:

<event: [ emgtzingjueuc <=QJ
{pre-cond: (Q is-a (IMPURE-QUEUE [8x)))»

<post-cond: (Q is-e (/MPURE-QUBLAE ) - -
When the PLASMA expression (emplying-queus- <s Q) is symholically interpreted in a
situation S where  (Q is-a (IMPURE—OUEUE [1 2 3])) holds, the ~ assertion
(Q is-a (IMPURE-QUEUE [])) is entered at the node for the next situation 8’ If we did not
have the above condmon (2), the assemon (Q is-a (IMPURE-OUEUE [1 2 3))) could be

2. Note that this reasoning is valid only for serial computattons. It is not valtd tf there are
concurrent events.



-97-

inherited to 8°. To prevent this invalid inheritance without the condition (2), we would

need to add the event [ emptying-queue ¢= Q] to the list of nullifying events.

In general, the rule which indicates what condltlons guiranteé valid inheritances of
assertions from one situation to another is called a trans-situational rule. For particular
assertions or particular forms of assertions, apéropriate, trans-situational rules are necessary
for correct reasoning. The <for-assertion:.> clauses given in contracts are one type of
trans-situational rules. In Section 5.5, some ex;mpks of trans-situational rules are listed.
The reasoning using trans-situational rules describedl here is a ML@_I anroach to
McCarthy's frame problem [McCarthy-Hayes69] We will discuss this issue in Section 5.4.

5.1.4 Variables and Identifiers

In this su.bsection, we will explain how names for actors are handled in symbolic
evaluation for programs written in PLASMA. The technique given here allows us to deal
efficiently with the problem of both identity and sﬁaring of actors.

Names in PLASMA fall into two classes: variables and tdentifiers. A variable x
can be declared and also initialized with the value of an expression <E1> by the following

form of statements
(et (x initially <E1)..)
The value of x can be changed only by executing expressions of the form.
(x « <E2)). |

Occurrences of x in programs except in the above form stand for the value of x. A

variable x is usually impiemented by a cell actor, but in that case an expression x in code



-08 -

does not stand for the cell actor itself, but rather for the contents of the cell actor. ‘In
symbolic evaluation, to state that a <variable> has an <actor) as its value in some situation,

assertions of the following form are used.
| (¢<variable> has-velus <actord)
When the symbolic evaluator interprets an expression
e 7<£>);
ina situatioﬁ 8, the following assertion ‘
(x has-value B)

is entered at the node for the next situation, where B is the value of <> in 8. -
An identifier is declared and bound to an actor ‘in_the course of program
execution. To express that an didentifier> is bound to an <aclord, we use assertions of the

form
(<identifier> = <aclor>)

In the symbolic evaluation of a module M, an identifier x used in the code of M can be
always regarded as the actor that it is bound to, because one identifier is:not bound to more
than one actor throughout the symbolic evaluation of M. This is guaranteed by: ‘

(1) the restriction on the syntax of PLASMA that no names are declared more than

once inside a module, and o

(2) the fact that symbolic evaluation passes over each expression in a module

exactly once !

L. This fact is true only when symbolic evaluation is used for program verification.




-99 -

When more than one symbol [here, symbols mean ones denoting actors in contracts

(such as Q in Figure 52) as well as indentifiers in programs] denotes the same actor, we use

assertions of the form
(<symbol~-1> is-eq <symboi=-2>)

As an identifier can be regarded as the actor that it is bound to, the relation "is-eq" and ="
can be used indistinguishably. Since the relation “is-eq” is an equivalence relation, it forms
an equivalence class of identifiers in programs and symbols denoting actors in contracts.
Every member of such an equivalence class denotes the same actor. In symbolic evaluation,
one identifier (or symbol) is chosen from each class [eg., the one which is first used among
the members of the class] and any uses or occurrences of other members in the same class
are always considered as those of the chosen one. To record the state of an actor A, the
symbolic evaluator always uses the one chosen identifier or symbol for A throughout ali the
situations. This arrangement eases the handling of shared actors in symbolic evaluation.
To illds_trate the use of identiﬁers and symbols explained above, let us consider
the following piece of code. This code is a PLASMA version of the SIMULA code given

in Section 4.5.4, Chapter 4 as an example which is difficult for the Floyd-Hoare technique.

-8, -
(let (queue-1 = (create-impure=-queus ))
then -8, -
(let (queue-2 = (queue-1 <= (nq: 2)))
then -8, -
(queue=-2 <= (nq: 3))
-85

S...S3 denote situations before or after the events corresponding to statements in the



- 100 -
code. In what follows, the notation
in 8._ ...<morhon>..
means that <assertion>s are entered at the node for 8 in a situational tree.
The event [create-impure-queve <= [IJ takes pla?e in 8, By virtue of the
contract for xmpure Queues in anure 52, we know an empty unpure queue-actor is created.

Then the let statement binds the ldenuf ier quouo-l to the _empty queue-actor. We may use

a symbol Q for the newl_y crea;ed act_o:j a_md recordthis eventv by\two.akssgnigns
(Q is-a (IMPURE-QUEUE [1))
(queve-1 = Q), -

but one assertion suffices. Namely,

in 8, : (queus-1 is-a (/MPURE-QUEUE (}))

“The second statement of the above PLASMA oode is mterpreted by using the

f ollowmg event specifi ication mstannated fro rom the clause in the oontract for nmpure queues

<event: [ queve-1 <= (lq.‘ 210
<pre-cond: (queue-1 is-a (/MPURE-QUEUE [])»
{return: queve=-1 >

<post-cand: (queue-1 is-a (IMPURE-QUEUE [2))}»
‘The state of queue-1 is changed as described by the assertion in the <post-cond:.> clause.
and queue-1 is returned. The let statement tells us that-the fetarned queue~1 is bound to
queve-2. Thus ' L -

in 8, : (queus-1 is-a (/MPURE-QUEUE [2}))
(queve-1 is-eq queve-2)




- 101 -

In interpreting the third statement, since we know that queue-2 and queue-1 denote
the same impure actor, the event [ queue-2 <= (nq: 3)] stands for [ queue-1 <= (nq: 3)].

Thus the change in the state of queue-1 is recorded as
in S3 : (queue-1 is-a (IMPURE-QUEUE [2 3)))

Any references to queue-2 in the interpretation of the subsequent statements in the code are

treated as the references to queue-1.

5.1.5. Examples of Trans-Situational Rules

In this subsection, we will give the trans-situational rules which will be used in the

examples of symbolic evaluation in this thesis

()  Assertions of the form (<identifier = <actor)
which state that <identifier> is bound to <actor>, can be passed unchanged between any two

situations within the scope of <identifier>.

(+) Assertions of the form (cactorl> is-eq <actor2>) and (<actori> not-eq <actor2>),
which state the identity of actors, can be always inherited from one situation to another

without any conditions. -

()  Assertions of the form

(¢c-sequencel> = <c-sequence2>).and (<c-sequencel> ¥ <(c-sequence2>),
which state the equality of conceptual sequences appearing in conceptual representations,
can also be inherited without any conditions. [Note that <c-sequencel> and <c-sequence2>

are not sequence-actors but mathematical sequences.  All mathematical facts can be



-102-

inherited without any conditions. This is a special case.)

() Assertions of the form (<actor> it-a (SEQUENCE {B]) \

which state that <actor> is a sequence-actor whose eleménts are Ix, can be inherited without

any conditions because a sequence-actor is a pure actor which p_eyer changes its state,

(x) Assertions of the form (<variablo> hcmlue (aclor)) A

which state that <variable> has <actor> as its value in some situation S can be inherited to a
situation T if no assignments to this <varisbie> take place between 8 and T. (Cf. Section
51.4) |

5.2 Verification of Actors Behaving as Procedures

Methods of verification reflect methods of specification. Roughly speaking, two
methods have been employed in the specification technique presemed in the previous
chapter. S T |

One method is to specify the behavior of an actor A in terms of the states or the
changes in the state of gther actors which are sent to A, or which are created during the
invocations of A. In this method, the state :,of Ais not us;d in ;pq&fymg the behavior of
A. Most actors which behive purely. as 'pr&dum' are specified by this method. A
typical example of such actors is empty-one-queve-into-another. [See Section 4.4.2, Chapter.
4.] In general, this method applies to the specifications of the adtors which are targets in
the No-Change-Type and Musage-Chmge—Trpe interactions mtrodmed in Section 3.2.4,
Chapter 3. .

The other method s to specify the behavior of an actor B in terms of the changes




- 103 -

in the state of B itself. Actors which behave as “information storage”, such as data
structures and generators, are specified by this method.

In this section, we will illustrate our verification techniques for actors behaving like
procedures, whose behaviors are specified by the first method mentioned above. The
verification techniques corresponding to the second specification method will be discussed
in the next section. However, since actors are essentially procedural objects whose
implementations are written as programs, most of the techniques that will be discussed in
this section [such as the handling of recursion, loop, case splitting and convergence] are

necessary bases for the verification of information-storage-like actors.

5.2.1 Symbolic Evaluation in the Context of Specifications

In order to verify an implementation of an actor against its specification, symbolic
evaluation of the implementation [i.e. code or script] is carried out in the context of the
specification. In our formalism, a specification of an actor which behaves like a procedure
is expressed by a specification of the event which initiates the invocation of the actor. A
specification consists of the preconditions for the incoming message [i.e. input], and the
postcbnditions to be satisfied by the result of the invocation. Thus the symbolic evaluation
of the implementation is started with the assumption that the preconditions are satisfied.
Under this assumption the symbolic evaluation is carried out and then the results of the
symbolic evaluation are examined as to whether they satisfy the postconditions given in the
specification. |

Below we will demonstrate the verification of an implementation of
empty-one-queue-into-another [hereafter empty] against its contract. Its contract and

PLASMA code are given in Figure 55. The code is augmented with situational symbols



- 104 -
- Fig. 5. 5 A Contract and lmplementation of omply-au-qum'lnlo-mothcr

<event: [ empty-one-queve-inio-ancther. ¢+-{01 Q211

{pre-cond:
(Q1 is-a (IMPURE-QUEUE [P1)))
Q2 i AIM PURK-QUEUE (bx2]))
(Q1 not-eq Q2) >
<return: (done: [Q1 02]) >
<post-cond: - :
(Q1 is-a (IMPURE-OUEUB [1)) )
(02 is-a (IMPURB-OUEUE [!!2 !81])) »

(empty-one~queuve-into-ancther =
(=> [=ql =q2] : ;t00 impure queues are received by empty-one-queue-into-another
sand g1 and q2 are bound te them.

= srecoived-quom -

{rules (q1 <= (dq:)) : sthe-dogquening message is sent to ql.
(2> (exhausted:) 1S ql is empty, the compleint message is gemerated
N S.xh;ushd-q 17 o - ’ '
(done: [q1 q2]) )  sthen emptied q1 and extended q2 ere returned.
(=> (next: =frontsof-ql ‘ #/ 41 is not empty, front-of-ql
(mu =dequeued-ql)) . : . . and dequeued-ql
;are bound to the l’ront clcumu of ql cnl cln ramcinin' quene, respectively.
sdoquouod-ql ‘
(g2 <= (nq: front-of-q1)) ' ;fron!-qul-h enqueued at rear of q2. .
= Sonquoucd-qZ "

(empty-one-queue-into-another <= [dequaued-q1 q2])).) ))
' ;dequeusd-ql and q2 are sent to oMyfm-quuo-into-apothor.



- 105 -

which denote situations before/after events corresponding to each statement. Note that this
implementation contains a conditional branch and a recursion, the handling of which will

be explained below.

First, the preconditions of empty in its contract are entered in the data base.

in Sjtial *
Q1 is-a (IMPURE-QUEUE [1x1]))
(Q2 is-a (IMPURE-QUEUE [1x2)))

(Q1 not-eq Q2)

After the symbolic pattern matching is performed, identifiers q1 and q2 are bound to Qi

and Q2, respectively. So this is recorded in the data base as the following assertions.

in Sreceivad-queuos :
(9l = Q1)

(g2 = Q2)

Then the PLASMA expression (q1 <= (dq:)) in the rules-statement is interpreted. The
dequeuing message {(dq:) is sent to Q1 that ql is bound to. To know the resuit of this
event, the symbolic evaluator must consult the <event..> clause for the dequeuing in the

contract:

<event: [Q1 <= (dg:)]

(case-1:
<pre-cond: (Q1 is-a (IMPURE-QUEUE [}))) >
<return: (exhausted:) >
<post-cond: (Q1 is-a (IMPURE-QUEUE [])) > )

{case-2:
{pre-cond: (Q1 is-a (/M PURE-QUEUE [B ly])) >
<return: (next: B {(rast: Q1)) >
<post-cond: (Q1 is-a (IMPURE-QUEUE [ty])>) >



- 106 -

[Note that the above clause is an instantiation of the <event.> clause for the dequeuing in
the contract for impure queues in Figure 52, which is obtained by substituting Q1 for Q.J
Now the symbolic evaluator has to consider two cases: where Q1 is empty and where Q1 is

not empty. (See the situational tree for this example in Figure 56.)

Casel: (Ql is-a (IMPURE-QUEUE 1))

In this case, the contract specifies that the (exhaxsted:) message should be returned. This
message matches against the first ()..)-statement inside the (rules..) statement. To follow
this path, x1 = [] must be assumed. So at the node for s.xh\mto}’d-q-l" the following

assertions are entered.

in Sexhaustod-ql s
x1 =[]

(Q1 is-a (IMPURE-QUEUE 1))
Then the result of the 'invocation, the message (done: [q1 q2)), is retuiried in 8.,h.mm.q1-

For this result, there are three postconditions: stated in the contract of empty:

Fig. 5.6.

Sinitial /

]
s@fws .



- 107 -

ri: (done: [Q1 Q2]) must be retumed
r2: (Q1 is-a (IMPURE-QUEUE [])) must hold, and
r3: (Q2 is-a (IMPURE-QUEUE [Ix2 Ix1])) must hold.

It is easy to show that each postcondition is satisfied. in 8 oxhausted-q1:
(#) for ri, since the trans-situational rules for binding aullqu the inheritance of the

assertions (q1 = Q1) and (g_ = Q2) from -] to S

roemvod-quouu pxhaustod-ql'

the required message is returned in: shm'.d.qp
(«) for r2, the assertion (Q1.is-e (/IMPURE-QUEUE [})) is entered at the node for

S and

exhausted-q1*
(«) for r3, the two facts guarantee that the requirement is satisfied:

(1 (Qz" is-a (lMl"URE-OUEUE [1x2]) can be inherited from B,4a t0
S“hwst.d__ql by using the trans-situational rule for h |

(Q2 is-a (IMPURE-QUEUE [.))) [_W,hjch is obtained by instantiating the

{for-assertion:.> clause in the contract for impure queues Cf Secnon 513.).

This inheritance is legitimate because neither [02 = (nq ] nor

[Q2 <= (dg:)] have happended and no assertions of the form

(Q2 is-a (IMPURE-QUEUE [..])) have ‘been entered at the node for

Sexhausted-q 1

Q). [x2) = [#x2 xi] holds in S“m‘.d_ql because xl = [] holds in
S,,.,..M.d.ql ([1x2 Bx1) st-xz = (1e2])

Therefore (Q2 is-e (IMPURE~QUEUE [1x2 Ix1])) holds in- soMQohl‘ Thus Case-]l is

verified.



- 108 -
se-2: (Q1 is-a (IMPQRE;&& B iel)

In this case, the contract for nmpure queues tells us that (nazc. B (res: 01)) is the result of

(q1 <= (dq )) where the following assemons are assumed

(x1=[B %))

(Q1 is-a (IMPURE-OUEUE [!y]))
The result (next: B (ress: Ql)) is matched against the pattern . in the-second (=>..) statement
inside the (rules...) statement. Ae the mmﬂwp the binding information is

also entered together with the above assumption.

in Sd‘qw“d.ql H

(front-of-q1 = B)

(dequeved-ql = Q1)

(x1=[8 iy 7

(Q1 is-a uumx—ouwx uym
Then the PLASMA expressnon (qz <= (uq irom-of-qi)) is interpreted in this situation.
Since q2 is bound to Q, and front-oi-qi is bound to B [f rom the trans-sltuational rule for the
bmdmg]. the event taking place is [02 (= (ng: B)] .To knpw the effects of this event, the
system refers to the second <event:..> clause in the contract for impure queues. in Figure 5.2.
The state of 02 in sdoqnouo-ql is _obtained, from the assertion
(Q2 is-a (IMPURE-OUEUF [8x2])) at the node for Sﬂw Because it can be mhemed to
Smmm_ql for the same reason as exphined above in the case of its mhemance from
the substitutions of Q2 for Q, x2 for x and B for A]



- 109 -

<event: [ Q2 <= (nq: B)]
<pre-cond: (Q2 is-a (IMPURE-QUEUE [x2])) >
{return: Q2>
{post-cond: (Q2 is-a (IMPURE-QUEUE [ix2 B))) »

The assertion in the <post-cond:..) clause is entered at the node for sonqucuod-qé'

in 8 gnqueved-q2¢ (Q2 is-e (IMPURE-QUEUE [ix2 B}))

Now the last PLASMA statement (empty <= [dequeue-qi q2)) is interpreted. From the
binding information, the corresponding event is [empty <= [Q1 Q2J]. To know the effects
of this event, the contract for empty in Figure 55 is referred to. Since we are trying to
verify the code against this contract, this is a "recursive”l use of the contract. The
preconditions stated in this contract must be satisfied before it can be used. In fact, the

assertions:

(Q1 is-a (IMPURE-QUEUE [¥y])) and (Q1 not-eq Q2)

can be inherited from Sdequ.md.ql by the trans-situational ruies for

(Q1 is-a (IMPURE-QUEUE [..])) and (<actor1) not-eq <actor2>),

respectively. Thus the following assertions hold in S.nqmu..qz

(Q1 is-a (IMPURE-QUEUE [ly})
(Q2 is-a (/M PURE-QUEUE [!x2 B))])
{Q1 not-eq Q2)
Therefore the preconditions of empty are satisfied. Now the postconditions of the contract

for empty guarantee that (done: [Q1 Q2)) is returned and that the following assertions:

I. Recursion and iteration in symbolic evaluation are discussed in Appendix III.



-Ho -

(Q1 is-a (IMPURE-QUEUE [1) and

(Q2 is-a (IMPURE-QUEUE [1[Ix2 B) ly])) hold.
hold in the situation following B o raveved-g2 Pmmm |

(![x2 B] ty] = [Ix2 B Wy},

(32 B ty] = [tx2 Ix1}, if xi = [B w . ,
" are used to ssmplify-me above’ assertions. That is. since xi = [B ly}]fan be inherited from
sdoquou.d-ql by the lfﬂnﬂmmtml rule for Kﬁsmmh = <c-spquence?)), it follows
that

(Q1 is-a UM PURE-QUBUE ﬂ” .
Q2 is-a (IM PURB—OUEUE’ [!iZ lxlm.
Thus the' post-condmons for ompty-on-quouo-inh-nmf are also smsf jed in Case‘2

Though it has been shown that both Case-l and Cue-2 meet the posmondinons for
ompty, we cannot conclude that the implementation of emply in Figure 55 satisfies its
contract, because the convergence of the invecition' of ‘the imph'mzntatlon is not
guaranteed, although it is.explicitly required By the ‘contract. fRecall theﬁﬁie:a"n'ing‘ of
Creturn:..> clauses given in the previous chapter] For after splitting into two cases at the
(rules...) statement, the symbohc evaluaum for bath Case-l and.Case-2 is:resumed under the

assumption that the control has reached the points correspoudtng to S.MMI and
Smwu.d.ql Therefore, to demonstrate that the lbuve

'f is always guaranteed
is another part of the verification process. Thls issue is dhcussed in Appmd;x Iv.




- i -

5.3 Verification of Actors Behaving as Information Storage

In this section, we will present our specification techniques for actors whose
behaviors are specified in terms of their own states [or changes in their own stz:tes].
Specifications of actors which behave as "information storage” such as data structures and
generators [Section 4.4.4] are often written in terms of their own states. For the verification
of implementations of these actors, symbolic evaluation is still the ma jor instrument and all
the techniques presented in the previous section are still employed. In addition, however,

special considerations are necessary in dealing with conceptual sepresentations of the actors

being v®rified. We will discuss such considerations in the next subsection.

5.3.1 Implementation Invariants

The specification of impure queue actors in Figure 5.2 is written in terms of the
changes in their states before and after their invocations, and their states are expressed by

»
conceptual representations of the following form.

(IMPURE-QUEUE [..])

When some program which contains invocations of impure queue actors is symbolically
evaluated, conceptual representations of the above form are used only to record states of the
impure queue actors. One need not pay attention to what those conceptual representations .
really stand far, as long as they represent the states of the impure queue actors at the
conceptual level. However, when an implementation [script or code] of an impure queue
actor Q itself is verified against its specification, what the conceptual representation

expresses in terms of the implementation, or more precisely, how the state of Q expressed by



-12-

the conceptual representation corresponds to the states of the constituents of - its
implementation, must be coﬁstdered. | |

Suppose that the PLASMA: implementation of an impure queue actor given in
Figurej5.7 is to be verified against the comtract in Figure 92. In ‘this implementation, the
elements of the queue are kept as the elements of a sequence:actor that is the value of the
variable queuees. This could be expressed: by ‘the: dhgm’in Figure 88, where boxes’
represént actors and arrows express the knowabout: relationt. T his diagram is only a
partiél and . static. description of the: implementation, yet it ‘illustrates an invariant or

Fig. 5.7. A PLASMA Implementation of an lmpurereueActor _

(create-impure-queue =

=] : icreste-impure=queue receives an empty sequence.

Uet (quevees initially [}) " ta variable quevess is declared

then : sand initielised :with an empty sequence.

(the-queue-itseif = 3o quene-actor denoted by the-queue-iiself is defined

: ~ 3y sha-caves-siatement given below.

(cases

= (nq: =new-eslement) swhen an Omcuc message with an clcmcm is rccewed

i - inew~slomen):Is bound to the element.

(queuees « [iqueuses new-slement]) ;8 new sequence-ector whose elements are

- 7k shpath-of the value of queuees and new-element

;ia en-ud ud uond in queuses.

the~quaue-iiseif) ol then 't ~fisd h rcumwd

(= (de:) ;ulmu e lmm mm‘a ic mewel
(ruies queunes Coo e #f ihe value of queuses -

=[] (exhausted:) ) , 3 empty, then the message is returned.

(2> [=front f=rest] ifitise non-empty sequence, front and rest

- sare bound to its first elomeris and the reis of Us elements, respectively.

(queuees « rest) - -ivhevales of queuess is updated.

(Mrl front  Grest: unm-m.u» )» »» . Smextc) is returned.



- 18-

integrity condition which must be satisfied among constituents of the implementation. The
following imﬁlenaéntation invariant statement can express the diagram more formally.

<lrﬁplemcn!a¢ion-lnvcricnt:
if (the-queve-itselt is-a (IMPURE-QUEUE [1s})
then
(queuses has-value S)
(S is-e (SEQUENCE [I))) >

Thls says: when the state of the actor denoted by lhe-queue-mdi is expressed by the

conceptual representation
(IMPURE-QUEUE [la)),

the variable queuess has the value which is always some sequence actor $-whose elements
are expressed by [la]. (SEQUENCE [1s)) is the conceptual representation for such a sequence

Fig. 5.8.

queuees

va lue




- 114 -

actor.

An implementation invariant describes the mapping from the states of an actor
(the "specification space”)-to the states of the constitwents of & giver implementation for the
actor (the "implementation space")I Suppose that the behavnor of an actor A is specxf ied by
the state of A before or after its mvocation Thenan;mpkmenm invm'am is used in

the verification of A in the following way

First, the state S of A before the invocation is transiated ime the state II(S) of the
constituents of the lmplementation by a given 1mplementat|on invariant II. Then the
nmplementauon [code] is symbohcally evaluated and the states of the constlmems af ter
the invocation are obtained. Next, by using the lmplemmtat!on invariant again, the
state S’ of A, specified as the one after the invoution, is translated into the state 1I(S")
.. of the constituents. . Finally, the states of :the constituents’ obtained-by the symbolic
evaluation are checked. to see if they satisfy those translated states. [See Figure 5.9

In-general, given a state T of an Actor A and an implementation I for A an
implementation invariant for I tells us the relations which must be satisfied by the states of
the constituents of I to realize the state T. Therefore implementation invariants may be
one-to-many mappings. In such a case, when symbolic evaluation of an implemntanon is
started, only such relations (holding among the states of the constituents of an
implementations) are assumed: exact states of each constituent are not used. An example of
the one-to-many mapping cases is found in Section“i.Cﬁapter 7. Implementation
invariants are similar to the inverse of Hoare's abstract functtom (Hoare72}, and also serve

as concrete (representation) invariani: which he-used additionally in proving correctness of

l. A state in the implemritatlon space ‘is a vector of states of the constituents of the
implementation.




- 115 -

Fig. 5.9. Verification of an actor A Behaving like Information Storage

<Invocation>

™

sI

<Implementation Invariant>

<Specification S pace>

<Implementation S pace>

ymbolic evaluation> \
®

IKS) 1K(S")

.representations of data structures. Interpretation functlbm between two formal theories
studied by R. Nakajima ([Nakajima-et-al77] seem closely related to implementation

invariants.

5.3.2 Establishing Event Specifications

An implementation of an actor which behaves as "information storage” is verified
by establishing each event specif ication associated with the actor. In this subsection, we will

illustrate this by using an impure queue-actor as an example.



-HG-

The verif ication of the implementatlon of an Impure queue-nctot is carmd out by
. symbolic evaluatioh To aid in the exposmon of the symboltc evaluation. we augmcnt the
PLASMA code in Figure 5.7 with situational symbols as shown in Figure 510. This code is
verified against the cgntract in Figure 5.2. Below we will establish the two <event:..> clauses
in the contract, whlch specufy the creation and enqtieueing events. The equeuﬁng event
can be established snmﬂarly ' ’

Establishing the € 3541 ION m&m

In the first ¢event:. .> clause in the contnct in Figure 5.2

cevent: [ creste-impure~queve <= [I]
returns: Q%) >

<{post-cond: (Q is-a (IM PURE-OUEUE ﬂ» »,
there are no pre—conditions for ‘this event. Thus no M are entered in the data base

for the initial ;ltuation.

in Spro-crntion s empty

The let statement in .the.code declares and initialires a variable queuveess with an empty
sequence NS. . To.record this, the following assertions are-witered. - -

in Smmahzcd-quouou $
(queuvees has-value NS)

(NS is-a (SE'OUENCE m
Then in this situation an actor whose script (i.e. code) isgiven as the (cases..) statement
after (the~queve-itsell = .. is-newly created and returned. This actor is denoted by
the-queus-ilself. The contract for the: aammmmmm(l) that the returned




- 17 -

Fig. 5.10.
(create-impure-queue =
=10 ;creste~impure-queue roceives an empty sequence.
(let (queuees initially []) . sa verishle queuess ia declared
then : sand umialiled with an empty sequence.
= Sinitialized-queuses ~ | - o
(the-queue-itself = ;¢ queue-actor denoted by the-queue-itself is defined
4 :by the cases-statement given bhelow.
(cases '
(=> (nq: =new-element) swhen anr enquene message with an element is received,
S inew-element is bound to the element.

received-ng "

{queuees + [lquevess new~-siement]) ia new sequence-actor whose elements

;are the unpack of the value of queuses and new-element
sis created and is stored in queuses.

- Supdated-quouus-nq -

the-queue-itself) sand then the-queve-itself is returned.
(=> (dq?) . swhen an dequoue message is roceived,
- Srecoivod-dq -

(rules queuees sif the value of quevees
- =1] .~ iis an empty sequence,
- sempty-quouus = _

- (exhausted:) ) . sthen the complaint message is returned.
(=> [=front i=rest] if it is a non-empty sequence, front and rest
: ;are bound to its first element and the rest of its elements, respectivel y.'
- Snon-ampty-qucuus - o - o
(queuees + rest) $the value of queuses is updated.
- supdlhd-quwon-dq -

. (dcquoue(l: frgn} (rast; the-queve-itseif)) ) )) )) )) s(next:...) is returnad.



- 118 -
actor Q be newly created and (2) that (Q is-a (IMPURE-QUEUE [])) holds. Since the
returned actor is the-queue-ilsell, what we need o show is that

(the-queue-itself is-a (/MPURE-QUEUE (])) holds. This assertion is Iranslated into the
following assertions using the assertions in the where-clause in the impleréntation invariant

statement given in the previ&li subsection. [Note that the assertions in the where-clause
are instantiated by substituting an empty sequence [] for o]

(queuees has-value S) |

(S isa GSE@HENCE (l))
These two assertions are matched against the two assertions entered at the.node for
Sinitialized-quevees: T herefore it is concluded that the: returned actor the-queus-dtselt has
the correct mternal strucwre prescnbed by the lmplemmtatlon invariant. So the result of

the event [cruto-lmgwoﬂ <= [1] meets its specification.
" Establishing the ENQUEUING specification
From the instantiation of the event specification for enqueueing:

<event: [ the-queue-itself <= (nq: A)]
<pre-cond: (the-queue-itself is-a (/M PURE-QUEUE [Ix})) >
<returns: the-gueue-itself > "
<posi-cond: (the=gueus “Reel is-a (IMPURE-QUEUE [ix A])) »
which is obtained by substituting tho-quwo-md! for Q in ‘the comract for

(M PURF -QUEUE [.. )) in Figure 5.2, it is assumed that

(the-queue-itsell is-a (/M PURE-QUEUE [&x}))

holds in the initial situation. By the lmplcmemmon invariant mmnt,thummpnon is
translated into the following two assertions: * [Noté that x is substituted for a in the




-119 -

invariant statement.]

inS,;

initialized-queuees *
(quevees has-value S$))

(S is-a (SEQUENCE [!x}))
Now the message (nq: A) is sent to the-queue-itself. This message matches against the first

clause of the case statement. So new-element is bound to A.

in SFGCOiVOd?nq ¢ (new-element = A)

Then the value of queuees is updated by a newly created sequence-actor NS with its

elements [Iqueuees new-element]. The value of queuses in S is obtained by

received-nq
inheriting from Sini“.““d_qu.u“s, because no updating events took place between the two
situations.  Thus the value is a sequence-actor S. Iqueuees is the result of the unpack
operation on S, which is Ix. [Note that the sequence actor is pure. Therefore its state can be
inherited from Sinma"zed-queu“,] So the state of the new sequence-actor NS is expressed
by (SEQUENCE [Ix A})). For the assignment of NS to queuees, the new assertion

(queuees has-value NS) is entered in the data base. ~So the following assertions hold in the

next situation.

in Supdated-queuees-nq :
(queuees has-value NS)
(NS is-a (SEQUENCE [Ix A)))

The code tells us that the-queue-itself is returned in this situation. The specification for the

‘tiqueuing requires that the-queue-itself be returned and that

(the-queue-itself is-a (IMPURE-QUEUE [ix A)).



-120 -

So-this assertion is translated into the following assertions by the implementation invariant.

(queuees has-value S)
(S is-a (SEQUENCE [!x A}))
These assertions are obviously matched agaimt the assertions entered -at the node for

S updated-queuses-nq SO the enqueuing eyent meets its speclf ication.

5.4 Discussions Related to Symbolic Evaluation- -

The method of symbolic evaluation presented im‘-thfscha'i)t‘ei*”haﬁs'e'mm'y intefesting
facets and significant implications for other research areas besides program verification. In
this section, we first reflect on our approach to verification based- owsymbohc ‘evaluation in
the tight of other exmmg approaches.  We ‘then-discuss the applications of symbohc
evaluation. Finally, our reasoning method employed in symbour. evaluauon ‘will be
discussed in: the context of M&iﬂhy‘: frame prob]em ;

5.4.1 Situational Descriptions vs. Predicate Transformations

Program verification methods based on the Floyd-Hoare proof rules [Floydé67,
Hoare69) or predicate transformers [Manna69, Di jkstra?G]dﬂ béftﬂmnm:ed as fouows

Given a set of predicates P holding in a situation S the proof rules or the predncate

transformer gererate a set of predicates P' [from Pl which hold in the next‘ situation

1. For the case of the proof rules, the next situation is the temporal successor situation, and
for Dijkstra’s predicate wansformers, it-is:the pledecessor situmtion; - : -




- 121 -
s’
The choice of predicates holding in § determines the generated set of predicates for S°.

Those choices are made so that desired assertions may be shown to hold in 8°. This

approach is schematically described in Figure 51l. Note that the predicate transformers

work backwards.

Fig. 5.11. Fldyd-Hoare-Dijkstn Predicate Transformation Approach

<Proof Rules>
<Dijkstra's Predicate Transformer>>

predicates pre'dicates
holding holding
in S in S'




-122-
In contrast to the approach above, our approach is:

- Given a description D of a situation _S. symbolic e‘valga&mwoduces a description D’
of the [forwardly] next situation by using contracts and trans:situational rules.

A description of a situaﬁén is-a colléction: of ‘assertions about stavesof actors which are
expressed by conceptual representations. Predicates which hold in a situation ate derived
from the description of the situation. This approach, which we call the "situational
description” approach, is schematically described in Fighre 512.

Conceptual representations not only express states. of indlv;dual;\ctors in a system,
but they can also describé how the indiv}idual actors are interrelated at various levels. Thus
the description of situations in terms of conceptual representations is powerful in dealing
with sharing. Furthermore, dgscriptiong of each situation provide us with sources of
various information abaut a program, which is quite useful for other applications in the

" areas of mechanical program analysis.

5.4.2 Applications of Symbolic Evaluation

Symbolic evii@ation based on formalisms different fromm ours ha; ‘been studied for
various purposes such as proving properties of programs [Boyer-Moore?S}; brogram testing
and debugging [Boyer-et-al?5, King76), program transformﬁtion and improvement
[(Burstali-Darlington75] etc.

Our method of symbolic evaluation can be used in construeting‘ a software system
called a Programmmg Appremlce [Hewitt-Smith75, Rich-Shrobc'lG], which' aids expert
programmers in various aspects of programming activities such as vt‘.rlfxcation. debugging,

and ‘refinement of programs. In the Programming Apprentice, the purpose of symbolic




- 123 -

Fig. 5.12. The Situational Description Approach

PREDICATES PREDICATES
holding holding
in S ~in s

CONTRACTS

TRANS-SITUATIONAL RULES

description of S :
in terms of conceptual
representations

<EVENT» N%

description of S'
in terms of conceptual
representations




- 124 -

‘evaluation is not simply to verify progrims‘ag-ainst their specifications. By symbolic
evaluation, we try to ghther information about dependencies between program modules.:
Such information is used to understand implications of proposed changes in both
specifications and implementations in the subsequent evolutionai development of the
programs. 4

For instance, wpposc that the implementation of e A mtbor used

as an example of program venflczuon is sent pure qm actors insmd of _p_g_g queue
actors. Using the contracts for puré queue actors in F|gure (2 sn Chapter 4, our method of
‘symbolic evaluauon can easjly trace and te;:ord the béhawor of the nmplemematlon The
situational tree produced. ﬂmmg .the symbolic evaluation aids us in modifying the
implementation so that it may accept both impure and pu[t‘;;ueue actor;l Another simple
example might be the analysis of the behavior of the same jmphmnnﬁm when it is sent
the same impure actor. (That is, one of the ps;conditions. (Q1 mot-eq Q2) is forgotten.j
Furthermore, as reported in (th;liwa-ﬂewiq@l the efficiency of the implementation of
impure queue actors in terms of cmsumedsu’)nge an be' revealed byuwlg mi of
the 4farm 4 o |
(Cactor=1> knows-sbout <sctord>)

in the process of symbolic evaluation.

The siuiatioaél description approach based on our method of ‘symbolic evaluation
appears to be quite pouerf ul n pursuing these ends. The symbolic e\latuator in C. Rich
and H. Shrobe’s system [Rieh-Shrobe?G]. which understands LISP’progfups. is based on a’

method similar tonurs.



- 125 -

5.4.3 The Frame Problem

In the context of Artificial Intelligence, J. McCarthy and P. Hayes
[McCarthy-Hayes69]) pointed out a probiem, called the frame problem, which arises in
formalizing effects of actions or events taking place in a complex world. A typical example
of the frame problem is found in formalizing the effects of actions of a robot in a block
world where the robot carries out various physical tasks. Suppose that the robot has moved
a block B to a certain location. With this action, the location of B changes, but most of the
properties of the biocks, such as color, height, and volume, and relations holding among
other blocks, do not change. To formalize the action "move", it is necessary to specify not
only which of these properties and relations will change [and how they will change), but
also which properties or relations will not change. Since the robot is supposed to perform a

number of different actions, for each action such changes in properties and relations in

both positive and negative sense must be specified. In most cases, rather a small number of
properties and relations change as the result of a single action, while the rest of them do
not. Thus the number of such specifications will be unbearably large for a practical system
if the tasks of the robot and the world in which it works become complicated.

The same problem arises in the context of program specification and verification.
In particular, the frame problem becomes serious when one tries to construct program
verification or understanding systems which must deal with actors whose behavior may
change with time. To specify the effects of computations [or events], the no-changes as well
as the changes in the states of ob jects in a system must be described even if the ob jects do
not participate in the computations. If we described the changes and no-changes of all the
ob jects in the system in a straightforward way, the same serious problem would arise.

As presented in the first section in this chapter [512, 5.13), we take a procedural

approach to this problem. Our reasoning method based on trans-situational rules is



-126 -
powerful in coping with the problem in the domain of Artificial Intelligence as well. R.
Waldinger has independently proposed an approach similar to ours for dealing with certain
issues in program synthesis and has discussed its application to Artificial Intelligence
[Walidinger77). Those who are interested in comparative studies of the existing approaches

to the frame problem should see [Sandwall72, Hayes78, Hewitt75, Waldinger77].



- 127 -

6. Specifying Parallel Computations

In this chapter, the specification language jntroduced in Chapter 4 is extended to
cover parallel computation. Formal specifications of abstract data type objects which are
used in multi-process environments are written in the extended language. Examples for .
illustrating our specification techniques include air line reservation systems and bounded
buffers. An alternative definition of states of actor (objects) is discussed at the end of the

chapter.



- 128 -

6.1 Introduction

In this section, we will discuss the characterisitics of parallel computation which
make its specification method different from that for serial computation. Our specification
techniques for parallel computations will be described in the subsequent sections of this

chapter. o ’

6.1.1 Communicating Parallel Processes

In a serial computation, activations of actors take place sequentiaily and one at a
time. Thus it is modelled as a set of linear ordered events with each event causally related
to one another. [Recall the definition of computations in Chapter 3] In a parallel
computation, however, more than one activation may take place concurrently. Some events
are causally related to each other, but some may not be. Therefore, a computation is
modelled as a set of partially ordered events. A sequence of causally related events can be
viewed as a "process”. From this view point, parallel computations involve multiple
processes and serial computations a single process.

If, in a parallel computation, concurrent processes do not interact with each other,
i.e, no events are causally related between processes, the computation can be viewed as a
collection of mutually independent serial computations.

However, there are many reasons for the necessity of interaction between
concurrently running processes: If arguments in a procedure call are evaluated in parallel,
a process which executes the procedure body must wait until all the parallel evaiuations of
the arguments are completed. In air line reservation systems and inventory control systems,
concurrent processes interact with each other by retrieving and updating various

information in data bases. In operating systems, concurrent processes intenct through



- 129 -
sharing r‘esou‘rces such as main/secondary memories and 1/O peripherals.

In order for such interactions [or mn&»&ﬂ to be effective and efficient,
concurrent processes must communicate and synchronize with each other. Therefore in
specif ymg interesting behaviors of parallel computanons, we need techniques whlch are
able to deal with commumcanon and synchronlution between processes In our model of

computation, such communmtion and synchromzation is realized by changing states of

certain actors [Cells buffers and data bases are examples of such actors.] Therefore the
central issue in the method for speciﬁcanon of parallel computatxons is to deal with the
behavior of actors which are used for commumcation and synchroniutnon

States of actors are extensively used in specif ying panlte! computatlons as well as
serial computations. But states of actors in parailel oomputanons (or mum-processor
environments] need to be dealt with much more carefully than those in serial computations.

We will discuss this issue in detail 4in the next subsection.

6.1.2 Local States

In describing ‘behaviors of parallel comPutations. there have been many
attemptsIMilner?3, Kahn?, Ashcroft’s, Cohen’s, OwickiTs, Keller’6, Owicki-Gries’s,
Flon-Suzuki7J, Lamport77] to use the notion of the global states of an entire system. The
global state of a system at a given time is expressed essentially by a vector of states of the
subsystems. The use of the global states is often motivated by the use of non-deterministic
serial computations for the semantic model for paraliel computations. In order to study
properties of a subsystem, this approach leads to counter-intuitive serialization of

concurrent events taking ‘placé in untelated subsystems and it forces us to consider not only



- 130.

changes in other subsystems but also the order in which such changes take place. Thus the
number of cases to be examined tends to be exponemhlly hrge, but a!most all changes in
other subsystems are irrelevant to the subsystem under comldenuan

In our approach, we do n__ rely on such nouom as the global state and the global
clock [umf ofm time referencel Rather we take a m_ md Mmg view We assume
only the local states of individual actors. [Cf Section 1.3 Chapter 1 The Iocal state of an
actor is determined only at the local time associated wlth the acuor Thus, when the state of
a computer at some site of a oomputer network ls deﬁermlned we do not assume that the
states of computers at other sites can be deﬁned The state of m ecmr ls determlned at the
time when the actor receives a message. This timlng ls partkuhrly lmporunt and useful in
parallel computations because it is a wel! deﬁned momem ln 1 dismbuted system. [The
moments of message transmission at sattered computer sites are difflcult to compare wrth
each other.] Recall that the ordering of amval of mecages wm\ respect toa glven actor
[arrival subordering] is total in our model of compunum (cf. Section 318, Chapter 3]

In Section 4.L1, Chapter 4, we have defined states of an actor as equivalence classes
of past histories of messages sent to the actor. As discussed before, this definition
subsumes, in serial computations, traditional definitions for data-storing objects, whose
states are determined by their current information content. Such tradjtional definitions are
inadequate in parallel mput&tiom {or multi-process. environments]. Fﬂ’ example, imagine
a Adara base system which is concurren;ly accessed by a number of -users. If the state of the
data base were defined as its stored dm, its state at the time of the arrival of an access -
request could not be determined, beaqse the:;mr&g tgfo:maﬁon might be being changed by
previously arrived requests. Also determininge.the, information coptent inside the data base.
at the time when a request arrives at the data base is incompatible with our relativistic view

mtroduced above [lmagine a data base system where an access request may be received by




- 181 -

a computer site located at one side of the continent while actual data may stored at the
other side.] |

States of an actor defined as equivalence classes of the past message histories are
not affected by the actual activations of the actor. Also the order of arrival of _messages is
linear (total). These two facts are essential to our specification techniques for parallel
computations because they guarantee that states thus defined are always' well defined even
if the actor is being activated by tﬁe previouslf arrived messages. In the later sections,
examples that illustrate the significance of our state definition will be found. In particular,
a model of interaction between a post office and customers in Chapter 8 will provide an

intuitive example.

6.2 Extending the Specification Language

Specifications of the behavior of actors in paraliel computations are written in a
way similar to that in which the behavior of ‘actors in vséﬁal“édﬁﬂ:ut;tibm is specified.
That is, when given the state of an.actor, the behavior. of the actor is specifled. by the
resulting state changes and the subsequently caused events. HQV@Y% the ma jor difference
lies-in how the states of actors change and howmmngamupmud To distinguish
such difference, the specification language introduced for;erjal oomputations in chapter 4

needs to be extended.



- 132 -
6.2.1 Instantancous State Changes

Let us try to write a formal specification of a cell actor. A cell actor is used to store
information. It accepts updating messages of the form (wpdate: <new-contents>) and

retrieving messages of the form (contents:). Its behavior is expressed informally as foliows:
“In response to a (contents:) message,
a cell actor returns <contents> which was contained

in the most recently arrived (update:..) message if such a message exists,
otherwise it returns its initial contents”

We would like to express this behavior by using the states of the ce»ll.l To express a
state of a cell actor, we use conceptual representations. For example,
| (CELL (contents: A))
expresses the state which is defined as a class of histories of messages whose most recent
updating message is of the form (update: A). If the cell were used only in serial

computations, we could specify this behavior by the following two event specifications:

<event: [[C <= (contents:)]
<{pre-cond: (C is-a (CELL (contents: A))) >
<return: A>

<{post-cond: (C is-a (CELL (conients: A))) > >

<event: [[C <= (update: B)]
Cpre-cond: (C is-a (CELL (contents: A))) >
Sreturn: B >
<jxosl-cond: (C is-a (CELL (contents: B))) > >

Unfortunately, the above event specifications do not precisely express the behavior of a cell

in paraliel computations, because the states of C expressed in the <post-cond:..> clauses are

L. 1. Greif and C. Hewitt gave a specification of cells which is expressed by axioms about
events in [Greif-Hewitt75, Greif 75).



- 133 -

the states at the time A or B are returned, but the state of the cell may be changed by the
updating messages subsequently arriving before A or B are returned.

In order to eliminate this impreciseness in the above event specifications, the
following two points should be made clear. First, states of a cell éxpré;sed by the
conceptual representations must be interpreted strictly in terms of equivalence classes of
histories of incoming messages. They should not be interpreted to express the current
contents of the cell. The second point, which logically follows from the first one, is that in
order to be consistent with. the definition of the states expressed by the conceptual
representations, the state of the cell must change instantaneously when an (update:..)
message arrives. o -

In general, in specifying behaviors of actors in piﬁltel computations through their

state changes, the fact that states change instantaneously must be taken into account.

6.2.2 <Next-cond:..> Clauses

To express the instantaneous state changes in speciﬂaﬂom.we introduce a new
specification language construct, <next-cond:..> clauses. This is usually used in event.

specifications of the following form.

<event: [ T <== M]
{pre-cond: >
{next-cond: ... <assertion)... >
{caused-event: £ >

This means: when an event [T <== M] takes places, if the preconditions are satisfied, the
<assertion>s in the <next-cond: ..> clause hold immediately after the event [T ¢== M] and

continue to hold at least until one of the actors appearing in the <assertion>s receives the



- 134 -

next message. For example, if the <asgertion’s mention T or M, they continue to hold at least
until T or M receives its next message. The assertions in the 5ug'x¢-cand;...>4clausg can be
V|ewed as the preconditions for the next event. A <next-cond:.> clause differs from a
(posl-—rond -> clause in that assemons m the <pou-cond..> clause hold at the time the
correspondmg caused event take place, but may not hoId before the caused event. When a
<non-mnd;...> clause is used in specifying serial cgq\pntauqns. its meaning is identical to
that for a <post-cond:..> clause. The event E_in‘:t!pg; <{ceused-gvant:..> dausc must take place
eventually. It ls oftén the iase that gﬂgﬁr[ent evemsarecausedby [T< M].. In such a
case, we use c'lauses_‘ on the f borrm‘ <caused-events: {mwmp thermterpretauon rules for
evenf specif ications, such as those for al;sem chusé, abbreviated forms and scope rules for
symbols in clauses are the same as for serial computations. _[Cf. Sections 431 and 433,
Chapter 4) | ) | |

Using this new construct, a specification of the behavior of a cell in parallel

Fig. 6.1. A Specification of a Cell

<event; [ create-cell <= A]

<return: C¥ ) 7 ‘
<pnst-cond: {C is-a (CELL (contents: A))) »

<enent: [ C <= (contents:)] '
<pre-cond: (C is-a (CELL (contents: A))) >
. <next-cond: (C is-a (CELL (centents: A))) >
<return: A »

<event: [[C <= (update: B)]
<pre-cond: (C is-a (CELL (contents: A))) >
<{mext-cond: . (Cin: ml- {eontonine BN) >

Lreturn: B »



-135 -

computations is written as depicted in Figure 6.1 <Return:..> clauses are used as an
abbreviated -form of a <caused-event:.> clause. --When a cell actor is created by the
create-cell actor receiving the initial contents, we need net use a <next-cond:.> clause in
expressing the state of the r;ewly created cell, because before the new cell is released nothing
can happen to change the state of the cell. It should be peinted out that the equivalence
relation defining the states of a cell (which are expressed by conceptual represcntaﬁons) is
expressed incrementally by the <pre-cond:.> and (next-cond:.> clauses in the specification in
Figure 6.1.

6.3 Examples of Specifications

In this section, we will discuss three specif ications as examples. The first example
is a specification of a simple air line reservation system. vThis exampfe illustrates how the
behavior of systems which process req’uests onaf irst-come-first-sefved basis is specified by
our technique. In the second example [ specnﬂcatnon of semaphores] we wnll see how
processes which have requested some actor for resource usages that have not yet been
granted are dealt with in expressing the state of the actor The thlrd example is a
completely external [i.e. implementation independent] specification of a bounded buffer
which requires us to express "non-first-come-first-served” schedyling of . requests.

As was mentioned before, an actor model of a simple post office is studied in-
Chapter 8. It is shown that overali task specifications of tﬁe post Df fi |ce can be derived by

specifications of the individual behavior and mutual mtcraction of actors in the model.



-1%6 -
6.3.1 Modelling an Air Line Reservation System

As an example, let us consider an air line reservation system. For the sake of
simplicity, we assume that only one flight is avaifable in the system. A number .of travel
agencies [parallel processes] try to reserve-or cancel seats for the flight concurrently. We
model! the air dine reservation system as a-flight actor F which-behaves as follows. The
fight actor F-accepts two kinds of messages, | ' |

(reserve-a-ssat: <passenger-neme>) and  (ceNvel-g-suaats (passenger-name>).
When F receives (reserve-a-seat:..), if free seats are left, the passenger name is appended to -
the passenger name list for the flight and the number of free seats is decreased by one, and
a message (ok-its-reserved:) is returned. Otherwise a message (no-more-seats:) is returned.
When F receives (cancel-a-seat:..), if the passenger name'is found’ ‘in"the passenger name
list, a messagc (ok-iu-canccllcd) is returned and the passenger name is dclcted from the
passenger name list and the number of ree mts is increased by one. Othcrmse a message
(lho-mnrnzrr-mmc-noc-found ) is returned Furthermore requem by (nmu—c-mc ) and
(cancel-a-seat:. ) are processed on a first-oonn-ﬁrst—mved bms. .

To write a formal specafmnon of the air line reservmon system. we need to

describe the states of the f hght actor. For thu purpou. we use the foibwmg wnceplual

I"CPI’ESCI"I ta thﬂ

(FLIGIIT (soats-froe: <no) (phssingor-same-tist: {Ipni}))

which describes the state of a flight actor. The number of free seats is <m> and {lpnl} is

I. E. A Ashcroftlt9”F gave & flowchart programi Which mollels an air line reservation
system. 1n his program, each user (or agency) has its own copy of the request handling

program and all the copies are connected with a single fork operation. Furthermore, the
number of users must be fixed.



- 137 -

the passenger name list for the flight The formal specification of the air line reservation
system using this conceptual representation is depictéd in Figure 6.2.
Since the states expressed by conceptual representations in the specification are
defined as equivalence classes of histories of messages sent to F, the number of free seats
-and the passenger name list given in the conceptual representations does not necessarily
correspond to those that are actually stored in the s)rstcem.l From the view point of a
message arriving at F, the states expressed by conceptual representations in <pre-cond:..>
clauses are virtual. That is to say, those conceptual representations express the information
that will be true after all the messages previously arrived at F are processed, although
currently some of those messages may be being processed or some may even be suspended
in the request queue. Therefore, only air line reservation systems in which the reserve and
cancel requests are processed on a f irst-cbme-first-served basis satisfy the specification in
Figure 6.2.
It is easy to specify the behavior of air line reservation systems which deal with
more than one flight and can add and remove flights. To do so, one may use conceptual

representations which express the flight information for each flight. For example,
(RESERVATION-SYSTEM {..(flight-i: (seats-free: <n>)(passenger-name-list: {lpni})) ..H

may suffice. In this case, the reservation system thus specified processes the reserve and
cancel requests on a flight-wise first-come-first-served basis. This implies that requests for
different flights may not be processed on a first-come-first-served basis. The technique to

specify the flight-wise first-come-first-served processing can be applied in specifying file

L. If the processing of requests were so fast that each request might be processed before the
next one arrives, the information expressed in the conceptual representations would
correspond to what is actually stored in the system.



- 138 -
Fig. 6.2. A Specification of an Air Line Reservation System

Cevent: [ create-flight <= §
<{pre-cond: (S > 0) >
<return: F¥ )

<posi-cond: (F is-a (FLICHT (scats-froe: S} (passener-name-list: {1

<event: TF <= (reserve-a-seat: NAME)]
{rase-1:
<pre-cond: (F is-a (FLIGHT (seats-free: 0) (pumger-ncm—lm {!pnl}))))
<next-cond: (F is-a (FLICHT (seats-free: 0) (pcmnger-ncnw-lm {tpni}))>
Creturn: (no-more-seatss) ) '
(case-2:
<{pre-cond:
(F is-a (FEICHT (séats-free: N) (mmn:ernmc-iiu {!pni}m
(N>O) >
<nexi-cond: (F is-a (I'l IGII T (mu-fm N 1) (puun‘cr-nmc-lm. {!pnl NAME}))»
Creturn: (ok-its-reserveds) P '

<evemi: [[F <= (ram-vl-a-sml NAME)]
{raze-1:
<pre-cond:
(Fis-a (FLIGHIT (smu-[rec N) (pamnger-mm-lm {!pnl}m
(prl ¥ {.. NAME ..}»
<next-cond: (F is~a (FLIGHT (seats-free: N) (pumgcr-nuu-liu' {lpnl}m)
Sreturn: (&hc-pnmger—mm’fvuni.) 3
(case-2:
<pre-cond: '
(F is-a (FLICHT (scats-free: N) (passenger-name-list: {}pnil NAME !pni2})))» 7
<next-cond: (F is-a (FLICIHT (seais-froe: N + 1) Ipunn(ﬂlu-liu. {lpnﬂ !pnlz}))»
<return; (ok-its-capcelled:) > )>: :



- 139 -

systems, large data base systems, and disk-head scheduling systems [Hoare74) as long as

individual files and disk tracks are used on a first-come-first-served basis.

6.3.2 A Specification of Semaphores

The behavior of semaphores can be easily specified by our techniques. The state

of a semaphore is described by conceptual representations of the following form.
(SEMAPIORE (counter: <n>) (waiting-q: [1q]))

where <n> is the number of processes that can still enter the critical section it guards and
[!a] is the queue of processes waiting to enter the critical section. A specification of a
semaphore is depicted in Figure 6.3.

A message sent to a semaphore consists of a request [i.e, either P-operation or
V-operation], and a continuation actor which will be activated when the request to the
semaphore is granted. The continuation can be viewed as a process that will be awakened.
As stated in the Case-2 of the second event specification [for P-operation), when the counter
is zero, no message is sent to the continuation. Hence the <caused-event:.> clause has no
events. In the Case-1 of the third event specification [for V-operation], two events,

[ C <= (g0-ahead:)] and [ first <= (go-ahead:)] are caused concurrently.



- 140 -
Fig. 6.3. A Spccification of Semaphores

<event: [ create-semaphore <= NJ
<pre-cond: (N2 0) >
Creturn: $%)
<posi-cond: . (S ix-a (SEMAPHORE (counter: N) (muu-q:[]m »

<ervent: [S <== [request: (P-op:), reply-to: C1]
{Case-1 -
(prt‘-romf '
(S is~a (SEMAPHORE (counter: N) (tniuurq mH
(N>0) >
<next-cond: (S is-a (SFM/IP”ORE (conur N- 1) (.liml"‘ H») >
{raused-event: [C <= (go-checd )] ))
{Case-2: )
<pre-cond: (S is-a (SEM/APIIQRE {(counter: 0). (vemiting-¢: [1q)))>
(next-cond: (S is-a (SEMAPIHORE (counter: 0) (animl‘-qr [lq C]») >

Ceansed-events: 3> )»

Ceven: s <== [rrquul‘ v -op.), reply-io: C]]
{Case-1: o
<pre-cond: (S i is-a (SEMAAPIIORE (counter: 0) (swaisingrq: [first Irest]))) >
<nexi-cond: (S is-a (SEMAPHORE (counter: 0) ‘“uil‘-q ur.ﬁ»» >
Leascd-events: {[C‘(’I (go-ahead:)], [ﬁrﬂ‘@ 7 ﬂ } ))
{(Case-2: L
<pre-cond: (S is-a (Sl'.MIIPlIORE (counur' N) (“iliurq n”»
<next-cond: (S is-a (SEMAPIIORE (counter: N + 1) huitinrqs U))) >
<caused-event: [ C <= {go-abeed:)} > P C




- 141 -

6.3.3 A Specification of a Bounded Buffer

As a simple example of specifications for actors which do scheduling of incoming
requests, we specify a desirable behavior of a character buffer of a fixed size N with which
concurrent processes communicate to one another.

A buffer actor B accepts two kinds of requests, (remove:) and (append: <character>),

and it can hold at most N characters. Characters are appended or removed from the

buffer on a first-in-first-out basis. But requests are not necessarily granted on a
first-come-first-served basis, because a character should be appended only when the buffer
is not full and it should be removed only when the buffer is not empty. This implies that
when the buffer is empty, (remove:) requests must be suspended until the buffer becomes
non-empty by an (append:.) request arriving later. Similarly, when the buffer is full,
(a];pond:...) requests must be suspended until the buffer becomes non-full. Therefore, in
determining external states of the buffer, we must take into account such suspended
requests (waiting processes).

To express the states of the buffer, we use conceptual representations of the

following form.
(BOUNDED-BUFFER (q,: [.-)q [..)\string: [..]))

9, and q, denote queues of suspended messages for (append:.) and (remove:) requests,
respéctively. String denotes the string storage used as a buffer. [Remember that the states
expressed by the conceptual representations are defined in terms of the equivalence classes’
of the past message histories. So q,, q, and string do not necessarily correspond to the
queues of r.equest§ which are actually suspended or the string of characters which are

actually stored.]

In figures 6.4 and 65, we give a specification for the behavior of this bounded



- 142 -
buffer. The first event specifi'cation in Figure 6.4 describes how the buffer is created.
Note that the two queues q, and g, as wéli-asthn’smngfmmgtare‘mpty when the buffer
is created. ' |

- The second event specification in Figure 6.4 describes the behavior of the buffer
in response to a mesﬁge M for a (remeve:) request. Note that the message M explicitly
contains a continuation C. There are three cases depending upon the state of the buffer B
at the time when the message M arrives. Case~1 is the one in which the string storage is

empty, and no messages for (eppend:..) requests are suspended lie, ¢, = H].‘ and messages

Fig. 64. A Speclflcatlon of a Bounded Buffet of Slu N (Creanon and Removing a
Character)

{event: [’cfeate-buundcd-ﬁwor (= n]
Sreturn: - Lo SN
<post-cond: (B is-a mounozn—xurnn (g7 (e, [])(min ll)n »

<event: [B <= M]J
whore M = [reqneu (remm ) reply-u C]
(Case-1:
<pre-cond: (B is-a (BOUNDED-BUFFER (q,: [Wa, [ty string: (D)) >
<nexi-cond: (B is-e (BOUNDED-BUFFER (q,: [])(q; uy M) atring: m» >
<caused-events: {} >)
(Case-2:
<pre-cond: (B is-« (BOUNDED-BUFFER (g, [IWa,: [Matring: [X 1s})) >
<next-cond: (B is-a (BOUNDED-BUFFER g : [IMg, m(muu s >
<caused-event: [C (8 (rcm‘. X’] ’)
(Case-3: '
<pre-cond:
(8 is-a umunnxn—uurmn (ag: (MM muq,. n)(m—tu. (X e
(longth([X ¥s]) = N)
(MM = [request: (append: XX) reply-to: CC}) >
(next-cond: (B is-a (BOUNDED-BUFFER (q‘ ux])fq,. [Mstring: [!s XX >
<caused-events: {{.C <= {removed: X1}, [CC <= (append-done:)}} >) >



- 143 -

for (remove:) requests may or may not be suspended, (i.e, q, = [!y]l ] In this case, the
message M is enqueued at the end of q, and no events are caused. When the string storage
is not empty and both q, and g, are empty (Case-2), the first character X in the string
storage is deleted and sent back to the continuation C as a reply message (removed: X).
Case-3 is the one in which the string storage is full [i.e, length([X Is)) = NJ, at least one
message for an (append:..) request is suspended [ie., 9, = [MM Ix] ] and no messages for
(remove:) requests are suspended. In this case, the following change in the state of B
happens: the first element MM in 9 whiich is o-f the form
[request: (append: XX) reply—tbs CC]), is deleted from the queue, the character XX is added at '
the endl of the string storage, and the first character X in the string storage is deleted.
Then, two events are caused concurrently: [C <= (removed: X)] where X is sent to the
continuation C and [[CC <= (append-done:)] where the acknowledging message for the
message MM for an (append:..) request is sent to the continuation CC. (Cf. the remarks
below.)

The behavior of the buffer in response to messages for (eppend :..) requests is
described by the event specifications given in Figure 65. This event specification and the
one for (remoave:) requests in Figure 6.4 are symmetrical: By exchanging the roles of ¢, and
, and the conditions expressing the upper bound and lower bound of the length of the
buffer, one is obtained from the other.

It should be pointed out that the six cases for the state of the buffer considered in
the event specifications in Figure 6.4 and 6.5 are mutually exclusive and enumerate all cases

of the states which the buffer can be in if it is created with 9. 4, and the string storage

I. Recall that [ly] can be an empty conceptual sequence. Cf. Sections 2.2.3 and 235, in
Chapter 2.



- 144 -

empty. One should be reminded that the states of the buffer are defined in terms of
equivalence classes of -past histories of messages sent (o it a,nd that the state changes
dgscr@bed in the specif icatjon are jpstantaneous as »they:a_r,e expressed by assertions in the
<m'xl—brorgad:...> 'clausgs,. Thus, g, can be non-empty only if ~string is empty and q, can be

non-empty only if Am'n; is full, and ;on;g_queduy, 9, and ¢, cannot be non-empty at the

same time.

From the specification given in. Figures 64 and 65, it is easy to observe the

Fig. 6.5. A Specification of & Bounded Buffer (Appending a Character)

<event: [B <= M]
where M = [request: {(append: X) reply-te: C]
(Case-1:
" <pre-cond:
(B is-a (BOUNDED-BUF FER (q,: [Ix])g,: [ string: [1s])
(tengih([is]) = N) >
<{next-cond: (B is-a (BOUNDFD—BUF FER {(q,: [lx M])(qr [D(string: [2s]))) >
{caused-events: {} )) '
(Case-2:
‘ <pm-mnd
(B is~e (BOUNDED-BUFFER (q, Miey [])(umer [!s]m
(length{[BDP<N)> . = o -
<next-cond: (B is-a (BOUNDED-BUFF ER (q. [])(q,_ u)(ﬂﬂ"l [!8 X]))) b4
<caused-cvent: [ C <= (cppend-donc )] >)
(Caze-3: a
{pro-cond:
(8 is-a (BOUNDED-BUFFER (qa e [MM !vl)(min,. o
(MM = [request:- (remové:) reply~to: OC] > :
<next-cond: (B is-a (BOUNDED-BUFFER (q,: [Mq,: [8y)string: () >
<caused-events: {[ C <= (append-done:)], [WGRW.X’]})))



- 145 -

following property of the bounded buffer: It is always the case that the character removed
in’ response to the n-th (remove:) request is the one which was appended by the n-th
(append:..) request. More formally,
Property (First-In-First-Out)
Let E:' = [B <== [request: (remove:), reply-to: Ci]]
denote the i-th event where B receives a (remove:) request, and
Ezj = [ B <== [request: (eppend: Xj), reply-to: 1]

denote the j-th event where B receives an (append:...) request.
Foranyn > 0,if both Ef and E3 exist,

then there exist an event E = [C,, <== [reply: (removed: X)1] such that E] -act-> E.

6.4 Behavioral Equations

As noted in the beginning of the previous section, our specification method is
roughly summarized as:!
"Given a state of an actor A, the behaviar of A in response to a message M is
expressed by the new state of A and the finite concurrent events caused by the
event [A <== M]."
The method suggests to us that a state of A can be viewed as a certain mathematical
function Fa whose domain is a set M of actors (or messages) and whose range is a direct
product of a set 84 of states of A and a finite power set P (T x M) of a direct product

of a set T of target actors and M. [Note that T x M corresponds to a set of events.]

FA: M =———) SAXP(TXM).

I For the sake of simplicity, we do not take into account the states of the message M and
the actors involving in the caused events. .



- 146 -

Whether or not the function F exists as a well defined mathematical ob ject needs
to be proved, but we do believe that the following isomorphism would be shown to hold by
a certain domain construction for 8 A Similar to that for the lambda calculus done by D.

Scott[1972].
SA = ‘M === sAXP(TXM))

where (  ----> ) denotes a set of continuous funcuori; with a specified domain and range.
The construction of such domains will establish "the mathematical meanings of actor states
which are described by cbnceptual representations.

The above isomorphism is inspired by the notion of processes proposed by R.
Milner {Milner73). Extending the work of D. Scott, R. Milner has expressed the meaning
of a program by the notion of processes. He defines his notion of processes by the

following isomorphism.
P2V ey P xV)

which says that a set P of processes is isomorphic to a set of continuous functions from a
domain V of values to a direct product of P and V. There are fundamental differences
between his approach and ours, due to the framework of the two approaches. Our
approach is based on the computation model in which a computation is defined as a
partially ordered set of events and for each actor, a total order [called an arrival ordering)
is defined. In Milner's approach, a computation is defined as a composition of processes in
which paralielism is expressed as a non-deterministic choice of processes by "oracles”. The |
introduction of oracles forces us to consider uninteresting details of the interleaving of
concurrent processes. Furthermore, the lack of arrival ordering makes it difficult to deal
with the issues of fairness and starvation.

C. Hewitt and H. Baker [Hewitt-Baker77] have shown that the behavior of a pure



- 147 -

actor can be defined as the minimal fixpoint of a continuous functional. This result does
not apply to the whole set of actors. Thus we hope that the approach exemplified by the

above isomorphism will be able to deal with the whole class of determinate actors.



..]*8,

7. Verifying Parallel Computations

In this chapter, our techniques for verification of actors which are used in parallel
computations (in multi-process environments) are presented. In the first section, a special
class of actors which are used for synchronization and scheduling of requests is described.
To illustrate the verification techniques, an air line reservation system and a bounded
buffer which are implemented with such a class of actors are considered in the subsequent

sections.



- 149 -

7.1 Introduction

As noted earlier, if, in a paraliel computation, concurrent processes do not interact
with each other, the parallel computation can be viewed as a collection of mutually
independent serial computations and its specification is given asb the c‘ollecﬁon of
specifications for the serial computations. The verification of such a parallel computation
is. nothing but a repetition of the verifications of serial computations. Consequently no
special techniques in addition to those for serial computations are required.

In .the previous chapter, we have developed Spécification methods which are
applied to computations in which interactions among concurrent processes are involved.
Since interactions between processes are performed by sending messages to certain kinds of
actors, our specification methods focus upon the behaviors of such actors. We have given
various specifications for such actors. But those specifications merely expi'ess the behavior
that users or implementors of such actors assume or hope they have.  There is no guarantee
that actually implemented actors bebave correctly with respect to their specifications.

In this chapter, we first discuss how suich actors are implemented and then explain
how they are verified. As examples, we will verify implementations of an air line

reservation system and a bounded buffer.:

7.2 Seriglizers

In our model of computation, we use a special class of actors, called
serializers[Atkinson-Hewitt77], to realize synchrtmiuti_on and scheduling of message
transmissions in a uniform and modular fashion. In this section we explain the concept of

serializers and give precise spedf ications for their behavior. The language constructs for



- 150 -

serializers, and their relationship to other synchronization primitives such as monitors

[Brinch-Hansen73, Hoare74], are discussed in [Atkinson-Hewitt77}

7.2.1 Concept of Serializers

The purpose of a serializer is to enforce orderly uses of resource-like actors [such
as I/O devices, message buffers, directories, files, data base systems: etc] by -concurrently
runni'ng processes: Some resources must be used one.at .a time to guarantee -correct.
functioning of hardware, some should be used on a certain priority basis for special
demaﬁds_ and efficiency reasons, and some should receive messages in a proper order for
maintaining their integrity.

In order to control access to a resource, we encase the resource in a serializer to
intercept the messages sent to it. Any processes which need to use the resource can send a
request message to it freely, but all requests are first received by -the serializer. The
serializer sends the requests to the resource at an appropfiste time depending upon the
physical requirements. of the resource and the.scheduling and priority. adopted for the
resource. No request message arrives at the the resource directly. We cail the arrival ef -
suﬁh a request message at the serializer, ¢ serializer request-and:the arrival at the resource
of a request message which is sent by the serializer, a resource request.

In order for a serializer to properly perform such synchronization and scheduling
of requests, it must know various information such as what state the resource is in, which
requests are being suspended, and which are being granted. To keep such information
accurate, the reply (or results) produced upon the completion of the use of the resource is
first sent to the serializer, and some of the mformatlon kept in the seriahzer is updated and

then the serializer returns the reply as a response for the onglml seﬂalizer request. We call



- 151 -

the former event a resource reply and the latter @ serializer reply.

///// /////// S

serializer request

N
-

resource request’

alad I~

_

resource reply .| .7

< i

serializer reply
< rd
<— -

-

\\
. k\\\\\\

////////7////// //

Thus a typical sequence of events associated with the use of the resource encased
by a serializer starts with a serializer request ind then the resource request is made when it
is appropriate. The resource reply follows'upon the cbmbktion of the use of the resource,
and finally the serializer reply takes place ’as a response to the original serializer request.

The diagram above shows this sequence of events.

7.2.2 Behavior of Serializers

As was mentioned above, a serializer maintains certain kinds of information to
make resource requests take place in such a way that desirable resourée usage is.
acco-mplished. To store and update such information, a serialzer may have three types of
information storage: queues, crowds aﬁd»counter:. Below we look into the behavior of a
serializer in more detail by explaining the functions of -such ihfomatioh storage.

Queues in a serializer are used to store request messages. v)hich have arrived at the



- 152 -

serializer, but whose corresponding resource requests have qgc._ye;‘t;keg place. They also
record the order of the arrivals of such request messages. A serializer may have more than
one queue to sOrt out request messages by &he%r-&ypes‘ -4For example, requests for reading
data are stored in a queue different f rom the one for wme requests) Suppose that a '
message [request: RQ reply-to: C} arrives at a. mk&m G _(This is a senah‘zer request
evem) If the request RQ should not be sent to the reswrce encased by G at that time, the
message (ﬂ'quan RQ replrlo‘ Cl is put at the rear of a queue in G. _Later on, when the
message is at the front of the queue and cert&n ccnditims for synchronization or- -
scheduling are met, the message is removed- frbm ttte Queue and a new message
[requesi: RQ reply-to: BP] is created and sent to the resource. This is a resource request
event. RQ is the request contamed in the ongmal message sem to G BP is a newly created
actor, called a buck passer which has the followmg specnal propemes.

n BP remembers (knows about) the seriahzer G by which it is created _

(2) BP remembers the contmuauonl c contalned in the onginal message sent to G.

(2) BP shares the same arnval ordermg with the senaluer G 2 '
The third property means that the order between the amval of a message at G and the
arrival of a message at BP is always defined. [More intuitively, BP and G share the same
arbiter.] Since BP is sent to the resource as the continuation in the message for the resource
request, BP eventually receives a reply from the resource, if the resource rephes This is a
resource leply event. Although we explalned in the prevxous subsectlon that the reply from

the tesomce is sent to the senahzer G, the above account 15 more accurate. However, the :

l. See Secuons 3.1.2 and 3.13. in Chapter 3 for the defmman .of continuation.

2. The model of computation defined in Chapter 3 does not assume this kmd of
"combined” arrival ordering. .This assumption is solely-for-2he: simplicity of explanation.
By letting the buck passer BP send itself to the serializer G to_gether with the message it
received, this assumption can be eliminated: Seeappendix V.



- 153 -

previous explanation is justified by the property of the buck passer BP which shares the
same arrival ordering with the serializer G. .

Crowds in a serializer are used to store buck passers which are created when
requests are sent to the resource by the serializer. The existence of some buck passer BP in
a crowd indicates that the corresponding use of the resource has not been completed yet,
because BP is taken out from the crowd only when BP receives the reply from the resource
(which means the completion of the resource usage). [It is the third property of a buck
passer described above that allows the serializer to eliminate the buck passer from the
crowd upon the arrival of the reply at the buck passer.] More than one crowd may be used
in a serializer to distinguish the types of resource requests being granted. For example, by
having two crowds, a serializer encasing some file is able to know whether the file is
currently being read or written.

Let us consider the behavior of a serializer-in a resource reply event. Suppose that
a buck passer BP in a crowd CR receives a reply RP from the resource. If certain
synchronization and scheduling conditions are met, the serializer takes out the front element
[raqdest: RQ reply-10: C] from one of the queues, and a new request message of the form
[request: RQ reply-to: NBP] is created and sent to the resource. When the new request
message is created, a ﬁew buck passer NBP (which remembers C) is created and put in a
crowd (which may be different from the crowd CR). At the same time, the old buck passer
BP is deleted from CR. The serializer has another responsibility. It must send the reply RP
(just received b'y the buck passer BP) to the continuation remembered by BP. This is the
serializer reply event. Recall that BP is created for remembering the continuation originally
contained in the message sent to the serializer.

Counters in a serializer are used to record various numbers about events associated

with the serializer. For example, a counter records the difference between the numbers of



-]M.

resource reply events 6f<various4krinds. A simple example of the uses of a counter will be

found in Section 7.4.

723 One-at-at-Time Serializer (An Exnmple) ’

The behavior of serializers mi_é;mggy exphluedmihe previous subsections can be
rigorously specified in our formalism. Ta illustrate how their behavior is expressed in our
formalism, we give .a formal specification of a simple serializer: called -one-at-a-time in
Figure 7.1. . A resource encased by this serializer ‘,;u used, at maost, by -one process at a time,
and on a first-come-first-served basis. .~ | |

The first jeven‘t - speufmuon in . Figure 71 says. that when an  actor
create-one-at-a-time receives a resource R, it creates a serializer G-which has-one queue and
one crowd, both q{,‘whlch‘;re, initially empty, - _ _ _

- The behavior of “G_ in response to.a request message depends-on the state of G. If
both the queue and crowd are empty. ((Gaserk:)-0f the.sacend event specification in Figure
7.}, a buck passer BP is created and put in-the crowd and-a- request message eentatmng BP
as_the continuation is sent fo the resource R. Qtherwise (Gase-2:)-the request message is -
enqueued and no gvent is caused, S :

~ The third event specification says that when a buck-passer BP which is inside the
crowd of G receives a reply message, if the queue of G.is empty (Case-1:)! BP is deleted

I. Being able to check whether or not the queue of G is empty relies on the assumption that
the state of G can be determined at the time when the btk passer- 8P receives a message. -
This assumption is implied by one of the general pro s of buck passers that a buck
passer shares the arrival ordering with the serislivér b ‘

y which' it is created. In Appendix
V. a specification_of. one-at-a-time serializers-whish does-nat rely.on.this assumption is
given.



- 165 - .
Fig. 7.1. A Specification of a One-at-a-Time Scheduler

Cevent: [create-ene-at-a-‘hm <=R]
<return: G¥ )
<post-mml (G is-a (ONF-/)T—H-TIME (queue [Ierosod: {})(rcmurce R)) »

<event: [ G ¢== M] ‘
where M = [request: RQ reply-to: C]
(Case-1:
<pre-cond: (G is-a (ONE-AT-A-TIME (queue: [}){crowd: {}){resource: R)})) >
<next-cond:
(G is-a (ONE-AT-A-TIME (queue: [})crowd: {BP*})resource: R)))
(BP is-a (BUCK-PASSER (continuation: C)(serializer: G))) >
¢caused-event: [R <== [request: RQ reply-to: BP]] >)
{(Case-2: '
<pre-cond: (G is-a (ONE-AT-A-TIME (queue: [Ix]}crowd: {BP})(resource: R))) >
<next-cond: (G is-a (ONE-AT-A-TIME (qucuo‘ [ix M))(crosod: {BP})(remrce RN >

<caused-events: {} >

<event: [ BP <== [reply: A]]
where (BP is-a (BUCK-PASSER (continuation: C)(serializer: G)))) >
(Case-1:
<pre-cond: (G is-a (ONE-/)T-II-TIME {quexe: [})crotwd: {8P))}resource: R))) >
<next-cond: (G is-a (ONE-AT-A-TIME (quene: [])croswd: {})(nmr«' R)) >
¢caused-event: [ C <== [reply: Al} >)
(Case-2
{pre- rond
(G is-a (ONE-AT-A-TIME (queue: [WM ¥Ix)}{crowd: {a?ﬂ(raourcc' R)))
(WM = [request: RQ reply-to: CC]) > :
<{next-cond:
(G is-a (ONE-NT-A-TIME (queue: [x])croswd: {NBP*Dlrnome. R)»
(NBP is-a (BUCK-PASSER (continnation: CC)serializer; G))) >
<caused-cvents: { [ C <e= [reply: A]J , [ R == [request: RQ reply-to: NBP]] } >»



- 156 -

from the crowd and the reply message is-sent.back to the continuation-C remembered by BP.
If the queue is not empty (Case-2:), the front element WM wh;chjs:;_a suspended request
message sent to G before is dequeued and a newly created buck passer NBP _replaces BP in
the crowd. Then a senahzer reply event [C <=a [reply- A]] and a resource request event

LR <¢== [request: RQ reply-to: NBP]] take place concurrently

Before ending this section, we sheuid mention : severai propemes of the
one-at-a- time serializer which are easily derived from the spec(fmm given in- Fxgure 11

If a resource R is encased by a one-at—a-ttme serializer before’ R becomes known to
other actors, there is no way to access the resource (iiret:tlyl In order to access the resource,
first a request must be sent to the one—at-uxme semlu.er This propeny holds for any kind
of serializer (not just for one-at-a-time senaiizers) We call this property the resource

confinement of serializers. More formally,

Property (Resource Confinement of Serializers)

Let Ej = [ create-a-resource <s= [requasi: I reply-to: MLJ] and
Ej = [ create=a-seristizor <== [request: R mply-to‘ Cﬂ wdl thlt EG -act-> Ey,
where I is used for the creation of a new resodrce R.
and let G be a serializer created by E;.
If there exists no event EE = [ A <== [requass: R-reply-to: 1]]
such that Eg -—-> EE -—> E,
then for any event ER = [R <== [request: RQ reply-to: 1],
there always exists an-event E » [G‘c& {Wm nﬂy-u. 1]]
- such that E et ﬁ!

We need to give the definition of an assertion (A is-used-serially) to state the

properties of one-at-a-time serializers. If the assertion (A is-used-serially) holds, an actor A

. We assume that the creator of R does not release any information which makes it
possible to have access to R.



- 157 -

does not receive any message until the current invocation of A is completed. Consequently,

if the invocation is not completed, no more messages arrive at A. More formally,

Definition (A is-used-serially)
If there exists an event E; = [ A <== [request: RQ; reply-to: C;]],
then ‘

if there exists another event E = [ A <== [request: RQj reply-to: C‘-]]I
such that i # j and E;-arr->p Ej.
then there must exist EE; = [C; <== [reply: 1]]
such that E ; --—-> EE; —> Ej.

Property-I (Serial Use of Resource)
If an resource actor R encased by a one-at-a-time serializer, then (R is-used-serially) holds.

This property is derived from the fact that the number of buck passer actors in the crowd

of the serializer is always one at most.

Definition (A is-guaranteed-to-reply)
For an event E = [ A ¢== [request: RQ reply-to: C]],
there always exists an event EE = [[C <== [reply: ?]] such that E -act-> EE.

Property-Il  (Guaranteed Resource Access)

Suppose that the resource actor R encased by a one-at-a-time serializer G satisfies
the following condition: if (R is-used-serially), then (R is-guaranteed-to-reply).
Then, for any event E = [ G <== [request: RQ reply-to: 11],
there always exists an event ER = [ R <== [request: RQ reply-to: ?]] such that E -act-> ER.

This property is derived from Property-I by induction on the number of messages that

have already arrived at G.



- 158 -

Property-ill (First Come First Resource Access)
Under the same premise given in Property-II,
for any E|, Ej where Ey = [ G <== [request: RQy reply-to: CJ], k =i, |,
if E--—>qg Ej'
then ER; ---> Ej
where ERy = [ R <== [request: RQy reply-to: ?]], k =i, j.

This property is derived from the fact that requests sent to G are recorded in the queue of

which preserves the order of arrival.



- 159 -

7.3 Verifying Implementations of Actors |

In this section, we discuss our techniques for the following class of verification

problems.

"Given an actor A which shows some behavior in serial computations (i.e, when it
is used serially). Suppose that an actor B is implemented as a one-at-a-time
serializer encasing the actor A. Then we would like to verify that even if B is sent
messages concurrently, B shows the same behavior as A does in serial computations.”

This problem is not trivial because the states of A and B which are used to describe their
behavior in specifications are expressed by different conceptual representations. The
essential part of the verification is the use of the mapping (implementation invariant)
between two different conceptual representations. The technique illustrated below is an
extension of the one used for the verification of actors behaving as information storage
discussed in Section 53, Chapter 5. The verification of implementations using more
complicated serializers is discussed in the next section (7.4).

In what follows, as an example of such verification problems, we will demonstrate
that the implementation of an air line reservation system given below meets its specification

depicted in Figure 7.2 (which is the same one given in Figure 6.2 in Chapter 6).

7.3.1 An Implementation of an Air Line Reservation System

We implement an air line reservation system which is supposed to meet the
specification in Figure 7.2 in two steps. First, we implement a flight data actor which
satisfies the specif ication in Figure 7.2 as long as it is used serially. Then it is encased by a
one-at-a-time serializer. [The flight data actor corresponds to the actor A in the above
problem statement.]

The code given in Figure 7.3 is an implementation of such a flight data actor. It



- 160 -
Fig. 7.2. A Specification of an Air Line Resesvation System

<eveni: [ create~flight <= §J
<{pre-cond: (§> 0) >
Creturn: F¥ )
<post-cond: (F is-a (FLIGIIT (seats-free: S) (pum(cr—nnu-lm {}m»

Cevent: [ F <= (reserve-a-seat: NAME)]
(rase-1:
(pro—romi (F is-a (FLIGHT (mur}nc: 0) ‘p‘mwm {tonl) )}
Cnext-cond: (F is-a (FLICHT (mm-[no: 0) (pum;cr-uuu—liu. {lpni})))>
Creturn: (no-more-seati) )
{rase-2: '
<pr¢--¢'ond
{F is-a (FLICHT (:eau—frea N) (pauon‘cr-ucmc-lm {lpnl})))
(N>0) >

<next-cond: (F is-a (FLIGHT (seate-free: N - 1) Wmm {Ipnl NAME]}))>
<return:  (ok-its-reserved:) >)

Cevent: [F <= (nam:el—c-ml: NAME)}
{case-1:
{pre-cond:

(F is-a (FLIGHIT (seats-free: N) (passenger-name-liss: {1pni})))

(pnl # {.. NAME ..}»» ' _ o
<next-cond: F is-a (FLIGHT (scats-free: RY (pessenger-name-lisi: {Ipni})D
<return: (the-passenger-name-noi-found:) )

{rase-2:
<pre-cond: ‘ - ‘
(F is-a (FLICHT (smu—]rn N) (paucnger-mmc—hn {!pnll NAME fpni2}))»
<next-cand: (Fis-a (FLICHT (seats-froe: N + 1) M‘MMW‘ {ipnil lPﬂ'zn)»

<return: (ok-us—ccncellel’ > ))



- 161 -
Fig. 7.3. A Code For a Flight Data

(create-flight-data =s) =

(let (seats-free initially s) ;a variable seats~free is initialized to s.
(passenger-name-list initially (create-empty-set))

then ;e variable passenger=- is initialized to an empty set.

{cases

(=> {reserve-a-seat: =name) ;when a (reserve-..) massage is received,

(rules (seats-free = Q) if the value of seats-free is 0

('='>' yes (no-more-seats:)) ;then a (no-more-secats:) is returned.

=> no ;otherwise

(seats~free + (seats~free = 1)) sthe value of seats=-free is decreased by one

(add name to passenger=-name-list) ;name is added to the list.

(ok-its-reserved:)))) ;a message (ok-its-reserved:) is returned.

(=> (cancel-a-seat: =name) swhen a {cancel-..) message is received,

(rules {(name in passenger-name-list) #if name is found in the passenger name list,

(=> yes sthen

(delete name from passenger-name-list) ;name is deleted from the list

(seats-free + (seats-free + 1)) sthe value of seats-free is increased by one

(ok-its-cancelled:)) :lok-its-cancelled:) is returned.

(=> no (the-passenger-name-not-found:)) )) )) ;otherwise (the-passenger-..) is returned.

should be noted that if the flight data actor were sent more than one message concurrently,
anomalous result; would be caused. For example, if (reserve-a-seat:...) and (cancel-a-seat:...)
message are sent concurrently, (no-more-seats:) message might be returned even if there are
still vacant seats. Therefore this actor must be used serially. _

We give a specification of this actor in Figure 7.4. Though this specification looks
similar to that for the air line reservation system in Figure 7.2, there are important
diffferences. In this specification conceptual representations of the following form are

used.

(FLIGHIT-DATA (seats-free: 1) passenger-name-list: {...}))



- 162 -
Fig. 7.4. A Specification of A Flight Data Actor

<event: [ create-flight-data <= S
<pre-cond: (S > 0) >
<return: FD¥ >
<post-cond: (FD is-a (FLIGIIT-DATA (scats-free: S) (passener-name-lisi: {})))>>
<event: [[FD <= (reserve-a-scat: NAME)]
where  (FD is-used-serially)
(case-1I:
<pre-cond: (FD is-a (FLIGHT-DATA (scats-free: 0) (passengor-name-list: {ipni})))
<return: (no-more-seats:) ») .
<post-cond: (FD is-a (FLIGIIT-DATA (scats-free: 0) (passenger-name-list: {1pni})))> )

{case-2:

<pre-cond:
(FD is-a (FLIGHT-DATA (scats-free: N) (passenger-name-list: {§pni})))
(N>0) >

<return: {ok-its-reserved:) >
“t rond:

(FO is-a (FLIGIHT-DATA (scats-free: N = 1) (passenger-name-list: {1pnl NAME})))>)>

<event: [[FD <= (cancel-a-seat: NAME)]
where  (FD is-used-serially)
(case-1:
{pre-cond:
(FD is-a (FLIGHT-DATA (seats-free: N) (passenger-name-list: {3pni})))
(pni # {.. NAME ..})>
<return: (the~passenger-name-not-found:) >
<post-cond: (F is-a (FLIGHT-DAT/ (seats-frec: N) (passenger-name-lisi: {1pni})))> )
(case-2:
{pre-cond:
(FD is-a (FLIGIIT-DATA (scats-free: N) (pessenger-name-list: {Ipnii NAME Ipni2}))>
<return: (ok-its-cancelled:) >
<{post-cond;

(FD is-a (FLIGHT-DATA (seats-free: N + 1) (passenger-name-list: {Ipnii Ipni2} NPy



- 163 -

Notice that assertions of the form (FD is-used-serially) are given in the where clauses of the
second and third event specifications. This means that those event specifications are valid
only if FD is used serially. Furthermore, <post-cond: .> clauses are used instead of
<next-cond:.> -clauses. This means that assertions in the ¢post-cond:..> clauses hold at the

time when the caused events take place.
The following property holds for the flight data actor because all the <event:..>
clauses have the corresponding <raturn:.> clauses. This property is-used in the verification

in the next subsection.

Property-1V: If (FD is-used-serially), then (FO is-guaranteed-to-reply).

7.3.2 Verification of the Air Line Reservation System

The implementation Is completed by*‘tncaitng ‘the flight data actor by a
one-at-a-time serializer. That is, the implementation of ‘the ‘ereate-flight actor is expressed
by the following PLASMA code: |

(create~flight =5) = (create-one-at-a-time (creste-flight-data s)).

Below we demonstrate that the above code meets the specification of the air line reservation -

system shown in Figure 7.2. The symbolic evaluation of the code
(create-one-at-a-time (create-flight-data c))

reveals the following facts:

(1) an actor FD is created by [cruto-f‘light-dlvhxs s] [from the spé;ification in Figure
741,

(2) a serializer G is created by [ create-one-at-a-time <= FOJ [from the specification in




- 164 -

Figure 7.1.] and ‘
(3) the two actors satisfy the following assertions immediately after the creation of G.
(G isa (ONE-AT-A-TIME {quous: [Icrowd: {}){resource: FD)))
(FD is-a (FLIGHT-DATA (scats-free: s)(passenger-name-list: {})))
We will establish that G satisfies the specification of the flight actor (air line
reservation system) given in Figure 7.2. The specification of tﬁe flight actor G is written in

terms of conceptual representations of the form:
(G is-a (FLIGHT (secats-free: T} passenger-name-list: {...}))) (x)

(Notice that F in the specification is instantiated as G) On the other hand, G is
implemented as a one-at-a-time serializer that encases the flight data actor FD, which is
expressed by the following two assertions:

(G is-a (ONE-AT-A-TIME (queue: [...])(crowd: {...})(remu;cc: FD)))

(FD is~a (FLIGHT-DATA (seats-free: T)passenger-name-list: {...}))) (k%)
This means that we have two views of G: an external view expressed by (%) and an internal
implementation expressed by (**) above. In order to show that the implementation satisfies
the specification written in terms of the external view, we must establish a certain relation
between the two views. Such a relation is similar to implementation invariants used in the
verification of an actor behaving as information storage [Cf. Section 5.3, Chapter 5].

T he relation we need is:

"1/ G satisfies the assertion
(G is-a (FLIGHT (scats-free: N) (passenger-name-list: {1pni})))
in a situation where G receives a message [request: RQ reply-to: 7},
then FD always satisfies the assertion
(FD is-a (J'LIGHT-DATA (scats-free: N) (passenger-name-list: {{pni})))
in the situation where FD receives a message [request: RQ reply-to: 7). "



- 165 -

We actually prove the validity of this relation in the next subsection 7.3.3; this relation is

assumed in the subsequent discussion. The following is the formal statement of the above

relation.

U mplementation-invariant: ‘
if (G is-a (FLIGIIT (scats-free: N) (passenger-name-list: {3pni}))) in S
where 8 = Sit([ G ¢== [request: RQ reply-to: 11])
then :
(FD is-a (FLIGIIT-DATA (seats-free: N) (passenger-name-list: {ipni}))) in 8°
where 8 = Sit([ FD <== [request: RQ reply-to: 7]]) >.

Sit(E) expresses the situation where an event E takes place. The implemenation invariant
can be viewed as the counterpart of an "invariant” in parallel process environments, which
was first introduced by C.A.R. Hoare [Hoare 1972] to show correctness of implementations

of data structures used in serial computations. (See the remarks in Section 5.3.1, Chapter 5.)

- Now let us demonstrate the verification of the implementation against the

following event specification given in Figure 7.2.

Cevenmt: [[F <= (reserve-a-seat: NAME)]
(case-1:
<pre-cond: (F is-a (FLIGIHIT (scats-free: 0) (passenger-namea-list: {1pni})))»>
<next-cond: (F is-a (FLIGIIT (scats-free: 0) (passenger-name-list: {1pni})))
<return: (no-more-seats:) ) '
{case-2:
<{pre-cond:
(F is-a (FLIGHT (seats-free: N) (passenger-name-list: {Ipni})))
(N>0) >
<next-cond: (F is-a (FLIGIHT (scats-freo: N = 1) (passenger-name-list: {1pnl NAME})))>
Creturn: (ok-its-reserved:) >P

There are two cases to be considered. We only consider the (Case-2..) clause. The



- 166 -

one-at-a-time serializer G receives a (romrvo-a-smt NAME) request RQ Since the flight data
actor FD is guaranteed to reply if it is used serially (fr rom Property—IV) the specif ication for
a one-at-a-time guarantees that the (resorve-a-seat: NAME) request RQ is Teceived by FD (from
~ Property-11). To know the state of the flight data actor FD at the time of the arrival of RQ,
the above implementation invariant is used. Since the state of G at the time of thg arrival

of RQ at G is described as:
(G is-a (l' LIGHT (mm-[rcc N) (pamugcr-mmc—lut. (!pnl})))

the state of FD at the time of the amval of M atFD i& descnbed as.

(FD is-a (FLIGHT-DATA (scats-free: N).(passenger-name-lisi: {ipni}))).
Then the (Case-2..) clause in the <event:..> clause'of the specification for flight-data actors
in Figure 7.4 is referred to. 'Since the preconditioft that FI¥'must be used serially is satisfied
(from Property-1), the {Case-2..) clause of the specification for flight data actors in Figure
7.4 tells us that

(1) (ok-its-reserved:) is returned, and
(2) the state of FD is now expressed as:
(FD is-a (FLIGHT-DAT/ (scat-froe: N = 1) {pésenger-name-list: ‘("ipni NAMED)).

(1) is what the <retarn:.> clause in the above eveat tpesmeam requi[csl To complete the
demonstration, we must show that the assertion ' e

(G ix-a (F I,IGII T (mat [mo Ne- 1) (pclnnger-ncmc-lm {lpnl NAME})))

g

in the <next-cond:..> clause of the above event spmftcatnon holds when G receives the next

I. More precisely, (ok-its-reserved:) is first sent to the serializer G and then G returns it.



- 167 -

message RQ. To do so, again the implementation is used. - It translates the above
requirement as follows: |
" (FD is-a (FLIGHT-DATA (scat-free: N = 1) (mmugcmmc-liu {Ipnl NAME})))
holds when FD receives RQ'. " ’ ,

This is guaranteed by. (2) because FD does not change its state umii ‘the next message RQ'
arrives at FD.  Thus Case-2 is shown. Case-l may be shown :analogously. The event
specification for [ G <= (cancel-a-seat: NAMEN] is also established anatogousty

The demonstration abave assumes that neme CalY- %uwe access to the flight data
actor FD except’ through the serializer G. This wumpuon a!nay»s helds bccause the flight
data actor FD created by [croato-fh‘ht:gal =] is sent dlrectly to the gm-om-li-a-hme
actor and never released outside the newly created one-ai-s-time serializer G. [Cf. the

PLASMA code in the beginning of this subsection and Property (Resource Confinement of

Serializers).)

7.3.3 Establishing the Implementation Iny\_uria‘nt

The verification in the previous subsection relies critically on the use of the
following implementation invariant. In this subsection we will establish the validity of this
implementation invariant. .

<{Implementation-invariant:
if (Gis-a (FLIGHT (scats-free: N) (passengor-name-list: {1pni}))) in s

where 8 = Sit(t G ¢== [rowu RQroply-ln. ?])
then

(FD is-a (l‘ LIC"T-D/‘TA (JerﬂM: N) bemmger-m-w—uu {!Pﬂ‘}”) in8S’
where 8° = SIt(FD == [roquest:. MMrm ?]) >

(Proof) The proof is done by induction on the number M of messages whlch have already
arrived at G. : ‘ , L



- 168 -

<Induction Base>
M = 0. Since no message has arrived before, when the first message
[request: RQ reply-to: C] arrives at G, G is in the same state as it was in at the time of its
creation. So the state of G is expressed as
(G is~a (FLIGUT (seats-free:: S} passenger-name-lisi: {}))).
Since G is created as a one-at-a-time serializer and its queue and crowd. are imtully empty,
the state of G is also expressed as
(G is-a-ISKERIAEITER (queue: [IMcrowd: (]} resource: FD))) and

(FD is~a {KLICHT-DATN (nnu-fnof SHpassengor-name-liss: {})))
Then from the guaranteed resource access” property of G (Property-II), the following event
is caused.

[ FD.<== [request: RQ reply-to: 11} - .
When this event occurs FD is still in the same state as it was in at the time of its creation
because “resource corifinement” property of serializers is satisfied. So the state of the FD is
expressed as

(FD is-a- (F l lCllT-DﬂTll (umu-}'rer S)(pcuen:or-mmc-hu {})))
Hence the induction base is proved. -

<Induction Hypothesis>
M = k: We assume that the following relation holds.
if (Gis-a (FLIGHT (seats-free: N) (passenger-name-list: {pni}))} holds
in Sit([ G <== [request: RQx reply-to: 1]])
then (FD is-a (FLIGHT-DATA (seats-free: N) (pumnr-mm-liu {lpniD)) holds
in Sit([ FD <== [request: RQy reply-to: n

<Induction Step>
M =k +1: Let us assume that the antecedem; of the ;ndwman Hypothesis halds. Then we
must do a‘case analysis according to the type of the request of k-th event.
Case-l: RQy = (reserve-a-seat: NAME), and N> 0.
The state of G immediately after the k-th event [G == [a-«u;;. RQ.‘ reply-to: ?1] is
expressed as
(G is-a (FLICHT (seats-free: N-1) (pcmnger-mn.pzlm- {!pnl NAME})))
(by the specification of the flight actor in' Figure 7).
This 1s the state of G when the k + ] st message [request: RQys1 roplrto 111 amves at G.
By the-"guaranteed - reaoufce access” property of G ‘the event
E & [FD (xx-[robuestc AQ; reply-toc 1]~
always takes place. From the mductxon hypothem, the state of FD at the tlme of this event
E is expressed as :
(FD is-a (FL lGll T-DATA (mu—frec N) (ptuunger-ncm-lm {1pni})))




- 169 -

Therefore, by the specification for FD in Figure 7.4, the state of FD after the invocation
initiated by the event E is expressed as
(FD is-a (FLIGHIT-DATA (scats-free: N = 1) (passenger-name-list: {3pnl NAME})))

We now claim that this is indeed the state of FD at the time the k + | st message
[request: RQy41 reply-to: 7] arrives at FD. This claim is justified by the fact that no message
arrives at FD between [request: RQ reply-to: ) and [request: RQg+q reply-to: 7). This fact is
guaranteed by two properties of a one-at-a-time serializer, the "Confinement of resource”
and the "First Come First Resource Access” (Property-II1).

Other cases are shown in a similar fashion. (End of Proof)

The above proof relies on the following facts:

() When the one-at-a-time serializer G encasing the flight data actor FD is created, each
component [such as seats-free and passenger-name-list] of the- conceptual
representation expressing the external state of G is the same as the corresponding
component of the conceptual representation expressing the state of FD.

(2) As the specifications for G and FD show, such components of conceptual
representations for G and FD change in the same way in response to the same
request, provided that FD is used serially.

(3) The serial use of the resource encased by a one-at-a-time serializer.

(4) The "Resource Confinement" property of serializers.

(5) The "First Come First Resource Access” property of a one-at-a-time serializer.

7.4 Veritying Implementations of Actors Ii

In the previous section, we discussed the verification of implementations which use
one-at-a-time serializers. The resource actor encased by a one-at-a-time serializer receives
requests in the same order as the one-at-a-time serializer does. That is, the one-at-a-time

serializer have the first come first resource access property [(Property-III in Section 7.2). In



- 170 -

this section, we will discuss the verification of impiementatlom uslng serializers which do
not have the first come first resource access property. The heart of venfication in this case
is the use of implementation invariants, as it was in-the cue for implementattons using
one-at a-time senauzers To find an. apprepﬂate implemenn;ion invariant for a given
" of an rmplementatlon of a bounded buffer. ngntmtihe lpdﬁnﬁﬁn depmd in Figure 75.
[This specification is identical to the one given in “Figures 6.4 and 651

N

7.4.1 An Implementation of A Bounded Buffer
We consider the following PLASMA unplementa_tbn,of_—;-&oounded buffer.
(create-boundsd-buffer m- (crm-bu«mmrmmm-nmg. m

Name!y. the bounded buf fer of length N is implemented asa serumzer 8 which encases a
string storage actor § where § is created by [mm‘m« []] and B is created by
[eruto-bumr-ccheduler <= S]. Note that S is em:ued by 8 wlthout becommg known to
other actors. Thus the resource conflnement property of serializers is sattsfred

The behavior of the string storage actor S is detcnbed by the sper.lficauon in
Figure 7.6. Its states are expressed by conoeptual representations of the oilowing form.

(STRINGC-STORAGE [..])

When it is created, it contains no character. It accepts (append: <cheracter) and (remove:)
messages. As stated by assertions of the form s h—umd-mhuy) in the nhm clauses. the
behavior descnbed in the specnf tcation is guonnteed only when Sis used senally

The creation of the serraluer 8 is descrlbed by the following event specnf icatlon



-1 -
Fig. 7.5. A Specification of A Bounded Buffer

<event: [ create-bounded-butter <= []]
<return: B%>

<{post-cond: (B is-a (BOUNDED-BUEFER (aq: e, U)(ltrmg [}») »

<event: [ B <= M]
where M = [request: (remove:) reply-to: C]
(Case-1: <pre-cond: (B is-a (BOUNDED-BUFFER (q,: [Wqz [lyDatring: [1)) >
: <next-cond: (B is-a (BOUNDED-BUFFER «, (e, [ty M]Dstring: [1) > -
<caused-events: {} »)

(Case-2: <pre-cond: (B is-a (nounm«:o-nw‘mk (q, nuq,. [Mstring: [X 1s])) >
<next-cond: (B is-a (BQUNDED-BUFFEER (q,:{1)q, [Distring: [Is]))) >
<caused-event: [ C <= (removed: X)} 3} -

(Case-3: <pre-cond: (B is-a (BOUNDED-RUFFER {ag: MM Ix]Nq,: [Mstring: [X s

(length([X Is}) = N)

(MM = [request: (append: XX) reply-to: CC)) >
<next-cond: (B is-a (BOUNDED-BUFFER ﬁa:‘f!x])(q’: [INstring: [is XX]))) >
<caused-events: {{ C <= (removed: X‘)},f&fs (append-done:)]} >) >

<event: [B <= M]
where M = [request: (append: X) reply-to: C) :
(Case-1: <pre-cond: (B is-a (BOUNDED-BUFFER {q, ux;)fq,: w(urm s
(Iength(['s]) =N)>
<next-cond: (B is-a (BOUNDED-BUFF ER (qaz [ix M]{q,: [))(string: [is])) >
{caused-events: {} >)
(Case-2: <pre-cond: (B is-a (BOUNDED-BUFFER (qa U)(q,. [])(slrulg [tsD))
(length([¥s]) <N) >
<next-cond: (B is-a (BOUNDED-BUFFER '(q‘h:‘[])f(q,' m(uring: [is X1 >
<caused-event: [[C <= (append-done:)] »)
(an-? <pre-cond: (B is-a (BOUNDED-BUFFER {(q,: (Mg, [MM By (string: (1))
(MM = [roquest: (remove:) reply-to: CC) >
<next-cond: (B is-a (BOUNDED-BUFFER (q, [(Ma, {8y Distring: [P >
<caused-events: {[ C <= (append-done:)], [ CC <= (removed: x)]} >




-2 -
Fig. 7.6. A Specification of a String Storage of Length N

<event: [ create-string-storage <= [1}
Creturn: $% )
<post-cond: (S is-a (STRING-STORAGE [1)) »

<event: [S <= (append: X)]
where (S is-used-serielly)
(Case-l. {pro-cond: (S is-a (STRING-STOR/IGE [§3}))
(lengthlx) < N) > - )
Creturn: (append-done:) >
<past-cond: (S is-a (STRINGC-STORAGE [ix X])) )
(Case-2: <pre-cond: (S is-a- (STRfNGbSTGRHGE 1129100 i
(length(xY2 Ny > - . :
Sreturn:-(storage-fulls) >
<post-cond: (S is-a (STRING-STORAGE {!x]» P B

<event: [S <= (mmove.)]
~where (S is-used-serially) :
(Caso-1: <pre-cond: (S is-a (STRINC-STORIIGE X &>
Creturn: (removed: X) >
~ <posi-cond: (S jra (STR"\G-SWRME [&x XN )
(Case-2: <pre-cond: (S is-a (ST: RiMRME {]” y :
Creturn: (storage-empty:) > - -

(post-cond: (S is~a (STRINGC-STOGRAGE (]} >} >

<event: [ create-buffer-scheduler <= $J
<pre-cond: (S is-a (STRING-STORAGE [ix])) >
<return: B¥ )

<{post-cond:
(B is-a (SCHIEDULER (counter: 0)(3.. B)("q‘r' [Ierowd:- {})(resource: S)))
(S is-a (STRINC-STORAGE € 23)) B> L

As expressed by the conceéptual representauon in the <post-cond:..> clause, this serializer has

a counter (initially 0), two queues, §, and §_ (both are initially empty) and a crowd (also




-173 -

initially empty). The counter is used to record the number of characters stored in the string
storage. The crowd is used to contain buck passers. The exlstepce of a buck passer in the
crowd mdncates that the resource is being used. §, and G, are used to record suspended
(append:..) and (remove:) requests, respectively. o

The behavior of the serializer B in response to (append:..) and . (remove:) requests
are described the event specifications depicted in Figure 7.7 and Figure 7.8, respectively.
Let us look at the behavior of B when it receives a message M of the form

[request: (append: X) rcply-%o‘ (v

Case-l: if no (append:) requests are suspended [ie. 64 is empty], the strmg storage S is
not being used li.e. the crowd is empty], and there is room for the new character X [k < NJ,
then the (append: X) request with a newly created buck passer BP which remembers the
original continuation C is sent to S. The state change. of B reflects this: the counter is
increased by one and the crowd now contains the buck passer BP. '

Case-2: if the conditions for Case-1 do riot hold, the message M is enqueued at the rear
of 3, :

Figure 7.7 also includes the specxflcatmn of the event in which the reply
(append-done:) from S in response to an (appcud ) request is receaved by the buck passer BP
which is currently stored in the crowd of B. When BP receives (append-donp.). the request
suspended in the front element of either 4, or 4, is picked up and sent to the string
storage. If both queues are not empty, §, has priority over §,.. There are three cases for
this event. Note that the cbunter]k,indicétin'g the curr'en,t; length of ‘thg string storage
cannot be 0 when BP receives an (ﬁppend-doae:) reply,beuhu a new character has been-
Just appended before the reply is produced |

Case-l: if no (remove:) requests are suspended lie. 9 a,is empty], and either the string
storage is full [i.e. k = N] or no (append:..) requests are suspended [ie, G, is not empty], then
the reply is returned to the original continuation remembezed. by the buck passer P, but no
message is sent to S.

Case-2: if there are some suspended (remove:) requests lie. Q is not empty], then the the
front element M of 4 @, is taken out, and the corresponding (mum) request is sent to S with



- 114 -
Fig. 7.7. The Behavior of the Scheduler in response to an (Append:.) Request

<event: [ B <== M] where M = [request: (append: X) reply-to: C]
(Case-1:
<pre-cond: (B is-a (SCIHIEDULER (countor: k)G 4 G, [!y])(crowd {}(resource: S)))
(k <N)>
<next-cond: (B is-a (SCHEDULER (counter: k + 1)(q,: (NG [1y])crowd: {8P*})(resource: S)))
(BP is-a (BUCK-PASSKER (continuation: C)(serislixer: B)))> '
<caused-event: [ S <== {request: (append: X) reply-to: BP]] )
{Case-2:
<pre-rond: (B is-a (SCHEDULER (counter: k)Xq 4 [IxIG [iy)crowd: {'z})(rcmurcc s .
(vixe[D@E#{D k=N >
<next-cond: (B is-a (SCIIEDULER (counter: K)(q,: ['x MING [!y])(crowd {'z})(rc:ource 1))
<caused-cvents: {} PP

<event: [ BP <== [reply: (append-done:)]]
where (BP is-a (BUCK PASSER (continuation: C){serialiser: B)))
(Case-1
<pr¢-—mnd (B is-a (.SC" EDULER (counter: k)G ,: [x])(§ 2 [IMcrosed: {BP})resource: )
(vik=N) (OC<K<N A x=[]) )>
<next-cond: (B is-a (SCHEDULER (counter: k), [Ix1)(§,: [)Mcrowd: {})(resource: S))) >
<caused-cvent: [C <== [reply: (append-done:)]] ») | : -
(Case-2:
<pre-cond: (B is-a (SCHHEDULER (counter: k)(§,: [Ix]NG 2 [M ly})crowd: {BP})(resource: $))
(k > 0)
{M = [request: (remove:) reply-to: CC]P
<next-cond: (B is-a (SCIIEDULER (counter: k = 10(q 4 [1x]N(q 2 [Ly]crowd: {NBP*})(re:ource SH
(NBP is-a (BUCK-PASSER (continuation: CC)(serializer: B)))>
<caused-cvents: {[[ S <== [request: (remove:) reply-te: NBPJ] [C = [reply: (append-done:)1] 1)
{Case-3:
<pre-cond: (B is-a (SCIIEDULER (counter: k)(aa M Ix])(?r. [])(cmwd {BP})(rcmurco )]
(0O <k <N)
(M = [request: (append: XX) reply-to: CC}) » _
cnext-cond: (B is-a (SCHEDULER (counter: k + 1)(3,: [Ix1N@ 7 [Icrowd: {NBP*})(resource: $)))
(NBP is-a (BUCK-PASSER (continuation: CC)(serializer: B)))
<caused-cvents: {[ S <== [request: (append XX) reply-to: NBP]] [C<== [reply: (append—donc N1 }>)>




- 175 -
Fig. 7.8. The Behaviors of the Scheduler in response to a (Remove:.) Request

Cevent: [ B <== M]| where M = [request: (remove:) reply-to: C)
(Case-1:

<pre-cond: (B is-a (SCHEDULER (counter: kKX§ ,: (1)@ [IMcrowd: {}{resource: S)))
(k>0)> .

{nexi-cond: (B is-a (SCHEDULER (counter; k = (G ¢ [1INT 2 [ erowd: {BP*})(resource: S)))

(BP is-a (BUCK-PASSER (continuation: C){serializer: B)))
Ccaused-cvent: [S <==[request: (remove:) reply-to: BP]] »)
(Case-2: ‘

<{pre-cond: (B is-a (SCIIEDULER (counter: kNG [(DING: [tyDlcrowd: {82z})(resource: S)))

(Viy #[D(z#{}(k=0))» '

{next-cond: (B is-a (SCHHEDULER (counter: k)G, [2ING 2 [ty M](crowd: {1z})(resource: S)))>
{caused-ervents: {PP

<event: [ BP <== [reply: (removed: X)1]
where (BP is-a (BUCK-PASSER (continuation: C)(serializer: B)))
(Case-1: .
{pre-cond: (B is-a (SCHIEDULER (counter: kNG g [ING 2 [8y))crowd: {BP})(resource: S)))
(vik=0) (Q<k<N A y=[]) )>
<next-cond: (B is-a (SCIIEDULER (counter: kNG, (GG 2 [By])crowd: {})resource: S))) >
<eansed-event: [[C <== [reply: (removed: X1 »
{(Case-2:
<pre-cond: (B is-a (SCHEDULER (counter: k)G, [M )G [tyDerowd: {BP})resource: S)))
(k <N)
(M = [request: (append: XX) reply-to: CCJ)»
<next-cond: (B is-a (SCHEDULER (counter: k + 1G4 [T [ty]crowd: {NBP*})(resource: S)))
(NBP is-a (BUCK-PASSER (continuation: CC)(serializer: B)))>
Ccauvsed-events: {[S <== [request: (append: XX) reply-to: NBP]] [ C <== [reply: (removed: X)]] }>)
(Case-3: '
<pre-cond: (B is-a (SCHHEDULER (counter: K@, (17, [M Sy)lerowd: {BP})(resource: S)))
(0 <k <N)
(M = [request: (remove:) reply-to: CCJ) >
<next-cond: (B is-a (SCIIEDULER (counter: k = 1G4 (NG, [8y)erowd: {NBP*})(resource: $)))
(NBP is-a (BUCK-PASSER (continuation: CC)(serializer: B)))>
Ccaused-events: {[[S <== [request: (remove:) reply-to: NBP)] [C ¢== [reply: (removed: X1 p»



-17% -

a new buck passer NBP and concurrently the reply is sent to the original continuation C.
Case-%: if no (remouve:) requests are suspended [i.e. §, is empty], there are some suspended

(append:..) request [ie. §, is not empty} -and there is room for a new character in S [ie,

0 < k < N}, then the (append:..) request at the front of §, is granted and sent to S with a

new buck passer NBP, and concurrently the reply is returned to the original continuation C.

It should be noted that ali the three cases are mutually exclusive and enumerate all
cases of the states which B can be in when BP receives a [:r_@p(y:L:ggppond-dona‘:)] message.
The behavior of B in response to (remove:) is described in Figure v7.8 in a similar way; the
roles of G, and §, are symmetrical and conditions expresskihg‘thgr ubper bohnd for the
counter is replaced by the lower bound. §, has pnomy over 9, when a buck passer BP

receives a (removed: 7) from the string storage.

7.4.2 Verification of a Bounded Buffer

In order to show that the implementation of the bounded buffer given in Figures
7.7 and 78 satisfies the specification given in Figure 75, we need the implementation
invariant which is the mapping between the states 6f a bounded buffer used to write its
specification and the states used for describing the implementation. More precisely, we
need the mapping from the set of states, called the "specification space';:‘c:xpreésed by

conceptual representations of the form
(BOUNDED-BUFFER (q: [-Ia,: [-Distring: [0

to the set of states, called the “implementation space”, expressed by conceptual

representations of the form
(SC!I‘EBUI.ER (counter: TG ;2 (1N [.-]Mcresed: {..}}resource: S)).

For this purpose, we use the following implementation invariant:




-1 -

If a bounded buffer B is in the state (of the specification space)
which is expressed by the conceptual representation

(BOUNDED-BUFFER (q,: [¥x])(q,: [8y]string: [1s]))

then
B is in one of the states (of the implementation space)
which are expressed by the conceptual representation

(SCHEDULER (counter: k)(§ ,: [Ixx ¥Ix])(q . [tyy ly])crowd: {3z})(resource: S)),
and the following constraints must be satisfied

(1) [1stored-in(S) characters~appended(xx)] = [Icharacters-removed(yy) 1s]
(2) length(stored=in(S)) =k " '

characters-appended(xx) means the sequence of characters that will be appended by the
sequence of (append:..) requests denoted by xx. characters-removed(yy) means the sequence
of characters that will be removed by the sequence of (remove:) requests denoted by yy.
stored-in(S) means the sequence of characters stored in the string storage S.

Note that q, and G, share x and q, and §, share y at their tails. §, and 4, denote
the queues of requests which are actually waiting inside the scheduler. Thus xx and yy in

4, and §, denote the sequences of actually suspended requests that are considered (at the

external specification level) to have already been processed. [x and y have not been

processed yet.] The first constraint in the above implementation invariant says: the
concatenation of the character string that is actually stored in § and the sequence of
characters that will be appended by xx is equal to the concatenation of the sequence of
characters that will be removed by yy and the character string that is considered (at the
external specification leve_l) to be stored in string. The second constraint says that the
counter k indicates the length of the character string stored in S.

Since, for given x, y and s, only the relation (or constraints) that must be satisfied

by xx, yy and k is specified, the above implementation invariant defines a one-to-many



-178 -

correspondence from the specification space to the implementation space. (Cf. Section 531,
Chapter 5) Namely, for a given state U in the sp&ifiatian ;paa. the implementation
invariant 1l give a set 1I(U) of the ‘torresponding' states in the lmpllcrhentation space. See

the diagram below.

<Specification Space> U <Implementation Space>

To verify the implementation against the specification in Figure 75, for each event
specification in the specification, the implemet-!mim must be verified. The diagram in
Figure 7.9 illustrates the verification for an event E = [B <== M]. T and T’ are the states
of the bounded buffer B given in the <pre-cond:..> and <next-cond:..> clauses (of the event
specification for E), respectively. IKT) .and IKT’) are the sets of states (in the
implementation space) obtained by applying the implementation invariant Il to T and T,
respectively.

To establish the event specification, we must first show that if the bounded buffer -
B is in a state belonging to_vl,_l(T ) before the event E, B is in a state belonging to 1KT")
immediately after E. To show this, we do not have to deal with individual states in 1I(T)
and TI(T"). We use the relations among the constituents of the implementation which dqﬁne

1IKT) and 1KT’). [Of course, such relations are obtained from the constraints given in the




-179 -

Fig. 7.9. Establishing an Event Specification

E=[B ¢== M]

- <Specification Space>

<Implementation Space>

1(S) TI(s"



- 180 -

implementation invariant] By using the description of the implementation given in
Figures 7.7 and 738, we obtain (from the defining relation for 1I(T)) the relation which
defines the set X of states in which B can be immediately after E. We check to see whether
or not the obtained relation satisfies the defining relation for H(T"), i.e, we check whether
or not X is a subsét of II(T"). If the obtained relation satisfies the defining relation for
IKT'), it is verified that the state of B immediately aftér the event E is T  in the
specification space. ‘

But this does not mean that the implementation satisfies the <next-cond:..> clause.
We must show that the state of B in the specification space does hot change until the next
request message (either (append:..) or (remove:)) arrives at B, because at the implementation
level (i.e, when B is considered as a schedulmg semhzer). a buck passer in the crowd of B
may receive a reply message from the string storage § and ognsequently, the state of B
which is currently one of states belonging to X may ,not,bclonig» to IKT") after sucﬁ'.a reply
event. Therefore we must also show that th; #ate c;f B stays inside IT"), which means
that such reply events do not change the state of B in the sp,écif ication space. To do so, we
check if the relation defining the set Y of states in which B can be nmmedlately after the
resource reply event satisfies the defining relation for ll(T’)

To complete .the verif ication of the event speclﬁcatlon. we must show that the
events given in the <caused-cvents:..> clause eventually take place. To do so, we use the fact
that the sequence of requests xx in G, and the sequence of requests yy in ¢, are eventually
removed and sent to S. This is easily done by checking\‘“'th,e implementation given in

~ Figures 7.7 and 7.8 and the specif ication of the string storage given in Figure 76.




- 181 -

8. Modelling a Post Office

In this chapter, we diScuss an actor model of a simple post office which is an
intuitive example of systems, such as operating. systems and multi-user data base systems,
‘which are characterized by complex concurrent internal activities. In the first section, an
ihf ormal description of the post office is followed by formal specifications of the
individual behavior and mutual interaction of the components of the model. In the second
section, the specification of the overall functions (task specifications) of the post office is
stated formally. In the lasi section, we demonstrate that the task specifications are satisfied

by the individual behavior and mutual interaction.



-182 -

8.1 A Model of a Simple Post Office

In this section, we present the actor model of a simple post office. The behavior
of each component in the model is described by our specif ication techniques and the overall

properties and effects of the post office as a whole are stated. fo;many Furthermore, smgr

this model as an example, we would like to shed light on some of the interesting issues

related to distributed information processing systems. |

8.1.1 Overview of the Model

An informal description of activities in a simple post office is:

A number of customers and mail collectors visit the post office, possibly simultaneously.
The post office has only one door for customers and collectors. Inside the post office, there
is a counter section which has several counters and a mail box corner which has a mail box.
After a customer enters the post office through the door, if he needs stamps, he goes to the
counter section, otherwise he goes to the mail box corner. At the counter section, a customer
gets the stamps he needs and then, if he is carrying letters, he goes to the mail box corner,
otherwise he goes out of the post office through the door. Customers are served at the
counter section on a first-come-firsi-served basis, but the time spent at the counter varies
from person to person. At the mail.box-corner, a customer puts.alithe letters he:has been
carrying im the mail box and goes out through the door. A collector also enters the post
office through the door and then goes‘to the maill box corner.- At tiie mall box corner, the
collector collects all the mail in the mail box after waiting in the queve, if there is one, and
then he carries the collected mail out of the post of fice through the door. Customers and
collectors make a single queue at the mail box coviiesr and_arrive and leave the corner on
first- -in-f irst-out. basis.

We model this post off ice w:th fwe kmds of actors: customer actors, collector .
actors, the door actor. the countcr sectlon actor and the mail box corner actor. [See Flgurc
811 The movement of customers and collecton ls modelled as message-passmg where
messages are customer and collector actors and targeu ;m the door actor. ‘the counter section

actor and the mail box corner actor. Components of the office, collectors and customers




- 183 -

Fig. 8.1. ~customers, collectors -

counter section ' ‘ mail box corner

- G G Mn W W e WS Wm P WA MR Gx We W Nm ap wm an =
A
O W AR G SV N SR Gn G WD Y I W W G R AR e

e - - W e e B mn G S Gm G G R W e s e G W G e Wn O R W G Em e en e -

have their own local time. Thus, arrivals of customers and collectors at these components
are in general mutually independent. Fﬁrthéimore, we assume that the walking speed of
customers and collectors may vary from person to person. So, for example, a customer
arriving at the door after another customer may arrive at the counter section before him.
This corresponds to the fact that the actor model of computation assumes nothing about the
duration of message-passing except its finiteness. Besides such concurrent events, services
at diff erént counters are carried out concurrently, and of course depositing and collecting
the mail in the mail box corner takes place independently of the activities at the counter
section.

" In the subsections that follow, formal specifications of the behavior of each actor

will be given and we will state the task specifications that describe the overall properties



- 184 -

and effects that are created by the interaction and individual behavior of the component

actors.

8.1.2 hneractions at the Door

To formally describe the activitie; in the. post office, first we need to define the
states of actors in the model. - | . _

For a cusiomer,_theie are two internal factors which determine his behavior: the
letters he carries and the number of stamps he needs at a givenij time. Thus :v‘»e express the

states of a customer actor by conceptual representations of the fallowing form. .
(CUSTOMER (letters: {..}) (s-stamps-neoded: 1))

For a collector, the effects of interactions with other actors are expressed by the collected
mail. So the state of a collector actor is expressed by conceptual representations of the
following form.

(COLLECTOR (collected-mail: {10

We cannot define the state of the post office as a whole in terms of the states of its
components, because people can be in transit between the components. Customers and
collectors may be constantly entering and exiting through the door while other customers
and collectors may be changing the states of the mail box corner by depositing and
removing the mail Oniy the jocal states of the component actors are well defined.
However, we can use the state of the door actor to describe useful aspedts of the state of the
whole post of fice if it is defined as below. ‘

The state of the door actor must be defined as an equivalence class of histories of
message sent to it. The informal description of the model tells us that customers and



- 185 -

collectors arrive at the door when they enter and exit from the post office. So we assume
that the door actor accepts four kinds of messages:

(customer-entering: <customer>), (customer-exiting: <customer>),

(collector-entering: <collector>), and (collector-exiting: <collector>).
Thus the states of the door actor are defined in terms of these kinds of messages. Since the
states of customer and collector actors are well defined at the time they arrive at the door
actor, their states can be used to define the state of the door actor. This means that the
information available in conceptual representations for customer and collector actors can be
used.

We define the state of the door actor at the time of message arrival by

(1) the set of all customers inside the post of fice,

(2) the set of all collectors inside the post office and
. (3) the set of all mail inside the post office.
These three sets are sufficient to characterize useful aspects of the state of the post office as
a whole and yet well defined as information local to the door actor, because, for example,
the set of mail inside the post office is determined by the difference between letters brought
in and letters taken out through the door by customers and collectors. We express the states
of the door actor by conceptual representations of the following form. The key word,

POST-0OFFICE, reflects the intention that they serve as the states of the whole post of fice.
(POST-OF FICE (mail: {..})(customers: {..}){(collectors: {..})))

A formal specification of the effects of interactions between the door actor and
customer and collector actors is depicted in Figure 82. One should note the
{caused-event:.> clauses: After a customer actor arrives at the door actor, a message

(go-to-counter-section-if-necessary:) instructs him to decide where to go next. Other



- 186 -
Fig. 8.2. A Specification of Interactions at the Door

<event: [ the-door <= (customer-entering: C)] ‘ (sp-)
<pre-cond:
(the-door is-a (POST-OF FICE (mail: {lm})(cunomen {ics})collectors: {icis))))
(C is-a (CUSTOMER (letters: {!I})(:—of—uamps-mded N>
<mexi-cond:
(the-door is-a (POST-OF FICE {mail: {im ll})(cuuomcrs. {lcs C})(collacwn. {icls})))
(C is-a (CUSTOMER (letters: {M})s-of-stamps-needed: N)}) »
<cansed-event: [ C <= (go-to-counter-section-if-wecessary)] >

<event: [ the-door <= (custom'er-exiiing: ()| - : (sp-2)
<pre-cond:
(the-door is-a (POST-OFFICE (mail: {im1 §l $m2}Mcustiomers: {Ics1 C Ics2})(colloctors: {cis})))
(C is-a (CUSTOMER (letiérs: {'ll)(#-of-uamps-necded N>
<next-cond:
(the-door is-a (POST-OFFICE (mail: {Im} !m2})(¢uuomcrs. {lcal I“Z})‘eollmon. {!cls})))
(C is-n (CUSTOMER (letters: {ll})(a-o[-uamm-mdol N))) )
<caused-cvent: [ sireet <= CJ » o

Cevent: [[ the-door <= {collector-entering: CL)J (sp-3)
{pre-cond:
(the-door is-a (POST—OF FICE (mail: {¥m})customers: {!cs})(colleccon. {Icis})))
(CL is-a (COLLECTOR (collected-mail: {tem})) >
{next-cond:
(the-door is-a (POST-OF FICE (mail: {3m Scm})customers: {les})collactors: {Icis CL})))
(CL is-a (COLLECTOR (collected-mail: {}em}))) >
Ceansed-event: [ maii-box-corner (é'(co""eéwn:"CL)] »

<enent: [ the-door <= (collector-exiting: CL)] o ' : (sp-4)

<pre-cond: A
(the-door is-a (POST-OFFICE (mail: {3m1 lcm Im2})(customers: {Ics))(collectors: {Icis1 CL 1ci2})))
(CL is-a (COLLECTOR (collected-mail: {icm}))) >

<next-cond:
(the-door is-a (POST-OFFICE (mail: {im1 Im2}){customers: {!cs})(colleclon. {cisl lcis2})))
(CL is~a (COLILECTOR (collevted-mail: {iem}))) >

<caused-event: [ street <=CL] »




- 187 -

<caused-cvent:..> clauses indicate where a customer or collector actor is sent after it arrives at
the door. In particular, customers and collectors are sent to the street actor after they exit

from the post of fice.

8.1.3 Iuteractions at the Counter Section

Upon entering the post office, a customer must decide where he should go, i.e. to
the counter section or the mail box corner. The decision is made in response to a message
(go-to-counter-section-if-necessary:), according to whether or not he needs stamps. This

behavior of the customer is expressed by the following event specification.

Cevent; [[C <= (go-to-coumcr-mction-if—ncceuary:)] (SP'5)
(Case-1:
{pre-cond:
(C is-a (CUSTOMER (letters: {31})(#-of-stamps-needed: N)))
(N>0)>
<next-cond: (C is-a (CUSTOMER (letters: {81})(#-of-stamps-needed: N)))>
<caused-cvent: [ counter-section <= (customer: C)] >)
(Case-2:
<pre-cond: (C is-a (CUSTOMER (letters: {1} )(#-of-stamps-neaded: 0))) >
<next-cond: (C is~a (CUSTOMER (letters: {31})(#-0of-stamps-needed: 0)))>
<cansed-cvent: [ mail-box-corner <= (customer: C)] >»

Two points should be made. about the specification above. First, the customer C sends
'himself to the counter section or the mail box corner. Second, the customer C does not .
change his state as described in the <next-cond:..> clauses.

| The effects of interaction between customers and the counter section are described

by the following simple event specification.



- 188 -

<event: [ counter-gection <= (customer: C)J - c- {sp-6)
<{pre-cond: (C is-a (CUSTOMER (letters: {1})(#-0/-stamps-needed: N))) >
Cnexi-cond: (C is-a (CUSTOMER (letiers: {11})(s-of-stamps-needed: 0))) >
(caused-event: [ C <= (go-to-mail-box-corner-if-necessary:)] >

This specification might look too simple. Of course, by using conceptual representations
for the counter section which include more detailed information, we could express various
activities and interactions such as customers waitirig in 2 queue, and buying stamps at a
counter. Also, we could define the state of the counter section in a way similar to that in
which we defined the sates of the door actor. But for our present purpose, the event
specification above is sufficient. '

When a customer leaves the counter section, he must again decide. where to go
next, the mail box corner or the door. The decision is made in response to a message
{go-to-mail-box-if-necessary:), according to whether or not he is carrying letters. This is
expressed as follows.

Covent: [C <= (go-to-mail-box-cornor-i[;nmmry:)] (sp-7)

(Case-1: '
{pre-cond:
(C is-a (CUSTOMER (letters: {¥1})(#-of-stamps-needed: N)))
(g} ¢ (o
(next-cond: (C is-o (CUSTOMER (letters: {1} s-of-stamps-needed: N))) >

<caused-event: [ mail-box-corner <= (customer: CJ} >)
(Case-2:

<prc—cmn.d: (C is-a (CUSTOMER (letters: (})(bmf-ucmpl-necded: N
<nexi-cond: (C is-a (CUSTOMER (lotiers: {}){#-of-stamps-needed: N))) >
<caused-event: [ the-door <= (customer-exiting: C1J >D

Note. that no conditions are made for the number of stamps needed N in the
preconditions in the above specification. [See, Section 8.5}




- 189 -

8.1.4 Interaction at the Mail Box Corner

To complete the local specifications, we must specify the interaction between the
mail box corner and its users. An important fact stated in the informal description of the
model is that customers and collectors wait in the same queue before the mail box and that
they deposit or collect mail on a first-in-first-out basis. This fact allows us to define the
state of the mail box corner by the set of letters brought by the customers who arrived at
the mail box corner after the collector who arrived most recently. Letters brought do not
necessarily mean letters that are already put in the mail box. They may still be carried by
customers in the Waiting queue. We use conceptual representations of the following form
for the mail box corner. (MAIL-BOX-CORNER (posted-mail: {..})) The interaction is

described by the event specifications in Figure 83.

Fig. 8.3. A Specification of the Interactions at the Mail Box Corner

<event: [ mail-box=-corner <= (customer: C)] (sp-8)
<{pre-cond: '
(mail-box-corner is-a (MAIL-BOX-CORNER {posted-mail: {Im})))
(C is-a (CUSTOMER (letters: {M})#-of-stamps-needed: N))) >
<{nexi-cond:
(mail-box=corner is-a (MAIL-BOX-CORNER (posted-mail: {Im 31})))
(C is-a (CUSTOMER (letters: {}){#-of-stamps-needed: N))) >
<caused-event: [[ the-door <= (customer-eriting: C)] »

<event: [[ mail-box-corner <= (collectors: CL)] (sp-9)

{pre-cond: '
(mail-box-corner is-a (MAIl-BOX-CORNER (posted-mail: {Im})))
(CL is-a (COLLECTOR (collected-mail: {Icm}))) >

<next-cond: '
(mail-box-corner is-a (MAIL-BOX-CORNER (posted-mail: {})))
(CL is-a (COLLECTOR (collected-meil: {Icm Im}))) >

<caused-cvent: [ the=door <= (collector-exiting: CL)] >




- 190 -
8.1.5 Assumptions of No Implicit Interactions

In addition to the above specifications of local interactions, we must make the

following assumptions of global nature to describe the post of fice model completely.

Assumption-| :
Customer and collector actors do not receive any messages except those explicitly

stated in the event specifications sp-I to sp-9.

Assumption-II 7 _
The counter section actor and the mail box corner actor interact with only the
customer and collector actors which have entered through the door. The door
© actor interacts with only the: (customer-eriting:...) and -(collector-exiting:..) messages
which contain collector or customer actors which have entered through the door.
(No_customer or collector actor can arrive directly at these actors without going
through the door.)

The first assumption implies that customer or collector actors do not change their states
immediately after an event E until the event caused by E, where E is one of the events
specified by sp-l to sp-9. For example, imqw:ihtely after the event

[count.er-section <= (customer: C)], the state of a customer C which is stated in the

(nexi-cond:.> clause of the event specification sp-6 do not change until C receives the
(go-to-mail-hox-corner..) message. Thus, in the events specification sp-7, the number N of

stamps needed (by the customer C) is zero, because it was zero immediately after

[ counter-section <= (customer: C)] as stated in the <next-cond:..> clause of sp-6.




- 191 -

8.2 Task Specifications

We have specified the individual behavior and mutual interaction of actors in the
post office model. These specifications are local in nature. In this section, we will state
some of the overall [global] task specifications of the post office that should be implied by
the local specifications. It is important that such task specifications be stated in terms of
externally visible actors because the function of the post office should be specified and
understood without knowledge of the details of what is going on inside. These actors are
the door actor, and customer and collector actors which are outside the post of fice.
| Four task specifications of the post office are in order. For each task specification,

an informal statement is followed by the formal one.

The first task specification is expressed in terms of a customer's two states: one
before he enters the post office and one after he exits. This may be considered as a
specification of the function of the post office from the view point of a customer.
Task-1 (Customer is Guaranteed to Return without Letters)

If a customer visits the post office, he must eventually leave there. When he leaves the
post office, he must not be carrying letters and he does not need stamps.

<event: [ the-door <= (customer-entering: C)J
{pre-cond: (C is-a (CUSTOMER (letters: {!l})(:-of—uamps-needcd N>
<caused-event: [ street <=CJ >
<post-cond: (C is-a (CUSTOMER (letters: {}){#-of-stamps-needed: 0))) >

The second task specification is the collector version of the first one



-192 -

Task-1T (Collector is Guaranteed Not to Lose Any Mail)

If a collector visits the post office, he must eventually leave there. When he leaves the
post office, he must be carrying the newly collected mail [which may be empty] in addition
to the mail he brought into the post office.

<event: [[the-door <= (collector-entering: CL)]
<{pre-cond: (CL is-a (COLLECTOR (collected-mail: {lcmi}))) >
<caused-event: [ street <= CL )] >
<past-cond: (CL is-a (COLLECTOR (collocted-mail: {...Jem1..}))) »

The next task specification is expressed in terms of the interaction between
customers and collectors through a set of letters. This may be considered as a specification

of the function of the post office from the view point of individual letters.

Task-111 (Guaranteed Collection of Mail)
Suppose that a set {¥m} of letters is brought into the post office by a customer C.
Then if there is a collector CL who enters the post office after the customer C leaves,
then there always exists a collector CLL (who may be the collector CL) who brings the set
{!m} of letters out of the post office to the street.

For an event E,_gpnter = [ the-door <= (customer-entering: C)]
where (C is-a (CUSTOMER (letters:{Im})(#-of-stamps-needed: N))),
if there exists an event Ecl-enter = [lhe-door <= (collector-entering: CL)]]

such that E¢_gnigr =a¢t=> Egiognter =8> the~-door Ec-exit
where E _q.it = [ the=door <= (customer-exiting: C)],

then there must exist an event Egjj-gtroet = [Lstreet <= CLL]
such that (CLL is-a (COLLECTOR (collected-mail: {..1m...}))).
It should be noted that the mail of a customer C could be collected even if no collector
enters the post office before C leaves. But in this case there must be some collector which

arrives at the mail box corner after C arrives there. (Of course this cannot be stated in the

task specification because the mail box corner which is an internal component of the post

office should not be mentioned in the task specifications.)



- 193 -

The next task specification is expressed in terms of the states of the-door (more

precisely, sets of mail inside the post office) at different times. This task specification is

derived from Task-I1l.

Task-1V (No Stagnation of Mail) ,

Let ‘UM, UC and UCL respectively be the set of letters, the set of customers, and the set
of collectors inside the post office in a given situation S. If there is a collector CL who
enters the post office after all the customers UC and all the collectors UCL (who were
inside the post office in the situation S) leave the post office, the set of letters which are
inside the post office after the collector CL leaves does not share any letters with the set UM
of letters (that were inside the post office in the situation S).

Suppose that
(the-door is-a (POST-OF FICE (mail: {¥m})(customers: {ics})(collectors: {Icis}))) holds

in S = Sit[[ the-door <= M] 1.

If there exists an event E = [ the-door <= ({collector-entering: CL)]
such that '

for any customer C; in {lcs} and any collector CL;in {'cts},
the following ordering relations hold
Eci ~arr->the-door E and Eclj =arr->the-door E
where Eci = [ the-door <= (customer-exiting: C;)]
Eclj = [ the=door <= (collector-existing: CL‘-)].

then for any event EE = [[ the~door <= MM]]
such that E =arr=>ipo_door E' -arr->the-door EE or E'=EE
where E’ = [ the-door <= {(collector-exiting: CL)],
it is the case that
(the-door is-a (POST-OfFICE (mail: {Imm})(customers: {..})(collectors: {..}))) holds
in Si[EE] where {Im} N {Imm}= ¢



- 19¢ -

8.3 Verification for the Task Specifications -

In this section we will demonstrate that the event specifications, which are given in
Sect 81 as the description of the behavior of individual actors in the rrngde}\and vtljeir‘
interactiqn, satgs‘fy'the _t(ask,v specifications in _\;he,‘pre,yinu:s:,l-;&iroﬁfn.? Also. some of the
mteremng properties.of  the. event spaaﬁcahom given in Secmntt will be revealéd in the

course of the verif ication.

8.3.1 Verification for Customer's Guaranteed Return without létt'efs

First we wnll venfy the followmg task speaflcanon Some. of the propemes
observed in the process of the verif ication mll bz used hur in the verification for other

task specifications.

Task-1 (Customer’s Guaranteed: Return without Letters)
<event: [ the-door <= (customer-entering: é?] o
¢pre-cond: (C is-a (CHSTOHER(I«:«:: (m)(a-ofmumpa-mdod N >
(caused-event: [strest<=CY > - = oo
<post-cond: - (C is-a (CUSTOMER Uetters:. mh»oﬁ-ucmprneeded om»

(Verification) This task specification is established by fncing' sequences of events which
involve a customer actor. Such sequences are obtained by checkmg causal relations among
events described by the event spécifications given1w'§ict 8. Tracing such a sequence can
be done by exammmg (local) states of actors paqupatmg in each event, ‘but certain
cautions are nccessary in dealmg with the state of the~door actor Wthh represents external .
state of the whole post office. Furthermore, it should be noted in the following
demonstration that the reasoning from one event to another crucially depends on
Assumption-1 in Section 815. Namely, we assume that the state of a customer C does not
change from an event E to the next event caused by E. Below this assumption will be used
without being mentioned.

First we assume that an event E,prer takes place as described below.




- 195 -

Eenter: [[the-door ¢= (customer-entering: C)]J »
where (C is-a (CUSTOMER (letiers: { !l})(o—of-nain‘pt'—n@dad& N)))
(the-door is-a (POST-OF FICE {muail: {3m})customars: {!cs}‘)(collgmmn_: {icis})))

The event Eg... and the first assertion are assumed by the task specification to be
verified, and the second assertion is assumed in the {pre-cond:.> clause in the event
specification sp-1. Note that as sp-I specifies, the stite of thc-dqor immediately after this
event is expressed as

(the-door is-a (POST-OF FICE (mail: {¥m Upcastomers: {Ics C})(collectors: {1cls))))
which means that the customer C is now inside the post office. The <caused-event:.> and
<next-cond:..> clauses of sp-1 tell us what will happen to C next and what state C will be in.

E’decision-l: [c«= (go-to-goumcr-soction—if-ncccuary:)] | )
where (C is-a (CUSTOMER (lettors: {1} )e-of-stamps-needed: N)))

To know what event will take place after E decision-1» the event specification sp-5 is referred
to. Two cases need to be considered: (1) E,qyncer 15 Caused if N> 0 and (2) Emaii-box i$
caused if N=0.

Ecounter: [ counter-section <= (customer: )]
where (C is-a (CUSTOMER (letters: {N})#-of-stamps-needed: N))), (N> 0).

The event specification sp-6 tells that the fonokwing event Eqocision-2 is caused by E qunter

and that the number of stamps needed becomes zero.

E‘decision-2‘ '[C <= (go-to-rnail—box-comer-i[-nacexmy:)].
where (C is-a (CUSTOMER (letters: {81})(#-of-stamps-needed: 0)))

To know what event will take place next, the event specification sp-7 is referred to. We
need a case analysis: (1) Ehail-box is caused if | # {} and (2) Egxit is caused if | = {}.

Email-ﬁox’ [ mail-box-corner <= (customer: C)] | _
where (C is-a (CUSTOMER (lottors: {11)(s-of-stamps-needed: o

Note that Eq .1 box is also caused by Edecision-1 3 Well as Egecision-9- BOth Eyecision-1
and Egecision-g insure that the number of ‘stamps needed is zero. On the other hand, the
letters {11} the customer C is carrying may or may not be empty, because Ejecision-2 insures
that | is not empty, but Ejo icion- does not. The. event specification sp-8 teils us the next

event Eex it-



- 196 -

Eeyjt: [the-door <= (customer-axiting:C)] y
where (C is-a (CUSTOMER (letters: {}{{e-of-stamps-noeded: N)))
(the-door is-a (POST-OF FICE (mail: {..}Xcustomers: {..C..})collectors: {..})))

The first assertion is guaranteed by the <next-cond:.> clause of the event specification sp-8.
The second assertion that the customer C is still inside the post office must hold in order
for the event specification sp-2 to be applied. This assertion is guaranteed by the followmg
facts:
(I) Examining all the event specifications sp-1 through sp-9, events of the form
[ the-door <= (customer-exiting: C)] are the only way for C to exit from the post office
(i.e. to eliminate C from the (customers: {..}) component of the conceptual representation
for the door actor).
(2) An event of the form [[the-door <= (customer-exiting: 0)] have not taken place since
C entered the post office.
Now the event specification sp-2 insures the following event Estreet will happen and the
assertion will hold.

Eqireer: [street ¢<=C]
where (C is-a (CUSTOMI‘.R {letters: (})(M!-uumpl-unld oN

The causal relations among the events Eemef through Estreet are illustrated as

follows
Eenter > Edecisiond1 > Emaitbox 2 Eexit > Egreet
. A P
' 1 .7
[} . ” ’
Ecodhter > Egecidion-2

Since ali the event specifications used in the above discussion guarantee that the events
given in their <caused-event:..> clauses always take place, Eqireet i8 guaranteed to take place. '
And the state of the customer C in the situation Eg .e is exactly what is required by the
task specification. » , o " (End of Verification)

The second task specification given in the previous section can be verified in the




- 197 -

same way as above. In fact, applications of the event specifications sp-3, sp-9 and sp-4 in
this order will do. It should be noted that in using the event specification sp-4, a

justification similar to the one we made, in the reasoning from Eoyjt to E for

street’
applying the event specification sp-2 is necessary.

8.3.2. Verification for Guaranteed Collection of Mail

Task-1IT (Guaranteed Collection of Mail)

For an event E . gpter = [thd-door <= (customer-entering: C)] .
where (C is-a (CUSTOMER (letters:{im})(s-of-stampe-nooded: 7))),

if there exists an event £_qnter = [ the=door <= (collector-entering: CL)]

such that Ec_gptey ~8ct=> Ecgyit "the~door Eci-snter
where E g4t = [ the-door <= (customer-exiting: [+) K

then there must exist an event E = [ street ¢= CLL]]
such that (CLL is-a (COLLECTOR (cnllacld-mail {..Im..}))) holds

To verify this task specification, we rely on the following lemima which is easily
derived from the event specifications given. in Sect 81. This lemma guarantees that if a
customer enters the post office carrying a set {1l of. letters, he always arrives at the mail

box corner carrying the same set of mail. -

Lemma
For an event E_gptq, = [ the-door <= (customer-entering: C)]
where (C is-a (CUSTOMER (letters: {81})(#-of-stamps-needed: 1))),
there always exists an event Ec.p,ij-pox = [ mail-box-corner <= (custamer: C)J

where (C is-a (CLUSTOMER (lettors: (‘!l’}){i-of-uampc-nndcd )

such that E._gniqr ~8ct=> Ec-mail-box-

This was justified during the verification of the first task specification.

(Note that Eenter > Email-box in the demonstration of Task-1.]



- 198 -

(Verification of Task-1il) ,
Suppose that an event E._gnger = [ the=door <= (customer-entering: C1] takes place
where ‘
(C is-a (CUSTOMER (letters: {}})(#-of-stamps-needed: 1))
holds. By the above Jemma, an event Ecemifi-box * [ mail=box-corner <= (customer: ol
always takes place and the same assertion :
(C is-a (CUSTOMER (letters: {11})(#-of-stamps-needed: 1))
still holds. Here we assume that the following assertion holds when Ec-mml-box
(mail-box-corner is-a (MAIL-BOX-CORNER {posted-mail: (!m}m
Then by the event specification sp-8, the assertion
(mail=box-corner is-a (M AIL-BOX-CORNER (posted-mail: {1pm 1I})))
holds immediately after E, . .icpoy aNd until the next message arrival at the
mail-box-corner. Sp-8 also guarantees that E c-exit t[ﬂn-door & "(tuuomr-eziling: C)] will
take place. ‘
Then suppose that the foilowing event takes’ phce after €. ovit
Ecj-enter =[ the-door ¢= (coHectmntmur cul
where (CL is-a (COLLECTOR (collected-mail: {'em}m ﬁolds By the event specification sp-3,
Ecl-mml-box = [ mail-box=corner <= “leollectors: CL)] )
takes place where (CL is-a (COLLECTOR (collected-mail: {kcm}))) still holds. At this point,
the ordering of the events which have already occurred is expressed as follows

takes place.

Ec-entcr ~act-> Ec_gil-box 361> Ecoquit "8t Nypgdoor Ectounter %t Eclemail-box

The important fact here is that E._y.ii-box precedes'Ec,;ﬁ.‘a;b‘x. We shall consider two

cases:

Case-l: If any collectors do not arrive at the mail box corner, between Ec.p,ij-pox | and

Eci-mail-box: the state of the mail box corner. at the time of Ecjomaii-bax 15 eXpressed as

(mml-box-cornor is-a (M /llL BOX-GORNBR (posud -mail: (....pm.. 1.

because customers arriving between :c-mu-bou md W only deposit, but never

collect mail. Then as the event specif ication sp-9 States, the collector CL collect& all the mail

{...!pm..1..} and then go to the door.

Case-2: If there are collectors who arrive at the mail box: corner between Ec-mml-box and
Ecl-mail-box: then the first one among such collectars will collect the mail which includes {i}

and {! pm} and then go to the door.




- 199 -

In both cases, some collector carrying {}l}, say CLL, arrives at the door from the
mail box. To insure that the collector CLL goes out to the street, the two assertions given in
the <pre-cond:..> clause of the event specification sp-¢ must be satisfied. One assertion says
that CLL must be one of the collectors who appear in the conceptual representation of the
door actor at the time CLL arrives, namely, the following must hold.

(the-door is-a (POST-0FFICE (mail:{..}){customers:{..})(collectors:{..CLL..}))).
Assumption-11 in Section 815 guarantees that this assertion holds, because it assumes that
all the collectors arriving at the door from the mail box corner must have entered through
the door, so by sp-3 CLL must appear in the (collectors:..) component of the conceptual
representation of the door. This completes the verification. Note that Assumption-1 was
used throughout the above demonstration. (End of Verification)

The last task spec'ification "No Stagnation of Mail" can be verified by using
already established task specifications. As was done in this task specification, let us suppose
that the state of the post office is expressed by the following assertion.

(the-door is-a (POST-OF FICE (mail: {Im})(customers: {Ics})(collectors: {icls})))
Then it is the case that every letter | which is an element of the mail {Im} inside the post
of fice is brought in either by a customer or by a collector. If | is brought in by a customer,
we can use the third task specification which has been just established above. If I is
brought in by a collector, the second task specification "Collector is Guaranteed Not to Lose
Any Mail" insures that | will be brought out by the same collector that brought 1 into the

post office. So both cases are proved.



9. Conclusions and Future Research

In this thesis, we have presented the Iocal :tafc approach to specification and
verification techniqués for both serial and parallel computations. As stated in the
Introduction (Chapter 1), the work reported "here -has made four major technical
contributions. In concluding the thesis, we wéuld like to first review these contributions

and then discuss their implications in the light of our projections for future research.



- 201 -

9.1 Summary and Conclusions

- As was demonstrated in Chapters 4 and 6, the local state approach provides
powerful and convenient specification techniques for abstract data types with parallelism
and side-¢ffects with which previous techniques had failed to deal, |

As the post office »model in Chapter 8 illustrates, specification techniques based on
local states enable us to describe the complex internal concurrent activities of a system, such
as an operating system or a muiti-user data base system, in terms of the individual behavior
of its subsystems and their mutual interaction. In.order to express. the gverall functional
behavior of such systems (task specifications), the use of local states turns out to be not only
useful, but crucial. In addition, however, we sometimes need to state k'tlemporal ordering
constraints among events that are difficult to express in terms of the state changes‘of
individual subsystems. For this purpose we have used an event-oriented specification
languagelGreif-Hewitt75, Hewitt-Baker77] in which the ordering concepts in the underlying
computation model can be talked about directly. Thus, with the complementary use of the
ordering constraint statements, the effectiveness and versatility of the local state approach
in specifying the behavior of systems with high internal concurrency is strehgthened.

To describe the states of individual data and procedural objects, we have
developed a system of notation called conceptual representations.” Based on this notational
device, we have presented a formalism for specification ‘and verification. As was seen
throughout the thesis, this formalism allows us to express states of . individual ob jects
divectly and explicitly. Thus we believe that specifications written in our formalism are
easy to understand and are less error-prone in their completeness and consistency, as
compared with those written in other formalisms. Moreover, the separation of the states of

an object from its identity makes it possible for conceptual representations to express



- 202 -
sharing structures among ob jects. and multiple instances of a class.of ob jects.

The ability of our formalism to express sharing struciures and multiple class
instantiation enabled us to develop a method for sjmbolic evaluation of pfogrdhs written
in ob ject-oriented languages, which has not been attémp’t’ed before. The developed methbd
is used for verification of serial computations and has suggested an approach to mechanical

program analysis (Section 5.4, Chapter 5).

9.2 F uture Research

We have defined the states of an individual ob ject (actor) as equivalence classes on
the past histories of messages (operations) sent to the object. Local states thus defined are
expressed by conceptual representations which mathematically comprise sequences,
collections and tuples. On the other hand, the state of an ob ject caﬁ be identified with a
mathematical function which is thaihed as a solution of the behavioral equations
i"‘“de“C'fd. in Section 6.4, Chapter 6. . So far the relationships between the above two
interpretations of states have not been (hadg clear. We foresee that vm‘g.jhvgsugation of
these relations will reveal very rich mthg@;ﬁql structures and that, consequently, the
properties of implementation .-,inva‘n‘kaj_{;t; (Section. 531, Cliapter..,s) which we have left

informal will be understood precisely.

The techniques exemplified by the model of a simple post office can be applied to
the specif ication and verification of ‘various distributed information processing systems.
Furthermore, the techniques used in this thesis have a direct-application in the area of
business automation. We expect that actor-like-procedural ob jects will enormously increase

the flexibility and security of message and document systems by replacing "paper" forms



- 203 -

and letters and "paper” documents with "active” (procedural) counterparts that are sent to
work stations in computer networks. Moreover, we can apply our techniques to the
specification and verification of object-oriented simulation and system description

languages such as the DELTA system{Holbaek-Hassen-et-al77).

The verification pi'ocess for parall?l computatiohs described in this thesis is
informal. The formalization of such a process is _desirible. For this purpose, a formal
speéif ication language in which both local states of objects and ordering constraints of
events can be expressed in a coherent fashion must be developed, together with sound and
powerful inference rules which are effective in dealing with the partial ordering of events.
With such a formal system available, we will be able to construct practically useful software
tools which assist us in the construction of parallel programs and distributed message
passing systems. Various important properties, such as no-deadlock, no-starvation, and the
property that a system meets its specifications, will be mechanically analyzed with such

software tools.



10. Bibliography

[Ashcroft7s] E. A. Ashcroft, "Proving Assertions about Parallel Programs™ JCSS, Vol.l0,
pp-110-135, 1975.

[Atkinson-Hewitt77] R. Atkinson and C. Hewitt, "Synchronization in Actor Systems”
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Los
Angles, January, 1977.

{Berzins76] V. Berzins, Proposal for Ph.D thesis research, submitted to Department of
Electrical Engineering and Computer Science, MIT, 1976.

[Boyer-et-al75] R. S. Boyer, B. Elispas, and K. N. Levitt, 'SELECT -- A Formal System for
Testing and Debugging Programs by Symbolic Execution” International
Conference on Reliable Software, Los Angles, 1975.

[Boyer-Moore75] R. S. Boyer, and ]. S. Moore, "Proving Theorems about LISP
Functions” JACM, Vol22, Nol, January, 1975.



- 205 -

(Burstali72] R. M. Burstali, “"Some Techniques for Proving Correctness of Programs
Which Alter Data Structures” Machine Intelligence 7, Edinburgh University Press,
Edinburgh, 1972.

(Burstall-Darlington75] R. M. Burstall, and J. Darlington, "Some Transformations for
Developing Recursive Functions” International Conference on Reliable Software,
Los Angles, April, 1975. '

[Clint73] M. Clint, "Program Proving: Coroutines” Acta Informatica, Vol.2, pp.50-63, 1973.

[Cohen75] E.S. Cohen "A Semantic Model for Parallel Systems with Scheduling” ACM
SIGPLAN-SIGACT Conference, Palo Alto, California, January, 1975.

(Dahi-et-al70] O. ]J. Dahl, B. Myhrhang, and K. Nygaard, "The SIMULA-67: Common
Base Language” Publication $-22, Norwegian Computing Center, Oslo, 1970.
aiso, G. Birtwistle, O. J. Dahl, B. Myhrhang, and K. Nygaard, SIMULA Begin
Auerbach, Philadelphia, 1973.

(Deutch72] L. P. Deutch, "An Interactive Program Verifier" Ph.D Thesis. University of
California at Berkeley, June, 1973.

(Dijkstra76] E. W. Dijkstra, A Discipline of Programming Prentice-Hall, Englewood
Cliffs, N.J., 1976

[Flon-Suzuki77] L. Flon and N. Suzuki, "Nondeterminism and ihe Correctness of Parallel
Programs” IFIP Working Conference, New Brunswick, 1977.

(Floyd67] R. W. Floyd, "Assigning Meaning to Programs” in J. T. Schwartz (Ed.)
Mathematical Aspect of Computer Science, American Mathematical Society,
Providence, Rhode Island, 1967.

[Greif75] 1. Greif, "Semantics of Communicating Parallel Processes” " Ph.D Thesis, MIT,
also Technical Report TR-154, Laboratory for Computer Science (formerly Pro ject
MAC), September, 1975.

(Greif-Hewitt75] 1. Greif, and C. Hewitt, "Actor Semantics of PLANNER-73" ACM
SIGPLAN-SIGACT Conference, Palo Alto, California, January, 1975.

(Guttag?5] J,' V, Guttag, "The specification and Applications to Programming of Abstract
Data Types” Ph.D Thesis, University of Toronto, also Computer System Research
Group Report CSRG-59, 1975.



- 206 -

{Hayes72) P. Hayes, "The Frame Problem and Related Problems in Artificial Intelligence”

in A, Elithorn and D. Jones (Ed.) mg:lgg! Intelligence and Human Thinkmg,
Jossey-Bass Inc., 1973.

[Hewitt75] C. Hewitt, “How to Use What You Know" International Joint Conference on
Artificial Intelligence, USSR, September, 1975. -

[Hewm??] C. Hetht "Viewing Control Structures as Patterns of Passmg Messages”
Journal of Artificial Intelligence, Vol.8, pp.323-364, 1977.

(Hewitt-Baker77) C. Hewitt and H. Baker Jr, "Laws for municating Parallel
- Processes” IFIP-77, Toronto, August, 1977. : .

[Hewitt-Smith75] C. Hewitt and B. C. Smith, "Towards a Programming Apprentice”
IEEE Transaction on Software. Engineering; YoLSE-l. Nol, March, 1975.

[Hoare69) C. A. R. Hoare, "An Axiomatic Bash for Campum_l'mgnmmmg CACM
Vol.12, October, 1969.

[Hoare72] C. A. R. Hoare, "Proof of Correctness of Data Representation”  Acta
Informatica, Voll, pp.271-28}, 1972.

[Holbaek-Hanssen-et-at77] E. Holbaek-Hanssen, P. Handlykken, and K. Nygaard, "System
Description and the DELTA Ianguage Pubucauon No.523 Norwegnan Computing
Center, 1977. -

(Igarashi-et-al75] S. Igarashi, R. L. London, and D. C. Luckham, "Automatic Program
Verification I: A Logical Basis and its Implemenmlm Acta Mormatica, Vol4,
pp145-182,1975.- '

"[Kahn74) G. Kahn, "The Semantics of A Snmple Language for Paraliel Programmmg
IFIP-74, Stockholm, 1974.

[Keller7s] R. M. Keller, "Formal ‘Verification of Parallel Progams CACM; Voll9, No7,
July, 1975,

[King69) ). King, "A Program Verifier" Ph.D. Thesis, Camegie-Melion University, 1969.

[King76)] 7_] King, Symbahc Execution and: ngfam Tﬂmg CACM Yolls, No'l July,
1976




- 207 -

(Learning-Research-Group76] Learning Research Group,  "Personal Dynamic Media"
SSL-76-1. Xerox Palo Alto Research Center, April, 1976

(Liskov-Zilles74] B. Liskov and S. Zilles, "Programming with Abstract Data Types”
ACM SIGPLAN Conference on Very High Level Languages, SIGPLAN
NOTICE, Vol$, No4, April, 1974.

(Liskov-Zilles75]  B. Liskov. and §. Zilles, "Specification Techniques for Data
Abstractions” IEEE Transactions on Software Engineering, VolSE-l, No.l, March,
1975.

[Liskov-Berzins77] B. Liskov and V. Berzins, "An Appraisal of Program Specifications”
Computation Group Memo, No.l4l-], Laboratory for Computer Science, MIT, 1977.,
also to appear in P. Wegner (Ed.) Research Directions in Software Technology.
MIT Press, Cambridge, 1978.

[(Lamport77] L. Lamport, "Proving the Correctness of Multiprocess Programs™ IEEE
Transactions on Software Engineering, Vol.SE-3, No.2, 1976.

{(London-et-al’6] R. L. London, M. Shaw, and Wm. A. Wulf, "Abstraction and
Verification in ALPHARD: A Symbol Table Example” Department of Computer
Science, Carnegie-Mellon University, December, 1976.

[Majster77] M. E. Ma ster, "Limits of the "Algebraic’ Specification of Abstract Data Types”
SIGPLAN NOTICE, Vol.l2, No.10, 1977.

[Manna69) Z. Manna, "The Correctness of Programs” JCSS, Vol.3, pp.119-127, 1969.

(McCarthy-Hayes69] J. McCarthy and P. Hayes, "Some Philosophical Problems from the
Standpoint of Artificial Intelligence” Machine Intelligence 4, American Elsevier,
New York, 1969,

(Milner78] R. Milner, "Processes: A Mathematical Model of Computing Agents” Logic
Colloquium, Bristol, England, 1973. '

(Naka jima-et-al77] R. Nakajima, M. Honda, and H. Nakahara, "Describing and Verifying
Programs with Abstract Types" IFIP Working Conference, New Brunswick, 1977.

[Owicki75] S. Owicki, "Axiomatic Techniques for Parallel Programs® Ph.D Thesis,
Department of Computer Science, Cornell University, 1975.



- 208 -

(Owicki-Gries76) S. Owicki and D. Gries, "Verifying Properties of Parallel Programs: An
Axiomatic Approach” CACM, Voll9, No5, 1976.

{Parnas72) D. L. Par‘nés, "A Technique for the Specification of Software Modules with
Examples” CACM, Vol.l5 No.5, 1972.

[Rich-Shrobe76] C. Rich, and H. E. Shrobe, “Initial Repbrt on a LISP Programmer’s
Apprentice” AI-TR No.354, Artificial Imetligence Laboratory, MIT, December, 1976

[Sandwall72] E. Sandwall, "An Approach to the Frame Problem and its Implementation”
in Machine Intelligence 7, Edinburgh University Press, Edinburgh, 1972.

[Scott72] D. Scott, "Lattice Theoretic Models for Various Type-free Caluculi®  4-th
International Congress "in Logic, Methodology and Philosophy of Science,
Bucharest, 1972.

[Schaffert-et-al78] C. Schaffert, A. Snyder, and R. Atkinson, "The CLU Reference
Manual” Laboratory for Computer Science (formaly Project MAC), MIT,
September, 1975

[Spitzen-Wegbreit75] ]. Spitzen, and B. Wegbreit, "The Verification and Synthesis of
Data Structures.” Acta Informatica, Vol4, pp.127-144, 1975.

(Steiger74] - Steiger, R. “Actor Machine Architecture”™ Master Thesis, Department of
Electrical Engineering and Computer Science, MIT, June, 1974.

(Suzuki75) N. Suzuki, “Automatic Program Verification II: Verifying Programs by
Algebraic and Logical Reduction” International Conference on Reliable Software,
Los Angles, April, 1975. ‘ - ’ o

(Waldinger77] R. Waldinger “Achieving Several Goals Simuitaneously” in Machine
Intelligence 8 Ellis Horwood Ltd., Chichester, 1977. :

[Wegbreit-Spitzen76] B. Wegbreit, and ]. M. Spitzen, “Proving Properties of Complex
Data Structures” JACM, Vol.28, No.2, April, 1976.

(Wulf-et-al76] Wm. A. Wulf, R. L. London, and M. Shaw, “Introduction to the
Construction and Verification of ALPHARD Programs” IEEE Transactions on
Software Engineering, Vol.SE-2, No.4 1976.




- 209 -

[Yonezawa75] A. Yonezawa, "Meta-evaiuation of Actors with Side-effects” Working
paper No.l0l, Artificial Intelligence Laboratory, MIT, June, 1975.

"Symbolic Evaluation using

[Yonezawa-Hewitt76]  A. Yonezawa, and C. Hewitt,
Al-Memo, No0.399,

Conceptual Representations for Programs with Side-effects.”
Artificial Intelligence Laboratory, MIT, December, 1976.

(Yonezawa-Hewitt77] A. Yonezawa, and C. Hewitt, “"Modelling Distributed Systems”
International Joint Conference on Artificial Intelligence, Cambridge, August, 1977,
also to appear in Machine Intelligence 9, Edinburgh University Press, Edinburgh,

1978.

(Zilles74]  S. Zilles, "Algebraic Specifications of Data Types” Project MAC Progress

Report Vol. Ii, pp.52-58, MIT, Cambridge, 1974.



- 910 -

Appendix | - Derivation of Axiom (5)

The following axiom which was given in the algebraic specification of queues in

Figure 26, Chapter 2.

Axiom (5)

if -IS-EMPTY(Q) A DEQUEUE(Q, A) = <B, Q¥ '
then DEQUEUE(ENQUEUE(Q, A)) = <B, ENQUEUE(Q', A)>

This is derived from the following specification of queues based .on conceptual

representations [which is identical to the one given in Figure 2.2, Chapter 2, except that the

functionality of the operations is omitted).

(E1)
(E2)
(E3)
(E4)
(ES)

(E6)

(Derivation)

CREATE-QUEUE() ---=> (QUEUE [})
ENQUEUE((QUEUE [%x]), A) ---=> (QUEUE [Ix A))
DEQUEUE((QUEUE [])) ----> ERROR
DEQUEUE((QUEUE [A ])) ====> <A, (QUEUE [ix])»
IS-EMPTY((QUEUE [I)) == TRUE

IS-EMPTY{((QUEUE [A Ix])) ====> FALSE

(1) ~IS-EMPTY(Q) ;given as the premise of  the axiom. |

(2) DEQUEUE(Q) = <B, Q» ;given as the premise of the axiom.

From (1) and (E6), @ must be of the form

(QUEUE [front-elemant lrest))

From (2) and (E4), front-element = B and Q' contains [lrest]. Thus (3) and (4)




-2l -
hold.
(3) Q = (QUEUE [B Irest])
(4) Q' = (QUEUE [trest))

(5) DEQUEUE(ENQUEUE(Q, A)) igiven in the consequence of the axiom.
= DEQUEUE(ENQUEUE((QUEUE [B Irest]), A) _ | from (3).
= DEQUEUE((QUEUE [B lrest A)) ;from (E2).
= <B, (QUEUE [lrest AD) ‘ - from (E4).
= <B, ENQUEUE((QUEUE [Irest]), A) ;from (E2).
= <B, ENQUEUE(Q', A)> | from (4).

Hence, DEQUEUE(ENQUEUE(Q, A)) = <B, ENQUEUE(Q', A) - (End of Derivation)



- 212 -

Appendix Il - Limits of Algebraic Specification

To show the existence of abstract data types which cannot be expressed by a finite
set of axioms in the algebraic approach, M. E. Ma jster{1977] gave a stack type which allows
us to look at any stack elements by using a position information i. The unctionality of this

type is as follows.

CREATE: - ':tach' icreates an empty stack.

PUSH: stack X item ---> stack or error
' stries to insert an item at the top.
;if i is not pointing to the top, undefined
jotherwise i points to the new top item.

DOWN: stack ---> stack or error
itries to increment i by one.
if i already points to the bottom item, error.

POP: stack ---> stack or error
itries to remove the top item.
;if i is not pointing to the top, error
;otherwise, i points to the new top item.

READ: stack ---> stack or error
itries to read the item pointed by i.
if stack is empty, error.

RETURN: stack ---> stack or error
itries to cause i to point to the top item.
;if stack is empty, error.




- 213 -
Unfortunately, the axioms for these operations cannot be characterized finitely.
For example, we need infinitely many aqums expressed as follows.
RETURN(DOWN)™(PUSH)(ig yuipy) & (PUSH) i pnsip)

foralilm>0and m<n

where  PUSH"(iy,..,i;) = PUSH(..PUSH(CREATE(), iy ).., i)

This data type can be easily specified by using conceptual representations of the

following form.

(STACK position: i)(items: [...]))

The (position:...) component keeps the position information and the conceptual sequence in

the (items:.) represents stack elements. A specification based on the conceptual

representations is given below.

(1) CREATE() ==-> (STACK(position: 1)(items: [}))

(2) PUSH((ST/ICK(position: i)items: [1s])), I)
if i=1 ===> (STACK(position: i)(items: [I §5}))
otherwise =--=> ERROR

(3) DOWN((ST/ICK (position: i)(items: [1s)))
if i <length[ls] =--=> (STACK(position: i + 1)(items: [Is]))
otherwise ==-=> ERROR



- 214 -

(8) POP({(STACK (position: i){itemas: [18]))
ifi=1ands=[Ilrest] ===> (STACK(position: i)(items: [irest]))
otherwise ==-=> ERROR

(5) READUSTACK(position: ?}items: [])) ==-=> ERROR

(6) READ((STACK (position: i)(items: [Ix1 I 1x2])) =-=> 1

where length[Ix1]=i-1

(7) RETURNUST/ACK (position: i)(items: [1s]))
ifs=[] =-=-> ERROR

otherwise ===> (ST/ACK(position: 1){(items: [1s]))



- 215 -

Appendix lli - Recursion, iteration and Loop Invariants

The handling of recursive invocations of modules in symbolic evaluation has been
llustrated in the example of empty-one-queue-into-another in Section 5.2.1, Chapter 5. In
general, recursive invocations are treated as the same as ordinary invocations of modules.
When a [recursive] invocation of a module M is encountered in symbolic evaluation, the
cqntréct of M is referred to and the specified results and postconditions are used to
continue the symbolic evaluation after making sure that all the preconditions of M are
satisfied.

[terations in implementations can be handled almost in the same way, because the
iteration construct in PLASMA allows us to treat an iteration as a module. Thus if
specifications of such modules are supplied, loops can be treated as ordinary modules.

Another way of dealing with iterations is to rely on assertions which hold every
time the control reaches the beginning point of a loop. Such assertions are called loop
invariants or inductive assertions(Floyd67, Hoare69). Since loop invariants are usually not
derived from the process of symbolic evaluation, they must be supplied externally.
Symbolic evaluation of the part of a code which follows such assertions is carried out under
the assumption that the assertions hold in the situation corresponding to the beginning

point of the loop. To illustrate this technique, we will consider a simple example.



- 96 -
Fig. 1IL1. An Iterative Version of empty-one-queue-into=snother

{empty-one-queue-into-another-a =
(=> [=q1 =q2]
({al q2] =>
{loop =
=> [=qql =qq2]

L 2 3

(rules (qq1 <= (dq:))

{=> {exhausted:)

- Scthhd-qql -

{done: [qql qq2]))
(=> [=front-0f~qql =dequeued-qql]

- Sdequeuod—qu -
{qq2 <= (nq: front-of-qql))
(loop <= [dequeued-aql gq2])) I

In Figure II1l, an iterative version of empty-one-queve-into-another-a is given.

The loop invariant for loop which holds at the point where sx is placed in the code is
[8xx1 Ixx2] = [Ix1 Ex2]}

where xx1 and xx2 are the elements of the impure queues which are bound to qql and qq2,
respectively, and x1 and x2 are the elements of the impure queues bound to q1 and q2,

respectively. This invariant is expressed in our formalism as follows.



- 27 -

{oop-Invariant:  [Ixx1 ¥Ixx2] = [Ix1 Ix2]

where
in Sit[[ loop <= [QQ1 QQ2]]]

(QQ1 is-a (IMPURE-QUEUE [1xx1]))
(QQ2 is-a (IMPURE-QUEUE [1xx2))),

in Sit[[ empty-one-queue-into-another-a <= [Q1 Q2]]] -

(Q1 is-a (/MPURE-QUEUE ['x1)))
(Q2 is-a (IMPURE-QUEUE [Ix2]))) >

Given the above invariant, it is easily demonstrated that the implementation in Figure 1111
satisfies the contract for empty-one-queue-into-another given in Figure 55 in Chapter 5.

The key point of the demonstration is that when the control reaches S the

exhausted-qql’
impure queue QQ1 that qql is bound to is empty, i.e. xx1 = [. Therefore, the elements of
the impure queue 'QQZ that qq2 is bound to, which are expressed as xx2, are equal to [Ix1
Ix2] because [Ixx1 Ixx2] = [Ix1 Ix2] (from the invariant), and xx1 = [] imply xx2 = [ix1
£x2]. The rest of the demonstration can be carried out almost in the same way as that for

the recursive version shown in Section 5.2.1, Chapter 5.



- 918 -

Appendix IV - Convergence of empty-one-queue-into-another

Most event specifications written in our specif ication language contain
{caused-event:..> or Creturn:.) clauses. As explained in Sectionts.l. Chapter 4,_;he existence
of these clauses in an event specification indicates that an event E stated in such a clause is
required to take place. Thus, to verify an impmuﬁon a_gajnk specifications, we.have to
demonstrate that the event E always takes plai:e. as well as that the postconditions are
satisfied. ’ |

As an example, let us consider the convergence of the mplememanon of
empty-one-queva-into-another [hereafter empty] given in anure 5.5 in Chapter 5. [The
following discussion is based on the symbohc evaluatlon of the xmplememanon presented in
Section 5.2.1, Chapter 5] For the demonstration of the convergence, we need to show that
the control always reaches the situation Sexhaustod-ql' provnded that the two actors sent to
emply are distinct and both are impure queue actors.

If the impure queue bound to q1 becomes empty dunng the recursive invocation of
emply, S exhausted-q1 €3N be reached. Thus it is sufficient to show that the length of the
impure qucue eventually becomes zero. Since the length of the impure queue is an
afbitrary non-negative integer when it arrives at empty for the first time, we need to show
that its length decreases at its every subsequent arrival at empty. What has to be shown can
be stated in our formalism as follows.

(length-of(ql) in Sreceived-quem )
is-greater-than ' _ - (%)

(tength-of(dequeve=ql) in B gnciqued-q2 !

To show this, the situational tree produced by the symbolic evaluation of the

implementation is examined. Length-of on impure queues is defined as



- 219 -
<property: length-of(Q) = length(x)
where (Q is-a (IMPURE-QUEUE [8x])) >
By using assertions about Q1 and Q2 in conjunction with the binding information for qi

- and dequeued-ql, we obtain the following facts.

length-of(q1) = length(x1) in B qcqived-queues:

length-of(dequeue-q1) = lengthly) in smuouod-cﬂ
Since x1 = [B ly] holds, .the desired relation (%) is shown.
Note that the precondition that Q1 and Q2 are distinct actors was used in obtaining

the assertion about the state of Q1 in 8 2 This precondition guarantees that [Q2

enqueue-q
= (nq:..)] does not change the state of Q1, and hence that assertion could be inherited

from B dequeued-ql



-220-

Appendix V - Another Specification of One-a-at-Time Serializers

Anather specification of one-at-a-time serializers is given as the following four
event specifications. The first event specification is concerned with the creation of a
one-at-a-time serializer. The second one describes the e_ven_t‘y:here the serializer receives a
requ.est. A buck passer actor BP is created and placed in the crowd. Note in (Case-1:...)
clause that BP is sent to the resource R és the continuation of the message in the caused
event. A reply from the resource is ﬁlways sent to a buck passer BP. This is described in
the third event specification. Then the buck passer sends the i';ply from the resource to the
serializer G which created BP. The fourth event specificétloh describes how the reply sent

from the buck passer is handled by a serializer.

<event: {[ create-one-at-a-time <= RJ
Creturn: G* >
<post-cond: (G is-a (ONE-AT-A-TIME (queue: [])(croswd: {})iresource: R))) >

Cerent: [ G <== M]
where M = [request: RQ reply-to: C)
(Case-1:
<pre-cond: (G is-a (ONE-AT-N-TIME (queue: [])crowd: {})(resource: R))) >
{next-cond:
(G is-a (ONE-AT-A-TIME (queue: [JMcrowd: {BP*})(resource: R)))
(BP is-a (BUCK-P/SSER (continuation: C){(serialixer: G))) >
<caused-events: [ R <== [request: RQ reply-t0: BP]] )
{(Case-2: :
<pre-cond: (G is-a (ONE-AT-N-TIME (queue: [Ix))crowd: {BP})(resource: R))) >
<nevi-cond: (G is-a (ONE-AT-N-TIME {queue: [Ix M})crowd: {BP})(resource: R))) >

<caused-events: {} OP




-22[-

<event: [ BP <== [reply: A]] ' \
<pre-cond: (BP is-a (BUCK-PASSER (continuation: C){serializer: G))) >
<caused-event: [ G <== [reply: (buck: A (continuation: C) (buck-passer: BP))1] >

<event: [ G <== [reply: (buck: A (continuation: C) (buck-passer: _BP))]]

(Case-1: : .
<pre-cond: (G is-a (ONE-AT-A-TIME (queue: [])crowd: {BP})(resource: R))) >
<next-cond: (G is-a (ONE-AT-A-TIME (queue: []){crowd: {}){resource: R))) >
<caused-events: [[C <== [reply: A]] >)

(Case-2:
<pre-cond: .

(G is-a (ONE-AT-N-TIME (queue: [WM Ix])(crowd: {BP})(resource: R)))
(WM = [request: RQ reply-to: CC)) >
<next-cond:
(G is-a (ONE-AT-N-TIME (queue: [Ix])(crowd: {NBP*}){resource: R)))
(NBP is-a (BUCK-PASSER (continuation: CC){serializer: G)))) >
<caused-events: { [ C <== [reply: Al] , [R <== {request: RQ reply-to: NBP]] } >»»



This empty page was substituted for a
blank page in the original document.



CS-TR Scanning Project ‘
Document Control Form Date: !0/ &6 /S

Report # L.CSTR- (9]

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
X Laboratory for Computer Science (LCS)

Document Type:

XL Technical Report (TR) [J Technical Memo (TM)
O Other:

Document Information  Number of pages: 322(J28-imsssS)

“  Notto include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
X Double-sided X Double-sided
Print type:
O Typewriter [] OffsetPress [] LaserPrint
[O] inkietPrinter [] Unknown [J other:

Check each if included with document:

(0 DoD Form O Funding Agent Form X Cover Page
X Spine [ Printers Notes [0 Photo negatives
O Other
Page Data:
Blank PageSwy pegemmbes,_F 0 LLowss LAsT PAGE

Photographs/Tonal Material ey pege numbes:

Qther (vow descriptonpage numben:
Description : Page Number:

Timage MAGHI - 999 Y unit’so TITLE PAGE, - JR) , UnNHBUANK
(23- 223 )S-CANQDIJTNLQUER 5P)NE TRGTS(D)

Scanning Agent Signoff:
Date Received: 10 /26795 Date Scanned: _/[ /141 95 Date Returned: /7 13/ 35

Scanning Agent Signature: W % Qﬁ’gy o oot Fom wd




Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94




