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I. Introduction
We consider the computational complexity of the theory of real addition
(ThCR,+>) and several related theories. Previous results provide the following
bounds on the complexity of Th<R,+>:
1) Lower bound [FIR74]. Any decision procedure for ThCR,+> requires
nondeterministic t/me 2°(") for infinitely many n.

2) Upper bound [FeR73]. Th<R,+> is decidable within space 29(M),

Because the precise relation between ‘computation time and space remains
unknown, there is an exponential dbcnpmym upper and lower bounds are
both expressed In terms of time or space alone. That is, the exponential lower
bound (1) for time I; only known to lnply. a linear space lower bound; the
expomential upper bound (2) for space is only known to imply a double
exponential upper bound for time.

in this thesis we improve the lower bound, showing in particular

Main Theorem: There is an € > O such that any decision procedure for Th<R,+>
requires either more than space 25" or more than nondeterministic time 2" for

infinitely many n.

Let (N)TISP(T(n),8(n)) be the family 61‘ languages recognizable by a
(non)deterministic Turing machine which runs in time T(n) and space 8(n)

simultaneously for almost all n. The Main Theorem is equivalent to the assertion



that Th<R,+> Is not a member of NTISP(2",2€") for some € > O.

We do not interpret the Main Theorem as suggesting the likelihood of an
inherent time-space tradeoff .ﬁonj dom aigorithms for Th<R,+>. The
The_orem merely leaves open the possibility of such a tradeoff.

The Main Theorem applies to other theories such as monadic predicate
calculus and exponentially bounded concatenation theory, all of .whlch can be
shown to be Iogfllncar equivalent [SM73, 8T074].v Recently Berman has
observed that Th<R,+) is an exampie of a language voonphtc under polynomial
time reduction in what is essentially the class Alt(2",n) of languages

recognizable by alternating Turing machines using time 2“, end n aiternations
[BER77, CSTO76, KO76]. Our resuits imply that NTISP(2"™ 2" c A(2%M,o(n)),
an observation which we interpret as supporting the conjecture that Berman's
alternating machine complexity classes properly contain the languages

recognizable in nondeterministic exponential time.

Il. TIME-SPACE CLASSES

The basic computational model used Is a deterministic or nondeterministic
muititape Turing machine (DTM or NTM). It has a finite number of worktapes,
each with a single read-write head which can move In both directions and a
single input tape with a two-way read-only head. An accepting computation of
a Turing machine M on input x is a computation of M which starts with the

word x written on the input tape and the rest of the tapes blank, and
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terminates In an accepting state. The time of a conputatlon is the number of
steps in It; its space is the number of worktape squares visited during the
computation (input tape squares not onuntod). By the Nnear speed-up theorem
[HUBQ], it suffices to specify time and space bounds only to within a constant
factor (e.g., nhmemuthfymmaumm). Al time and
space bounds are assumed to be positive vaiued functions on the positive

integers.

Definition 1: Let T and S be functions from the positive integers to the positive
integers. Then a (n)tiap(T,S)-machine Is a (non)deterministic multitape Turing
machine which on every input of length n computes for time at most T(n) and

space at most S(n).

Remark: Both time and space bounds have to be observed by a single

computation.

Definition 2: Let T be a finite alphabet. Then (N)TISP(T(n),8(n)) is the set of

languages A € Z* for which thers exists a (n)tisp(T,8)-machine M such that for
all x € Z* (where n denotes the length of x)
1) If x € A then there is an accepting computation of M on X,

i1) it x ¢ A then there is no accepting computation of M on x.

We will show that under some famlllar‘ *honesty" conditions [GLI71, SFM73]

upon T and S, TISP(NTISP) défines a hierarchy in the following sense: for small



increases in the growth rate of T and 8 new languages can be accepted which

could not be accepted before.

Definition 3: [SFM73] A function is fully constructible if there is a DTM M such

thatforeacthMnﬂm-hmwﬂn)mm:m

#55(N)-24 on one of its work tapes.

Definition 4: [SFM73] A function T(n) is a running time If there is a DTM M
such that for each input of length n, the computation of M hes precisely T(n)

steps.

Definition &: Two functions T(n) and S(n) are compatible if each of them is

computablé by a MT.S)-MM.

Remark: If two functions T and § are compatible then T is a running time and
S is fully constructible. nbanpwmm'M-mmmm

the converse holds.



Theorem 1: Let T, and 8, and T, and 8, be compatible functions respectively.
It | |

(1) T4(n)og(T4(n)) = o(T5(n)) and

(1) 84(m = o(8x(n)
then .

“TISP(T4(n),8,(n)) vs TISP(T5(n),85(n)) .

Proof:

it is a well-known result that condition (i) suffices to show that
DTIME(T4(n)) (l.e., the class of languages recognized by a DTM within time
T1(n) ) is properly contained in DTIME(T(n)). Likewiee condition (K) suffices to
obtain a simiar resuit for deterministic space [HUGG]. It ls straightforwerd to

combine these proofs to obtain the separstion result for TISP. We omit the
detalis. O
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Theorem 2: Let 8,(n) 2 log(n) and lot'T" and 8, and T, and S, be compatible
respectively. | | | |
it
(1) Ty(ne1) = o(To(n) and
(1) 8§4(m1) = o(8p(n)) ,
then |

NTISP(T(n),8,(n)) § NTISP(T5(n),8,(n)) .

Proof:

Condition (i) suffices to obtain a separation result for nondeterministic time
classes whereas condition (il) is ndomtc to get a similar result for
nondeterministic space classes [SFM73]). We witl sketch how to combine the
proofs of these rasuits - assuming femillarity with the notation of [SFM73] - to
obtain a proof of Theorem 2. The conditions for the program code (Appendix | in
[SFM73]) are the same as for the time and space theorem (Thooroin 1 and
" Theorem 2 in [SFM73]) . The ullvonal m first lays off 8,(n) squares
and then behaves llku‘mo clocked version. Only in the case when k 2 T(|x])
and log(k) 2 S(jx|) doss the machine M' behave iike the machine M. in all other

‘cases it behaves like U,. a



1"

‘Msw'fupmmuummummwmmumw

defined in [STO77].

Lemma 1:

Lot A Siog-n B: T(n) and 8(n) be monotone nondecreasing functions. Then
menhmmpmmmcSONohmi
Q)

DTIME(T(n)+p(n)) ’ DTIME(T(cn)) )
| DSPACE(S(m)+iogtn)) DSPACE(S(on))
Ae | =8¢ |
NTIME(T(n)ep(n) NTIME(T(om)
NSPACE(S(n)+iog(n)) - NSPACE(S(cn))
0
(TISPCT(np(n),8(n)+og(n)). TI8P(T(on),8(cn))
Ag¢ =B ¢
NTISP(T(n)p(n),8(n)+log(n)) | NTMT(cn).S(cn))

For a proof of part (i) of this Lamma see [8TO74]. Part (i) can be

shown in an analogous way.
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M. THE THEORY OF REAL ADDITION

Let R = <R,+> be the structure consisting of the set of all real numbers
with the operation of addition. Let Th(R) be the first order theory of R, Le.,

the set of all first order sentences true in R.

As a technical tool for the proof of the Main Theorem as stated in the
introduction we will use the first order theory of string concatenation and what
‘we call t-bounded concatenation fhoory. Meyer [FM8768) has shown that
2"-bounded concatenation theory is log-in reducible to Th(R). We will show
that NTISP(2" 2" Is log-Hin reducible to 2"-beunded concatenation theory. The
Main Theorem then follows immediately from Lemma 1, Theorem 2 and the

trammyuy of log-lin reducibliity.

Definition 6: Let T be a finite set and let L(Z) be the first order language with
equality, with constants ¢ for each ¢ « I, and whose only atomic formulae
(other than equalities) are of the form cat(x.,y,2). The elementary theory of
concatenation, CT(Z), is the set of true sentenes in L(Z) under the following
interpretation: Z* s the underlying domain, the oconstant symbols denote the
elements ¢ € I, and for ab,c « Z% gat(ab,c) ls true iff a is the concatenation

of b and c.

We assume that one of the standard formats is used for writing well

formed formulae In CT(Z) which are bullt up with propositional connectives and
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quantifiers as usual. The /ength of a formula ls the number of symbois in the
formula where subscripts are written in binary. |
By bounding the length of strings iIn CT(Z) (in a sense made precise in

the following definition), we obtain bounded ooncatentation theory.

Definition 7: Let Z be a finite set and let L(Z) be the first order language with
equality, with constants ¢ for ‘nch ¢ ¢ Z, and whose only atomic formulae
(other than equalities) '.fo of the f‘onl‘ mg(a.b.c,g); “Then for any function
t: N+ N, we define t-bounded concatenation theory (t-BCT(Z)) as the set of
true sor"tencu in LZ) under the following interpretation: Z* is the underlying
domain, the constant oyuboh dencts the elements ¢ ¢ 2, and for abc € T%
beat(a,b,c,n) is true iff a is the concatenation of b and ¢ and the length of a
is smaller than or equal to t(n), where n is the unary numeral for the

nonnegative integer n.

Remark: As n is written in unary the length of the atomic formula bcat(a,b,c,n)

is proportional to n plus the size of the variables ab and c.

in reducing NTISP to bounded concatenation theory it is convenient to
restrict the underlying computational model to be a “simple™ one-tape Turing
machine (ST!l) [STO77]. This can be done without hu of generaiity because
an STM can simulate a multitape Turing machine with only a quadratic time loss
and no space loss [HUB9). Furthermore, we assume that any move which shifts

'thehaadoﬂm.hﬂm«untmumunsmum-ndnmttm
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input.

In the reduction we will describe the computation of an STM with short
formulae in 2°"-BCT(Z). Let M be an STM, let Q dm the set of its states
andSltstapqclprot. Mmmmmm(l.d.)ofﬂhlnywordln
S*Gs*. As In [STO77] we define the function Nexty, : . 8%08* + 25%95%, where
Nexty(d) is the set of Ld.'s that cen ocour one step after Ld. d. We remark
here that Nexty, is length preserving. It suffioss to make "local checks® within
id. d, and i.d. d, to decide If d, € Nexty(d,). The reason for this is that in

one step only a few symbols around the state symbol cen change.

Lemma 2: [STO77] Let M be an STM, $48uQ, and Zs8uQuiS). There Is a

fmcmnunzz’oz"mmm.mm:

Let d, be any ld. of M, fet k be the length of d, .nnd suppose
$d,$ = d,od"d,z..... d,kd, s+ Where d, «Z for 05 )5 kel and
$9,8 = dygdy dpydydy,,,  Where d €T for 05 ) 5 kel
then |

d, € Nexty(d,) iff "2.3-1 !J 21 € N”(d",_id”d”“) for ol‘1 S )sk

For a proof of Lemma 2 see [STO74]. Informalily Ny specifies atl
possibilities of how the symbols of one L.d. can change in one step.

The classes 1-TISP and 1-NTISP are defined for 8TW's In the same way
that TISP and NTISP were given in Definition 2 above for (n)tiep(T,8)-machines.

Then the main lemma can be stated as following:



18

Lomma 3: (V A € 1-NTISP(2™, 2")X3 ZXA Siog-tin 2"-8cT(X)).

Proof:

LatnhaMamMAc‘e*mmwm
time z“zj-nd.p.«’z'".' Let Z be the aiphabet for M piven in Lemma 2. For
eacher‘mﬂMlMﬂ«é*thﬁTG)mmm
there s an accepting computation of M on Input x. Thus X « A Hff 8 Is true in
2°M-BCT(Z). We will then observe that the function mapping x to 8, Is
computable in deterministic logspace and Is Nnear bounded, Viz., the length of
sxhatthtouuMdfxmvwlMMtomm.

Let n = |x|. m.oomuumwumnz"'-tmm.m-
word consisting of a representation of the whole computation would be of length
20(n®) ang wm‘mmwuwhm'mwz’“-wrm.
instead we shall define the formula S, based on the construction of the formula

Pu(z)mh.fofllmmk.nmdfwulzcl'.hmm

1) z is a string of the form $2,82,8..82,8 ,

2) Zj represents an Id. , 1 sjsé".

3) lz] = 21, 1s)s2",

4) in some cmutntbn of M which 'is started in i.d. 2, the id. z,,, can be

reached in at most 25" steps using space at most 2" , 1 5 j s 2" .
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The formulas P, (z) wil be defined inductively. First we wil write them In

CT(Z) to clarify the idea underlying the construction of the appropriate formulae
in 23"-BCT(D). |

As a notational convenience we will introduce some abbreviations for

formulae in concatentation theory. Let A = (¢,93...0.), where ¢, € T for

1515k
Abbreviation . Formda
P=aqr ~ _cat(p,qr)
P=qrc' - (IxXp = qx A X = rs)
ped | pre)v..vip=e)
p € A* | | (VxyzXp = xy2nyeZ + y € A)
Pcq | C @xyXa = xpy)

We also define for each k € N a formula 4,(x) of concatenation theory
which u"mmmmm.ofxumsk. We define £,(x) inductively in
such a way that the length of the formula Iteelf ls proportional to log(k) pius
tholcnothofthovaﬂﬁhx.

2,(x) = xXeZF
2,,(x) = (Fyzlx syzAa(VWN(wW=yvwsz) l'(ﬁ)))

L) = Gyadx = yz A Byly) A 4,0

Furthomorowonotoﬁntﬂnnwlvmmmmtmcﬂmla
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fromlknudonlybodlnﬂnctﬂbnuohothormdmmfrnvnﬂabluofl,‘.

m.wammmmmmnmmmtg.

The formula Form(z) will assert conditions 1) - 3) above. We use the
convention that in every iLd. the state symbol q is positioned immediately to the

left of the symbol being scanned.

Form(z) := (GwNz=8w8) A Lygon,s,(2) A(VZH{(82,8cZ A 8¢2,) »

[23n,1(2,) A (3w,,w,iqXw,w,€8% A q€Q A wpre A z,-wl,qwz ) )

Mthohducﬂmbmmﬂmﬂ&ctthofwﬂdpu(z)m“mﬂu
the conditions 1) - 3) above and the conditions that each of the successive

Ld.'s are elther identical or follow in one step.

. Pon(2) := Form(z) a (vVz,2,){(82,82.8cz A $¢z, A 8¢2,) + (3w, .8,,G,8,W,,u)

(s,,8,€5ui8} A qeQ A Oz,t-w,a,duzwz A Z2Wuw, A ueNy(s,gs,))] (2)

For the Induction step we will write a formula Pre1n(2) using P, () as a

subformula. The basic idea Is that L.d. z,. can be reached in 2(K*1N gig0s

1
froml.d.zlmmcrohnomwwﬂchhuz‘nnwm.zmnaoufﬂxmd

for which P, (w) hoids. Thus P,,, (z) can be written as :

Pre1nl2) = Form(z) A (v2,,2,)((82,82,8cz A 8¢z, A 8¢2,) + -
Gw, P, ,(82,8w 82,891  (3)
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This compietes the industive conetruction of P, ,(2).

We remark here that the length of P,,,, ks squsl to a conetant plus the
length of P, and the length of the formula Form. The formula Form is of length
O(n). Hence Pﬁbof‘hncm.qnz)‘MWdchnmmof
Form. However thers is o standard “abbrevietion trick® [RA7S, FeR78] which
aliows n occurrences of subformulas which are the same - except for the name
ofthovaﬂ-bm-bbonphudby“-mwmdnmvm
and one occurrence of the subformula. m'hmm'hi’u
mamanoqwmmw”qmmm

We wish now to mtmct a ohor( formula b-’»PM(z) in tho language of
23"-BCT(Z) which is true iff conditions 1) - 4) as above hold. The
straightforward way to obtain such a b-P,, Is o first rewrite P, 80 that the
m.mrcmuqum. Since there are only proportional
tonoccunoncuofggg_hP'thM'MMMhO(n).mémmxt
apply the standard abbreviation mdi\im the multiple ocourrences of bcat to
obtainvl formula b-P, . which is aiso of length O(niog(n)). This would be enough
to prove a v;onbnﬁof ouwr Main Theorem with Za"zm"» n plnoo of 20("2)
and 20(V100(M) 1 Liace of 200, 1y the pmmpon below we will give a
shightly more compicated construction yielding & formula b-P, which Is actually
of length O(n).
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The idea of the construction is as folliows: the formula 8, (a,b,c,d,e,2)

will mean the same as

becat(a,b,c,n) A 2,4,,(d) A lm,(o) A P (2).
Thus the formula 8, ., (a,b,c,d,e.2) wit bo equivalent to
(3t.9.u)S, (ab,c,tgu) A ()8, (e.ccdoy) A P, .,‘,(z)"

(where é denotes the empty string).

Now note that as in (3) P,,,(2) ls equivalent to

| Fom(z.) A (Vz,.zz)[(tz,ua‘cz A 8¢2, A uzz) -
‘(h,.fﬂ%(c.c.qf“z,“,‘z}))]- 4)

Similarty the formula Form(z) as In (1) ls equivalent to

(IwXz=8w$) A (IHu)8, (c,€0,f,z0) A (VZ){(82,8cz A 8¢2,) +

[(Sg.u)su(t.c.t.z,.o.u) A (YW, W)W, w,e8% A qeQ A wue A 25w qw,)])}  (5)

We observe now that the meaning of formulae equivalent to (4) and (5)
does not ckhango it each occurrence ot. the formula 2!1 is replaced by the
formula bcat as the length of all strings in (4) and (85) is bounded by 23",

Ms‘(4)am(5)mmmmwmm“wmof
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cat(p,q,r) by (3f,g,u)8, (P.arfou). So we can conciude that a formula S'etn
equivalent to sk”'n can be written using a fixed number
(independent of k and n) of copies of s,u, plus a fixed number of additional
quantifiers, variables and logical connectives. We assume now that the reader
is familiar with the w«m'mmmm’m we merely
summarize its application to §'.,, . Applying the sbbreviation trick to §',,, n
ylelds the formula 8., which has only one copy of 8,, as & subformula and a
fixed number of quantifiers, variables and logical connectives. Again we note
that no difficulty arises If the new variables introduced in constructing S,,,,
coincide wlth variables bound inside 8., Thus only a constant number of

additional varlablu are needed to construct 8“, - from 8o o Therefore the

length of S, ., is O(k+1) pius the length of 8, .

We will proceed now in constructing a formula 8, (a,b.c.d,e,z) whose
meaning is tho same as bcat(a,b,c.n) and £,, (d) md Lnne2)01(0) and P, (2).
As we want the length of 8o n to be proportional to n, we shall require a
formula b-£,, (ab,c,d) written in the language of 2°"-BCT(X) whose length Is
O(n) blus O(log(m)) plus the length of a,b,c and d end which means that
bcat(a,b,c,n) holds and that the length of d is m, where m is any Integer s 2",
The construction of b-£,, n(a.b,c,d) is simiiar to the one for £ (d).

We henceforth use the same notational abbreviations as were introduced
for fwﬁulaq 'ln ‘CT(!) except that p = gr is an abﬁnvhtlon for the formula

bcat(p,q,r,n).




a1

b-2, (abc,d) := beat(abecn) A del
bl n(8b,c,d) = (30,XVP.qra)(<Paredn<d,al,ed v <p.qredacabac,>) +
b-2,, n(P.ar8)]

b-lmﬂ.n(a.b.c.d) = (ao.be-lm(d,.,f,.) A h-“."(-.b'c'f))

By carefully reusing bound variables in the construction above, only a
fixed number of distinct variables is needed. Thus the length of b-4,, ,(a,b,c,d)
is O(n) plus O(log(m)) plus the length of a,b,c and d. Note that therefors the
lengths of} the formulae b-lz,", '”(n.b.c.d) and b-lﬂz’,’”ﬂ 'n(a.b.c,d) are both

proportional to n plus the length of a,b,c and d.

Now let b-P, (z) be the formula obtained from Poa(2) as given in (2) by
first replacing each of occurrence of l.(d) by b-l..n(c.c.e.d) and then by
substituting the formula bocat(p,q,r,n) for each occurrence of the formula
cat(p,q,r). As only a fixed number (independent of n) of copies of the formulae
b=2,n01,n » B=Eonaniz)ey,n @Nd beat (not including the beat's inside b-fmp) are
needed to write tllo formuia b-P,, , the length of b-P, (z) Is proportional to n.

Finally, we take 5, (a,b,c,d,e,2) to be
' b-lz,,‘"n(a,b,c.d) A b-lz.,(mz)ﬂ'“(c,c,c.o) A b-PM(z) .

Therefore the length of sm(u.b,c.d.o,z) is O(n).
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Thus we have shown how to conetruct a formula 8, (ab.c,de2) In the
language of 2°"-BCT(Z) whose meaning is the same as the oconjunction of
b-L20 41,0(8:0,0,d), b8 nisn,00, ',(i.t,t.o) and b-P,(z) and whose length Iis
proportional to n.

_ mmm«mmmmsxmwmm-mwsm.
a foru;ula INy (W) which is true itf w hmm X, Lot x,X,..,x be tho
successive symbois in x. Then the otrmvd way to write the formula
Ny n(W) uses n different variables and therefore its louoﬂ: would be nlog(n).
instead we will define a formule Ixm(n.h.o,w) m meening s the same as the
conjunction of INy (w) and boat(ab,c), such that the length of I, ,, is O(n).

Ie’n(u,b,c.w) = mﬂl,b.c.g) Aw=g,
For ueZ¥, seZ, we define .
lug n(ab,c,w) := (3w,)(Vp.q.r.,a)[((p.q.r,a)t(u.w,.t,vc,) v <p,qrsd>=<a,b,c,w,>) +

Iy .',,(p_.d.r.-)]

Again we note th-t 'x,n can be constructed using a fixed number of

distinct variables.

Finally let S, be the following formula, where q, denctes the initial state,
Qg the accepting state and & the blank tape symbol.

Sx = Qwb.zu){ly (€.c.6w) A be(B)* A SawbBq ubcz A S, (€,€,0,q,u,2,2)]




Clearly x € A iff S, is (true) in 22"-BCT(Z). We have siready shown that
' the function mapping x to S, is linear bounded. The results of [SM73, LIN74]
may be used to show that the computation of 8, can be carried out within
deterministic logspace; we leave the verification of this final claim to the

reader. Hence the transformation of x to 8, implies that A <00y, 23-8CT(2).

Remark: For any ¢ > 1 and any alphabet 2 there exists an aiphabet © such

that 2°"-BCT(Z) is log-tin reducible to 2"-BCT(V).

Lemma 3 and the preceding remark, tonnthir with the reduction of

2"-BCT(T) to Th(R,+> compietes the proof of the Main Theorem.

IV. OPEN PROBLEMS

in this thesis we classified logical theories with respect to both
computation time nnp space. The bnlé open question rc}nalnlng is to
characterize the oomphxlty of Th<R,+> (or equivalently Ait(2",n)) more precisely
in.terms of time and space. Note that the claims that Alt(2",n) is equivalent to
NTIME(2") or equivalent to SPACE(2"), or both for that matter, remain consistent
with our Main Theorem.

A second related open probiem is to improve the known lower bounds on
the compiexity of Presburger Arithmetic. Such lnprcvulonti do not follow

directly by the same method used to bound Th<R+>, as can easily be seen by
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parameterizing our main resuit. We have shown that for f(n)=2", the class
NTISP((n)",f(n)) reduces tc; Th<R,+>. The same proof shows only that
NTISP(g(n)",9(n)) reduces to Presburger Arithmetic where o(n)'zzn , & result
which degenerates to the known ruu!f. [FIR74] that NTOME(zzn) reduces to
Presburger Arithmetic.

We hope that the framework we have set up leads to a better
understanding of the relation between the computational resources time and

space. ‘
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APPENDIX: RELATION BETWEEN THE COMPLEXITY CLASSES
§4(f(n),g(n)) [BER77] AND Alt(t(n).a(n))

In his paper Berman [BER77] introduced a new complaxity measure based
on the specification of sets by bounded quantification of lnear-time predicates.

Definition 1: [BER77] A set is in the complexity class 81(f(n).¢(n)) it there is a
linear-time predicate R(-) on strings such that
A={x | W'Vyz...w“w[mxlmyii....hm) A lygletixD) A ... A IYoqpl<tixD1}

Furthermore he observes that Th<R,+> is complets In g81 (2"".n) under a
polynomial time reduction. We will show that the complexity measure Sy Is

menﬂuﬂymsmuthommmmby:

Definition 2: A set is In the complexity class Alt(t(n),a(n)) if there Is &n
aiternating Turing machine [CSTO76] which sccepts A within time t(n) using at

most a(n) alternations.
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Lemma 1:
Let f(n) and g(n) be eomputubh in time f(n)g(n) and “"), 2 n. Then
84(fn).g(m) c AKHmg(n).o(n))

Proof:.

Let A € 81(f(n)g(n). To show that A s aiso a member of AH(f(n),g(n))
we will describe a computation of an aﬂmm Turing machine M which
accepts A within time f(n)g(n) using at most g(n) aiternations. |

The proof Is very similar to the one of Theorem & in [KO78] and we
assume famuhﬂty'\mﬁ the notions used thers. Let x € A, n = |x]. On Input x
M first writes x#'™ on its tepe. Now it -ntm an existential state to write
down x#'(")y, (where ly,lsf(n) ). Then by changing into an unlv.nal‘ state It
writes down x#"y @y, for all y, with Jy,Jsn). It proceeds now alternating
existential and universal states untH x"""y,i...ty.@ is written on the tape.
This can be done with at most f(n)g(n) steps and g(n) aiternations. Now M
checks the predicate R(x#""’y,!...ly'm) and accepts iff R(-) is true. As R(-)
is a linear-time predicate, M uses at most f(n)g(n) steps to check it. As we
can speed up the \vholo computation by a constant factor, M accepts A within

time f(n)g(n) using at most g(n) alternations. O




Lemma 2:
Let t(n) 2 n. Then

AR(t(n),a(m) c 84(t(n),a(n)

Proof:

Let A be a set accepted by an alternating Turing machine M within time
t(n) usfng at most a(n) alternations. To simpiify the following proof we assume
(w.l.o.g.) that M has only one tape on which initially the Input Is written.
Furthermore we adopt the convention that once M enters the accoepting state
dqa It keeps running in Gy We also inunn that the initial state is an
existential state. We want to show tlnf A is aleo in the class §,(t(n),a(n)).
To clarify the construction of the predicate R(-) as required In Definition 1 we
Wil first show that A Is In the class 8, (t(n)%a(n)).

Let x € A and n = |x|. Aooaputnﬂonofﬂon*mbodo;cﬂbcdbya
sequence of strings Y1 Y Yot wh‘n. each Y, is a sequence of iL.d.s all of
which only contain states of one kind, universal if | is even, existential if | Is
0dd. We define the pradicate R,(x#'"y 8.8y, ) to be trus Iff y,#y.0..4y, .,
describes an ‘accoptlno computatlon‘ of M on input x
(le., y,#y,#..#y,., = d.#d 0 ~dy .y with d, bclm the initial i.d., d,, the
accepting Id and for 1 s | £ t(n)-1 tho id. d,, follows from i.d. d, in one
computational step) or there is an i.d. d, which is a substring of some Y2

1 sstt(n)lZJandlsnotqsuoco'ssorLd.ofdk,.




It Is now straightforward to verify that
. {x | x accepted by M) =
(% | 3y,Vy -Gy R 0y 0.8y ) A Iy fet) A o A Iy yifet)])
We remark only that without the second clause in the definition of R,, the
predicate 3y,vyz...ay.®n,(-) is never true as. ﬂn W r;m. over all
strings. |

Now note that at most 2 symbols change between two consecutive l.d.s.
These changes are determined by the next move function of M. Now let
u,....,u;(n) be a sequence of strings which w a sequence of moves in a
computation of M. That means that for each |, 1 < | s t(n), y Is a string of the
form pdq, where p denotes the symbol to be printed, d the direction of the
move of the head and g the state to be entered. A computation of M contains
at most a(n) alternations. Therefors up to t(n) m.euﬂvo moves correspond
to situations where M doss not change between universel and existential state
and we will replace each such sequence by single varisbies w, 1 s‘js a(n).
As the unqmofmmu,umm'mmummfwjnn
most .°' order t(n). We will construct now a linear-time predicate
RO ®w #..#w, ) which is true Iff thers is an eccepting computation of M on
X determined by u, through Uym) ©F for some u, which is part of some Wap
1 5 ) s Llt(n)/2] the following is true: u,dounotdneﬂbo’l’hgal move for
the configuration obtained by applying the moves u, through u,_, on Input x.

The predicate ROx#*"w 84w, ) cen be computed in time Hnear In its

input by the following straightforward procedurs:
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1) construct the initial I.d. from x

2) for each | check if u, describes a iegal move (this can be done by
comparing u, noalmt the 3-tuples d-m by the transition function)

lfu,ducrlbnuboclm: wdatothomltl.d.
otherwise: haltmdoutputtmonu,hlupmwmw’mdjhovcn

otherwise halt and output false

3) check if the string Uy CONtains the symbol q,.

Clearly the above procedurs doss not take more than O(t(n)) steps. O
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