MIT/LCS/TR-186
FINAL REPORT
OF THE
MULTICS KERNEL DESIGN PROJECT

Schroeder, Clark, Saltzer & Wells

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR-196

FINAL REPORT OF THE MULTICS KERNEL DESIGN PROJECT
by

M.D. Schroeder#*
D.D. Clark
J.H. Saltzer
D.H. Wells

June 30, 1977

This research was sponsored in part by Honeywell Information Systems Inc., and
in part by the Air Force Information Systems Technology Applications Office
(ISTAO), and by the Advanced Research Projects Agency (ARPA) of the Department
of Defense under ARPA order No. 2641, which was monitored by ISTAO under
contract No, F19628-74~C-0193.

* Present affiliation of M. D. Schroeder: Xerox Palo Alto Research Center,
Palo Alto, California.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

This empty page was substituted for a
blank page in the original document.

FINAL REPORT OF THE MULTICS KERNEL DESIGN PROJECT

This report summarizes a three-year project to develop a simpler version of
the supervisor of the Multics operating system, so that auditing for security
certification might be feasible. The report is in four sections:

I. A summary of the highlights of the project, together with a
complete 1list of published papers and technical reports of the
project.

1I. A short description of every individual task undertaken as
part of the project.

I11. An estimate of the potential impact 6n the size of the Multics
Kernel if every idea suggested for simplification were
implemented.

Iv. Conclusions and recommendations.

Together, these four sections provide a system designer with a high-level
description and many pointers to more detailed analyses of issues involved in
securing a large-scale, general purpose computer system.

Keywords and Phrases: Protection, Security, Security Kernel, Multics,
Type Extension, Operating Systems, Supervisors,
Verifiable Systems.

This empty page was substituted for a
blank page in the original document.

PART I: THE MULTICS KERNEL DESIGN PROJECT

by
‘Michael D. Schroeder

David Db. Clark
Jerome H. Saltzer

Abstract

We describe a plan to create an auditable version of Multics. The
engineering experiments of that plan are now complete. Type extension as a
design discipline has been demonstrated feasible, even for the internal
workings of an operating system, where many subtle intermodule dependencies
were discovered and controlled. Insight was gained into several tradeoffs
between kernel complexity and user semantics. The performance and size
effects of this work are encouraging. We conclude that verifiable operating

system kernels may someday be feasible.

This empty page was substituted for a
blank page in the original document.

Introduction

In 1974, a project was begun to apply the emerging ideas of security
kernel technology, information flow comtrol, and verifiéation of correctness
to a full function operating system, Multics. There were several aspects to
this project; this paper discusses in depth the results of ome aspect that was
recently completed: some re-engineering experiments performed on the Multics
supervisor to discover ways of simplifying it. To see how this part fits into

the overall project, we first provide a project overview.

The plan for a secure Multics

The version of Multics available in 1974 contained a wide variety of
sophisticated security features, and it had been designed from the beginning
(in 1965) with the integrity of those features as a goal [Saltzer, CACM,
1974]. However, there were two problems from a security point of view.

* First, the set of programs that constituted the central supervisor and that
could in principle compromise security contained some 54,000 lines of source
code and had been touched by perhaps a hundred or more programmers during the
development of the system. To do an integrity audit, one would have to
examine and understand thoroughly every line of code in each of these
programs. Although the programs in question were largely written in a
higher-level language (PL/1) and were quite modular by function, auditing was
still an overwhelming task. Second, the security mechanisms provided (access
control lists with individual users, projects, rings of protection, passwords,
etc.,) while useful, were somewhat ad hoc, and did not fit into any simple
underlying model. This lack of a simple model of security meant that even if
an auditor were to undertake the previously mentioned overwhelming task of
understanding every line of code, that auditor would lack a systematic

specification of -what to look for.

Yet, before one could entrust sensitive information to protection by an
operating system, some kind of integrity audit seemed essential. Therefore, a
project was undertaken to make integrity auditing féasible, and to demonstrate
that secufity is achievable in a large scale, full function operating system.
As one might expect from the two problems mentioned, there were two key
aspects to the‘project: 1) to simplify the supervisor so as to make it
feasible for an integrity auditor to understand, and 2) to provide‘a set of
security functions that can be described by a simple, understandable formal
model. These aspects raised, in turn, three questions: 1) could auditability
really be achieved? 2) is a formally modelable security function usable?, aﬁd
3) what happens to the system’s performance? To answer these questions, the
overall project was broken into several small components that allowed orderly
experimentation and took maximum advantage of already existing organizations.

Figure 1 illustrates this plan.

The fqrmal model used, because of its simplicity and apparent
applicability to real world problems of the Air Force sponaor; is the MITRE
model of sensitivity levels and compartments, which requires strict
confinement and control of information flow among the levels and compartments
[Bell and LaPadula, 1973]. The first step in this project (the box numbered 1
in figure 1) was to take the standard Multics system, and systematically add
to it, so far as possible, the security controls required by the MITRE model,*
which ianvolved labelling all information with sensitivity levgl and

compartment names, and adding security checks at all points where information

*Actually, a predecessor of the MITRE model devised by a team at Case Western
Reserve ([Walter, 1974] was used for this step. The later-developed MITRE
model is consistent with that earlier model, and all recent work has used the
newer model.

8OTITNR/ TaUIdY
P913T318D

SOTITNKH 103 Tauxady £31andsg 3[QBIJTIX@D ® Juirdolaa9p 203 UBId -~

amurwaua
NTI-PFIONE

'

1 2an813

82TITNK/T3UIdY 103
soB8ueyo adfjojoxg

©

83IN3oNnI38 JBUIA)

SEapT
Burf3y1dmIg

-U} 9ATIBUISITE

Yatma 3juawraadxy

3dasuod fauxay

'y

8OTITIRH

WIV

@

8OT3INN 03 (WIV)

Uire | wsTuUBYOIN UOTIBT

AV 00Tl 80T3TNR/ TaUxSY] mw
-8013109ds J08TAxXadNns
yais eduerd T.. PRIUSEIT U] - SOTITMH

~wod £31318)

!

80I3]NK/T2uIey 103
SUOTIBOIJT0ads patIjaep

P

Jusueduray

® 1opou suo13 ®
ewio3 yojew -eo73709ds . I08TAI9dNS
SUO}IBOIJ .awﬂmov » 8213 INK 103
-109ds u8tsap poT : SUOTIBOTIJ[O2ds
J1aaaAup
Jeyl LJTasp . . 1PUWI03 98T A3QJ

80T3TNK

-08] 88900V PPV

19pou
juamiaedmod
puB SSBIO
L31anoss
TILIN

suoflouny WIV
yaim sduataad

)

-X3 [woTlowad
103 11e3Isul

10

could cross level or compartment boundaries. These changes resulted in a set
of security features known as the Access Isolation Mechanism (AIM) and a
version of Multics known as Multics with AIM. Multics with AIM then became

the base system for all future developments.

At this point, the work branched out in several directions. Multics with
AIM was installed (box 2 of the figure) on a machine in the Air Force Data
Services Center, and it was later made pait of the standard p;o@uét released
to.other Multics sites, so as to begin developing opetational.expérience with
the features of AIM and with its impa;; onrﬁerfornance. A series of prototype
implementations were undertaken to discover ways of acco-plish;ng the same
functions with simpler and more systematic oﬁefating sysﬁe; struéturgs,jwhile
keeping the discipline of the securigy kernel concept [Schell, 1973] in mind
(box 3 of the figure). And two grouﬁs of'dnaiysts began to:develoﬁ
successively more detailed examples of foélal‘specificationa for the design of
a kernel-based Multics with AIM, assuming the changes in structure'ptoposed
for experimental implementation turned out to be feasible (box 4 of the

figure).

This description brings us to the stage of the Multié; kernel design
project today. The plan from here forward involves two major paths to be
undertaken in parallel: first, the formal specifications for the desigﬁ of a
Multics kernel (box 4) must be completed and théy must be verified (box 5) as
matching the requirements of the MITRE security model. The second parallel
path (box 6) involves a'teimplementation of the central supervisor of Multics,
with two differences from the present implehentation: those prototype
simplifications that were successful will be incorporated, and the form of the

design and implementation will be as "verifiable" as the state of the art will

11

allow. This latter goal is to be aided by using type extension as a
systematic design discipline, and by using a programming language that is
designed to support verification, such as EUCLID [Lampsoq et al., 1977] or a

constrained subset of PL/I.

The result of these two efforts will be on the one hand, a new,
easier-to-review implementation of Multics with AIM, to be known as
Kernel/Multics, and on the other, a set of formal design specifications that
have been verified to match the MITRE security model. The final step, box 7
of the figure, is unfortunately not as simple as its labei suggests. A

multipronged approach is proposed:

1) Program verification should be used wherever feasible. AAlthough the
state of the art of both automatic and manually assisted program
verification technology for the foreseeable future is simply not yet
capable of dealing with specifications and progrémé of the size ahd
number involved in Kernel/Multics, formal verificatidn may be applicable

to some components.

2) Two or more small, expert teams of programmers can be assigned to be
auditors of the code. With programs and specifications in hand, their
job will be to try to understaqd the functigg of every program statement
in Kernel/Multics, and to repdrt'aqythinsfthat isvnot understandable or

potentially in error.

3) The system can be placed in operational use. If the redesign has been
successful, not only will security failures be prevented, but many other
operating system reliability failures should not occur. Operational

failures can be traced to see if they originate in the security kernel.

12
4) A tiger team can be assigned the task of breaking into the system.

Any one of these four approaches by itself camnnot be expected to
establish a credible verification of the integrity of Kernmel/Multics, but the
hope is that the combination of all four in parallel can pfoﬁide a much higher
level of confidence in integrity than has ever before been achigved in a
full-function ggnetal-putpoae operating system. A second hope is that the
techniques that are developed be applicable not just to Multics, but to other
genéral—purpose operating system desigﬁs, and also to,specialiied systems that

are dedicated to file storage and management.*

Engineering studies for the Multics Kernel

As suggested, one of the key parts of this project was a series of
prototype implementations of simplifying ideas for the kernel. An earlier
paper [Schroeder, 1975] described the plans and- justificatioms for these
experiments, and reported results of some early restructuring that removed,
wholesale, certain functions from the kernel**, Without attempting to repeat
that paper, the general strategy involved identifying all reasonable-sounding
proposals for simplifying the Multics kernel, and then selecting for trial

implementation those that could not be accepted as ob&iously straightforward

* Several organizations have participated in this project. The overall plan
was organized by the Air Force Electronics Systems Division. The AIM was
implemented by Honeywell Information Systems Inc., with technical supervision
from the Air Force. The M.I.T. Laboratory for Computer Science performed
experiments with alternative structures. MITRE Corporation, and later SRI,
devised successively more precise formal specifications for the Multics
kernel. In October, 1976, with boxes 1, 2, 3, and most of 4 of figure 1
completed, the Air Force suspended work on the project,

** The "kernel" that is referred to here is defined as all programs that
implement or affect access control of any kind, discretionary or
non-discretionary. Therefore, a substantially larger body of programs is
involved than in a security kernel that implements only non~-discretionary
controls, such as that described by MITRE [Lipner, 1974].

13

or rejected as obviously inappropriate. Three kinds of redesign proposals
emerged: 1) removing from the kernel those formerly protected supervisor
functions that did not really require that protection; 2) taking advantage,
whenever possible, of the natural separation afforded by independent ﬁrocesses
in distinct address spaces communicating at arms length to implemen; protected
functions, and 3) using more systematic program sttdcturing techniqueg for
implementing the remaining kernel function, so that the result might be easier

to verify.

Probably the most interesting result of this work is the 1§vention of a
file system and processor multiplexing organiiation Ehat is based on the |
discipline of type extemsion, and that eliminates ﬁaﬁy éomplicating cycles of
dependency in the kermel. This work reqﬁiéedAdevéiopihg more carefully than
usual analysis of the depehdenéieé aﬁons sﬁpervisor hodﬁlés, since the

machinery of the type'extension inplemenéation isyitself part(of the kernel.

The following sections of this paper describe briefly this type extension
system organization, several other structural results, and the estimated and
observed effects of all these ideas on the size of the kernel and the

performance of the overall operating system.

Iype extension as a rationale for coping with complexity

The initial projects of removing mechanisms from the Multics supervisor
helped us understand what mechanisms needed to be present in a security
kernel, but they did not help us understand how these pieces should be
organized. To simplify the security kernel, it was important to develop an
organizational rationale for modularizing the required functions and fitting

them into an understandable overall structure. The rationale adopted is an

14

application of the notion of type extension, and involves making all modules
be object managers, categorizing all the ways one module can depend on
another, and organizing the modules in a loop-free dependency structure. This
rationale was developed by Janson and is reported in detail in his Ph.D.
thesis ([Janson, 1976]. Here we describe briefly.this organizational technique

and in the next section discuss its application to the Multics kgrnel.

Making each module be an object'managér is a way of providing an
understandable semantics for modules. “The interface to a moduie defines éll‘
operations on the oﬁject type managed by that module, and thus defines the
object type. Disk records, core blocks, core segments, page frames, active
segments, and known segments are some of the object types used in the Multics
kernel design. An object manager and the nqﬂulgq it depenﬁs on are solely.
responsible for maintaining the 1n;eg:1ty ofr§hgrmg9§ged objects. Client
modules can manipulate the objeqts oniy,th;pugh the interface provided by thg‘
object manager. Knowledge of th;‘way an object type is represented is
confined to the manager module. A representation is a set of lower level
component objects and the algorithms relating the operations of the object
type to those of its components. This way of thiﬁking about modules has been
developed by the programming languages community over the last several yearé

[Liskov and Zilles, 1975].

- When trying to develop an understanding of the way a collection of object
manager modules works, the important consideration is the way the modules
depend upon one another. Omne module depends upon another 1f ebtablishing the
correct operation of the first requires assuming the correct operation of the
second. Requiring a loop-free dependency structure, i.e., requiring that the

structure generated by the "depends on" relation between modules be a

15

partially ordered set, allows system correctness to be established one module
at a time. This argument was first exploited in the THE system [Dijkstra,

1968] and more recently in the system design by SRI [Neumann, 1977].

Inside an operating system careful analysis 18 required to ideantify all
intermodule dependencies. The opportunity exists for an operating system
module to produce dependency loops by participating“iﬁ the inpleuenﬁation of
its own execu;ion environment. Such opportunities are less of a problem for
application programs, which typical;y depend optchg_gperating system to
provide their execution environments. To dévelop the gomplete Aepepdency
structure of a collection of object manager modules in an operating system,
five kinds of dependencies need to be considered for each module. For a

module M the possible kinds of dependencies on other modules are:

a. Component Dependencies
Module M depends on the modules that manage the objects that are the
components of the objects defined by M. For example, the manager of file
system directory objects in the Miltics Kernél has a component dependency
on the manager of segment objects, for each directory tepresentation'is

stored in a segment.

b. Map Dependencies
Module M must maintain a mapping between the names of the objects it
manages and the names of the compoments of each. “Thus, M depends on the

managers that provide the objects in which the map is stored.

C. Program Storage Dependencies
The algorithms of M and their temporary storage are contained in objects,

on whose managers M thus depends.

16

d. Address Space Dependencies
The addreas space in which M executes is an object, on whose manager M

thus depends.

e. Interpreter Dependencies
In order to execute, M requires an interpreter, i.e., a virtual

processor. Thus, M depends on the module that implements its interpeter.

This partition of dependencies'into five categoriés is complete and
fairly in;uitive for systeis designed according to the rationale of type
extension. When applied to an existing design>th§£2wa§ ﬁod;larized and
structured'by different principles (or no priﬁcipies at alll) one can
encounter explicit dependencies, dué to procedure calls or due to inéerprocess
messages from which replies are“expéctéd,‘iddﬁigﬁliéiiAdependenéies, due té
‘direct sharing of writable data among modules. While some of these
dependencigs may not fit naturglly into this clasgification, p:oper'
classification is of no concern, since the goal is their elimination and
evolu;ion to a design in which all dependencies fit naturally into this

scheme.

Using the rationale just described, and with the five kinds of
dependencies in mind, it was possible to design a loop-free structure of
object managers that implement the complete functionality required in the

Multics kernmel. Our experience in doing so i3 described in the next section.

Getting the loops out

The file system, memory management, and processor management portions of
the supervisor of Multics (which together constitute the bulk of the

supervisor) appear to be organized in the six large modules illustrated in

17

Figure 2. The obvious exception to a linear structure is the circular
dependency of the processor multiplexing facilities and the virtual memory
mechanism. (Page control depends upon process control to glve the processor
to another process when the current process encountgrs'a missing page
exception. Process control in turn depends upon seknent control to provide
segments in which to store the states of inactive processes. Thus; for
example, a missing page exception for one process causes page control to
invoke process control,bwhich in turn invbkes,ﬁaglent control to load the
state of another process into p;imary nempty using éage controlf) This
dependency loop is common to many vir;ual;memory tige—sharing systems and is
caused by the virtual memory mechanism being part of its own interpreter. In
addition to this obvious dependency loop there are humerous examples of
modules depending upon higher modules to éontain their brograms and maps, and
represent their address spaces. For exgg;ie, pége control code is stored in
segments and the address space in which ﬁggé control executes is provided by
addregss space control. Closer inspection:reveals other loops in the
dependency structure—all related to handfing exceptional conditions or
controlling resource usage. Simplified dé;etiptions of several problems

typical of these more subtle loops follow:

a. Missing Pages
Because Multics has multiple real processors, several processes
simultaneously may try to cause page control to alter the state of the
same page. A global lock regulates such conflicts. Unfortunately, the
hardware imposes a short time window between a missing page exception and
the setting of the lock'by page control du?ing which time some other

process may alter the address translation tables. Once the lock is

18

disk
volume
cont:ol

4

file-system
directory c¢control

4

address space.
control

segment
control

page
control

process
control

Figure 2 -- Superficial Dependency Structure
in Multics., e

19

captured, page control must interpretively retranslate the virtual
address that caused the exception to see if the same exception is still
encountered. This interpretive retranslation requires page control to
know the format of and to depend upon the correctness of the address
translation tables maintained by segment control and address space

control.

Quota Enforcement

Arbitrary directories in the file system hierarghy can be designated
dynamically as quota directories. Associated w%thﬁaiquota direct9ry is a
limit on the total number of pages. that pgy‘be occupiéd by segments that
are in the subtree below the quota directqry but not also below an

inferior quota directory. Also associated with a quota directory is a

" count of the total number of pages currently occupied by segments in the

controlled region. Whenever a segment is to be enlarged, it is necessary
to find the limit and count of the nearest superior quota directory,
check that the count does not use all the limit, and 1if quota remains
increment the count. The need to gglarge a aegnentGis_noticed in page
control as a missing page exception on a ngveg—before-used,page of a
segment. Before adding the page to the segment, pggeAcont:ol must locate
and manipulate ;he limit and count aqsocigtgd:qitb the nearest superior |
quota directory, as described above. Thus, page control must identify
the page with a sggment and the segment‘with 1ts.position in the
directory hierarchy. Page control does so by direct reference to the
segment control data base, the active segment tgble, that assocliates each
active segment with the descriptors for its component pages and its quota
directory. This implementation of quotas and storage usage records makes

page control depend on segment control.

20

C. Full Disk Packs

A file system directory entry in Multics names the corresponding segment
by the 1dent1fier of the containing disk pack and an index into that
pack’s table of contents. For robustnegs and demountability, all pages
of a segment are kept on the same pack. Enlarging a segment occasionally

 causes a full pack exception, which results.in the entire segment being
moved to an emptier pack and the directory éntry being updéted to
indicate the new location. If a full disk pack exception.is detected
vhen enlarging a segment, page control invokes segment cohtrol, which
directs the relocation effort. To accdnplish reloéatioﬁ, segment control
reads a data base maintained by address space control to find the
correspbnding.ditectory entry, which segment control then directly

updates.

Once the dependencies generated by these and similar causes are taken
into account, the simple, almost linear structure of the(systen illustrated in

Figure 2 becomes the much less simple structure illustrated in Figure 3.

The restructuring of the file system, memory management, and process
management portions of the Multics sﬁperviéor that elininaﬁes all dependency
loops and providés’an understandable object—hased semantics for each module
was worked out by Janson and Reed and is described in detail in their thesés
[Janson, 1976; Reed, 1976). Here we indicate in general how the new design
eliminates the structural problems outlined above, and make some comments on
the causes and solutions of such problems in general. Figute 4, taken from
Janson’s thesis, shows the modules of their design and indicates the

dependency relationships among the modules.

21

disk
volume
control

file-system
directory comtrol

address space
= control

segment
control

Y

page
control

process
control

Figure 3 -- Actual Dependency Structure
in Multics

*poAocwax sdool Aduapuadap yjim ‘we3sds 81TJ PaaInIonaiIe’dy -- 4 andyy

19feuwi jusaSes 810D Yyl 0o spusdap ‘iaBPusy jusm¥es 820) 3yl 1dadxe ‘I npom A1eA® :sI1duspusdep dwds wssappe
29PRuEN 108893014 [¥NI2TA 24l uc spusdep ‘isBeuwy juswles 010D sy3 1deOxs ‘PINpom A19A :sejduapuRdep isjsidiazuy

Jefwuwy o9wumy JeBvury aeSvuey ZoBwawi
308692014 . JusmBeg 1wo1g piodey 203398
¥NIITA 2209 23109 %834 1910

22

- s | y
N , NI : dom
sjusufies 230> axw swwiBoid sdey : // Z
] SATIOS YIB AW, i ' N
: peimas ssjaxeyio 100
e ™~ /
” A e AA
"zeBRoRgg, il L) ~ aeeuwy ,
. JusmBeg Jusafes ™~ JusmBes \
3 : *ATIOY , ~
|
—
-
2sBeuwy JoSwuny 108w .\\
ssed02g Jusnes -l":
e AUy v S
7,
'l\
7~
7,
Je3vuey
£10359a3¢Q ——— e W e — . —
/df
~N
~
~N
~ 198euwy
mnyop

23

The loop between the processor multiplexing facilities and the virtual
memory mechanism originates from the goal of providing a variable number of
processes. Brinch Hansen has argued that considerable éimplification of
implementation follows a decision to implement a fixed number of processes
[Brinch Hansen, 1975]. On the other hand, if one tried to open the dependency
loop between process implementation and virtual memory implementation, every
process state would have to be resident in the fastest, most expepsive memory
medium: If the number of processes were fixed at the maximum that would ever

be needed, valuable primary memory space would be unused at other times.

This combination of pressures led to the design for a two-level
implementation of processor multiplexing. Process control is divided into two
parts, the user process manager and the virtual processor_manager'illustrated
in Figure 4. The bottom part implements a fixed number of virtual processors
whose states are always in primary memory. Thus, this pattkdoes not need to
use the virtual memory, and all the simplifying advantages‘sugéested by Brinch
Hansen occur. The top part implements an arbitrary number of user processes
and depends upon the virtual memory to store their states. A subset of the
virtual proeessors is multiplexed-among the user'ptotesses as needed. The
remaining virtual processors are permanently bound to the interpretation of
various kernel modules, including the virtual memory modules and the user

process scheduler.

This strategy of a two-level process implementation has been proposed
elsewhere [Bredt and Saxena, 1975; Neumann gt al., 1975] but these other
proposals havebleft a key complicating factor as an exercise for the
implementor: when a low-level virtual processor discovgrs an event that it

must signal to a user-level process, it must somehow change the state of the

24

user-level receiving process. But that state by design is not guaranteed to
be in the real memory accessible to the low-level virtual processor. As part
of the Multics kernel design, Reed developed a method for this upward
communication that makes the two-level ﬁrocess implementation feasible. The
design involves placing a special, real memory message queue between the
;owér-level and higher-level processor multiple;gts»[keed, 1976]. It also
involves using a new synchronizing protocol, baséd on eventcounts, that
controls information flow between processes and does not require that the
discovere; of an event have knowledge of the identity of the processes
awaiting that event [Reed and Kanodia, 1977]}. Use of a two;level process
implementation in the Multics kernel is worked out in sufficient detail that
we are confident that this design provides a'practical,Vweii-sttuctured method
for providing an arbitrary number of processés‘ihl;'systé;.vith vittuél
memory. The two-level design also ﬁrdvidesva‘genetal way ﬁo eliminate all
loops created by interpreter dependencies, for the bottom level provides an
interpreter that depends on only the primary ﬁemory and thé hérdware

processors.

Loops due to map, program storage and address space dependencies are
relatively easy to break once their existence is recogmized. The key to
breaking these loops in the new design is the. explicit recognitioa of core:
segments as objects. The core segment manager of Figure 4 is implemented by
system initialization code and by the processor hardware. The core segments
are allocated when the system is initializéa (bf reéénfigﬁred) andrthereafter
the only operations on them available to higherileveis aie the processor read
and write operations. A core segment can bé used by any system module to

contain maps or programs and their temporary storage without fear of creating

25

a dependency loop. Use must be tempered, however, by the facts that the
number of core segments is fixed, the size of a core segment cannot change,
and core segments are permanently resident in primary memory. To eliminate
address space dependency loops a second address translation table base
register is added to the processor. - One base register locates the address
translation tabhle, stcred in a virtual memory segment, that defines the
address space in which user programs execute, while the other locates a
translation table, stored in a core segment, that defines a per pfocessor
address space for systém modules*. In use, all'segment descriptors in the
latter transliation table will be for permanently active segments, i.e.,
segments whose page descriptors are always in primary memory, or core
segments. All segment numbers below a certain value are translated relative
to the system module address space. Thus, system modules using thege segment
numbers cannot be dependent on the machinery that supports the users’ virtual

address spaces.

Correction of the dependency loop surrounding missing page exceptions
requires an addition to the processor architecture. Recall that to eliminate
potential coaflicts over the offending page descriptor, page control must
reinterpret the virtual address that caused the exception after a global lock
is set. A simple procéssor addition that corrects this problem is a mechanism
that sets a lock bit in the offending page descriptor whenever a descriptor is
encountered that indicates a missing page. Once the lock is set control is
transfered to the page frame manager of Figure 4. A processor encountering a

locked page descriptor will generate a locked page descriptor exception that

* An implementation without extra hardware is also feasible, though a bit
clumsy and not so modular, by sharing the first page of all address
translation tables.)

26

results in the page frame manager calling the wait primitive of the virtual
processor manager. Once the original missing page exception is serviced, the
page frame manager unlocks the descriptor and notifies all processes that have
been waiting for this event, causing them to start execution again at the
point just previous to encountering the locked page descriptor exception. In
addition to the descriptor lock mechagism, a wakéup walting switch and a
register to record the agbsolute address of»the_loéked page descfiptor can be
added to each processor to aid in preventing a notification from being lost if
it occurs between a locked page descriptor exception and invocation of the

wait primitive,

The solutions to the dependency loops associated with quotasband full
disk packs illustrate two alternative ways of reporting exéeptional conditions
without creating dependencies. A problem common to both situations is that
software in some module ﬁay discover after Qbﬁé ptoéedsing that a condition
exists that needs to be handled at a higher level in the dependency structure.
As described earlier, the condition results either in the module directly
referencing the data bases at the higher level, or ia the module calling the
higher level module. There is a\bagiq strategy that can break these
dependency loops: to transfer control and arguments to a higher level module
without leaving behind any piocedure activation records or other unfinished
business in expectation of a subsequent return of comtrol. This strategy can
be carried out either by a hardware interrupt or by a carefully planned

software signalling mechanism. Both approaches are fliustrated below.

In the case of quoté enforcement and recordihg disk usage, recall that an
attempt to enlarge a segment, and thus the need to check the assocliated quota,

is noticed in page control as a missing page exception on a never-before-used

27

page. The new design has the hardware distinguish such events and generate
quota exceptions rather than missing-page exceptions. The exception is
distinguished.by an extra exception-causing bit in page aescriptors that is
set by software when the descriptor corresponds to an unallocated page in a
segment. The quota exception invokes the known segmént manager of Figure 4,
reporting the segment number and page number of‘therAdress whose tfanslation
caused the probleﬁ. The known segment manager translates the segment number
into a segment unique identifier an& invokes the segnént manager to find the
appropriate quota directory, check the limit, and then call the page frame

manager to add the page to the segment.

The ioop assoclated with full disk packs is broken by the use of a
software mechanism for signalling exceptions upward in the dependency
structure. A full disk pack‘occasioqglly is encountered when procgssing a
quota exception. If quota exceptions, which are detected by the hardware as
described above, all were signalled directly to the ditectory manager, then a
relatively simple mechanism for dealing wiyh fﬁil disk packs would result.

The directory manager would initiate a chain of cails down through the
dependency structure that allowed the known segment, segment, and page frame
managers to play their parts in checking quota, recording usage, and
allocating a page. Further, if the page frame manager at the end of this call
éhain noticed a full disk pack when attempting to add the page to the segment,
then this exception could be returned back up the call chain, allowing the
segment manager to disconnect all address spaces from the segment and direct
its movement to another pack, and allowing the resulting new pack identifier
and table of contents index to be returned to the directory manager for

inclusion in the corresponding directory entry. Unfortunately, it is too

28

inefficient to pass all quota exceptions to the directory manager just to

handle easily the full disk pack exceptions that only rarely accompany them.

Another solution that would generate a éimple séftware structure is for
the hardware to separate quota exceptions that will involve fﬁll disk packs‘
from those that will not, signalling the former to the direétory manager and
the latter to the known segmént manager. But 1tiis unreasonablé to expect the

hardware to make the separation in this comélex case.

Thus, we must make do with all quota,exgeptions being signalled to the
known segﬁent manager, which initiates a chaim of calls doun>through the-
dependency structure to handle them. A full disk pack exception is deteqted
at the bottom by the page frame manager, which4exception ié re;urned back up
the call chain as described earlier. Control finally‘returns to thé known
segment manager with both the quota and the uﬂsuspectéd f;ll disk’pack
exceptions taken care of, and with thé pack ideﬂtifie;-;nd table of contents;
index that locate the moved segment. Thé fféblem now is‘for the known segment
manager to cause the directory ﬁénager to upd;te the corréséonding directory
entry with‘the new disk location for the segﬁent; The.segment mﬁnager
finishes all its work and prepares to restart the user process, but rathef
than restarting it passes coﬁtrol directly to the directory manﬁger as though
an exception had just occurred*. Thus, modules below the direéﬁéry managef in
the dependency structure do not depend on it finishing the job of updating the
directory entry. When the directory manager conplet;s updating the

appropriate directory ehtry, it restore conditions to the point of the

* The trick of passing an exception to another program better equipped to
handle it by making things look as if that other program had been called
originally is an old one, used in many systems. The interest here is that it
can be used to break dependency loops.

29

original exception and the user process then references the segment again. At
this point any other process referencing the segment will be reconnected via

the standard machinery for handling missing segment exceptions.

This completes the discussion of the dependency problems found in Multics
and the methods uséd to deal with them. Extensive #nalysis of the kernel
design will be found in the theses by Janson and Reed. Some related ideas
concerning the use of object property lists to break dependency loops will be

found in the thesis by Hunt {Hunt, 1976].

We summarize our experience in applying the type extension rationale to
structuring the Multics kernel with the following observations. Most systems
appear to have a loop-free dependency structure if viewed from far enough
away. The obvious component relationships and the common operations follow
loop-free paths among the modules. On close inspection, however, map,
program, address space, and interpreter dependencies will almost certainly
generate loops in a system designed without loop avoidance as a primafy
objective. The map, program and address space loops usually are broken easily
(at least during the design stage) by introducing new object types to store
the maps, programs, and address space definitions. The interpreter dependency
loops appear to be eliminated in most systems by using a two-level
implementation of processes. The most difficult and subtle structural
problems are caused by exception handling?—especially when the exceptions are
part of the mechanisms that control resource usage. The difficulty is partly
intrinsic——such exceptions tend to occur at low levels in the system but be
related to-high level objects——and partly methodological--resource usage
controls and the paths followed to deal with exceptions tend to be added to a

design last. A general method for removing loops related to exception

30

handling and resource control is harder to see, but in many cases removal
involves improvement of hardware exception reporting mechanisms or addition of
software mechanisms for signalling upward in the dependency structure without

generating new dependencies.

From simple semantics do complex implementarions grow
Much of the complexity of a system implementation can arise from only a

fgw of the features being implemented. When one realizes that a particular
feature causes complexity, it is time tb réviey the importance of the feature
and to see if a slight variation in its semantics might lead to a simpler
iuplementation; In the course of réviewing thé mechanisms of Multics to see
how they affected a kernel implementation, several éxa-plés of this phenomenon
vere noted, and insight into the implications of certain user-visible features

was thereby acquired.

One example, the dynamic designation of directories as repositories for
disk storage quota, has already been discussed in the section on loop
dependencies. The dynamic nature of quota directories implies at every quota
exception a new search for the relevant quota gell by ﬁqlloﬁing a linked chain
of directory entries in the active segment table. In order to maintain this
linked chain segment control must be careful never to deactivate a segment
that is a directory if inferior segments in the hierarchy are active. Thu?
segment contfol is constrained to manage the active segment table to track the
shape of the directory hierarchy defined by directory control. 1Ia this case,
a slight change of semantics seemed worthwhile: .restrict the dynamic
designation or undesignation of directories and quota directories to those
directories that have no children. Because of this change, the relationship

between each segment and its controlling quota directory becomes static, and a

31

dynamic upward search of the hierarchy to locate the appropriate quota
directory is no longer required each time a segment is enlarged. Whenever the
known segment manager asks the segment manager to activate a segment, it
provides the ideantity of the appropriate aupérior‘qudta difectory and the
segment manager simply associates the static name of this directorj's quota
cell with the segment’s identifier. As a result, the deactivétion of segments
by the active segment manager no longer is constrained by the shape of the

directory hierarchy.

For another example of complicating semantics, a combinatién of two
simple access control ideas in Multics conspires to force some remarkaBle
maneuvering inside the supervisor. The directofies‘of the Multics storage
system are arranged in a naming hierarchy, aﬁd evéry file and>directory has
its own access control list, which specifies who may usé the file or
directory. The first simple idea is thaﬁ directqries should have access
control lists on the basis that thé names of files (and other directories)
often contain information, so access télthoée names should be controlled, too.
The second simple idea, to make the Bemanticsrof access cohtrol as simple as
possible, is the rule that access to a file is d;termined entirely by the
access control list for that file. This rule meanértﬁaf if one user wishes to
grant another user access to a file, the first user places the other user’s
name on the access control list of the file, and thé transaction is complete,
without need to revise or check access control 1ists‘of diréctories higher in

the naming hierarchy.

Now, suppose a user presents the storage system with the tree name of
some file deep in the hierarchy, and the tree name traverses one or more

directories to which the user does not have access. The simplifying rule

32

requires that the file system follow the name‘through those inaccessible
directories in order to get to the access control liat of the file. 1If access
to the file is indeed permitted, thet user will by virtue of not getting an
error message, confirm the existence and names of the intervening directory
structure. On the other hand, if access to the:file is not permitted, the

file system must be very careful in its response so as not to confirm the file

name, or the names of the intervening directories.

The non-kernel version of Multics handled this set of comstraints by
burying the entire directory search operation inside‘the’supervisor, and
reporting one’of two responses: '"file foundﬁ, or "no accessff (ihis last
response offers no clue as to whether or not the filelend tne directories
corresponding to the presented name exist.) In atteuptingrto reduce the size
of the machiner& that must be in the Multicerkernel/ it was apparent that the
general operation of following path names did not need to be a protected
mechanism. If the supervisor kernel provides a pri-itive to search a sinéle,
designated directory for a presented nane, and it returns the identifier of
any matching entry, the program that knows about how to expand tree names need‘
not be in the supervisor. Except,rof course, that theéparticular protection
semantics in nse require thet the kernei not return the identifier of e
matching entry'uniesé either the direetory is eecessibie to the userror’the
file ultimately to‘be addressed is eceessible.' Tne first case is easy, but

the second one produces a problem.

An elegant, if unsatisfying, gimmick was inveanted by Bratt [Bratt, 1975}
to finesse the problem. The directory searching primitive, if asked to search
an inaccessible directory, always returns a matching identifier for the

presented name, whether or not the name exists. It will even return an

33

identifier if asked to search a non-existent directory. This returned
identifier, if then presented as a directory identifier to the directory
searching primitive,.is always accepted. In the case tﬁat the path of
directories.éventually leads to a file to which the user has access, each of
the intervening directory identifiers is real, as is the ultimately returned
file identifier. If, however, the user does not have access to thé object at
the other end, his attempt to use this ultimate identifier will result in a
"no access" response from the file system, and he will be unable to decide
whether or not the identifier (and all those of inaccessible traversed

directories) is real or mythical.

From a broader perspective, this interaction between protection and
naming semantics seems to leave three choices: a bizafre‘interface, as just
described, or implementing the entire function in the kernel (the earlier
design), or varying the user-visible semantics of protection or naming. But
the particular semantics in use were already the result of several years of
experiments with different kinds of semantics, and the particular rules
described have turned out to minimize errors and simplify user comprehension
[Saltzer, CACM, 1974)]. Getting all these considerations adjusted just right
is an open problem. It seems likely that a more explicit sepération of
user-level semarntics for naming and from those of protection, such as found in

UNIX [Ritchie, 1974] would help.*

An interesting final case study of tradeoff between implementation

complexity and user interface semantics arises in the Multics treatment of

* Note that this set of issues deals entirely with the semantics of
discretionary control. In a kernel design that focused exclusively on
non-discretionary control, the interaction between access control and name
resolution would be relegated to applications program implementation.

34

secondary (disk) memory storage charges. The user interface specifies a
charge for just the storage required to impleﬁent a file. Since page-sized
blocks of zeros happen to be implemented by flags in the file map rather than
by allocating and storing whole pages full of zeroé,'a file of size of say,
100,000 words (100 pages) but non-zero in only the first and last words will
accumulate a charge for only two storage pages. Users have taken advantage of
this feature to simplify many file-manipulating programs. They create from
the beginning a file of the maximum size that might ever be needed, but for

much of its life the file contains little datg, so it costs little to store.

This policy has three effects on the complexity-ofAthe kernel of the
operating system. First, any time the user vrites data inoto a file, the
number of pages required to implement the file may change, and thus the
appropriate quota directory may need to be updated. As described earlier,
care is required to implement this update without creating a dependency loop.
Second, the page removal algorithm finds that part of its specification
includes searching the contents of pages about to be removed, to see if all
words are how zeros. Thus this algori;hm must be given (otherwige.
unnecessary) access to the data in every Page in primary memory. Finally,
since files are read by mappiugrthen into blocks of core memory, if a user
tries to read from a page containing all,zerqs,'ﬁ_zgrA;cqntaining page must be
allocated, at least temporarily, and the accounting measures must be updated.
Thus a read implicitly causes information to be written, perhaps on the other
side of a protection boundary, in violation of the confinement goal [Lampson,

1973].

Naming-related storage quotas, naming-related access control, and

accounting for physical representation costs are typical examples of conflicts

35

between desired semantics and implementation complexity that were encountered
in the Multics kernel simplification effort. It is interesting to conjecture
whether or not these conflicts would also arise in a coﬁputer system dedicated

to file storage and management. We believe that they would.

’Iggact of engineering studies on the size of the Multics kernel

There are a variety of measures thatvcan be used to assess the size of
the Multics kernel. One can count the number bf lines of source code, but
this céunt is confused by the fact that while most of the code is Qrittén in
PL/I, some is in assembly language. This distinction coﬁld be eliminated by
counting the number of machine instrhctions‘in the kernel, but this number
seems somewhat irrelevant, since no auditing procedure is likely to be based
primarily on examination of the machine instructions themselves. The most
useful and consistent measure of the kernel size seems to be the number of
source lines, independent of the language being used, and this is the measure

we shall use.

The largest component of the kernel is those programs that are within the
innermost protection boundary of the supervisor, known 1ocallj as ring zero
programs. At the beginning of this project there were 44,000 lines of source
code within ring zero. As some measure of the modularity of this code, there
existed approximately 1,200 distinct entry points in the supervisor, of which
157 were callable by the user. In addition to the.ring zero programs, there
are a number of other programs that ought to be included as part of the
Multics kernel: there were programs in other supervisor rings, and there were
also programs that ran in trusted processes. One study was made of the
largest of of these non-ring-zero programs: the Answering Service, which

regulates attempts to log in to the system, including authenticating

36

passwords, and manages system accounting. These programs contained about
10,000 lines of source code. It Is clear that the nou-ring-zero programs
contribute significant bulk to the kernel of the system. As a starting point,

then, we consider the kernel to have consisted of 54,000 lines of source code.

As mentioned above, some of the kg;nel is coded in assembly language
rather than PL/i. Because of this, there woqld Qe a substantiai size benefit
in recoding all assembly language procedures in PL/I. It must be noted that
such a recoding has both a benefit and qncdst: experiments suggest that while
the number ofisource lines typically shrinks by s;1ghtlyrmoge than a factor of
two, the number of generated machine instructions seems to increase by
somewhat more than a factor of two, thus having some negative effect on the

performance of the system [Huber, 1976].

The size impact of our studies is easiest to assess for four projects
that were carried ‘through to a trial implementation. Three of these had as
their goal the outright removal from the kernel of the system of a certain
body of code whose function we consider to be noncritical. Clearly, the
impact of these modifications on the kernel size is the most dramatic and
demonstrable. The extraction of the dynamic linker from the kernel (Janson,
1974] had the effect of removing 2000 lines of source code, about 4X. More
interestingly, it only removed 2% of the entry points inside the kernel,
implying that most of the modules were fairly large; but it eliminated 112 of
the entry points from the user domain into the kernel. In other words,
removing this code from the kernel had a very strong effect in reducing the
complexity of the interface that the user sees to the kermel. This should not
be surprising, since we claim that the code did not belong in the kernel at

all, and was in fact performing a user function. The project to remove some

37

of the name management mechanism from the kernel [Bratt, 1975] did not have
quite such a dramatic effect: it reduced the size of the kernel only by 1000
lines. The latter project was dramatic chiefly in the feduction by a factor
of four in the total size of the code that implemented the algorithm once the
algorithm was removed from the kernel. This was a case in which the
complexity of the algorithm itself was due largely to the fact thaﬁ it was
inadvertently placed inside the kernel. Another project that had dramatic
impact on the size of the kernel was an investigation of the Answering Service
[Montgomery, 1976], the programs mentioned above that manage logins and
accounting. Of the 10,000 lines of source code, it was shown that fewer than

1,000 of them need be included in the kernel.

The fourth study actually implemented, the redesign of the memory
management algorithm [Huber, 1976], did not have as its goal the éxttaction of
code from the kernel, but rather the restructuring of code in the kernel using
parallel processes, for the sake of clarity. The main size impact of this
project came from recoding certain assembly language modules in PL/I, which

had the impact reported above.

In terms of reducing the actual bulk of the kernel code, another dramatic
impact may come from a project that is only now being éoﬁpleted, and whose
impact can therefore only be estimated. This project’has to do with removal
from the kernel of much of the code having to do with connection of the system
to multiplexed networks [Ciccarelli, 1977]. Two multiplexed communication
streams are attached to the Multics system: the ARPANET, and the local front
end proceséor with all its attached terminals. At the start of the project,
approximately 7,000 lines of PL/I were dedicated to handling these multiplexed

lines, about 12X of the kernel. 1If a third network were to be connected to

38

Multics, the original strategy would require that yet a third handler be added
to this system. In other words, the bulk of fhe network control code would
grow linearly with the number of ne;worka attached. We are now completing a
project whose goal is to demonstrate that almost all of the network comntrol
software can be removed from the kernel into the user domain, and that much of
the software that reﬁains in the kernel to perfofm the actual demultiplexing
of this stream can be, to a significaﬁt extent, constructed in a fashion
independent of the particular network. Thus, the bulk of the kernel is much
redﬁced, and only grows slightly as new networks .are attached.v Hhiie the
results in this area are not yet demonstrabié by a complete implementation, we

estimate that this 7,000 lines of code in the kernel may .shrink tq.less than

1’000.

Another project whose size impact can only be estimated is the redesign
of the system initialization mechanism, which proposed that certain parts of
initialization be done in a user process environment in a previous system
incarnation [Luniewski, 1977]. We estimate that the removal of this code will

shrink the kernel by 2,000 lines.

It 18 useful to assess the combined effect of alljthe changes discussed
above. Table one summarizes the various results. As this accounting
indicates, the combined effect of our various projects could be to cut the
size of the kernel roughly in half. At the start of the project, we had hoped
that our impact on the bulk of the kernel could be somewhat greater tham it
was. QOur optimism was, to a significant extent, based on the hope that
projects such as the redesign of the memory manager would yield a simpler and
thus smaller algorithm. In fact, the result was somewhat more subtle than

this; the algorithm did get simpler, but not by outright elimination of pieces

39

of code. Rather, the effect was elimination of paths between pieces of code.
Operations originally in the kernel continue to be needed there, but are
executed under circumstances more constrained and better understood. Thus,
the effect oﬁ absolute size is less than hoped, but the effect on complexity,

although more difficult to gauge, is considerable.

Kernel Size, Start of Project Reductions

44K ring O : Linker - 2K

10K Answering Service Name Manager 1K

54K TOTAL Answering Service 9K
Network 1/0 6K

Initialization 2K
Exclusive use of PL/I 8K

TOTAL 28K

Table 1

Summary of Kernel Size Reductions

Another area of interest is what might be the impact of specializing a
Multics to be just a network-connected file storage system, with no
general-purpose user programming permitted. Interestingly, many of the
functions that one might expect to see deleted have already been removed from
the kernel. Our best estimate is that such specialization might reduce the
kernel size by at most another 15 to 25%, mostly by allowing simpler

algorithms to manage the more constrained environment.

40

Impact of redesign on performance

The effect of these projects on the performance of the system must be
assessed. Our goal was not to achieve a performance improvement, but a
significant performance degradation would be a cause for céncetn. In fact,
the conclusion reached by most of the stu&ies is that the performance of the
system was not significantly affected by the probosed changes. While the
dynamic linker ran somewhat slower whén removed from the kernel, the causes
were well understood and curable. The name space manager ran somewhat faster.
The revised Answering Service, in its prelininaryvinplénentatién; ran about 3%

slower.

The more interesting performance questions arise in connection with
modules which, rather thﬁn being:moved wholesale, were redesigned for clarity
while remaining in the kernel. The two most interesting examples of this sort
of modification are the new memory management and process management software.
The process management software is interesting because the new design included
a two-level process scheduler, a structure which in the past has not yielded
good system performance although no one to our knowledge has been willing to
claim such a failure in print. Unfortunately, the trial implemen;atiqn that
was intended to explore this scheduler perférmaﬁce was not ﬁompleted. We have
implemented and studied the bottom layer of the scheduler; and are confident
that the combination of the layers will havé a perforﬁance about the same as

the current system. However, this claim is only speculative.

The performance of the memory management software was studied in detail.
The hew design was somewhat slower, for two important reasons. First, parts
were recoded in PL/I from assembly language, which seemed to cost a factor of

two in the speed of the code. Second, the new version of the memory manager

41

used two dedicated processes to perform part of its function, while the
original design ran all functions in the process of the user that took a page
fault. This use of processes required memory management software to call the
process managément software, which added a small but unavoidable cost. On the
~other hand, the use of processes allowed part of the function to runm at a low
priorit&, when the.processor might otherwise have bgen idle. This‘lower
priority represents a performance improvement of uncertain magnitude. All
together, the performance impact of the new design wo&ld‘be negative, but not

significant unless the system were cramped for memory.

Conclusion

The primary conclusion of this project is that the kernei of a
general-purpose operating system (or of a speclalized file-management system)
can be made significantly simpler by imposing first a clear criterion as to
what should be in it--the kernel concept--,and second a design discipline
based on type extension. The kernel concept seems to be a Qiable approach to
security in large-scale systems as well as in the small-scale ones to which it

has been previously applied.

On the other hand, compared with kernel designs that héve been proposed
to deal exclusively with non-discretionary control tLipner, 1974) the kernel
of a general-purpose system seems still to be a large program--26,000 lines of
source code in this case study. And it is not apparent that specialization of
the system to be just a file storage and manaseﬁent facility would make a very
big reduction in this number--maybe 20%Z. At the same time, there does not
seem to be a significant performance loss arising fromiuse of simpler, more
modular designs. This observation reinforces observations made, as part of

the larger project, that in production use Multics with AIM performs no

42

differently than Multics without AIM. Together, these observations lead to a

very strong conclusion that a secure system need have no performance penalty.

1t is also apparent that minor adjustments of the underlying hardware
architecture can make a significant difference in operating system complexity,
and similarly that minor variations in the semantics of the user interface can

make major differences in the complexity of implementation of the kernel.

Another conclusion for designers 13 that one cannot ﬁope to develop a
modﬁlar design wifhout consideration of-the complete set of deé@red functions.
If one leaves out, for example, resource conirol or reliability strategies for
later addition, the chances are great that this addition will disrupt the

wodule boundaries or introduce undesired‘depéidenciea.

With these several conclusions in mind, and the objective of a
certifiable design as the goal, a designer of a new system should be able to
create a design whose implementation can actually be reviewed for integrity,

and used with confidence.

Publications of the Kernel Design Project

A. External Publications

Saltzer, J.H., "Protection and the Control of Information Sharing in Multics,”
Comm. ACM 17, 7 (July, 1974), pp. 388-402.

Saltzer, J.H., "Ongoing Research and Development on Information Protection,"
ACM Operating Systems Review 8, 3 (July, 1974), pp. 8-24.

Schroeder, M.D., "Fngineering a Security Kernel for Multics," Proceedings of
5th Symposium on Operating Systems Principles, ACM Operating Systems
Review 9, 5 (November, 1975), pp. 25-32.

Janson, P.A., "Dynamic Linking and Environment Initialization in a
Multi-Domain Process," Proceedings of 5th Symposium on Operating Systems

Principles, ACM Operating Systems Review 9, 5 (November, 1975), pp.

43

B. External Publications in Preparation

Gifford, D., "Hardware Estimation of a Process’s Primary Memory Requirements,"
to be published in Comm of ACM, September, 1977.

Schroeder, M.D., Clark, D.D., and Saltzer, J.H., "The Multics Kernel Design
Project," to appear in the Sixth ACM Symposium on Operating Systems
Principles.

Reed, D.P., and Kanodia, R.J., "Synchronization with Eventcounts and
Sequencers," to appear in the Sixth ACM Symposium on Operating Systems
Principles.

Kanodia, R.J., and Reed, D.P., "Synchronization in Distributed Systems," in
preparation.

Janson, P.A., "Using Type-Extension to Organize Virtual-Memory Mechanisms," in
preparation. '

c. Theses and Technical Reports

The following are theses submitted to the Massachusetts Institute
of Technology, Department of Electrical Engineering and Computer
Science, and are available as M.I.T. Laboratory for Computer
Sclence Technical Reports.

Janson, P.A., "Removing the Dynamic Linker from the Security Kernel of a
Computing Utility," S.M. thesis, June, 1974, Technical Report TR-132.

Bratt, R., "Minimizing the Naming Facilities Requiring Protection in a
Computer Utility," S.M. thesis, July, 1975, Technical Report TR-156.

Gifford, D., "Hardware Estimation of a Process’ Primary Memory Requirements,"
S.B. thesis, May, 1976, Technical Memorandum TM-81.

Huber, A., "A Multi-process Design of a Paging System," S.M. thesis, May,
1976, Technical Report TR-171.

Montgomery, W., "A Secure and Flexible Model of Process Initiation for a
Computer Utility," S.M. thesis, June, 1976, Technical Report TR-163.

Reed, D., "Process Multiplexing in a Layered Operating System," S.M. thesis,
June, 1976, Technical Report TR-164.

Janson, P., "Using Type Extension to Organize Virtual Memory Mechanisms,"
Ph.D. thesis, August, 1976, Technical Report TR-167.

Hunt, D., "A Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem,” E.E. thesis, December, 1976, Technical Report TR-174.

Goldberg, H., "Protecting User Environments," S.M. thesis, January, 1977,
Technical Report TR-175,

L4
Luniewski, A., "A Certifiable System Initialization Mechanism," S.M. thesis,
January, 1977, Technical Report TR-180.

Mason, D., "A Layered Virtual Memory Manager," S.M. thesis, June, 1977,
. Technical Report TR-~177.

Clark, D., editor, "Ancillary Reports of the Kernel Design Project," June 30,
1977, Technical Memorandum TM~-87.

D. Theses and Technical Reports in Preparation

Ciccarelli, E., "Multiplexed Communication for Secure Operating Systems," S.M.
thesis, expected date of completion, September, 1977.

E. Annual Reports

M.I.T. Project MAC Annual Report XI, 1973-74, pp. 155-183.

M.1.T. Project MAC Annual Report XII, 1974-75, pp. 89-104.

M.I.T. Laboratory for Computer Science Annual Report, 1975-76, (in
preparation)

M.I.T. Laboratory for Computer Science Annual Report, 1976-77, (in
preparation)

Additional References

Bell, D., and LaPadula, L., "Secure Computer Systems,” Air Force Elec. Syst.
Div. Report ESD-TR-73-278, Vols. I, II, and III, November, 1973.

Bredt, T., and Saxena, A., "A Structured Specificatiom of a-Hierarchical
Operating System,” ACM Proc. Int. Conf. on Reliable Software 10, 6 (June,
1975), pp. 310-318.

Brinch Hansen, P., "The Programming Language Concurrent Pascal," IEEE Tranms.
on Software Engineering S§E~1, 2 (Jume, 1975), pp. 199—207. :

Dijkstra, E.W., "The Structure of the THE-Multiprogramming System," Comm. ACM
11, 5 (May, 1968) pp. 341-346.

Lampson, B.; YA Note on the Confinement Problem," Comm. ACM 16, 10 (October,
1973), pp. 613-615. ,

Lampson, B.W., et al., "Report on the Programming Language EUCLID," SIGPLAN
Notices 12, 2 (February, 1977) pp. 1-79. :

Lipner, S., Chm., "A Panel Session—Security Kernels," AFIPS Conf. Proc. 43,
NCC 1974, pp. 973-980.

45

Liskov, B.H., and Zilles, S., "Specification Techniques for Data Abstraction,"
IEEE Trans. Software Engineering SE-1, 1, (1975) pp. 7-19.

Neumann, P., et al., "A Provably Secure Operating System: the System, its
Applications, and Proofs,'" Final Report on SRI Project 4332, Stanford
Research Institute, February, 1977. -

Ritchie, D.M., and Thompson, K., "The UNIX time-sharing system," CACM 17, 7
(July, 1974), pp. 365-375.

Schell, R., "Notes on an Approach for Design of Secure Military ADP Systems,"
in Prelimary Notes on the Design of Secure Military Computer Systems,
United States Air Force Electronic Systems Division MCI-73-1, January,
1973, pp. 1-1 through 1-5.

Walter, K.G., et al., "Primitive Models for Computer Security," United States
Air Force Electronic Systems Division Technical Report ESD-TR-74-117,
January 23, 1974,

47

PART II: KERNEL DESIGN PROJECT TASK REPORT

by

David D. Clark

Introduction

The kernel design project was composed of twenty-two individual tasks.

This section of the final report discusses each of the tasks initiated during

the course of the project.

Many of the tasks described here have been documented in greater detail.
In most cases this documentation is in the form of a Technical Memo (TM) or
Technical Report (TR) of the Laboratory for Computer Science. A complete

bibliography of the project appears in Part I of the report.

49

I. Studies of Formalisms for System Specification

At the beginning of this project, we invested a certain amount of effort
in exploring known techniques for expressing the specification of operating
systems. While we did not intend, as part of our research, to comstruct a
formal specification for the Multics operating system, it was important for us
to unde;stand enough about the construction of apecifications to see how our
work would relate to this task. We experimented with three different
specification languages: the Vienna Definition Language, a atylized English,
and a special language developed here and locally known as GSPL, a PL/l-like
language with data structures based on LISP. In an attempt to discover the
relevance of structured programming to our project, structured representations
of two parts of the system, page control and traffic comtrol, were developed.
These preliminary experimentations proved very valuable in developing the
group insight. The structured representation of page control in GSPL forms an

appendix to techanical report TR~127 by B. Greenberg.-

II. Analysis of Original System

Before we could begin to perform any organized rearrangement of the
kernel of Multics, it was necessary to havé a clear ideéuof what was contained.
in the kernél of the system as it existed at the beginning of our project. To
this end, the programs that constituted the supervisor of the existing system
vere analyzed in several ways. First, we gathered together the functional
specification for every entry point into the‘supervisof. The resulting
notebook coﬁstituted a first cut at a functional spécification of the Multics
kernel. Second, all of the segments that constituted this supervisor of the

system were categorized by function and by source language. The results of

50

this preliminary assessment, and a comparison with the system of today, are
summarized in the earlier portion of this final report. The preliminary
assessment is reported in "A Census of Ring 0" by V. Voydock, reprinted in

™-87.

I11. Formulation of Criteria for Inclusion of Modules within the Kernel

There are a variety of forces that have caused modules to be moved into
the Multics supervisor. Some of these modules are obviocusly related to
maintenance of system security, others have something to do wifh syétem
secutity,'but might be removable at least in part, and others exist in the
supervisor for reasons such as efficiency or convenience, and are not related
to maintenance of system security in any way. We believed that 'the size of
the supervisor ‘could be markedly reduced by dissecting a large number of -
system modules and removing them, either partially or wholly; from the
supervisor. Before we could begin such a removal process, however, it was
necessary to determine exactly what criteria we would use to justify the
inclusion or exclusion of a module from the kernel. Hé‘ﬂegan by studying a
number of specific parts of the current system‘gnd iden;ifying thektrade—pffsb
related to removing these particular parts out of the kerngi.‘ Oné study in
particular was performed of page control. We idéntified three levels of
security with which we might be concerned? protection of information from
direct release or modification, denial of service, and confinement of user
computation to protect against leakage by means of a "trojan horse" attack.
In general, we adopted thé principle ;hat protection against confinement was
not easily achievable in today’s environment, and that prétection against
denial of service was achievable and imﬁortant, but that denial of service was
less important than direct unauthorized ;elease or modification of data. A

discussion of these kernel levels is contained in TR-163 by W. Montgomery.

51

IV. Analysis of Flaws in the Multics System

In an attempt to understand the sorts of problem that lead to potential
violations of security, our group periodically collected and documented every
known way to penetrate the Multics system. While the list of uncorrected bugs
~was not circulated, we periodically issued a report which analyzed bugs after
a repair had been installed in the system. These analyses are of a very
pragmatic nature, but yield considerable ingight into the sort of problem that
must bé solved in practice if a secure system is to exist. These reports were

reprinted in TM-87.

v. Performance Benchmark for the Multics System

One of our concerns in this project was that the performance of the
system should not be significantly degraded by the modifications that we
proposed. We had anticipated using the standard Multics benchmark developed
at the MIT Information Processing Center to evaluate our modified versions of
the system, but we discovered that this benchmark was too time consuming and
not sufficiently precise for our purposes. For this reason we invested some
effort in producing a variant of this benchmark that ran more quickly than the
standard version and whose results were more repeatable. We produced a
version of the benchmark that started and stopped the calibration tasks in
such a way that the resulting running conditions were much more repeatable
than in the standard benchmark. This modified benchmark was used to produce

the performance results reported earlier in this report.

We also invested some effort in designing a version of the benchmark that
provided the test load on the Multics system using interactive processes
logged in over the ARPANET, as opposed to the absentee jobs used by the

standard benchmark. The advantage of interactive processes is that they

52

exercise the system in a fashion more similar to the way the system is
actually used. This latter project was never completed. It appeared that the
need for an evaluator of this complexity and accuracy was not required, since
the majority of the engineering studies that we performed were not carried
through to an implementation that was sufficiently tuned to yield more than

very rough performance information.

We performed two other small projects related to performance monitoring
and evaluation. One project was experimental observation of vérious clasgses
of users on the sysﬁem, in order to develop an empirical model of the arrival
pattern of user commands. Thisg work is reported in an undergraduate thesis by
H. Rodriguez, entitled "Measuring User Characteristics oa the Multics System".
We also imported and made operational a performance monitoring package called

"aware'" originally developed by the Ford Motor Company.

VI. Removal of the Dynamic Linker from the Kernmel

Our preliminary analysis of the Multics kernel indicated that a
significant volume of the kernel consisted of prograls ;hét did not need to Be
in the kernel for reasons of security, but were there for reasons of
efficiency or tradition. It was important to determine whether or not it was
practical to remove these modules bodily from thé kernel.r<1n most casesbig
was clear that some small percentage of the fﬁnction did require éupervisor
privilege, and there was some fear that this residue woﬁid compiicate the
outright extraction of the remainder. The first such task whiéh werundertook
was the removal of the dynamic linker from the kernel. The dynamic linker,
which trans;ates at run time between symbolic names and segment numbers, was
an obvious candidate for removal for four reasons. First, the linker did not

implement any concept related to the protection of the system or needed to

53

support the protection mechanisms. Its function is entirely related to the
execution of user written code. Second, in view of the function implemented
by the linker, it seemed reasonable to suspect that the.linker did not need
any of the privilege granted to typical modules of the security kernel.

Third, the linker was a very complex program. Even though its function was
easy to describe, the details of its implementation required the uée of
intricate and sophisticated language constructs that made the reading and
auditing of the program an almost impossible task. Finally, the linker, by
its very nature, handles data directly accessible to the users of the system.
Such data could contain, purposely or not, inconsistencies capable of causing
the linker to malfunction or perform unexpected operations. It seemed much
harder to verify the correct operation of a program when that program could be
presented with an arbitrary input than to verify correct operation when a
"correct” input was guaranteed. Very sophisticated machinery would be
required to verify the consistency of user databases and thus insure proper
operation of the linker. Inclusion of such machinery, if possible, would only
increase the complexity of the linker. The alternative of removing the linker
from the kernel would insure automatically that no malfunction of the linker

would ever subvert the protection mechanism of the system.

Since this project was one of our earliest, the design was carried
through to an implementation in order to increase our confidence that the
techniques we were proposing in principle would work in practice. The
completed implementation also allowed us to make some preliminary performance
studies, since there was some concern that removal of functions from the
kernel might significantly degrade the performance of the system. The

conclusions drawn from this project were that the outright removal of certain

54

functions from the kernel was indeed feasible and practical, that no drastic
performance degredation need be expected in practice, and that the flexibility
of the system was in fact enhanced by thls extractibn, since the user now had
the Optioh of replacing the linker with an alternative program of his own
choice. One useful byproduct of this study was the conclusion that kernel
intervention is not required when control is beipg transfered between one user
domain and another, even if those two domains are mutualiy untrustiug. This
is a most interesting conclusion, which was not at all obvious at the

beginning of the project.

The results of this project are reported in detail in technical report
TR~-132, and in "Dynamic Linking and Environment Initialization in a
Multi-Domain Process", Proceeding of 5th Symposium on Operating Systems

Principles, ACM Operating Systems Review 9, November 1975, both by P. Janson.

VII. Minimizing the Naming Facilities Requiring Protection

This project involved identifying another component of the existing
Multics kernel that could be removed bodily into the user environment.
Multics provides a very sophisticated naming environment that users may use to
keep track of their files. One set of names available to the usei, file
system names, are global in scope and can be used by any user to identify a
shared file. Since these names are shared among users, it is not obvious how
their management could be removed from the kernel. However, there are other
sorts of names, reference names, private to each user, which provide an
efficient way of naming a file already identified using a file system name.
Since the management of reference names is private to each user, it seemed

reasonable to remove their management from the kernel.

55

Removing the reference name manager from the kernel required that a
kernel data base, the known segment table, be split into a private and a
common part. As part of this change, the interpretation of path names was
also removed from the kernel. As discussed in the first part of this report,
‘this required that the supervisor learn to lie convincingly on occasion about

the existence of certain file system directories.

This project was also carried through to an implementation, primarily
because we anticipated demonstrating a performance improvement, and a drastic
reduction in the complexity of the algorithm once we eliminated-the
constraints imposed‘on the algorithm by the necessity of its shared operation
in the kernel. The result was a reduction by a factor of five in the kernel
code required to manage the address space of a process, and an improvement in

performance. A new and simpler kernel interface was an additional by-product.

The results of this research are represented in technical report TR-156

by R. Bratt.

VIII. Removal of the Global Naming Hierarchy from the Kernel

The previous task description discussed the existence of a global naming
environment, the Multics file system. Since this naming environment is shared
among all the users, it was not at all obvious that this name management
mechanism could be removed from the kernmel. However, it appeared that the
file system could at least be partitioned into two parts, a single-layer
catalog of segments, indexed by unique id, and a higher level name management
mechanism which performed no function except the'mapping between user provided
names and unique id“s. If such a division could be performed, then it would

be possible to imagine removing this higher level from the kernel, and

56

providing a different copy of this management package for users in each
different security compartment. While this would segregate the users into
disjoint classes that would be incapable of refering to each others files,
suéh a segregation might be acceptable in many applications. Even if it were
not possible to remove this name management algorithm from the kernel, the
parﬁitioning of the algoritham into two components would presumably increase
the modularity of the system, which would enhancé the auditibility of the
kernel., This project was initiated, but not completed. VIt was clear that
this was a very major upheaval to the functionality of Multics, in addition to
being a major upheaval to the structure of the existing codé. We felt that
for our purposes the effort required to perform this surgery would not be
appropriate, given the requirement that we conform to the current Multics
specification. In a new system that was being deaigned‘with the goals of
auditibility in mind, we would strongly urge that this structure be
considered, and if Multics were being completely redesigned, we thimk that it

would be quite valuable to evaluate this structure for inclusion.

IX. Study of Multics System Initialization

If one is to certify that a system works correctly, one must begin by
verifying the "initial state" of that system. For this reasom, it was very
important to understand how the Multics system initialized itself. The
original initialization procedure was relatively unstructured in the sense
that we found it very difficult to understand how one might verify its
operation. Essentially, initialization proceeded in a number of very small
incremgntal steps, each of which augmented the eavironment of the programs
which followed it. This meant that each program ran in a slightly different

environment than its predecessor. It was characterizing this large aumber of

57

different environments which made verification of program correctness so
difficult. The reason for this large number of incremental steps performed
during every initialization is that each of these steps fepresents a point at
which the sysﬁem can be tailored to reflect the particular physical
configuration of the hardware available at the moment. Thus, a single Multics
tape containing the-initialization programs could be generated that'would
bring up a running Multics on any configuration, in contrast to other systems
that require the generation of a different tape specific to each particular

configuration,

We proposed an alternative structure for Multics initialization that
continued to achieve this goal, but which we considered to be much more
amenable to verification. Our strategy divided initialization into two
phases. In the first phase, a bit string that consituted a version of Multics
capable of running on any configuration was loaded into memory. In order to
do this, it was necessary to demonstrate that there was a minimal set of
hardware and software which constituted a subset of every viable
configuration. Once we had defined this minimal configuration, it was
possible to genmerate a version of Multics that used just these resources. The
generation of this minimal Multics was done not at the time the system was
initialized, but at the time the tape was generated. Generating the minimal
Multics at tape generation time makes validating the generation programs much
simpler, since the programs can run on a full fledged Multics, rather than in
the environment that they are attempting to create. The second phase of
initialization consisted of a series of dynamic reconfigurations that modified
the minimal Multics to conform to the particular available hardware and

operating parameters at this site. Dynamic reconfiguration has always been an

58

essential part of Multics, and many of the reconfigurations required for this
purpose already existed in this system. However, it was necessary to
demonstrate that certain supervisor tables, such as the traffic control and
segment ménagement data bases, could be grown, and an implementation was
performed to prove this particular claim. Although this initializatiom
strétegy was not completely implemented, we are very confident that it is
easily amenable to validation, since it conforms in its structure to the
principles of layering, which appear to be powerful principles. in operating

system structuring.

The results of this work are reported in technical report TR-180 by A.

Luniewski,

X. Restructuring of Page Control

The Multics kernel is implemented as code distributed among all the
processes in the system. That is, a'uéef‘déiitiﬂg:a particular service of the
supervisor executes the relevant supervisor code in his own process. There is
an alternative structure, in which the supervisor is 1-p1enénted'as separate
processes that communicate with the user using interproceés communication
mechanisms. This alternative, in certain cases, has thé édVantage tﬁat it
isolates as a sequential process an algorithm that by its nature wants to be
sequential, but that had been forced to an unnatural structure by being
executed, potentially in parallel, by several user processes. We were very

anxjious to explore the use of this strategy within the Multics kernmel.

‘The part of the supervisor that we chose as a testbed for this experiment
was the low level memory management, commonly called page control. When a

user references a page not in main memory, the page must be fetched from

59

secondary storage into an empty location in main memory. In order to perform
this move, it may be first necessary to create an empty space in main memory
by removing some other page. This removal algorithm haé‘traditionally been
run at the time of a page fault, but there is no necessity that it be run
then. Our belief was that the removal algorithm could be more sensibly
structured as a separate process, running in parallel with user processes,
with no function other than to identify and remove from main memory pages not
recently used. By segregating this‘algorithm‘in»a separate process, the user
process is no longer concerned, at fault time, with such problems as queuing
disk writes, and waiting for theirkcbmpletion. Rather, the users process
performs a very simple operation: 1t requesté an empty piece of main memory,
abandoning the processor if heéeséary until oneri; available, and then

performs a read operation from secondary storage into this location.

A redesign of page control also allowed us to explore the implications of
recoding certain assembly language ptograméyiﬂ PL/l. The page control
algorithms had'beén coded in assembly laﬁsuage fofrefficiency, and we were
anxious to find out exactly ﬁhat tﬁé impaét Gould be of Qsing a higher level
language. The redesignedlpége contrbi was implémented, éince ve were
interested in investigating the performance'chAraéterisfics of the system and
since we wanted to confirm, by actuall& rdhning ;he sysﬁem, that we had
identified all interactions between the page control'functions now isolated in
separate processes, and the highef ievels of the\supervisor stiil running in
user processes. In fact, these connections between thé removal process and
the higher levels of the supetvisor turn out to be some of the stickiest
problems associated with this version of page management. The problem is that

higher level functions occasionally request that particular pages they specify

60

be removed from primary memory, and this explicit request from above does not
fit neatly into the otherwise clean pattern of the removal algorithm. The
alternative of having these explicit removal operatioms performed by the user
process,iﬁplies that more than one process can be removing pages from memory
at the same time, which in turn implies that the data bases describing the
contents of memory are being updated by more than one ptocess.'jfhis
eliminates much of the cleanliness of a multiprocess inplenentation; since

locking must still be used to insure the integrity of the data base.

The results of this implementation, especially the conclqsiqns we draw
concerning performance of the aigorifhm iﬁ a high levg}wlangggge, are reported
in the earlier part ofrthis report. Det#ils of‘th§§ P;o;ect are reported in.
technical report TR—i?l by A. Hubéf, and in éfgéthef Resu}ts‘yjyh

Multi-Process Page Control” by R. Mabee, reprinted in TM-87.

XI. Efficient Processes‘for the Kernel

As discussed in the previous task deqcriptioq, ;t appeared that
structuting some of the suﬁervisor ;round sé?a:a;e‘Procqgggs was convenient
and appropriate. It Hﬁs élear, ﬁowever, ﬁﬁat-fhe uecﬁénis-s then existing in
Multics for the creation and scheduling of processes were somewhat unwieldy
for this particular sort of appliéation. We saw many p}ages in the system in
which a process could be used if 1£ did not carry with it the full price tag
of the user process. In particular we concluded that a process that could
take page faults, but could perform no other{nodifications on its eanvironment,
such as adding a new segment to its address space, would be an effective and
economical compromise for system processes. We performed an implementation of

such a process, in order to demonstrate that its operation was compatible with

the Multics structure, and we used this process in a variety of ways. It was

61

utilized heavily in the design of page control discussed above. It was also
used to demonstrate that processes could be used in Multics to handle 1/0
interrupts. _Curtently in Multics, the code that respon&s to an interrupt runs
in a very unusual and limited environment, with restrictions such as that it
cannot call a locking primitive or perform any other action that might
conceivably result in it loosing the processor. If an interrupt céuld be
translated into a wakeup, these problem would vanish. It was clear that the
immediate translation of én interrupt into a wakeup was an obvious and crucial
idea in the correct sttucturing of the system. We demonstrated the utility of
these fast processes by modifying the teletype interrupt handler so that it
ran in such a process. We also explored the use of such a process for
handliné other I/0 interrupts, such as the interrupts necessary to operate our
connection to the ARPANET. In the discussion of task XVI below, we
demonstrate a structure to the system which #rovides these efficient processes
in a clean and understandable way. The 1mpienéntéfion that was part of task

XV1 ran almost every interrupt handler in the sysfé- as a supervisor process.

XII. Multiple Processes in the User Ring

Another related experiment involving the use of multiple processes was
the restructuring of the user ring computation so that it could run in a -
multiprocess environment. While there are a variety of advantages to a
multiprocess user environment, such as being able to suspend several commands
and then restart them in an order different from the order in which they were
suspended, the principal impact on the kernel, as opposed to the user, of
multiple processes has to do with handling of the’uultics quit signal. The
quit signal currently propagates its way through the Multics kernel in a most

astonishing and intricate pattern, starting out in an interrupt handler, where

62

it is translated into a special call to the traffic controller. This call in
turn generates a special interrupt in the target process, which may cause that
process to run in order to be interrupted. If we understood how to structure
the user computations so that the quit was nothing but a wakeup to a separate
user process, then the mechanism in the kernel wquld be much reduced, sinée
the‘only opetation the kernel would perform would be the immediate translation
of a quit signal into a wakeup, which is exactly.the same action that the
kernel would presumably take on any 1/0 interrupt. A running implementation,
of the user computation as a number of prbcgssés‘wus produced, although the
results of this research were never published. A related document, hoﬁever,

is discussed below in task ‘XVII1I.

XIII. Study of Error Recovefy

One of the most disrﬁptive events 1in a sys;em superviso;{is the
occurrence of an error. An error may be so severe as to cause suspension of
all sistem operation, but even ip ghisqcoqgegt‘tt %g,neggssgty_to_briug the
system to an o?derly-halt-so th;ﬁ rinimum information is lost. If an error is
not that severe, it may still be necessary to reflect the occurrence of this
error to some module other than the module that actually discovered the error.
It turns out that these error reporting paths are the most intractible
communication paths in the system when one atfenpté:to modularize the various
functions of the supervisor. Typically, an error is detected at a very low
level in the supervisor, and is reported to some higher level, thereby
providing a reversed direction communication channel from low to high levels
in»violgtidn of the layering strategy. During the course of'thié’project we
performed a variety of studies with the goal of understanding how Multics

should recover from errors, and whether steps taken to insure reliable

63

recovery from errors might in fact compromise system security. The first
project was a study of the Burroughs 7700 operating system, since we were
given to believe that this system was highly resilient in the face of errors,
and could continue operating without disruption of the user computation. In
fact, we concluded after a study of the system listings that the level of
recovery provided by the Burroughs system did not markedly exceed that which
Multics itself displayed. A more detailed analyses of the various sorts of
errors to be expected in the Multics system was performed as paft of this

project, although the documentation of this report is still in draft form.

A related project which addressed the question of upward communication

across layers is described in task XVI.

XIV. Removal of Answering Service from kernel

The Answering Service is that collection of modules that manage the
system accounting, authenticate users logging into the system, apd keep track
of the allocation of typewriter channels and user processes. As currently
structured, the Answering Sérvice is a very large collection of code, all of
which must be included in the security perimeter of the system. It was our
belief that the functions could be structured in such a way that only a small
portion required kernel privileges. In fact, we felt that functions
traditionally performed as part of the kegnel, such as user authentication,
could be performed by the user process itself. In order to investigate these
beliefs, we developed an alternative structure for th; Angwering Service that
attempted to minimize the kernel functions related to user authentication and
accounting. The result of this design was a version of the system with

increased flexibility, since users were now permitted to create authenticated

and accountible processes at will, At the same time this version reduced the

64

size of the kernel dramatically, as reported in the earlier portion of this
document. A byproduct of this research was incfeased insight into the
relationship between process creation, as currently performed when a user logs
in, and the crossing from one protectioﬁ domain to another, as is often
discussed in systems with protection boundaries more general than the Multics

ring structure.

A demonstration of this version was implemented. The results are

reported in technical report TR-163 by W. Montgomery.

XV. Organization of the Virtual Memory Mechanism of a Conpﬁter System

One of the most important results of our research is a method for
producing modular, structured software to support the virtual memory mechanism
of a computer system. This material is discussed at length in the first part

of this report, and is summarized only briefly here.

The method that we propose for organizing a virtual memory mechanism is
based on the concept of type extension. A‘virqul memory mechanism should be
regarded as implementing abstract information containers (e.g. segments) out
of physical information containers (e.g. main memory blocks and disk records).
Further, we showed how one could implement the programs and the address space
of the mechanism itself without violating modularity and structure. We
illustrated the use of the method by applying it to the redesign of the

virtual memory mechanism of Multics.

This work is summarized in the earlier part of this paper and in the
Laboratory for Computer Science Annual Report for the period ending June 1976,

and is discussed in detail in technical report TR~167 by P. Janson.

65

XVI. Processor Multiplexing 1n a Layered Operating System

In the original system, there existed a very intractable entanglement
between the virtual memory manager and the processor manéget. An important
project was to disentangle these two modules, and to produce a structure for
the processor manager that was consistent with the principles of layering and

type extension developed in the project discussed in the previous section.

The general nature of the entanglement was as follows. The virtual
memory manager depended on the processor manager in a number of ways. First,
of course, it depended on the processor manager to provide the interpreter for
the code of the virtual memory manager. Second, and more explicit, the
virtual memory manager called upon the processor manager to suspend the
execution of a process that was waiting for a page to be moved from secondary
to primary memory. The processor manager, in turn, depended on the virtual
memory manager to move to and from main memory the pages containing the
description of processes that were about to be run. This unfortunate
circularity was eliminated in our redesign by separating the processor manager
into two levels. The bottom level was implemented without employing the
functions of the virtual memory manager. It executed using only information
permanently fixed in primary memory. On top of this layer, the bottom levels
of the virtual memory manager ran. The virtual memory manager could call upoﬁ
this lower level to switch execution from one process to another in order to
suspend a process waiting for a page. On top of this bottom layer virtual
memory manager, a second layer of processor management was then provided.

This upper layer had available to it a virtual memory, and could therefore
store the state of a large number of processes, whereas the bottom layer

processor manager, since it was restricted to storage permanently allocated in

66

main memory, could store a state of only a fixed and rather small number of
processes. By multiplexing these fixed slots among the larger number of
descriptions managed by the top layer processor manager, the effect could be
achieved_of multiplexing an unbounded number of processes among the available

hardware processors.

One additional result of this thesis was a discussion of tﬁe problem of
upward signalling: the passing of a message from a lower level to a higher
levei of the system in such a way that the layering dependencieé are not
violated. The problém arises in this case when, as a result of an event
detected by the bottom layer traffic controller, a process whose state is
known only at the higher level must be readied for executioun. ' A solution to
this problemyis proposed which does not nake'tﬁe lower layer processor wmanager

dependent on the uper layer.

This research is discussed in the earlier part of this report, and is
presented in detail in technical report TR-164 by D. P. Reed. In order to
investigate the performance of the two level processor nanagér, a detailed
design of both levels was completed, and the botfom level was implemented.
This detailed design is reported in "A Two-Level Implementation of Processes

for Multics" by R.M. Frankston, reprinted in TM-87.

XVII. Separation of Page Control and Segment Control

From the beginning of this project it was clear that one area of great
confusion and complexity within the Multics system was the Active Segment
Table and the large number of modules that manipulate it. The structure of
the Active Segment Table is dictated by the needs of several layers in the

memory management system, from page control at the bottom to directory control

67

at the top. An extensive study was launched of the Active Segment Table and
the file system in an attempt to understand what the underlying cause of this
entanglement was. A major conclusion of this study was that resource control,
in particular the management of storage system quota, was at the root of a

great deal of the confusion.

Given the general principles of layering and type extension discussed
earlier, it seemed appropriate to attempt to apply them in detail to this area
of the éystem. The particular project undertaken was the separation of the
bottom two layers of the virtual memory managei: page control, which moves
pages of information to and from main memory, and segment control, which
manages the aggregation of pages into segments. These two modules were the
primary villans causing the entanglement manifested in the Active Segment
Table. The root of the problem was, as expected, resource management, in
particular the "quota problem". Much of the structure of the Active Segment
Table was being provided so that the low level page manager could implement
resource management decisions that reflected policies being sbecified
dynamically by higher level managers. The éolution to this problem was to
remodularize page contfol’and segmehﬁlééﬁ;rbl é;vtﬁféejmodules rather than
two. The bottom layer continued to mahage ghe movement of pages into and out
of memory. The‘top layer provided the abstfactibn of an’active segment, and
also the interface to the yet higher layefs. The second iayer provided an
intermediate abstraction that lumpéd pages tégethe; for the purpose of
regource control., The result of this pafticdlar modularization was a clean
isolation of those variables in the Active Segmeant Table into categories which

were referenced by one and only one layer.

This work is reported in technical report TR-177 by A. Mason.

68

XVIII. Provision of "Breakproof" Environment for User Programming

As varioua parts of the operating environment are removed from the
kernel, the questlon arises am to whare they should be put. [f they are
placed in the same ring as the executing programs of the user, then they can
be destroyed by a programming error of the user. It would be very nice if the
removal of programs from the kernel did not lead to a'reduced rébustness of

the programming environment.

This project used the Multics ring mechanism to create an>env1ton-ent
which was not a patf of the kernei buq was 55111 protected from the user.
This environment could be used to contain programs private to but still
protected from the individual user. We defined a consistent set of programs
to constitute this environment, which including the command processor and the
error recovery mechanism. The result was a program development and execution

environment which was considerably more robust than the current system.

This mechanism was implemented, because werfelt we needed opegational
experience with this subdivisioﬁ of the ﬁser environment into two b#tts. Much
of the Multics environment was easily transformable into)this new
configuration, although certain conponenﬁs ofuﬁhe systenm wetéiless ttactabie
than others. The question of how error messages should be signalea in this
multi-domain environment was a source of considerable study. There was a
slight performance loss in this environment, dué to increased page faults from

duplication of stacks and related segments in both domains.
This work is reported in technical report TR-175 by H.J. Goldberg.

XIX. Control of Intermodule Dependencies in a Virtual Memory Subsystem
As discussed above in task XV, the techniques of type extension and

layering appear to be very important in producing a structured kernel. This

69

project was a case study of the virtual memory management algorithms of an
abstract system resembling Multics, with the intention of applying these
principles in such a way that both the number of modules‘and the number of
interconnections between these modules is minimized. The central thesis of
this research 1s that the various operations performed by the layers of the
virtual memory manager can be characterized as being of one of two éorts: one
that associates and disassociates two computational objects, the other that
fetches attributes of a computational object given its name. Decomposition of
the virtual memory manager in this way reveals the kind of dependencies that
result when one module remembers the name of an object. More strongly, this
case study decomposition suggests that if the system provides a primitive
mechanism to perform each of these two operations, this: pair of operations can
be used by several different layers of the virtual memory manager. Such reuse

is an especially effective way to reduce the number of modules in a system.

. The representation of the operations used in this research is modeled on
the LISP concepts of atomic element and property list. - The LISP paradigm
provides'a convenient and suggestive model for the primitive operations

performed in this decomposition of a virtual memory manager.
This research is reported in techaical report TR~174 by D. Hunt.

XX. New Mechanism for Process Coordination

As part of this project, we proposed a new mechanism for process
coordination called "Eventcounts". Basically, Eventcounts are semaphore-like
coordination variables that are constrained to take on monotonically
increasing values. Coordination of parallel activities is achieved by having

a process wait for an Eventcount to attain a glven value: one process signals

70

another by incrementing the value of an Eventcount. Any coordination problem
for which a solution haa been developed using aemaphores can easily be
converted to a solution using Eventcounts. In additioa, many Eventcount
solutions seem to have the property thai most Eventcounts are written into by
only one process; this-reduction~1; write contention has beneficial effects on
secﬁrity problems and on coordination of processes separated by a transaission
delay, as in a "distributed" computer system. Eventcounts provide a solution
to the "confined readers" problem, a version of the readers-writers
coordination problem in which readers of the informatiom are suppose to be
confined in such a way that they cannot coalunicate~1nfor-aéion to the
writers. Finally, for the class of synchronization problems encountered
inside an operating kernel, Eventcounts appear to lead to simple,

easy-to-verify solutions.

This work is reported in RFC-102, and in a paper entitled
"Synchronization with Eveatcounts and Sequencers" to be presented at the 6th

Symposium on Operating Systems Primciples by D. Reed and R. Kanodia.

XX1. Management of ﬁultiplexed Input /Output

One of the function#lof the Multics iernel is to conﬁrol access to
multiplexed 1/0 streams such as the connection to the front end processor
managing terminals or the connection to the ARPANET. The kernel must be |
involved in the use of these streams, in order to inéure that thg messages of
one user are not 1nadverten£ly/of maliciously ob#erved or modified b; another
user. Currently, a large bulk of very complex codé is includea in the kérnel
to control each of these sfreans. This code impléments many functions in
addition to the necessary kernel function of nultiplexingvand demultiplexing

the messageé transmitted over the connection. To reduce the bulk of this

71

code, we have developed a model of the communication taking place over a
multiplexed connection that is general enough to characterize the behavior of
the current front end processor, the current ARPANET, and various other
protocols for the ARPANET and other nets. From this model it is possible to
design modules resident in the kernel that implement the security functions
appropriate for any network that can conform to this model, rather than
creating a new control program for every network added to the system. A vast
majority of the network dependent code can be removed from the kernel and
placed instead in the user ring of the individual processes using the network

in question.

The model of this portion of the system is rather different in structure
than the models proposed to structure the virtual memory manager of the
system. The distinctions arise because the I/0 stream represents an
asynchronous process whose behavior in some sense drives the kernel modules
managing the connection. This differing structure may provide an interesting
test case for the generality of extended type managers as an organizing tool

in a kernel,.

XXII. Hardware Estimation of A Process’ Primary Memory Requirements

We completed a project to demonstrate that a process’ primary memory
requirements can be approximated by use of the miss rate on the processor’s
page table word associative memory. An experimental version of the system
demonstrated that the current working set estimator can be eliminated by the
use of this hardware feature. The working set estimator is a potentially
complex algorithm whose elimination is clearly appropriate in a simplified
kernel.

This work is reported in TM-81 by D. Gifford.

73

PART III: DETAILED STUDY OF POTENTIAL SIZE REDUCTION OF THE MULTICS KERNEL

by

Douglas M. Wells

Abstract

We estimate the impact on the size of the Multics kernel were our various
projects carried out. We specify results for three different versions of the
kernel. The first includes the effect of those projects that were carried to
a trial implementation, or whose size impact could otherwise be accurately
predicted. This version corresponds to the estimate stated in the first part
of the report. The second version involves projects whose impact could only
be estimated. The third version involves a very tentative and unsupported
estimate of the impact of producing a file system that only enforces

non-discretionary access controls.

Introduction

The first part of this report contained é preliminary study of the impact

our project had on the size of the kernel. This section of the report is a
detailed analysis of that topic. At the time that the first part of this
report was written, the only study of the size of the Multics system was one
that was performed at the beginning of the project. For this reason, the
numbers reported in the first part of this report are based on modifications
to the kerﬁel as it existed at the start of the project. Inrorder to perform
a more detailed analysis, we examined the kernel as it exists in the standard

system now. Since the size of the standard system has increased since the

74

start of our project, the absolute numbers reported in this portion of the
report differ from those given in the preliminary study. The percentage

impacts that we report are approximately the same, however.

Scope of the Kernel

In defining the security kernel considered for this work, Qe consider

several parts of the standard system:

- Ring 0 supervisor. Potentially, any procedure executing in ring O can
examine or modify any part of Multics. We therefore need to consider any

module included in ring 0 as part of the security kernel.

- Message Segment Primitives. For purposes of the Access Isolation
Mechanism, message segments may contain information at multiple levels
and/or categories. Thus, any misbehavior on the part of the message

segment primitives could allow unauthorized access to data.

- Answering Service. Because the Answering Service is responsible for the
creation of all other processes, an error here could cause a process to

be created with uncontrolled privileges.

- Backup Services. One of the fundamental services of Multics is providing
reliable file storage services. Any error in one of these services could

cause a segment to be reloaded at a level other ‘than its proper level.

- Detachable Storage System Media. Although Janson’s type extension
techniques indicate methods of handling these outside the kernel, the
actual Multics implementation is new enough:that there has not been an
actual analysis of it. We will therefore consider the existing

mechanisms as being within the security kernel.

75
There are also several areas that are not considered here:

~ I1/0 Services. Although bulk printer and card services are a service of
the standard Multics, we have not devoted resources to studying this
area. Primarily, this is because the problems in the area seem not to be
ones that require engineering of the kernel séftware, but raﬁher ones of
adhering to various laws and government regulatiéhs concerning classified
data. In addition, we believe that these services might better be
performed in a Secure Front End Processor, as described in scenatid two.
We will, therefore, consider I/0 services aé being outside the security

kernel.

- Frontend Network Processor. The standard Fronteand Network Processor (FNP)
does not seem well suited to interfacing a Multics security kernel. The
problem areas include a lack of protection hardware and a poorly

structured hardware interface between the FNP and the Multics memory.

s

Because of these problems, we have not pursued the uée of the FNP in a
secure version of Multics. Rather, we have assumed that some Secure
Front End Processor with its own security kernel is used for system
Input/Output. The use of this SFEP is discussed further in sgénario two

below.

- Special Backup Services. The standard Multics system provides two backup
services that will not be considered in this report: .complete dumps of
the hierarchy, and retrieval of individual segments from backup tapes.

We believe that these services need not be considered here because they
are each only an optimization of one of the other services. A complete

dump is taken only to coalesce the results of all previous incremental

76

dumps. A retrieval is essentially a reload in which most of the segments

that would normally be reloaded are skipped.

Base Multics Kernel

In assessing the impact of this project upon the size of the Multics
kernel, we report théyresults of the various simplifications upén a base
system. The base system we have chqsen is the Multics system actually running
at the time that this report was written. This system, designated system MSS
31-6, was installed at M.I.T. on June 23, 1977. This system is typical of the
various versions of Multics that havé existed during the period of this
research. One slight peculiarity of this system is that it contains two
versions of the Backup mechanism. The older, now-obsolete Backup system (the
Hierarchy Dumper and Reloader) will be retained until confidence in the newer

Backup system (the Volume Dumper and Reloader) is acquired.

At the outset of this research, an initial census was made of the Multics
ring 0 supervisor [Voydock, in Clark, 1977*]. That cengus included a
functional breakdown of the modules in the ring 0 portion of Multics, and
provided totals of the sizes of the programs. Then, based on an assumption of
5 words of text section per PL/I source statement, the size of the ring 0 part
of the system was estimated at 44,000 source lines. That number, plus the
13,000 lines in the Answering Service is the basis of the 57,000 line kernel

size used in part one of this report.

We also performed a census upon our base system for the purpose of

determining the sizes of the various functional categories. For this census,

* References in this part of the report may be located in the Publications and
References sections of part 1.

77

we counted the sizes of the modules, both the text section size and the count
of source statements. The differences between that 1974 version of Multics
(MSS 20-10a) ;nd our base system (MSS 31-6) reveal a feﬁ interesting changes.
The ring O portion of the system has increased in size by 48%, from 157,000
‘words of text to 233,000. The number of source modules has increased in
almost the same proportion, 305 versus 432. Only one major section.of the
system has crossed the ring O boundary: Tape Controcl has been moved outside

the supervisor.

On the other hand, a surprising number of things have remained the same.
It appears that the sizes of the individual modules have remained relatively
constant, averaging about 525 words of text section per module. Due to the
differences in methods of computing program size, we can’t directly compare
the relative usage of assembly language, but we do find that the proportion of
assembly language modules is about the same in the previous system as in the
base system. Also, it should be noted that there are no major new functional

units in ring 0; the only changes have been ones of replacement or alteration.

1f we look for the reason for the increase in the size of the ring 0
portion of the system, we immediately find that the capabilities of the system
have been improved substantially. During the period since the initial census .
of the Multics supervisor was performed, the system has been altered in a

number of significant ways:

- the Access lsolation Mechanism has been incorporated into the system,

- a "new" storage system implementation has been installed, including

support for detachable parts of the hierarchy,

78

- the salvager, which was previously a stand-alone system, is now an

integral part of the normal Multics,

PL/I support bf language I1/0 features has been dramatically improved

including a reymplementation of the PL/I "file" support,
7%. .

- dynamic reconfiguration has been "idiot-proofed",

a rewritten typewriter-control system has been installed.

Typically, each of these feimplementations has caused the size of the
subsystem to increase. There are two primary reasons for the increase —-
expanded function, and improved debugging and metering facilities within the

subsystem.

The base system is organized so as to simplify system maintenance and
development, not to reduce the size of the kernmel portion of the system. One
result of this organization is that the kernel service processes, such as the
Answering Service, tend to use normal system utility routines. These utility
procedures often include more function than is needed by the service process.
An example of this is the temporary segment manager. Although a temporary
segment can be created with only one PL/I source language call, the'temporary
segment manager maintains a pool of such temporary segmehts in order to
eliminate unnecessary costs of segment creation and deletion. Because the use
of this facility can improve_overall system performance, the Answering Service

uses this (and other) facilities.

_An unfortunate result of this organization is the fact that the address
space of the non-ring 0 kernel processes is much larger than it needs to be.

Many system utilities, even those not used by the kernel processes, are

79

included in segments in their address spaces. In certifying the standard
system, however, gll these extra modules would have to be audited. In
performing the census of the base system, we_chose not to include all these
extra modules.. First, the actual ideﬁtification and analysis of these modules
seemed impractical. Second, the system could be trivially recoded to
eliminate such uses; Therefore, in computing the size of the kernel of the

base system, we have applied one exclusion factor.

The rule we have applied has been: if the call to the utility‘procédure
could be teplaéed by fewer than about 10 lines of code in the original
program, we have not counted that utility as being in the kernel. We estimate
that had we included all thosé extra modules in the system, the base kernel

would have been about 20,000 lines larger.

To give some indication of the sizes of the various subsystems of the
base Multics system, we will give a functional breakdown of the components.
The numbers given here are for all source modules in the kernel that contain
executable code. That is, modules that contain only functional parameters or
table space are excluded from the count. Gate segments have also been
excluded. The SIZE is a count of the source language statements in the
procedure modules. NON-PL/I is the percentage of the code, measured in source
statements, written in a language other than PL/I. It should be noted that
dispatch modules are typically coded in assembly language or macro language
and artifically increase this percentage when used as a measure of the use of
non-higher-level languages. The TEXT-LEN section indicates the size of the
"text" secﬁion of the object modules. For PL/I, this includes all constants

and executable instructions. Although some assembly language programs may

80

contain executable instructions in other sections of the object module, this

number provides a good indication of the size of the object program.

CATEGORY MODULES SIZE NON-PL/I TEXT-LEN

Initialization 45 - 4636 37% 23708
Reconfiguration 13 1126 2z 7714
Fault Handling 13 1326 90% 2158
1/0 Control 38 ~3526 282 17598
Printer 6 958 73% 2532
Tape Control 21 2662v 22 i0449
TTY Control 19 4266 52 20477
ARPANET 55 7493 12 40338
Error Handling 25 2016 92 9312
Process Control 28 1296 62 8773
Traffic Control 3 2296 922 2710
1PC 25 3061 22 16160
Process Signals 5 390 17% 1450
Resource Control 32 2343 — 11342
Storage System 38 5366‘ 1z 35864
Directory Control 51 6609 < 1% 34434
Segment Control 32 1973 5% 11460
Page Control 26 5870 692 13704
Salvager 18 2897 12 20747
Dynamic Linker 14 1793 - 11% 7234
File System 5 1161 22 6631
AIM 7 924 62 6223

Error Interpretation 12 856 1Z 7228

81

Kernel Utility 5 470 93% 663
Shared Utility 16 2800 81% 5069
Backup 44 7827 -— 57002
Answering Service 73 12987 22 94609
PL/I Support 39 12504 94%. 18641
Miscellaneous 4 191 22% . 918
Totals 712 101623 26% 495148
(Ring O Only) 432 61848 41X 232824

Since the total number of source lines involved is about 100,000, each
thousand lines represents about 1% of the kernel size. It is useful to keep
this comparison in mind-while reading the following description of size
reductions. As the ;eductions accumulate, it is also useful to remember that
the perceived impact measured in terms of the final kernel is much larger.
Thus, a removal of 1000 lines would reduce the final 38,000 line kernel by

2 1/2%, not 1Z.

First Level Reduction Egtimates

This scenario includes those concepts whose feasibility has been proven
and that have little or no impact upon the user interfaces to the system. The
changes described at this level would reduce the size of the kernel by 40% and

could probably be done in one year'real time.
The changes.in this version of the kernel include:

- removal of obsolete coade,

82
- removal of extraneous PL/I support routines,
- restructuring of page control,
- remo§31 of Answering Service,
~ use of encipherment in backup services,
- making ring-0 and the kernel coincident,
- removal of dynamic linker and reference‘name management,

- miscellaneous cleanups and recoding in PL/I.

Removal of Obsolete Code

As the Multics system has evolved over the years since its inception,
many subsystems have been redesigned and now have significantly different
interfaces. Often, the newer interfaces are more primitive (and therefore
simpler) than the old interfaces. In order to provide édmpatibility to the
existing user community, the old interfaces are usually recoded to use the
newer interfaces. These write-arounds are then made a part of the newly
redesigned subsystem. For subsystems that are a part of the kernel, the

write-arounds are also included in the kernel.

Early experiments with removing the dynamic linker from the kernel have
indicated that moviné the write-arounds outside of”the kernel can usually be
done quite trivially by replacing the kernel gate procedures with non-kernel
dispétch modules. Users would call the entry points in these modules, which
would then transfer to the actual kernel gate procedures or to the

write-around as appropriate to the particular function invoked. This approach

83

is not usually followed since old application programs that make use of the
write-arounds will encounter a slight performance loss in going through an
extra level of name resolution apd by the addition of one extra page to the

working set.

Portions of the base system that include significant amounts of obsolete
code include: Backup with 3400 lines, Taée Control with 1000 lines, PL/I
Support with 3000 lines, and Direétory Con;rollwith 700 lines. In addition,
there #re small amounts'in various other subsystems that total aboﬁt 1560

lines.

Net reduction: 8100 lines

Removal of Extraneous PL/I Support Routines

In order to reduce the siié_of object programs and in an attempt to
provide a higher degree of compatibility, the PL/I compiler makes heavy use of
run—time operators. This is especially true for Input/Output support and
mathematical functions. Currently, all of these operators are combined into
one large segment that is included in the kernel. Fully 55% of this oﬁerator
segment in the base system is never needed by kernel procedures. Also, most
of this support code in written in assembly language. Thus, the removal of

these routines would have a significant impact on the size of the kernel.

25 modules involving 5200 lines of non-obsolete source could be directly
removed from the kernel. In addition, approximately 700 more lines could be

eliminated from kernel support modules and moved to new, non-kernel modules.

Net reduction: 5900 lines

84

Restructuring Page Control

Page Control is one of the most complex subsystems in the base Multics
system: A given page may be in any one of about thifty states. ﬁost of the
state transitions occur during the handling of faults or interrupts. More
than two-thirds of it is coded in assembly language. Thus, it seemed an ideal
candidate to test our ideas about use of ke;nel érocgsses and cénversion of

assembly language programs to PL/I.

Due to our special interest in the effects of using multiple processes
and recoding in PL/I, we made an attempt to optimize and tune this
multi~process version of Page Control. As reported in [Mabee, in Clark,
1977), the final version consumes 50% more CPU resources in managing pages
than the equivalent assembly language version. The object modules are also
about 20% larger. On the other haﬂd, when meagured in source statements, the

PL/I version is 1000 lines smaller, about 17% of the size of Page Control.

An analysis of the functioning of this subsystem'indicates that the
poorer performance is almost entirely due to the'recoding in PL/I, not to the
use of multiple processes. Thus, even in cases where the performance of the
system is critical, the use of multiple processes to allow a simplified

structure does not seem to intolerably degrade the performance.

In addition, there are a number of functioﬁs in page control that could
be removed without seriously decreasing the performance of the system.
Although often the amounts of code that would be removed are not large, these
functions unnecessarily complicate the transitions within page control. These
functions include: aborting read/write sequences while moving pages from the

bulk store to the disk, special-casing segment truncations.

85

One significant point about page control is that it is one of two
portions of the kernel that are coded in assembly language primarily for
efficiency. Although the implementation of multi-process page control was
converted to PL/L and thus was less efficient, the overhead attributable to
page control (whether coded in PL/I or assembly language) can be reduced to an

arbitrarily low amount by using large memory hardware configurations.

The implementation performed by Huber [Huber, 1976] demonstrated that

1000 source lines could be removed from Page Control.

Net reduction: 1000 lines

Removal of Answering Service

The Answering Service is one of the largest single componeﬁts of the base
kernel. By itself, it comprises 13% of the kernel. in addition, significant
portions of ARPANET and TTY Control are included in the kernel only because
they are required by the Answering Service (or Backup, the other service
process included in the kernel). Thus, reductions in the size of the

Answering Service have enhanced effects on the kernel.

The trial implementation by Montgomery [Montgomery,’1976] demonstrated
that the Answering Service could be dividedvinto twoﬂparts: modules that
nanaged the creation and access capabiliﬁies of processes, and modules that
interact with users in order to call upon the process controlling modules.

Those modules that only interact with users can be moved outside the kernel.

Based upon the results of that implementation, we find that those modules
that manage user processes comprise less than 7% of the size of the Answering

Service -- resulting in the elimination of over 12,000 lines of code. This

86

alone reduces the size of the kernel by 12%. 1In addition, 2700 lines of
ARPANET support code included in the base kernel are used only to interact
with users. Because the corresponding portions of the Answering Service have

been removed from the kernel, this ARPANET code can also be removed.

Net reduction: 14,700 lines

Encryption in Backup Services

| As part of the implementation of the '"new" storage system, the Multics
backup mechanism has been changed to use a different mechanism for determining
which segments require backing up. The previous mechanism used a privileged
process that periodically scanned the storage system hierarchy looking for
segments that had been modified since the previous such scan of the hierarchy.
In the new mechanism, the storége system notices whenever a segment has been
modified and notifies the Backup process. The Backup process then copies that

segment onto tape.

Using a methodology similar to that applied to the Answering Service, we
can divide the new backup mechanism into two parts: those modules that
interface to the storage system, and those that perform external functions
such as actually writing the information onto tape, or producing
hunan-readable maps of the backed-up data. By enciphering the segments and
associated storage system information as it is passed out of the kernel, we
can remove the external functions from the kernel, leaving only a small
storage system interface still in the kernel. In return, we would have to add

the enciphering mechanism.

87

It should be noted that the use of encipherment here is the first
instance we have proposed for actually allowing a non-kernel module to
physically maintain a copy of a particular protected objéct; The only
mechanism used‘here to ensure security is the fact that the data is
enciphered. We are relying on the extreme difficulty of decoding the data.
Although there are no known proofs of "uncrackabilityf of existing "difficult™
encipherment schemes, there are claimed to be encipherment algorithms that

have been certified as acceptable for use at any desired level of security.*

The elimination of the external functions aliow us to reduce the size of
the kernel portion of Backup to about 1100 lines, a reducgion from the
original 2800 lines of non-obsolete code. Implementations of enciphering
mechanisms for other purposes have indicated that wé would have to add about
500 lines to the kernel to perfofm the encipherment and to manage the cipher
keys (or to manage flow of data to and from an enciphering box). Also, in
order to allow the system security officer to iﬁspect the backup tapes and

request non-standard retrievals, we would probably need another 500 lines of

code.

In addition, because the Tape Control programs no longer need to be
considered part of the kernel, we can eliminate another 1600 lines of tape

management code from the kernel.

Net reduction: 2300 lines

* Kahn, D., The Codebreakers, Macmillan, New York, 1967.

88

Making Ring=0 and the Kernel Cofincident

The Multics ring 0 is a very special environment within Multics. Many
aspects of the environment while running in ring O are special cased: all
programs in ring O are pre-linked at system initialization, so the dynamic
linker is not required; the segment number of any given segment is the same
in all processeé, so linkage sections can be shared; ring 0 segﬁents are never
deactivated, so segments faults do not happen on kernel segments. All of this
means that programs executing in ring 0 exist in a more primitive environment
than programs executing in otﬁer rings. 1In fact, there are a number of kernel
subsystems that only will work for outer ring éallers; For the subsystems
that are used by both ring 0 and outer tingrﬁrogr#ms, however, we find that
there are often two versions of a particular function, one for ring 0 and one
for the other rings. For example, there is a p:eliﬁker bfogram for ring 0 and
a dynamic linker program for the other rings; there is a program that
initially activates ring 0 programs, and another program“that activates

segments in response to segment faults by outer ring procedures.

When trying to reduce the size and complexity of a security kernel, we
find that the duplication of functions unnecessarily increases the size of the
kernel. If we can remove the outer-ring version of a program from the kernel,
we often eliminate more than half the statements in fhe overall subsystem. In
order to eliminate the outer-ring version of the>program from the security
kernel, however, we must move all kernel programs into ring 0. Thus, to allow
the removal of these duplicate functions, we need to move the message segment
primitives, the detachable media manager, and the appropriate parts of the

Backup and Answering Services processes into ring 0.

89

In addition to the linker and reference name table management code
described below, we can eliminate 800 lines of I/0 System, all the File
System, all the Error Interpretation system, 260 lines of Process Signal code,

and all of TTY Control that is in the outer ring.

Net reduction: 3240 lines

Removal of Linker and Rererence Name Table Management

Early implementations by Janson [Janson, 1974] and Bratt [Bratt, 1975]])
demonstrated that the dynamic linker and reference name table (RNT) management
were functions that could easily be removed from the ring O portion of
Multics. Unfortunately, these subsystems were still required by privileged
processes such as the Answering Service and the Backup processes, and as such,
had to be included within the security kernel of the system. With the changes
to the Answering Service and Backup functions described above, however, the
remaining kernel functions could easily be moved into ring 0 using kernel
processes as described in the discussion of Page Control above or the

equivalent hardcore processes available in the base version of Multics.

The removal of the dynamic linker and RNT management from the kernel
allows us to remove 1950 lines of code. Furthermore, these particular
functions include a disproportionate number of entry points into the kernel.
Thus, removing these two functions also significantly reduces the complexity

of the interface into the kernel.

Net reduction: 1950 lines

90

Miscellaneous Cleanups

There are a number of other removals that will be listed here.
Typically, these are straight forward cleanups that have not been performed on
the standard Multics due to the necessity of changing large amounts of other
kernel programs to replace calls to the eliminated functions. The code
conversion and canonicalization portions of TTY Control can be easily moved
outside the kernel. The full implementation of IPC channels is not needed in
the kernel; the "special"” channels will handle all needs fér IPC by kernel
functions. There are a number of Directory Control functibns, such as
make seg and move _seg, that need not be in the kernel. The fault Handling
modules translate hardware faults into the equivalent PL/I faults even though
not kernel functions depend on this translation. There are also a number of
places where modules can be converted from assembly language to PL/I without

significantly affecting the performance of the system.-

The implementation of these cleanups should result in the removal of

about 3000 lines of code.

Net reduction: 3000 linés

Summary of Level One Reductions

After performing this first set of simplifications, we have a system that
provides essentially the same user interface as the base syatem. Only in rare
circumstances would even the side effects of the functioning be different.

The only essential difference would be the fact that the kernel would be some
40% smaller than the base system. The breakdown by category, including the

change from the base system, is as follows:

CATEGORY

Initialization
Reconfiguration
Fault Handling
1/0 Control
Printer

Tape Control

TTY Control
ARPANET

Error Handling
Process Control
Traffic Control
1PC

Process Signals
Resource Control
Storage System
Directory Control
Segment Control
Page Control
Salvager

Dynamic Linker
File System

AIM

Error Interpretation
Kernel Utility

Shared Utility

SIZE

4636

1126

1326

2783

958

3100

4824

2016

1200

2200

2400

120

2343

5366

5900

1973

4900

2897

100

470

2300

91

%

CHANGE

100%

=27%

-36%

92

Backup 1600 -80%
Answvering Service 1000 -92%
PL/1 Support 3600 -71%
.Encryption 500 New
Miscellaneous 113 -41%
Totals 61075 -40%
(Base System) 101623

(Reduction) 40548

Level Two Reductions

This level of kernel revision includes those concepts that would either
alter the function of the system in some manner that would show up at the user
interface, or concepts that require significantly more work than those in the
first scenario. Because this scenario includes a number of concepts for which
we have not completed trial implementations, the estimated size of the

resulting kernel is much less precise.

The changes incorporated in this version include:

two level traffic controller.

— revised initialization

simplification of Directory Control interfaces.

- separation of tracing/metering code.

93
- use of kernel processes for multiplexed 1/0
- use of Front End I/0 processor.

Two-Level Traffic Controller

By using the same methodology described above for the Answering Service,
Reed [Reed, 1976] was able to divide traffic control into two parts -- one
implementing basic mechansims, the other higher level policies. In this case,
also, we were able to move the policy manager outside the security kernmel. By
restricting the outer-ring mechanism to the control of scheduling parameters,
we can ensure that it cannot cause the leakage of protected information. In
fact, the particular‘mechanism proposed allows us to move almost all the base

system’s process controlling subsystems outside the kernel.

The trial implementation of the lower level virtual processor manager
took 1176 source lines. This implementation did not include the functions
necessary to allow the higher level process manager to cause switching of user
processes, but it did indicate that the addition of that function would only
add about 600 lines to the kernel modules. This small amount of kernel code,
together with the proposed (non-kernel) "level 2" policy mechanism would
completely replace the base kernel functions of Process Control, Traffic
Control and Process Signalling. In addition, it would eliminate 952 lines of

Fault Handling, and all of IPC except the message segment primitives.

Net reduction: 3500 lines.

94

Core Image Initialization

The base version of Multics initializes itself by having a small
bootstrapping program loaded into primary memory. This small program then
incrementally reads more of the Multics system from a tape. Some of this
newly-read system serves only to provide an interim eaviromment for loading
the actual programs that will actually function in the fully-operational
Multics environment. If we could just load a coampletely initialized image of
the Multics system, we would eliminate a number of these initialization

programs from the kernel system.

In examining the problems associated with this type of "core image
initialization," Luniewski [Luniewski, 1977] found that the major problem area
was one of adjusting the size of various databases. A trial implementation
showed that these tables could be dynamically grown at the expense of adding
about 500 lines of reconfiguration code to the system. In return for this, we
can eliminate 2500 lines of initialization code; much of it in assembly

language.

Net reduction: 2000 lines

Simplification of Directory Control Interfaces

In examining some parts of the system, we find large portions of the
subsystem are used to provide interfaces to the user. Typical systems in
which this is true include Input/Output Control and Directory Control. This
is especially true of Directory Control, because of the large number of
attributes that are handled: Access Control Lists, Time Last Modified, Safety
Switch, Copy Switch, etc. The base version of Multics has a separate entry

into the kernel for reading each of these values, and if the particular value

95

is settable by the user, a separate entry for setting the value. At each of
these entries, the kernel program must first verify the arguments, then verify
that the particular operation is allowed for this user, and finally retrieve
or store the appropriate value in the directory. We find that much of the
code in these operations is used in the verification-of the arguments and the

access.

1f we were to reduce the number of entries so that there was essentially
one entfy for each type of access that was allowed, we could save much of this
duplicated code. 1In thé case of Directory Control, we would have one entry to
read the current Access Control List, another to replace the entire list. We
would have one entry to set the various switches and parameters; there would =~
be another entry that would return the value of the gwitcheé and the various

times stored by the system.

In the case of directory listing, we find that the base interface uses a
"star name" as an argument and tests each name in the directory against the
star name to see if it matches. Also,. there are various entry points to
return additional information (such as the times and effective access) for
each returned entry. A much simpler and smaller interface would return all
entry names in a directory and require that the star name processing be done
outside the kernel. If the extra information were desired, the kernel
interface should be designed so that it always returns the extra information
that was most often used. Other, atypical cases could use the status

returning entry described above to get any additional desired information.

One other simplification possible in this area is the elimination of the

use of the PL/I area functions for returning this information. If we change

96

the information returning entry points, so that they write into a preallocated
buffer, rather than allocating in an outer-ring area, we can eliminate the
area management code from the kernel. This would remove about 800 more lines

from the kernel.

When this simplification scheme is applied to the base Multics system, we
find that over 1000 lines could be saved in this user interface area. Even
more importantly, the user interface area is one that often containé security
leaks because of errors in programs that incorrectly validate arguments#*.
Thus, by reducing tﬁe size and complexity of this particular. area, we have

made extra progress in aiding the auditing process.

On the other hand, because the kernel no longer performs complex
interface operations, certain actions that are possible under the base version
of Multics can no longer be performed. The actions that would be disallowed
correspond to the case where a user has only "append" access to a directory.
Thus, simplifying the interfaces as described here essentially requires that
we remove the concept of "append only" directories. Since the concept is only
occasionally used, and is often replaceable by use of "add only" message

segments, the loss does not seem to affect the normal capabilities of Multics.

Net reduction: 1800 lines

An investigation into known security leaks in earlier versions of Multics
[Janson and Forsdick, in Clark, 1977] showed that most leaks in the system
could be categorized into a very small number of areas. One such area was the
improper validation of arguments.

917

Separation of Debugging/Metering Code

As mentioned in the introduction to this section, one of the areas that
has grown most in the time since our initial census of the system, is the area
of debugging énd metering. This is primarily due to the intense effort being
made to further develop Multics and to improve its performance. Many kernel
subsystems now include extensive tracing and performance measurement
facilities. Unfortunately, these facilities are undesirable in a kernel that
is to be audited. By definition, the code performs no part in effecting the
desired functions. Contrarily, the only non-transparent actions possible are
deleterious. On the other hand, if there are ever to be future improvements
to kernel system, this debugging code would prove to be very useful. Thus, we
would propose a compile-time feature or a load-time feature that would allow
the debugging and metering code to remain in the source éode, but would
guarantee that the code could not affect the security kernel. One example of
how this could be done is to consider adding a new seétion to the object
module. Although normally present for debugging runs, etc., the security
kernel version of the system could discard this section of code, replacing it

with no-operation instructions.

The addition of such a feature would allow the elimination of about 1500
lines from the system. Because of the removals allowed by the Two Level
Traffic Controller, however, only about 300 lines ofrthis rebresents debugging
and metering code that would otherwise still be in the kerﬁel. Since the

debugging and metering code is widely distributed through the system, its
removal would tend to reduce the size of many modules rather than eliminate a

few of them.

Net reduction: 300 lines

98

Use of Kernel Processes for Multiplexed 1/0

The confrol of multiplexed devices, such as an ARPANET or a typewriter
controller, is conceptually a simple task. In one direction, data 1s accepted
from a user, inserted into a queue, and then, when the device is ready, the
data is traansmitted to the 1/0 device. 1In the other direction, data is
accepted from the device, and then placed on a quéuekfo; a particular user as
indicated by a field in a message header. Yet we find that the components for
handling multiplexed devices make up almost 20X of the base system.

Obviously, something is more complicated than it appears at first glance.

When we analyze the existing software, we find that none of the
multiplexed 1/0 subsystems adhere to this simple model. In fact, the size of
the particular subsystem seems tovbe in direct probortion td its deviation
from this model. The problem seems to be in controlling the flow of data to
each individual device. In the case of typewriters, some are much fastet then
others. So, if fast devices had to waié for slower devices to complete

processing, the faster devices would Spend most of the time waiting.

The implemented solution to this problem in the TTY Control and ARPANET
subsystems is to also keep an ocutput queue for each user. Data from these
individual queues is entered into the actuai device que&e only whéﬂ the user’s
subchannel has indicated that it will accept the data. Unfortunately, the-
signal that the subchannel will accept the data is recéiﬁed asynchronously’and
there may be no user process available to process the inpué.; Due to
historical reasons of efficiency and the diffiéulty of éreating processes, the
solution generally employed to solve this problem has been to brccess the

input data during the handling of the device interrupt signal.

99

Unfortunately, performing this processing at interrupt time unduly
complicates the algorithm. There are several reasons for this. First, the
normal locking primitives can not be used while processing an interrupt; the
process which has a lock set may be the same one that is processing the
interrupt. Second, there must exist code to do the same function in a normal
user process; if the device is quiescent, there will be no interrupts coming
in, so a call-side process must initiate the operatién. Third, all.programs
and data that are referenced at interrupt time, must be in wired-down
locations in primary memory; thus, often there are two types of queues —-- one

wired and the other pageable.

For all these reasons and more, architectures that use a dedicated device
process are usually simpler than those that use interrupt-time processing.
Furthermore, experiments by Ciccarelli [Ciccarelli, 1977] indicate that when a
process structure is used, the various multiplexed I/0 device subsystems can
share buffer management primitives. Since the buffer management is one of the
largest components of each of the base I/0 subsystems, the use of common
buffer management would greatly reduce the bulk of the system. Although we
have no firm figures, initial estimates are that the-use of kernel processes
and the associated sharing of buffer manager primitives would probably

eliminate 6000 lines of source.

Net reduction: 6000 lines

Use of Front End Processor for I/0
Approximately 19% of the base Multics kernel is devoted to controlling
source/sink Input/Output devices, such as teletypewriters, printers, and tape

drives. On the other hand, the view from outside the kernel is that these

100

various peripheral devices are essentially interchangable. This is evidenced
by the fact that normal usage of these devices is via an I/O switch, which
provides essentially three types of operation -~ read, write, and
specialffunction. If we could move the éctual device control to another,
dedicated-purpose processor, we could eliminate a significant portion of the
kernel. In order to communicate with this SFEP,.the Multics kernel would
retain only one program, a multiplexed 1/0 handlér as described in the

previous section.

At first glancé it appears that we are only moving the functionality from
one security kernel to another in the Front End Processor. There are,
however, several advantages to moving the functionality to the SFEP. First,
the SFEP is a dedicated machine. There are no users writing programs to try
to "crack" the system. Second, the SFEP gets its commands and data via
"thin-wire communications”. Because the user and the SFEP are using different
address spaces, the commands and data are delivered from the caller to the
SFEP as complete, integral iessages. Because the message delivered to the
SFEP cannot be changed by the caller, the SFEP does not need to consider the:
problems that occur if a user is allowed to change the data after it has been
validated. Third, and most important, there is no need for sharing of data or
for communication between the individual device drivers. Because of this, the
system can be completely compartmentalized. Other than a small kernel devoted
entirelj té message switching and primitive I/0 operation validation, the
various device control programs can be entirely separated from one another.
Thus, except for multiplexed devices, the device con;rol programs do not have
to be cértified and are not part of thé securityrkernel(s) of‘the complete

system.,

101

Although we have not investigated the.actual size of the kernel for the
SFEP, implementations by other researchers have indicated that it should not
be more than 1000 or 2000 source lines [Lipner, 1974]. The savings in the
Multics security kernel, on the other hand, would be on the order of 3000

lines.

Net reduction: 3000 lines

Summary of Second Level Reductions

After performing the above modifications, we have a Multics kernel that
is only 44,500 lines, some 44X of the size of base kernel. The only major
change at the user interface is the lack of "append only" access to

directories. An approximate breakdown of the subsystem sizes is shown below:

CATEGORY '" SIZE X CHANGE
Initialization 2100 =552
Reconfiguration 1600 +42%
Fault Handling 374 -72%
1/0 Control 2300 -35%
Buffer Management 1000 New
Printer 0 ~100%
Tape Control 0 -100%
TTY Control 0 —iOOZ
ARPANET 0 -100%
SFEP Control 1000 New
Error Handling 2016 -

Process Control 0 -100%

102

Traffic Control 600 =742
1PC 1563 -49%
Process Signals 0 -100%
Resource Control 2343 -
Storage System 5366 -—
Directory Control 4700 -292
Segment Control 1973 -
Page Control 4800 -18%
Salvager 2897 -
Dynamic Linker 100 =942
File System 0 -1002
AIM 924 -—
Error Interpretation 0 -100% .
Kernel Utility 470 -_—
Shared Utility 1700 -29%
Backup 1600 -80%
Answering Service 1000 -922%
PL/I Support 3400 -73%
Encryption 500 New
Miscellaneous 113 -41%
Totals 44439 -56%
(Base System) 101623
(Reduction) 57184

103

Third Level Reductions

The final scenario presented here provides the most significant
simplification of the kernel. Correspondingly, it also requires more drastic
changes to the structuring of the system and presents a user interface that

‘has significantly Qifferent side-effects than the base kernel.
The changes proposed at this level iﬁclude:
- removal of Discretionary Access Controls.
- restructuring of the Salvager.

- separation of Segment Control and Page Control.

REMOVAL OF DISCRETIONARY ACCESS CONIROLS

The hnderlying security model dées not require that discretionary access
controls be included in the security kernel. In fact, only the
non-discretionary access controls, the segregationbihto levels and categories,
needs to be enforced to ensure that security is aot compromised. In Multics,
the discretipnary access controls are the Aecess Control Lists, which are
managed by Directory Control. If Directory Control can be moved outside the

kernel, the kernel will have shrunk by a substantial amount.

In the base version of Multics, however, Directory Control also manages
the non-discretionary access controls. The particular access authorization of
any particular segment or directory is stored in the parent directory. To
move the discretionary access controls outside the kernel would require
separating the base Directory Control into two parts; one to manage the

discretionary access controls and one to manage the non-direcretionary

104

controls. This leaves us with only a minimal, kernel directory system which
manages only the contents of segments and the access authorizations of those
segments inside the kernel. Everything else that was previously in Directory
Control has been moved outside the kernel, though probably running in a more

privileged ring than normal users.

One method of implementing this minimal kernel directory system calls for
the use of a linear directory (somtimes called a "flat file system") inside
the kernel. In fact, this system would‘appéar to be much like the "inode"
list of the UNIX syétem [Ritchie and Thompson; 1974]. The kernel would
provide facilities to create, segments, to hand over use of the pages in the
segment to Page Control, to delete the segments and to upgrade tﬁe segments.
The non-kernel Directory Control would use some of these segments as directory
catalogs, and store knowledge of other segments in these directory catalogs.
Rather than containing disk addresses, the directories would contain unique

ids as generated by the kernel directory system.

The removal of this particular part of the base kernel, however, would
have several adverse effects. First of all, the user interface to the
Directory Control system would change substantially. There are currently a
few aspects of the AIM system that require that processes running at multiple
levels be able to read and write in a particular segment. The current use.of
multi-level message segments is an examplé of this. Either there would have
to be invented a special mechanism-for full-duplex communication between
processes at multiple levels, or each particular use woﬁld have to be special
cased inside the security kernel. 1In either case, the user interface to the

mechanism would be substantially changed.

105

A second adverse effect is that the Directory Control system, including
normal Multics Access Control Lists, would no longer be certified. Thus,
although the new, smaller kernel would adhere to the underlying security
model, there would still be the possibility that one user could obtain
unauthorized access to another user’s data due to a bug in the non-kernel
Directory Control system. For this to happen, the two users would have to
share a category, but there are currently fewer than 72 categories. Thus, for
any system with more than 72 registered users, at least two of those users
would have to share a category. Any protection features between the two users
would be by the possibly-uncertified discretionary control system, not by the

kernel.

We have not performed any trial implementations of this concept, but
initial analyses indicate that about 85% of the remaining Directory Control

could be moved outside of the security kernel.

Net reduction: 4000 lines

Restructuring of Salvager

If the Directory Control system were moved outside the kernel, the
Directory Salvager would have to be divided into the same two functional
components. The kernel component would have to be able to reconstruct the
kernel segment list. It would ignore the contents of the segment even if the
non-kernel Directory Control was using that particular segment as a directory
catalog. The other salvager would perform most of the functions that the base
system salvager -—- reconstructing ACLS, validating entry name chains,

rebuilding hash tables, etc.

106

Because the kernel version of the Salvager would have such a simple job,
initial indications are that it would require about 15% of the code of the

present Salvager, resulting in a savings of about 2400 lines of code.

Net reduction: 2400 lines

Summary of Level Three Reductions

Because of the lack of firm numbers for this last scenario, we.will
simply suggest that this final system resulﬁs in a security kernel which is
approximately 38,000 lines, some 37% of the size of the base kernel. The
following table is indicative of the sizes of the compohénts: some 372 of the

size of the base kernel.

CATEGORY SIZE
Initialization 2100
Reconfiguration 1600
Fault Handling 400
I1/0 Control 2300
Buffer Management 1000
SFEP Control 1000
Error Handling 2000
Tfaffic Control 600.
1PC ' 1400
Resource Control 2300
| Storage System ‘ 5400
Directory Controlr 700

Segment Control 2000

107

Page Control 4800
Salvager 500
Dynamic Linker 100
AIM 900
Kernel Utility 500
Shared Utility 1700
Backup 1600
Answering Service 1000
PL/1 Support - 3400
Encryption 500
Miscellaneous 200

Further Reductions

Although we have now reduced the kernel by 63X of its base size, there
are, in fact, a few subsystems that we have not analyzed here. One is the
Storage System. It would appear that something could be done to allow the
separation of the detachable disk management code to be divided in much the

same way that the Answering Service and the Traffic Control sections were.

Another major area not analyzed here is the separation of segment control
and page control. This is a project that we propose primarily because it
would improve the modularity of the two subsystems, and thus decrease the
complexity of the system. Currently, Segmeat Control and Page Control share a
data base -- the Active Segment Table. The fact that these two subsystems
share this database disproportionately increases the difficulty of verifying
the two systems. Rather than considering two reasonably small subsystems that

commun icate via normal subroutine call interfaces, an auditor of the base

108

system (or even of any of the other scenarios above) would have to consider
the system which consists of the union of the two subsystems. If we assume
that difficulty of auditing is proportional to the possible connectivity
within a system, we find that the difficulty increases as about the square of
the size of the system. Using this assumption, we find that the auditor would

be faced with a task twice as difficult as necessary.

We have no indication of the size of the>result1ng code. It is quite
possible that the two resulting subsystems Qbuld be substantially larger than
the existing systems; But we tend to doubt that this would hapﬁen. Trial
implementations of other subsystems have shown that although the first rewrite
is larger than the initial system, a few passes through the’algorithns often

realize substantial improvements, both in the size and the speed of the code.

The Resource Control Package is another major section that we have not
considered. Because this subsystem both controls the access of peripherals
and manages the attachable of those devices to the system, the fact that we
have now moved the actual Tape Control and Printer Control systems outside the
kernel would indicate that at least part of this subsystem could also be moved

out.

Finally, almost no analysis was made on the potential size and complexity
reductions that could be accomplished by replacing the present very
sophisticated resource management algorithms (page removal, working set
management, multiprogramming scheduling, disk queueknanagenent,vdisk track
assignment, and supervisor table management) with simpler versions. Any such
prOposed change, for creditability, wouid,have to be accompanied by a trial
implementation and extensive benchmark performance testing, so as to

understand the performance cost of relying on simpler algorithms.

109

Applicability to Standard Multics

Although the assumed goal in these simplifications has been to reduce the
size of the Multics kernel, the application of these prdposals to the standard
Multics systeﬁ would also have benefits. In many cases, the simplifications
-employed in trial implementations exposed bugs and/or security flaws in the
standard Multics system. This seems to be a general rule: The simpler, more
straight-forward a system is, the better it is understood, and, therefore, the

less likely it is to have bugs.

Implementation of Secure Multics

Since this 38,000 line figure is an upper-bound on the size of the secure
Multics kernel, we can make some estimates about the amount of manpower
required to implement it. Computer folklore tells us that programmers can
write about 200 lines of well-debugged code per month. This means that to
implement the secure Multics kernel should take about 190 man-months -- about

8 people working for about 2 years.

This number does not include the programming of the non-kernel portions
of the system. It represents the basic cost of implementing a secure version
of a Multics-like operating system on an arbitrary hardware base. The
non-kernel portions of such an operating system are likely to be highly
machine-independent and written in higher level languages. Thus, they should

be transportable from one system to another.

This empty page was substituted for a
blank page in the original document.

111

PART IV. CONCLUSIONS AND RECOMMENDATIONS

This research project has demonstrated conclusively that if the goal is
to simplify and improve auditability, substantial reductibn in the size of the
security kernel (in comparison with a system not explicitly designed that way)
can be accomplished without damaging either the performance or functiom of a
Multics-class operating system. This demonstration is, we feel, quite
encouraging to proponents of thé security kernel concept and to the goal of
developing future acceptably secure operating systems. We fugther believe
that the last suggested figure of 38,000 lines for a Multics kernmel really
represents an upper boundary on the necessary size. One would expect that if
a designer sat down with the radically reduced set of functions represented by
that last round of evaluationary changes, and systematically developed a new
design from the ground up but to the same specifications, that this new
design, being less constrained by history, should be simpler, smaller, and
perhaps even a better performer. Current projects to make a security kernel
for the UNIX system on the PDP-11 computer suggest that a lower boundary based
on less ambitious functions is near 4000 lines. Thus, these two projects

provide an order of magnitude target within which new operating system kernel

projects should expect to land.

The primary piece of further work that we would recommend would be to
carry out that new ground up design, to see how it ends up, and also to carry
forward into experimental trials both design-to-model verification and
implementation-to-design verification for systems at this level of complexity.
Only with these two further steps can general-purpose, secure systems ever be

expected to become available.

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project |
Document Control Form Date: '©/96 /95

Report # LcS-TR-196

Each of the following should be identified by a checkmark:
Originating Department: '

O Artificial Intellegence Laboratory (Al)
K Laboratory for Computer Science (LCS)

Document Type:

X Technical Report (TR) O Technical Memo (TM)
O other:

Document Information Number of pages: JI2(1/3-imnces)

- Not to inciude DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
O Double-sided O Double-sided
Print type:

[0 Typewriter [] OfsetPress [] Laser Print
[inkietPrinter [] Uninown [0 other:

Check each if included with document:

O DOD Form O Funding Agent Form M Cover Page
K Spine]ﬂ Printers Notes [0 Photo negatives
O Otner:
Page Data:
Blank Pagesy sege nmbes:_-0-Loww T,'TLE’J ForuwAed, ABSTRAT PACKLYS, 4771, log 111

Photographs/Tonal Material ey pege rumbes

Other (nos descriptionpage numbed).
Description : Page Number:

IMAGE MARL! (I -) Wt i e N
ABSTRACTBIANK, 7 ~ 4§ Bl 475 unEBLE,
49 "71\ (ANWLK')? ~1o%, LLAFH‘BLK\H IJL,LNR‘ Blic,
(“3 lH)S«ucomw_ u:ouﬁﬂ. SOVE PR.NT:&S NoTs'S T&Gﬁ?@

Scanning Agent Signoff:
Date Received: [0/36 /S Date Scanned: _Jf /1S /95 Date Returned: [/ 1 16 135

i
Scanning Agent Signature: ZMMAMX 'h 2 gm& Row /04 DSALCS Form d

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

