MIT/LCS/TR-199

THE SPECIFICATION OF CODE GENERATION ALGORITHMS

Christopher Jay Terman

January 1978

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR~199

by ‘
Christopher Jay Terman

January, 1078

Cambridge ' Massachusetts 021390

This empty page was substituted for a
blank page in the original document.

THE SPECIFICATION OF COD! GENERATION ALGORITHMS

Thhmuh amopm‘)t"
generation phase © oonphr!romn an of the eource language and

targat , ok mwmmw
Mmmmﬁm&mmum«m“-

the code

THESIS SUPERVISOR: Stephen A. Ward
TITLE: Assistant Professor of Electrical Enginearing and Computer Science

Key Words and Phrases:
machine-independent code generation, compiler natahnouwn

mmmlumwwmm Steve Ward, for his
_encoursgement and suppert daring the Jong* pestatidhi PO of this thesis. His
mﬂmmmmmew&mmmwy
mponouofwmmmoftﬂnm mmmmm
tommmhdoeudun»lmmhmmmmcm.

| would aiso Wke to M ‘my oompatriots i m ‘OSSR m of the
cho}ntory of Compuner ‘Sclence for-their mm

mmmyuwwmuwmml‘“ﬁimﬂlm
mmm.xmmfwtcmnwmbymm
mm‘rwfmmmmm T
I woud ke W mum e fhancial & oftm Electrical
 Engineering and W Solence w -Mﬁ / for Computer
m«mmmewmum “ |
And of course | must thank siy Tamily for thelr Sy

Wwough manty years of
accdm—lmmm.ymhlwmkmtlmmforme

years at MIT.

TABLE OF CONTENTS

Chapter One
1.1 introduction 1.
1.2 Setting the stage ' 4.
1.3 Introduction to IL/ML 6.
1.3.1 A syntactic model of code generation 9.
1.3.2 The transformation catalogue and metainterpreter 12.
1.4 Relation to previous work 14.
1.5 OQutline of remaining chapters 19.
Chapter Two
2.1 The intermediate language: IL ' 21.
2.2 DatainiL 23.
2.2.1 Attributes 26.
2.2.2 Structuring of cell names and valuaes 28.
2.3 The syntax of IL a1.
2.3.1 The label fleid a4.
2.3.2 The operator and operand fleids 38.
2.3.3 The END and ALIAS pseudo-oparations 40.
2.4 Flow of control in an IL program a1.
2.6 Complie-time calculation of rvalues 44.

Chapter Three

3.1 The transformation catalogus a7.
3.2 ML: a language for describing IL program fragments 49.
3.2.1 Wild cards - 60.
3.2.2 Built-in functions B63.
3.3 Transformations and pattern matching : 66.
3.3.1 The syntax of a transformation 67.
3.3.2 Constructing the replacement 69.
3.4 Example transformations 61.
Chapter Four
4.1 Example: a minktransiator 84.
4.2 Complling past the machine interface 8.
4.3 Interacting with the metainterpreter 73.
Chapter Five
6.1 Summary 76.
6.2 An overview of the metainterpreter 78.

5.3 Directions for future research 81.

Bibliography a4.

This empty page was substituted for a
blank page in the original document.

§1.1 Introduction
| Thooruﬂonofamﬂcfansmmmmwmtmhmhm

g 3 Y g

a:duoucprmu Ithnotmoonmﬂiwntomrﬂymlnthoproauctbnof
SO SR Sw i By RN biel
mWMMMMWMW!mMﬂCSmd

FETRIN £-1F 51 2 SR 1 £ 7 N SR RN
syutua?o.vnlvodmnm:onrm mmmmntofnm
Coseg emgidogds f coRanoand

compiiting hardware mmmmm of highievel languagee, euch an

mmthmwuwﬁM.Ml;Mbmcmﬂmm
R i fd? FERRE Hhgnal e

mphmummunmt.
| mmmmmmmmdyummw-

t - SRRMER ST Le1 SENY. 1. SIS SR

chiidren: mymmumm‘bmmmwhmh

Iunguauo tochmlogy tmt Mmm h;n lncorpoutod.

the sm Nglﬂovol tooh thnt he pnMd:: to; Mz&tﬁmhm \to ;u:o;lt-

m pmdnctlon. tychln hnvc boon W to Mﬂ natioal monto thou‘

portions of the M wniun tnmhto}&f; source | w-gomm Into an
sl glimrel oiusen bop Laen sobicoBlgees s)

mt-mlmmmmm MWM\«.W’

mwmdoxmumwmmimnomf
witein Momses nolkivie AR &

Ma«ﬂmmmm mwm«-m thoncommd

aed pminales s tooanw S regts
with ood‘ mﬂwm UDAer 8 wﬁ”’“ﬁm mint
wpro-cm OE’ m Ll” hAkmm mﬁﬂfwaﬂg a
Hate 3

apoclﬂoatlcn of & mm MwW@WMQM code
generator- designer .within a framewerk: provided by:an: /ntexmedinte /anguage (IL)

Chapter One — Introduction | 1.

and & metainterpreter. m‘MMnmumm.ma
representation of the ocode generator - mmmmwmmwm«
of the complier) is & seuroe |
output is the IL representation of ﬁl W m m Tho mt.lntorpmtor
h«ammdﬁmuh’ummnmm

kb v ians ARG & '

poﬂommmymeoanm Th-

‘ umltprognm,thofhul

=¥ F e
mmﬁud&m“bﬁbm“mhmywmm
NS [T LR F i AL T E R v S A RERINE

mmmmmMumﬂmmmmmm-
\ oot dent somantios (e.g. the
-omamwmwm)mmwmmmmmmofa

ERIE S) gesk
transformation catalogue. In essence, m semantics ef iw om as mmon around

SRS G 50

on which the designer (M the mmﬂﬂm octdoouo) "axphljm"rm source
hnwammwndn-hmmmmmmm

Tl it wgl O

lppfopﬂtt.m mwummﬂumw-mmhcﬂc

- RN Hiis et ot i g
‘mwdmlmmmmwum
g daryasgd 0 S

mmmmmnmmwmm“m transiations (for L

Pl

mtmwmnmm\mwmmwvmm

EYS Yot A LR HYRG BNy b

mtmmﬁammm;mwr

e o

comphers, mmmmmmmmm;
thuoop.ratlom |

Omcanonvhhnmmtmhrm;mﬂm

R s TEE CE R al it
ouaomuﬂmtmdmmmdmm
= {muckthe amine way:a SNF :);'

o @8 & mm alng el mmmm can Be
interpreted - m an m m (..o.. syntax

® &8 an lnpat 40 & systew wiish autemstioally soalivects 4 Godé -
mﬁ(ﬂbﬂ“%ﬂbcm

Each successive use roqulﬁo a more thorough understanding of the apoclﬁcntbn
but repays this investment with a corresponding incresss 'in-the degree: bt
automation achievad. The. incrasse is besed. for. the weet.part o &' better
understanding of the Intersction bebwsen. sempenmnts : saf! the mﬁeam
Automatic crestion. of &, oede. mﬁm ‘"“MV‘“‘“ r-qmu
extensive analysis M'My‘éw e Muw mscnt m from
mummmmmmwmm] Fortumtdymoctof
mum-immmhmmmhummdwmg

SETE

metainterpreter and mtomodnto hngmo- it h nuomblo to oxpoct that futuro

o

mwchwﬂfha&hmmiwmm;dhﬂnwncm“

paragfaph to aliow uummc eomtmcthn of a eodo gomntot Thla thnh'

mmammmmm-frmmmmmonwnmmw

lntofprotlvdy (a8 wuutod by tho uooad uu)z M ln a ttrddtffbrward
fuhlon. the motohtorpnw o‘n pmn th- mnbn by dtmtdy lppMno

,,,,,, Y

mmmmm«mmcmghw«&mm While

e S AT

this approach Is udmlttodty less M M curunt eodo o-nentora. it

S.i--

represents a Wt otop mrds up.uﬂng mohlm and hnounoo
dependencies in deciarative form (the cm mwooun) from gononl“
kmmmmm(mmmmmr) »

DR TP
mmmm-wmwmummmgy

ASPRES: " e JL TR

code generator. 513wm.mofu-uﬁmtfnturﬁofll. the‘

cnml ot @

transformation - utlloouo md ﬂn nu&mnur. in 514. nhtod work Iav!

E PRIV, B ErRL

WWmmMﬁwm;mhmm'mc:

here. Finally, suoummmm«mm&gnmm

; o @%t

Chapter One — Introduction ' v a.

§1.2 Setting the stage |
mmuv- discussion of ‘the prapossd formalism, let us first
mwmdmam“mam '

mmnmmu-mﬁn
MM}dmm hﬁeoﬂg‘m{
» : "ol Sty s 10 be

The idea, dmbmwmmm..qmncedmohm
mtrucmmwmmmymmmmwmm The
rm-mmmmmmmmmnmm our
wmwummmmdwmwmmmwm
mmmmmmmmmmmm |
Mwﬂdﬂmmﬁmhayﬁdm#«-mmwka

monmmmwmmm.m.mmmmn
atrlctlyoqulvm(l.o mwummmwmm)
cmmwmwmammmwmumt
mchlmuemoctur- mMnm,mthMtnhm
mnmmm-omm-m Tum.ophlaticat.dcodo_,
pm-m.[m]nmmmmmm Mmdntalnchtef
alternatives for each node in the tree!, posteoning the choice of transformation

until the transiation phase.
The m;ﬂm to. tugot mhho lmm anlau ln uwa& atages

() Starpge o “ m,ﬂ for, ‘«m mmam«iwﬁ.m

mﬁ.mwmmmwmmm

V¥ G AT -t
m hphmm tm towlrod ooapuuﬂnm (FOMoopa, ‘
e g v, ¢ i 5 xR b gia L gty

mtbm 479 10 he;parfegned is. detarmined. - -
of redundant m& Dt b ofton poubh "

(Iv) Actunl m gm mm mﬁpm . Machine- 2
mimm(mumdopmmm
»@Wmm;m aolkof: mmsm)w ‘

g--wls.

From the nuy pculhh umfmtlom uppluhh to l nrﬂeuhr -ourco program,

4 : R
an optlnlz&ng oodo a.nontw choous m ulbut ﬁu pmduo. thn "hut"

translation. Thm&muaMmWWnndmapﬂon
o aouher ot _

determination of thelr oo-bmd effect b mut.
uaoNno-dopmm (pmml-) opudntlm [Iehuun wmf~ cmptar a] of

G B EBMET AN e
lnstrucﬂon mmmhm-dmwfwommm justhowmuch

%

lmprovmnt cun bt ncdo dcponds on tho oopmmﬂm of the tumlnﬂon phase

e %

mmlhbmmmoMmtmmqumanbmof

i

the code. Em:mmmmwmmmmmwma
unconditional jumps, use of short-address jumps (limited in:Now: far ey dan-jump), *
siimination of ;;m, mmwmzm phiise: in-iterated until no
more improvements can be made. Before MWMWNM&; :
“triviel,* ha should cgneider e comment from TWAM, pg: 12418 <

S b @bt b ol replay v
e O ﬂmzfmgm lqm mnmm umum a8
careful. a0 Wreoueh, mupicliation- ot W Shrgutnimuehine i W ié

dificult to to what extent [thia final phase] wetid de
nomanmmw rmmm oxhtodln

s ey

ot

S

ChlPtor One - QOﬁlng the stage SRR .

'fabovoanmmm umrmw.

- oarlier .phasss.. of the - complier. W,Mmdmo
m«[umm]ommmmw.

information: dean:aut :aodet-Sariel; www%a
be & role for afelnter- mosete} .

ltdmdbomdmmwfwum‘mm‘mmw

upon which extant code gemerators are based b U

to optidutl-a. The - m uilng m &thcwt machine
architecture, Moutdnooadly mmhm@WMrme
aMotdmmm&MMNWﬁh'bmt“
umummnmmmm Mmcs
mmmuuumnwcxmam«mm. mfmuehlng
oonuqucnccslnmuttom mmm'm"faoﬁya:
.ubm(nbdtlum)ofunmﬂwm mmwmulnh«ont
mmmmmopmwmmmamumm«dto
mpm-mwmmmmmmmmmpm.ﬂmof
code. Somodm.ﬁmtwmﬂmctuomehmntthcynre
mm.naontofmmmmmmmmmmwmm these
mmmm.wamhm.mmwaﬂm

system.

§1.3 -Introductien %0 /ML
The framework for the specifiostion of odde generators provided by the
IL/ML system has thres basic compenents: '

® an /ntermediets isnguege. (IL) which serves e the internal
nprucnuﬂoﬂfwdmumtrm At any given moment,

the: IL. program: embedice all the tekt;: syildsl: 4 - iid” state
information .acousmieted by the code Mﬁm paiit in‘the

®a trunﬂormdlon oddomn whose eonpomnt trmfeﬂutiom are
oxpruud in a context-sensitive puttom-m::ﬂm mtgllnqmqo (ML)

6. Cheapter One - introduction to IL/ML

as pattern/replacement pairs. The pattern specifies the context of
the transformation as an IL program frm the rophounnt is

-mﬁaﬁmmm of
.optimtzation lgodthm for IL

Xk, code generation’ my ‘be vbwod ‘as follom*{ tﬁo
ﬂmm.&nuw.hmwbymmmaummhfomd
mtmteh&mmmofthecmromlm ﬂ!-nthomupondlno

HEETAETY W 2

oroutlng an updnted vmlon'

k4 A

of the IL pfogmn ‘I‘xf. the ntahtwmm mwmlon of the
wmuﬂﬂdnomﬂmﬂonaﬁwpggmmdwmumm

o Elg e 2O LT '

This cychhmﬂofmﬁmfur&mmm;wbom ntwhbhpolnttho
«a”’ BN

trmhtbnhoonphtod mmmwmmmmmmm

P LTI

ofthetumfornﬂondahbn. m;wlmumacﬂwmﬁnm‘;muntor

SR,

nphcmntllmm.dformmw‘

R AL S

cpoclflcatlon

Onlym»hmmmtmmmmmgopwmhavc

Fusy il i w g FRR %X i
bconlnoorpoutcdhtol[mdthommm ms{-ph-podﬂumnm
st UM werte - e
ammmmwmmww;mummm
wio STEY % % FEC) Tk :
mnyofthnommmodnwubcnhhdujm;pﬂﬂﬂvuoﬂhth-y

s 2 Vil SO R S ARIFS S SR

cunbohumhwwlmmuwlmﬂmmtofm|L
progrmwhoroﬂnymbonfmodbymm Thouunnﬂuuf
mm.mumuwmnndbymmwmmvmmm

g zed o g A g

t mmmnwammm;mammummmm

Chapter One ~ lhtroducﬁm to IL/ML - 7.

nunph, MM%HWMW“ be related to the
integer and fisating-point: Sdiion mﬂm ot shitohine ithe
the mmu mm oo . The bl
‘oxprmmmmumwm

mtlent W » mm mi dosigner to epal out source language
umnm n m of m m M Bu-n’t that ralse
the objection © conventions! aadu annery \gl:. w nglp@- investment Is
mmsawbrmmmmmwnam«mo
hnguagobwhmm lll,mtmm Mhm'-mk: pmvldodby
tho!mn.nmn um«mmmmmmmt
Mwu«u“hyhmhw.,_

terme of cne anather ~ afiar ek, the deaigne In togary, m yadpratands both and
the simpliolty of the m eyoten m he_nees
necessary knowiedge sbout generst cptimtzation |
dncupaon lo smal mmu w m & convent §

-wg,r -f

sbetract maohines - sm; m uu. a u n & ghiiire! * purposk oode
m-nﬂou sychn. mh mmm bun m

8. | Chaptar Ong — Introduction to IL/ML

§1.3.1 A syntactic model of code generation

One of the most useful dioeovorlu of armlclal lntomqence research Is that
complicated semantic mMaﬂom can be accomplished with step-by-step
syntactic manlpuhtlon of an lppropﬂntdy ehonn d.t- bug (ﬂanpo,k fot _example,
[HewittD). This nctlon oxplorn tho ﬁpplclﬂon of this approach to the process. of

('; ,_';ﬁﬁ}

eode gmratlon Tho ohjoctm of thls .xplorftlon is to provide - dlﬂ‘!l;gﬂt

L e A rq;i B

ponpoctlvo of tho ILIML cystm hopcfuly thh wlil Uud to a bcttor _designed

transformation cat.loauo

NES

Ono can chqnctorlzo oodc comntlon u q conucutlvo nqponce of
transformations choun from tho tnnﬂomqtlon catulcque aqd spplied toan

tordy e bl

intormedhte languaoo input otrlno

‘lntormodhto * '1 * '2 *? %n * Stasget machine”
‘target machine Is not mm‘fﬂy uﬂhﬂﬁ.:‘ﬂ!ut. the cod& nanqntlon ulpquthm may

B {z g i1

have to choon unong mny tnnslatlom If tho trmﬂatlon yses an gbqtmct

muchlne thon we wlﬂ hav. .

"lm.nmm. * '1 o ‘k 1° 'm ? 'lm " 7.3 Ptasges machine:

The ‘transformations bading to 'AM ore lmhpondont of thc tug.t ,pachine; the
trmformm,

transformtlom followhg ‘AM are muchlno mﬂt " we_gro

nccordlng to the ood. ncnontlon atepc thcy dmﬂbe (eg. atonqn nﬂoca

H h SRR

rochtor mloment, -tc). uch oroup doacﬁbu tho transiation pf programs. for a
partlpular abstract mcohlno into program for lnothof. By daﬂnlng a hierarchy of

PSS AT I

abatrnct mchlms tho dulcmr cun Iimlt tho knpact of u gcmcular future of the..

turgot machine to a few tnnsformntions rm type, of organization of the

transformation cataloouo hads to a hlghly mduhr tpocmqnyn
As was mcntlomd nbovo the reoumng mchlm ane program is not

ahnys unlquo ln ordnr to bo .bh to doclde unonc cgmpgﬂno transl-tlons. itis

Chapter One — Introduction to IL/ML o)

m«uwmmmmm(m)ofamm‘c
ms+Rue "
mmmmnamhmmmmmamummm tha
mmmm:m,ﬂnmmmm Notathattha musurclsnot
dcfhod ((s") = ») for intermediate ltmm ltdnﬂc (a’) that do not ropreaont a
cmtudtumum meymbmambemumfmthovmuuof
uttﬂbutuofﬂn-tatmmmmﬂtdmm ltbuptoﬂudnlgnorto-mm
that sach statement is ualonea mm nttrlbutu - lf some statement does not
have the appropriate nftﬂbutu dcﬁnd tho mnura for that IL program will be
undefined. The final choice for a given Input ctring] and measure m is the set of
"optimal* transiations M‘by -
ROERE Y | & & and for afl & [s 3 a” inplies m(s") < m(s")] }

Note that we mtﬂctwnoﬂonofopﬂm:atybﬂmmmch can be actually
derived from the initial program (s) by ropntad applcntbm of tranc!omaﬂons from
the transformation cnt-bgm (I ., s 3 .o“) it Is poulbh that umantlcauy.
equivalent smnoa oxht which are m opt!mal but whlch my not be d!scovored
becauss of some lmdequccy n thc trm:fomctbn c&tubouo In some sense this
inadequacy Is Intrinsic slncq the lmnﬂc .qu!vahnco problem ls In general
unsolvable [Aho70]).)

in our syntactic vl.w of code gcmration we hnvo sot forth two tasks for
the code ganerltor First, it must produco a nt of umd-tbm for the glvan lnputi
string that meet cortam bulc oﬂtoﬂ- o.o thoy nuat bo mll-fom.d machine-
language programs (only these should hnvo ths cofrect attrlbutos ‘needed to
compute the measure). Saoond, it must seloct one of thm tranolatlons as the
transiation. This ubctlan is based on the cptluulny of th- trmlntbn as well as

other constraints the user may supply at complie time (o.g.! upper bounds on space

10. _ Chepter One — Introduction to IL/ML

mmlauon s omwmm An Mﬂmm;- mhm,ﬂmg q;md-m
part of tnmfor-atbm n the catal

lbovrtod,bvom,mo
monthly all

uumm«ummawkmammqmaummm”ymt
us to change our minds. Pk BRSBTS e
mmukcnnmihtbm&cmmwa-dvmyuofm
aymodolmcdlmﬂouunuﬁuofmmd
et o W HinSiaa e o U e the arder in
W"“i’“inhbodoni’-—r mmmmmm{‘
of the code generator. mmﬂmmmmtmmmm
context for ‘mach tranbformetion to Guarantee It wil b LARd. only. when seprpriate.
mmmmuﬂ%mmmm Fnrmlle«mofkmw
nummmmmu-wm-unhmtomm

Tt

&t% ﬂnmofnhhfuchy

ﬁ‘;i k) ';de 5 J"'ﬁg-w.t, &% e

s) supplies an “Wmplicit context

sl At 1‘%‘”91!&4’%

for the transformations 6n & given level. Th“onouﬁ MWWW
enforcing this modularity; saveral are prasgated-io lajes . axamples... The. greatest

Chapter One — introdiston to /ML~ BERT N

Neturel level W describing code generation. ThG g
mu&ﬁummmmea“mﬁmﬁ.
transfoimations. To sctislly implament & code generétor, we will have to make
expiicit ‘the “mphiclt control structi o

transformation. MWM&M l!m“hwmm

ummﬂnmmmafmmm

by #he context of each

§1.3.2 mmcwmm

Since the emphasis in a specification. is on deecribing what the code
mmrmbmdommnmnbtobem an effort has heen mads to
mhwmymmm. mmmmmw.m
°“'°°"'° |

(i)-mm of -W 1 mmmqm of more

2y Wn or stmination of IL statements whose dperat
performed at compie time; T

(3) transformations on y«wmo aUL statement
The lpplbaMIty of & ‘transformation to a pnrucw L statement

oaow mlyah to m m-u.

.rcmmummm-ﬂwu
results.

in a IL/ML specification, these computations have been incomporatad as part of the

12. : Chapter One ~ Introduction to IL/ML

context matching performed before a transformation is applied — the designer
never explicitly lnvokes. the undenying. mmqm may. doal. directty

& gdnteTs.

with values of variables, mcutbnordord&m,ptc .i?'purtofcnm
Lo sowovr e g F ":.:‘-‘E‘-'v,k L SR S g e

pattern.

Tm-«mcyofltlu.uﬂnbﬂ%m;eod-mawmmm

hhmmmm«mpm mwmj% snative ﬁgg‘k:»rmm
m"‘t’mp-mm w"""“"mwmum
e ek iy g wm g m; e

mw«bymwmmopﬂmnm mmmm

ns, etc.)

Chapter One — Introduction to IL/ML 13.

ommm'); ﬁrm of the " in’ queation no euch

mmumymamymwmbmm
rnohnoonounbn nmmmmmmmmm
m«mmummm]mmmmmym
MWM#“MW&MW&MM
mw.ﬂmmmm-mhmmmmm

§1.4 Relation o previous work

ucmmmm-mof svel languages better adapted to the
writing of code generators andthe Hiiroduction of an “sBétrect Miichine” th further
Brovide as Srimitives many of te. shementery opéretine: used In Gode genefaltion
such as Storage and regleter eodation and dutesiiic maRagement of Tnternel data
buu(o.g . the symbol table). mmm of oot Jerieration typically s
m.wmmmwmwm“mm

mchmmmmummtmm Ofmtlwportimoftho
code generation sigotithm and the optimization inechenis ulich depend on the
:omanﬁccoftho.oourcohnmorwwmm.ﬁlbooo«dmo
procedunlm mmummtmumml ‘cases)

14, . cmwm-mmpmm

The apparent dichotomy between descriptions of the intermediate language
and the target machine lad to m-.to s for Mrbmm The use
Mmmmmuu)cumuzuonwm 'l’hoopontionsoftho

LSS

EfmTE

Maroammmwmmmémmmmm.. Aeodo
omuatubuﬁmmﬂ[%]pmmmzmm.puntnch
tnnalatod into a sequence of m opmtlom md thon neh AM opontlon ls, In tum.

g 8 .,.,' .;.

uxmmmuumooquotmwm Thoopﬁ-dltyofthornunmt

Mewnum.mdmmmmmmmmmmd

gt e p
andhowmuohwkboxmdodonthooxpnmbn

introduced to solve the "nxn transiator” prebhn m mpomnh hopod that tho

mofuombmhmmo-m!drimmmofmdnb-m«dm
umhtomhnmwnmehmmmhnm.ﬂmymumhtou

zo b

manhm«hnhwmmammmumwcmpwm
to one of the n machines. The “UN® in * m-mmmanpmod“

TR e

.xcmmmtwmwat-.ummof&bmudmmm

muchlmlntothoprﬂtlvuofachghluw Dymtholoonofmcm
m-mmmm»m[wmwm].nmmmmacmve

mmmm-mmm Curnntlnphnohutlomullmo

two cqtcooﬂu

,‘\45‘

(b)ThooxpandnnbmbylmmmmpfoducaNoMy
optinized code. for. 4 specific tenget mashing: [icherde]. . This. and.je
mm-mm*mmmm»awmbm :
information. sbout the.. mmmgdu\wwmﬂm looal-

cmtaon-:-hmﬁonmpnvm'm R ..

"ﬁ«ra;

au‘;,s1

mmmmmmnm‘m hg oo Y
provides & low-lavel (e, roginter M)*-W
ducribodpmm nummm_, mmmnm

AOEEEL
wdhbh & m ncd. tor would m suficlent information to
. TRer e o ES L 00 g e sl onf RS :

.-‘r\.‘y iy

[Wl}khmmmhmspw«nmm,

///// E #;ﬁ‘f%""

W mw«mm !'”

e BT

many of m- m -u m maamm m agdition, red | the

2 a.g» -y

mpmmm'mdumwumwmmm

tm.mamwmmm @g%mmm

18. Mrmemumm

Th-rﬂ-ﬂon-hbmun mm'ofon.-mum another Is specified by
"semantic _rules®, assacisted with- mma-m the:. synthesized
attributes for the. nontesminel symbol.on: mmm ;eldent the production’ .and
the inheritad attrihutes for the- m& Mmm vighthantl 'side of . the
production. [MLM soveral. mm sugnated with attributds
that desgribe Information oammonly Co¥RStadin the sourse. of M (block
MW@W««»M&MM eto.).:
principal -wmaf mm Auptons h-that Mfﬂ“ na..dependencies
in the_formalism, on_specific Jenguacs: or Ashing. SORSMSe ~ Ritrbute grammery:
Provide a gensral mechenism. for MM iring tee st
phase of compliation. .. However mmm raquies-other thar ' focal
-xmﬁm of context. chthmmmé
attributes mumw mmmwtm}» Finatly,
except in_trivie) cases, m m?mm makins: prograss;: (with : the
attendant optimizations) ati mwm-umm is highty' mm»
dependent.
Attributas have bsen Md by mmmemnmm the

optinization strategies.. employed - by. .the:sBLIBA/ Lt sempler [Wewcomer). n
performing. the expaneien iate mwmm mm% tables

uiﬁ vgs Tepon

um.nmwm«mmu‘mw&wuma

EICIE ¢ 4

mcnpumofm.mnm mm;-"“mwwm

this searoh (mq: mnm m . mm m‘ ‘ wm mahlne |

aiiag Emssetateeyons

usm)mmmmumm»wmm The
mmmmn.mqmmmmnm

b ¥4

g

cn-pmem:-nmuon‘wmmm' A | g

Vm Mummmmﬂm Although the
mmm e notion of .
u.mmth““

generation m m«c tawty m i |
Genersl Purposs Optimizig (GPO) complier dévilaped st B [Harrieon]. The
mnmuem'-, QPO complier is sinliar to that-Propsied by tile thesis: there is an
MuMWuMMM' ‘ X programs into
mmm.mmmmmmnm
umummmmm The axpahsions and optimizations are
Rerated until the transistion ls cemplete; a mm transiates the resuftant
mmmmwmmm stc. The GPO
muorhmwmmmomm mmpmvld.dmma
intermediate language dirsetly support bleck ure, PL/T ponter semantics, etc.
The set of defining procedures sllow telivring of code dependent on-attitbutes of
the operends. The main differences between the GRO compiter and IL/ML are

;awnuummm sviriaying, ahasing)
. mmmwmmm

omamxudmmmmmmuom
sulted for PL/Hike programe.

omhmmummmm-m
opuaﬂan(uhmm) mmmm
mMMMM.MEuMMM
matohing faciity). . : |

® in the GPO compiler; attributes are trested Nke any other veriabie —

optimizations such as constant propagation are refled upon to make
the attribute information avellable throughout the peogram. IL/ML
m-mmmmwmm_

18. | mmm-mmmm

mmmmm-mmmmummmm
mvolamlcatﬁmmofm

BRI i SRS Mt 15

The complexity of the apo mm Q;M reduced from that Jv curr.nt PLA

CHumas wdt sesheErag aenl oBeod

optinizieg compilers. “[Corter] has hand-simuiated the expansion of test c-m

I A Iy

ot

mw-mofmhmmmmmmmmofpm
pmmmmmnaMmmmmmmmm(wMoh
includes some 8000 statements to treat special cases of substring). The inclusion
of more sophistioated optimizations in the processor (cf. [Sohatz]) shoud further
Improve these statistics. Encouragingly, meny of these results seem applicable to
ﬂnmmhwm—t‘h‘m.mdmldmswmt

reduce its performance in this area.

§1.5 Outiine of remaining chapters |

Chapter 2 is a detalied description of the intermediate languags IL: the
syntax of IL Is defined and the representation of data is disoussed. The semantics
of each IL construct is described and related to the needs of ML and the
metainterpreter. The chapter concludes with & brisf introduction to the compile-
tlmooubulaﬁonofvnluu. |

Chapter 3 discusses the construction of & transformation from ML templates
that specify its context and sffect. The syntax of a template (desaription of an IL
mmmm)ummmumm@fmmmmm
functions. nmt«mmmnmmmmmmlmmm.
given. MMaIseetbnmafwmm

Chwtarawmm:utdamhhmmmuathelr
application by the metainterpreter to a smph i m This detalled mmple Is
aimed at damonatnthg the sase of mtmctho a Wﬂm cntdoguo and
feaslbl"tyofporformhaeodogonoraﬂmu‘humw'yﬂm ’

Chapter One —~ Outline of remaining chapters 10.

The final chapter briefly discusses the metainterpreter and the facilitles it

should provide then summarizes the results of this work and suggests directions for

further research.

20. Chapter One — Outline of ramaining chapters

, bﬁ‘tﬁ lunuugo deséribed In ihh chnptu' ssrves as foundation
Mmontoaﬂwmhumqommohh-m &hmohduprlmmvuto

i T L';m‘

mmmmawmm ""ofmumﬁvduuwitﬁnnnlf

program. In addition, IL includes a mechaniem for accumulating lMormtion on
particular operations and’ ltongo cells for later use by “the tnmfamatbn
catalogus and tha mtllntorproter Tho r-mw of thc‘ ::'amanﬂu of an IL

program (e.g., tlmmdngafoponﬂom)ndbhmmmuon cat-logue nndk

FES I

are made avallable when these tnmfomntbm lf. nwllod by the ntdntmtar
By relegating the hnouqo “and momm W t:athc “ranstormation
catalogue ‘and pm\ddna a o-mrd ayntactk: m m uecumuthg lnfomaﬂon.ﬁ
iL becomes a suitable intmdht- Iangu.ga fof tho onﬂn tumhtlon procou |l’lv
order to aliow common cede gonontbn npmtlom (ﬂow Mah. oomplh-timo
calculation of valués) to be subuumd by the' .-ulntomnt.r. npanto ﬂold: are
provldcd in each !Latatmtformohfomcﬂenmwm”tm.mowln
performing Its amlytls o o
Although IL in its most general form has a rather skeletal sementics md isa

Wonaie s sty o

suitable intermediate luwonforawmwhtyofmcohnmw cort-ln
muouimmfwmohwhmmm Ilostof
these conv-ntiommlmpmdby commﬂeullnqunﬂd.nmbrm l.nguawl

such as ALGOL, BLISS or even CLU that are muhlo to Qﬂlchnt lnt.tpratatlon by

Chapter Two — The intermediate language: IL 21,

conventional machine erchitecturss (i.e., those traditionally thought of as compiled
languages). These conventions will be inappropriats in part for compiied languages
mtm'mtmhdhmm.LM§ﬁ3Wcmm.“mboonﬂy
accommodated by relatively simple Mgn No direct attsntion
mspocmmmmmmmd
mwommmmmmuuu&g-,mL.Dm
sm.m).mmmmmammm«m
specification of conventional code generators. Hopefully, further work will fil this

_has been pald to

gep.
Thomtmmmwmomhaﬂowgnphof
bslcuocksmnuehmbbckhdomb“bylmdwycucwwhor
dag(soo,foroxm Chnptormof[hhom]). i is a linesrization of this
gnplﬂcnpromhﬂonwlthmdaﬂtbadmtﬁcﬂemhnﬁownsynodoﬂngof
oonvontlonalu‘mnou. Mlmw-pwymdtmncﬂms the
oondmumfﬂdmhmmuh“omwmmcs
ofthomm), aﬂnnpﬂocﬂwdmmhmm(these
wrwmmmmd-m).mmmmmm-nmm
oell. Mﬂy,lﬂ“.i‘tlt.ﬂlﬂtmyhmmdtwmu: Mforofaontrolor
ttmchanuclnthovdluofmormm Mvnwﬂn.h.bw Itlsmyto
mtm.momtommm:mmmmmm. targets of
trmfmMomtrdmdﬁcutde*ohmgdbynshﬂmt(lhkmm)un
gsyntactically dbﬂnﬂlh&bh ﬂ'ou m porm of an Il. ltltmnt. ‘
Almmﬂon.dlbm nm-muucmumwmmhﬂexm
omuohtobomdfwmmhghhvdfmmtomcmmlmguage
To encompass such . v-rhty of mm. iL could mt (m does not) have much in
the way of built-in semantices. 'mmmmmwthconcopts

22. Chapter Two ~ The lntofmodhto language: IL

of IL:

® conditional trensfer . of control mm Il. stetemant. In the
' of a nf oontml, m M m«mﬂy

Oappllcdlonof@nmhmm Manmbm
operations supportad by the desigher must ensure that each
ﬁm &:ﬂ mf@m m« fummr

udnncdm Celi mt" ,mgm_@, Somention.simliar .
»wmwuvss ‘l‘ﬁinmofncd"lmumudw. epplying |

" “declared® “information M i un.hctod by
‘statement in &n 1L program.

Dames, qtc.) and ¢ ,,; Nclup mmm&
mmMch'oW'mwmmWr

. smant.in.which i} sppenrs.fo.peteblieh jis meaning. Nate
matésmhmwehmﬂumm.m. _lvducwhou

Independenthy. of the:ceptaxt in.which it ..
mmopouwrtoa

mnmmmammmmmmmmmm

popular concents.such.as black structurs, data.tupes, sic. are handied by L.

§2.2 Datain iL
Al data storage in IL is provided by w outs - proormkvaﬂn}blo’c,
intermediate ruutta, etc. are upruonted ln an IL pmuun by a call E-ch cdll hu
e oo S , |
(1) an Ivalue (name) which unambigucusly identifies the cel. The scope

of the ivelue covers the sntire Il progeaw. - AR: velue can be
structured for modeling arrays, stmcturu. stc.

Chapter Two ~ Data in IL o - ' 2a.

Note that no Mmm i. Wwwm.m for celis; the

doolwhmpoﬂ:ﬁnﬂﬁwoﬁbﬁmhwmmam(by

Incorporuting approprists mw " uﬁ‘ ,,‘f

may inolude mwmwtmm a

resmummnmﬁhcw‘; riafly gt machi

addressing). |
Mmmmmiml,lthmtmcasumy

s o c,a

wmmmmﬁw sh opersl
languages By effowing’ the squivelehoing of hames. WW ‘however, each’
alias must be made expiicitly — this s explored further in §2.2.2. Note that an
lvaluomybo mdumopwmdmdm»mmd ltMﬂnqulrov
declaration of attributes m to thou for an m (typo. longth vdue etc.) —
care must be taken so es not m confuse tvdu. IM with rvcluo attrlbutes
and vice versa.

There i. mwm m for WMMW Tﬂock stmctura)
Through a dachratlon of a vaﬂabh of the same name in an inner block, scoping

allows shielding of a cell from use inside that block. <n practice, however,

24, Chapter Two — Data In iL

procodurocdcnndpohtmnﬂownmutouhwﬂchuonotdkcctly
accessible as operands. Thus the original cell cannot be *f
wl'uh procualng the lnmr block a mm be provid

wlthln the m bbek. Th- auw '

B 1 5\!‘;'

hform-tlon h m -ocuntcly dohmhod

e

thomotdnt.rpntor m-amncmmd

it) “"!w‘"

wutwbycmm‘adnmufwm%%nmqmvmln

FagprtEiR A0 S BT

ﬂwwqhmmgwpohtuchuwahctadymfm e 1V

in practice, alhslng (m sbove), lack of type

v Deget

M(IW)WMQM#

TR

hformctlon ln othor mrd.. JIM bocauu tho

BEAKY TR

pointer do.s not auar-mg. that It points to only

LR b et hutd ;ﬂ.'t l‘ "»-';J.,
noﬂno hm that the mtalntorpnt.r does. know m inobmtﬂ»

such as numbers, -uowhg trmfmﬂom'te manipulate certain rvalues at complie
time.

Lo

Chapter Two — Data in IL ‘ 25.

$2.2.1 Atribwtes
mm-mmwmmmm
W(M“M)dwlm mmmm
mwm«manﬂmmmnmtubyu
opomtbm ..g..mmmmun.m mmwmm-uy
pmmwmmmmmm&mmmmmw
traneformations as M ls *decovered.® MMMMMG
avaliable from any point in the IL program - MMmtueomxt
W(m.mmmmwmumwmm
stored as an attvibute’. ‘Attibutes are the work horss of a specification: they
m.mmcmmmmmummumm;
m-mMWMMMMMth
about the operdtion tree, end so on af /afnftum. : |
mmmmmmmmmm«nwé&“”
associated with each stetement. Tmm&.moﬁmmu(.g.,;
mmmm«-mmmmxmnummmam;of
mmmm(mo.mmwmehuadbyuwnm

operator), progress mads In treneiating the statament (seefd for communiostion
atormetine), etc. By Tacorporating these oces of
mmm.-mummmmamamm'
mmmmwmmmmhm ~

mdhnmmm%mmm

between a sat of

t Dynamic information may be stored as part of the rvaiue of a celi; in many cases
complie-time computation of rvaiues will propagate this information as effectively as
If it were an attribute. Maorsover, much of this type of information Is used for
Wcﬂm%mmmhhm

28. Chapter Two — Data in IL

Attributes are referenced In an IL program as follows:

“Jvalue:attribute_name" for valus a -
“Civaiue) attribute_name® for rvalue :F_"':"f

Each attribute hag a valus (slways a iiteral) atablished in some il statement by
Including an asskinment. tp the atirbute neman “the. aftribute Seld. of thet
statement. For nxmm?m& program _aistement. ftustraies . the

The fwst line indicates that the address (ivaiue) of Z is a two byte unsfgmed
integer — this information wil be needed for,typRe. ahockmxnm-d by some
transformation It Z enters m a. ointa ‘
lexical level and stack tram mMgm wm frst phau of the
mwu-ummm)ia oouuumolqgodm

mﬂoﬂ
A RO G_ BM
of Z from this

B, N A
4““‘ PR

the ummm.mmm»m

fgs s raptnrad s

lnformtlon Flmlly,. m thlrd m lndcntu th!% valyo o!' Z oooup

w?? Pm W"

o3 8 bytes

cndhutyp.ucl mthatﬂlo'd.c&nnM'

~”\—‘v- a ﬁjhﬁ‘" y‘

In IL; -wumummm ("“‘imwm ‘W‘F“m‘k

a ‘;, e ﬂ?‘—m‘gLJ E

lnltluuzntlon of Z‘s rvdu-) will bo cnpturod in m ?mg?% W The

smbmfwachmmcambutummgﬂt

"h"‘”“‘$ BN L1

qph In 1L, thelr

valuu are slmply llfnruh tho lnturprctnﬂon ucﬂbod ".M,. In th. prluutlon’

T These were srbitfanty Showen to- e Ivalii ittrfBiites: ‘Jenerdl Wttitbutes of a cell

mymmummmmmouvg%’— g opny
»mmmww ‘

e A
LA

Chapter Two — Data In iL 27.

reflacts the role they piay in traneformations -applind by the metsinterpreter.

§2.2.2 Structuring of cell names and valves

The ablity to structure: iveiues (and thetr corrasponding rvalues) simplifies
mm«mmmw&imm-mmmemme
components. E.camb,nmumm velie; Its type, size, and
other attributes oan be Meintsined ssparately from those of other comporients. It
Is also possible to perform operations on the aggregate data as a whoie, changing
ali components in one aperation. A component’s Ivalie is conatrusted by appending
MMMMNMmete,&eso:
aggrogdom. For n_m-‘ph; # A were an array dimensioned from 1 to
10 then

-

© rvalue refers to o
(A) mmnnqy

5 d camponent of A
‘(ﬁ)." ﬂ?m&*‘ Tk roia A10)

Note that <aggregate_name.selscior) ls om t- W)mor -
clﬂ:ufwmmyhomdhw lamulm'”wulntroduc-duu
mmtmmnh’dmmm' ormu.'“"‘lc
mv.rntu.uymm«mf:momn-wmmmmmm
rﬁmmummhofmmtaul wmw*mmmﬂ
erﬂommmmmmmq.ammmmmeof
the elements (assuming A Is mn) ‘nun, " a pmgmn oontalned the
definition <A)>.*:typesbooiean then th. tttrlbuu W (A)Btypo could be
resolved to “baolean.” w-mummmwm}nfm.hm
oqulvalontto(A) .mmmmwmmm-wym
those of its components. The ‘Mtowlna IL statement Mustrates the attributes which

28, Chapter Two — Data in IL

Label: Operator -Oporends §: N T I m“

Note that the sxampie specifies that:the rvaiue:of Anm avay 10°dytes fong and
that the ivalue of A is a 2-byte MW(H‘”*C ari ‘other &8dvesst:
The. third line is: Included sinos . A:iseund _‘,.;,” o be used as.an operaid i
subscript celoulations and thersfors needs: the:appmpriate attibutes; The Mat in
attributes. to be included in this-array decisstien, -every effort Bas been made to
eneure that each Guamtty whioh might appesr: as:-an operandin subsequent
casing - & WMWW@W GMisAENn-TeceVaes the
same treatrent ae mw opetation, - .

In many ceses the 5n° mﬁm*mmrmmmm..,mg
reference <A>.<I>:type (the type of the: ™. companent: ﬁi).‘mo tast ine: of the'
deciaration Indicates that the. fype of ey cumponent is- "bosiean’ end 8o
<A>.C>styps can be rescived: o *bockeen” ‘withdist further’ &do. I, o ‘the other
mpomnt - le, :

hand, cmwmmmm«w
<A>1typ0-bodun m mm (p(l):typo doanut procud without

more knowhdooof ﬂ} (tﬁo m of m cubocrlpt) Even though W checking
mybaw. wbmmwammrmmm
Impllcltlyduﬂng compﬂo-tlnotypoohocklnu Moraohﬂmwotndboto-ndow
the mtulntorpnt.r with special kmMadgc ooncﬂnm -ttﬂbutu of nrray

Chapter Two — Datain iL R L 20

mmu,mmm'hmw‘mmmm
- metainterpreter. Alhll.“"‘ﬂ%ﬂmmmmthasmanﬂcs
common 1o most mmmm tto‘n,dnﬂo*nchmlzltbn of attribute
sssignment to <A>) are understood to changs the rvakies:of the Gompanents-(e.g.
A>3, <A.2, .., <A>.10). The converss s eito trus: a change n & component’s
rvaius changes the rvaiue of the-aggregate. Both ¢ases are besed on the premise
that the rvalue of an -ageregete 4a: the “eul® of s Vomponents — e, that the
rvelue of en aggregate is At melwtainsd superstely from the rvalues of its
components. Thus <> Is oquivalent 1o <A>:* (whon spesking of rvaless — this
differs from the comglusion resched. above for the ‘managing of attributes). The
eﬂoctaf mhm (mmmm.tmmmm sets)
colncides with common practice: @ change in <AN:&- should invaitdete mmomy
coples of the whole srray (<A>) but should not mffect temporary coples of other
components {e.g., <A>.T7); on the m ‘hand, chehges in. the whols array sheiild
invelidate temporary copies of any component.

As a finel example of & structured cel, coneider the following series of It
statemonts (see §2.3.3 for @ detalled description of the ALIAS pesudo-operation):

i ALIAS X1

J ALIAS X.2

In this example, the rvahses of | and J overiay the rvaiue of X (the designer has
the responsibliity for making the storage aliocated for | and J overlay the storage
for X in the final transiation by adding appropriate transforations to the

30. Chapter Two — Data in IL

catalogue). Note that aithough X is not explicitly declared to have any

components, allasing | and J to X.1 and .X.2 hes: osused them to become

components of X. Thm,‘dclno the rouonlna Mtbo pnm paragraph:
(1)Whﬂ!ﬂ~lﬂ.ﬁxmmmmdllnd¢

(Z)Wtotmwdtuoflhvmmmwdmﬁx,Mdoumt
.mmmunaam

(3) chnngu toth- rvulua ofJ kwnl!datnthcwdubﬁ X.Wﬁoes not
mctﬂtorvm.ofl

Thoﬁnalmmmmtlnnddmmmbcduhht Theu

\ T

throe oondiﬂons are juot th. mnnﬁca ono mm w!th w.rlayod ctonoo* ‘

S

§2.3 The :ynux of IL

An IL program la a uqucnce of ctatmonu m up of tok-na classed as
terals, lvaluss (the name of a’cell), or rvakies (the application of the contents
operator:to an Ivaiue). -Depending on where-a takiori uppsere I an IL stitement; it
Is further Muamt. oparasor, mmxw.m wnl ‘tokene’ must
be: ivakies; ' eparator and MWWWM?W% miy
be any. ﬂnvur Beyond the: smfmmedm -of ‘tokens,
IL provides no further interpsetation of Grdivary ‘Solens:in-this sesse; iL s similar
Special tokens are provided 1o indicate treefisrs of GENtrab aiid their COrresponeng
seidom referencad direstly by Hhe: user. -An’fL JHAOMENY INE-tRE Tollowing form:

Mgyl

ansformation catalogue. m'wmuommummdnct complie-time
the use of transformation macros (see §3.7).

§
%
|
§

Chapter Two — The syntax of iL a1.

mrathncmummmum

label mmMmmmmmumwtﬂm

: statement. Two labels, - MOthmmtha
systam (eee Smoton:2.8) s ‘

operator This fleid lndicttu the oporntlnn p.rfomod hy w- sutomont

operand... Zmummammumnmmmrntm

attribute... Ammmamwmmwmtm
. context and semantics of the statement.

Figure 2.1 mmmnmmammumm

intager XY,Z; o
It JOY then { X=2; Y=3) m { Xe3; Ys2 }.
Z = Xe¥y :

There is no single L. m for & givan pragren: 8.g.. ene. could eliminate
the. definition af C1 and C2 entirely from Figure 2.1.and vee the iterals "2° and
“3" directly. Choices as to the number of Jovels of ndirection, etc. are net
dictated by U and can be made. on the. besis of oomeatiblity with the
transformation catalogus, appropristenses for the tasget machine, etc. Nete that in
Figure 2.1 attributes. have only bns givan : for- the dedclasstion portion of the
tranaformations. The initial attributes are simiiar to those that might be provided by
the frst phase of the compler. Atiributes are desesibed in wese detel in §2.2.1.

In the description which follows, It wil be useful characterize tokens as
either literals or references (either an ivalue or rvaiue). By way of example,
consider the fotowing two hes fom Pgure 2.2:

32. Chapter Two — The syntax of IL

Label Operator ~ Operands Attributes
X declaration X:type=integer X:size=2
<{X>:type=integer <X)>:slze=2
Y | declaration Y:typesinteger Y:size=2
<Y>:types=intager <Y):size=2
Z declaration Z:type=integer Z:slze=2
<2Z>:type=integer {Z>:size=2
C1 | constant - nm <C1)>:type=integer
C2 constant "av <C2>:type=integer
T1 | greater_than <X> <Y> '
- it_goto <T1> L2 11
® label L1
X store <C2>
Y store <C1
» goto L3
° label L2
X store : £C1>
Y store <C2>
(] label L3
T2 | add <X KLY
Y4 store T2>

Figure 2.1: initial IL representation

Label | Operator Operands Attributes
T100 | equal/ <{X>:type “integer"

T1 add X> LY

The italicized tokens are literals; the rest, references. In IL, literals are nothing
more than character strings — Interpretation of these satrings Iis provided by the
transformation catalogue and the metainterpreter. References "refer® to values
established by other statements - they provldé a level of indirection. The principal
difference between literals and references Is that the meaning of a literal can be
established at complle time whersas references often refer to values that are not
known until executl&m time. Literals are of central importance during optimization
since thelr fixed semantics provide opportunities for cémpile time evaluation of
operations. Some references (e.g., <X>:type) may, depending on the context in

which they appear, refer to literais; in these cases it is advantageous to remove

Chapter Two — The syntax of IL 33.

mummam-tmm MM-nformatmt
thWMﬂMM(o&.,W}.RWhmm
mmmmmmmmﬁammumm
(e.g., Wpﬂm‘fﬂd‘mﬂum”mmﬂtomhdukod
velue). '

 §2.3.1 The label fleid
mmmm-nummmmm:ommtadby

execution of that statement. A amom may |
a cell ls Ailled by a statement if

«mmmamuneﬂu::_
Glﬂldﬁ‘m“ :

a cell is defined by a st t if o :
changes the rvaiue of the osll; mmam“uwm
Madddmnm mmmmw:mm-u

monumnbmmNMﬂnmbmth«cMﬂmm
subexpressions (assuming that mmmwmy) if a odl is

statement after the statements mm«. statement ‘executed

by a raference to the. definpd. cell. . mu@wmmucxm
WmmmmM the defined 9ol oan be rescived %o that
the implicit cmmmm i .onitted for the sshe: of.beevity. The:label fleld is

used by the metaintarprater In_two important. ptimiastions: sedundent computation

; With one axception, the kil set provides il the .information nesded to
perform these optimizations. This suggests two formats for the label fleld: K" and

34. A Chapter Two — The syntax of IL

i AR

"K,D" where K is the kili set of the statement and D the corresponding defined set

osse 1. If Kis-empty (iK'= O) WienD =¢. *° -
case 2. nxm-woohm(mu)mn-x
. case8.<¥ K| 3 theri®a g, =

toual. HK-{'}MD-‘

Consldorlno only statemants that affect At most one, ceil (ali. the statemen

Figure 2.1 fall into this category), thera.is a.netucal interpretation for eagh of the
above cases. Statements. ammm(mmm of «control) are. covered
by case 1, Statements whose operatocs have. en anplicstive semantics (add,
multply, otc,) fal under case 2i the single slement ef the kil set is the Wakie.of
the cell where thc reault is stored. 'ﬂui MM ls always changed by
executing the statement, so.D = K. Thig.ds slse the WMW
statements which ahways change. the same oell. (i@, they. do- nat comaute. ifs.
Ivalue) - in these statements the lsbel la.esssntially. spother opersad.. Case -3
covers_ assignment atatements that compute. the, lalus. of. the. asll in which the
result Is to be placed, 9.9, assignments through pojntars or. o array elements. with.

non-constant .subscripts. . Here, each cell in K hes beep. kiled.(ite; pravious, rvelue
may have been changed, thus it can no longer be assumed that it is available)

however no cell. in K has. been defped (no single cell.ia_cartala to have been
changed) hence D = ¢. in the final case, &.label of u=n_indicates ;that ali cells
might be affected by sxecuting the statement.. For.easentislly. the: same reasons .
'M.'ﬂ. §2.2, no provision MM made .for: speciaiiging "*" by speoifie..cell
attributes (e.g., type): in.almost every language there:exist loopholes. which make
attribute information unreliabie’. This label is used. when the statement -hes.
brogram. Desite the suspect nature.of atiribore venics, thie 1a the semantics

provided by many languages and relied upon by programmers to oirgumvent certain
language restrictions. . m,mmmwmm” qmmr

Chapter Two — The syntax of IL , 36.

unfathomeble side-effects, for example, when the labet fisid contains too complex
an expression (e.g., deeply nested sontents: mm) - when an lvalue
subexpression hes hecome M " b WWM saume m value ig "»»
and proceed from there. This overly mmqtm htﬂ'pntlthn may result In
misaed optisization opportunitied but never in an Incirredt transiation. |
Procedure caile have the potential of affet
Into the categories disoussed above. The saquends of stateme
body of the procedurs may kil and defiie cells — taken In thHe aggregate it is
possible that K 2 D ¢ ¢. In addition, precetures tat retur & velue add yet another
clement to D (the celi containing the returned vekie). The second labsl format,
"K.D%, is usad for precedurs calis. While It is theoretichily poasible to compute the
appropriste label by examinkig the body of the précedure, this' calcufation quickly
becomes unwiekdy. Ammmuw‘ $ign procedure calls the label
"AR* where R ls the ivikie of tha ool In whih the réturned ‘value (if any) Is
stored. Thus the semantics of a p«mm oall is reduced to invalidating
previcusly calouiated values for all cells excapt the moonmnmo ‘the return

its which form the

value. _ : ‘

As was outiined in §2.2.2, It is occasionally necessary to augment the kill set
of a statement % acoount for the semantics of ‘agpregate cells. Nﬁ!wah the size
MWRWMMVNM“W.MMWOrW

unchanged — essentially no new cells are being stided to the Kilf set, but only other
lvalues for the affécted rvaiua(s). The cbjective of sigmenting the kill set is to
expilcity include the ivalue of every osil which is affected by the statement; this’

- (

optimizetions, ubwoddhadmuwmocﬂymmmpm@m-onlym
programmer is allowed to play havoc with his program!

36. Chepter Two — The syntex of IL

e 1 % 6k . i e P i 5 B 5 7 5 o L TRy At LS
R R ey S - e G I el Lk i O R e B O S Y P B
S ER ARl R R i da i i e SRR o g e dain b R D Sl R ©

the kil set.

The following algorithm mtmcta an w kil set K’ from the original
kil set K. K' will include al. lvlluu Atl\S.d to Ivmin K as well as the lvlluu
of agaregates which subsume Waluss iy K. Jn gonefrupting K 4, fistination ls mads
between an aggregate mdbmponmh:ﬂmwhmowanlnk‘ it
refers to the aggregats treated as a- mmno. ﬁy’tmbrﬁry ‘coples of the
efitire aggregate M be invaik ’“ad)*:" nw&m ‘ot an aggregate's

would lnvuldlto any eoph. of ‘the array A hﬂt e W -

A% would “invaliddte any compohents’ (ﬂﬂ
1.ln!thllyK‘=K, | ’ |
’mehawmwdﬂoalnk.iddt'tok' An'lvnluols

8. Fornchhuhnalnl(‘,qddlnym.;d

4Foroachcommontly{duo¢.lhl¢kmqhk’ Tha inteat hera is to
‘add alt the prefited for sach component iveiue, e.g., H A.1.2:3" were

: MWMK’,%QMWMWA] 3,&1.*%5193&
antnmamdlmwmmammmms‘

series of examples should clarify the workings of. the |

exhibition, duplicate Ivalues (e.g., X.* end X.1) heve bsen ramoved from the. kil

sets. The exampies assume the, deciaration giyan.in exampies in,i2.2.2,

Aill set (K) kmuc(K')
AR A
{A3 A4) {A3 A& A)

Chapter Two — The syntax of IL az.

nted ki saf for.the, Atatemapt. -The follawing

} 1 Xt X}
%) % N2+ J)

Note that the augmented kW sets agree with te Gesiderata outiined in §2.2.2.

A%} gm A

§2.3.2 The operator and eperend flaide)

No particular semantica is M-d to the operates fleid of a statement.
The meaning of an operator is. established by transtormatiens. which expand it into
other IL or target machine operations. A useful saslogy for en IL operator is a
macro ~ the tody of the macro defnes the efiect af an epersior In terms of, other,
usually simpler, operations. If the effect of the macro can be accompiished directly
by the target mhh'tmvmmm‘mmhmm; the
transiation of the statement is complete. m the body of the macro (in this
case a sequerice of IL operatione) should be miletituted far the aparation, making
the appropriate substitutions of ectusl cperands for m patamsters of the
macro. It each expansion is subject to later cptimization, R is possible to use
general definitions for each mecro Gperation, Le., definitions such as one would find
would be expiicitly tested for in the substituted sequence; Iater optimization would
eliminate those cperations which could be performed st complle time. For example
(see Figure 2.2), the expanwion of the addition aperator might test the type of its
operands and then perform an integer or fisating pokit addilon as appropriate. If
the type of the operands could be estabiished at mmmmt would be
subsumed during optimization. Although It ls Hot necessary, uss of general
definitions wnﬂydwﬂﬂuthchbvdofn”haﬁmnmwmw
one tramformﬂonformopmmthmmhrmhmma

in an interpreter. Special cases that hings on partic:

88 Chapter Two — The syntax of IL

11104
T1

' Figure 2.2b:

goto

;a:m [T

(Y):ty!p.

.'(*191*) L2 k‘w

O <
L7

<O

- ATHORD.. LY
L7
(Y)styp- *real”

<T108> L& L6
LS

x> <

L7 |

Le

<D : :
<O <T104>
T

L8 e e

IL program with ¢

Label

Y

| 7102 | ‘Nt

Chapter Two — The syntax of IL

T

ao.

the following:

a literal. Literals are-snticned Hin Quales when they sppear in the
WM»MM&VW#‘WMW

S S

mmaum»%«.

.mm:mwamwamuu
nmmmmmmw&m;.
Thonumnprlwlmmmnanﬂnmmwﬂamwmbut
mnthmmhvdafhm(mm}ﬂldthombe
cdcm-todinamt.m wm«w.mmaof'

- indirection is ueed in an m ST g

§2.3.3 mummmmam ;

Pswdo-onnm provide s mm Wf‘ﬂn Mdnterprcter
Mmmmm(wwo)mmmﬁ?mum I
statements Mtbpm;nm m'm'mmmmm which may
tnmmmmwmmnmum, aammym-ﬁmw in the
fnal translation (L., mmmw o the remilt ot me
_mmmmform-eammmn&mﬂtum«m
other purposes by the designer; in-this thests; hesudo-operators W be displayed In
upporcuomdnﬂoﬁnremwmhium

The statement in which the END pssudo-operation appears marks the logical
ondofcnltmtmmamfhme!um'mwmm
proceed past this statement. Statements foflowing this statement up to the next

target statement (see §2.4) are oconeidered inaccessible s wlﬂbo removed. by

40. , Chepter Two — The syntax of IL

the metainterpreter. The END pseudo-operation Is intended for use at the end of
the IL program and for marking the end of procedure bodies within the L program;
presumably some transformetion’ will transiate #t:into a @it or return as appropriate.
This operation makes no use of the.label, opsrand; or: attribute fiekis and so may be
used as the operator.of a target statement. - . o o T |

The. ALIAS pseudo-operation’ provides the capabiity: of defining -equivaience
classes of ivalues — sny member of an equivaience’cisss vrefers o the: same rvaive
(although each member may have. different -attributes.associated with it). This
operation s used to m-m« rvalues mmw) as declared
by .the sowrce lanm program. (e.g., with umxm Wﬂt& ammt@
wumhmmmum (z.s.,uh-auwmmm mtmm
hold the same valus; this: typlcelly occurs m“mm»m«;wmuonco of
statements bolls down to & move from one: coltto @ mfy = the ALIAS
operation would indicats that the temporery: is aliased with the original cell). in the
latter case, the ALIAS cperation provides a renaming | ‘capabmty t0 ‘the
transformation:designer. Tmsformof,.thcm statement is

" Label Opcrator “Operands Ammw
el e T e

which causes thom:gn‘etqlr!tﬁu;protor to plage jvalue, in the same name equivalence
class as /value,. Note that, by definition, ALIAS is a transitive. operation. Typically

Ivalue, Is the new Ivaiue to be defined and attributes... are its initial attributes.

§24 Flow of control in an IL program

Cn tbeprovmom the syntax andmsusoum It stetement
were described; ﬁbncm mmmmwamudn{
statements. |IL -mom are mcuud W. m m vancfm of:

Chapter Two — Flow of control in an Il program : a1.

to IL are simiier to those provided at the maching lovel.. Sequential execution is
aiso compatibie with a wide veriety of lemgeagee, ssputially thave that have
relatively severs ordering ‘constraints (e.g. ALGOL, wiiok spedifies strict: left-to-
right evaiuation of sxpressions). This control SUUStire is: Wore constraining than
by degs is that-the soms (cperands) of &n INENer: NOUe (speiation) must be
order constraints en mmmm«um Suck fexibllity is not
Inherent in an IL program and must be provided by Whe dransfovmation catelogus end
the metuinterpreter: transfarmetions can chengs. the: crdilr ‘Of Stetements’ in- an X
" | ,

As was mentioned at the beginning of this chapter, the syntactic
conventions dlwuuod bd-w are- mt p&ﬂe«hﬂy m far languages whose
control .mmmmmmmm MBOL,fwoxnnplo.
requires a “transfer of ocontrol* with wufy.statm - the difficulty in
acoommodating this construct in IL reflects the difioulties In producing a SNOBOL
mmmwmmswmmmmmmm
solved, the solution cen be Incorporated in IL. o

t In general these transformations only change the evaiuation order to achieve
some goal, for axample; & reduction in the ‘nember 0f ¥ejjisters required to evaiuate
the operator. in this way the oonditions under which eveluation order can be
modified: and what -metrics - are weed 40 judg Wi reuutt are Wiide explicit in-the
transformation catalogue. This information would be useful during the analysis
mnm:fomamumrwmmmme”
specification

42, Chapter Two — Flow of control in an IL program

IL statements whlch cause a transfer of control (transfer statements) are
readily identified: M lmw a " jn_ ﬂblr MM ﬂotQ that this use of the
label fleld prevents the mtodcnt from M o

(md saving) a value, it can
only effect a transfer of oontrol. Procedurs calls._ars W differently: since
control returns to MMMMM‘ cd,”‘th.y are similar to
ordinary statements exoept for the-pessibie sidarefiecta.of the procedure body. In
12.3.1, & coavention for:the jabel fied for Amosdiwe calls wae established (fsting
the side effacts of the pronadura); -thus, ino.dranater -is explicitly -indicated.
Procedures are treated es "complex®: ma:«h nad. far: a8 this section ‘is
concemed. . “Otﬂ that a-transfer statement Mmt'mm; -exeaution
can conditionally contiaws - With the awct: etatement, it-must be. provided:- for

- IL statements M are targata: for . trenster _of -contral ' (target
atltonom) are idantifes by placing - A" in. Mm flsid, ‘As: for tranafer
mmnuwmtmmummmm s:value since: their-iabel
flaid has been preampted. The following nomention is: usdd: by:the atetainterpreter
for. detevmining which. target stetemants ace' pasaibie targets for 2 given trenefer
statement:

a tumt statement is a target for a given transfer statement iff the

mwmmnmmmmmw
andthatruufumw

a!r(

This convontlon allm cddtlomi mm to tnmftr and tnrg.t statomts
which cun be uud by tho opontor of thm mmm Tho follawlng oxnmph
(oxtract-d from quure 2.2b) Illuatntn tho oonvonﬂon m churty »

R YR s

K LS B

Chapter Two — Flow of control in an IL program : 43.

Ml,, T J@vi |

e e

t .’!

The frst fine 1o & Wanafer statoment (hes - in-Its Wbl BUAS) Witsh can tranefer
ot 14 recoghized a8
o possibie target since the ivalue L1:1s an spaiuns of BUth the Wt and second
statement; mmmnm Nt tget StEteBRt. it I not possible
1o tell from the sbove meagram the GroWtances usler Which efther lebel is
chosan as- mmmmmuﬂn@mmiﬂm
the veiue of T100), information thet only eiiets v i trau w Eatalogus.
~* This information is €sud by the MERIMOSPANSY wim& “maximal® flow
graph for the iL mmmm s asdinhl i e BEABL that ‘N pOENIbIE
ruled out by the Sementios of Whs TPerator Of W Wrieter: FURVWNL - This graph
mummwmmwmmmmu
updatodﬁnﬂcvorlumfwmﬂm WCMabMﬂMM

§2.6 mmam

. On.ﬁth‘“hfﬂﬂhlﬂlﬁlﬂlhﬁ“ﬂﬂmcdouhﬂon
of rvaiues. WMMMWOHWMG'M(WNM)
mm.nétnmnmnmm hwm tttmmnls
us.dmm«ummm-nmw».nmmou
/s known to be either 8 or 4 then we write <> = {8 &4). If the value of a
reference exprassion is unknown (Le., it could be any possible veiue) then we
write {*). |

44, Chapter Two — Complie-time cslculation of rvailues

damntasatuate SECRINITCOR iVt

Occaébnnlly, it Is possible to further riodvc a "purtlcullr rﬁfcronce
expression. If <I> = (3 4) then S
AD.AUD> = CA>(B 4) = (OB <AE).
If, on the other hand, the velue of | is unknown (Kixom: (%P)ithem .
| ne KA. (o m A, -
IL recagnizes.the .altemative fom;c»:him essxampls as: equivdient: “in effect, suoh
resolution is performed automatically. Evenin the: abséiive of hnowledge sbout the
rvalue of |, a reasonsbis. interpretation umw 0>"hi“mlﬂ?

erring only in that lt is likely to be an overly conservative interpretation. In the

second example above, the distinction between *** as an abbreviation for all
possible colm.ponont‘ names and {*} as the representation for all possible values has
been deliberately ?Iumd The intent behind assigning numeric selectors for the
components of the array A Is to allow this sort of felicitous confusion.

As a} rule ‘of thumb, the utility of the oomplie-time computation of a cell's
rvaiue is inversely proportional to the size of the value set. There are several
contributing factors: as the slzoi of the value set increases, it becomes
Increasingly unilkely that any significant optimizations will be possible for rvalue
operations on that cell. In addition, uncertainty ln_ one ceils rvalue tends to
propagate to other celis whenever thé first o,.!ll is used as an operand (the value
set ‘of an operation is proportional to the product of the value sets of t_he
operands). Such “dilution” of complie-time Information Is not unexpected ~ it would
be unreasonable to expeoct to perform all computations at complle time! However,
the prognosis at this point is not encouraging: it would appear that large amounts
of complietine Information could be collected with little ‘prospect of a

corrasponding gain in the optimality ofkthn reauiting translation.

Chapter Two — Complile-time calculation of rvalues ~ . 48.

of rvalues is subject to the jaw of Wimisleiing Teturs, asal therefore rvalues are
The first obawlﬂnn W“W motivetion: for the Introduction of {*} for

48. Chapter Two — Complle-time caiculation of rvalues

§3.1 The transformation catalogue
A major design gdal for the IL/ML sysiem was to ka&p knowhdqo about the

source language and thmot macmna separato fmm gonoul knowhdge about code‘
generation. This wu deo&nb&hod by provldlng for a uparat. doecrlption of’
machine- and hngu.go-dcpondent sommtlcs thc ombodlnont of thls ducrlptbn ls

s 4 '1 ‘1 ax

the transformation catalogua " Edch phcn 'o! lmculgn- or mchino-apaclﬂc'

after ‘the’ transformation has been appllod, the updnm progum wm Mv. boon
modified to incorporate this new lnfomaﬂon m tm tm motalntorpretar(
und‘arstnnds as attributes or a now nqu;nco of lL mt.monts The
metalitterpreter provldas the rmlnder of tho frmd’h'ocrdod to ﬂnhh the task

Y

of code oanomtlon whenever it exhauau lts qmlyds of tho curront pmoum tt
raturns to the transformation catalogue to anthor addlt;i;nynl lnformtbn ’(In tho form
of a "new" IL program to analyze). ‘rm. cych of .nnyou and tnmfomatbn
repeats Uit the tranalation Is complete. ST '
This chapter dbcuuu the tnmfom-tlon utnbguo nnd tbo lungucoo chh
serves as its bnlc a motﬂinnaunm (ML) fw ducﬂbhg iL proonm fumnts
" Using WL, tho doalgm can wﬂte tomphtu de\ doooﬂbc thn clm of IL
statements in which he is interested. This clm c¢n b. m; Iurga (e g . “au lL-
| statements which have commutative operators®) or quite mall (e.g., "only
atntom-nts which app!y the sine operator to tho lrwmnt a 14169") dppﬁhdlng on .

i of “the ciass of iL fr-anntpf

th.mﬂc.tlenﬂndn%rmhmmd

Chapter Three — The transformation catalogue a7.

described by a template are said to match the tempiate. §3.2 presents a detailed

description of the syntax of ML.
Tmmmwmwmmm one as a pattern, the

other as a replacement. mmmmmmgtwuwa

autofmmﬂmmmm‘(cmap«qtef L

mms)mmmpmmm»wmnmm
specified by the replacement. The replecement, perheps using statements or
mmmwwmmmmwi
fragment to be substituted for the matched fragment. | N

| Mmdwmhnmmfwwnﬂ
MhrhtumhlmdfM(mﬂsﬂ H'lllﬂncantﬂxtull

a new IL program

mfmummmo«um-(mu*m.m R program) is avelieble In syntactic
form, pattcmo pm'do a eoneiu description ar ‘where the plece of information.
ccptmd by th. trmfcrmﬂon s mﬁb Uﬂm m trumlnmathn catalogue Is
roduccd to Mdlno a u'mfwmtm m mto!m tho M W statement (or any IL
ctatcmont it the ntahtorpntcr hu no apeemc god ln M siternatively, the
rcplacment (whk:h I. aho a patum) m bo W to _determine_ if It
ucoomph«cmmm mmmmuummmmfma
onhancu thelr uﬂuty u th- bulc fw kmdp rmmtion

| Ssadmﬂmmummﬂmnomammmymuud
by the motalntorpntor Tho m ueﬁon al' thh chwtcr prnm & series of
annotated cxmph tnmfematm

t This context ccn 'be further nodmed hy a ut of oondltlons speclfylng
comtsr;muMu.m-mmmmmmm«mmmm
(see §3.3.1) ’ . :

48, - Chapter Three — The Mfomntm catalogue

§3.2 H:L's a language for descriding IL program fragments

ML issimiiar fo other metalanguages. - its syntax:subsumas. that of I (.8,
an IL statement is a legel. ML statement) end; in: mddition,: it allows certain
metasymbols to replece IL componsnts or statepents:. The matasymbois: coms in
two flavors: wild cards that act.as "don't aares” in-the metching.process, and cails
to bultin functions that aliw access. to aema.effhe mutejetacpreters knowisdge
of IL program semantics. Use of these metasywhols:parmits the: designer to write
generalized IL program fragments; these fragmanta are: mors -general then an: il
components in which he is M {using 'wiki cards-t0 speacify the remaining

However, the designer can caly :genereiiza sleng . certain:dimensions as his
only access to ﬁo meaning of an IL. mmam syntactici form end whatever
bullt-ln functions are avallable (see §3.2.2). Since the apuuto fhldu fot kil sm_
and attributes in an IL mtcmnt seem to be as far as one cm oo tmnrds muklnd

ghd i e

the syntactlc form of an I stntonont roﬂqct tho ttntmnt‘s aemtlcs wlthout

I
Feror oy 0t

llmmng the generality of IL tm umltlng fnctora qn ;me capchiﬂtlu of the buut-ln

SR 1' P01 E RT3 I TSIt

functions. Tho deslgner can dctomlne whothcr two llt.ula m thl m but my ;
not be ablo to ﬂnd out, for oxamplo whothor(thc aqu;n root of c lltcul Is m‘
lntoqcr These rntrlotlom on thc ublllﬂn of buﬁMn funcﬂono are thl moat anvaro
limitation of ML: bullding In language- and mhlno-cpodﬂc pred!cutu Into ML is

ruled out as this effects the myof ﬂn«mtonn&d, "%rtumtct‘y. it would

be lmpoulblo to Include cll tm»g;muny uum functlono = ttuf we be accused of
making & mountain out ofa mm it shoaid. b& pointed. ouf that the result of these

limitations. Is missed. optimizaion. opportunitigs. - feseumably ., N the. computations:
specifisd in the IL program cov/d: be done at.exsovtion: ﬂmnﬂu oonpuhtlnmlv

Chapter Three — ML: a language for describing IL program fragments ' 49,

LA MM g L s e e S e e T oL R SR
e N B

faciitins provided by ML we intended to alow “Gpesiel talioring of the
traneformations and not-te Be on aesenti cempenbnt-of the trensfornations. ML
takes the middie road by’ providing: Sullt-in:fuiotiuni' fer siaiipisation of Ntersls ‘and
for Interprating Meels e RUMENU QUERRISS — Giived Pindling must be constructed
Sddiions ‘00 e GRURNGU: are 4BIENL for WOUE iy
Wmmmmmwm‘mmm
transcendentsl functions: 10 sertain srgumants’ (¢, »/2; 4. bt would transiate aft

§3.2.1 describes wild cards; §3.2.2 enumerates some example bulltin
functions. -Exampie M\ stetenents can: bu founsl it this Jest:section of the ¢hapter
a8 pattermns and-replacenents i transformetions. ¢ - |

5321 Wﬂdwﬁ

}chnw“m»mﬂmdmmnumm
m.wum&mmdmmm thowudwdwm
mtchmyl!.compannt(a) mmmmmmmm_
.utmumnnMu;-nm wawmmmueaofa_
mphemﬂmm(mmmhﬂ.&ﬂ}- Thounnfourform
ofwudcmk'

T aame
»&m R

name is-an optiohat ideivifier which 18 ubsd " distivgieh’ on moltiple witd
cerds usediin a single patterm or teplaceiient. These nEiliss dre also used In the
replacement to refer to components or statements matched in the pettern. If a

80. Chapter Three — ML: a ianguage for describing IL program fragments

given wild card appears mbro than once In a pattern or replacement (l.e., two or

more wild cards with the umfom and nm)ﬂnymwbropnmt

the same IL conpomt; if- thie- duplccﬂen occurs wmﬂnfp rpattem. then ail the

eophs must mawh [%

The 7 and § wild gards Pqtch a llmh,' nqrpuﬂ pone
respectively, l.e., for each ? (8) thpre ‘must be & o

or statement

g L _compongnt

Yesd

(ctatunnt) in the IL program fragment which ia being Mtgh«l Note that when
desoribing an IL statement, all of Its components (with the exception of attributes,

I to be oongwqjmd

pp o more IL mon-nta
within a single fleld wh;s oompmgm are. Mehodnp!unlly
oompononts on either side of the ?* wl!d. cqg;l Jn m

ds on the

‘ fl. statement. If these

adjacent components oomtrdn the mtch for tha ?" wlld card to a single

sequence, the 7* wild card s uld to bc ‘ la mrn!, if more than one

%

?'Mldcnrdlcuudlnadnohm &nymhm thhlonlwuyatho

case if two 7* wud onrdo are ndjnccnt or npmhd by lny mmbor of ? wud}
card. Ev.n T lpcciﬁc IL oompomnt: are lﬂtmud. Mﬂcg:lon of thh oomponont :
in the L fbld cen cause tho ?' wlld cards to ba amblguoua For Acxnmplo,k oomldor‘
the uquanco of oompomnts “A B c C D" Th.n m two waya In whlch
compononts can bc aulonod to tho ML oxprmlon "?x ?"y c ?‘z"

, ?xs'A' ?'y-"B" ?*z-"C D“ or ?x-"A' ?“y-:'Bth" ?“ZI“D"

Amblguoua wlld enrds are useful for mtchlng a specific IL oouponent anywhcro Ina
fleld; e.g., tho fouwing ML statement mtcm any udd atutmnt whtch has at

Chapter Three — ML: a language for describing IL program fragments 61.

v 5 B ol

It *add” is a binery operator, one of wqm and Mape2 wil ‘be mmd no
composents Gwing the metch. The Tiafifbutes wii ‘ard shows the fore
' mlmumwmbnaﬁa“mmmmm"
in ™6 replacement. |

The $* wid onrd matohes & sequence of 2ers or more IL statements. Uniike
7* howsver, the sequencs s fiot W w taidbel Jiktapoett
of matching ummmﬁuwwhmmﬁdmmm in the
flow of ‘Control often result T moré than otie poselils Sequints of statements that
could match & $* witd card. For example, consttier the i mm In Figure
2.1 and the following sequatics of ML statéments: o

i the I

Flw.31m&.MMmﬁ&m<oomdb.
mtchodbyaﬁa. mmmbm.ommum«mmm
$*A. Thomtmmdt‘uﬂdmhmum#mntmm‘
mltﬂnymtoﬁ)hbmmmtofamﬂm th.ﬂnoxlst
MMnMcﬂthﬂth&wMM(oc..mof
.mmmmmmmanhmmmm;tmmamms)

62, Chapter Three — ML: a language for describing I program fragments

Label | Operator Operands
- G1: | oonstent. -~ QN i amnis

C2 | constant u3*

T1 | grester.than <X> <Y¥i -

+ | it_goto <T1> L2 L1

® | labet . o LAY RS

X store <{C2>

Y | store R o3)

i goto L3

e . - label . L8

T2 | add X> <Y
Label _Operands | \ o8
ct 2 TR Ry dasint
c2 , ol b . .] €c2
T1 | greater@an <O <>] 7
» | goto . <T1> L2 L1

o fiabet 12

X | store 1>

Y | store 2>

¢ |label 18 |l

T2 Jasd O <D

cp '

Flgm?u 3.1: Matches for -3')\ from Figure 2.1

§3.2.2 Iuian’funeﬂom
‘mmmmusmmmmaopmmuﬂmmt
require more power than dnp!y re-fmm an 0. mnt. A call on a bullt-ln
function has. the following form:
funotlw[argum1 ..nrgumu]
The use of square brackets distinguishes m ﬁllintbn calis from ordinary IL
components (which are rootrlcted to the use uf panmhun) Alt functions return
a result (no side eﬂ‘ecto are pocslblc), this roault m be uood » th. argument to
anothaf buut-in function or. lf the cnu was part of a roplmam.nt, bacome part of an
IL program. The arguments to o function may bc wmton s olthcr n or- L.
components but they must be able to be resolved by tho metainterpreter to a

Chapter Thfqo — ML: a language for describing IL program fragments 63.

p.mmumcoramtm-mmmmmemm in the
pmmmmmhmwmmmgmmncmﬂm
mmmmmmnmwﬁwmmofm
fmcﬂmcaﬂ(nﬁm,wwm) mﬁummaborﬂnga
funcﬂmhmhwmoumﬁ cc.hwmmﬁnmtyn.
camotb.mdtoam ‘etc. meum..mmmummumh
mm-«mmmtmmmmmumm
By way of m vavers! functions are Gaecd be
meant to be complate = ‘only sampling of sach categery.of function have been
described. It is expected that an impiementation would expend the list; the only
cmm'mmgamnmtuwmﬁimm.m
machine. Tmmmmwpammmmmm
component mmmbmmwt.
literal Th- mmt must tn an a. !tom (e, an
operstor, attribute m*m. _or operand
enclosed in quotss). '- -
number The -argument must be an il dtersl which can be
 interpreted as a number (Le., Iteontdmoniy
digits, n docimel point; and wisign). -

boolean Thomommatbomm‘mum
| “true” or "fdn"

thbﬂstlsnot

it the suppnod urgumont does not hw. tho eornet typo tho mtnlntarpnter wiil
ammmcammmmmwmm-muummm
ttmformﬂonhmhltm

und[boohum]
or{boolean,boofean] .

54, Chapter Three — ML: a language for describing IL program fragments

not[boolean]
the standard boolean functions evaluating to the literals "true™ or
“false” as appropriate. These are . used mest often -in:-conjunction
with other functions to form more compucatod oxprmlons

equgl[mwd,lltord]
compares two literals to sge If wwhmmm-mmnm
evaluates to "true" if they do, "faise” otherwise. Note that equal
cannot be used.to compare two arbitrary il campenents: -~ this can
usually be accomplished directly in the pcttom by ualng tho same
. wild card name in hath component locations, -

.constant{component]

cvalunt-s to “true” if the argument la a moral, "falac" othenwhe _

lvaluo[compomnt]
svaluates to true If the argument rqprom & valid lvelue.

label[/abel,sequence]

evaluates to “true" If any member of the augmented kil sot
represanted by ./sbel..appears in.. the- labsl: fleld .of . o stetement
contained in the set of IL statement sequences sequence. This
function determinss whether a celi(s) hae:heen; modified in an IL
statement sequense, Tha .lshel funstion.. is fepresgatative of
functions that seazch. il .statement sequencas for simple:properties;
other functions that test for propertias in avory nquoncc nnd snrch
other statement fisids ohqiktm Included.:

udd[numbor.mmwl ,

subtract{number.aumber]

multiply{ number,number}

divide{ number,number]
the standarg: arithmetic functions returning: the appropriate numeric
" literal. In order to avoid representation problems; & mcblon bmit
may be set by the lmphmntatlon

powerof._two[numbor]
evaluates to "true® If the argument is a numorlc MReral which Is n
~_power of twn,. "falss” - otherwiss. This function :ls ueetul for
determining when to changs multipiications and divisions into shifts.
This example repraasnts the tip of the:ioshigg. whien it comes to
useful arithmstic functions — a reasonable subast might be to Include
only . operations - on. binary. representstions -{binesy :log, ~logical and
arithmetic shifts, etc.).

Choices of the domain (arguments for which thcfunctlon will not abort) for the
predicates described above have been made arbitrarily. All that really matters is

that the cholces ‘are conalstent with the use 6f the functions in'the transformation

catalogue.

Chapter Three — ML: a language for describing IL proﬁnn\ fragments

- §3.3 Tm mmm

A tnnoﬂwuﬂen o made up of three omu a pqtum. a replacamnt.
and a ast of conditiens. The pattera (an W Progran fequmant)
(a set al‘ P!cdlett.l) estabiah the mm ot m rinati Tea
Group of statements within the pattem is designated as the taget — these
statements must ho contiguous nthoy will be replaced h their, wonmgy hy the
new IL program fragment oonetricted from the- reply hent srive the context has
been verified.

mmmammnmnM¢mm unbo npplhd

(1) el companants: of m pm-m munt W R OOMPOn

those IL program ﬁwuenmm. pRaforme

(z)ucnofm-mmmwmnm nmm;m
(see §3.2.2), the application of the transformation fails. Note that
mm»ymmmmnmmmnm,«m,
-ramt.mmmwummhymg‘; wi(e)
moymtmm(unmwmmmmm

(a)mwmh-mmmmumm
matched iL pragram-fragment. - ‘

(4) the replacement must be successfully construoted — oach In-llno
buitt-in functbn call must be evaluated MM Mng.
ls mhttitutod for

it all these mh are mat, the Wy ummm r’j“ _
the target, no.obﬂna the applisation of tha mmm

4 mmmmmmw-u«mmmo
detail; sa 3. 2 outunu how the roplacuont is comtmctod

t Statement sequences matched by $* wiid M“ﬁm in.geanaral, be used in a
target since they do not necesserily contain b adjsaent statements. For
simliar reasons, $* wiid eudl are seidom used In the apodﬂmtbn of a
replacement.

66. Chapter Three - Transformations and pattern matching

§3.3.1 The syntax of l transformation
A transformation has the following form:

_ w replacemant goms here....

The first section containe mnt program mmm“rvnu the pattern,
the: second section eontaine ﬁhmm [an ‘ML program’ mmcnt), and
mmmmamumm&vm N

ns ars needed, the final
section my be omitted). Tmot mtomom wm\ln the pattcm are indicated by a

,.‘;@.

doubhv.ﬂlodblrto‘lhdrhft. Fw.im

Lubou Op-mor ; Op.nndo
label ?mxt , -

ERAE T rdeet? B St EISELINIUIR,
label 7dest1

e el

‘o | label 7dest2 __| 1ocatien=?

In this traneformation the-first three. statenshts OF ANG Pitter 4 the target and
Will be repiaced by Whe. single statement feplaciiest whon the Hansfortation s
Intervaning statements) will be unchanged. The intent of the transformation is to

use the short addrou fgm for the tdmod by the first

three statements if mmm 1
256 bytes). This transformetion omly ‘um forward ma‘ . another

Chapter Three — Transformations and pattern matching 87

' transformation would be needed to accommodate Jumss in the other direction.
Other points to note: the use of duplicate wild canis to spacify that the same IL
component must appear in more than one place; the first and fast statement of the

_matched fragment must have location stirisutes. '

mmoxmmwammnmm fragment
mtbombymmmﬂmm ﬂnaontmtsofthe
attribute fleid are sxampt from this. condition ~ attibutes in the IL fragment that
are not named in the pettern do not enter o the mutohing prasess, The use of &
7" wild cord to cepturs the unepecified attributss sepiication
transperent to a traneformation; the information they canteln.is Autometic
tothoupdatodmmmm mmmuwmw
ctatomtofo-ltbym mmm heﬂh rophohmnt
mm«mmammmummunmm-w

mm.mvm«mmm-mmmm 'boq-am-mnt.
A new m ml m w b- ndioakec hmw including
#on-of wn attributs) in the attribute
mwmmmmmumm Mo Bwiple, B Tolewing
transformation repiaces the addition of two Covtants:with a ‘store wperation,

The rummmmm-mmmwm’q:@-mmpwmm

68. Chapter Three — Transformations and pattern matching

automatically surrounded by quotes (to indicate that the new operand is a literal).
The number built-in function returns “true™ it its: argument is a :numeric literel; the
condition could be onmod .mlroly es sdd M nmw are not numeric
literals, causing the. trmcfonu;lon to fall. Nat. that tbn mlns mentioned in the
previous paragraph will ensure that any attributes

d for 7dest in the original
statement will be added to tho attribute fleid for the store atatmnt Finally, it is
worth pointing out that ?ppi lnd 7092 do not M to bglltorm in the original
program — 7o0p1 and 70p2 n“d only bo um to bo rndvad to litoruls when tha
transfomatlon Is applhd For oxnmplo. tho mt-nom "add (X) <Y)“ would mntch
the pattorn If <X> and (Y) were both known to Mvo. eonatlnt valm Thoso
vnlues would have boon ostabllshed ln ~prcvlom ltltmnts by lncludlng‘

assignments to <X> and <Y) in tho nttrlbutc ﬂolda of thou ntatonen\s

§3.8.2 Comstructing the repincement

Two. capabliiities .;an provided by the replacement that Have not been
discussed previously: the gensration of fmew :symbols:undsed: sleswhere in the
program and the automatic handiing of attributes.” Tha shiity %0 genérats an

unused symbol lo meomry when the w-mfonnthn expands & single mtom-nt

lntoanﬂnofmw umwm‘wtnmmnmu
need to be WM that are not used cw. In the program. Automatic
namdnmmm-mwmmlm;t-mummmmwm
directly concomad and wwm that no attribuu lnm.ﬂon wil bo btt through
an ovorslght In oompoalng the tranafomnﬂon '

When expanding the spacification of the replacement to arrive at the new
program fraghent ali wild cards must be eMminated. if the wild card has the same
form and"na"m‘ as che which appeared In the pattem, the I’ component matched by
thet wild card serves as its value In the ‘replacement. For instance, applying the

Chapter Three — Transformations and pattern matching - &69.

iast transformation in the previous section to

would resutt in thorophcomt

LM Opontnr Operands 1
AT [otorw 94" *atw

Ifa?wﬂdccrdlnMrmmmmmmomammmq

pattern (L.e., its name Is M from any usod in tho p&tbm), n new Ivcluo
created to be used as its vcluo Th. new lvaluc ls mnrmt.od to bo dm.ront from
any used in the remainder of the IL program. Noto that th. dcdanar muot lncludo
any uttr&butu to be luocht.d wnh tho m lvnluo a8 part of the transformation.
If there are no wild cards in the pattern that-cerrespond:to 8, 7% ‘and $* wild
carda in the replacement, the transformation is ilegal and wit. never be applied.

As an example of genarated hqluu Wﬂnm transformation

concerned with the expansion of the subscript opérator:

Label | Operator _ Operands | Attributes
L Mx ?ﬁu Zdax .} 7ptugleseviemporasy
7 ' 7t1:clasestemporary
o 1 <Mtix=typasinteger .
T2 | subtract <7t1) ?mmm bound Tt2:classetemporary
.} CHR>typesintager .
78 | muitiply 2D (?mcy) "'clzo ?tamuapoury
7ptr | add - (?t&) Tarray «?ptr)) M?m.y) *:type

Thooonvortopcntorlnthoﬂrutunoofthonmtwmcoomatthaweof

the index to type "integer" (aee §3.4 for a sample definition of convert). 7t1, 7t2,

and 73 are all new celis which witl bs named when this traneformation is applied;

?ptr, 7array, and ?index will be taken from the aubscript statement matched by the

pattern. Note that pertinent attributes for the new cells have been defined in the

80. ~ Chapter Three — Transformations and pattern matching

transformation. The attribute defined In the last fine of the replacement Indicates
mattmwumnmmmwmhmmummofm
.bmnthﬁtnmuybﬂngwhccﬂptod ‘ o |

The followlng rules are used In utchtbhlng an for m-nts in the
nphcomcnt

1va-mmmnmwmmumbdw
m.mmmmmmmwww :
metainterprater whan it applles the transtorsitin. *Withes
mm:mmmwwmmwmms
lsbel as the defining stetement in the target = this dosd AUt maké
| wdm.umu«mmamaﬁMMw
improves the geqmnuon M»Q!WMMHW&!

definition (L.s., two or_more_definition

'nttﬂbutu are updntod e T D LA .
Rule 2 eneures that once, dcﬁncd qmlputu s Qp mg on_to.maintain . their

original vaiue (l.e., Qttdbutgdp

§3.4 Example transformations
The first example is a transformation’ which prindu the coerclon operator

iscript In the previous section, The comert”

used In the sample expansion of
operator coerces its argument to have the type of destination cell; it assumes that

types are mtf‘ma’ tb b. m of '-ﬁ‘té”r. ‘m'- Ty oo

¥

Chapter Three — Example transformations ; 61.

o ?ﬂ_ ?ﬁfn uv '--:*"4:“’ ird 'wfl"m ER IR Gy
. oqual{ Tresult:type,7acg:type] 7LY 712
FR “‘* T T e L T A TR R § R

C o S Tmitsiypettagert] WA WA [

3 ‘M‘ S Ty Lo P ieas B .

It lo expécied that af the tastivg and brsnches Guh b dpe ot pompl
the lack of any mbh ML for dispatolivg on Ma; o Fa 0l
sither Zarg:type or Tresuit:type b undefived (deuidl Wil sborD). 't

ssparate trensformutions, one for exch of thw cases trasied: the. ea
Optimization required to gohleve the same ressit ey

operator. Uniike the transformation above, mm must be done In
separate transformations because of the use of the ALIS operator’. The frat
transformation handies the case whers the store cperstion can be eliminated
completely because the destinetion is & newly defived tesporary and the vaiue
t The ALIAS operator, ks attributes, provides information which e independent of
the flow of control; branches camnot prevent "exscition” of the alies operation.
Thus, the strategy used for expanding the comvart apesator cannct be sed.

SRR R R R L TR

a2, Chapter Thras — Exampie transformations

St o A e L= T3
SN gfé‘:."‘,,jg‘fg,_f7:~<m¢;;gs,

being stored is aiready contained In an accessible cell. in this case, all that needs
to be done Is allas the temporary to the cell alr-ady oonfainkm the value

(effactively renaming all occurrences of the temporary to use the cell name).

The next two trmmﬂmn transiate the store Instryction to thq -appropriate
machlm lmtmctlon, M on the type of the desting

A

These two tumfonutlom ovorhp tho M m frlmnﬁ mtchpd by the

first Wﬂeﬂ‘ﬂ Mb!mfc‘htd Bym‘ ofﬁ'mothtr twotmafmutlons
It Is up to the metainterprater to deckie which of the applicable transformations to
apply; presumably the first transformation will. ba used.whepsver. passible ;,,hmtm
of th-rndu«d cost of. the resulting. code.. The Sieal. ransformation accommodates
store statements m- source and destination have diffarent types.

Chapter Three — Example transformations - 8a.

§4.1 Erampie: @ sloarmiuter
» kmwdmmm”m“m’m .

tenguage % & PUPTT- e esemily hgurs. T iniiot & B i the m

bhmhm v | T

6de> o & »

piomants he i Wightuiel 0 pragrem. mwum&m@.

allocation. An “offset* ‘Wttribute s Introddosd

addition and aulanmanb the order of oxpfocclon- evaluation is constrained to be
integers (the same for both the source and machine language). In ‘examining the
assembly language m s mmm mm have been used
in the transiation: r& 48 uud n th- mmm mcr hxtom-l variables
are referenced by name, Iéenl (automatio) W “for ‘blocke-is lltocated from the
stack .and referenced -using. the local- stack freme:-painter,. and. o on. These
conventions are ..astablished. originelly. by tha..designer snd -impiemented by
transformations In & straightforward fashion. . |

Although It is possible 1o interpretively: apply the wensformations.and: derive
a translation, the reader. shouid. be reminded thst: the . main. goal -of . the
transtormations is. to be desar/ptive. Many. of We ransfarmetions. beiow employ
atiributes and. canditions that represent a.ressenshin: deasniption of the informetion
and_penstraints. nvolved in_a transfometion ~ Hheee.tranaformetions are nat. the
most. eingant exprassion of the mecessary -ayRtactic:transigemetion. in the finel
analysis, a transformation should be judged on the information it cenveye.and:not
Mcmnmm‘mwummw ‘

The approach adoptod for thd‘ drunnlutbn of tm ﬂwm!ormtlom ls as

b for a stack

follows: the Initial IL progrem h mt ;rmk;-d into ‘Ietrudtic
archltocturc. then. . m mu m h trm lﬂto targ-t mchlne
Inatmctlom Optimizations MWMM u"m@t. prognm - nmph
high-level optimizations sre described in_ 43, mmm in S41. and
caphdomach&hupmhﬂ.& S

The first gmuv of tuntformatlem dmibn m proeeaa of storage
“for ‘sach avtomatic variable daoh_rqd

in the block, giving the variabie’s offéet from the base of the local stack frame; the

Chapter Four — Example: a mini-transiator ’ ~ 86.

highest offsst sssigned is used in caiculating the storage to be allocatad for the
 block when it is entered.

MWVMMWMhWﬁWM
Mammarmmmwumﬁwﬁmiwm
mm.mmmmmmmwmm mmmm
the Mm nitinkzes “MMWW '—"tﬁm vaiue
mmmwummwmm mmmu
Jon a8 & eperater in
mmwmmmwm wmmu
mmmwmmmwmm
mammwmmmumwwamn

ignored by essembier and will be Geed n the

uroudgnodoh.u.ummdeiﬁhammm In the frst

transformation. offsets are propanated with the ald of a commant statemant that

as. _ o Chapter Four — Example: a min-transiator

Labe! | Operator Operands Attributes

ponths N1 H2 RS M) ”
ﬂ“ﬁm-mtlc A:offsipt=0"

(»nr-pm wmz.-z |
ey B

- e, S
comment - A Gty patic C:offsete? -
: - ‘ - mﬂm {C):0lze=2
A .."9“ ﬂ-‘. Lo :
B assign. u2u

T1 | plus <A m :typo-uupoury KT1)>:typesinteger
T2 | plus T1> "o* |T7T2: W «<T 2>=tyﬁdtlntow ‘
c assign 72> : :
exit PROG:storage
comment Pﬂoci;:tongc-ld

Figure 4.1: ‘Sample program after. m.uon mvom.uons |

glvu the current offset. Thc t‘stat wild card wla match -only. statement
sequences that do not contal an "offset® m-aoma-um.m-
operator in any:-statement {this m] mum m Note that
uttributu defined for the declared variables will be wtpnaﬂuly oaplod over to

’)» ;)f‘“

some replacement statement (in these cases, thers is only one).

This trmfomatlon hnndlos blook oxlt after all doolum Mvo been processed,
dullocaﬂng ltofaco for the block | mm m W Il!nm size attribute
(?name:storage) for use during biook omfy TM oandmon ls similar to that for
automatic varlable declarations. Figure 4.1 shows the IL program after these

Chapter Four — Example: a mini-transiator _ a7.

;3;3§i§§i§§§‘ [N

: B A it : BT S S pER Y
R R E BRI Ftg e . P o

mmmmm*m'md »assign® o stack
operations. mmhmmmW@mmmm
mmmmmmmmwmhmmm-

case,

generated.

as. _ o Chapter Four — Example: a min-transiator

| Label | Operator Operands | Attributes

al ol ool Top2y

“Tpush . “Topl
push ?opz
pop ' (?dnt)

The folltmhg two tnntfopnﬂom mwm on the stack
machine code gonontod oo far ﬁbth mmm Impmvo on pop/push

instruction pairs that have identical opurm the' ﬁtt mm.ﬂon eliminates
pairs whose nrm ‘are tnmuht, the second- mﬂm converts pairs
whose arguments 'are varlebie to o oopy from: m m w un ‘stack. Since
temporaries were mtodby mm gnd: de- .ot (Wont user-visible
quantities, they may m mud cn.mg FATI0N Flguto 4.2 shows the
example IL pnogum qﬂu Mﬂm 10 MM

§4.2 Compiiing past the machine interface
“In this section, we dul w!th trnnyl;ting ctgok mﬂm programs to targct:

machine progrm The ﬁst set of trmfomntlocp are a
ofww-ﬂwm-awmm%’ ' uction ‘
and numbcr ot storage references remlnd f,' 'u& Iﬁéhlm httrucuon are

| translation

‘ ln&clton by the gize® and .,.f.. ." ibutas TESE I

Chapter Four — Complling past the machine interface 8e9.

inftial values for the “size” and *refs* attritutes do not take apérands into account
-mwmmwummmmmtm*tmmm
assembly Ianm construets. o

The next group of transformations traneiatss individual operands into the
pohtormdtlutoxtonulwmdumnd&modbym SR

Labet Op.mor pora
. m m a - 7:':: I PO By
Trator

70. Chapter Four — Compliing past the mechine interface

ey

{ Label | Operator Operands Attributes
Trator - ?*before <{7rand> 7%after | slze=?size refs=?refs
rator °~ 7"before 7rand 7*after size=add| 7size,"2"]

- afem g NO"

7*before and ?"nft-r m -Muouc wM c.m ugod to mct any component in
bolfisd by thc ronalnlng component
in the pattern’s OPirlM Mlﬂ- ‘Note that the' Mﬂm vl' "size* and “refs"
attributes in the mnm W that m‘

the operand fisid thut has the ot form (spael

w only be applied to
machine lnstructlom Figue 4.3 shows e IL am cft.r qpplloatbn of these
transformations (M-mwa.n been elminated 'i'orbfcvity)

The Mm Mw iawveolves a-push aoto the stack (a
“mov" instruction wlth & second w ef "n(ap)") M by mMuctlon that
popo tho stack to m m m opornnd (m Muctbn wl'!h l ﬂnt lrgumcnt of
“(sp)+"). Since an "ndd" can tuko the same soutov onnnda ns a “mov"

instruction, the puihhup mou can be row to a "‘U' Instruction:

mov - 7scuree: {(8p) m‘fm) nmwn
?Q < . 4 ko o) .

Top

Figure 4.4 shows the effect of this single optimization.
Many other machine level optimizations m possibie at this point; several
optimizing transformations are Hsted below. These inciude removing superfluous

2erces In index expressions, seliminating additions with a zero opoian’d. and

Chapter Four — Compiling past the machine Interface 71.

sgﬂ

jis

)

s

jrnp

1

Chapter Four — Compiling past the machine interface

Figure 4.4: am program after Nthlm cpth!zatlon

eliminating unnecessary mGves.

| Label

Figure 4.6 shows the It program aftér” sppioation of
comment and attrlbutn Mvo bm mlﬂd
§4.3 Imncﬂng with the mmm

mummmmmmmmmmmmummwtm'
‘Input progrmtont-m-tmcmm pmomnwm\ltlhammbntoﬂnsmnﬂcaof
the initia) leroorm Forthomtmmmmyonlytom”v
mhtrmm.ﬂomtonpp!y ﬂﬂatukwund.f:a;;mhfm lnllnoct
svery cuo, If the tmmhﬂnﬂons pattom md m wou mot.‘ it waa‘
appropmutonpplyuntrmmm mmmmmupwmﬂu
mmomommmm«mmmww-mmofm{
mulﬂng trmhﬂon S

The frst example expioits the metainterpreters wmy to porform comln'_

SO T At s - S T

comput-tiom atoonplloth- cmmm«mmmmnamﬂm_
to the catalogue:

14

g3

¢ oo

!

mmmmmmmmofm‘ﬁ‘un;ahuwwm
M‘n MWMM. mmmm'wmhmzz ﬂ'lﬁf
mmmwmmnmxwmmmm By
.mmu-m»wmemmmm%
mmmummﬁmm(mm
mmmnmm). mmmuMmm
mn.mmmmwmwmv
| mmmmmmo.mmmmmm
MMMMNMMM
We*1* Denps (T1iaClerg”,

M.MM“MM”WWHMMW”MM
Migwe 4.0 (wdate of Pigure 4.2). By.ading & Iranstmaton to. aluinete: essigne

74, Chapter Four — Interacting with the metainterpreter

Label | Operator Operands Attributes
enter PROG:storage

comment offset=0
comment A:typesgutomatic A:offset=0
<A>:typesinteger <A):sizes2
offaet=2
global B . B:type=external
: :sizes=2
comment C-typomﬁc C:offset=2
<C):typeminteger <C):sizes2

offset=4

A assign b
B .| assign w2r .
T assign nar T typoatﬂmporary {T1): typo-lntager
e 1t oialen g .
exit PROG:storage
comment Pnﬁa.wonggn

Flgure 4 5: Snmplo proarum aftor d.chntbn tunafomatlona

sp 5 m-z refes1

dobal B : _
4 o #1. (6) - | siZend refesd
mov #2 B sizenf refe=4
add PROG:storage sp | size=4 refs=2

Figure 4.7: Sample program after opﬂmlznﬁona of §4.3
to aubuqucnﬂy unuud temporaries, the tnmtoralm of $4.2 cm produce &
program identical to the uumbly |anguago pfogum olm lﬂ !4 1 (uc Flgure 4. 7)

¥y st

i

Chapter Four — Interacting with the metainterpreter 5 76.

“mm

mm&%MMMNMaWMm

mmmmmmmmmmum
Biging

mm AMMWWW““&.W

*z‘eﬁé%‘!

uothMﬁmM“M:ﬂmmt

| ummummmmu mMcmhdnph
Mhmdhmmwmmmm

E- S SRS S " B EXer) kr-{*

mmuwmm&nmuw

mmbaﬁhuhuufmmwmmmw
u.o.hmsmw»mmmn’mu@unmm‘
.Mmunmwmw-‘mmawml
operation performed by each statement. information about the flow of control and |
mmctotomm-atmmmo(mmuw‘mm
from the lsbel fleid of that statement. in addition, attributes provids a general
mechaniem for acoumulating declarative information sbout each verieble end
statement. mmuwwm.awmmmvm

IO o vt spod

78. . Chapter Five — Summary

aliows It to be referenced by the transformations, permitting the translation of
statements to be tallored in response to.spaciel:preperties of the operands or
opportunities presented by the eontet.

in Chapter 3, the _transformetion. catalogus is -@scyssad and the
metalanguage in which the individual trahsforeations are:-wiitten je:prasented. The

metalanguage provides m ahility 10 desgiibe .classes .of il program fragments,
isaving statements and WWM&.W of wild ‘cards.

Each transformation oontaing two ML progrem, feagments (tampiates): @ pattem that,
along with a set of conditians, spacifies- the. IL:..progeam. fragments 0. which the
transformation can be applied, and a replacement that telis how to construct en.
updated IL program, Bulitin . functions. .that -allow .access b some of the
metainterprater’s knowisdga. - about IL _programs:.end.: petform . some. simple
spacify. contextual constraints that are not-eelated. to ihe symactic form-of the
matched. fragment. The wide range of informetion: avelieble: to & transformation
enables the semantics etoodamﬁm to be: fnxﬁprmodf a8 steprby-step
syntactic transformations of the intermediate language pmgram.

, Qha?to,r 4 pmom a set of example: traneformations &s:a specification for
suggested in 51.3.1, the transformations . are -orgenized about the: use of cn
abstract machine (In this case, with a atack arthoctun) Tho Initial tnntlntlon to

B

stack machlno Instructlons dlows aovonl opﬂnlzationa tn bo accompllohod that
would have otherwlso been dlﬂlcult (a g o tho renoval of umecmary temporarles
Inserted by the first phue of tho compillr) Swonl trmfmtlon: that nuow theu

metalntorpretsr to lnfor tha run tlno valuca of tho vwlnhlu md cub-.quently

Chapter Five — Summary ' : S P _

o R R S e e

operations at complis thme that hed previsusly: ppdaiei' B e el assenbly
P w”“m@wmm%w of

““WWMWW“WM‘“%““L
.mmmmtm Wm »m“m.
thet i the foundution o6 saeny Sp At Wwa cater et
mou-m-l- mmuwg,ww* DT
wumwn M“MMWHMMIII: M
heuristics axisted mwm*mmww
xtended %5 the prebloms. o saut-NnguLges: WW%MW
utmom amm “ _;'??f é }

mwm«mw
: medmmmwmm

B I SE E A Pt

mwmmmummmm«lu-mv
W m m m Mll m mm m The

Tl

mammuummmm.um

® transiation of attribute references to their ocorresponding values
wherever possible. |f any unresolved attribute references remain
after compistion of the tran the: .
should abort, indicating an lnoomhtont [mm

Owduaﬂonofbuut-hfuncthm Ifnfmﬂonnppﬁcatbnmm(e.g,
Mcm;mdmmwkﬂhmwmmwmm.

'Opropmtlonofrvammmﬂon. lnm&nﬁﬂad&umm

 analysis, It is . &mmmmmm
rcpmenthg&ukmwnvdmofﬂ'nm

® application of a ‘chosen tranafumaﬂm. lntomttlon obtllnod durlng
the match of the. pattem. js: ino pd -in - $he replecement
cpodﬂoaﬂm(cbnqwiﬂ!mym.dwﬁddwcmton
- ,rmmmmmwm; paiein the ppttesn. During the: -
the replacement, many of the other bookkeeping
funcumc-n be. parformnd then end.thers, eliminating the:nead for -
oxtnpmuwthollpmgum

Two other tasks fall in this area: checldng for tomlmﬁon oondiﬂom and chooclng
which tranformation fo apply next.
§1.8.2 outiines how to toll when tho tmuhtlon h oonpht-. a measure of
the programs ovﬂmﬂtyboonputod mMcW&%mﬁcm.lnvdvlnamau
values of attributes nuochtod wtth ovory mm-m) mlod by tho user — If thok
 caloulation aborts because some statement dou aot have th. appropdato;
attributes, the appiication of more tramformﬂons h cllhd for, If no morei
transformations are applenbh baoktnc!dng la cdhd for lf thc measure can be»
computed, it is used to remember the b-at tumlutlon found to date and tho.‘
metainterpreter backtucka o fhd othor trnmhtbnc Bncktncklno lnvoivos
undoing the last sucosssful. trapst jon Mmlmm M mm-uon
(repeating for anothor level h‘ all the appﬂcahh mnm-m hnvc M -applied
at this level). Exmﬂv. mammmm&wmwtha
user supplies a "trlgg-r ‘vaiue for the. amwmsum m msure is
less than the trigger value la comldorod wmum Mbocomes

the final output. thnn thgwtrmfermﬂnm «mw M . wiy that the

Chapter Five ~ An overview of the motalntnrprotdr | | 78

“ h “ . . i :

,5«; PTEY :
mmum

PSR N RMR A i)
G SRy e R B

moving o8 to m mn mm that ¢

‘&i““‘ﬁ v Gaweddl e

nderstanding of tu effact of sach m -
mnmm” R M

Flow analysis is mu-ry for many of 'lho o
mmummumw ntien |
replacing the menue m m m um

,m-x}n

mmnbmth nahppyjobof,,

wwi Py o

mmwmmmmmmmmmu
mmmm m " ‘-WM
St P

ummmumm«mmww%
mmmm{m} mmm

¥

cwmwnuﬁmwﬁhﬁ&”ﬁmtﬁl\f
execution can be samovid from the i ’
wmmwm&

mmummmwmmm

possible when rvalue information Is considered.

~ The required flow anaiysis could be done sasw: st the completion of every
transformation application but this would be incredibly ineficient = prohibitive: for
large prowm The bit vector methods ou b &mtz}lﬁdw] offer an
efficient rtpmontaﬂon of um dasu m mm ﬁ)lt m bt lncrmntally
updated u long as the Mmﬂw w%m M(mﬂ to amdetete
more strélght-ine code or loops WMW @mm oode). Thus,
the more time consuming. ltarative calculation seguired. when the flow graph Is not
known need only ba parforned when & ""’WM”"‘W and
Joins of the graph. A larea nucentnca m sransformatio m nmct the graph
itseif — all ‘of the transformation: 4 M b. acmd by

Incremental analysis. T

in.,m+tm code motion out of .loops, elmination of induction
veriables, stc. (m [Aboﬂhlhrawmm;gpmmmtmt
could be ﬁoorpom-ﬂun tbn _metalnty "}f“n m are developed for

regleter allocation and optlmni ordorlng of »mnuhn oxneutbn. M wlll also be

our abliity to lmmont the dnodthmo sffactively. within.the bamk provided by
the metainterpreter.. Fortunately, some traneformationa-are much more Mmportant
~ that others; the list given under. flow analysis: is a.good atart towards an excefient -

code generator.

§6.3 Directions for‘fu'tun rﬁuar’eh |

Two pvenuoa of research are natuml extonslom of the work raport-d here
The examplu of Cho,ptm 3 and 4 Indicat- thlt nueh WaMnt oould be mnde : _
to the usabliity of the muhngunge Mmy opouﬂom mmdy porformod duﬂnq ',

Chapter Flvn» - Directions for future research , 81.

Groct muppert i MR, oNRMENNY We Aeadt iy

il o ‘ma&m“
W*mmm:mmmwmm.
& compiier (the GPO cemplier) besed on & elnller, of
The GPO M M m

; aa&:’ ;;;,;; Lrent L ipwR

mmhfwm Mmmmumw

T J

82. | | Chapter Five — Directions for future resesrch

program could lead to a very competent complier that Is easlly maintained and
modified to produce code for different target machines.
Mmmwmummmmnm One
of the most interesting Iis the prospect of crutlnu a “compiled” code generator
based on an analysie of the Mmﬂuﬂon would require
axtensive lnfomaﬁm on the lntorlctlon bct\non m.m of tho apoclﬂcatlon
ﬁ,.m.mu.' Mhmgg' oS the: mm mlon in a

T Phnd

damental way -than . is. needesd. .frem - &y itetprative :approach.
Cmmmmmmumammmmmkmckm
mmmmmgdsazmmmm-vutmmhntmmc
porfomanco of tho code .generator. Tm m&m phase - wilt aimost
mmwymmnmm«mcommmm&mmch
that of conventional ad hoa.code nomrlm :

_ . Matacompiiation “Mtﬁmm cument mwmm of sstomatic
PWGH mﬂlﬂh The apocmoatlm - by: MM m hu “many of
the same characteristics as descriptions used in thou oynthulc ay:tm [Groen]_
a pattern-based tunaformﬂon system l; m n ﬂn mm«ww both
systems. This commonality m to Allow. mwst &nam tochnmu to be'
used in the analysis of thc mclﬂcatlon Thh m of ru.arch h stl!l vlroln'
tmym mmmwmm mmwmmw

BT

Chapter Five — Directions for future research 83.

9.

10.

11.

12.

 Gartar;ih L awm““w,,
ncmmm.z.mm Camter,

""'"'"’@M.mw.‘;_

"'*“‘M}%_‘(’Eﬁj:}"x}';:f R Y:‘ R

. et sBicmens Ly woo e iila. FOB T o idbad
s AT Spatad S e R oty %

Green, C. '“"Wo'anmp ~ . i, sag
""'"'""'""""“m m’sm’ pp. 418,

13.

14'

16.

16.

17.

18.

19.

20.

21.

22.

23.

24,

26.

286,

2a7.

Kiidali, G. A. “A Unified Approach to Global Program Optimization," ACM
Symposium on Principles of Programming Languages, October 1973, PP.
104208, . v el e e i |

Knuth, D. E. Examples of Formal Sementics, Stanford Artificlal Intelligence

Lowis, P. M., D. . Rosenkeants, sk £ Staarms, Attibuted Transiations,”

Proc. of Fifth Annual ACM Symposium on-Theory of Computing, 1973, pp.
160-171.

McKeeman, W. M. "Peephole Optimization,” CACM 8:7 (July 19686), pp. 443-

Miller, P. L. Automatic Crestion of a Code Qenerator from a Machine
Description, Massachusetts Institute of Technology Project MAC Technical
Report TR-85, 1971.

Neel, D. and M Amirchahy, "Semantic Attributes and Improvement of
Generated Code," Proc. ACM Annual Conference, San Diego, 1974, vol. 1, pp.
1-10. o o

Newcomer, J. M. Machine~Independent Qeneration of Optimal Local Coda,
Dept. of Computer Sclence, Carnegie-Mefion University, 1976.

Poole, P. C. and W. M. Walte. “Machine-independent Software,* Proc. ACM
Second Symposium on Operating Systems Principles, October 1960.

Richards, M. "The Portabliity of the BCPL Compiier,* Software Programming
and Experience 1:2 (1971), pp. 136-148, ‘

Schatz, B. R. Algorithms for Optimizing Transformetions In a General
Purpose Compller: Progpagation and Renaming, RC 8282, IBM Thomas ..
Watson Research Center, October 1978.

Snyder, A. A Portable Compller for the Language C, Massachusetts Institute
of Technology Project MAC Technical Report TR-140, 1974.

Steel, 7. B. "A .Flftt Version of UNCOL," Proc. of the Western Joint Computer
Conference, 1881, pp. 371-877.

Uliman, J. D. “A Survey of Data Flow Analysis Techniques,” 2nd USA-Japan
Computer Conference Proceedings, AFIPS, August 1976.

Waite, W. M. “The Moblle Programming System: STAGE-2,* CACM 13:7 (Juty
1070), pp. 415-421. : ‘ '

Wick, J. D. Automatic Generation of Assemblers, Dept. of Computer Sclence,
Yale University, Research Report #50, 1976.

Bibliography 86.

28.

29.

86.

Wulf, W,, et al. The Design of an Optimizing Compller, American Elsevier,
New York, 16876.

Young, R. P. The Coder: A Program Module for Code Generation In High-
level Language Compliers, Dept. of Computer Sclence, University of lllinois at
Urbana-Champain, UIUCDCS-R-74-686, 1074,

Bibliography

CS-TR Scanning Project »
Document Control Form Date: /0 /3¢ /95

Report# _Lc5-TR- 111

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
K Laboratory for Computer Science (LCS)

Document Type:
R Technical Report MR) [Technical Memo (TM)
O other:
Document Information Number of pages: 992 -imaccr
~ Natto inchude DOD forms, printer intstructions, etc... only.
Originals are: Iintended to be printed as :
O Single-sided or O Single-sided or
X Double-sided |){ Double-sided

Print type:

- Check each if included with document:

O pob Form O Funding Agent Form X Cover Page
O spine O Printers Notes O Photo negatives
O oOther:
Page Data:
Blank Pagesiy s mmses:_I2 T PACEH20 111

Photographs/Tonal Material o sege mumbes

O_ther (note descriplion/page number).
Description : Page Number:

Fmace mae: [[-£) unitep Tk pOLANKR PACKS i=01s WWHFBLANIS
(2.1)Pacr B g0 [- 86
(93])S'cquumLJ C‘OUQQJWCT’S/S’D

Scanning Agent Signoff: - __
Date Received: /9126195 Date Scanned: _/[18 1 35 Date Retumed: // | 7 I%5

Scanning Agent Signature:__MM_ Rev Y94 DSACS Document Control Form cetrform.vd

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

