MIT/LCS/TR-200

Logics of Programs:
Axiomatics and Descriptive Power

David Harel

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR-200

Logios of Programs: Axiomatios and Descriptive Power

by

David Harel

May 1978

This research was supported in part by the Yad-Avi Rethchﬂd Foundation
in Israel, and in part by the National Science Foundahn 6nder contract

no. MCS76-18461.

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge - ' . Massachusetts 02139

Keywords:
arithmetical axiomatization
arithmetical completeness
axiom system
computation tree
divergence
dynamic logic
execution method
failure
first-order logic
guarded commands
logics of programs
propositional dynamic logic
recursive program
regular program
relative completeness
total correctness
weakest precondition

Logics of Programs: Axiomatics una Desoriptive Power
by :
David Harel

Submmed to the Depmment of E!ecttlcﬂ g and Lo
on May 9, 1978, in parml fl&lﬂmmﬂ!ﬁ requirements
for the degree of Doctor of Pmbsophy

Abstg-q,ot.

This thesis is eoncerued wnh m dgnbmu of mtmatml tools. for

about computer programs.. The.appro Baodm:m weRigate the Mesd‘
various dynamic logics with an. emphm on_upeful expressive g and adegy

First, rigorous deﬂnitlons of the propositional and. ﬂrst-order dynamic logics
are given, with.an emphasis op the.flexi obiaiged by Jeaming. unspecifigd the class
of programs whk:h these kxksuadm A lﬂ‘ﬂ, oction. of the results ﬂh‘m to
date il'! ‘he mvmw Qf‘d m bw m%‘* 6 #34 S bt) et db el
Then, a proof_theory is developed based upon the. ides of axiomatizing th
dynamic logics relative.to enitAmatical uniperses. Such: axiomed Are: -and
proved arithmetically complete for the regular (flowcharts) and context-free {recursive
programs) cases. The notions of diverging and fatling are then introduced, with the aid
of which the concept of the fota/ correctness of 2 nondeterministic program is-definad and
the concept of a weakest Wm ch:m AMIM on of the o
properties of dive:ging and. falling is then. mﬂu&(w, Mtbe construction of
arithmetically complete Axlomatizations of. beth the.TeguiRe and, context-fres. logics
‘obtained by supplying dynamic logic with the tblﬂty to dlscml divergmz directly.

Throughout, the pmentattoa s;muapm neod gabc aﬂg.wupm mwunng
properties ofprograms and mu%nmmmm

Thesis Supervisor: Vaughan R. P_ntt, Aaocme Professor of Computer Science.

Acknowledgments. |

The first thanks go to my dear wife Varda wha, together with our young daughters

Sarit and Hadas, hus managed te put up with 30.muchi a0 well, sid has provided me with more

warmth, memmwmmmmwfa

I am grateful for the unparalieled opportunity to have worked with Professors ‘
Albert Meyer and Vaughan Pratt over the past twenty menths, Afbert's ways of thought, his -
inspiring and challenging ideas and thorough md cﬂtlwl comments have no doubt had the
most profound influence on whatever research: ciipitbitit Q’i‘hmé?evehpud during my MIT
experience. Vaughan's originality and inm ‘were ¥ et and ‘vatusbie guide for me,
‘“and without his pioneering work on ammkwcl Wi Wil DE iR seaith of a thesis
topic.

1 would fike to thank Nachum Dershowitz and Adi Mfmsﬁ:z«y hours of
nimlatmﬂmm;vmdwmwmmmmkm 1 :
have also gﬂiﬁd benefited h one Wiy of WMM%, corresponding with, or
receiving ‘tofments from Edsgar W. mm;m < ‘Cart Rewitt, Jeffery Jaffe,
Richard LW ﬂaﬁltm&, Amirm WW W’K FIWaiklinann. Thanks
them ail. ’

~ Albert Meyer and Adi Shamir did a great job as uldm, contributing :ignmcmtly
to the claruymdmhnkﬂmmmﬁnhmmafﬂnm ‘K16 thanks to :
Jon Doyle for 1 voluntary fast minute proof resding. 'A* sl m gnes wchna
Marshall for hel‘ﬂngmmrvm vhm\m butesucratic hardships | ‘encotiviered.

Financial support was kindly provided by 2 two year grant from the Yad-Avi
Rothchild Foundation in Israel through the effices of Bar<Han University, and by NSF

grant no. MCS76-18461. This' document was prepiréd With the aid ‘of ¥aughan Pratt’s DOC
editing system.

Table of Contents.

Abstract.
Acknowledgments.
Table of Contents.

0. Introduction.
0.1. History.
0.2. Synopsis.
0.3. Credits.

Part I: Btnary—Rclauon Baud Logm. :

1. Regular Proposmom! Dymmic LW‘C (PDL) -

'L1. . Definitions.. -
1.11. Elementary PDL (EPDL)

11.2. PDL. oot %° Wiy ..

" 1.2. Resuits. bW e e e aes e e e
13. Axiomatization of PDL. e e e e e s e e s
2. Regular First-order Dymmic Logtc(DL) R
2.1. Definitions. e s e e w0 s ne v s
2.2. Descriptive Power. e e .
2.3.Variations. ' A S I T S O
23.1. Array Assighment. =0 aea e ws .

23.2. Random Assignment. .. R .o

19233, Rich Test. B T IS

2.34. Deterministic Dynamicln(iq(DDL) e

2.35. R.e. Dynamic Logic. C e e e e s e .

9.4. The Validity Problem for DL.

UM

Boaca

12

12
12
14
16
19

3. Arithmetical Axiomatization.

3.1. The Theorem of Completeness and Arithmetical Unimus.

3.2. Axiomatization of DL. e
33. A Derived Axiomatization of DDL.

34. Related Work., e

341, Relative vs. Arithmetical Completeness. .

3.4.2. Infinitary Axiomatization. B
4. Recursive Programs: Context-free Dynamic Logic (CFDL).
4.1. Definitions. A IR
42. Results. it e e e e e e e
4.3. Axiematization of CFDL. - c e v e e e e e

44. Mutual Recursion, v o e “ oo

Part 11: Computation-Tree Based Logics.

5. Computation Trees, Total Correctness and Weahest andm ‘e

51-‘”0“Vlu0ﬂ- "i.i‘.l..”'.‘t!.

5.2. Computation Trees, Diverging and Famag.
5.3. Execution -Methods and Total Cmom

S4. Weakest Preconditions.: e e e

5.5. The Guaréed Commands nguage (CC).

6. The Mathematics of Diverging and Failing l

6.1. Diverging-and Failing in DL. B R
6.1.1. Expressing loop,, in DL. e e
- 61.2. Expressing fail in DL. cee
6.2. DL Augmented with loop,, (Dl.’) ceen
62.1. Definitions. Cee

6.29. Axiomatization of DL*.

6.4. DL with an Iteration Qumtmer (KDU

" s 0y & 4 9 a

. e 8 ® ® 8 ® B 8 ¥ o o 9

6.34APattemomem o .

57
$7

- 61

1. The Mathematics of Diverging and Failing II.

7.2. 'Diverging and Failing in CFDL.
121 Expressing loop in CFDL.
122, Expresstng fatl jn CFDL.

13. CFDL Augmented with loog, (CFDL*).
1.3.1. Definitions. . :
13.2. Axiomatization of CFDL',

14. Language Dependent Diverging and Failing. ..

8. Conclusion and Directions for Future Work.

Appendix A: Relational Characterization of EPDL.

Appendix B: Example of a Proof of a DL-wff in P. e
Appendix C: Example of a Proof-of a CFDL-wifs R.

1.1. Computation Trees for Recursive Programs.. . . .

« .

Appendix D: Example of a Proof of .a DL*-wif.in P*.
Appendix. E: Example of a Proof of a CFDL*-wff in R*.

References.
Biographical Note.

e

* 0 ¢ =

® 9 ® =

. * o

LI] .

. ¢ % o 9 @ .»
LI] * ¢ e

» . e @
g we »

o o ‘c e . w

e s ¥ & o @

e o0 s @

10

11
111
122
122

191

13

133

139
141

0. Introduction.

At one time or another, every programmer has eame across the need to be able to
state some property of his pregram or programs in m arean way. Quite often this
property is related in some way to-the corractitess-of she piagramt “*this program sorts
its input iniascending order”, "this program right Mﬁu a purgiéaph of input text”
etc. Often.it is an undesirable property-that is.of ‘lrterést:*"this pregram contains an
infinite loop”, "this PL /.1 transiation of this:-Fartrat pedgicam dows: not behave exactly
as the original" etc. Certainly these statements are nst precise and cannot be taken as a
basis for a serious discussion about the program dn question. Moreover, the need might
arise, whether initiated by the programmer Mmﬁ Wi outiider, to supply-sertie kind
of ﬁroofof the truth .of such claims.

In this thesis we takeuaon wﬂmmmﬁmm tools for
expressing-interesting assetions MWM&#WM of 'tiiem which, m [8
well defiriéd sense, are true. These two concerns, SNpreising and proving, will serve ais”
landmarks throughout the thesis. Various formaliigios sns-definud; the motivation for
constructing them lying in the kiogs of things we would Hike 0 be sble to express; then
axiom systems are developed for them, the motivation hmmud in zhe needi%be lb"k
to prove those things. This,-then, explains our title, .

. We believe that the virtues of research in this area are mainly in providing a
sound and rigoraus foundational basis upon which reasoning about programs can be carried
out. It is not essential, in our opinian, to carry out a proof of the correctness of
every program ofe writes, and certainly not a proof within some formal axiom system.
However, it is important to possess the ability of doing so when required. In addition,
work in logics of programs provides a theoretical basis for developing computer-—alded
tools for reasoning about programs, such as interactive verifiers or automatic
proof-checkers. We are also of the opinion that, much as a mathematician, when provlng a
theorem in algebraic topology, benefits from his knowledge of, say, the basics of
predicate calculus, an understanding of issues such as those discussed in this thesis
results in a subconscious accumulation of important programming knowledge. This
- knowledge, attainable even ai the level of an ordinary programmer, includes understanding
the inner workings of such basic programming concepts as mmndng choice, iteration,
recursion, infinite computations etc.

1

The remainder of this introduction is devated to a brief historical account of
work which influenced the development. of the material presented (Section 0.1), a
Chapter-by-Chamer summary. and dncﬂpﬂm of what is tn come. (Mm 0.2) and a short_ﬂ
explanation of the policy adopted, by.which m work other. :hqn the nuthor's own is also ‘
included (Section 0.3)

0.1 History.b

Early work towards providing mathematical tools for. rggg;omﬂ! ahout programs. dates
back to Turing [65] and von Neumann [66). M\gﬂ, it is ganerally . accepted that the
first serious attempts solely devoted to that end are those of Fbyd i and Naut 461 on
the invariant assertion method for proving the partial correctness of programs, ‘followed

by the lntt.oductlon, bx Hoare [27], of an axiom systero Wwag that method,

The wm'k we present ln this thesls isto. a;rea: mmn; hupd on Pratt's [521 .
foundational study of the semantics of Floyd-Hoare logie, (In fact, a preliminary version
of [52] in. the-form of class notes, was written by Pratt in Apeil PN kisin[523
that the "modal logic of, programs” (later termed dymewic logic, or DL, in [22]) was
»suggested asa powerful ml,&ouchmgoffmm Emm ;.gdner LLG] on the ‘

propositional version, and, furthes wark by Harel, Meyer and Pragt [22), Harel and Pratt
[251, Prat (533, Harel (203, (211, Parikh T, (491, m mnd l?mrson {93 and more.

The idea of comtructing ﬁrst-order-like Iogla for reauonhlg about programs is
not new. A logic quite similar. in conception to DL, .algoritAmic ogic, has been defined
by Salwlcki £59] following work of Eamzr [153. Nat-uplike the situation with DL,
Salwicki's original paper. stimulated researchers at the ngmmy of Vlaraaw and resuted
in extensive study branching off in various dirctions.. Some mnph papers are leko‘\'tkl
[41], Kreczmar (331, Banachowski [6] and Rasiowa [SSJ. ‘A survey of their work can be
found in [7). Interestingly, a definition of dynamic logic appears in an appepdlxnf
Schwarz [60] and js credited. tmwkqm Howeve ,.&hndgawpmotpunmd any
further there, Also, a very similar logic has been studied for quite a while by -
Constable, and reported on in (111, Some mu mmiug the mta;ionshlps holding
between DL, algorithmic logic, and Constlbh's lozk W in cm

A Iarge amount of rclated wurk, which hg; bsen of matdquble help in developing
the material presented, has been pubmhed over the years. Some notabie examples are

8

Manna's work in [37] and [383, on the formalization of Floyd's method and related
concepts, Cook's [12] relative rompleteness result for Hoare's axiom system, the work of

de Bakker et al [3], [4] and I5) and that of Hitchcotk snd ?'lfi ‘126 on recursive programs,
the completeness resutts of Harel, Pruel and Stavi T3] und Coretick £193 for recursive
programs, and Dijkstra's [13] logic of total correctness.

0.2 Bynopsis.

This thesis consists of seven chapters which are organized into two parts. At the
end of this section we show aemepmm WWM«‘ 1 wmch can be read
lndependemty

Part | is concerned with logics which reuson ibout programs dased upon their
input-output behavior. Here programs (nondeterministic ones in the general case) are
viewed as binary relations on States, with mmﬁmm ‘of ‘stites 1s refated

via a program a Hf starting in the firs, @ ‘can setmivinti i the swcond. “Two primitive
notions refevant to this level of Sescription are WW Ribertitg that P is true'in all
final states accesstbie from a'given state vix t i, aidts Ydal, nsserting that
there exists such a 'findl 'stare 1 whith - itm'%‘“mﬁﬁﬁm logte, due in

large to Prawt [52], is to augnvertt 'a chustical amc"m‘*wa: as prédicate calculus

with primitives for expressing these notions, antf to ‘uje'tdeis borrowed from Kripke's [34]
work on modal logic for defining the semantics of the resuiting language.

Chapter 1 provides a definition of PDL, the propoesitie piit version of dynamic
logic, together with resutts concerning (%) ‘the decidaliihty of its ‘validity problem,
(b) the power cbtained by alfowing propositioma pregrams: ‘té-vest ‘their environment, and
(c) the problem of cem;ﬂeteiy txmwwn. SRR

In Chapter 2, the first order version of dynaniic ‘fogic over regzltar (ﬁowchart)
programs, DL, is rigorously defimed using the fiotiows ‘of ‘state,’ varse, and
uninterpreted symbois 1t 1s shown that many MWM; #hd ‘well known properties of
programs, suth as partial correctness and equivaience; o be qufte mcctncﬂy ‘expressed
as formulae of DL. -Section 2.3 is aimed at showing that the chiss of programs atfowed in
DL is in fact a parameter, ‘and that different classes of prograns give rise to different

variants of DL. Some open pmblenu mmm wﬂpwm expmﬂve power of these

9

variations are stated. Section 24 contains results which show that validity for DL and
some simple sublanguages is cxuromely» hard to decide. -

In Chapter 3 we show how an intuitive way in which assertions about programs can
be proved. is captured formally. by allowing the reasoning.ta be carried out in a - '
first-order language in which, besides any other demainof discourse, the natural numbets
and operations on.them have their standard lmemmom, _This.is done by introducing
the notion of an grithmetical unigerse; and then showing that it is: spossible to give a .
concise axiomatization of DL which is complete relative to any such unjverse. We do not
require programs to be written over these universes, but since any universe can be
extended to an arithmetml one, this kind of reasoning can always, in principle, be
carried out. We show, in Section 3.4, that aritAmetical cp Ress. s strongly related
to Cook's £12] notion of relative completeness, and also discuss the approach of supplying
DL with an-infinitary, but-ahsolutely complete, axiomatization. . .. -

‘In Chapter 4 we extend the definitions and yesukts of Chapter 3 to the case in
which the programs are allowad to be. recursive. The.recyrsive program sonstruct
introduced. is simple encugh 3o that a slear. analegy. m sasening about lteratbon ‘"d
recursion emerges. In particiar, the axi ‘Sectiof .4,;‘, of the resulting .

logic CFDL is far more natural and concise wmmcmam fram studying the
relevant hteraturc. ‘ a . o o

BT

Part 1l is concerned with the two operational notions of diverging and failing
(i.e. entering an "infinite loop” and. aborting due to the failing.of 2 test) which are
captured naturally by computation. trees, These trees: CALTY. in their lgaves the
information present in the binary relations.of Past |, pn& also contain mt'ormation
regarding eg. the presence of divergences and failures “In.Chagter 5 we define thm ncw
concepts and tnmediately apply them to the probkmqf d{(m a phn;ible notlon of the
total correctness of a general nmdmmm program. As it tyrns out, qxawung a
program corresponds. to traversing . usmmm a tuk,xgt which thepe are four
natural methods, dual to one another. We shiow that each of these methods zives rise to a
different notion of total correctness, and hence to a different notion of the weakest
precondition which, if true before execution, guarantees total correctness. A detailed
analysis is carried out in Sections 5.4 and 5.5 aimed at showing which (if any) of our |
four notions is. the ene.described. informally by Dijkatza.[13].apd which has been widely
adopted for smwhaz myswum reasons. o

10

Chapter 6 is devoted ta investigating the mathematical properties of diverging and
failing. In particular, it is shown in Section 6.1 thet -both thiese notiens are
expressible
in DL, albeit by complicated formulae which have same undesirable pwpertm. In Section
6.2 we augment DL to DL* by providing it with the power to express diverging directly, and
show that this augmentation gives rise to a surpridingly elegant snd natural
arithmetically complete axiomatization of the notion of Siveging, to be contrasted with
the axiomatization obtained by mmmmmxm equivalent and then
relying on the axiomatization of DL. In Section’ 63 we shew that there isa pretty -
pattern of dualities associated with the constrixction of aritheneticat axiom systems for DL
and DL*. In Section 6.4 we e the obasrvations inspired by tmmmabum a
straightforward axiumatizatim of & retated togic, ADL. o

Chapter 7 is concerned with supplying results um ‘to those of Chapter 6 for
the case of recursive programs. Here special methads have to be developed in order to be
able to completely axtomatize CFDL*, L cm mw mm and in-addition
we can only get halfway thraugh showing that CFBL in'g s '
Consequently, a question wivich arists isthad”'f sthier (e J,, uits in the:
indicate the existence of mmmm* " '?‘; e

‘We cannot supply ‘more than intultion: towards’ shewering i “Sectios
definition of plausible notions of diverging and fm wbieh éo mt depend on
compututm ttees and whicb gmdm to otber dma cf mam m ~

As far as reading the thesis is concerned, after reading Gﬁw fand 2 (whkh
are a prerequisite for any other chapter) the resder Vﬂﬁm £ 5 M understanding of the
basics of dynarhic dogic. He can then read Chapter 5 thiil complieting a feading aimed at
grasping the main definitions for the regular case. Seqisnice 1,2,3«' 1,234 coaﬂaem
reader to dynamic Jogic no extensions) but, i sddition; m:&ww SR
arithmetical completeness for the regular and context+frod mases resgaci eiy. Gm ‘might
also read 1,2,3,5,6 thus skipping anything to do with récusiive progran

a.3 Gredlts.

The occaston of writing this thesis has pwvmé zmwmny (md cxcuse)
for preparing a coherent and comprehensive descrigition’ of the Work done recently (mostly
by members of the Theory of Computation Cmp of the Laboratory of Computer Science at

o PRI i e e

11

MIT) concerning a new approach towards reasoning about programs, to which the general term
dynamic logic has been attached. This opportunity has been taken advantage of, and
consequently some of the material in the thesis is not due to the author. Any result
which is not original with the author is stated with a reference to its originator. Also,

we do not supply proofs of results which are not our. own, but gather occasionally comment
briefly as to the method involved. A consequence is the fact th:t miany results are stated
here for the first time and, as of now, no adequate documentation of their proofs is
available. We feel, however, that these mmmmm are lrrek?m whm balanced

against the .virtues of the kind of prmmauon we. have m Fcllqwmg is 2 quick
reference to.the notable parts of the thesis which are nc; ortgtml ‘with the author,

of which are included-in Clupters 1 and 2.

The ldeas upon whk:h the d:ﬁnmm of PDL ig bw:d are dug to V R Pr;n, and
were published, in somewhat different form, in [52). The deﬂniﬂon of PDL in Chapter 1
is due to M.J. Fischer and R.E. Ladner and was published in (16]. The author's own
contributions in that chapter are confined to the introduction of EPDL in Section 111
and its mve;ugatmn in Amcux A. The mmrul in C.hap;gr 2, also stemming from the
ideas of Pratt [52], was developed over a Jong mm’hy A.R!Meyer, VR. Pran
and the author (with the exception of Section 24 with which the. a;gghpr“!)ad ﬂme to do)
A preliminary version of the rigofous definition of DL pmenmd here was published in
[221.

Some of the ideas present in the definition of the computation trees in Section
5.2, in particular the concept of failing, were: warked gut by the authar Jointly with VJ!
Pratt, and appeared in preliminary form in [251. The motivation for developing the
material in that section was influenced in large by discussions with N..Dershowitz. As
noted in the text, the central theorem in Section §.1.1 is. based on . uemlt of Wlnklmmn _
[l ‘ Section 7.4 is based upon an idea of AR, Meycr ’

I would like to take this opportunity to express my gratitude to the
aforementioned individuals for allowing me to include their own work in this thesis.

12
PART I: Binary-Relation Based Logios.

1. Regular Propositional Dynamic Logie (PDL).

PDL is: the:propositional version of dynamic legic, snd was defined by MJ. Fischer
and R.E. Ladner in [16] “tw): Miﬂh&!hﬁﬁm ‘anslogous to the role
the propositional calculus plays in the chaicil] first-ondh *iqtk. Thcy camumnt, "We
have attempted to abstract from:Twork on ‘lagics of pregrm
underlying these formal systems. We feel a thorough' tiderstantti g f this structure is 3
prerequisite to obtaining a.good grasp on memmm, Mt more appuub!e,
systems, just as classical: Wi WC”# Amids - 1 :
first-order predicate calculus.” :

We first define an elententary version of ‘PDL' fEﬂMJ almud at capturing the
structunofmeinmﬁmhmmmm, Pegay of the kintds
programs involved. We theri téfive PBL: esentiiy %3 ﬁtm,w state some results
concemmg‘PDL md a2 ﬁfdfvtﬂmm f&“ﬁﬂ.

11 Definitions.

extended to allow many- mmm ‘
Syntax:

" “We have two sets of symbols, AF and AP, standing for atomic formulge and atomic
: progmm. We use p, q,,... and a, b,... req:mv:ely to demate elements of these two sets

The set of well-formed formulae of EPDL (Ewm) is defined inductively as
follows:

(1) :Allelements of AF are EPDL-wffs, -

13

(2) For every a in AP and EPDL-wffs P.and Q,
(PvQ), -P and <a)P are EPDL-wffs.

We abbreviate ~(-vPv~Q) to PAQ, -PvQ to PDQ, (P:Q)A(Qap) to PEQ, ,
-and ~<a>~P to TalP, We will often omit parentheses, using double : spacing when approgﬂpge
to prevent ambiguities. The construct <a>P is read "dhmond-a P", and [aJP “box-a P".

Semantics:

The central notion in the semantics of EPDL 4s that of a universe W, which is a
nonempty set, each element of which. can be thmmut of as a state or ayorld in which qe;taln
facts are true and others are not.' We use 5 (,... e)mes. Thus ¢ our semantics.
will have to specify for each ’EﬁDL-—wff P and stt‘u &V whetﬁef Pis gruc ins (. s
satisfies P) or not. Hence' it ib plauﬁtﬂe to deﬂne thé méahing of sm;héa formuia as the
subset of W-consisting precitéty of thiosé states' whid sittsfylt. Furthermore, when
viewing programs as ob jects which can change the state of the world”, it is plausible to
define the meaning of & program ay a binary relation on W.’%ﬂu&lug the pair (sl!)
in that relation iff the program in question started in state ¥ & lnde;d tcrmmae in
 state ¢. Thus our programs are nondéterministic; there can, for a.giveh s, be more than
one ¢ such that (:,t) is in that rehthn

A structure S, then, is defined a¥ a triple (V,f,ml ”ﬁhere
Wisa nonempty sct, ‘
wAF 2% and
m: AP - 2"?"'. |

Thus, » and m provide the meanings for the bauc formulae andip;mams (ie. AF and AP)-
| v is extended inductively to the set of EPDL-wfta as follows:
#(PvQ) = x(P) u x(Q) = {of séx(P) or sex(Q)},

#(-P) = W-x(P) = {s] sf x(P)},
x(<P) = {s] (3)((s,t)€m(a) and rex(P)))}.

Denoting séx(P) by s¢P and (s,t)ém(a) by sat and adoy ,,gjgeg usage of
conventional logical symbols in our discusskm, we m;y ‘,ﬁ;fmeif;_,; ﬂ,xed $:

5 Rk NGt

14

k<P iff Isme A BP)

reading‘ 'dnmd-aanmm:mthcnamgm; chable from s via a, -
which satisfies P Ommymmuymrwh#(mummmm
~<i‘5-?) wé lnve o -~ I

seLalP if Vi(sar o &eP)

reading"’box—al’istruetnm;mn«ym fm:vhasmsmsl’"

LSRR

" Gtven a structure S=(W,x,m) we say that an F.Pﬁ!.-pfl‘ Ph S-nm (md wrlte ,
Ils P) if for every ﬁ'nluve.ﬁ’ w;nyfhn&d(mmﬂ’) l!‘itiss-vaud
 for every structure S. P is id. to be S-safisfiel v@rmﬂ e haye P, and

(Cadp A ommud) 2 (op, mmmm v,
<aX(pngq) > ((a)pa <a>q), :
<{pvq) = ((a)pV“ﬁq)

ThefimuMmmmsmmwpmmnmm
you can go somewhere, tm mm pm Miﬂb ,

At&hwﬂnnfutﬁcmﬁubknﬁhﬁ”ﬂlmmmm
relationa! afgebra wiich employs only two operations ow relgl :
compusitionoperm M&emmmm‘*)ma

o= {(s;s) ¥(s m'eﬂ

We show zhmmmumzmmmm mwt?mmammmmmn
format, and point to some questions which seem to_justify further investigation of this direction.

11.2 PDL.

In the prépos ‘L'f'_‘?mhtkwmmw . :tﬁemdr},,f%
to be the set of reguler expréssions over KP. Tiis e ,
nmam*pwmmupmm,w mm

15
Syntax:

Here too we have the two sets of symbols AF and AP, and in addition we require .
‘that AP contain one special element, denoted by #, which ewmponds to the empty prozram.

The set R of regular programs |s defined inéuctivdy a foﬂows:
(1) All elements of AP arein R,
(2) Foralla and Bin R, («;B), (auﬂ) and a* are in R.

The set of well-formed formulae of PDL’ (Pm‘-\vffs) Is deﬁned inductlveiy simitarly -
to EPDL:
(1) AN elements of AF are PDL-wifs, :
(2) For every @ in R and PDL-wffs P and Q, .
(PvQ), ~P and <a>P are PDL-wffs.

' We abbreviate as in Section 1.1.1.

' Semanttcs:

. Here too we have the notion of a strucnm S= (W,w,m), However, we are now
obliged to extend m to the class of programs. R. Tﬁﬁ ls done u follo\w)

m(8) =4, . '
m(a;B) = m(a) « m(8) = {(s,0)] (Iu)((s,u)ém(a) and (u, t)Gm(ﬂ)))
m(auB) = m(a) u m(B) = {(s,0)| (s,/)em(a) or (s,t)fm(ﬂ)} |
m(a*) = (m(a))* = {(s,t)[(3!20)(33 ”l""”‘l)

: (so-: and st and (Vi>j20)((si,srl)6m(a)))}

Here the double usages of U and * on both sides of the gqumon represent operations in the
formal langyage we are defining and operations on binary relations respectively; in the ’
latter U is union and * is reflexive and transitive clasure. Thus, our programs are

literally the regular expressions over the. a!phabet AP ‘with ‘,»ﬁ,ﬂ, aua, and a* meaning
respectively "the empty program”, "do a followed by 8%, "do-either @ or 8 the choice being
nondeterministic”, and “do & any (nmnegattvc) number of tMthe choice being
nondeterministic”. Here "doing @ 0 times” is like m no;hia(" # is extended
inductively to the set of PDL-wffs as in EPDL, and the daftummof 'validity and
satisfiability are the same too. The. following are enmples of valid PDL-wffs: '

16

<aub>(paq) 2 ((<adp A <adq) v (<bdp A <bdg)),
[a*;a%p = [a%lp,
(I(mal":b Al2;(2;a)*p) * (pA h%ia}nt\ ('m):’[l]n))

The last of these (due to AR..Neyer) aserts the squivsie ﬁmwdm that
pmd wmmmmam -

. Takhgfdumahbmtmmy,mm:nam«f&vm formuhe
where thSBMw«m-&mm,

B

Caub>Ea*1Ca;{ ac) X bdtrue A mﬁz«)
Caub>Ea*Xa;Cawc)H DbJmise A (ﬁmw)

1.8 Results.
nmwmmwmﬁ‘;mmmdwide

pm’“mmmem |

Lemma 1.1 For.enry m"!’”’raﬂdia«,ﬂk, tﬁe! ’ : ﬁ‘énﬁdi

LY Ca; P e CalBIP;
) m.(t,wﬁm

Proof: We prave (a): sﬂ;’c,ﬂ? iff Vf(m;ﬁ*ﬁm sﬁ‘ Vt(ﬂu(mun
uBr) > dP) T Veullsas A sy > ®PY T Vil sk > (il FP)) Hr
Vu(sau > Vi(uar > #PYY ity W:ﬁt 3%‘!’??", X 8IP.

17

Lemma 1.2: For every PDL-wff P and a¢R, skLa*IP iff for evefy n20 we have
:k[a"]P where a® is truc? and o el is a; a

Proof sHZa*]P iff Ve(sa®t o ¢kP) iff Ve((Indsyos,)(:a:l A A
-1“‘ A s =t) D tkP) iff VnVﬁtn"t:M’) Hf mmnw :Hc"]P I I

Lemma 13: For every a¢R and PDL-wffs P and Q the foilowmg are valld

(a) [a](PAQ) L 3 ({clP A L«JQ),

(b) [aX(P3Q) > (LalP > [a)Q),
(c) <a>(PvQ) & (<ad>P v <a>Q),
(d) <a>(PAQ) = {<aXP A <a>Q).

Proof: We prove (a). sklal(PAQ) iff Ve(sat > dF(PAQ)) Mf Ve(sat 2 (PP A
#Q)) iff (Vi(sat 2 FP) A Vi(sat > d'Q)) iff sh([a]P A [a1Q).]

Note that a trivial. counter-example to the other dmction of both K b) and (d) is the
structure with two states 4.and ¢ in which P is true-only in s and Q only in t and in
which we have both sas and sat.

Theorem 14 (Fiscﬁer and Ladner [16])‘; Thc valid!typmblem for PDL is decidable.

This result is obtained by establishing a “finite model theorem” for PDL, stating that a
PDL-wff is satisfiable.iff it is S-satisfiable. for some structure §.in which the universe

W is finite and in fact bounded by an exponemm in the size of the wff The following
theorem essentially establishes an upper bound on this decision method. b

T heorem 1.5 (Fischer and Ladner [161): Satisfiability in PDL can be decided in
nondeterministic time " for' some constant ¢, where n is'the .lmgth of the formula tested.

Pratt [53] has recently developed a dedslon procadure for PDL, based on the tableau -
method, which, in many naturally. arising casek, h more efficient than the one implicit
_in the proof of Thcorem 15 in [161

T heorem 1.6 (Fischer and Ladner [161): There is & mnmt c>l such that satlsflabmty ln
PDL cannot be decided in deterministic time ™ /i fogn -

18

This lower bound tspmdhymhowmm&cmmmofm akernating
Turing machine with a PDL<wiY.

Thefotbwkvgmuhmmwadﬁthnnﬂaﬂuof?ﬁhwﬂcbpwm '
aliowed to fest:thie srath Of Tartnin m,m 1t ves produces
:apmmnmwmdma‘m

Fmﬂnpamdmworwmﬁunt,mmm Now, for
any izl define PDL Mdysmm#m,w\ﬂﬁt ﬁﬁedm of
thesetofpmgrmﬂthedm -

(3) FoerDl., 1"“”? PR,
and to the definition urmm»ormwﬁ the chidee
m(Pn = t(:,snser(m
 Ths, fwm ExasTOWIRT 20y *m.,«-u, mm, wm.,
Lemma :.7..-A_rm~m;y Pm_,w;? m Q, “’W -M hu mu Pmm-wrf

Proof: smmmmwm . al .

T heorem rrmwwm 4 ' .

Pthenaasef ,_»(P?.g)u(-‘r?)
whiePdow M;«?’##'
FPafiQeFl - (PYia) v TS
DOP-u,ﬁMm

Noee that time is sn um fogic mﬁ! i R
in which clause (3) above hukm oo;e -

19
(3) For any p in AF, p?is in R.

Thus, we allow only testing of propositional letters from AF. Dmote this varlant of PDL

T heorem 1.9 (Berman and Paterson [9]): There exlm a PDLo‘s‘wff P MK!! that there is-
no PDLO-wff Q such that E(P=Q) (where PsQ is to be viewed as a PDLas—wff)

Theorem 1.10 (Berman [81): For any i20, there exists PDL, l-—wﬂ‘ P, such that tlme ls
no PDL -wff Q such that k(P2Q) (where P2Q is to be vhwed asa PDL‘,l-\vff)

Informally, these results mean that each “level of testing” suppltu lncreasingly more
expressive power, or in other words,

PDLyCPDLy, ~ and
 (Yiz0)(PDL, < POLyy),

the second, say, reading “for every i, PDL,,, Is meﬂmﬂn than- PDL."

Theorem 1.9 (and similarly 1.10) is proved by a subtle argumen-itvolving the construction |
of two families of structures $ [and 83 for every 120, and the exhibition of a '

PDLy ¢~wff P which can “distinguish”™ between S, and 3} foi ot § Oneccan:then show
that corresponding to any PDLG-wff Q there cxiu = Isnm J(Q))ﬂ such that Q cannot
dlstinguish Dbeétween SJ(Q, aﬁ SE(Q) \

Berman [8] has also shmm that PD(.os < PD!;.l

1.3 Axiomatizatlon of PDL.

A problem left’ openau{lﬂ was- Mﬁfm&mmnm sym for
PDL. Consider the follawing dxiom system X:

Axioms: ’ ' S
(1) All tlutohgiu of mposm:! mm

R

(2) LaX(P2Q) :(MP:WQ),"
(3) teIp,

(4) Ia,ﬁ? E Em '
(5) EaufBIP = GMA[#JP),
(6) Eu"IP b ﬂ’ AfnXaIP) ‘

lnfcnnce Ms
LS P, PaQ

(9) P AT L A I R

 talP
I PDLm.quW'mw -
430 wm » @E*
' and uamw : o

, vaabmymx«rnwuummmmm.?nm(mmt,?)ﬁ
thenexmsaﬂmmof?DLmMMd&tm: thnice of one of the
axioms or is obtained from previous ; 8. A:version. :
of musymmmwwwhwimwum ‘but final
confirmation of this fact came recently, m,mmm, Pm[ﬁ],

Wmnmcwmm& | R VR

Tm\mﬂn&m? Sagesbn mwhmmw4m

As an example-of a preef in X', mmm to familiarize the reader with

2

C(<adtrue?;a)*lp o> [a*Ip..

Abbreviating (<adtrue?;a) to § and [A*Ip to Q, we state the main points in the proof |
omitting reference to (1) and (8). The reader is amd to convince himself that each step
can be rigorously justified in X. , T o

1. Q>(Qyv false),

2. [IQ o[aMQvV folss),

3. [alfaise @ CaX(Q v false),

4. (Lalfalse v [aQ) > (al(false v Q)

5. (<adtrue > [a1Q) 2 [a1Q,. -
. 6. [(a)tru;?][a]Q > (alQ,

7. [AIQ 2 [a1Q,

8. Q>oIlpIQ,

9. Q»>falQ,

10. [a*)AQ > [a1Q),

11. Q o [a*1Q,

12. Q>p, ‘

13. [a*1Q = [a*Ip,

14. Q = [a*Jp.

tine 1, (9), (3),

,;amgulimfl,

nes 23,

’(4), ﬂa! 5.

(6),
lines 1,8,

: .,19).Imc9,
. (N, line 10,
mm. (9, (2).

lines 11,13,

byttt iy e 2 SRR R PG TN S e e e TR e =L T

2. Regular First-order n,m Logio (DL).

In this chapter we define a first order wcbuad upon ideas from Pratt[SZ] '
further developed in [22]. The m first crder dynamic logic, or 1.9 for short, is
designed to reason about "real” rﬁa’ﬁhr mm ie. the aqutvm of mmmmc
flowcharts or recursion-free loop programs~The shitse” it WhicH the pﬁgrtms are real is
in that they employ the conventional nﬂhm ot changing the m of variablés by
assigning to them and festing the uhe of & . Programi'mn DL are no’ Wer
combinations of atomic program symbol, %wm m am longer
proposmonal

After defining DL we elaborate on the kinds of facts expressible in it. Section
2.3 contains some extensions of and’ restfkmns upon the class of programs M in Dl.
viewing aH the resulting logics as vtrtatmﬁ(DL. Sectien 2.4 contains results -
concerning the question of how hard it swmmmdmaﬁkm of
formulae of DL.

2.1 D‘finiﬂmc
Syntax:

We are given a set of function symbols and a set of predicate symbols, each symbol
with a fixed nonnegative arity. We assume the inclusion of the special binary predicate
symbol "=" (equality) in the latter set. We denote predicate symbob by p, q,.. and
k-ary function symbels for k>0 by f, g,.. Zeroary function symbals are denoted by
Z,X,Y,. and are called variables. A term is some k-ary function symbol followed by a
k-tuple of terms; where we restrict ourseives to terms resuiting from applying this
farmation rule finitely many times only. For a variable x we abbweviate x() to x, thus
f(g(x),y) is a term provided f and g are binary and unary respectively. An atomic formula
is a k-ary predicate symbol followed by a k-tuple of terms.

23

We define by simultaneous induction the set RG. of first-order regular pmgrums and
the set of DL-wffs:

(1) For any variable x and term e, x«e is in RC,
(2) For any program-free (see helow) DL-wff P, P?is in RC,
- (3). Forany a and § in RG, (a;8], (quf) M o;'" are in RG,
(4) . Any atomic formyila is a.DL-wff, .
(5) For any DL-wffs P md Q, & in BG and vt.ri;ble x,
-P, (PvQ), 3xP and <a>P are DL-wffs.

A DL-wff which contains no occurrence of a pmcnm of&lG is called progmm [m or simply
_ a first order formula. Programs of the form indicated in (1) ad

respectively (simple) amgnmu and (simple} m;;h ; s

abbreviations as in the previous chapter, and in addition ubbrevlate ~3x-P to YxP.

(Remark: As will be seen in Sectlon 2.3, the pamsl;‘;r class of pmgrams allowed in
DL-wffs can be viewed as being a pamm chm ﬁ!e rise mdgfferent
variations. Even within the particular class of rqnhr pra(rm the set of :es;s can be
aliowed to vary; it can be the set of quantifier-free tests or, inductively, the set of
question-marked DL-wifs. Varigus kinds.of ass abo possible. We stress these
facts here, even before completing the aecm‘ﬂmgml., thag the reader does nqt_ o
associate any particular class of programs with the pmﬂc term dwm logie) " |

Semantics:

'fhe semantics of DL is based on the concept of a state, The differéﬁcé ‘h:‘w‘vever,
is that we are now concemed with specific atomic programs, gﬂd speciﬂc atomic formulae.

A state] consists of a non empty domain D and a mapping from the sets of function
and predicate symbols to the sets of functions and pudkm ayer D, _such that to a k-ary
function symbol f (resp. predicate symbol p) there mﬁeﬁpon&! a total k-ary function
(resp. predicate) over D denoted by f 4 (resp. p$) Jo particular, to a variable there
corresponds an element of the domain and to a, P-lgy m iymbm (pI’OPOMthﬂ!‘
letter) a‘truth value (true.or false). The standard. equality, predicate.over D is that
corresponding to the equality. symbol (=).. We. will sometires mlcr ta the. dqmain of 1 as D g

24

Observe that the way states are defined no distinction: is made between what are
normally called variables and constants. These, however, will be defined below for simple
universes. .

| We denote by I' the coftection of afl possible states md call it the grand

universe. Our semantics will assign to a progtam & KW ‘retatlon m(a) over I', and
to a formula P a subset of rmammmwv T the sequel
however, we will be mm h MMW fw mses:

A pseudo-universe U is a set of states all of which have a common domain D. A
function symbot f (resp. predicate symbd p) is calied uﬁmmml in U if for every
state J€U and for every function F (rm Wf’? over D there exists JeU mch that J
and § dlffer z:mostmmevmeorf(mp«p) Mmsnﬂmp.l’) ‘

Notation: For any function G: A - B, arbitrary element ¢, and a€A, we define [e /a1G to
be the function with demain A and range Bufe} wmm uﬁn VM at poihts in A*{a} a
C, and such that G(a)=e. MMW cribiiid shove for anint

simply J=LF /f1J. B

A symbot is called fixed in U if its value is the same in ail states of U. Thus,
"=" is fixed in any universe. A universe isa Wm i Which every predicate
symbol is fixed and in which every function symiol is eher fikedl or ninterpreted. A
universe is called simple if the only uninterpreted symbols in it are a designated set of
variables. In a simple mnvme the fixed variables will sometimes be caﬂed constants
following ordinzry usage.

The value of a term e = { el,...,ek) in a stite I is defined muuctmw foﬂowtng
Tarski [64], by '

GJ ff(elJ,..,ekJ)

We now define by simultaneous induction the binary: ‘relation over I' correspmding to a
program a of RC, and those states J in T which-satisfy a DL-wi¥ P. The retation witl be
denoted by m(a) and for the tatter we write: JhP. (%ﬂ‘*ﬁeﬁg an-element of mle) can be
thought of as representing the fact that there exists & compittation sequence' (or path) of

a starting in state J and terminating in §. Thus, JH«IP will be seen to be making an-
assertion about all terminating computations of & starting in state J; namely the

25

assertion that the final smas of these computations satisfy P. Simtlarly, JEca>P
asserts the existence of a termimung oompumioa o e mrting in state J. and endlnz in
a state satisfying. P.

(1') For any variable x and term-e,

“mixee) = ((J,9) JLeg/x20),

(2') for any: progrm—free DL—wff P,
m(P?) = {(J,1)] 7¥P},

(3') For any « and @ in RC,
m(a;8) = m(a) « m(B),
m(auB) = m(a) u m(f),
m(a*) = (m(a))*,
(see Section 1.1 for further spedfkation)

(4') For an atomic foxmuh p(el,...,ek),)
Jﬁp(el,—.ek) vhenever p_l(elj,.-,ek&) istwe. ey

(S') For any DL-wffs P and Q, [tn RC md nﬂaﬂe X,
JE-P iff it is not the case that. .1|~P
JE(PVQ) iff either TEP or "q,
JE3IxP iff there exists an elernent & in DJ such that [d'/x3J & P,

'_ ,JF(a)P Hf there exists a state F) mch that (1 ,’)(m(a) and P idd

Note that the onty kinds of formuhe whose truth m_ state J de?mds posslbly upon states
other than J are those containtng subformulae of ti form, 3:" md (u)’P

In most of this thesis we will primarily be interested in investigating the truth
of DL-wffs in a given simple universe U. However, one can sée that for some J€U and some
assignment x«¢ the unique state § such that (J ,’)Gm(xd-e) l.c. the sttte"’[e, /x13,
might not be in U at all. We outlaw this phenﬁm%‘dii wdopting, from now on, the
convention that in the context of a given universe the onlry pmgnms we consider are
those in which the variables assigned to (e.g. X in x+e) and the quantified variables
(eg. x in 3xP) are uninterpreted. “Thus, for 36“ md%u? iﬁym-ﬂ‘f? tﬁi"ifutii of J
in P can be seen todependoniyonuatesinu

B ,.“\L\l‘vﬂ.»f"ﬁ"‘ e ST . RPN Lot e TR

26

We use abbreviauom as in Chapter 1, and thus will write JuS for (1,9)em(a), :md
for [al, which stands for ~Cad~, we have again '

JEladP iff v:(Jag o JH’)

Given a universe U we say that a DL-wff'P is Usnalid "'U P) if for every JeU

we have JEP. We say P is salid (FP) if it is U-walig for every universe U in which, in
line with the above convention, the assigned and qunwm vm of P are uninterpreted.

The following are examples of valid DL-wffs:

[(x=z ‘A y=u) ?;(x+f(x) u yef(y))M x=z v y=u),
xzy 2 [(xef{f(x)))*K(yef(y)) ®ox=y,
xzy 2 [{xef(x))*Hp(x) 2 (xzy v (yﬂ‘(yl .(y‘*ﬂy))"‘)p(v)))

The first asserts that at most one of thc components qf Y is exemced The second states

that the process of repeatedly wlytng 2 fuﬂmm lv;ﬁh M is a special case
of that of repeatedly applying it. The third 3 t the process of achieving a

property of x by repeatedly nppalymg f can MM)ﬂ V

Denote by N the simple universe of pure aritm ie thc domain D is the set

of natural numbers and +, and 0 are fixed with M mrd wexprmtws- We

freely use standatd u&hmm abbreviations such #s 2, ged eic. (Whepever, in the
_context of the natural numbers, we uje the symbol -, it 48 $o be understood to stand for
the so called "menus” operation, Le. x-y is MMMW X and y if x2y, and 0
otherwise. Also, we abb;evim X3X to trise md -vmn mﬁ&ﬁj -
The following are N »vnlid DL-wifs:

((x%x—l)*)xzo '
y>0 v <y=0")mw ,
o x=x' A y3y' A X y>0)71((x#y?
(x>y?;xex-y v x<y?,y¢-y~x)}*,xay')x-gcd(x ,y)

The fast example asserts that the program inside the cmmond under the assumption that
its two inputs are positive integers, termimteﬁ,md mpum the gul of the:e inputs.
This program can be written in more popular terms ass

21

while x#y do.
if x>y then Xex-y
, else y«y-x
. end}

abformuts b?theformilx?
i Ve K i erm e to
be the formula which is obmne?f from Q by um?ermiy maminz’ﬁ bound variables of Q

which appear in e and replacing all free occurrences of x bye. .

Lemma 2.1: For every asslgnment xee, ‘and ﬁrst-ordu formuh Q,
L we. M&Mhﬂn . Q,,)

R - x‘,‘,_-i.-»"rz::r‘.

2.2 Descriptive Power.

One of the virtues of loms wch as DL is tln quuhu tbg vm 3 genenl
framework in which it is possible to express 'a wide varhtyofmmaa&nﬂlom for
each of which one wouid otherwise have to invent 8. mm The advantages of
this uniformity are by no means only notational; elementary results md,z , mmm

" more obscure and hardnwmbywbmthmW‘ nacruparmm
“This argument is imphicit in Sec ﬂé !'s;d. 63 umﬂ» !;!.:;;fi%l S

stemmlng from p ert m qf ithe

arithmetic. lndeed when people reason ing i

VConsequently, we wm be more lmed in @mM 3 QNG adequate. tools 108
universe U. _ S et

Although we wish to stress the "flct that one can write complex DL-wifs (eg.
alternations of boxes and diamonds of arbitrary length ave certainly permitted), we point
to some particular emmdmmmmmamm. with
relatively simple formulae in DL given a universe U.

28
- Partial correctness.of @ wrt P and Q (Hoares 7 Pla}Q):, Fy(P=LalQ),
- Existence of a Q-terminating path of a: B Ka! _\s, : ,

" Existence of a Q-—ce;'mimtm path of & under the assumption. P‘ o ~'FU(P=<¢>Q) ’

e'l‘mwmsmmbtmm ;;ofnw!;gmu e ¢
determisistic, and has been deneted by & variety of. potations, see [21.
 Also see Section 234 snd Chap

fsammﬁ’

For any a€RC, define var(w) as a Finite vector eomhw‘w in some ?li:éd standard
.order, of all variables ammmmmammw« iu @«

- Equtvalence of @ and 8 By Y (RaYEsT = (5)252‘), where

Z=var(a)=var(B), and Z' is a vector of the mm a3 Z whose components are
distinct variables not i aw(c)

- Determinacy of a (alf verminating paths MV!} mﬁmt nm)
Fu V?‘N‘cﬂ.@ :i“’(’ ¥

33 Veetattons,

Regular pwgrms ofiﬁckimfwehﬂe oyed

ﬂrst-order tests. In this m o
this set of pmgrm A

We are ‘about toinfrodhcevm"’“ mﬂwmemam, and we would like;obe
able to compare.their expressive power. Wﬁfstﬁcmm,&mm’m:&hﬁm)
A and B, the wifs of A are & subset of those of B, we will denote by A < B the assertion
that there exists a B-wff P such that for ne A-wif Q is K the case that PXQ is & valid B-wff.

29
2.3.1 Array Assignment.

An array-assignment is a basic program which can change the value of a function
symbol at a specific point. This is done by writing f(z) e where f, z and e are
respectively, a k-ary function symbol, a k-tuple of variables, and a_ term. We restrict
ourselves for simplicity to the case where k=1.

To obtain this new language, which we call‘ armyDL, the followihg |
clauses are added: to the definitions of the syntax and sen_ggntics,of DL re_spectively:

" (1a) For any unary function symbol f, variable x and term e,
f(x)ee is in RG, . '

(la) For any. unary function symbol f, variable x and terme, .
m(f(x)«e) = {(J,EF / 11N)] Fiej/xj]fﬁ

Note that although a program with array assignments can change the value of f at
unboundedly many points (e.g as mlgh& be the case with the program (x“g(x); f(x)*y)*):
it cannot in general change the "entire” value of f as ina secoad order asslgnment of the
form feg, which, although constituting another phuﬂme varmlom is not allowed here.
We extend our convention of Section 2.1 to require that in the context of a given universe
U we allow array assignments of the form f(x)«e only if f is uninterpreted in U.

Open Problem: Is DL < array-DL?

Answering this question in the affirmative would involve exhibltmg an
array-DL-wff P, and showing that for no DL-wff Q do we have F(P=Q). Certainly, the
obvious fact that certain programs can be written easily and succinctly using array
assignments will not be affected by an-answer to this question; it is strictly a question
about the power of expression of a formal logic for reasoning. about thcse programs.

2.3.2 Random .Assignmen,t. '

A random-assignment is a basic program which in a state J can change the value of
a variable x nondeterministically to any element of the domain D ¥ Strictly speaking

30

however, this type of assignment is appropriate (and of use) onfy-when x is
minterpr_qud, in which case every ehmm of 01 h mm & possible value of x.

of DL to obtain’ mudmm.. : s 4 et sighocn

(1b) Fee any varisble x, x¢? uhﬂ
(16") For any variable x, m{x¢?) = ﬁf,ﬁf’ *[x’fﬂﬂ}

Thus, x«-"whenstart«nn.‘! mmmhmmm%&m!henlmotha
been changed. ‘

Lemma 2.2: For any unwenelim rpreted varid ‘“xaﬂMP‘ we have
*(3xP = CkeDP) and M? FTeenIP)

Tlus obvious fact, which on mc m m m Md’mm raﬁdom-BL

prlﬁmﬂ W%W- _ . R fo oL b ' SO

Open Problem: Is BL < randem-DL ?

We do have the fouuuing muh, whkh ufers to D!. m htb array cud
ranéom assignmen&

Theorem 2.3 (Meyer t443):
(1) array-DL < rancom-asay-Bi.
" (2) ratde

TMsnwktsmvdbywmammbMMhmmhmymMu
rzndom-assignmcm €but net both) which is £ m P B ¥y<Brue;

m" xezi{ae? fix)runef(x))*, and "
B: xez;(xef(x))*;{x=y)7;(xef(x))*;(x=2)?

K}

P is a formula of this doubly augmented DL, which is true in a state J iff the domain of J
is finite. & makes possible assigning f(z), f(f(7)) etc. to some random elements of the
domain, and f# makes sure that y is on the "f—cycle" starting from z Finiteness, then,

is definable in DL with both array- and random-assignment. It can be shown however, and
this is the content of the remainder of the proof of Theorem 2.3, that finlteness is not
definable in either array-DL or in random-DL.

Y

2.3.3 Rich Test.

Rich-test-DL is the first-order version of PDL defined in Secilon 12. It

allows tests in programs to involve other programs. (whtch themselves mlght involve such
tests etc.). Thus a program &, m@ght pause, asking something like " ‘cap program B hatt
on input x if started right now?”, and continue witm ;Lde c{fgcts lff the answer was

yes".

The definition of rich-test-DL is ldentlcal to that of DL except that clause (2)
in that definition is changed to read:

(2) For any rich-test-DL-wif P, P?is in RC.

So that for example a desired effect could be guaranteed "in advance as in the program
a: (((BIP)7;8)*%, for which P2LalP is valid. Here 8.js not exeeuted unless P is
guaranteed to hold. upon comp!etion.

Open Problem: Is DL < rich-test-DL? ;

2.3.4 Deterministic Dynamic Logic (DDL).

DDL is the deterministic version of DL, Le. the only pxugrams aliowed lnslde
boxes and diamonds are deterministic ones. We do this by defining the set of DDL-wffs to
- be simply the set of DL-wffs in which U and * appear only.in constructs of the form
(P?;a u (-P)?;8) and ((P?;0)*;(-P)7), and we abbre ge these to (ifP then @
else §) and (while P do @) respectively. We call this restricted class of programs
DRG, and clearly they correspond to the well known while . The semantics of DDL
is the same as that of DL. | ' '

2

Lemma 2.4 Foranyuryiverseﬂ m!@Uandmam Mlsatmostoneum
J€U such tha! Iaj ’

Corollary 2.5: ThefoMnguevahdfwmydeém-vamQ'
 (a) <P T ([aIP A Codtrue),
(b) <aXPAQ) * (<P A (DQ).

Proof: We prove (a). .ﬂ‘(c)? iff 3§(Jag A J#P) if (by the lemma) 3J(Jad A

v§(lag Djl‘l‘P)) if ”‘MAMAM”D”') WY Pe(Cadirue A
CalP). '

Mthqmammmmm«mmum
mm&iug,mwm*‘udrm & Woid Hop suwly ‘
insight into the proposal to employ ieriinermibited SMMW

Open Probiem: |5 DDLCDL?

One can ammePMamemmmm&aofRorm
expressions over AP. Thmtmmhlw :

Open Problem: Is DPDL ¢ POL?

Note though, that the prograss in DPDL can e nendens
interpretation assigning a non-functional relation 1o an a0URIC A
restrict the structures and ask the same questioms

by vmcfme |

A binary rdamarhuuwkﬁmmﬁﬁrmuﬁmhummbmh
that (a,b)€r. '

Open Problem: -Is it the case that for every PDLW P ﬂnre cwms a DPDL—wff Q such that
"&‘ P=Q) far every ‘structare W,’,m? in m m (dw kfi k mm

£3ET

We nuw definethenotim dm&mwwmm‘tﬁm

program wm terminm wmg ﬂn m" ? » ;

Definition: A program a.in DRC umwwﬁwuamtmu and
DDL-wifs P and Q, if by (P3¢<adQ).

3

" Note that Corollary 2.5(a) substantiates the widely used fact that for deterministic
programs, proving partial correctness and termination u ‘the same as provmg total
correctness (see for example Manna [39]).

Thus, DL is a tool powerful enough to express the concept of total correctncss for
deterministic programs. ,However, in Chapter S we will see that thls notion is: much more
~ subtle when nondeterministic prognms are allowed. T :

Another interesting restriction on the. programs in DL is the. guarded commands
language of Dijkstra [13]. We define this language in Section 55.. :

2.3.6 R.e. Dynamic Log'io.‘.

As it turns out (see for example Secnon 24), many Imemtlng properttes of
dynamic logic are invariant under drastic changes to the complexity of the programs
involved. To provide a definite class which-can Qg thmght of Ba pla;uible upper bound'
on this complexity, we introduce re. ‘programs. :

A regular program of RG can be thought of asa regular set of strings over the

basic alphabet of assignments and tests. [t 15-easy to séé-that taking the iveaning. of
“these programs to be the union (over this set) of the binary relations obtained by

composing the relations correspording to the oonipdmms of eack’ string in order, is
consistent with our definition of the meaning of tive regular expressions over this -
alphabet. R.e.-DL is obtained in a similar way by adopting as programs r.e. sets of
strings over the above siphabet and defining therecmeshing simitarly.: One particular way
in which to represent these programs is to supply a description-of. the Turing machine
which recognizes this r.e. set; along with the (finite} sets of assignments and tests
involved. The semantics of rie.~DL-wifs is ther cbtatned: Wﬂy to'that.of DL.-

Thus, these programs are so complex, that merely deciding at each polnt in
the execution "what to do next” might take the fult power of Taring machines.
Nevertheless, it turns out that this complexity doa not: :!tect m of the re!l!lts about
the valldity problem-in DL. : :

U
2.4 The Validity Problem for DL.

In this section we state some results concerning the question of how hard it is to
decide whether a given DL-wff is valid. Since a valid DL-wif is one which is true in
‘every state of every umvcug, this s nat, nww a m d’gpmdem ‘question
but rather a question involving the behavior of completely unintrpreted programs.
Throughout this section, we will use the notation of Rogars £3K i
undecidability. ,

The first fact about DL is the weli-known mmm of the set of und
first-order formulae:

Lemma 2.6: The vahd program-free Dt-ﬂfsfama’gm"“ mplete set,
Proof ThmmMMvwmwmdmm L

Lemma 2.7 (Pratt [521): Thwm-wmwbummdehe'w, forma
Eg-compkteset.

Proof: Trtvm.mkmumuﬁcmwdmm-fmm B

Thmm 2.8 (Mes and Prae [22)): ?Iu W Dk-\!ﬁ: @ﬂnm (cl& where P is
first-order antl @ is any: mmM:loMm : ,,

mmm mmm{mummmwmm
it) to a flsss-erder formuia, dees net mehe the:validity prabium-any. more difficuk. s
particular, amecan extend: this:-retukt 1o faamwlie of the.Sopm:F4e2Q fer program-free P
and Q, mwmmmﬁmmmm S
umnmwed pngrmusanr.e.pmbm '

T heorem 29‘(!&5'« md Fmﬂﬂ)* The valid: Bk-m«mmul?.m Pis
pugmﬁeend&eu&dm&%ﬁ&ﬂ m&tﬂﬂh&m
or as small as the singleton { xey;(x+f(x})* }, form Ms&a

Thus, attaching one box to a first-order formuls gives rise to a very hard validity
problem (as hard, in fact, as the totality problem for Turing machines). (Similarly, one
can extend thtstothechuufvahql partial correctness axertions.) However, if the

L R e e T ey

3

formula P to which [al is attached (the output specification. of the partial correctness
assertion). is free of existenstial quantifiers, Le. is a universal formula, the problem
is easier: ‘ ‘ -

T heorem 2.10 (Meyer and Pratt [22]) ‘The valid DL-wf{s of the ferm [a]P ‘where a is
as in Theorem 2.9 and Pisa universal first-order formula, form a Il 1 camplete set.

The hopes of keeping the, vahdity.z p_,rqblqn,,{nrf ;&e,.gv{m,gf DL down to some place
in the arithmetic hierarchy are shattered by the following theorem:

T heorem 2. ll (Meyer, t22] and £44-]:‘,): Tl&é va!id Dl.owmoﬂeachof the foquing,forms,
form a l'll—eomplete set,; where the set of programs inyolved: can, in each case, be:

taken to be as large as the set of re. ;mgrmor - amit as ﬂwmlemn
{ X*y.(x*f(x))"' | SR

(a) IxtalP i . Pafisst-order formula,
- {b) 3x3y[¢]? S - P a quamtifier—free first-order formula,
(e} <Byifpalp Pa qmmm fmtwordcr fmh,

@p ~ PaDlwr

Thus, the validity probhm for DLis eamrmﬂy #ard, in fact as hard as deciding
the validity of generaf !mmmi second ‘ordér formiitae of the Torm VP, wivere P is
a first-order formula of “arithmetic. It geﬁfﬂm way however, for quite ‘simple formulae
with only one “alternation” of programs (here we like to view Ix as <x¢?). The upper
bound of “l{ can be shown to' hold for afl the' variztiem we hiave corisidered, m '
particular, the set of valid fdrmulae of rich-test—randm-lrfay-DL also form a
nl i -complete set.

These results then, e!iminate any pmsibmty of obmnlng (abaoluteiy) complete
axiomatizations of any interestmg portiom of‘ DL In the next c!\aptcr we wm see
however, that the sltuation is not so grim

'We remark here that Meyer [44] has also been abte to show that the set of valid
formulae of Salwicki 's [59] algomlamic Logu Qs also Rl-cmbu. 'l:hls is contrary
.to erroneous results in Kreczmar £32] ﬂld [331.) .

In this: chaptarwe immdnee tisc WG uppm vmmuc characteﬂzaﬂon
of arithmetic. mumm&&wwmmwrf&m :
wmch m&aammwmmmwmmmm memh
that then. PFis A-complen, uuuwmwmwmwm
DL-wff. This propevty-we: tesste sxishimotion) somplotgmasy.. . I :

As: will become evident: itv: the:sequdl,; the natural numbers are-usédtin first order
formulae to: "count the:numiter: of tinves-e is: éxecuted: in: &, mswmue extra
. power e wivicl; werindulge: in-order: e introdiior "arisimeticst iy Y int ,
programs,. i.e; assignments to: variables wivich: sange: over the nateral’ mmhr!, -3 is done
‘eg. by Owicki E471.for mmwm lwm, one's: pmm might
not involve-intogers: at 2l snd: silly 4 A R
can be exjernied to. anasitismetical .
nmdﬂm.;ewhcmm win-an arith

Amictnaﬂusm Mfwm metical.
and 7, . we state and. prave . rather ’ vl which is & .
generalization: wthemwmmeththtnm
3.2 Thismismwmmmwﬁwmmmm |
this thesis, mdm fact wemmttam; mkeﬂ jor part of the proofs

o FuTE AR

It is then. proved that for mymmmm% pists ’krmy‘ﬂt»wﬂ‘ 2’
first order formuia equivalent (o it over that mmﬁ 543 mtm our axiom

system’ P for DL and prouf;o?mmﬁmmw ‘ w, peapleteness. Secﬁmu
contains the mmcmn ﬁP‘ PR ; V v 23.4).7 T Section 34

comﬂmneu, and’ Mirkowska's:[41] mm mm

37
8.4 'I.‘h_g Theorem of Completeness and ‘A_,:r,i_t:l‘amgtigal Universes.

In this section we prove a general theorem which will be applied five times in the
thesis for obtammg completeness resuits for amhmetical axiomattzatlom of various -
logics of programs. Tt wift aflow us to ded’uce, for éxample, th
completeness of an axiom syitem for DL given that that w;tem‘is cdnplete for proving
basic formutae involving at most one program.’ “The theorem, howbver; will be stated in
very general terms.

Denote the set of first-order formulae by L. “Assume we arc given a universe U, a
set K, and a functional

M: Kxal -2l

The M-extension of L, L(M), is defined to be the following language which is L
augmented with one formauon-rulc'

(1) Any atomic formula is in L(M),
(2) For any k€K, variable x and L(M)- -wffs P and Q,
-P, (PvQ), 3xP and (Mk)P m H M) -Wffs.

The semantics of L(M) are defined such that: JHMk)P holds whenever |
JeM(x,{g| JFP}); all the other clauses receive their standard meanings.

" Some intuition might be gained at this point by noticing that if K is taken to be -
‘the class of programs RCG and (M)P is interpreﬁed”ﬁ’(&)?,tﬁeh LEM) is-in fact
regular first order dynamic hglc, l.e pL.

We now define some impomnt comepts to be’ used in the uquel#

We say that L is U-expresswe for L(M) if for every L(M) -wff P there exists an l.-wff Q.
such that ':U P=Q. .

‘An axiom system P(M) for L(M) is any set of axioms (or axiom schemas) and inference ruhi
over L{M).. Provability-of an L{M)-wif P in P(M)-is defined in the standard way and is -
denoted by "P(M) P. P(M) is said to be U-sound'if all the dxjoms are:U-valid and all -

38

the rules of iafermce preserve U-vaﬂdky Note lhm, tiat i P(ﬂ) is U-sound, then

P(M) is said to be propasisionaly complete if 3 m of tumlogies of propositional
cailculus mthewmﬂfffm and modis penens ?MM@ nC ,ml»- Itis
said to. he U—em#h« w for m Lfm-wmi,tf &f W gtp w tuve Fpm Il. .

Tkmmit(?hewemofﬁaupkmau) rwmmumuﬂmumon. a
U-sound axiomsym!’(mfwunkuumm PR .

(1} P(M) is propositionaily complete,
(2) L is U-expressive for L(M),

(3) Fermkékmdun)mfﬁlmdQ,, i o
it Fpo(R2Q) then "P(m «u,‘macu,‘xm ‘and

(4) For any k¢K and L-wffs R and Q,

’ if "U R then t‘mml, N k '
i "Uflfl"tﬁi)Q¥ then FN CM%’Q} M
if i'uﬁl?"(‘i)@) they kPFu)?‘? 1 A Ts N

Proof: We hanwpmvem P umumwmmhuv MFP(M)P

By the propositional compleveness of P(M], e o apweme that P is. given in.conjunctive
normat form, and. we prxeed: by induction en the: s of mmypﬁm of M and
the number of quantifiers in P. Assume the theorem hold for any formuia. with n-1 or. less.
appearances of M and quantifiers. lfPBofmmPl&nMwumeFvled

ke P2, both of which hase to-be praved in P, 10 that we.con sRstrict Gus. athention to
asingtedtajnm:ﬁon Wmmdmmywm,m,mtmfhd

PIV(M,)P2, Plv uk)vz PlvIxP2 or Ptv-ﬁxPz

wmke&mﬁm%mnven-&wwmwlmm betu«;
use-p to dewote (M), iﬂl,kﬂﬁxMQMbmm P

39

L is exprmlve for L{M), and so for any . W-wﬁ' Q there. s some. L-wiff Q.
which is equivaient t0 Q. We-have then F@n?ll‘ g1 pﬂi) !lowm asumm (4)

(slnce PlL and P2L are L-wffs) we also have :
] (-#i, » mx.’

| Now surely, by the deﬂnmon of PlL and P2L, we have "U (~P1 o -'PlL) and
ky (P2 3°P2). Both these st formutae haveiustban L Wd‘ﬂ and
quantmers, and hence by the tnductlve hypam :

FP(M) ‘"L 2 "”

By assumption (3) o the first clause In m {depe ‘; & on whither p is an appearance
of Mor a quanuﬁer) t@ether wm\ the pmpum mlmuw, we obtain from thc latter

('04-4-)

mm, I-Pm)(-tPl:pFZ).

From (%), (“) and (***)mgu,m~”
or. E-P(M)(Plvpm) | v

*-Our goal In the next section Is to apply this theorem i DL viewed as an

- M-=extension of L as ‘indicated above: lnpr&erwd’é this, we m i Zf i ﬁtpfﬂ!m'm.
the arithmetical universes, each of which Satisfiés' requirement

fact is proved below in Theorem 3.2,

“An amhmetical“ wniverse A1 a universe th wﬁtéh the acmaln lnckrdes the set of namul
numbers, the binary fanction syribols + dnd 17 aré fixed and giverr their
{addition:and multiphication respeciively) whiss' sppiiodss-tive-natiiral :
domain, and 0.and- 1 are fixed zeroary-order WMW as the natoral
numbers “zero” and “"one” respectively. Furthermose there:is.a:fixed unary predicate
symbol nat with the interpretation "nat (d) is'true iff d is a natural number”, that is,
for every state J - {aeD JI nat J(d)} is the set of natural numbers. Thus, we are able to
 distinguish the natural numbers in the domaih from the other elements and we do not care,
say, what the value of x+y is in state J when it hmtthecaethat natj(xj) holds.

4

An additional property we require of an arithmeticsl untverse i the abiiny to encode
'ﬁnne-mu dioments ko one clement. mmmmmm A8 "

~ as follows:

" There exists a total predicate l{x,i,y) mﬁnmd‘ A,
~ such thutfwmnawdnuﬁuakmmmhln
(Vxl....x)ummn«wumm; > (Mudy) # x=x i)
The intuition is:¢hat Mx,u) mm‘ X smMmdr ,m«thatmv fmle :
sequence xy..x mbeemudednmchng, ' e i .

Note that one pamcuhr mtbmmcnl m isthe mem N of "pure -
arithmetic” ,that is, thﬂmhMﬁMhMMmdmnl
numbers, and *, 1., 0, =mw(~mwum&m“),mmwv
function and predicate symboks. Codefs f-function fsee ¢
[621) serves as the mmmm

| ltlstmp«tammmmamymnllmhexmnmarmmetical
universeAubyauglmu\gn umy,m_ naturs mmw

apparatus for encoding finite sequences. Thas, m“«;&m of program,
written over uymup. manMmﬁ;mw

universe,

Take A tcbcmr arihestical w«nnqsﬁ&gMumww,nmw
over s, and tasts. leeﬂlﬁkﬂ! amond_ 0T, fine.
M(a. i3] SPPY) = (1) 34Cind A P, 1 ot JHON

L(M) is mly DL. ’

Wematkwcthamfmwewbemi'm&lhmmmmh |
Wkukm”MhMmm ereptad in. t qne of the @ates
satiafying P. Gomeguentiy, weicould-lave defined &M v ol A ﬂ'ﬂdﬁ? w o
ISP A M0 D). Mmsmw-nmmumwdm» '
fmmmmcn : '

%

4
Theorem 3.2: L is A-expressive for DL.

Proof: We have to show that for every DL-wff P there exists an L-wff P such that
E A(P=P;). We proceed by induction on P. Tbg;gm where P, As,an atm‘lic formula, or of
one of the forms ~Q, QvR.or IxQ- mmrm Assume P. is of the form
<a>Q for a¢RC and assume Q| is the L-wff which is-A-e ummm Q.:Denote var(a) by Z,
and by 7' denote a vector of the same length as Z whose components are distinct variables
not in var(a). By convention we can denote by x' the ehmgn: gf§Z' corresponding to an
element x of Z. We show, by induction on the structure of a, that there exists an L—wﬁ‘
F (Z 7)) such that for any DL-wff Q we have .

S e s e
R HE S

) E@Q= 3Z(E, A(QL)Z')),

where (QL)7) is the obvious genemhzation of (QL) L) vectoi's ‘of variables.
Thus in a sense, we find a formula Fo whicll Is trye of ZI ,_lgd Z' m o can change the o
value of Z to that of 7' . PR

(x(-e)QL which is A-equivalent to (QL) € or in fact to 3x'(x'ze A (QL) X).

For the case where a is of the form Buf', take ¥ ¢ (M) w be' ﬂ"‘a v FF)

Similarly, when @ 15 838, E¢g gy 1s taken to be IZ((EE A {Fg)5).

Here Z" is a “fresh” vector like Z' ktsqmum ‘,r__y,wmvenffy that,("‘) holds
for both thesceascs. Y ; SUNCIRS T

Assume @.t0 be.of the fvm #* By stmd;rd mhmqsm, usms the Of

finite sequernices into single elements of the . domain, we CaR couetruct an iteratton
formula ITRB with a:free;variable, such that-we have AT ﬂﬁ(ﬁ &ﬁZlﬂ?v), where: Z=Z'

. abbreviates the con junction:of the equality of: the:corresponding:component of-Z and Z',
ITRa(I) 2 Fg, and for any.satural number a1 we have ﬁmw ;huung strick notation)s

ITRg(n) = (3Z0) .. (3Zn-D((Fgl3 A ((FEYEE A (PP A:-,-»Afetﬁpl%'n"fl;)-

It is then easy to see that for any n, <a">Q is A"ﬁwwiﬂ(}z"ﬂﬂg(&) A (‘Qg)%'))a
and hence that F gx can be taken to be (3n)(n¢t(n) A ITR,@"”, and that’
then (*) will hold. | - :

42

Thus by inspecting the w«mrmummmw arrive at the

mmsimthatifwcanfmdmA m»mw?mm,mhthu
{a) anmmm e el
(1) Pmmmzmmym, R
ft’ PMWMW LT

W

Ay PO T

<R > <¢)Q,

and (d)wecmmW#Pf«MUﬂanwml:(a)Q
. ,amaxcqmrmmnm% I :

then indeed by Theorein 11 we have an Assbid s A2 *‘w&nyaﬁﬁtor DL. Ah
axiom system which, for mymmkmwmnnwm

Lwﬂsaumukmwkmbmmm hm:-ext :

8.2 Axiemmiization a‘;f Phe. e

in mmmnmmwmhwrm DL.
In the seqtiel A stivds 617 lny INARMILES Wvade, Wik L Yoridle sec of flrst-order o2
formutae. When tatking about arithmetical universes we will oftens want BFASSe W; Th,.80 stand
for variables ranging only over the natural nembers. We do this by adopting the
foawmgmwm me&mmwwm%mm m,ﬂm,

zzzzzz

(P(n)nw n’em o :Muuum WM wm, :
- VriPEH) stanitid for FitnartwhIpingy; e Bervcr Dttt i et umwx

‘WWMN!MMPMW e
Axtoms :
€AY mmwmm
(B) Aﬁmm Wt din
(C) [xee¥P = Px, for an L-wff N

43
(D) [Q?IP = (Q>P).
(E) La;BIP = LaXBIP.
(F) CLauBflP .= (LalP A [AIP).

Inference rules:

(6) p . pag
Q
(W) pog
[alP > (alQ
(1) PaLalP
Pala*1P

(J) P(n+l) 2 <ad>P(n) P : 1
for an L-wff P with free.n, s.. nf

var(a).
P(n) o (a*)P(O)

Rutes (I) and (J) are called the rules of imrtancc and convcrg\mu respectively.

A DL-wff P is said to be provable in P, written I'P P, if there exists a finite sequgnce

S of DL-wffs the last one being P and such that each foimuli in § is an‘axiom (or
instance of an axiom scheme) or is obtained from previous fomwl:e of S by one of the
rules of inference. o

We first establish the soundness of the inference rules which appesr in P:

Lemma 3.3: For any universe U, DL-wifs R and Q, M’#RG
it kg R:)Q then "U (tafJR :»T.‘u]Q)

Proof: Assume Fi; R3Q, and JtalR for som&JGU “Thiss for every Jeu such that JQ’ we
have SFR Surely then from JERSQ we have ,I'Q Thus, mﬁ]Q | '

W R

44

Lemma 3.4: For any universe U, DL-wif P and a¢RC, if ﬁuﬂ"ﬂttl?)
then kg (Pota*IP).

Proof: Assume Fi/(P>[alP) and JEP for some J¢U. We have to show JkLa™IP for all

- n We'proceedbymmmwn. For n=0 m.% it Ilerue?I®P if JP(true > P) if
JEP which is assurned. Assume JHa™IP. By i'u{l’aﬁﬂﬂ we can obtain :
Fy([a"IP > (a"XalP), and then conclude JHLa"XalP or ma"*‘:w]

Lemma 3.5: For any L-wff P{n) and a¢RC, where nf mar({a),
if P (P(n+1) > <dP(n)) then k, (P(n) > <a®>P(0)).

Proof: Assume F AlP(m1) 2 <adP(n}) and JPP(n), We show .‘H!(a_:"‘)“i’(0) or "
JE3In<a™>P(0) by induction on n g For ny=0 we have J# (true A P(0)) or

IECrue>P(0) which is Jeca®>P(0). Assume.that Frca®>P(0) holds whenever
JeP(m) and mg'cn <k By F,(P(n«l) > dP(n)) we conclude 3§(Jad A
FP(n)) and ng=ng nq-1. lumm ska"m&%, from whith we have zmxmm)
or Je<a™>P(06).]

We remark here that the rule of invariance (1) can be mpheed by the induction
axiom scheme

[«*KP3lalP) > (P(a*IP),
which is derivable from P, and from which, »mn P, rule.(1) can be derived.
T heorem 3.6 (A-soundness of P): For my'DL-vff. P, if "'P P then FA?.
Proof: Foﬂ&s from Lemmas 1.1, 1.7, 21, 33, 34 and 35, = I o

We now apply the gerreral Theorerw of Completeness of the previous section to obtain
an arithmetical completeness resuk for P. Herwever, i order o apply that theorem we
have to prove that P is A-complete for formulse of the forms RiﬂQ and Ko<adQ with
program-free R and Q. These two resuks, Box-compieness { Thearem 3.9) and ’
Diamond -completeness (Theorem 3.11) are obtained snelogousty. They are both proved by
induction on the structure of . The difficulty &s when & is of the form 8%, in which
case we show that when, say, RO[S*IQ is A-valid, then there Is a way of proving that fact
in P. This is dene by exhibiting derived rules (I') and (J') below to cover these cases,
and proving that they can be applied. '

45

Lemma 3.7: The following are derived fules of P:
(H') P JQ
<P 2 <adXQ

(I') RoP , PolalP , PoQ

| RD[&*‘]Q/
(J') R23nP(n) P(n+1) a(a)P(n) , P(O)'—"Q
- eetioer . Pandnas
R:»(a*>Q : o in rule (). |

me (H'): From tp (Pw) we obtain, using (A) “‘and (B); "P {-~Q =2.-P).
Apply (H) toget "P (i«]—Q ={¢}~P9 then (M wﬁe) walmm "‘P (<adP > <¢>Q)

(I'): From l- (PDII«]P) we have by (1) k, (Pﬂfa‘]P) and then using
-FP(RBP) and (A) and-{C), we obtﬂn "P (! - e |) FramPP P5Q ‘and (H) we have
"P (La*IP > fu‘]Q‘) and thus agalﬁ wml (A’ and (‘6) '-P ‘RﬂM’ s *i“

(J'): Like (I) but using the fact that from' PP !m(n)) and I'P (P(n)ﬂ(a*)Q)
we can deduce Fp. (R¢a™Q) “using (B); {A) -d' ‘(B . i

An L-wff P which A-validates the premises of (l’) is catled an invariant of & with
respect to R and Q. The concept of invariance bas -been studied quite extensively in the
literature on program vefification, see for example-£393. An L-wff P(n) which A"Vl‘m
the premises of (J') wtemammxgmtdmmwl and Q. Thaw
does not seem to have received adequate treatment.

We now show that it is alwayspombtetofhtdmkwurim:ofamkmdq,
under the assumptm that the conclusion of rule {I'} is A-vatid.

Lemma 3.8 (lnvariam Lemma): For every o R and DL-wifeR 2nd Q, ¥ b,(R-(a*IQ)
then there exists an L-wff P such that* I'A(IDP), kAC?M) and bA(i’?Q).

46

Proof: By Theorem 32 there is an L-wff P which is A-equivalent to [a*1Q
(i.e. FA(Ps[a*]Q)). Certainly by F (R:[a‘!Q) we have k¥ (k:P).
Similarly, it is easy to see that ¥ A(PSQ) and ¥ A(P:’[alﬂ l

T heorem 3.9 (Box—mpletenm Theorem) Foremy Mﬂ*&wﬁsi and Q,

Proof: We proceed by indmhnmﬁnmrevf“u ‘Assume the assertion of the
theorem to hold for any 8 which is “smaller” m.hwmmmse, and
assume FA(Rz’[alQ) :

For & an assignment or a test, {G) and (D) «redaee mm to that of “proving”
an A-valid L-wff, which is simply an axiom. .-

If & is Sufl’, then: pmdsh?ofiwmﬁ%m}mbem by(f) to

aproofnf%atﬂm MdMWAMMWM«WEy
both.

ifa rsﬂ,ﬂ' then mpme IWJQ hPln &:m»y md thm use (E)
to obtain the desired: l' A{Ro(f #Q): Cer have (34, ARp ,‘) and hence.
kA(RDEQJP) where P 6: an L-wif whtch is eqaivﬂem m{’IQ (and uisu by Theorem 3.2).
* However, R2[SIP beiag A-valid, we apply-the indudive. hypsthesis to obtain +p (RLAIP).
Similarly we can show F (PoE8Q), and M’*’ m Wﬂ) from which,
using (A) and (C), we get tp (RSIBXAN).

For thex:asewhenakﬂ,mMmLmMMgmrmﬁeuMemsm .
of an L-wff P which renders the premises of thwe derived: rule-(1') A~valid. By the -

inductive-irypothesis these can be proved haﬂ, and then sne mumbn of: (i') yiekds the
final resutt. g

smmay, under the assumption that mm of (1) 15 A- nue, we can.
always find a convergent of & wrt Rand Q’

Lemma 2.10 (Convergence Lemma): For m:-y &B@ and DL-% Rand-Q, if k,(R2¢a™Q) |
then there exists-an L-wif P{n) with-nf ver{a), such thiat abafna:hﬂa)),
kA (P(n+1) > <a>P(n)), and #A(P(O)DQ) |

-

1

Proof: By the proof of Theorem 32 one can construct an L-wff P(n) such that for every
state J€A ‘and natural number i, if n J" then <¢')Q is equivnnut ind ta P(n), This

 we can write (slightly abusing notation) as ¥, (Vn)(nat(n) o (<¢")Q % P(n))). Certainly

by FA(RD(Q"‘)Q) we deduce FA(R:ﬂnP(n)) Mhﬂy, r ‘is wy w see that the other
A-validities hold too. . . . » ~ |

S
<

Theorem 3.11 (Diamond—oompleteness Theorem)‘ ﬁ‘n every a‘lc tnd L-wffs R and Q,
ik A(KD(«)Q) ‘then "P ﬂm) L |

- Proof: The proof follows that of Theorem 39, uslng the derived duals of (C)i-(F) and
using Lemma 3.10 instead of 38. B

We can now conclude that, for’ DL-wffs, A-‘nm lnévronbﬂity in P are
equivalent conccpts . ,

T heorem 3.12 (Amhmeucat Soundnm and Compm for DL): for my DL-wfﬁ P E
FpAP o |~P

Proof One direction is Theorem 3.6, mdfﬁéoﬁnr fﬂbm fmm’fbeamm 3.1 32, 39 i

~ and 3.1, together with the fact that (A) (B) (G) md (H) are part of P. , _l

RPN ‘;';

Theorem 312 is slgniﬁcant in that it shows that a very slmple and elegant axlom
system is sufficient for carrying out the (A-vaﬁélﬁy-m‘vﬁiﬂ transtation of DL-wffs
to formulae of arithmetic, in a structured manner. As we point out in Section 34.1,
viewing the process of proving progerties of programs as supplying a proof of a formula in
an axiom system which takes all the validities of the underlying first-order language as
axioms, is due to Cook [12]. This observation then, gives rise to viewing such uiom
systems as mechanlsms for carrying out this transiation,

Appendix B contains a proof in P, of the A—valldtty of a nomrivial DL-wff which
asserts the total correctness of an iterative version of M&iﬂhy‘t fm 9l-fuactbn program.

We remark that P is also an arithmetically<complete: system: for: rich-test-DL (see
Section 2.3.3). Also, random-DL (2.3.2) is completely axiomatized by adding
the axiom [x«7]P = VxP to P, under the condition that in a -
universe A, the only x's we allow in random assignment statements of the form x«?, are

48

uninterpreted ones. Pratt [523 has speilad out the aaiom ea»he adﬂed to P in order to
co:npietely axiomatize arruy-m; (2:3.1) : :

Wea!spmhere tb:twehmuada mm"mmhmmovmg our
completenesstheemn. Thhmqum mmmkmmmermu(rm

P(n) in- ‘“‘M“mm”whkwlw«mnw oM
proof of Lemma. 38 (but not.of 310) exishs, expin

defined as {(1,$)] a,zawsn. A‘m of Wela.ob
context in Secvton 6.3. : , .

3.3 A Derived.

lnthasmmwmwmwmm:ymDmeDﬂL (see
Section &&ummwu’m’mmmmm Wang [531. DP is.basically. a
"special case” ﬁPhMmmam“mhmMﬂmwan
straightforwardily derived from, thase of P. Mewasthoiugg, one pok tuwrylmout the:
:ynﬂ»&sofﬂ?ﬁnm?ismmtywmmmm prcial-purpose systems
muM:mMWﬁmamMuR o :

Covmdermm&ngaxm:yml??fwm

o) s then @ dse £1Q. 3 (23Q) A H?m@u
Inference Rules: ‘ R e

(G) and (H) as in P,

-(:m, ; ‘?7\31 nEuJP '

PO lubie S doalPASE

49

(J) P(nsl) 2 (SA<adP(n))., P(O)2S . . |
) P 2 (pwPy POIES e,

P(n) > Covhile Sdo a)P(Q)

Provabjmy inDP Is defined as usual. o
Lemma 3.13: For any &« and § in RC, Dl.-wff Q test $?, the following are valid:
(1) Cif S then @ alte B35 = (fﬁﬁmb) A (=S 2 [81Q)),
(2) Cwhite SdoalQ * [(S".a)"‘l(SyQ)

Proof: Trivial from the deﬂmuons ofthe Aeter ninistic constructs
Lemmas NG and 17 .“ e ﬁr oo
We now show the soundness of rules (1") }aﬁd,(}') e

Lemma 3.14: For any universe U “DL-wHt’ P, ackC’ tﬁ &ﬁ%? i T'UWAS') 2‘-’[’«]‘”
_then Fy(Polwhile S do al(PA~S)).

SIS e nY vy

Proof: We have FU(PnfS:'[ﬂP)) "t&? 2 3.4 we have
FU(PDE(S",a)*]P) and hence also (PS[‘S?.C)‘](% J?A*S)n which is simply
E(PAL(STi@) - STHPAS)).

Lemma 3.15: For any L-wff P(n), test S? and a¢RC, where of sar(S7;a), iIf
hA(P(ml) > (SA;@P(n))) and. K, (R(0)2:5) M-&g@(@ 5 il

Proof: By a;sumption we: luvs J‘*(P(mﬂl ? &M@lmn ba! W 3-5 "‘“’
ko (P(n) =<;(S":a)"‘>§{q@)s)ﬂ By-the mmmmgm:ﬁwhtﬂn)
2 <(S" (S A PLO))) 0r ﬁlﬂn&m&&ﬂﬁm&ﬂés s < «l . i

.S do ¢>P(0)).

T heorem 3:.16 (Arithmetical Soundness and Comph&uw for DDL) For any DDI.-wff P
WP W top R |
Proof: Soundness follows from Theotem 3.6 tnd Lemmu 3.13{ l) 3.14 tnd 3.15.

Completeness mmmwww@mwm o
3.12, using: !l&e ﬁmwmwémammh R IRAYTROIN o a7 ST

U™ RoP, (PAS)AaIP , (PAS)SQ

t ’)’l > ﬁﬂ’ﬁiémﬂ

mzmmﬁw "

We remark that (1} is precisely m«-mmm ﬁmtng the
partial correctness of while programs. He writes Fla)Q for MP{edQ). Ali
pmwymawwsuﬁmm@wﬁar%mmmw y
correctness: of while programs.. I fact, D witheut rutes 6H): and (J*) represents a simple
rephrasing of Hoare's (273 eviginal systom.. Wi note. liwys: thet: we: Nave: s m both. these
mksmbedmmumwmmm“wmﬁwmmmma
mwsmﬂmm Mmqu DT . _

B it s

Werﬁammmwmmnwﬁm”mm
observations cancerming other axiosy: systerss. ssd prant owiiheds. for reasoming abous reguler

determm pm;rm, w&kﬁ* appear uﬁ

8.4 Reluted Work.

| The spprosch to exiomattzatior taken i tHis:thesti'ts chety relived 1o, and was
inspircd lw, Cw&’stm mof WW vanwmm up -

3.4.1 Rdwﬁw vs. mw WMQUU

Mwmwmmmmwﬂmmmmm
the partial correctiess of programs, one witidi:isbasically: a: subsyovery of BF, - For the
sake of this discussion we can in fact think of tfe corresponding: subisystem: of P
consisting of (A, (€) -(C) and rule: (1) uMsmMMka Cook [12]

51

investigated the question of mmpktmes of Hoare's system and managed to formalize what

seems to be the intuitive way in which pebp“b pméu” sciigis {partial tn t‘hu case) of
programs in line with the method juggeste

the reasonlng about thc grqcmn frqm the

£ sbouit the ander Mﬂglaﬂﬁm’ mtklﬁz a
(xsu:riﬁi he fi

requires some pr@nm-orftm vath n :
formuta, ‘wheréas'the ‘sscond dosi mot. w,w W Vas o 'supply Hodrd's system with
a generous ordéfe Which: ad'the ability to shewer quiestions conterming the ttutl'l of ﬂrﬁ '
order formuize. I this way he-was able to'shift-conceniration o Hoare's:rudes -
themselves which were to:serve ki a tool for perferming u step-by -siep &rmﬁmmtm of
partial correctness assertions (of the form Po{alQ) into equivalent:first-order formulae.
The truth of the latter is then checked usmg the onch.

_ Wenwfmmﬂlydﬁfmms[mmﬂmmumtm =
terminolegy we have develaped,. Amﬂmmwvmmm Al fm‘m
formulae as wffs; thus L. is. part of |, MA&&M aione system: for.L" and
~ denote by AXy the system AX u {Bl:Péband Fi5P):. In.other wards, AXjj is-AX -
augmcnted with all the U-valid fivst-order mum “axioms. A X8 uid*mbe
complete for L' velative to L if for every uritvarse U msch thist-h wuwmn fnr Ly
AXyyis «U-compleln for:L! {my kuwmmumuu). LR

T heorem 3 7 (Cook [12])3 H is cnmphtefur M &mﬁ Q are. L«wm}s mbuvc to L
The proef is in fact identical to tlnt d‘ our«&m-cotmm Theomm (Thm. 3.9)

Now, if we restrict oursejves to languages L' such that for any arithmetica!
universe A, L is A-expressive for L', we noteithal asithrisetical completeness is a special
case of-relative completeness; ‘we do not require:that :AXy ibe U -complete for.all
universes-U which make L U-expresive forL!,; batonly that that be thecase for any
arithmetical universe. comwiam, #n AX nowl: wetcu usscsymbols:iniways which
take thelr standard interpretation-for granted. “Thil: 1-thé fuvor éFthe usage:of. n, +
and 0 in the Rule of Convergence (rule (1) of P).

The flurry of "positive™ research which followid: Coek's:abservation, and: Weh was
aimed at providing similar mmmmmmdm e
programming language (eg. 191, £243and £473) iad inevitablyito u: Mmﬂ
"negative” research aimed at proving incompleteness resuks which indicate when Hoare-—llke '

b e \a%%mw: ,_,,.»\.wﬁﬁ%yﬂ_j‘;4.;.»“-;..'-& Sy g el LS Dy i

52 .

systems are doomnd to be immhm even in the, maum m of ka The first notable
resylt.in this direction is that of Wmd CQ?ZL whe M exentially that it is nat the case
,that L is wapm»ive t‘er ewery. mminm U. Thus ! m M thm ems uruverm u.

me th% iﬂ IA tsm
(call the tapter a. finite uninersal). Mmmmwmnm fcr

which a Hoare-like systam:can he:relalively- compivie-aee the-arithypeticat ones ard. the

finite- ones. S0 Cook's (423 requirernent mmnmmm Mtgw Umhm for
these twe kinds of ‘universes. : '

The finite universes, however, cause trouble: Clarke [101 has shown that
introducing: { into the programming: language: in- which) the-piegeems of 'lyy are written)
various Programming concepls-suth Ay precedures: S parameters-or toroutines, in the
presence-of recursitn and other: wm, mmmm of
obtaining relatively. compiete axtom:systems. The: bt i £30) 12 basedi on the fact
that tise: fiest-order language L it Al-axpremive mt*mm&mm U The
incompleteness results-are MW by-shaviing 4 8 ' 5
languages have an undecidable: mmmmmm hence the set: of
diverging programs is not re., a fact whieb would contyadict the existence of any
relatively: complete: Hosre«die aivm. sytbeds:foi mmim«m of one
implying that, in particular, the set of valid formule: of the form true=falfalse is re.).
Hence, the essense’of Glarkels ressits: o in the fhct this Mwm gﬁammms

of L is samﬁ«l by muwus th ﬂam Mm.

Tive: remmv of Lipm and: Shm eaeaw imm mlmm in a
generalization and extension of-Clarkels results, with-arthaorem (Fivesrern | in:£351) wmc&
seemns ta tie up asoquivsitnt thedwo.propmties of a pragramming Baguage - (1) ‘having s -
decidable: haling: probiem-oner Einite-universes, ad:-43 - thecansof formuine: P2{adQ over:
it being r.e: inthe set of alf MM Tor mi,ﬂvm%;&&«m m »
Ly

- We-conclude that relaxing the requiresent: mﬁ, sing. that . AXU‘M U-complete

only for all armwumcwmmm game}
msammmmmaamﬁ-m) ,,’,ﬁ'pﬁc&mm, L”.

53

) In addition, it seems that in order for axioman;atiqm of much richer logics |
like, say, DL (and the logics appearing in the nquei ‘GFoL, AM', DU* ahd CTFDL*) to be
relatively complete (i.e that they work. for finite universes too), the rules that involve =
arithmetic (i.e rule (1)) woult have to be modified to deal with the finite~domain case,

and would probably result in a system nfmh s ftt w nmnt‘ ana"‘emam, L

o We are.of the opiqiqn, therefon, that the naiu”*’
(1) the concept treated mostextensﬁdyby resea | 4 Wis
correctness ([alP essentially), snd (2) a mtujfﬁvd efet

ensure the existence of an. ehgant rehuvely ogmplm a;;mmmn of this pamcular
concept on its own.. ‘

3%

reasoning language, in order to make possible the kil of "tounth
(and lateron inR, P*eic). i x

_ Thus we feel that it is natural and mll‘to aliow the megm tnto ones

Note that by agopting the "Hoare spirit” of stmcmred, natural axiom systems, thc
remark in [67, pp. 301 "if the language is expressive’ ﬁ”ut@iﬁiﬂgw write'down a
complete axiom system for partial correctness” becomes . We are not interested
in'a one-rule system which has buikt into it essentialy tht Nﬂm of Fow to
Codel-encode any wff and how to construct the qmniut fonmh of arithmetic. Rather,
we want systems for composing our formulae step: Wf”*“m vatlous’ im&? ‘of assertions
~ on the way. Of course, the proof that these systers: #ré toiiflute Mt involve relying on
the expressive power of arithmetic, and hence might call upon the use of Godel encuding,
in turn making "the formulae .. be less than perspicubtié™T672 (as is the case with our
- completeness results which at various points require finding the arithmetical equivalent
to formulxe). Neverthiless, we believé that MW%‘MW»& ‘contributes .
considerably:to the understanding oftfie evcipts B¢ Provides ithe framewerk n .
which the natural and intuifive: prodfs one Nguwnmr onébiprageams: can be: mﬂm

€

8.4.2 Infinitary Axiomatization.

In 1970 Salwicki-[59]. intraduced:an algerithmic laghc: (AL) which is very e,mam
DL in many respects, the main differance being that ﬂmﬁmm ‘abOut
deterministic reguldr programs only: - Varieus Givedthing: of:nissrth-were followed by, zhe
researchers at Wanaw mw sm, mmmmmz m

54

the problem of axiomatizing AL. (Sne n for a survey oftheir work and [21] for a
comparison with DL.) ' '

" In this section wewmnatmmttodcﬁmkl. narwm we state myofthe X
results refevant to it. ‘We will, however, give a brief desr ‘of an i '
system IX for DL, derived fmﬂmﬁ[ﬁ] and mamphmtheorem for it. This
~ theorem is essenﬁa& duam rkows . Hie 1
(supptied in [42]) ofthe mmam i m

The ob jective in constructing IX is entirely different from that of constructing
P ; the idea in IX is to provide a syntactical characterization of the valid DL-wffs, as
opposed to the U-valid ones for specific universes D.) Cmaeqw as we shall see, IX
seems to be inadequate for proving. prop " grams whith aperate over
specific domains, and which use fms and mdm over m dqmms, lmmg their
standard mterpretatiom in mind.

IX is an axiom system, which makes use of the foMug two ladb for deaung with a*:

‘and the rule \ | ,
{ Rola'Q ,l(ze |
(o0) I

Besides these, [X includes the axioms (A}, (D), &Ei and. (F) Mnmlesfnr Vx, the. axlom
Lal(P2Q) = (LalP o [adQ), m;memc; catering for

the case where P is a.general DL-wif. Ao, (G) i an-infevenc emheﬂx,nkthe
rule | P o
CalP .

A proof of a DL-wff P.in IX is a tree with root labeled by P, in which all paths
are finite, and in which a2 node and mmmmw in accordance with
a rule of ‘inference, the jeifs being labeled with instances of axioms. : Smely, by virtue
of rule (0}, a proof-tree might be infinite; mmmm is that all pattg
are finite.

S5

Theorem 3.18 (Mirkowska [413): For every DL-wf P, ¥P iff . by P

Thus, IX characterlzgs the set of DL-wffs which are U-valnd in every universe U.
P on the other hand, is designed to characterize the sets of Dl.-mffs which are valid in
arithmetical universes. Specifically, assume A .is.some.a _universe. with.
‘uninterpreted function and predicate symbols. The set of A-vaﬁd DL-wffs and the set of

A -valid. firstrorder wffs are hotbgﬂ*:\, 1.9 Ou; axm system P "gets its

Hl power™ from ‘axiom scheme (B} Le. from’ taking the elementt of the latter set ‘as
axioms The rest of P then, can “afford™ being finttary. IX also Characterizes’a

Hl -complete set, namely the set of valid DL-wffs (see Theorem 2.11) however it geu
its power" from the infimtary rule {o0) rather than from the set of axioms (which in the
case of IX is m) We can think of this situation as a trade-off between throwing. the
bulk of the ﬂl -responsibility on the axioms or on the lnference rules.

Another way of looking at the relationshtp is to note that sinoe one can assert
the existence of infinite trees, such as proofs in IX, using finite sentences of arithmetic,
it is obvious that one can indeed give finitary inference rules to supplement a set of
axioms which includes all valid sentences of arithmetic, and still be able to assert that
a formula has an infinite proof in the IX sense.

Note for example, that the formula
(*) nat(x) > <(xex-1)*>x=0

is an A-valid wff, but not a valid one, and hence the reader should not be surprised that
he cannot see how to prove it using the circular-looking axiom for <a*> above. The valid
wff which perhaps conveys the same idea as (*) is more complicated, and in it we have to
replace nat(x) with a statement of the fact that x is accessible from z (standing for 0)

via f (standing for successor), and that f acts on the set {z, f(l) f(f(z)), -} like

. successor does on the natural numbers:

56
(£(2) #2 A Dyez;(yef(y))®Hglf(y))sy)) > Exez;(xeflx)1*Kixeg(x)) *>xsz.
This formula is valid, and provable in 1x by vire nf‘m uimﬁm of me sot |
(02 A N RN = BemtaetaPKOxeg s 1o
being provable. This can be done farmaiuwmgmmmmm,

i times to <(x+g(x))*>, thus "unraveling the loop™ enough o obisis x=2. (In fact the
pfmfsofmhdtmmamh(a}demm(ui sgain.)

51

4. Recursive .Prégx'?ams: Contdxt'fmnymmiolaogic (CF DL)_,':_

‘In this chapter we enrich the prognmmm language we !;gyg been. cogsldeﬂng by
replacing th,-. * operator with a rwﬁm operﬂer on m "‘fhu;s ina weil defined
sense we obtain context-free programs over mlinm w}%m as oppoaed to the

regular ones we had previously.

. The development of me material in this. chupuf u stron:ly atfeaed by the
analogy existing between, dn thé one Hand; the cticept-of Heiirg &5 ciptured by the a®
construct, and, on the other, that of: recurring Wbym sintplerecursive-program
construct introduted belown.<The-busic ideas: presunt-in tiwe:axiom sysiems. appéaring in.
[19] and (23] for proving the partial correctness of recursive programs are captured ..
concisely by our box-rule for the recursive program construct, much as Hoare's [27] whtle
rule is. concisely: cuptured: by the rule of invartsnes of Seation 3.8: Fumhermare, we show
that this rule is simply: sn instance:of -a prineiple of Rk [SE].. There t3 seeminglya =
drawback to our treatment, in the fact that we do notprey ide, taoks. for incuding any. klnds
of parameters in the programmying langyage, . The resson. I i oy, wanking to achieve 3.
clarification of the mechanisqu. for reasoning. abept fmre recursion Qur experience. in
digesting the literatuse op this sabject. lnd‘,,; bes thgf in most. of tgw, cases the f ‘
presentation of the basic principles suffers from being ohowred by rules for dealing wnh
the parameters (ie. rules of substitution, adaptation etc.). We consider one of the =~ =
goals of this chapter the elimimtion of these rules aad me equnman of the, stmilarity
between reasoning about iterm and recurslon. ‘

4.1 Deﬂniﬂmm.

The deﬁnmon of CFBL is. idmtktlm thu.d‘ Dl.ymthat] dmeunt set of
programs, namely CF, iswm of- W ‘ '

. Syntax:

We assume given, besides the sets of symbels of Chaptcr 2, a set © of program
variables, elements of whlch we denote by X Xl, X&, e Theset ef progrcm terms is
defined as follows: i

(1) Every an&nmxw,zeu?’ar progrs gmxfﬂlsaterm,
(2) Fora!ftermstl,.., a1 PTOgTam vark X, ymsXp 0 @, and for |

every i=l,..,n, T;;Ty, TUTy and nixl;x (ti,..,tw) are terms.

The u,X;..X (tl,...,tn) clause is intended, km;@ttvefx, to represent the ,
program consisting of an gxmimoft ‘where the appearances of the Vatbus inﬂ
the various T represent T, ulaagt: 'Fhus; we have nm recussive

procedures. The -bulk ef mmhm m,mmwmm »- m
below.

An occurrence of Xj inaterm € is m»&m»ifuum-a subterm: of the
form . j..ftl,...,t), ‘and free othverwise; i A verawith no free ocoderences of -
any program variable is cafed closed. mufeﬁmp& wa*m of the set
of terms, and ‘is obtaitved’ Uf?mmm -
XX (T €,) i5 closed. The et T, OF simpie Seriid of m mm
from T by restricting the value of nin my subterm ae m‘%‘m ugf ..x ftl,...,t)
to be at most b . _

 The set CF of context -free programs is taken to be ! the closed terms in
T). In Section 44 we sketch theextenﬂonofmmuhhﬁnmﬂwaethem

of programs is taken to be T = UmFoT At this pem though, we can omit
subscripts and, in the flavour of the semantics given below, can in facy sdopt the
convention of denoting pXT(X) by t*(f). Abo, we have need only for one program

variable X to-serve as a "place holder’. Thusj (yeypsliil: v 0TI is:n egul mmn
in CF. Contcxtfree DL (CFDL) nmmwumwwww* S

Semantics:

Al we really have to do here is define, for every a¢CF, the binary relation
m(a), over the grand universe I'; which & denotes. lnspection of the definition of CF

59

shows that in fact all we have to add to the deﬁnltlon of m in Chapter 2 is how to deflne
m(T*(f)).

For clarification we will sometimes write T(X) fer a term T which has free
occurrences of X, and mfmmmnmormmm "Amdmlyt!wn for such
T we may take’ t(u) to-abbreviate € wtth tﬂ mmnmwx hphcedty the p\‘ozrm «.

Define t¥(a) = g and T l(g) - af cfr'm) Now define
m(e*() =, VS m(c‘(fanm, |
which to some extent expwm our use of t“(ﬂ to denote pXt(X).
Examplc Consider the progmn |
& zex; ((zzo?,yc-n v (z@?w-l +X ;m*l ,ybv’%))"‘(ﬁ
which is of the form z«-x,t*m The Follewing 1s the m éw:«ﬂe

((z-O?,y«-l) U (1#07,14-1—1,
((z=0?;y¢1) v (ulo*,m-l;
((180? y!-l) u (1#0? z*-z-.l,
' Sfalse?;
v-z*i; y; o
lc-z+l;y¢-y'i)); | o
zez+l;yey'z)). o

. One can check that in any state JEN for which x 5=2, we Have JkCzex; ,ts(fcl:(’))'!iu'c,'

Jkzex; ,t3(false?) Jy=2, md for every n#3.we.also:have JHzex: ,q"(jplsc’) Yalse.
Thus a, given x=2, computes 2 in y. In general it ¢can be seen that in the universe N of
pure arithmetic, we have that m(a) is the binary retation {(1,9)! § = [(x P/ vyl }, and

thus « is a program- wmwtlng f«tm«l over the nmmm , a

One can see then, that (f,i)ém(t*(ﬂ) iff theu exuu an imeger n such that

(J ,S)Gm(t"(false?)). In other wards the intuition is zhu “executing” a recursive L
program T(X) which "calls itself” in effect at ench. appe 0 d x, tsaexammg, fnr. some
n, the program comlstlng of atlowing calls of at most "depth" n Thus, a successful

60

execution of the factorial program above, which is of the form zex;{8 u v;X;8)*(f),
is any successful execution of z¢x ;7‘;8;6' for some 1.

(We remark that in £act this dcﬁmition is in perfect agreement with ﬁxpunt semantics of
. recursive programs, as defined, say, in [4).or [5]. Using terminslogy.from these papers
our. T's are all continuous over the domain of binary relations, and therefore deﬂnlng the
meaning of #,X;..X (€y,..,T) tobe.the ith companent of the Jeast setution of -

the corresponding system of relational equations, in the sense of 43 and €261, is, by
Kieene's [30] theorem, consistent with seur defirision 'of /m(€*(f)), or m(pXT(X)).)

In the sequel we will need some additional notation to-aid 4n constructing -our
rules of inference and in conducting our meta-reasoning. ‘Note that any program «a€CF
changes the values of at most the elements of var{w), afl of wivichare variables. : That
is, a cannot change the value of any second-eorder function symbol or of any predicate
symbol. Consequently, we would like to make it possitie to talk about binary relations,
such as those represented by programs, in a first-order framework. We do this by defining

an augmented pregramming language CF' -in which. there are programs mrmm to
these re|ations. ‘

Formaﬂy, the set CF' is defined as fom

- For any L-wff P and vector of disjoint v:rilbies Z, PZ is in CF".
- Any assignment x«e or test P? is in CF",

- Any closed term t*(ﬁ'le 15 in CF",

For any &,8¢CF', a;f and auf are in CF'.

The meaning of ?PZ is given by the fcﬂuwingudﬂltionﬂ @huae_, to ghe é_tﬂnltion of m: -

m(P?) = {(3,9)1'§ =TV /711 ‘for some vetror ¥ of ehements from D g, and
o Zg/TIERY.

Thus, P is thought of as having free variables Z and'Z', where Z' {in line with the remark

in Section 2.2) is a vector of "primed versions” of the members of Z. Thus, for example,
(x,y)" is {x',y*). Intuitively then, PZ is the \program ‘which assigns ' (ﬁondemmtmmcany)

to Z any value V such that in state J P is trie of the Vl!md'Z m J and V. Thus, pZ
“achieves” between J and d the rehﬂoh‘ ind%eﬂ WWZ,Z”’

61

Example: With Z=(x) and P(Z,Z') being (x'=x v x'=f(x)), we have that
 m(P%) = mltrue? u xef(x))). . |

Now, CF'DL is defined precisely as CFDL but using CF lnmad of CF. Of course, we are
interested in CFDL, not in GF'DL, but need CF'DL in: which to carry out our reasoning. Our
axioms and rules will take advamase of beir ,abb, ln aﬂthmatkal unmrns. :
construct an "achieve program™ of thefomf,P.w,_; to cotrespond to a given "real” prognm.
Note that we could have defined GF' simply by adding P -; mum to. ihc set of basic
programs (i.e. besides assignments and tests), and then deﬂnlng CF to be the set of _
closed terms of width 1. However, we want to outlaw the possiblﬂty of 1”, appetﬂng n
-€(X), and then being "*-ed", i.e. we do not want programs of the form T*(f) in which €
 includes an "achieve” pregnm. The reason for this will become apparent in. the proaf of
Lemrna 46. . :

4.2 Rcsults.
Theomn 4.1: For any arlthmcttcal unwerse A, L is A-expresslve for CF'DL.

Proof: The Theorem is proved simllaﬂy to Tbeomm 3.2 but hm a slightly dtfferent
treatment for T*(f) is necessary. It can be shown, by the encodlng of finite sequences of
elements of the domain of A (deseribed in Section 3.1), ‘that there exists, for' every term

T(X), an L-wif ITR.(n) such that for eveiy n ITR (W) “expresses” €"(false?), in the -

sense that m(ITR(n)z) = m(Tt"(false?)), where Zﬁﬁr(t) As in Theorem 32, if Q; is
an arithmetical equtvalent of Q then an arithmetical equivalent of <t*(j) Qis
3n32’(nat(n) A TTR.(n) A (QL)Z) B

We now show that in fact RG is embedded in CF.

. Lémm 4.2: For every aGC}", , ‘
m(a*) = m((rrue? u a;X)*(f)) = m((erue?u X.;a)*(ﬂ).
Proof: m(a*) = UT0y m(al) = m(rrue?) um(kq)»t_)"m(c;c)’ d_.. =
m(false?) U m(true?) u m(a;true?) U m(u*;'a;t}r’:;c?)fu .3 U F‘ﬂm((true? u
a;X)(false?)) = m((true? v a;X)*(f)) . Similarly for the second equality. I

aﬂmgfm\.fwvve RPN S e L D B o e 5o

62

A counter example to the other direction of the fact implied by Lemma 4.2 is the
following program a€CF, for which it can be M m that there does not exist any
B€RC such that m(a)=m(#):

- (true? u (xef(x) ; X;xeg(x) 71“({)
~ Thus, CFDL falis between DL and: re.-DL (s00-Section 235). cmmmﬂy, Theorems

2.8-2.11 are true of CFDL. hwwﬂﬁim mmm fee-opin pmblamsof
Chapter 2, tokmmmamm : ‘

Open Problem: ls DL < le.?
Open Problem: Is CFDL < re-DL?

Note the analogy between a® and €*(/), wmchcmbecwwmby relaxing
~ notation and writing

o* = UT a" ™ Vo < false?),
[(a*IP = Vnla™P IO = VabeR(fulse?) P,
<a*™P = In<a™P | . AP = aaaze“(fa«?)w.

ln the sequel we wm wrm 7?2’ t0 zbbmm Aﬂ(x&x‘i, and wm assnme

that«far programs of the form. BZ Z apd T appens-in shat wrder in ftiu,- pmmmmd list
of free variables of P. Thus for example, P(Z",Z') il Al Furthermore,

 we will assume ehamwmtdawummu, &Mdt Z" etc.
oonsist of uninterpreted variables,

Weanhowwummmszumwwmmdmtm
relation represemed by a program &, mmgm

Theorem 4.3: For any universe U and GGCF' if Zﬂm(&) ;Mn

(1) k(27 2 aIP(Z,2)) i m(a)cmﬂ’?),_
and (2) ky(P(ZZ) 2 <ZT) r m(PY)cm(.)

Proof: (1}: Assume PylZ'cZ > LaIP(Z',Z)) and s (1. $) el w). We have to show
that 3=V / 73] for some vector V of elements of D4, and Mfz, /T1¥P(Z,Z). The

- by (J

63.‘

first is trivial by the fact Mz-w'(q)g Ng!..ﬁb! the glef gf m(&), and -,
since @ does not change Z, if (1,9)ém{«) then sl (1.3 mia), where P2 /271"
and §' = [ZJ/Z']’ ={Z /Z'IZ,/Z]J However, by the assumgption, since we have .
- constructed J* such that J'N?JZ'), we must mm&km@&lm,ﬂ;& L AA R
~ which is the same uumtz,/mMS'.Z’) S

Conversely, mm(c)ﬁm@z), a-:lvm mmm#u nhﬂs I*QZ’*ZL '
and that (J1,)¢m(a). We must show that JeP(Z",Z). By asspmption, (3,9)em(,
that [Z.4 / ZFWHZ,T0Y, wiich oy T2} & mﬂ,v’%ﬁ&ﬂ%’zk 9Hm
j)em(q) we knw that; ,ﬂ,/zlhm -

e PR

(2): Assume FU(P(Y 7') E) <a>7’-7)), A i (i,ﬂfﬁﬁz) V@ prové (J,ﬂt’- .
By the second as i'l‘!mw),«%m:vymmmm G ey e
‘ ({Z 1,23 Elf/].lz J)embad.. Thwn, o consomcidsithat .
- (3, [7347‘31““5 m%ﬁﬂﬁv/ém&”; mpoe Y. e genc) “‘“ ";Z,oala-
and hesce that (5§} émie). C o

N <
e

Conversety, assume m(PZ)Sm(C) md tbu for wme 1‘“ J.'P?V,Z') We show tlnc
existence of JEU such that (J,§)ém(a) and Z"PZ’- Take § to be !?'1 7713, |

Certainly Z'g=Zg. Furthermore, by the Mﬂ} mwffm:m

WWJMammwumm IP(Z,7),. tzggt (142*"'“’2) and
hm(l,})ﬂu)r; : o R

We nate that m;nm the exm dm '!' 0k AT ITMPRICIL Ih varops
places in the liverature, and *ﬂm we.mention the work on 'inclision correctness”
! “‘ [3] BopEEeTLE SRR IR R TSTEREGE N By Ny T T

Wempmmtmmub, aﬂdm\vdﬁmwc‘im“““f"‘ jes’
relations, functionais and least fixpoints. m,mwﬂmmmmmt
mmmmmm“mmmmmhmgwﬁmfm
- m(a) for some a¢CF".

Lemma 4.4: 'Fpr any &, (-CF' md term t(X), tfm(u)i;h(d) ’tﬁn m(ﬂc))ﬁm(ﬂa'n

, Proof: Thisiszhem«outd&ydwrt‘somthdomdndmmm,audwe; 7
- omit the standard proof. B

RO 4
! .

64

 Lemma 4.5 (Park [511): For any a¢CF* and tekmy ’C()ﬂ, tf Mﬂt’)ﬁm(d)
then m(f"‘(ﬁ)‘iﬂd)

This is Park‘s €513 Fixpoint Induction Prmcm

Lemma 46: For every @, @),-€CF’, and term < X) if m(uohd and if furthermou
for all 20 we have m(*a‘ +Iﬂ=wi('ﬂ&iﬁ, then hr nit tt&, m{afaim(e?‘(ﬂ)

Proof: By induction on 1. for :=9 we have m(alltuit(co&im(t(fatsc?) e

(U™ 2o mf c"(fazu")))~m(T*(f)). Asstfne e,)mt"'fﬁh s0 that by Lemma 4.4
m(t(ail) em(T(T*(£)). Thus we have m(am) cn;(t(c‘))cm(t(L | j))) However, ‘

.one can show by induction on the structure of T. tm ﬁ(u ﬁ?" (jdbe’l)l =

n-O m(T(T"(false?))). (This follows fron the: continity oY over-the domain of
binary relations; cf. [51. 'We note that this would Nt have beer trae in mrﬂ if CF*

would have allowed achieve programs of the form Pz to appear it the tdirhsl) And so we
have m(ajﬁ) cU® nel m(t“(jalu?)km(t*(ﬂ) l

4.3 Axiomat!satian of GFBL. _

In this section we preserit an amhm:ﬁy mm system R for proving
the A-valid CF'DL-wffs; as a corollary, of course, R is arithmetically complete’ for: CFDL
too. In the sequel then, A is any arithmetital uumm, and we adopt the same
conv,entions regardlng formulae with appeaunas “of'fi n, ,_Mmﬁh 3. Mso the

"achieve" program correspmdlng to tbe L-w{f P(ﬂ Z 2'7 w’ﬂl be ed ﬁy P(n)%.

Consider now the foquing axiom system R for CF'DL.

Axioms:
(A) -(F) from P

(K) CPPIQ= (YZ'UP(ZZ) 5Q5) fork-wifsPand Q,
(L) (P :[t*(ﬂ]Q) > ((PAR) ::[’c*(f))(QAR)) * where var(R)Nuar(€)=4 ,

Inference Rules:
~(0) and (H) from P

(M) z'sz, > Lcu@)mz',z)

w‘ﬁl{‘b m(f) et L
TZAHPILZ o
() PlehFFY2 &t&g(g;zngw " J#&J) ,&ﬁrﬁm P

ki e

PnLT) 3 <c*(ﬁ)2¢2' L i o whepe Zauet

ProvmumeiSdMlsM The nmiton. 0 e
“carrying” nmammmmmmmwtvdk. We now
establish the mmmormmmm—p , PRI

Lemma 4.7: For any L-wﬂ’s T M P(7,Z‘) CF’D!.M&& Qms,m <(X), the
following are valid v

(1) EPETEE (VENMET) m" Yy

(2) (S :[tﬂﬂwaw‘(xﬂﬁw m'(l)ﬂm(ﬂ"

i“%u‘\,"‘

pmj Scmgmfmrd fm the: m L l' -

Ead R O O P A RN TR YT . - T
“' % ‘«3;, ;‘ f-,;- R4 T AEREI AN TR DRSS S

Lemma 4.8 For any ummib.;h 0GR, 5y WO ‘ Sadbiasal
my(7ZeZ > LA PRIMZ 200, then, tu(FEENAMZ 7))

Proof: By ‘Yheﬁm‘#ﬂ)*h’ pattugsis/ s sieigip ek BL
principle { Lemma45) nm m(t"(ﬁ Sl Pt)

precisely the conclusion. o
me 4.9: For any L-wit PW.@)’MM MM)MMﬂs
kA POZTY m*fi-**(mzwu“ Py iy s E

lnA("(" ’ 7" ""

- Proof: One can show that I'Aﬁﬂﬂ,*z,ﬂ ﬁ“ﬁw i ’
Funm by T mg socon
- m(P(ns)?)smmr(ui*ﬁ »i‘m&

R g AT Ty R P U e
5 R L . 5

Wt

66
Theorem 4.10 (A-soundness of R): For any CF'DL-wff P, 4f 'i"ka? then & AP’.‘)
Proof: Follows from Theorem 3.6 and Lemmas 4.7, 48 and 49, ‘W
- Again we will. apply Theotem 31 to prove: the aritfimbtical tompleteness of R, bat
we are required first to prove the appropriate bx wmmm
These will be estiblished with the aid ot~

Lemma 4.11: Thefauomngmdmveamcfﬁmzm»msm(m and(zﬂ)t =

(M) Z'=Z:[t(PZ)3P(Z’,Z) g usrﬂw

RoLE*() T

(N') P(n+1 7 7-) 2 <l P(n)7)>7-7' wcoz z*) n::a-mn)zm

(S ik

=<c*(mQ

Proof (M'): Assume FR(T"Y o [t(P7)]F(Z',7n We w&y (M) to cbttiﬂ
FR(Z'=Z > LT IMZ 7). Uuing dxion (L) ﬂte*g(m A

(VI P2, 7) 500) > [eAUPIZ,Z) A (VEH(PT, m:o;"m) from

which we deduce (V) (P(7,2)205). amﬁ T by andoen (K)
and’ the'décond -assumption: the: cohdsion m s
(N'): Simitar to (M"). '

Note the similarity between rules:(1') -and ifﬂxﬂm&'lw'm@gm, and (M)
and (N') on the other. Here too, for the [£%f)J mwammmg,mm what
we might call an "invanam P under the application. of T, mﬁ ?;getmen Rand Q in

the sense of Rorp” ‘1Q. For the(t“(ﬁ)cmmm eamm themunb:rofapp&cmom
oftmkrmwkmmmamwmﬁ’)

We now show ttm tule (M‘) can indeed alwzys be zppund when m camlusion ls A—valld

Lemma 4.12 (Invariance Lcmma for CF'DL): “For every tetm T(X) ind CFDL-wfts R and Q, if
&, (RSLT¥(£)1Q) then there exists an L-wif P(Z,Z') with Zzpar(T), such that

F A (R3LPZIQ) and ¥, (Z=Z = tx(P2)IP(Z',Z)).

cmps e o s - v e

67

Proof lmpued by the way Theorem 4. is provad is the faq that there exists a first.
order formula of arithmetic P(Z,Z'). chh repm the pra Xam t"(f) in the sense that
m(PZ)=m(£*(£)). Certainly then, by the assumption, we have b ofRAPZIQ). Alsa, ms
" noted in the proof of Lemma 6, m(c(t*(m)m(f*(m, and iﬁ“n have m(t(Pznr-fm(?d),
which by Theorem 43(1) s by (Z<Z 5 Te(PiyIP(Z2)).

T heorem 4.13 (Box-completeness Theorem for CF'DL): For evety aGCF' and L-wffs R and Q, if
S l'A(R:[aJQ) then FR(R:&JQ)

Proof: The proof follows Theorem 39 precisely, but um Lemma 4.1“2 and rule (M')
instead of Lemma 38 and me(r). f ‘

Lemma 4.14 (Convergence Lemma for CF’BL) For every eermi‘fm and CF‘DL-wffs R and Q, if
E A (RXTH(£)5Q) then ‘there exists an Lowfr POR;ZZY) suckthat S

b\ (P(n41,Z,Z) o <t(P(m)Z)>Z:2), FAP(OZZ), s b*(lnluiP(n)z>Q)

Proqf Again, by the mqelmd u;ad in ;he pmaf of Thmem 4.;, rthere exm; an I--wﬂ‘
P(n,Z,Z') representing t“(fdu?) in the sense that. for avery-n.we have

m{P(n) ‘)ﬁm(ﬂ“(fuu!)’) k is easy to see that all: mmvmm
hold for P. 8 ! ,

T heorem 4.15 (Diamond—completeness Theorem for CF'DL): For every aGCF' and L-wffs ll and

Proof: 'Precisely as Theorem 3.11, but: uﬁng Lemma 4.“ and mh (N') ‘Instead -of Lemma
3.10 and mle (.l‘) SRR ‘I

Here too we conclude that for CF'DL-wffs, A-validity md p’tonbﬂky iﬂ\R are
equivalent concepts: '

T heorem 4.16 (Arithmetical Souadnus and Cmnpm for CF‘DL)a For evcry CF‘DI.-wﬁ' P,
- By P out kP

Proof: One direction is Theorem 4.10, and the other follows from Theorems 31, 41,
4.13 and 4.15. | |

68

We remark that the Tad part of R, in particutir the derived rule (M), conveys

_ the essential ideas appearh‘lg‘m the axtom systems of T193 awd 1233 for’ 'ﬁmiﬁg the
. _partial cotrectness of recirsive programs:: We have csstntiilly ‘sowsy that the: central

- idea in 'these axiomatizations (refeved o in [23] as.the. “freeaing of the yariables”
method) is in fact a rephrasing of Park's [513 induction. mmu ma]ogk:ﬂ framework.
Rule (N) for <T*(#)> is very similar to the rute in T63) for mme total correctness
nf deterministic recumve programs. . :

The results in this section indicate that reusonm; about ™ pure recursion is
analogous to that of reasonmg about regular ones. Here we are using | the integers to
_count how "deep” we are in thwmon (mngP{a) '), whege ; forq"‘wecountedhow
“far™ we are in the iteration. Other than having to devise the P machmery, there was
. wo real.-difficulty -at: this point in extending the methods of Chapter 3 to recursive
programs. In Chapter 1, though, a mmdtﬁbmmbm necessary. .

An interesting remark, ‘which we do not efaborate upon ot Justify farther here, is
the fact that the proof method for formutae of the form Ro[aJQ which is incorporated into
R boits down to Floyd's U113 inductive assertion sithta widt 16" Matrss and ‘Wegbreit's €351

" subgoal induction method Tespectively, when regular Program: we trirstated ‘0 Tecursive .
ones via the two metheds: appearing-in Lemms 4l MWMWM
~ two methods shows up nicely as stemming from twé:dual ways of viewing a®. :

4.4 Mutual Recursion.

In this section we briefly indicate how mm.m,umm of Section
4.3 to the case where the programs can be mutuallyrecursive. Specifically, we consider -
the programming language MCF (giving rise to the hgic ucrm), which is the set of all

simple-closed terms, ke, T B "’poT

We do not provide here a precise definition of m(u, X)X, (tl,...,t)),

‘but ratherasstiné that tive reader is fanviltar with the standard-définition of 1t (cf. [3)
or [261) as the i'th component of the least solution of W# syshém of ‘rejitional equations

69

Xy = € (XpmXy)

x & t (xl,ﬁ-,x“),
where the ordermg on the binary re!atlons Is that of set inclmm

The axiom system MR for MCPDL is mmwaﬁnww R. Axiom (L) is
rephrased for a general p-term as

(L) (P:’{“ixr’x (tl,..,t)]Q) > ((PAR) ::[p l,)fn(glgm,fga?J(QAR)).
where vdrfk)nvar(tlu.,ut)=f. |
Denote by " j(l,a) the prognm

ijl--x, lxi*l"'x (tl(xp-a ..pﬂtxplrw’x)ﬂ-r‘w;c (xpwa -p‘v pp“"x))

em,'_

" (i,a) is the program g JXI...X (1:1,..,7.* ') in which the fii*pe ; mm :
replaced by the proe‘um «; wherever a ctll“ h made w thk pmadure, tn whlch cue t‘
is to be executed a is exetuted imtead. '

The rules for the recursive constructs are

(M) Z=Z .05, (y (1,PE) oo,y (1,P2) P (LPE) e (1, PPNV IR(Z)

77 2 Dy Kol Xy i)y € XX IPCZ)

where Z=var(tlu.uth)-,

(N) |
P(nel,7,2) 3 <€, uy (1, P(R)Z) ey (4, P(n)zhﬂm?z*;imﬁ,mn)z‘)..-.u,,(l rmA»zT |,
POLE) | ,, , |

57,

where l:mr(tlu...ut) and nf nr(tlu..ut).

ltshwhbemdthumﬁmhsﬂmmmemdkn

One can nowmmrm byadeWmmmeM '.

Theorem ﬂIZFﬁM -MOFDhowil P, . akﬁ R ‘ﬁ *’m? o

We remark that ruk (N’) m febwwr mm
correctness of roeumvc programs.

n
PART II: Computation-'l‘reo Bmd'Logics.

8. Computation Trees, o
~ Total Correctness and quknt Pmmlitions.

Up to this point we have been devehptng mathemgucgl ‘wols, namely the various
dynamic logics, which enabled us to write, dovm aad pme 1 &formulae which made
assertions about programs. I Section 2.2 we commented to the amnt'.that some ,
conventional properties of programs which have. inmuive(y phuﬂble meanings, luppen to
be expressible as simple fwmulae of dymmlc logic.

In this chapter we show th;t an imponmt_pgoperty of &gregram, namely its so -
called "total correctness”, does not have a strai Mforward intum mgmmg, and | that v
its definition. requires careful analysis of the notion of "executing” a program. In Tact,
the definition of the total correctness of a pmgmmdcmd: upon the particular method of
“execution one has in mind. Consequently, it i net at ail clear & priori whether this -
property of a program can be expressed. in dynamlc logic. "An upshot is the fact that the
closely related notion of the weskest precondition (wp) of a program, skhough introduced
by Dijkstra in [13] and. used extensively in the lterature, has not teeelved aproper .
definition in [13] or in [14]. The objective of this chapter is to cllrify, and to preclsely
define, both of these conccpts.

_ In Section 5.1 we motivate and introduce the problem. Section 5.2 contains a
refinement of the binary relation semantics for our programming language RG, using
computation trees, and giving rise to the two lmpornm mqepuof divergingand
failing. In Section 5.3 we introduce four plausible methods for executing

nondeterministic programs, by descﬂblng four method: for‘tfavming oomputation trees

in search of a final state. Thc mal cornctue:s of 'Y mog‘nm is thea ﬂefwcd as bcing
dependent upon these methods. in Section 54 ‘we use tbm iqm to define the o .
corresponding weakest preconditnon whlch siml!a epends on execunon methods, and to ’
analyze each of the four resulting w{n as to whether tbey utis(y the p,ropemes required B
of Dijkstra's wp in [14]. We find that two of them db_ Then, in Section 55, we define
the guarded command: language introduced in (131, and carry out a formal amﬂysis aimed at
showing that Dijkstra really had in mind one particular potion of wp, which corresponds
only to one of our four execmion methods, namdy dw-ﬁm qe;rch wjthout backtucking. .

T2
8.1 Motivation.
Let us look at two examples.

(1) 1t is easy to see that any DL-wff P(a) invelving thcmmwariubkn has the
property that P(f) is equivalent to P{#") in emy state, um B is taken to be (x«e)
and 8' to be (x+eu (yhe'i{dn) This is sim echuse ¢)mi;ﬂ‘) ‘iﬂmvcr, we would
like tobcable to state ehmfa‘u exemm*by“f m
components of the U connective and exeeuﬂns it, the %K\(y«e’tfcln") happem to be
chosen this “execution wifl not minm ’ o

(2) Similarly, P(y) is atways equivalent to P(7'), where 7 is.taken to be
(x+e) and ¥' to be (x*—e,(whx)*) Here too m(‘r)sm('{) but we would like to
be able to state that #f (xex)* is executed by ‘ ¥ hrod
at each stqp either terminating or exmﬁng xl-x,

» * o S OMETS R
XX\ < J

then there is a pessibtmy of never cheomg to termimtt md hcuee ezecuﬁng XX "for)
ever .

We would like to refer to the phenomenon illustrated by enmpfe (l) as afcaurc
and to that illustrated by (2) a2 ducrmce. ,

lntyitlvely, a failure lndncates reaehing a false mt m no tmmedme '
alternative at hand. In exampk (1) above m order w wrydnthe tkemative xt—e when

faiture. Howevcr, ﬂte if P then @ cln’ mmt which ,
234), shouldnotcmtainafaikm” oneﬂf&eiﬁ

what is more popuhrw cauan"kfinmw tatign that does n
termlmte 'fhue twoeomnptswm receivefemﬂ‘

What we are interested in deﬂmng isa pudse ml’:ien of me m_al correctness
ofaprograma, withrewwamrﬁmslmde,hm piwitively that whenever R is

<3

true, then "no matter how & is executed” (i.e. "no matter how choices are made") it is
the case that a will indeed terminate in a state satisfying Q. 3: might seem plausible at
this point that we would want this definition to be such: that B.and 7 are, but §* and
4' are not, totally correct with respect to true and. true., ‘ln other words, it might

seem that the possibility of either diverging or failing
“totally correct. We will see in Section 5.3 that this ﬁ’ht theicase, In fact, we will

show that the four possibilities obtained by having the pm of a dlvergence/ failure
affect / not-affect. the total correctriess of A-progiaet, corr 3 v
different methods of execution of nofideterministit’ pﬁqn&s.

- We now set up the technical machinery we need.

5.2 »-Gamputaeién Treas, Diverging wﬂl’%ﬁ!’ng.

ln this section we introduce the notion of the 3mpmrm tree'of a program a, .
denoted by ct(a,J). We'present some pmperem ormmﬁon mu“md n pammhr
show that one might view compatation treés as an ‘Alernitive S ‘thesetof
regular programs RC, consistent with the binary rchthn semantics. The trees however, n
addition to the input-output information, mmﬂchm*fﬁrﬁimmw contain -
‘information regarding the presence or absence of divergenm a\d fui\ures.

Each node of ct(a,J) will be labeled with a state in T' or with the’ symbol F
(denoting failure), and will be of outdegree at most-%. ‘The root is lgbeled with J and
nodes labeled with F will always be leaves. The intuition is that a path from the root
represents alegal computation ‘of &' starting in state’ 3)\Wﬁy,’i Jeaf" rqmm a
termination state if it is labeled with a state in T, or a failure if it is labeled with
F. Any node with desceridunts: npresent: an mm state of @, [fa nbde has two
descendants then there is, so to speak, a choice i5 Yo Wow t6 "continue execution®.

A node will be represented by a pair (1,1, Mm!t is & finite string over {0,1}
describing the Iocation of the node in the tree by 0 dMng 80 szt and) B go right y .

example, the tree

Is represented a8 {0J0 (01,0150, (1,F),610,9"1), As cam be seen, A, the empty
string, marks the root of the tree. By convention, a single descendant. is. marhed as
"going left”, ie. by 0.

In order to define ct(a,]) we first define a preliminary m. petla,d) in which
every false test will be indicated by a fallure node. ct(a,}) will then be obtained from
pet(@,]) by deleting those failure nodes for. whish there is.air. isWnediase nan~fadlre-altemative.

'Formally, for any J€I' and a€RG, we define, by induction.on the structure of a,
the preliminary. computation tree por{@,J). to he a.subset.of {041 x (I’ u {F}).as
follows, where we use |ta.range over (T' v {F]), and s, t,—mm over. @JE"

(1) parlxee,d) = {00,000y /x30)),
(D} it P

(2) pct(—«:P:?;J,)‘ =)

Q) pct(qud,l) = {(X,J)}u{(m Dl (¢, ¢per(a,J) Ju- {(h,m(,:,ne#:(a J)},

4) 'Let E = {(6deptadl aern(mxo,mm;;l;_,«;mm,smmu)u,
o : and ht G = perl@,d)-E Then. . -

pet(a;fl, 1) = Cu {(1s))] (wuc,:m A (s,1)% ,;wu, ._
(S) pot(a®,1) = perl(true? u asa®),). |
Note that clause (S) might give rise to an infinite tree.

Now obtain ct(a,]) frc;m pet(a,]) by deleting some of the failure nodes as follows: for
any t€{0,1}* and J¢T', replace every pair in.pet{a,J) of the form (t0,F), (¢1,§) by

()

(t1,9), and of the form (t1,F), (:0,§) by (10,§). Thus.we ave ignoring false tests which
occur as a component of the U operator, when the other component is not a false test.

Examples: We describe by means of simple diagrams, some computation trees for various &
In each case, whenever they are not identical, we giveboth tfig preliminary tree pet(«,J)
and the final tree ct(a,J). In all the examples J is somk fixed state of the arithmetical
universe N, for which X 4=0, asid in the diagrams we let { denote the state [1 / x1J.

o | pet(a,d) ct(a,J)

x=07;xex+1 U x<2?;xex42

x=07;xex+l U xo#0?;xex42

x=0? U (x=0? u x=07)

16

xex+1;(x=0?7 v (xex+1;x=17)) 0 0

(xex+1)*

(x<2?7;xex+1)*

(x<2?3xex+1)*;x=27

Thus,xheemmmm-i) anmgmmwmﬂdw S
and whil& P.de 8. (see Se:cau 23&1 »mmsmw thm;hwnhvmtm i
insidcﬂor-r b : & Hag o
Lemma 5,1, For every afRG, Ie(FulF D and J¢T, -

(1) there is a unique node (A} in gt(a,d) 59({ l’,ﬂnﬂf N, L

(2) for every t€{0,1)* there is at most one node fn. ct{m,J) of the form (t,1), ,

(3) for every t6{0,1}* and b€{0,1}, if (&,!)MGJ) then (t,’)ﬁa(l,ﬂ fOl’ S

some J¢T.
Preof: Omitted. :]
Thus, for every @ and], ct(a,J) 52 nonempty, pasibly infir ‘:‘qtree of ﬁnm

outdegree with nodes fabied wjth etements of TU{F), Nodex of the
(t1,1) are called dcxmdmso?anodeof&g_fai\}' . no ¢
is called a leaf. By Lemma 5.1(2,3) all nodes Mfﬁﬁiﬁm&;‘ feaves.

We now show that computation trees subsume the bmnwmncs of Chapter 2.
Theorem 5.2: For any a€RG, (J,9)em(a) iff ct(m,3) hasa teal Tabeled with §.

Proof: By induction on the structure of . f I&‘m%& “' 333}; and by
s(a,J) the set {J| there is a leaf of ﬁ.ffa, e WW S prove first that Ja
= s(a,J), and then the result foﬂombymmmmm fmm fd‘(l 1) to
ct(@,7) does riot delete any fodés which dantHibiow ik wles). |

RV T
¥

18

For an assignment, we have J(xve) = {[e, / x1J} = s(x«e,1). For a test, if J**P
then J(P?) = ¢ =s(P?,]), and if .ﬂ‘? then J(P?) = {J} = l&”i‘)

Assume Ja = s(a,]) and Jﬂ = 5(8,7). Cerm:ﬂy thai by definition of
.r.—{(t,gnses(a,gn Gmmnﬂy,mecmmﬂm a(;;l,.‘l) z
(Usfs(a J))G(a,S) s (Uyﬂya))a’ = {3" (”}(w A M) = J(a;B)..

Similarly, one can show that s(a*,J) = U ,03(¢ ,3)* U J(ln) = J(ﬁ*) |

It is therefore the case:that, with J rangiog bverf the leafs of ct{a,]) which
are labeled with states convey the input-output information contaihed in the binary
relation m{ea): Nete that Kithis Franewoiic TR Pl alistiRs>Mhe eivtévie iy e, 7) of at
least orve 1esf: Litseled with ' Jtilte Whitl:iathFity P:- Siady, JPERP wsterts that P |
holds in any state which labels a leaf in ct(a,]). However, ct{®,]) contains mach-more
information than is contained in m(a). In particutar we pow Mm, for wery program
a¢RC, two Boolean constants loop, and fail ;. wiidht sve s ‘vl etié v

being true in mtehfruwa b ‘*MW

Formal?y, we define

JFloop,, iff ct(a,d) is infinite, .
Jefau, it ct(a@,J) hasa mm with F.

lemma (see [31]) to

'Note that, ct(a,]) being of ﬂntte wm ‘“Clﬂal ! L
conclude that in fact JHloof, T there exits an inftnbe park tro th
there is an lnﬁm;e mmm of Mﬂ lﬂ a(q,Jf gt

0, (o2, (byog,dg), (g3,
Hence the term "divrrgenx';gf'.

'An interesting problem is that of detemlmng ‘how hard it is to decide if a
program diverges for unmpmed ﬂmqm Fmﬂr

Open Problem: What is the degree of uﬂdecidahimy of &he m of valid formutae of the
form P::loopa, where P is an L-wif 7

M

We now prove some pmpmluwloo’a and Ma which wilt be needed in

Section 54. However, the main logical treatment of thue conapts wﬂl be glven In
Chapters 6 and 7 : ;

Lemma 5.3: For any «,aenc mefotmmmnmz SR

(1) loopa a (loopa v <¢>toop,)
(2) faily.g > (fail, v(a)faﬂa).
(3) fail, : faily.p

(4) Calfalse > (fail v loop).

Proof: (1): Assuming JHoop“ ;ﬂ consider an lnﬂmte p;th from the root in
ct(a;8,7). It is easy to see that either that whol!pu‘h\ el g(c J).orl
finite initial segment of it does, and the rest (i.. an infinite pnb) appears in
ct(B,d) for some J¢(Ja). anvenﬁy an Wm{gwpam in, either Q(Q,J) orin
~ct(B,§) for some 36(Ju), yﬂl qlway: ;how up kra(u,ﬂ,’) . ,

(2): Constder a failure in ct(a,ﬂ J) and’ asmme that .ﬁ--»jcu and
SF-fail for every §e(Ta). 'Fhe F-node in ct(a;B,7) W in pct(u,ﬂ,.”, and |
also in either pee(B8,]) or in pct(ﬂ,,) for some Jé(Ja). However, for it to have been ‘
. deleted in the process of constructing ct(a,J) or au.ﬂ, & had to mn appeared (wlc)

ina subtree of the form

This subtree appears also in pet(a;8, J), and the F-node would have had to be deleted
from it too. . v , ;

The proofs of (3) and (4) follow similar reuonmg,andm omitted B | |

Note that a counter example to the other direction of Lemma 53(2) is obtained by -
taking & to be (true? u x«1) and § to be x=l? When xlso we have a, J)fm(c) and
Jl‘failﬂ, but JF-»falIa . -

80

5.3 Execution Metheds and Total Correctaess.

In this section we define four algorithms for traversing the J-computation tree
ct(a,]) of a program a€RC in search of a final state; Le. a Jeaf of ctf(a,]) of the
~ form (1,J) for some J€I'. The algorithms will owtput.this state §.. Fhen.we define the
_ notion of total correctness of a program & with respect to wput-eumut cmditlom R and
Qasbeingdependentupmtheme&ods. ‘ :

We use informal terms for describing our algorithms:

Depth Search (D): Starting from the root of t{a,]) proceed down the tree by moving
from father to son. Whenever a node with two sons is reached ome. of them is chmen

nondetermlmsticaﬂy and traversal continues on ix. 'I"he m mmlhates when a leaf‘ is
reached ; its Libel is takéd as the'result.

Note that if Jkloop,, holds then, using method” fﬂ) lt mm Be the case that the
particular sequence of choices madeé slong the way y ‘will result in the tnverhl proceeding
along an infinite path (divergence of u) anq hence mver tcmunaung Msa if J#faa

holds, then that :equem:e might rcwlt in the trtverst! afrlvmggat a fatlm’e leaf and
thus producmg F as the rewk '

Depth Search with Bachtrccktﬁg (DT): As in (D) the &!‘férém being that if a leaf
labeled F is reached the procedure backtracks to the mdst:recent choice point and tries
the alternative. If that has already been tried it bamkm:he next recent one
and so on. lf the tree is exhausted this way executihn’teﬂmm with F as the

: result

Note that here tdo, J#loopa implies that the traversal might continue for ever along a
divergence. However, the existence of at least one non-F leaf {which can be asserted by
JE<adtrue) guarantees that even if JFfait olds the traversal will not end with F as
the result.

Breadth Searcln (B): A nonnegatlve integer k is chosen uondetermmistically Startmg .
from the root the procedure moves down the tree from father to son. Whenever a node
‘with two sons is encountered track is kept of both akernatives by working in parallel,
When any leaf is encountered its label is added to an initially empty set RES. When
" depth k of the tree is reached, or when the tree kas been exhausted, RES is checked

£ e 2 R TR e e e e RIS G 0 2

81

for emptiness. I RES#4_the traveral terminates and. an elemgntnf RES is chosen

nondeterministically as the resulf.. Jt 8554 mdmms has pot yet ¢ been exhaugted

another integer k'>k ischosen nondetermipistically. agg;hgmme W‘”““ as
~ above. Otherwise the procedure prmina ,w&l\iuxmw o

(Remark: the mechanism d mc:odmm; a chuogqtgnm knmmm in orqer to.. S
render each leaf a possible oytcome of the ng) e red w-ﬁrst mh
- would favour higher leaves.) :

Note that here if, thatl _holds then. the F smhq; m gnd u,g the result, asa
consequence of a particular choice of k- wdocmmmu& jlms: Jfat least
one leaf (F or other) is present, then even if Thjoapg hoids.the procedure. s |
guaranteed to terminate eventually because RES will MW at.some-point. .

Breadth Search with Ig'uortng (BC)S As in (B), the diﬂ'm m thlt if an F-leaf is

encountered the symbo! F is not added to the set IES.

Note that here, if at least one non-F leaf is premt, mkher can the truth of loop“
in state J result in the procedere not halting;- n&mﬁ mmw;utém 3 muk
in the procedure pfoduch as itsresult, | : -

~ We remark here that | Ilu four. MMS pmpd fm U&Eﬂ meqn; Y mmpm list, .
. Qne can think of other methods, such as “left-first ‘search”, , in ‘which the left branch is
‘always tried first. We foel, however, that the four we-descrid g senvesent the reasonable
- “fair" muhod: in which no.specific cmp ef Jeaves. hmgwmrd qver, umm»

We summarize the remarks that were made after mh rmthod was described as
follows, where the entry 0 for a certain method under divergence {resp. fatlure) means .
that even under the assumption Jecadtrue, the fact thet. MJ@ #ﬂ.) heids
can result in the procedure failtng to produoe a ﬁnll state ’d‘ u its result:

ﬂcﬁm
0 0

3?36

1 0
11

-

82

. We now take a close look at the sought notion ﬁ%mﬁectmss. We would like
to define & to be totally correct with respect & an W idition’ N and: th output
condition Q if; Intultively, staring execution bf o i’ 2 m m‘wich“a 5 -true will :
undoubtly result in that exectition terminating i 4" 3ate Tn Whith Q+i8'trie. “Assume that
J is a state such that JBR holds. Forutebemiiywwm‘mpmtokmd Q
there ceﬁtailﬁy must &iﬂt /emﬁﬁwm %m s guisk thie Ihcadrrue
holds. Furtherinore, alt:Such. lafs aré v i R e lbf‘Wﬁitofﬂwar
procedures described abeve. Thm we requm ln adw that evély ‘ate with which such
a leaf is labeled should satisfy Q; motlmmamMMtohold It is now
quite ev:dem‘ ‘that in order for a Mveﬂﬂ, uiing: one of thé four tieshods, to be

guaranteed to Yernile j%wﬁn&&ﬂw%&m W have 10 Tequire that ct(a,J)
be free of divergentes or fiiihiires: EMWH‘;&‘ ’ ‘jj’[‘hmvebmdmgm!umn
for that method in the sbiove:tibh; £ gt T

We- thus arrive at mmw
Definition: Civen a umvem U, a pxcgrm aélc md fmm & am Q, we say that aits -

'D-torally correct wrt ltand Q tfﬁ ll && SMM WA Wh 3 Wi))a

DT -totally correct wrt R and Q f l- j (R 3 (<odtome: (oI wopy - Dy
B-totally correct wrt R and Q iff ? (R > (<adtrue A Ecn A "fq!lla))y
'Bc«-rmﬂyam mkand@ m‘ ﬁgﬁ@ﬁww{mﬁ it S).

In the next section vie use %MﬂMﬁ! ordes to'defisie the mm of the
weakest precoridition: of i prisgram-aw if*mﬁwmw wmmmms
[131 notion of wp{a,P)

T

5.4 W e;kost Wham

The notion of the weakest preconémon nf a pmgrm « wtth respact to a post
condition Q was introduced by Dijkstra [13] mmﬁw mt

(*) "We shall use the notation wp(aaQ) to denote the weﬁest gr&mduion for
the initial state of the system such that aclivation of a5 guiranteed to lead

to a properly terminating activity tnvingm :yihm in a firfal Jtate satisfying
the post condition Q." :

a3

Here "weakest” is in the sense that wﬁ(a,Q) is to be the largest sgt of states each of
which has the property that activatian of a un&ng froﬁ) thag sthte "ls guarameed to
lead to ... etc.™, : _

Other than (*), there.is no formal deﬁnmon‘ af wp(a Q) either in [13] or In (141
However, cm contains us@tﬁi&ﬁy*fmr properties thi ﬁ &f uﬁsfy’
PL l' (wp(a,falu) E false),

P2. if E(P>Q) then F (wp(a,P) > w;(c,Q)),
P3. k (wp(a,PAQ) % (wpl&,P) A wiW}DY,
P4. (continuity): for any arithmetical universe A, if .'A(Vn)(P(n) 3"("*1))

then k, (wpla, anP(nﬂ L (ﬁ‘)&ﬂ‘i,ﬂ)1)3

aré nf. uurfa)

Our plan is to precisely define the notim opr(&{;Q) u b&ll depehident upon t!‘ie four
execution methodls of Sectioh §3, ind then to Ww m %t"iﬁd faur fesulting Wp's
satisfy P1-P4. -We will show that those corréipdl iding 15 IOV D avd DT ‘4. However, %
the next section we introduce Dijkstras gwrd«l mnds (GG) programming language and
show that, restricting ourselves 1o pregtaris TR Y, e W’mm bf wp whicﬁ
is consistent with the way in which CCis deﬂna%fmwﬁiﬂ o v to miethod
D, i.e. depth search with no backtracking Thu:, M there are four independent
notions of the weakest'précontiftioe of &' prograr, Ié pirticily %ﬂ‘tﬂé’ﬂ’ that
Dijkstra had 1h mind in' ‘0 m&‘ﬂ’ﬁi o vidiiod D, e ﬁ!‘m
by de BakkerT23, Piotkin (e £50). s PiBare €24 J(MWW) s 0"
~ also indicated that one has to outlaw M mmw WMW&
(failures) in order to capture Dijkstra’s notion of vﬁ.

L s Fa.
g s

Defnmon Civen.a universe U, a program aGRG md a fotmuh Q, the maluxt prccoudmn

of & with mn@a«fmﬁﬁrmmwm*zzm. ¥ ; “myw
. ,w,D(a J) LI (immu A [q’.lQ A M‘A\ w&.},

wpppled) = o Kedtrmea [«W&u&up‘*‘i T VA

wpglaydy = <adire AMQA w“},

’”PBC(G - (<¢mame T

Certainly, by mmtim, giumtmﬂ,m& ging.ov 9: .DT, B N 'Go a
program a is X-totally. correst. wit Riaed-Q 4 WQ«Q)L e

84

Note that all of our four wp's mm‘y the mforma! ducrtpﬂon (™ in, whlch the word
“activation” is now interpreted as “activation nm m ‘method X*. Tn aher words, N
we claim that

it is lndeed the case that using method X, 'j{x(?@ is the weakat
precondition which guarantees that execution of & m method X wm
amstmmaummmo it

Let us lsee which of our wﬁs samfy Dt‘m;.pw PI;PL
Lemma 5.4: PI—P3 held for wpD, wpﬁ-p wham! um

Proof: Pl: Since for any X¢{D,DT,B,BC), (wpx(q,Q)D(Cedtrue A [aJQ)),
((<a>true A [alQ) > <adXQ), and (Cadfsise ® false) are. mmy, P1 cap be seen
to follow. weommema;hmxudmsﬁmmn . I

mea 5.5: Thereemum n;kbmm untum A, &mmnelﬁ and ufommh P(n),
sueh;hatmdmmwm%w”, : . . .

Proof: Take A to be the unmﬂe o{ pm:e artthm DL, md PLn) 1o be, nzx
Certainly for any n, we have. hﬁ(m 2 (ntl)2x), Tﬂh&: to be. (xe0;(xex+1)®).

One can then check that Kygadenue and: bm m,m &dm",ﬁtﬂn(mx)
However Fpdnlai(nax): dmen, m 2

Tloeorem 5.6: P4 holds for wpD and ”’D’l"

Proof Assume mrea)ammn Bamn n(mee). i h Mm that
(In(wpp(a, P(n))) E (Cadtrue A ~loopg A -g/d!' A Iln[gﬂ(a”) is A-valid. Also, it is
trivial to show that for the sage'réason, so'is { kadP(n) > LalinP(n)). Assume now:that
JFlal3nP(n) holds. We show that J?Ma?mm does o By .ﬂ"'loof“ holding, we know
that ct(a,J) is finite. Consikier the set Ja = {§{. Jaf} By:virive of TH{alinPin)
holding, there is an integer {($) associated with-eagl $6{.Jasdy 30ch that for any n, :}P(u)
whenever n g=i($). Since Ja is finite (by Lemima 5.2 together with the fact that ct(a,J)
is a finife tree) , taking: Fmaxger a,tf‘) . mmmmm we have
JE(P(n)2P(m)) where m,ﬂ weconchade that M#mwﬂ

85

For wp , it suffices to observe that under the ooy .nf var(m) we have that
(3n(wpDT(a P(n))) 2 (<adtrue A ~loop g A InlalP(n))) s A—valid The proof then
proceeds ex:ctly as above. . B e ‘

Thus, we»ﬁsummm%ze as follows:

PI-P3| 1 1 . .1%
Pe |1 1 0 0

and conclude that the properuu Pl-N do. not zivc mun a _. qmjpn of up. there e
are at least two equally plausible deﬂn}thn&whigh saljsfy mug rties. We remark ..

that [13] included only P1-P3, and these are y&hﬁu by ug’rw; wpx. [lqnee P4,

which was added in [14], can be seen to be, equfv:'ﬁn! requ that the ;mtram A8 N

divergence-free.” Wand: [%ﬁ b“*essenﬁaﬁy shd!m’ tfnt ﬁ&ﬁhﬁ 3 C3 tﬁm :'.’DT S

- satisfies PI-N ' B A

Forr

R

6.6 The Guarded Commnnds Lgn&mge (GO)

In this section we ccrnpkte our am'ylts of iﬂé”mtkm of Weskest preconditions by
restricting ourselves, as did Diﬁtstra in {131, ‘to' hage ﬁztﬁé‘liﬁkuigt RC of

regular expressions over assighients and *&ﬁi naimely o the g ‘of guarded commands
(CC). We show that only one of the four.notions of wp, namely wpp, is consistent with ,
the manner in which CC was alleged to have been defined in T13J. SME wpD utlsﬁgs Pi1-P4

of [14] too, we conclude that Dijkstra had been pruuppoﬂng Mmgtbod D was to be used in
executing the programs in GC.

We define CC s a subset of RC with the same wmmics, as Touom-

(1) An assignment x«e is a programin GC. |

(2) For any &,0%GC and first-order tests P? and K?,
a;b, | o
(P; UR?;8), and ' :
((PVR)?;(P?;@ u R?;8))*;(~P A -R)? are’in GC.

Throughout, we abbreviate th! hst cdnumct in ﬂ.’)‘ M to (P? LE R",ﬂ)

One can see that inCCmdonotappurasWMthmngmbm
only as guards preceding "real" statements. Thus, in the alternative construct (P?a u
R?;8) (written IF Poa || R+ Fl in [13]), either & or # is. exccumid-depending on whether it
is P or R which is true. if both are, thmomdawd#kchmmmmmxaﬂy, '
and if neither is then the statement fatls. Thus mmpgmmk
generalization of if P then & els¢ §. Simitarty, mwmfm = R?;:8)
(written DO P-a || R-lﬂ OD in [13]} generalizes uwc P do a

In [13] the language defined is seemingly somewhat less restrictive. For example,
(Py?;0 U P Tiar) is-alowed for any ms0. WMW&SWW
is equiva!cm to (P";u UW‘) Mwl ,‘lu '2 A ‘ ﬂ" y (:H‘: fﬁ f"i? '1 u
(Py?say U P3 ,a:,‘)) Ahu, Dijkatra's s";"f:‘md abm m an bewmten as
(true?;xex u true?; x*—x) agd (ﬂt@l’i,xﬁxﬁuz; 1 ttms CC can be seen to

_ be sufficient. (Remark: abort was described in nﬂ u‘ m tmmm that alwlys
fails, and 50 is written differently fram the statement (M,xvx w trie? ;xex) which
always diverges and which we call dlwrge)

In 131 and [14] the semantics of CC was defined lmng ‘the (mfmay described)
notion of wi{@,Q). We rephrase these "definitions” as lugical squiy ‘ that |
a candidate of ours for wp should satisfy them for any program A ﬁ(‘. m my s:m. As we

shall see, only one of aur_four wp's satisties them sl The equivalences are:

| DL wp(:ldp, Q £Q,
D2 wp(abort,Q) false,
D3, wp(xee,Q) = Q :
Di. wp(a;8,Q) = ap(u,up(ﬂ,Q)), . h
DS. wp((Phiauk2:8),Q) = upvnu(?:m-,m) A(Rawﬂﬂ,Q)).
D6 wp((PTa # R:;8),Q) = vOg(H),
~ where. HO (*PJ\-!%&Q}*
cand K, ® (uovmfﬂmwiwcﬂg)' :

87
Lemma 57: Dl D2 and D3 hold for wﬁD, W’n'lt, wpy gnd wg‘c

Proof: DI: For skip, deﬁngd abovg a8 (lm".;* u;m. ,xﬂq we cqmgnly have

TEse

| "(sktp)true, and simihrly, for any Jg‘ one. qqg lg ﬂl&tﬁt‘i&,ﬂ, » fmof tgllures o
and is finite. Also, [:hlp]Q E [mu",x‘-x]Q = (x*x]Q L Qx L Q Thus Dl follows.

.%

D2: <abort>true = ((false",xt-x)true v <f¢ls¢",x¢-x):m) 2 Wsc A <x¢-x>tru¢) L faln,
~ and thus since for any X€{D:DT;B;BG} we h;ﬂ u&h,@) E-¥ 4«)«»«, we.obtain D2.

D3: Since we have F((x*—e)mw A -'loopx" A -y‘cl(x,_e), we oom_lude t‘ha‘\t,
for-any. X as above, upx(x«egQ) s {xhﬂQfﬁf SR e

T’heorem 5.8: For%gach o{ '#DT’ %m W m% ‘
D4 is not valid. S

Proof: Take & to be (true",x*-l v mu’,xt-2) and Q to be trus.

 DT: Take ﬂ to be (x-l”,x!-x v x=l?,x¢-x) The Ieft hund%af [M for tb# mu —
((a,ﬂ)trm A ~loop_ .a N [a;Bltrue). All three conjuncts egftlirdy hold in

any state JEN. Howiemipy the rightchand side is Ghadtiue-~aopy A

Caltrue A [a]-‘loopﬁ A CaXBltrue), and LaXMtrue doumw inany

state J€N, since for any such J, we have (3 ,[2/ x]J)Gm(fk, W E!‘/%”V’fﬂlﬂ“

B: Take B to be (x=1?;xek g x=17;x¢x).’ smw«w;m ey muﬂ e’
that kpwpp(a;h,Q), but CaXB>trur is not satisfied by any-itate ?R’N stnce
3,0 / x1J)€m(a) holds, but [1/ x1J¥ <0)tm¢.

BC: Take f to be any one of the above two. Thr. rest of the rgamingﬁiulmu“ | .
In order to show that D4 holds for wpp) we need the meg:.

Lemma 5.9: Ft;r any a,f¢CC, F(fad M h (faily v (a)fatlﬁ))

(Remark)this lemma should be contrasted with Lamma 53(2,3) and the remark followlng
‘its proof

Proof: Having Lemma 5.3(2 »3) at'hand and Mﬂnt that CC &°RC, all we"have left to pme
is F(<a>failg > f ﬂ’ for ,aeca ‘Tindeed, thie only Why'thére can ‘be & falture tn |

88

ct(8,d) for some J€(Ja), sueh that that fallure dissppéurs in cr{a;8,;]), is.in the case -
where ct(a,]) has a leaf (1,§), the ancestor afﬁichhu mmm which is not
a leaf, and’ funhem:t(f hs"f’"": p {ly,F1). Yolieier, vi'c '
no progf:m ﬂ(m fer wﬁﬁ:ﬁ‘ ﬂj’f ii i singieton. ’¢ "

Theorcm 5.10: For any a,&GC D$ holds for npD.

Proof Expmﬁiwg“gwu %@ﬂ#w“ QW&{’T QA stoopa.,

~fail ﬂ) and similarly w (a,wpp(ﬂ,Q)) E (Kadtrue A W A faily A [a](ﬂ)tnu
A [a]-vloop A [awaatI ‘A TaX#X). ﬁl«mﬁi,ﬁ bie divéction s séen to fol
immediate!y Assume now that .ﬂ‘wm(wm “Using Leérniwa-53 and Lewmnm 5.9 for dealing
with the clauses involving luop md fdl, we hwe only to show that Mc}(ﬂ)mu hotds.

This follows from: ¥fal: %Mﬁm & 2o

We now cohsider -DS'

.Lemmasn For eachoprm-, wp,mdupm,ﬂmuuuawm (P’,cuk’,ﬂ) |
mGCsuchm:Dstmm e o o y

Proof: Take P, R an&waetM m«mmm;
DT: Take B to.hetabort,- . - =i ove IS S
B:- Take il %b@#m& | WAL P wage sl ;ltmf’..‘;:» e BTN
. BGC: Takeﬂtoheeitheroftheabove.
n each.case m*fmmmm o e the. righ me is ot even-
satisﬁable. We_omit g&mdgujk. L

Wh A ARG

- Lemma 5 IZ For any a,ﬂGGC DS hoids for af.pB,
Proof Straightforw:rd using Lemma 53(4) and m 59 | g
We now consider D6:

Theorem 5.13: For each of upr, upB and wm, m«m a mnm (P?,a = R7;8)
in CC such that D6 is not vdid. L . .

. . Proof: Here tqo, there is a gcmral structure to ¢ E%’W mﬂwﬁu Ve present .
them for each case but omit the m;ow, but straightformasd, detpils mm in, proving

89

the claim. In each case, however, one can show, that in any stageg,JGN such-that x J-ﬂ, the
left hand side of D6.is frue but the ngm hand side is.nat.. In, faa,, the clause [P2;au . ..
R?;83<P?;a u R? ,p)true! which shows up i in H of the rggglt hmd side, is the clause whicb
is not true in J, and which falslﬁes H for my I22. HG and Hi cln be &wcked

manually to be false in .T

Define Q to be true. 'l'aklng v to be the prognm abrt’ ‘ the ‘DT Case, dtvcrgc

for the B case, and either of thesé for the B case, e Bdhwie ol pﬂ‘)grﬁm (P’;C - R?,ﬂ
to be ((x-O" xi-x+3) * (2zx" x*—x*l ((x=1?,x‘-x¢l) v (x"l? ‘7)))) -

EEFI

Theorem 5.14: For any &,8¢CC, D6 holds for wpD.

Proof: For simplicity, denote by ¥ the progran¥ (P’,a u Rm and by * the program
(P?;a x R?;8). We note that for every J such that J"vfn(?.Q) holds, Jhﬂlwp*g’.}

holds, and thus the tree ct(*x,J) is finite. Note t,!m under. ﬂw same assumnnon, mh .
leaf of ct(*x,]) is labeled with a state J such that J#(~P A -R), and also Q. Ve now
show that for every J€I' such that JFwﬁD(4 Q), we have Mk’ by indodion on k, where

k is the depth of the tree ct(*x,1).

If k=0 then ct(*»,J) = m F)}, Jl-(-vP A-R A Q) s0 tbat JhHo.
Assume that -] is-a statesuch.that, k,m.ehem of st e, 1)y “tm than:0, and -
‘assume that Jrmpn (*n, 7). Aswme also that fmwm&%mm depth: of o
ct(*x,d) isk' and k'<k, if: &wpnth,ﬂ hmm»stmm Weuww that: Jhﬂl
by’ showing that- Jhcwmk e This is-sufficient bécune sifice of(3, 3) i (aluresfree . ¥
and its depth is not 9, ttiﬁuscbe the case that ﬂ«ﬁw i‘!ﬁ .ﬂf Ho JP-:fctl,. iﬂd Wﬁ,

Take any Sf(Ja) ‘Certainly the depth of ct(*r.}l i Wis than K. Msu,
can show that from the fact that thpn(*nQ) hokds, we can deduce that

JEwpp(;*x,Q) holds too, and then using Lemma 5.12, that #wpD("‘r,Q) also holds.
By the inductive hypothesis we obtain SFHk- for k'<k (here k' is the depth of

ct(*x,§)). However, it is easy to establish that for any i, F(H, © H.p)) s0

that we also have JFH, ;. Hence JH:t]Hk .1+ This completes one direction of the lemma.

Conversely, Assume .1|=H for some k. Vllthout loss of genera!ity we can assume
that J¥ Hys for all k'<k. If k=0 then trivially JB(~P A ~R A Q), and hence
kapD(*r 7). Assume that k>0, and that for any state § such that min, ($FH,) is - '
defined and is smaller than k, we have JFwpp(*s,Q). Certainly by JEH, and k>0 we

%

have J¥ (-P A -R A Q), so that JP((r)truc A “fatl, A ~Noop A

[r]Hk 1) Smce Jﬁ(r)mnf, we can denote by J'a state in In. We kiow that
IeCwIH, , and so, ﬂ-l-! . Therefore, by the Mucﬁve ﬁypoﬂ\em wc canclude

that 3hapD(" %,Q), or th:t S (Fxdtrue A yctt(.,, A wmp(.,) l\ L

[*x1Q). Now, since §¢(Jw) and ﬁ(‘w)tru‘, we have JECEedtrue. Similarly we can
establish Jk{*ﬂQ from m:mk 1 whk:h umna that ﬁ-t"ﬂg holds for any Je(In).

Thus to summarize, we hzve the fe&lowm ub!e, where a Indicam vaﬁdky for
all programs in GC: ' ‘ '

| wpp whDT why whyg,
p1-D3 | 1 B T T |
D4-D6 | 1 0 0 0

We remark that relaxing our restrictions on prognm ﬁudcanﬁdeﬂng general
pregrams in RC, D4-DG do not hold in gment, cvun fqr va. '

We regard our resaits in this section ”WWW of the
intuition Dijkstra: displayed when. nem 96 mﬁ@wa*mm pmgrammhg
language: suitable for "totals ss-oriented” . Ahough thereis no. -
a priori yeason for: pmm umm 9 &pnmﬁ the oqheng we have shown that .,
adepting this method in- con junction with the sublanguag ,ZGC,M&; in D1-D6 holding, a 5
fact which nicely gives rise to what Dijkstra calts a mm for computing the weakest
precondition of a pregram, and hence for detesmining. whether a.program is totally correct.

Sy

%1

8. The Mathematios of Divergh}ggﬁgg Fuﬂing I N

In this chapter we concentrate on some of the mathemattcgl properties of the two
concepts of diverging and failing’ introduced ih Chapteér 5. Mbit of the thapter, however,
will be concerned with loop .. In particular we empbﬁ)n the problems Qf expressing this

VT

concept in.DL and providing a suitable arithmeﬂcz! lxiom;ﬂiﬂon of lt.

In Sectnon 6.1 we consider the queﬁioh of dstaimng maﬁﬁc eduivalent, in DL,
of loop,, and fail, for the class of mmm‘ Wﬁiﬁﬁuﬁ;, #6.1.1, 'we show how a
recent theorem of Winkimann [71] serves as the central part in A proof that such an
equivalent exists for loop,,. We then show, in 613, thit an equivatent Eists for
fail , too. Thus, as far as expressive power is congemed loa&o gnq Jatl add nothing
In Section. €2 we introduce an extens:on of Dl, l;; whkh xgere is a specnally
designated primitive for loopa A natyr ithme

;tcﬂ axlomatizatien, P o
of DL* is given in Section 6.2.2. Section 6.3, 0 exhibiting the remarkable
similarity in form: betvwen‘mt ﬂlﬁs !‘dr i mmfﬁ‘* WB Mrv fon
supply a framework to aid when constructing such axfoldtirasions’in: geneﬁﬁf The
framework also supplies a broad perspective for uadeutmdm, say, the invariant ‘
assertion method of FIoy@ TAT) dhd Heire T2T1 ai wpptinl tase’Bf aritvinetical
axiomatizations. Section 6.4 contains an appucmen d‘ thele ideas in the form of an
arithmetically- complete-afi forivatt¥ation of ' " :
operator of Salwicki £59%: <In this extension ¢A DE) themechariisn
expressing loopy, is not quite as direct asttiat’ W-&sﬂn'lm ekl Las
is essentiatly:done in DLY), but nq*aﬂﬂm» W m MW bt “‘m
relying on the mivammvgf{rat Section 614, RAETE

8.1 Diverging anavauamn m.

It might seem at first that a simple Mwﬁ‘e characterization of loopy and
fail , is possible, along the lines, say, of Lemma SJ(‘%TMWMMIMa.p T
is equivalent to (loop, v (a)leop‘) In other words, that being able to determlne
whether a;8- cdmaimvt i‘!lverg‘eﬂée boHs mw%ﬁh%ﬂmm shitther &rand §

TERNT L

92
do, given in addition the tools of DL. This task, however, .is not quite as simple as. it
seems. In Sections 6.1.1 and 61.2 we focus, respectively, on loop, and fail ..
6.1.1 Expressing looﬁa in DL.
Lemma 6.1: For véver_y u,ﬁm, uﬁamem x*—emdmll’?, the Wing are viltd: |
(1) lbop e ® false,
(2) looppy ® false,
(3) loopeg = (toopy v mp‘),
(4 M‘;’ M‘V<]z

Proof: (4) 15 Lemma 53(1). Theottmsfoﬁwfrmmmabaofa(a . B

in order to be able to tafk about &* we aliow qanetm, in this chapter, the
freedom of writing, 2y, Mm«%P instead cf"‘fa' éi‘};, m’w holds". (Recall
that a? is lrue" and « l is u,u ") We alio m X x P .
“there. cxns;inimlv mny n;mmaﬂﬁmh I "ia™>P
that <a">P holds of mm large n,

Theorem 6.2: For every ueuc. h(m,.. 5 (m*am. v Vm"z:m))

(Remark: In dine with the: sbove mem mm m “lnmy state J,
JEloop o x holds 4ff either JRca™Disop,, hokts o for.evey n. we have. e true”)

Proof: As temmarked in Chapter 5, by Keenig's:benna for ma,M frolds 1ff
there is an infinite path in at(#,3). -Now amume Jisop u. By thé.tonstruction of
pet(a*,1) as pet((true? v «;6*),]) it mwmmarﬂm ‘Holds for
every JeJ(a®) (ie. if W hoids), then an infinite path. ﬁ(J 11,12,)
in pet(a®,]) must be an infinite a-path, m:mmheymaqmonm which
every two ad jacent states are related via ().’ Seqiohce by i'éffo,,l, =)
where §,=1 and for every n20 we have “EJNM‘Q‘ ’ﬂpmcqumty

(1.4,)fm(ﬂ“) snd henoe. M%mn.

Conversely, we first note that it is easy ta aee ;tut i‘((ﬂ")lmg' 2. lmfdu)
Assume now that .ﬂ"VMc")tm By the construction of pa(a"’ J) this implies that

99

pet(a*,3). (and_hence also ct(a*,J)) has Jeaves M ;

: w@@”"*‘hbv Koenig's lemma
implies that ct(a* J) is infinite, : S

Cags LA,
'\«:5'-»»‘,%‘

P
H .

Thus, a dlvcrgence in a® is due either to a divergence ‘i o Itself ‘after executlon
of some number of &'s (local diverging), or to being able to run &'s repeatedly for'ever
(global diverging).

_ B Its immediate then that. the only obstacle 0 M‘lﬂtn Mhtfoﬂm‘d
translation of loop , into a DL-wff Q is the fact that ﬁn‘ St ”i’sf “i T)L—wrf
However, we have the following recently estabﬁ:hed fact: "

T heorem 6.3 (kalmann mnl: For every a¢RC aagll.\; off P there exlsts a DL-wff Q
- such that “ir(Q 1P, ‘

The (canstructive) proqf mvolve; a very subtle argmem% b% :m the structurg of the set

J(a*) for. some fixed state I,. mﬁ!ﬂl\(,.g’l AT NSNS

somerepctmnaofamm (um}f { "

but repetitivn~free. Thus, by peting. that Yage #@,ﬁ#«, piyalent 1o 3

conclude from Lemmasﬁlmﬁﬁ,a, and Theoser 63 . = .~ ..

S

ﬂn&eduetb

: Corollary 64: F or. RG, loop, is expressible in DI., Le. for every QGRG mere exists
Y Dl.vw{f P, wch that. k(ﬁ.xw&,

T Y
It is easy to generalue the deﬂnmon of ct(u,J) to cover the prognmming
languages "array-RC™ and "rich-test-RC" which are the seis of programs allowed in array-DL
(Section 2.3.1) and rich-test-DL (Section 2.3.3) rapeqivgly "ﬂi‘m trees are also of ‘
finite outdegree and for them too we can define Jhissp, to betrue iff ct(a N

infinite. We then have

T heorem 6.5 (Meyer {431): For every afarray-ltc arid L-wif 9 there exists an
| array-DL-Plf{ Qw that "(Q . 3‘?0(:!")!’)

T heorem 6.6 (Winkimann [703): For every africﬁ-u&-‘ﬁc andL-wif P there e’xli,ts»"‘t: S
rich-test-DL-wif Q.such that H(Q # IFeg"P).

Corollary 6.7: For array-RC (resp. rich-test-RG), lm t;expregtibh in
array-| L (M”_m:h-—test-DL)

9%

" One can define ct(a 1) for randomi-DL; (Section 232), a,mm resuRs in trees -
of infinite outdegree, and then define M to hold if cr(a,T¥ ‘Has ‘an infinite path
Parikh [50] has been able to show that for mm-lﬁ, loop,, is not expressible in
random-DL. R |

. Recently Pratt [54] has shown how a plaﬁbh definition of loep for PDL, when the .'
atomicprogrmmﬁ(m Chagtsr 1) are assigned | . N'ﬁh‘m‘qm
nammzdmmmmmnMMﬁwwmwa
is not expressible in PDL.

S 1
S 14

8.1.2 Expressing ful, in DL.

We now turn to fail Here too D{. is pomrf‘ul emugh to express ful for any

cases in which a faiture mdg in fct(.t!n
comphcation arises.in ‘the case'of composition
ct(@, 1) Soks not). We with sob Tater’ that Tor thi WW mec!s-nm ,
5.5) this complication vanishes, and in tvis Eisé'the ¢ L1041 of the DUwr R, »

such that F(R o f0ily) holds is s quite m&lghtfomml

Consider now the general sel of: reguur wm 'c"ﬁm define inductively
the comtruct ormwde sw:h that Jﬁmmdc m ﬁ'fd(a J) il a ungkton

onmade x+e £ false,

. ’_”onenodcpa, B true, -
onenodem £ fdsc, '
onenode, g * (onenode, A (mwc, vfw‘).
ormwdc“«u E folse. , 4

Now abbreviate (fcll A ~omenode, o) w0 dﬁtl,‘m adeep faﬂun of u) and
(fatl, A omenode,) soiﬁul (tmudum failure). |

Lemma 6.8: For every a,mc assignment x+¢ and rest », the Wm; are valid:

(1) jatl, , = fubst,
(2) fallpq '® -P,

95

(3)- flu - “ﬁu.hﬂﬂb)ﬂl#d&. V*‘f‘“ﬁ,, -
(4) £fut¢v<cupe,) ;a,u‘ 3, S ‘
(5) fatlyx = Cadfoly: e

Proof: We omit the straightforward but rather tedious proofs. TLOREENEE
§ . ;..-%'»v Twy PR

We would like to construct a DL-wff otlm ﬂ wch that o
faila ﬂ & (fall v (a)dfal?‘ V other p)
o Breral neuieh el e D
will be valid. In other words, we would like other, ﬂ to capture the cases whk:h ,
faily and <adfailg do not; ie. the cases in which there is a failyye Abde in ct(a;8,])

which does not appear in ¢fa,]), anitbn_&m that failure is the resukt ct ﬂ
being the one-node failure tree in some state §¢Ja (in ﬂ'y'atlg)

KR

There-are precisely three cases in which: this- MMW

(1) cla,d) = {(NI] md»a(-&,#)sm,n}, N :
(2’ mtt(ﬂﬁ.’a there lil r MM«,Q dmmt’.'ﬁ e
o aleaf lnbeled §, schithat ci(8,§) = (aF). .
(3) Mpa(c,J}m«euuMMSMmmdmndanq
“of which'at least one is. mmMMmm
a(ﬁ.}) = ((k.f)), Le. md.,l;mm

®2 LU g

(NmthuthftmmﬁﬂamMunFmamn@
mma(a,z),nmmdmmmammm

by either faul, or <adfailg))

96

For any a,0¢RC, we now- supply- mmm construction of the'three constructs 31, ¥z
32, g and 33, g, corresponding mmwwﬁﬁ»m dbdve. | The following
thmmcmmmmwmmmw v

T heorem 6.9: For edery &, 8¢RC:
E(faul ',!(fu!‘vm)fdi’v!l'l'v} ',vz:sa’,))

. iR _f&

Turning to the construction, we note that 31 ,ﬁ W ﬁmﬂy (Wca A -fw A tﬁulﬂ)

Wedefme:-!zc,‘andm"bymctmmaam

g

e f*(mar&mq» A ifallg N
s~,-;;; I o w #im.ﬁ”)

\"5-

SN s ¥ w‘x‘.w") 9‘ (")33 "8

’z: mmﬂ W’) v <¢'*>33 '8

Notencwthatﬂmrmumd m@mmuwssn defined
using DL-wffs and Wd’fw‘ Mﬂ,m m Lemma 6.8 and
B3 A }g 4 B
Theorem 6§imwiy')

CorollaryGtO Forﬂﬂ Mnkmrmm%,hfm‘ every a¢RC there exists a
DL-wffl» iiegm B(R, ® fail,).

We remark that for tive guarded WW €C, we have Fw@fﬂi’ for

97
':("31 6 A "32 '0 A "33"‘)

50 that we obtain Lemma 53 agam, ‘this time as a eorolhry of Theerem 69

6.2 DL Augmented "wl‘th loop (bﬂ’). o

In this section we introduce an extension of DL, DL*, which consists essentially
of adding the loop, construct as a primitive to DL. Thgv e of this wgmentation .
are in the ability to reason “about dlvergtnoes d!ncﬂy wuhout haviug to go through the
translation of loop,, into its squivalent DL-wft { Thaee n-6.3 and Coroliary: 54).: We
remark that the DL-wff Q of Theorem 6.3, and heuee P of Coroltary 6.4 have the
unpleasant property of being strongly dependent om: Mmpf . and-on the variables’
appearing in @, so that P, cannot be obtained from P by substituting ' for &
throughout. Consequently, proving a forfiula with:an wmeﬁbop¢ will inevitably
involve carrying out the transformation of {oop,, to: P g and ebgmmg in DL. The
point is that the intumon one might have about lqof‘ u. in 2 stfmt sense, lost in the 7
process. On the ather hand, the amwmy‘mﬁ ; of DL" pmenmi
in Section 6.2.2 is patural and tniitiv oo

6.2.1 Definitions.

The sets of symbols of DL®, the sets of térms and atomic form‘l‘u and the set RC
of regular programs, are aﬁ as in DL (S«:ﬁéﬂ 21) Tﬁi’*sét d‘gbl.‘ ‘wm B déﬁnd as foﬂwu
(1) Any atomic formuta is a DL*-wﬂ‘ y ‘
(2) For any DL*-wffs P and Q, @ ifi RC and vm:bk X,
-P (PvQ) 3xP (a)P and (a)"P are DL-wrfs.

Abbreviations are adopted as in DL, and in addiﬂw we alelte *(R)*-vP to [a]‘P
reading "diamond-plus-a P" and "box-plm-a P* respectl

For the definiuon of the semantics orm* we :dubt the eoncept of stateand
universe from Section 2.1, bat'now we’ think 'of ‘the femantics ing 0 évery PW
@ the set of computation trees {ot(a,J)| Jﬂ'ﬂ (aee Section. 5.2) However, by

et R,

98
virtue of Theorem 5.2 we caﬁ ‘continue to refer to m(a)iwmdmas {(3,9)1 r1abets a
leaf of ct(a,])}, while remaining consistent with m(a) of Chapter 2.

. The definition of the set of states satisfying a DL*-wff P is, for atomic formulae
and for the clauses ~P, (PVQ) 3IxP and (a)P Mm trem Sq:tlan 2.! For <a>*P we deﬁne

JECa>*P iff either M)P hoids or a(c,J) is mfm |

~ In other words, .ﬁ'(a)"? holds [m«)Pv mp) dou. One can then venfy that
. Ie{a)*P iff both JHCaIP hoids and crla,) is finie.

From these we obtain our DL* M»:w M. m W‘: |

Jrlvop, CHff W)"ﬂu,‘
- Jeioep, ff Wm

With this deﬂnmon ane can yee tha: Camnmr 6.4 m umtiaﬂy that DL and bL*
are equivalent in expressive pawer, tm alyfing eor canjec ae. i £2s1.

We refer the reader to. Appendix D in which we exhibit a pmgram with a somewhat
nontrivial behavior, the interesting properties of which can be exp in Db*,

Bcfore _proceeding with the axiomatization of DL! we m@d like to exhibit an
altematlve, tm equjvalent, definition of the semantics of m.*.ﬁ m Jugifies the
*_notation in a rather interesting way, in view of the addition, as in m deSG] of an
“undefined state” to the grand universe I, Vﬁmmm spproach m the one
taken in our original definition of DL*, m [231« : . :

Define by I'* the set l‘u{.l.) where L (read "bottom™) , the divergence state, is a
“state” in which, by definition, every DL-wif. is fale;, te.. m APP} = 4. Note then,
that 1¥ P and LV ~P both hdd,sotha& AFP and ;Va? mmmm

Now let m*(a) = (m(a) v {(J, L)M&m‘,)) gm (wy for the sake of
this dzﬂniﬁan) et Jd stand. for u.;;m*w lf we.now wgu .

99
JECadP iff 3Y(Ja$ A §¥P)
_then CalP deﬂmd as -'<a>-vP should rnad o

Ml it V§(Iad =svm

rather than with $I=P on the right. On lha pther hand ¢ ane can ‘see that VS(Jag > sl'P) "

LR 2.

asserts that JELaIP and that furthermore 1 1, ﬂf (@) (Otharwise we
Jai and 1¥P). And o VICaF= SHP) snets theime

g?' s

have had
“fa]"? :m ‘rm we em deﬂne

Jt-'[a]*P iff VS(Jas 2 §kP),
JeladP iff V§(Jad > §¥ -P),
JecadP if I§(Jag A JFP),
Jecad*P it 33("3&3 AW

However, in the sequel we abolish the amﬁdal state i and treat <a)‘P as the
abbreviation of {(<&>P v Mﬁa)’ M WM Mu '

6.2.2 Axiomatizatlon of DL .

Let us first gather some: af the propemmof <¢>" M
been proved previous!y for loopa

L. m Of ‘V',l{llch have

Lemma 6.11: For every &, 8¢RG,. ustgm xn,wQ& mm‘m&a and R the
following are valid . .

(1). CaYP = ((«IP A ladttrad), -
(2) <ad>'P = ((u)P v <a) faln),

(3) Cx«EX*true, -

(4) 1QMtrue,

(5) i[a,B]”P 3 lfa]*[ﬂ]*?

(6) <a;B>*P = (a)*(ﬂ‘)"P _

(7) CauBY'P = (Lal*P A [8Y'P),

(8) <aup>'P = (Kad*PVv<®*P), =
(9) [ad*(PAR) = ([al'P AlalR),
(10) <e>*(PVR) £ (<a>*P v <adR).

100

Proof: We prove (5). [a;81'P is, by dd‘im&bn, (Eﬁ,ﬂ@ Ala ﬂ]‘mu) or
(CaBIP A [a;81'truc). However, since by Leroma 53(13 wm Dl.ﬂ}"mu s
(Cad*true A LaXB1* true), we conclude that La;51*P ¢ (taY rrae FRNTENTIP K
(BT true)) = (Lad*true A EC”]’P) L ;«]’t’l‘t !‘M the Mof other. parts. 3

. allowing.a" 10 appurmpur umnwm reorers ﬂ*” =
an extremely concise dm'mum d‘ hop'ax :)

T Aeorem 6.12: For every «¢RC, .

(1) (<o®>*false B m

W S

@ e-(wr:m . aut.*rﬂn)

" Proof: By Theorem 6.2 (u"‘)"’jdu bqﬂm Wm ? X!(C"Mm) , |
which can be seen to be equivalent to (Mt“)‘m v Va(u")mn) or -

(3nloopn v Vn(u")mu) g

| Clatm F(3nloop n 3 Vn(mp nv (a“)mu)) "
for every n%mhan.ﬂ'(a“)mu MMM nwouidhave N

to hodd*for soine:sedin.. Ab,fnwm mMn,
thus the claim is proved. '

With this claim established it is easy to see that 4W v Vala™true) is equivalent to
Vn(loopan v <a"true) or Vn(a“)"mu i!y‘) Mova n) by deﬂn{tion ;ar a*1*. B

Now let A be any arithmetical universe, and consider. mum &Ym P" for DL*,
dermedasPofSectm&&angmamdwnhmeww ’

B

vAxtoms ' ‘
(0) [al*P = ([alP A lal'true),
(P) [xe<ET*true, -
(Q) QM rrue,

(R) Ca;Bl*true = L1 T true,

(S) Caufltrue = (Lad*true A (A1 true),

101

| Inference rules:)
(T) P(n+l) D[a]"P(n) ~P(0)

for an L-wff P with free n, |
P(n) Aa*Ttrue st nfwu) "

(U) Pax¢e>*P
Pa<a*>*false

Provability in F’+ is as defined m Secticn 3.& Hm &eo we ﬂm mbush the soundne:s
of P" by showing the soundness of rules {T) and (L)

Lemma 6.13; For any L-wff P(n) and a¢RC, wjm:n{ mr(ﬂ,
if hA(P(ml) o [a]*P(n)) and, ""A"Q?(Q)! kA(P(n) =) [u*]ﬂruc)

" Proof: Assume the two hypotheses, and also assume that .1"1’(11) hﬁ‘d}- V]thout ““‘"““";
confusion we can denote n 9 by n. We have to show that ct(c Dis fimte. It is easy to

see that a chain J, J;, Jg, — such that JO-J and YSM*QJ).is lmpwtble,
for by the first hypothesis it would imply J PP(O) contradicting the second. Similarly,

by the first assumption, for any §¢J¢a*)- wekmﬁdﬂ(a&whm, and: hehce by
Theorem 6.2 there is no way for a* to dlverge. |

Lemma 6 14: For any universe U, DL*-wff P and. a¢RC, if "U(P-':Ka)*l’)
then ky;(PCa™fatse).

Proof: Assume F(;(P2<a>*P), and JFP. If JE<a®>loop,, holds, then by Theorem 6.2
so does Jkloop o, or JE<a®>*false. Assume then, that J"{a"‘}"lwp“ We show

that Yn<a™>true. Indeed, by J U(PD(«)‘P) and J=P we can show, by induction on n,
that for all n we have JP(du)tme. o SRR R _--'"l." :

As in P, we remark that rule (U) can be replaced by the:(valid) induction axiom scheme

102
la*X¢ Ps(a)“?) > (Px«*)*fam}

which is derivable from P‘ and £mm wmcu (uung parts of P’f ryle (U)‘ can be derived.

..... IR S

Thus, from Themmswwkmmus.ﬂ mm's.Enmm
. Theorem 6.15 (A-soundnm of P*) For any DLY-wft P if "P-o. P’ m '.AP

Here too we. e would like to apply thre Theorem JW (Theorem 1) to

| n YU YO P, O Gl sellty & SRgiely midr gumerit
" version ortfm thearems, in which moke-thail ve ToRiiind WERFRINIP 1S B W briit the
precise statement of such: am, wmmmw«xwam nphrmng

of the proof of Theorem 31/ ﬂi*w* i ¢ é%’
and <a>*, resuﬁi' m dt*w Mm Shtohnbile UF o rivke: L. Thus,

T heorem 5.:&: *’l’é“‘ﬁ‘f’ﬁ expres

P T e v B ARy s me vy T SR
SR LI EE ViSRRI TR B L+ A SO G R MU L i

Prouf: > Erivint useg Coralury 65 dod Thoowen 3B ¢ - -8

Rt ‘fi‘f,? wid {'h;‘) FES RPN L BT S S D
We now have:
b d ;f‘ SN g i oy e &

Lemma 6. 17: The mmmg are mm

(c)*P > (c)*Q

Voo, ¥R VitE - el 3 ELE he e e

(T‘) R:Eh:?(n) , P(ml) =E¢3‘P(a) =

.

‘ for an. L-wff P with free n,
,mm EEN O B R '3 ! %w“dw ¥

(U) RSP , Po¢a>*P

Ro<a®>*false |
Proof: Trivial. :]

103

_ We will now combine the two phases. (treated separately for DL in Setion 32) of .
(a) showing how to A-validate the premises of, {T) and {U’) ‘when their ooncluuam are -
A-valid, and (b) showing box - and dlmmd"‘—comletenew

Theorem 6.18 (Box —completeness Theorem) “For every QGRG unq L-wffs R and Q,
if 5 (R>[al*Q) then '"P’*(n:tal"Q) |

Proof: Since F A(R:[a]Q) prove RolalQ in P hy T1 orem 331 then prove
. RoLad*true in P* as follows, and use axiom (0) to combine the results. The existence of

"a proof,-inP*, of RaLal*srue is established. by.indugtion o the structure of, @, with
the only non-trivial.case being a*. For :M.g mﬁx b A(& ¥ true). holds;. then ,
apply the derived -rule (T") with P(n) taken mwu MMQMM of . -

Ca™1*false. By T‘hmmm we have M{rn . aﬁﬂu}‘k and. wdne pmtm of
(T') can be seen to hold. - ’:

T heorem 6.19 (Dimd*mpletenm Theoum)x F’qr maﬁmm L-\vff! R and Qm
| if F k(!a(:u)"Q) then’ PP4M*Q). \

" Proof: As in the previou; theorem. Here for Raq"‘ﬁﬁdu the derived rule. &U') k
applied, taking P to be an: arithmetical equivalent of Q&*&;fdﬂ iself. Qnecan show
that F(loop x > (<adioep V. losp,)), which extablishes. the A-walidity of , . -

the premise Po<ad*P: (In facyy mmpm for ehlmue can:be mplsced by
an equNalem:u.) . e ls.

~ As we remarked at the end of Section 3.2 for- tﬂe lox-wmphwueu ’l'heorem, here =
_ too we can satisfy the premises of (U') by a "strongest <>*-consequent” giving rise to an

alternative proof of Theorem 6.19; take P to be an arithmetical equivalent of (<(a”)*)R

A <a™> false) Trivially if b (Rb(a’)’ﬁlu)*m* ﬁ%", and we leave t0° ﬁw‘rﬁﬂd‘?‘— o

to show the more subtle fact tliit (F:(a)’”l’) Holds 100, 1fv the hiext section we

concentrate on the rules for a* in P and P*, and on the way in which we were able to
A -validate their premises in order to obtain the basic completeness results.

‘We conclude:

T heorem 6.20 (Arithmetical Soundness and Comp!eteneu for DI.") For any DL*-wff P,

Y

some of its’ptoperties expresss

8-3 A Pittern Gf nm{n’ a‘ P (\ =

- one rule free-of sscoamenues BE.n; 1e;: mottonkined

104

Proof: One direction is Theorem 6.15, and the et&ar M‘fm Thmems 3.1 6. 16
6.18 and 619, anamédmmim!e(mmm(ﬁ oo

Appendix D contains an ede an imerunaglv bchgvhg pm;ram md a proof in P’
i DL T T

We now éxhibit anﬁv&”“ sing MW“WWH wh!th the m‘eﬁ for
a® in P and P* have been deviiupe

completeisessiof: Yvese syt *ﬂ Ww mﬁ&m m,ﬁum

- Ca*>Qy Ca¥ B srue-and: K%' falor] tw ofwhidh alibb univenss snd.swe of extistantial

nature. For each, a “deslibnding” induction rule inveiving P{n} cau heiconstructsd dm

f!’rom kmwmge.g thﬂ&mkvﬁﬂn“mwm_“wrﬂ“ o

For the #wo! 'WWW,M aﬂi
the descatichiip-ones’ Thess & 4 'mmm thePfn) sa
“strongest consequen”. ‘Ker Mrichses nﬁmmmmwﬂwmm

premises of this rule areil -validated by {mmﬁ otk the muemm

the strongest consequent. Finaly, mmmmmmm rules (I'),

U’) *f’!‘) m&r)fnmwm"f“ oo riine 4‘13; (ﬁ {‘!'3 Mmmu

-

In- mwuei, fm ;mum, svemzr mdm Md" nimﬂmi) amd P°
denote P(D],. We proent mm@v Morky 3

§ I Coewn e we e g oW
b B LR : “y . LTI O N Froo¥y 2
. R -

105

The concepts involved are-

[a*]Q

(u‘?)Qf«.‘ .

[a“]*’true

<¢*>+fazse B

The conqise arithmctical characterlzatiomof thm conwpts are B

Vole"1Q

3n(a“)Q

3n[a"]"fatsc

Vfa(a")dfm

An ascendmg inductive rule omeam AOW- MM by intfoducing P
having R imply QnP where the quamtﬁer Qis ddermimd by the aﬁcﬁindled

. characterization, and lu&rmg Pg implyythc rlghmwamh&u Mchmiuuon:

RoVnP |, P':':[c]? , P%Q

R=>Vn[a“]Q

tl!

R:’ﬂn? . wP‘D(a)P P°=Q

Q, ; Phogr hnd e et e e

R:ﬁn(a“)@

Ro3nP , — , P°=»fazu

n::intq“rfazse

: n:v»? P'S(&)"P P°

Riﬁn(ﬂ”)‘trm

L i

The premises of these tules are’ A-validated (wheo the consequents are Atvilid) by taklnt P to

be A-equivalem to

[a"1Q

[a"]"false

(a")‘"truc

We could have stopped here; tﬁeabﬁe rules are ;«md and cump!ete and will enable a
completeness theorem to g'o through We continué ‘

ver, i eiplained above. -

N »L?J') T

106

Since we have the duality principle (see [523) F((R=[8)Q) = (<F7>R > Q)), natural
“ascending” rules; ‘which m mmm dually to w ones are

R:Po F:IaIF lnl’ >Q

o merwe]
l:Vn[g"]Q ' T O N U C T R O
 RaPY, Poad*P ., 3nP o irue

no rule -

- RaVaca™ true

Recalling m(t')#lWlM&hamd mmh m‘wu.mm by

Theascendingﬂddemndhgmhm beM (hy morc.c. the mm
(Vnla"IP > (alVnia™3P), or. (La*IP > [aXa®IP)), giving the unified rules

D A

 RoletQ * ,

The premises of these rules ase A-vaiidated by both

e

onewde mm and <(a)*mz\ <> et

Now the armsandlegs nfthesembmbcpmm m:.g.,tbafmhavmgpmed

Ro3nP, PP5Q and VntP><a®pd), nmdedml:&a’)Quﬂngvaﬁdiﬁesofﬂmuﬂer
logic (included as axioms in (A)). Thus we obtain the final rules

107
PalalP 4.
Pola*IP Paamp? |

PD[a*]’tru: o IR PM’?&N

,,it mr'; .-n.vxrx.,l

The name given to the constructs used :to A-WWM sretnisés. (1. the t-wﬂ‘ P'(n) which
one needs to "invent” in order to be able to carry out a proof) is*

We would. appredate m@uﬂom on mmble names. M #\e "??"

We would hke the reader to consider the vlrtuu of oonduﬁﬁi ihl& rem fnt
the language of regular expressions over assignments and tests. - Consider how much more
- obscure the cbservations af:this,section would bave been if we worr 10 reason. Sbout, Sayy
the while statement, instead of about a®. In our opinion &* captures the raw essence of
iterating in programeing languages, just as-auff captses the essence of keasching and a8
the essence of sequencing. For.the grog:migg m signer:who is. MM na
deterministic language | or.in a more "disciplined”. nondstermb
means of restricting:the. genmli&y d‘m, ngtrucs § YR
simply Dijkstra's [14] guarded cor s language GG (Secric . Note how
invariant assertion method of Floyd [17], as described by WAQMG ﬂk ;239 (;ee .
Section 3.3), has been shown to fall out of this geuenl pmn of arlthmetica‘lly
complete rules as a special case. : :

6.4 DL with an Iteration Quantifier. (ADL).

In this section we comider a different extension of DL, in which, instead of
loop,,, a primitive cxpressing Vn<a"™>P is added. Note then, that it is immediate that by

108
Lemma 6.1 and Theorem 62, Mc““ “'WM an no mzed to comtruct
WinkimmnsQufThwmmﬁ “We wilt sty s srkibmeticatic: comnlete > h

of ADL, stressing the fisct that the-ifes: were: conety > o
obmvmefwmﬁ.&mwfuﬁrﬁ

Formatly, ADL. mmmww W&Mw wmm
formulae, states,. umivetses ﬁ*&tﬁm wa m—-?wwmaﬁ

(1) Any mm:mwm ADL-wiT e
(2) For mm—mFMﬂ'mm
- Wy (W% M,» mP .. ."wmm«m

&z, :

For defining thtmd-awmw , thoe:

and: a¢RG, dmcn Wmm "
then, we mwe

WMMTM P

KRFW* = Mu"’i’“)

The construct (N)F wmmwwmmwm
their work on ﬂmmcumww xmdmw Ehnzmlywe
hawe, mw | S W bl
memw sarmm mm«mwr wwm,v?)

3}(} ity T

Thus;: k&uwm“umw 'mnrsiwmm .
the W i Théorenm ,-WW”me,mm DLt
'mﬁ’ﬂbﬁdui&'iﬁﬁwwm‘eﬁ""“f”“f e 50T rigilli, dfriby TR T —test :
versions of Dk. At (& mioim oUEN, ‘W Chinidé pibve tiil 4 WMqulformy
of these dites: "However, 10 pioh ;’WWNM
easily using’ lﬁp&" B

Theorem 6.22: L is A-expressive for ADL.

Hmtmwwi&MmmMmmwmrmg_L Huwcver,
weomitmaofmm MMWW

- Theorem 6.24 (Arithmctical So\mdne.ss Md

109

Lemma 6.23: For any program & and L-wffs R and Q,
. if hA(R:’Q) then PA((na)R 2 (Na) Q).
Proof. We omit this slightly tedious but nevertheless straightforward proof. B

Having Lemma 6.23 at hand, we addthe followlngguhto P

(), PaQ

(Ne)P > (Na)Q.
We also add the rules:

() RaP(n) , Plos)a@Pln) , POQ

— . Fﬂ*m L-wrM’ with free fi, |

(T) P(nel)oLaTP(n)

GEE ‘Fnrm L*—wﬂ‘ P*ﬂm fm n,

(S) and (T) are obtained from the followlng_‘ n!les, whid!lntumt‘oﬂowquguefforﬂea!y . |

from conslderations simﬂar to those dmnbed |

RSVRP , P'¢adP P°=Q e patal , P00

RaVn<a™Q T R

ﬁ—‘

We do not know of a duality principle, or of wyoﬂm way for doing away with ;hc
indices in rule (S) Denoting the resulting axiom system by P(N), we have |

f fvr Am.) For any ADL-wff P,
"AP iff "P(n)P

Proof. Apply Theorem 3.1, and in the appmprme phce (l.c when provmg that whenever
Fal R:;na)P) holds then so does me(naimv)). e the abave twoderived rules,
. showjng that their premises can be:made A-valid when theif. msms are, by tzklu& P(a)
to be arithmedcnl equivalents of <a™Q: and [a"IQ M :. :

1o

7. The Mathematios of Di

In tbiscbmwMMﬁcMWhMﬂhmﬂu
wfadmmnmmmwmmdmmmmw
tmmm,mmmmmwﬂmmM%Wl

lnSmM?JmMﬂndeemecﬁ’mmm
rise to loop, and fail, defined over this set. In Secio uuu%ammmm
of whether, for #CE, Jsepy, 306 fail, chn be expresed & CHDL+wls; i particutar we
provide the quiﬂl'm&!ﬁ e 23 88.0p
obtaining the analogue of Theorer 6.3, Section 7.3 is clibarné
loop,, for &€CF, giving CFDL®, mmm{
quite as slagauasithat of RL?.0n Section 622. The resshs of these »
mmﬁwmmnmmmamnm#

« g & ge "!1 gdy&wmomvwm
and famug can be’defh«lm&em £ aets o scringy over the

1 ‘i u“"‘«yé»‘f - A',"'__v'?,"‘f St ‘\;‘ e e
m:nmmmdmhtkm'é&m.m F Swct)

sy soe LD00TE e il mokze withaeny w7 Crsiyial]

WM:J}efnmdcfmdamJ&l'
""au MW%WW‘!& WM%&

-;zw

_ (5) mm,h fd([dn!uﬁﬁﬁ).”

npmmgmw*m M 1o cimotie saberULY) G FUE
el fitse? u (MY iy ,WW,W“WM%iW
Inbeted b R Mt"‘(ﬂ ,:a % MMM &Wmmm ﬁ&;ﬂ#

111

this process can lead to an infinite tree, The additional union with false? is introduced
so that the process of calling recursively would itself "cost” an edge in the tree. A
remark related to this matter appears in Section 14.

The computanon tree ct(a,l) is obtained from ﬂ(gg,]) k)g ddqingm of the
failure nodes as described in Sectten 5.2 ‘and looﬁ. and]’dI‘ are also defined

precisely as in that section.

ke

Examples: In the following, J is some state in N for which y3=0, and in &be diagrams we
let i stand for [i/y1]. -
(a) Takea to be the program ((yaﬁ,yt-ys‘l) v (y#O?,y‘-y-l X; y*y*l))ﬂﬂ

pet(a,l1/y19) o alefi/yi)

112

(b) Take & to be (X)*(f); this is the recursive program which calls itself recursively

"for ever".

pet(e,d) ct(a,l)

o
® ©
® &
® O
® &

113

(c) We.now show how the two different translations of a* into CF formulae (both of
which gave rise to the same binary relation; cf. Lemma 4.2) give rise to two different
computation trees. As we formally state below, it is only the first of these two which
gives rise to trees which, as far as loop, and fdla are concerned, are identical to

those for a®. In all cases we supply a program & and the tree cf(a,J).

(erue? u (yey+1;X))*(f)

114

(erue? u (X;yey+1))*(/)

115

(true? u (X;y<27;ycy+1))*(f)

116

(rue? U (X;y<22;5yey+1) Y*(f) sy=27

Here too we have' |
T heorem 7.1: For every w¢CF, (1,§)emla) - lff o(a,]) Msa leaf Jabeled J.

Proof: Compare per(€*(£),3) = pa(faisa? u c(t‘(m,n ‘with ﬂn obmnum that
m(T*(f)) = m{false? v T(CX())). | |

117
The following Theorem substantiates the remark we made in example (c):-

_Theorem 7.2: For any a¢RC and J¢T', denote by &' the program (iri CF) obtained by
replacing every appearance of a subprogram of the fon'n ﬂ" in a, by
(true? u (8;X))*(f). Then we have : ;
. "(loopa loop .),
and I'(fall !]ctta

Proof: The claim follows by abserving; that. Mﬂ‘,l) & Ft((ﬂm?u ﬂ,ﬁ*) J) lnd o
pet((true? u (8; X}I/),0):= patl{falsed-u feegerl 1t Bskaritel: u&ﬁﬂﬂﬂﬂﬂ)n Dy
but that the failure node dué wmfdxé ‘40 MWNM ddu-drm the m ‘o
of constructing ct. : e

Note thatsfor any -@eGF and lﬂ‘, w(a,z) s m s mnr fmmdqm 0
that Koenig's Lemma ISH can:be: lppﬂd ‘ :

7.2 Diverging aml Falling in GFDL.

As in Sivctkm 6.1 we afe mmstd n pmm for: myﬁCF, CFDbﬂ-ifx B
~ahd R ‘such that wehave ﬂhq aw) and W(R ifai“) Iboth -
cases we will neéd tools simifar to those d!véhpd fbf’th’é’ forvetponding resuks in
Sections 6.1 and 6.1, but here a brand new problem 8ciirs,; the sofution of which -
requires defining the formula along(t,Q) asserting, for 2 term T(X) and formula Q, that Q
is true at some point just preceding a recursive ¢all to ' diiring & legal execution of (/).

7.2.1 Exprﬁulng loop, in CFDL.

analogous to that of

We are looking for a charactemation of loopt; ’ |

loopox in Theorem 6.2, in erder totry%om ‘It "t
analogue of Theorem 6.3 for obtatning our resuk. ‘

| Recall that mrﬁmwThmn&aﬂm in a"nmmhenoubml
divergence, i.e. a divergence in some reachable execution. of &, or to a global one, ie. .
being able to execute a's far ever. Thefommnmd. which, as-is-

%

118

implicit in the proof of Theoterh 6.12; tan be written 3y ‘w,iﬁﬁtht fatter is

Vn(a")tm So we can write
Hloopag £ (Iintooﬁan v Vn(a");Ml

‘Characterizing 10opn(s) Is simitar; here a local &W u 4 d}vemmce "inside"

“some application of a reachable €, andmbewwwuw) :

* (Note thut this still does net:solvesthe: frchiltm: of:expreming-decl dinstging w0 GEDL ; .we-
deal with this question: iter) :Givhal :diveaging; on:Aeidther hiipd, Wibice subsle. -
Here we:wamt; toiexpressthe: mmeWSMm %thh mrounts: -

to being ableto pmeead wamwwmemm : F o ; .

: In order itp capture this-notion we restrict-ourséiés in: this chapter to:universes
U in which the domain has at least two distinct clemantagnddmadich two fixed yasiables =
have these two elements as vilues, Wewﬂltimeaumm:n and b freely as

two varlab!es with distinct vulues. .

We now deflne, for any term t the term 1‘." whk:h sﬂows "supping tests,
recursiye calls to T, and. dther recursive:-consieucts, St famsesannsuch
recorded in a new variabie x. meﬂuw wer(L) be twe
let T'(X) be T(X) with.every appearance of a sibigrm & of gm;g form X, P?or €%
;replaced by (au x*-bg Apor.hﬁne L D e

Lo (y#a" u (y*a?,,;m?w-b)L

_For any nz0 denote the program x«a;y«a;T"(¢) by t We can now present our
Charac‘eﬂm‘m of l”#t*(f) S ETRE SR TR E
T‘heore'm 7.3: For any a¢CF, T S L ST PO

| ' “ Nefoisar) ¥ Yu$E YD)

Proof: ‘Assume we have J“Snlmptnm)ltk qnt&emy ioste‘thlt ot t*‘(na
~ has at mm wmmm - a(e“W%ﬁ, wawm dluup‘.gm

mememwmmnmmwwm Furany
i20 and J€T' we would like to define the set ${1,€,7) consisting of those states
which occur immediately before an application of € at "depth 1”. Define

- 119

§(0,5,9) = ¢} L
(i,)= u,wsu,t,sp,“

where V is-the set of states : such thatutﬁe pmu o mmuft ct(’i’.'txﬁx .t“‘fﬂ) »
for xf var(t) requlres const&ctmg cé(xi-x,ﬂ “In oliver words, V' 15 the set of stam
which execution oft*(ﬁ“cﬁ\ feachi ﬁs& pﬂtﬁ‘ ww Wa m L

UL B s@ ; &%gg“‘» 3

Certainly.if. for some | we mo,:ggm.,» %3:4 hjybm apda n a(t*w.ll,

i. (Nﬁe’th@tmw MMW;%*KQMQM bl LODE . e
#t(t(t*w) J)z-l R R At ,‘ E LR 5 Ehes .i“‘»&1:§¥!€ :‘»m‘f e T

i

Assume now that JFVn(‘%)y:b We show that : for ;ny t@ﬁm §(J,t,1).l“ and
thus ct('c*(f) J) has paths of arbitrary length md i m, by Koeulg‘s l.cmma, |
inﬂnite (Nﬂe‘that tmw 3wy wumummm be

‘replaced by 3% in the statement: of theThm) lndad,qfor aﬂy wci! l, by usumption,
we have JECTDysb, o Ihcxeagpa;t, ‘gpm* 30,1t thep.eniats 3 finite. path, p. in
et(€;,7), starting frem.thse root, which, lesoNOMEs. in A nade. l-m by. 3 state In. *’!“’!
the valye of y.is b.. The Wtb mm mm m!n,, ared By . .

(1 {a/x]J Ca/yIa/xJJ ’0,...,,&)

»u’}fv“ 3

where "Jk‘b' Let i be the least intmr 1 snch z!m y,jlh By the mnstmct!en of

T'(o):#t-is-evident mnhmdwfarynmmmm%mhf kmu
the case m;m vabuuf zmtﬂl‘m anﬁn&rm nm e

B

and not awmd by execaﬂm‘mb m hmm mm&wﬁ mm

p ending in - can be thoughtof ‘3 Seing 3 simatation; in-e(w); of w ety from the
root to the false? in ct(t'(false?),J). Consequently, we havej (i T J) Thls
completes thc proof'uf on& am of'*tfﬁjm

Comremz!y, lssum wow that -J W md‘ u.m nli nw we have j
Jhwlooptn(falm) Consider the infinite sequence s of sicesitygsiabels of the nodes-of *
an infinite path from the root in ct(t’"f(ﬂ 3). Itis easy
hypomem ‘thére must exist a suliiequence of | x, oy

we have Ji€S(i,c, 1) aﬁd‘%ﬁaﬁ Fr corvelpoh

120

for executing T, in such a way as to terminate in 2 state in Mm vaiue ofyisb.
Given i, nmulate the path corresponding to MWW&M sequence s ending
in Ji, ie. assign x+a uw,y«a,mmenptmdmg‘gduw:upm in
T*(f), executing tests and recursive constructs n% not the

SIRTYs 2
“of Ji, reaching 1i. ia s corresponds to. wm c faem ﬁmw t’!(d‘ F
Thus, we have reached ¢ m yj za and xjft and tierefore ¥ tgmlgﬂed b.

t:xecuummt"mfsMwuthwmmnm& |
tests, appeirances of X and rectirsivé ! comstivicts, "Gttty Wiy SREcotIS ﬁnmm
(no tests to fafl; ho redrsive ConSErutis o Tecuriivd ‘B o Mivirge). ‘Wotedver, by

the construction of ¢ any subsequent arrival at ¢ will not change the ‘vatué of Y; dnd
since y{var(t) this vamtsmchanwbymymmerﬂnmstofm:xemm

\Ve are now mtemna n mﬂdm ways: W&gm dismaa the
statement crf Theorem 7.3 by CFDL-wﬂ‘s.

E

R sﬂ}’;i:’:f‘:’ %?gf?,? B i PRARECEEI

For dedling with Wm&lsﬁmu consider the: mﬂf ¥ CW;O‘SH €,y
which, intaitivély, is the set of stites which Al Hiond' tubides W'l €))7 which
correspond to points Kt piidr to & réciiive SIERE: W‘WWM for'uhy
CFDL-wff Q and term ’C(X) 2 formuh ctm;(t,Q) sach ma: o

Jmmg(r,o) e mezf)m»m. a

R i
fe0 Kadk g0l

ie. Jkalong(t,@ holds i1 Q is true Mym o' some veachable recursive call!
to T in an wietution of T ¥y)-starting n-sate’d. Assirialsoshat e duive defined, for
every prograny etCF-mid termy (XY, & W?I’h&*“ wusitfoelyy: M{“ =
holits #f there i3 & divérgente it ct{ tin);3) wiich ts due amwwwm thea
~ part (heithe ﬂm :m‘hmm recursive mw - G&Xn

""""

It is quite clear that Jl-:!nmptnw,m m e amm 3 . gm

- execution of T*(f) just prior to a recursive call to T, it is the case that there is a
divergence in ci{ T(T*(#})1;§). which is.due to. MMT lﬂﬂmbﬁ‘w inner-€X(/). In
other words—ﬂ'ahng(t, lpt m) R IR I S R

Now we proceed 0 deﬁm thewcmc@ts ’md thgn mn dnt, together with
Lma GJ‘ lﬂd Thm 1'3’ M’m% Im w i ‘E fres! A es T o s b fou'd
;hcpreviousparagrmhﬁ:theorem. A

"By the definition”

_point has been an honest simulation of a compumlon

121 |
~ For any a,ﬂ,ﬂ'GCF and terms tl(X) and t2()0 qmng

Yv‘l’X.u Qf f“’“z
Ibg o *a obg

’ l"“x,c l”ﬂﬂ: e
Py, “dr Oloapg, .
P8;X;:8,a “df “”Pp\“ﬂ)lfx,-,), o
‘#emtq,a Fgip w,h.m,,, T,

L TF VR o8

Now for deﬁning along(t,Q) we use. trleins nmilar to thooe used in oomtmcting t’
and ¢ for Theorem 7.3. Civen T(X), let x,yf var{ €) be two variables, let Z=ser(T) and

let 7' be a vector of disjoint primed versions of #1i Yarjables.im sar{®) (soeShuptersh;:
in particular x,yf »ar(€)). Define €(X) to be £{X) uuh every .appearance of a wbprqum |

@ of the form.PL.or t"’#mrmw uum Mcm muwwm

variable X rqpiacod by .- .
C e ((x=a? ,yﬂ%,y"bgz""z) u. &“b ¥ X)

‘where Z'¢Z. abbreviates the cmupositim of the uslgnmenu 1'*-: for all 2€Z. Now

define along(T,Q) tobe
. Cxea; y*a,t'*f_ﬂ)(y“b A (7*2’)@)

The intuition is that in x‘-a,y*-a,t (j) oqe has the nptign of, whenever X is reachud
storing the current values of the. vaﬂa‘bles Zin Z’%u '

carried out it cannot be carried ut again. lpuun of the gta? ’u;rd Fuﬂhemore, ain
the proof of Theorem 7.3, gxncut@w alw 1ys che 0 ™ w;i ;mqgkl]y'bo thé eﬂd or
T by executing xsh ;. Thén, when the exectitio
we assert that Q is true for &he ulgq g‘f Z which we stored in

recursivvebcall. ‘

From these observaﬂom, tqam w‘m t“le v.;-;:‘;_‘iﬂ
lpg o and alongl f,Q), we obtain:

T heorem 7.4: For every term T(X) we have A
F(Jnlooptn(fd,ﬂ) L ’dmg(f i’t t‘m))

Tl 5T

P

122

Now observe that the definition of along(T, lpe tgm) ‘wvotves only CFDL-wifs
and constructs of the form loop, where a includes enly mm appearing in ©(X).
ot of M}B so that we have:
AT ggﬂ
Open Problem: Is it the case that for every a€CF, term: ‘E‘(X& and. Li-wff P there exists a
CFDL-wrf T Qmch that. ﬁcﬂ’ 3%&&»?)

: An affirmative answer to this questm m&d Mgmw mmﬂa 6.1 and Theorems
13 and 7 4 that fm CF looﬁ‘ is expresstble ln

’7 2.2 nupmsa!ng‘*fau tn cmz..

“We have been mﬁk m:ﬂnd an elegﬂw md M natﬂfal %!g‘bﬂﬂsm gftm-
constructing, given a€CF, the CFDL-wff R - such that l'(k L [w.) wolas. -We

can show, though, that such lh‘l &t&s‘hﬁ m&i* o ioas and unmresﬂng case
analysis. The difficuity was ln ftndmg a CFDL-MT ﬂt m M m‘fuve

K{faily ® almg(T, fig)).

JEfl is to hold whenever there is a failure in tt(t(t’*(f)) J) 'el.ue ot (l.e. thc

failure)does not appear in'ct(f"‘w i} foring 1@»{%}4} j

’9?0%9 ‘Section ® i} few‘m %"’; @ff‘«*f* tests.

: CF for tota\—cq;retmen omtged retmilig)tﬁ
commands’ faﬁguuge ct is m ﬁ’ﬁ %& rogran

of total correctness or weakw gr,,
' provided by Dijkstra ﬂﬁ for €€ (cf. &

7.3 CFDL Augmented with zwg,”(cmv) o

ln this section we augment CFDL with lwp‘ and refer to the resulting logic as
CFDL*. Atthough there seems to be no reason to abbreviate (<a>P v loop“) to <ad*P, we

123

will do so in order to be consistent with the treatment of. DL‘ in.Section. 62 The

virtues of augmenting CF DL loog an hou du;ﬁp%g ,,gg;?[;l. vs, DL* at the Pegilmjng
of Section 6.2, with the additiona pom ;g;;%;t QMM% that:for CF mp’ isnot

‘expressible. in CFDL, ,and 30 ‘!&! wwlg\huc GFDL.< GFBL®,. jn which cese the IHW
is proper in the serise of ‘obtaining strictly more expressive power. The axiomatization of |

CFDL* which we provikie in Siction 132 1 not: gutte s’ naturil tooking &t that of Sedtion

' 6.2.2 for DL*. Wemoftbeopmwnﬂmamwachumfmmmfw B
reasoning nutgratly sbout rect i "(Waﬁw,ﬂ?%& pﬂmmve) __

might beworthwhile, Withiougly we: mmﬁ' bt ‘

about a- signmcmt tmpmm e s e v TR eE e e

7.3.1 Definitlm

, The deﬁnmoa of CFDL" is m to m.* m Mmseniﬁewk
-concepts from DL and adding'

(1) Any atomic formuh 4;@ QFDL‘—\\Q[, 2
(2) For any CFﬂL’-wffs P and Q, « in CF md vaﬂable x,

We abbreviate as in Secttm 5-2-1 and. dﬁﬂmm
definition of loopg of A

7.3.2 Axiomti‘uuon otoPpLt. <

L

The basis of our aximmumn is 'I'hearem 7.3 whlcl'(we cm uow nphrm u.

‘.;:”;

BT false = (an«"wnmﬁ ise, v Vg(th>y=ﬁ),)
and F([t*(f)]"true = (Vncc“(fauﬂrzm A Z!ntt Jy-ab))

Here T,, is the program (x*a,y‘-a t""(c)) whm 1'." m o \nu deﬁned precedlng
Theorem 13. Also, in the sequel ve-ube T(X) mmn Theorem 4.

Our axiomatization here:too will be: tﬁﬂiw mt.* which is’ defined as
CFDL* but with the programs commg from the set CF*, As in m 4 we \mlhbmh(

124 v
r
the fact that in an artthmeﬁal universe A there exists, for any &¢CF, an L-wif P such

that P~ expresses &. The probiem that ar}kins 15 thatof defggmg't& “tree ‘ct(a .'D for -
‘a¢CF' (as oppesed to CF); or dhernatively is fﬁ‘aﬁig“f“ | it
A-.'deﬁnhlg tlsz;g We wuta ﬁ!wit mbe thewe ,{,‘Si», 4oy P

However, for a g&m JGI' # i& pnulblc M the, mﬂiéﬁ@

~ One wlum # wmawa tobe kmmm, e
with the. m:mumw?u en by a-list, of aptural. numbery: hlwpnndwa list,
string, of 0's and 1's) ; for P* the tree would be defined (rougiviy) s :

a(PZ,2) = (LD} {(L9)] (1,9 em(PD)).

Then, we would define Jkioop, to hold if ct(a,]) has an mﬂawe path (wmch in thls
case is not mecessarily qmm to U(*,J) being m) e ‘

.-",J 7y

Another, equivalent, method is to associate with any Q('CF' and JGI' a ut of

computation trees CT(o J) For PZ umm f .

.

The rest of the definttion is cattied out analogoul

For example, CT(a38,J) isthesetoftreesabmmdbyf !

ct(a;B,]) for every tree in CT(a,]), attaching any tm in CTU.’) toa nodc labeled §
whenever ct(ﬂ,}) was to be attached to !hlt nodg m l! a(a ,ﬂ 1)

Example: Let a: x*-x+1 P' x<x md Z=(x) Fof *any JQN such that x J’fo,;?‘,"i have:

| CT(u N ({(x 1 (o,u/xlm b
CT(P? 1 #x‘ﬁﬁ) (m,ﬂ /xﬁ‘i (ﬁi,” } | X”I h |

and thus CT(a,P7 .1) (m J) 04 u /x].’,(@,j)}lx’ﬂ} | "
Now defin&!hkopa mmummwm ﬁﬁ(gﬂé {‘

-We remark that either way w @ummmﬁ&:; md shat- fm
Q('EF ET’(Q,J) & {“(.’;&)5}1 ca TR s et ‘ HYT "«Sr‘ 5 "’?E«Tgys #°

125

Let A be any arithmetical universe, and consider the axlgm R" for CFDL*

* defined as R of Section 4.3 augmented with axtom (0Y(S) of P* ln Sectlon 622 and the
following axioms and rules:

(In the fotlowing, P and Q.are L-wits, R is a CPf)L"*-wff o(X)is a term, x and y are
variables n,yf var{€) ; Z2uar{€) -V is the vestor mmm hy angmem Z with
xandy,andv,t’mdt"mmdefmaM) TRV T e ZAtHE

(V) [P?.]*true, |

(w) : ‘
R o (<x¢a; y*a,t"*(j»(wb A <Z«—Z'><t(QZ)>*fq{u) v Vn(xe-a iyeas P(n) v>y=b) ,
P(0,V,V') 2¢odV=V Q(’l zy > <e'(ybz=z' POV, V‘)*aﬁtﬁ P(n) VIsviv

e

ll 2 (t"(ﬁa‘ffmc

R > ([xea;yea; t"*(ﬂ](y#b v [Z*Z'It(QZ)]*mu) A an{xea,y«a,l’(n)"lynb) "
V'V'-'-IEOJP(O,V',V) W!Z o [t"(ﬁ!@(l’:ﬁ) it V‘#Miaﬁ!‘(ﬁ(ni)3?(;\41 v V)

<Fe
Tl L

R> [t“(ﬁ‘]*tm :
: Prdvability in R* is defined as usual.
T heorem 7.5 (A-soundness of R"): For any CFDL-wff-P, iffk‘#”’l’ thewaP :

Proof: We establish the A-soundness of the adamonﬂixm mﬂ ruh, md then use
Theorems 4 10-and 615 to-concludé the remk: ‘

We show then, that for any L-wffs P and Q, CF’DL-wff R and term t(X), wlth X, ¥,
¢, t°, o, Z and V-a¢ above, axiom (V) i A»ﬁlﬁ am! Wﬂ) ahd ’(‘\9 pruern
A- valldity
(V): By definition. .
(W): We argue that the A-validity of the first pramhe of" tMs i‘uk tmder the aswmpt!m
that the aother th'rec are’ i‘vuﬁ& tﬂﬁs that’

I3

126
E A(R’ = (3nlooﬁtnw,,?) Y Vn(‘!"'.'f')Y’b)z i

which, by 'I'heorem 13, implies that FAUb(t"(ﬂ)"falsc) (M that 't is an

:abbrevmm of (x@t,yu,t‘?'(alv)a) Aud indeed;; by Theotens: wm p:rmau. other shm
the first, assert, respectively, m(P(0))cm(‘*i)& mﬁtﬁ]ﬁ %d B
Vn{m{P(n+1))ﬁm(t'(P(n)v))) One can then show, by induction on n using Lemm 44,
that Ya(m(P(n)):m(t"‘(v))) Consequently, since Qz is "smaller” as a relation than
T*(f) but is divergence-free, one can see that mpﬂqz’ implies [pe Rk

and hence also that along(t toopt(Q?)) impﬂu M!’,lp%h ’) By

Thcom T4 the latter i3 Snlanﬁ.ﬂu,‘m Mmq mmr any Ny P(u)v

is "smaller” than ©"(¢), one can see that Vu{wn%}ym impties - ¥n<€ >y=b
Thus, the A-validity of the first premise of rufe{ WF iipifes that Roloopen(s) Is

A-valid, and hence we obtain the A-validity of the conclusion.
(Y) Dualreaomngtotmtnf(W) il .,,.

The proof of arithmeticat mm&dﬂ'mnvﬁrmmmfm
proofs in the previcus chapters. We apply Tmummm that its.
hypotheses hold in this pamhf case. First we:hyves - .
Theorem 7.6: L is. A -expressive for CF'DL*.
| Proof: Triviat usmg Theowm 4.1!11400:@&35’1.6. e ' l .
Now we prove the basic bax'- and . 't : remilts, and then, following our
remark, in Section 6.2.2, about "doub!e fumuwgr M‘Mﬁ. [heores 3y wqbtm :

our final result.

T heorem 7.7, (Dhmd*—cmktmeu Them rfae GF'DL’): For nwxnﬁ(}!" and L-wffs R
and Q, if F, (R2¢a>*Q) then I-R»,(It::(ar‘Q)

Proof: As in the proof of Theorem 6.19, it is easy o see that all we m:egi mﬂmw is.
that if F A(R:’(a)*fam) then "R+(Ra<a) *false).. Thiy AL, .15 p¥iAblished by
induction on the structure of @. When a is of the form T*(/) for some term T we show the
existence of L-wffs Q and P(n) such that the premises of rule (W) are A-valid. Since
these premises involve only CF'DL-wffs and the formula (t(QZ))‘fcm, in which the
program is of complexity lower than T*(f}, the resukt will follow. Indeed, by Theorem 4.1
we can take Q and P(n) to be [.-wffs involving, respectively, only variables in Z and v,

B b

and such that IBA(Q TX(£)) and for all.n I-A(P(n) 5 t'"(d) Al thepremlset are
easily seen to be A-valid fo this choige. . N e .

Theorem 7.8 (Box* -cmnpktm Thqorem for CF'DL"): For every g€CF' mql L-wﬁ‘s l |
and Q, if FA(RD[a]”Q) thenl‘Rc-(R:(a]*Q) :

Proof: As above using rule {Y). Qand P(n) are Abq ta;m p:;‘--a)

And thus, as remarked, we conclude:

T heorem 7.9 (Arithmetical Soundness and Cempletmau ,for CF'DL‘) Fur every CF’DL‘-wff P,

Appendix E contains a proof of a CFDL*-wff In R"

7.4 Languago D-pcxidant Dlvergi,ng .aad, l”__u‘ﬂlng,

, lnthissecttm,bauduponmiduofﬂeyertﬂﬂ \nsﬁwmnup«sﬁbkm o

define notions of diverpingand fatting which degend’ ‘o %WW aeﬁnm o!'
computation trees, but solely’ upsry the:angimge’ gEntralsl Trob | ﬁh * o
expressions. In fact, ive ew osions sre-well Sefiied for ahy Tplogren _nimmbfl
set of sequences of assignments and tests. An immediate upshot u!he fact thpt:thse -
concepts of language-diverging and languege-failing are defined for re. programs as well

" as for reguiar: and context:free:ones-(see:Section 335).: However ;alie mew: hetions,: wng

" independent of the partioulas expression:(er:grimmerhilsfining the program, dnmt

coincide precisely with our. Inpu and fail,.. Ihmmmw ofithiy:

phenomenon-which we supply bekow, sheds Jome I N A mem

seemingly ad Aoc definitions of computation trees in Sectisns-53 andBE =~

Let A be the alphabet-consisting of lagak:assiments and tests in DL.. The
programs we consider here are subsets of A%, ie. sets of finite strings of lsslgnmenu ,

and tests, We use B, G, .. to. wm;mm h&mﬂysm
denoting. themw)«pwlm. G e

Let JeT', BCA*, and aGB such that a#l. Ve say that a ts J gwd if we have
JK e)true, where a_ is the stratghMm DL proerm obtained lw lmerttng e between

128

every two elements ln the strmg a. Now define Muﬂwﬁ iff ﬁ\ere exists an
infinite string s over A, every finite prefix of which is & prefiz of an J-good element
of B. Intuitively, Jl'laarleop, asserts that it is palbh w m u: element of B
and then extem! that élement WF’ fuw. executing th exter sion. eac

without ever “leaving” B. o '

" In order to be sble to compare leng-loop with lasp we adopt the standard transiation
Tofa regular expression mﬁaeham{utd’m) Rdm Define T:
l!(}-'2A as follows:

T(xee) = {x"e}:

T(P?) = {PH,

T(a;8) = {ab] 2¢T(@) A MT(NL
T(eu8) = T(a) uT(A),

T(a*) = (T(a))*

We now observe that, contrary to cxpectatinn, tt is not the case tﬁat for al aGRC we have_
P(loop,, = lang-loopp(g))- This foliows from. observing. that akhaygh. ’l‘(q")"ﬂq“‘).
and althpugh blmj,m,;dm notmrm M Rioop me: Shwa [
situation is perhaps best explained by. Mm mmm» : regvhf
expression, 4. 3. program & in IG, 4n order. Nhaﬂl »mw,
languageadwmg. ‘ :

F@r any a€RC define a' to be a with every Mmef?the form B* replaced
by (true? u %), Thus, we are explicitly adding the fact that-"deing nothing™ is a
legal execution of A% in-this way, carrying out this degamersted: (Swt monempty)
computation for ever resuits in aglivergence. Mﬁw *brﬂn infinite set of
strings {true’k}kzo. Formally, we have :

Lemma 7.10 (Meyer (“1) For any nﬁls, "(Ma W‘“ff(,‘))
Turning mwmm concept of failing, uﬂnﬂé ke to mark those elements of

a€B which are not J-good, by pruning them at the point whers's gt failed and inserting
the specia| indicator F. Define a mpping ¥ 3 &*xr (Wﬂ"‘ as folbws:

129
(A1) = A,

W(xee,d) = xee,

lf Jl-P
. 4'(97,1) { - _
S ke
o #(a,JN(b,ﬂ) if 3€J(u‘)

¥(a;b, J) {
¥(a,J) if J(a)=¢.

It is easy to see that this definition isa unique one. In fact, for any a and J,
¥(a,J) includes only assignments, and possibly one F as the last element in the string.

Language-faiiing is now déﬁmd as follows: Jklanrfcus iff there exists a€B

~ such that ¥(a,J)=bF, and such that for no c€B is it the case that ¥(c,J)=bd where
dwF. The intuition is that B includes a language-fatlure in state J if one can execute a
sequence of instructions a¢B starting in state J, and reach a false test without being

able to continue from that point in some other seqm m B (l.e. no lmmedm akernative).

Here too, it is not the case that F(fail, * lug:fctl-r a))- The
counter example being a: (x«e U (false? u falu?)) for which we have Ffatla
v l'-vlaug-fatl—r(a)- Ve proceed similarly:

For every aGRG define a" to be a with every subprogram of the form M
replaced by (x¢x;8 u.y~y;v), for some x,yf var(a). Thus, we mmarklnz the fact ‘
that we have executed a union and have gone left or right.

Lemma 7.11: For any aERC, F(fatl, = langfailp a"))"'

A similar treatment of the recursive program!ng hngutge CF can be carried out.
Here the counter example to F(loop, = lang-loopy o)) ‘with T extended in the

" standard way to context free grammars, is the program a: (X)*(f) for which we have
Floop, butnot Flang-loopr(,) since T(a)zd. The coding trick needed here
in order to capture loop,, by asserting lang-loop(om) 18 to take a“to

130

be & with every program variable X i a subprogram of M!ofmt‘(ﬂ replaced by
(true?;X). Thus, we are marking the ractelm & mmua ews") untt.

This particular direction of defining " , WWsmto
Justify careful investigation. It is m‘mm«u&bn does: not aswime any
extension of the standard definitions of such operaton 23 & wheri plied to programs. Its
drawback, however, seems 1o be in the fact tfia uﬁés‘ocmudv(hmoﬂnm
highly intuitive and natarat) Wums v foll mnm»mmaformof
mcedmfromwhn,maw,' e original Hm«naueoompmnm
trees) can be reconstrucred. ’

131

8. Conclusion and Direotions for Future Work.

The following seem to be the main contributions of this thesis:

1) Provmon of a mprahmsive and rigm des: d‘wk oan dymmk logk:.
(2) Tntroducion of the netion of arithmetical ammmmd provlston of cunme
amhmaicaﬂy cmpleﬁ uiom systems foi n ‘_ ’7 oty of

. ‘up.,- B
FEVE T

(3) Introduction of the notions of- mvmwmm m, with thdr aid,
clariﬁcatimofthemupuofm"f gctriess #t preconditions.

(4) ‘Provimn ot an m\mf bum‘i!eﬂthn ahd m:ton_ "/fmg mc m{a clem
 axiomatization tf recursive dimamic togic, kil e Ctive’ difticalties ':y-ya*nq

in reasoning about the cuvemng and mm of m&‘& dgrami

the thesls are to do with mn&ive pgmr df* fit
witltumouttbbequlteeasy,mﬁ elieve that '8 each
gained, thus mmg tﬁe mk cr‘*mmg ﬁiﬁ*&m |

The main directtom, d!recﬂy rel:tqd m m; m’ ﬁ Uhkh we wwu w
that further wnrk b! done’ are:’

(1) Recuruve programs: We feel that there ought to be a more natural way to reason
about recursion. As is quite evident from our work on &*, the primitives of dynamic logic
are not only adequate for expressing interesting properties of iterative programs, but
also enable the reasoning about these properties to be carried out inductively in a
structured manner. For some properties P of programs, a natural way in which to prove -
them of a*, is simply to prove them for "every & in a*" by preving [a*1P(a). Thus the '
problem is reduced one level. This is the essence of the rules for a* in our various -
axiom systems. For recursive programs the situstion seems to be different. Here a
one-level reduction of the problem of showing a property to hokd of T¥(f), is to show that

132

it holds of T when T*(f) is "plugged in”. Thus, the along{T,Q) construct of Section 7.2
seems to be an important notion. And 50, akhough the primitives of recursive dynamic
logic stincmmmdtmmmanmmmwedm(mdm

the "go Jeft” and surizht o(.m MMW ‘mq; ", ‘ ,

basis for carrying out an aﬂ:lym of the efficiency of m viﬁ'& wpﬁclnms to

program optimization eff. . Qurm conprustion of etf e, J) in S

was strongly Wty our mnw_ erging and, Gyiling,. Also, .2
deﬁmtionofmhgmigmbewmhhokmfa Sudu efinitio

fellg;g ‘“‘*}&‘M?ﬁm :
At Pgm{ld gmgmuw ommm; it

‘primrtimhmmmm‘ ' ucal. »
mm:thaackanmﬂmor&ep“f" IR0 .| trun,. -
" in parallel, in :mwudmmmmummmwpwmm, _

is yet tobgcqgmdom. T et W e :

PR N o LW o FETIERe ey TP (!{::‘:!’?r‘ o

S WS N S R

133
Appendix A: Reational Choracterization of EPDL.

We show that EPDL of Section 1.L1 is embedded in a simple aigebra of relations
which employs only two operations: conventional refational.comp L{+), and a new
unary operation on relations, minus (-), We m 1o, some Wabautm relational
algebra which. seem to justify further remmhe .

Since EPDL does not involve operations onmam} (,'k, ju;) this appendix can
be viewed therefore as providing a Boolean-algebra m abstraction of a modal logic in
which there are poslbly many modﬂmes.

Civen a set of symbols T including one sped;l symbol 0 we define the set '(t)
of expre:sions of the relational algebra over T as fdh\vs., .

(1) Au elements of T are in \I'(t),
(2) For every e and f in Vl'(t), (e-f) and e are in ?(t)

An mterpretatwn 1 of ¥(T) is a palr (V,r) vbm v lg{a nmmy set and r T 2VxV.

such that r(8)=¢.

r ‘ls extendéd tbobt‘he set of expresslons w(t) by -
t(eof) = r(e7 . r(f) {(s,t)l (lu)(h.u)&(e) and (u,t)fr(f))).
r(-e) = -r(e) = {(s,9)] (vou,s,zu e}

Thus, the minus operator (-) connects s tojuelf m $ m oonmcted tono etqment of V N
in the orlglnal relauon -

Lemma A.l: The set —\If(;) s {-e| eﬂf(t)} Is a Boohan atwa wuh . and ac;mg as
intersection and cpmplement respecﬂvely

Proof: 1t is easy to show that the standud pootulam for a Boolun algebra are
satisfied with 0=0 and I--’ .

- We now define a syntactic translation functlon from the set of EPDL-MT: to the setof
- expressions of the relational agebra pver the a!nmk. s ols in oth:r wqrds,
f: EPDL + ?(AF v AP) For estheuc ream n‘,_ ake P tboqsh u wa deﬁned uslng

S AR R L g e

134

P>Q and [alP instead of PVQ and a)P 'rm lafte¥ he mow 10 e regarded &3 abbrevistions
in the obvious way

(i)’ for MWF"' ﬂﬁ) xp, R SR IR
¢ Faﬁﬁﬁif%tmmt!’#mdﬁ, cpmmmT e
H(PaQ) = ANP) » “f('Qf)i RGOS
“‘”’"“”’ . S S
Civen a structure SS(W,r,m) for EPDL deﬁn! M yiretat m‘w'lsz‘?&iﬂ‘ﬂf‘f) AP) o be”
's ® (th)gi

5 ‘i:e;bt;’f G TR LIy L T el e

r(p) = m(p?) for p‘ﬂ', o :
and f(l) = M(I’ f“ “AP. e m g P dpe mingorreaiw MY

The connection between EPDE snd WIAF U APY is'caprured by the following

rmmn Az rummw? r«ma e m‘*’

'Proof By induction on P. Fﬂ?mmmrtf mimgcr(f(?))=x(p) m(p?l'

- by definition.

,comaderrarmrom R3Q. M(x,an(

s6x(Q). We show that (:;ﬁm-ﬁﬂl Eil*)

-£(Q))). Indeed, if for same ¢ we b’ ‘t.} ~,), o _

u such that (s,u)ér(fﬂ%) and (,0)6r(A(Q)). By the inductive hyy i

(P SECIT T, o that wv sind SR ORS. BT AT MC V*‘f"‘:fi‘tt% mii*n
~ that =5 and that fumm(Vv)((:p}lf(ﬂQ”) hm K'ia lowpe
'th“(’a‘)"‘(f(m’ 4; thesis that Su{Q).. Contradiction.

(:,mr(f(ln wmmamm bitional abuiaptic

(5,59 r{1(Q)). "By assumption. (s,)¢ r(F(R)) - r(-AQN), 00 i 9

that(s,s)ﬁ—rfﬂﬁ'” ‘whith cenaidicts 14,5981 J. When ¥ b ol

proof follows that of the mvmme(m mm»m ih,d{ (R

Wwwmg,magm P ;ﬁﬂ‘m um 'eomubqul

nf sf;e:ﬂ)then
Yinis (R -

MIREIFF L HITRIINE & 2

e o P el g,
B B v,‘rv,. B \ : {:

135

“elementary logic of programs in an algebra of miatiw& MM} only two oper:
Theorem A .2 shows how to embed EPDL in tlm amn v.

_mww'.nbﬂg

Note that, wtth nomion Mtlyl mlued md
f(EPDL) < {—!'UAF} S v.

Both mcluslons are strict; fn; zenetal ﬂAP tbere imo E?DL*VJI P such. that. r(-(a e l))
= m(P?), and also there is no expression in {-¥ u.AF} correspppding ta 3. An obvious .
interesting problem, then, would be to investigate the nlmtap between ¥ and ﬁEPDL) :
For example, what is the complexity of. deciding digg in. ~%; ie. how hard is it to
decide, for arbitrary e€-¥, whether for every marputaﬂon r(e) = {(s,9)] S*w” We know
that vaﬁdtty in EPDL, and hence diagonality in f(EPDl.) is decidable. Is this true in -7

Another possible direction to go would invulve invuugt{mg "abstract” relational
algebras; i.. is it possible to give a finite set.of pastuiates that a triple (K,b,u) is
to satisfy in order for b and u to act like » and -, where K is A set of binary relations
over some arbitrary set and b and u are binary and. upary operations on K respectively.
One of those postulates, in ling with Lemma AJ, m be that (u(K)) is 2 Boolean
algebra. 'What happens when K is merely assymed 10 be an) M? Smb,rcquugmm
theorems would seem to be of considerable unemc. B

13 .
Appendix B: Bwuw ofs meq'a btmﬂ“mf"

We sketch the highlights of 3 proef in Pdmm&wmmonm
(deteriintstic) program’ computing MeCarthy’s ool el (ves L491).

We assume the univarse N of pure arithmetic, sitd e’ sbndnry ‘symbels such a3 <
masabbrmmmmmmmmmmmam Wnd@(nﬂ o
rauuwufﬁmwwww RAp G ialing. I 1403 showe

ottt : s et i e
e b

ff tf # n piﬂ M x»!’ * ﬁﬂw‘ﬁ”

1-19 'meo

is the function

We cohsider an’ Rterative m of thil recwr
following rightir proghin'¢*; and’skow il th :‘j
mﬂm ﬁ&ﬂuﬁ% i

Define e 100221 ,m*ll y*v*i
" P r-l0iyeyl,
Cy a* (100 A Ml?,‘
We prove the N-validity of
(10122 A ysi) (v“)(z&m A yel),
by defining the convergent P{n) as fm
P(n)' . y)O A 1)0 A lllkz A mﬂ-zﬂly
(Me P{n) is in fact the arw cqusnﬁm of w”xum A yel))

Weprove(m P)mmmm ndemncudthedmnd rule
(J') gives the conchsion: - ,

Y 1 T e > e 5, oG 4 1 o

137
(1012z A y=1) > 3nP(n),

(*) P(n+1) 2 <y>P(n),
P(0) > (1-101 A y=1)

The first and third of these can easily. hc teen o bc uioms in (l) (l.e. N -valid L-wffs)
We prove the second, ().

PR SR

Abbreviate 100<z A P(n) - to Py(n),

10022 A 20 AP(N) oo P o(n),
and . . <90 A P(n) L) m) PS(“,

Certainly wé have that the following i&N -valid and hence an axiom:
o= (Py(n) v Py(n) v Pyln)) = P(n),
and so we prove for I=l,§,3, that‘

P (n+1) > <¥>P(n)

and use (**) to conclude (*). We omit the cases izl and =2 which are reasonably
straightforward. For i=3 it is sufficient to prove '

Py(n+l) 2 <c*>(1<y A 100<z A 12122 A n:89-z¢lly)
We will actually prove |

P.3(n+l) 2 <a*;a;ad(i<y A 100<z A izlzz A n=89-2+1ly),
which is in fact | |

P3(n+1) > <a®™>(2>78 A 8922 A n=89-2+11y).

138
We use (J') again, this time with the conve'rgent
Q(m): y>0 A 220 A 2<90 A n=89-z+11y A m=floor((100-2)/ 11)-1,

where m=floor(a / b) abbreviates (a2mb A (m+1)'b>a).
It can readily be seen that we can prove in P:

P3(n+l) 2 ImQ(m),
Q(m+1) o <a>Q(m),
and Q(0) o (2278 A 892z A n=B89-z+1ly),

which completes the proof. | |

| 139
| Appendix C: Example Of 8 Proof of a CFDL-q(ftu R.
We sketch a proof of the partial correctness of the faceciel pregram of Section 4.1,
We prove, using standard arithmetical abbreviations o
FRlzex; t’*(f)]y-x'
where |
X (2=07yel) U (290052en-1; X seenediyeyn).
First welpr&e inR

(1) Ceexdex,
and (2) z=x 2 [€*(f) Jy=x!,

and then, using (H), (G) and (E), weobmn the runlt.

(1) is trivial using (C), To prove (2) in R we app!y the derlved rule (N') as
follows: Note that mr(t)-(y,t) Take

R =X,
Q: y:z!,
and P: 2=z A y's2!

We have left to show

(3) z=x o2[(r'=z A y=z')(y")]y=z. '
and (4) (2'=z2 A y'=2') o [(2=07;y¢1) U (2080T;2¢21; ?i‘*z AY u’,’(”")
szeztlsyey) Nastd' A y=2't).

To prove (3) we use (K), oBtainlng

z=x 2 (Vy", 2"} ((z"s2 A y"=2!) 2 y"=2™)

140
which is an axiom in (B). Proviig (4),&(?).(6!‘“{5),&&1”:3 S toprovmm
CtS) (ferAvey) SUsRNXBS A

which again is an axiom in (B), and

(6) (r=z A ysy) > Cxwilsrer-1Trm A yu){0st)]

(2s2¢1 A y(rel)=r").
Thelauerwepmvebywmﬁﬂ P |
(N (Lzz2Aysy) 2 [W,m- '
and (8) 1220 > L(=z A y-m;"#’x.-mx A ﬂpnsm.

The proof of (7).is quite easy wing (C), (D), (zhnpma ru (Q we apply axiom.(K)
again, to obtain

(9) 220> (Vy ,x’)((z'sz A N} 2 (z‘tt‘tl A y“‘(z‘d)tx"”:

whichismulomla(l) Cm TR . o

141
Appendh_: D: Example of a Proof of a DL*-wff in P*.
'Clonsider' the following program

a: (x#z";((x=y"'x<-x+1) v xt—x+2))"‘

 Assume a state J¢N for which x J'O Then, surtlng from 0, X gets increased by 2 as

long as x does not "hit" z Also, if x happens mb&y thea 999 Sncreue by lis
permitted before the by-2 increases are resumed. Two properties of .« whkh are of
interest in such states and which depend on the valuu, in theae smu, of z and y, are:

(a) whether x can be made to sklp z,‘ and
(b) whether x can-be made to hit z,

and can be written simply as loop,, and <a&>x=z respectively. The behavior of & in all
states of N in which x=0 depends upon whether or not z and y are odd, and also upon

whether. or notiy<z. The complete situation is given w the: mvtgbb where edd(z) .-
and even(z) stand for 37 (2=1+427') and its negation respectively: ,

; | - Aoopg A KmdxEz
odd(z) [loopy A ~Cadx=z SRR RPN SR
loopy A <@dx=z y<z
M Noopy, | yu
even(z) ~loop,, :
o loopy Adedxm - |y«

(Note that ~loop , implies that <adx=1.)

142
‘ Wo now prove that
x30 3 (opg * (sddlz) v (eammly)ny<if))
is N-valid by pmumcmmrmmﬁ%
1) (o0 A evenla) A Toiy) v yi)) nwm. R

() (vio A addth)) = cabtpe, © G
(3] CxatA v YA > epe” 0

o LHES

Cﬂnb%nmm:smmwm o | | |
(1): Wemuukcmmmmmm Miﬁi’l‘.um.r(u)wu
tedity) v yuid W n (0B e

i EE

m&mewWaM ﬁﬁwwwm Nr R
which we have ’

Je(x=0 A Mi) A e-mm;n RIS

we abo nvem)‘m%ﬁh%“hh“*(l)/’ﬂ 'cmhmm,

with having nm Mb#,wm Vo peronhif
| Mfe xoiz)-> xvby, -
and - EPC ml) A xpty o hmmn}s

"rmnmummuumm«umamul'

(2): nmmmum»mmmtmumm»uwr We'
nke?mhem , o | Rk s

Mz) A amtx))

anditismymmmtﬂhdﬁﬁlﬂ?hﬂwﬂﬂ,“mmubmofl’* Aho,
cmcanpmveml’tba

143

P 5 (xv: A <xex+sDP),
so that we have proved Pa¢A>*P in P* and can-apply (U) w0 ohxdn the result. .
(3): Simllarly (U') is used, and here the djvcrml? is taken, m be

y<z A even(y) A ((odd(z) A even(x)) v (m(z) A (y<x,! odd(x)))).

It is easy to see that (x=0 A em(y) A y<§)=]’ tg)q _ M,M mlave to the reader
the task of verifying that P3<@>*P is provable in P‘ (ln M Pm ls) and then an
application of (U') completes the proof,. - .M. .

144

Appendix E: Examﬂe of & Proof of 4 C. Fﬂli’*uﬂ MR

- Consider the progra ' |

e (u=vly Tbﬁi?;ﬁf-uﬂ";;xiggﬁaiﬁyﬁm .
for which it nmé& that |
'.”(ma (Mﬂv)' 1”0” .
holds. We sketch the prodf in R* of one direction, wahvely hat -
(u=0‘/\ ml;d('v)) 2 loop,,

is N-valid @ is of the form t*(£, and we have by eemmm

o: (y#a? v (y*a",x=a?,y¢-b)), o
and T(X): ((usv? U xeb) U ((uvtv? U xeb) ,W&,(X 1} x*b) sueu-2))*(f).

We apply rule (W) taking R to be (u=0 A odd(v)), Q to be faise, and P(n)=P to be
(e'vm(u) A odd{v) A u'zu A y'=b A x'--a A xﬁ A ysa),

where V=(u,x,y). The third premise of rute (W) is tﬁvw N-valid. Considering the
second we can easily prove

(u'zu A y'==b A X'za A x'za) O Cy=a?;x=a?;y-bdlu=u’ A x=x' _A' yzy')
and hence estabush by further propouttmd rwomng

Po <¢)V=V'

145
Also, one can prove
P o (u#v?;ut—u+2;Pv;ut—u—2>V=V',

from which the forth premise follows. We are left with having to prove the first premise.
This is done by proving

R > Vn(x<—a;y<—a;Pv)y=b
which simplifies to having to prove
cven-PYyus
R o (x«a;yea;P dy=b.

This again can easily be seen to be provable in R, giving the conclusion, | |

146

References.

C1] de Bakker, J.W. Semaentics anwd Termination of Newdesdrinifist !mme%um_f;
In Autom. mm:mw MM,M 3

€21 de Bakker, JW. Recursive Programs as Wﬁm Proc. IFIP conf. on
Formal Specifications of rwm S Mm, Glndt. Aug 1971

[3] de Bakker, J.W. and LC.L.T. Meertens. o»mcmur the Inductive
Assertion Method. L«mmsmm,kmm*am :

(4] de Bakker, JW. and W.P. deRoever. A Calititin for Reoursive Program Schemes. in
Automata, Languapes and PW(!&.M 167-196. North Nolland. 1972,

[5] de Bakker, JW., and D. Scott. An mmcf aMycfm Unpublished
manuscript, 1969, X

[61 Banachowski, L. MPWJW MM MSd.,Ser Sd. :
Math. Astr. Phys. Vol. 23. No. 3. 1975.

£7) Banachowski, L., A. "xm, C. Mirkowska, H. Rasiowa and A. Satwicki. 'An
Introduction to Algorithmic Logic; Metamathematical Investigations in the Theory of
Programs. In Mazurkiewitcz and Pawlak (m) M fuall.ﬂ Comp. Sc. lmach
Cemer Pubtmtiom. Warsaw. 191. B

8] Berman, F private communication.

{91 Berman, F. and M. Paterson.’ Tut-ﬁee Pw Dymmc Logic is Strictly
Weaker than PDL. T.R. no. 77-!0-02 Dept. of m m, Univ. of Washington,
Seattle. Nov. 1977

C10] Clarke, E.M. Programming Language Constructs for which it is impossible to Obtain

Cood Hoare-like Axiom Systems. Proc. éth ACM Symp. on Mor Pmnmming
Languages. 10-20. Jan. 19?7

141

[11] Constable, RL. On the Theory of Programp
Theory of Computing Bouldgr, Cobrado(‘ay l‘l‘ﬂ

(121 Cook, S. A Soundness and Completeness.of an Axiom System for. Program

Verification. S!AMJ Comp. Vol 7, -no. 1. Fet 1 ipn o!“ Axlanatic and
Interpretive Semantics for an Algol Fragment. Tl-j% ant. grpute: Sc;ence. u. of B
Toronto. 1975.) U |

(131 Di jkstra, E. W. Cuarded Commam;ls, Nondetmnimcy and qumal Derlvation of
Programs. Comm. of the ACM. vol 18, nod. 1”5 ' ; ‘

[14] Dijkstra, E. W. 4 Dmtpltm of Progmnuung, Pregtice-ﬂal& 1976
[15] Engeler, E. Algorithmlc properties of structures. Muh Sys. Thy 1, 133-195 1961

- [161 Fischer, M. and RL Ladner. Propositional Modal .Legtc of programs. Proc. 9th
ACM Symp. on Theory of .Compunng, Bwidati Co!.‘, Ihy 191?. o

1n Floyd R.W. Assigning. Meaning to Programs. In)T, Schwmz (ed.l Mctlmmmccl
Aspects of. Cmputgr Science..- Proc, Symp. in Applied Math., 19, quvgdm, Rl
American Math, Soc. 19-32. 1967 S _

(18] Gabbay, D. Axiomatizations.of Logjg of Program: ,M@ggs‘ql_pt,, No}v.vm’n._ _

£191 Corelick, G.A. A Complcte Axiomatic Sy_;;em for Proving A:serqom ‘pout Recursive _
and Nonrecursive Programs. TR-TS Dept. of C , Science, U. of Tommd. 1915.

£201 Harel, D, Arithmetical Comgleteness in Lugla of Pmmms. In Autpma, Languages
and Prog'ramming Sptiqger—Vnhg. July 1,970.

(211 Harel, D. On the Correctness of Regular Deterministic Programx, A Unlﬁed Snrvey.
- Manuscript. Lab. for Comp. Suenoe. MIT.. Nov. ﬂ’ﬂ :

221 Hare‘ Dq A R MQYQT Iﬂd VR Prltt. otk hohnoiglid Mook ofbaethl aoda e |
Programs. Proc. 9th Ann ACM Symp m'rhmd‘ omputing. Boulder, Col:

Ty S WA TR R [S

148

(93] Harel, D., A. Pueli and 1. Stavi. Gomgigieness issues for Indisctive A
and Hoare's Method Tech. Rep., Dept. of App

(241 Harel, D., A Pruel 36d J. Savi, A Coa ,n xjorac Sysis
Deductions about Recursive‘ﬁ{grgm. 'P;nr_ P.
Computing, Boulder, Cot.,, May 1

(251 Harel, D. and VR Prm. Nondeeerm
Symp. on Principles of Pre it g

[261 Hitchcock, P. and, D, Park. Induction Rules ang
~ Languages and- Progrm ‘d. him, m{ k. Mo

0n Hoare, C.AR. An Axbmﬁc ‘Basis For Com seer Phogramwisng. C
vol. 12, §76-580, 1969. e
[28] Hoare, CAR. SomePnpemuof r
Queen s UMV . M:st. 1975

G2 DT I R

[29) Katz, SM:and 7. Mame. Logicas sncibli’
no. 4, pp-- tﬁ-mﬁ. Apr. 19%.

R
iy -

[30] Kleene, &c Inthodi

i) Koenlg,lj rmm dg matzemm Qrajeh. 1
by Chdsu Wew*\'oﬂn Opgg, T RS D T T A

‘ ";;4‘ ar metical.
d Bi i*“iiy‘»w ,,!!‘1 hetic

M Nﬂ. Acid

[321 Kreczmar, A Thentof‘ﬁ; S gf

Bull. Acad. Pol.Sd Ser. Sci: mmm ‘h"’]

A
K

[341 Knp;e,S‘ semmw i o s
83-94,'19%63. ° i o

149

[35]1 Lipton, RJ. A Necessary and Sufficient Conchuon for timExistence of Hoare
Logics. 18th IEEE Symp on Foundatiom of, Computel’ Stieuce, Prowidence, R Oct. 1971

C36] Lipton, RJ. and L. Snyder Completeness and. Inmmabteamof Hoare-like Axiom
Systems. Manuscript Dept. of Computer Science. Yale Unlverslty. 1971,

£37] Manna, Z. The Correctness of Programs. J of Comp and System Sciences, vol3.
pp. 119-127. 1969. ‘

£38] Manna, 7. Second Order Mathematical Themy of Cmppmtim. Pmc. 2nd ACM Symp
on Theory of Computing, 158-168, 1970,

£39] Manna, Z. Mathematical leory of Computation, McGraw-Hikl.. 19%.

(401 Manna, Z. and J. McCarthy. Properties of pragrams and pmlal function logic.
In Machine Intelligence 5. Edinburgh University. Press. 1969,

[41] Mirkowska, G. On formalized systems of aigoxithmiclom;. Bull. Acad, Pol. Scl.,
Ser. Sci. Math. Astr. Phys. Vot, 22. 421-428. 1974. ‘

[42] Mirkowska, C. and A. Kreczmar. prlvate cowmnicm

[43] Meyer, AR. Equivalence of DL, DL* and ADL for Regular Programs with Array
Assrgnments. Manuscript. Lab. for Computer Science, wT, w:ﬁzc MA. Auguu 1911

(441 Meyer, -A.R. prlvate communication,

C45] Morris, J.H. .Ir and B. Wegbreit. Subgoal lnductlon Comm. of the ACM. vol. 20
no. 4. April 1971.

£46] Naur, P. [Proof of Algorithms by General Snapshbts. BIT vol. 6. 310-316. 1966.
€473 Owicki, S. A consistent and complete deductive smm fm thc verlficatlon of

parallel programs. Proc. 8th Ann. ACM Symp. on Theory. of Gomputmg, 73-86. Hershey PA.
May 1976. L . -

150

C48] Pankh R. A WMM% T‘d’&:
Found. oanmp.Sm ‘m’m o ol

€491 * Parikh, K.’ memr Yocess: Liogic: Miinditpe.. Eabi 'for-Comp. Science; MIT.
April 1978, hoeatey e pneri ae el I ARATINY duor

[501 Parikh, R. private:communication:

€511 Park, D. Fixpmnt Induction and. Proofs of Pmam Pmda. In chlunc
fmefitgtmi. \ i iveversiey Proak: 1968

[523 Prau, V.R. WMMM*WM Pmc. 1Th IEEE
Symp. on Foundations of Compinel Scieties:* ;. et

(531 Pras, V2 »)Pwmm,,* e

[54] Pﬁtt’ VR: pﬂm

[55] Rasiowa, H. On Wmdm MMPd.Sd. Scr Scl. ,
Math. Astr. Phys. Vot.zo 43195041972 g
Termmid%‘*'m!ﬁ*”* lietior mmm gt e

571 deRoever, W.P. Equivalence between Di jhstrili- preditatié s msfor
Smyth's powerdmm mamcs a Mw G, m M;ulpt Augu 19'!‘1
B wivsw 4 b o

[S81 Rogers, H. Tluory qf Rm:m anum md lm Cumuauy.
McGraw—Hm, 19'67. v' :

(593 Salwicki, A. Formalized A‘:WLW Mkuﬂ Pol.Scl., Ser Sci
Math Astr F‘Hys. V&”ﬂ* WS& W

(601 Schwarz, JS. Semmics of Pmixl ‘Correctrvess: ﬂm Ph.D. Dissertation.
Syracuse Univ. Dec 1974

154

[61] Segerberg, K. A Completeness Theorem in the Modal Logic of Programs. Preliminary
report. Notices of the AMS, 24, 6, A-552. Oct. l‘m.

(62 Shoenfieid, JR. Mathematical Logic. Addison-Wesly. 1%61.

[63] Sokolowski, S. Total Gorrectness for Procedm:es. Manuscript. Unlv cﬁ“Bdamt, ‘
Poland 191’7

.[64] Tatski A The setmntic oftmth md‘thﬁeuadtthu of semamics.
Philos. and Pmmm h‘#ﬂ%m‘ “ﬁu B

?‘r :,

‘H‘igk"Sfmd Auﬁmattt
Oritgio, Can. Jan. 1950,

£66] Von Neumann, .’ Collected w«m &pp.al" ﬂmﬁm New York 1963.’ o

£6s1 Turlng, A Checklng a t.ﬁrge Roupne. la Réf. Coujf
Calculattng Mccldms T ‘ g .ot T

€671 Wand, M. A New lncompieteaess Result for Hoare‘s System. Proc. 8th ACM Symp. on
Theory of Computing, 87-91. Hershey, Penn. May 1976. .

[68] Wand, M. A Characterization of Weakest Preconditions. J. of Comp. and System
- Sciences, vol. 15. pp. 209-212. 1971. :

691 Wang, A. An Axiomatic Bam for Proving Total Correctness of Goto Programs. BIT
vol. 16, 88-102. 1976. |

['70] Winkimann, K. Equivalence of DL and DL* for regular programs without array
assignments but with DL-formuh: in tests. Mammﬂpt L&b. for Computer Scleme. MIT,
Dec. 1971.

(711 Winkimann, K. Equivalence of DL and DL* for reguhr programs. Manuscript, Lab.
for Computer Science, MIT. March. 1978.

152

Biographioal Note.

David Harel was born in l.nndun, England on April 12, 1950 and immigrated to Israel

with his family in July 1357, He

1968 andmvcdhmhrﬂﬂmfmfm

1974 he received a BS. in Mathersatics and

in Aumu%w!&mmmmm'

US., with:his wife Vasda apd sheir

25,

1976, and recetved mﬂ@.u%&mmﬁg
‘ ‘ ;,‘umqum‘vmmwa

acceptedaMyga; v ,
_Yorktownﬂelgm N.Y,suuu&pr.m

- W

pen Netty Maly Yeshiva | !fthune
‘ 9. -In July
Gw-r” % milm UMverﬁty and

SN

Errata for MIT/LCS/TR-200, by David Harel.

Page 43. Rule (H) should read:

(H) P:’Q P:’Q S

v v and . —
 [alP 2 [a1Q . 3xP23xQ

Pages 38-39. Theorem 3.1 and its proof should read:

T heorem 3.1 (Theorem of Completeness): For any universe U and M-extension L(M)of L, a
U-sound axiom system P(M) for L(M) is U-complete whenevér

(1) P(M) is propésitidnlaliy complete,
(2) L is U-expressive for L(M),

- (3) For any keK, variable x and L(M)-wifs R and Q,
f Fp(my)(R2Q) then Fpy) (LMK > (M)Q),
if "P(M)(R:’Q) then "P(M) (3!R DJXQ), and ,

(4) For any k€K and L-wffs R and Q,
it Ey(R~(M)Q) then Fpqp(R3~(M)Q).

Proof: We have to prove that if P is an L{M) -wff such that FUP, then "P(M)P'
By the propositional completeness of P(M) we can assume that P is given in conjunctive
normal form, and we proceed by induction on the sum n, of the number of appearances of M
and the number of quantifiers prefixed to non first-order formula, occurring in P. In the
case n=0, P is first-order and by the first line in assumption (4) it is provable if it is
U-valid. Assume that n>0 and that the theorem holds for any formula with n-1 or less
appearances of M and such quantifiers. If P is of the form P1AP2 then we have FU Pl and
FU P2, both of which have to be proved in P(M), so that we can restrict our attention to
a single disjunction. Without loss of generality we can, therefore, assume that P is of
one of the forms:

Plv(Mk)P?., Plv-(Mk)P2, PivixP2 or Plv-3xP2,
where k€K, and the right-hand side dis juncf is not first-order. Thus we are guaranteed

that in each case P2 has less than n appearances of M and such quantifiers. Let us use
p to denote (Mk) , Mk) , 3x or ~3x according to which is the case.

L s expressive for L(HY, ani b for iy LWt Q) hird Y s Lot @, ~©
which is equivalent to Q. We have then FU(-PIL =] pP2L) Now, using assumption (4)
“(since P1; and P2L are L-wffs) we also have .: R :

Now surely, by the definition of Pl and P2L We have Fu (-‘Pl) ﬂPiL) and
I=U (P2L = P2). Both these last formubié hive' Fess than n appearanees of M and ‘such
quantifiers, and hence by the inductive hypothesis

ST ‘.""*F‘,,‘("M) (+P1'5 -P1) “and
Foom) (PzL =P2).

By assumption (3) (together with the propositional completeness when the sccond and forth
of the above cases are considered) we can obtain from the fatter ‘

(*+%) Fpw) (PP2 20P2). 7 e ﬁ

[EXN

From (*), (**) and (***) we get, u;ing pppositfonafré’ason‘mg

r;ﬂ m(~r1=ppﬁ),
or ko) (PLveP2). B

¥ :
i ,‘»_!‘ SR P 1

