LABORATORY FOR
COMPUTER SCI,ENCE

INSTITUTE OF
TECHNOLOGY

MIT/LCS/‘@

A FORMALIZATION OF THE STATE MACHINE

SPECIFICATION TECHNIQUE

Robert N. Principato, Jr.

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR—ZO:
A Formalization of the State Machine Specifiocation Teohniqd.o

Robert Neison Principato, Jr.

May 1878 *

.This research’ was supported in part by the National ScmFoundatlm ‘under grant
MCS74-21892 AOL | T

® 1978 Massachusetts Institute of Technom

F - # : .
B RS = i s st

Massachusetts lfmnuu of Tachnology
- Laboratory for. Computer Science

Cambridge : : Massachusetts 02139 ‘

-92-

A Formalization of the State Machine Specifioation Technique
| by | |
Robert Nelson Prmpm Jr.

Submitted to the Department of Electrlcal Engmm and Oempm Scim
on May 16, 1978 in partial fuiftiimsent of the requiremeins for the
degrees of Master of Science. md Mlai w

Abstmt

This thesis develops the state mactifite spbéification technique, a -fml specification
technique for data- abstractions based on Parnas’ work on m mm modules.
When using the state madﬂlu technnue “each data obpet Is vid as tiz state of an

implicitly tleﬂned Tﬁe basic ¥éa is to sanate e iparm of the cﬁn m into
two distinct groups; those which do not chiange the state but allow seme aapect of the state w
be observed, the value returning or V-functions, aind thise which change the state, the
operation or O-functions. The specifications are then written by siating the effect of each
O-Tunction on thie résult of ench V-functioh. This imphicity Gefines the smiiest set of shetes
hiéceisary v distivigiivh the’ Yaristblis i the resilts 1t vm a3 "
the transitions aimong these states caused by the O-Fisckivis. . SR
An sbstract model Tor the semantics of mmﬁmww hymemed ind‘
then used mfwmﬁuthemmmdammwmm Furthermore, &

methodology for proving the correctness of an Waammm
by a state nitichine is dmumd md umme-d

fgo

Key Words and Phrases: state maéhine specﬁ‘hﬁiu,dtu
techmque proofs of correctnéss

Name and Title of Thesis Sapéevisor: T Barbara H. Wﬂ‘
: ' mvmdm Science-and Engineering

-3-

Acknowledgements

I wish to express my thanks to all the people who helped and encouraged this work:
to Professor Barbara Liskov who patiently read my many drafts and helped me clarify my
ideas; to Deepak Kapur who took the time to read several drafts of this thesis and made so
many valuable suggestions; to Bob Scheifler who taught me how to use ITS and wrote R
macros for me; and finally to Bart DeWolf and Frank Bamberger who helped me in the

early phases of this work.

CONTENTS

Abstract ..'...'..l.'I'......".’.............'...........‘.................'.... 2

Acknowledgements ..'.ll'...O...II...'."I'...O..........I..'.....'...'... 3

Table of Contents .I....'.-...I.'..'..........I.......'....'..'......'.'.....4

Table Of Figures I"'........'...'ll.'...'...I.'.....................I.'......6 .

1.

2.

'3.

Introd“ction I-I'..I..I......'............I........ 7

1 01 MO“V&“O“ .nl.'-oco'll'vl.0"'.Otll.'l!l'lQ..l0...".'..C'.IQ..O...Il..l'.'.ll".".'ll.. 7

1.2 Parnas's Approach to Specificationccceiecicecccscacacncosoracsesces 10
1.3 State Machine Specificationsccccececersnccrscrscnsscsssrseecscscosasase 13
1.4 Uses of State Machinesccccericercrrescsssscosersersscesssscassercsssosssse 16
1.5 The Outline of the ThesSIS ...cccirirerursascesscrcrectsnsssscrsssascscrosssssce 16

A Model for State Machines teeecesesesssescss 18

2.1 The Basic Components of a State Machineccceereersensccnsoenee 18
2.1.1 V-functions teeeeseesreereesesnessssnsnssssssssssnsessasnrssssnessansevases 19
2.1.1.1 Non-derived and Hidden V-functionsc.c.cccceceeccsccrascescoses 19
2.1.1.2 Derived V-fUNCHIONS ...cccivevesrrrasescscaspesceasnscenscossersscesessenase 21
2.1.2 O=fUNCRIONS ..oveoriercrrsrscnssorsesesssssarssssnsssctssersssnsssssosascnssssssecs 22
2.2 The Semantics of a State Machinecoevviccnrsccrccsscesccrsorcecece 23
2.2.1 The State Set of a State Machineccceeivcesencrsceccososcessescncs 23
2.2.2 The Semantics of V-functions and O-functionsccccecevececeee 25
2.2.3 An Induction PrinCiplecccccecissnssossescssssrcscascsoncescrssssssosesss 27
2.2.4 Proving Properties of State Machinesccosecessecesccccnscases 28

A Langﬁage for State Machine Specifications . 32

3.1 The Syntax of ALMSccoivcensrnssncerssaressesescesocesssasssascscsosrees 33
3.1.1 The Defining AbStractionsccccicsesececsesscssecssssscscessescocsccse 35
3.1.2 The interface DesScriptioncccccecetastrrsescrecersercersarcessoscssscscs 36
B.1.3 V-FUNCRIONS ..covevnrerercrnrercscrsesessesessasssssccssssesssnsenssccsssscasssscce 36
3.1.3.1 Non-derived V-fUNCIONSccccerveeeverssnssscncctsnoscecncsccsnseccess 37
3.1.3.2 Hidden V-funcliONScccccerssesscrssccrcssesscsceresssssescenssssossssoss 39

-5

3.1.3.3 Derived V-fUNCIONScccceeereeieeneenmrecccsrseseoesssrssssseassonesssse 40
B.1.8 O-TUNCHONS ..uvieiiiiiiinnccenesssscssssesssncessosseessscassercancscssoscasce BT
3.2 The Semantics of ALMScccecemmnerecersesnsssssesessessesssorsesessscse 83
3.2.1 The State Set eesessssacpervensastogenititsssnsssnsesaanasensnsasiasassasiennse 43
3.2.2 The Semantics of V-functions and O-functionsccciiveeees 51
3.3 AN EXAMPIRovvveiiirnmesccannsrsnssrreossssssoscssesssssossesssacesessessessesses G@

4. An Implementation Lnuguqc fﬁn ;ﬂtgto Mhdﬂng- 87

4 1 An E"m -it"OOIio---cl“tbclo.iooo.ll v ‘ LIl ALl ‘ csvnscccvssvevee u .

6. Proving an Impleme'ntﬁfi;dh Oormt35

V 5 1 The COﬂcre“ aepr’s."tm anvovlov(gt.oonoguoog,vooucootncuooocntonoo ”
5 2 The Abﬂflc‘ Obhcti ..lon‘!tg’l’p’.o.!oltg,oo!o'

6.3 The m&mphtm Propwty

Wi

.".'Q....,‘.Q....'Q.... ’7

..'."'..l.l....’.."'.' ..O'.............". 70
u

‘w.{‘.

3. A.n mxtend.d Mk&ht’ whll O-o-oco 73

8.1 Extensions to the. Bulc COMPONBNESccuniiisiosssscsrsrseeessincarogse TO

6, 1 1 v’m tuﬁ-vnr'Qo'v.‘..lQMpcm’)ic{"(‘co"illi‘.”’ﬂ'c.oo-aotocuoapoii'o m

6. 1 1 1 m‘d’ﬂv‘d wmm v’ ;. £ ails .qup..moiouuo;gqoooocawoooaq 475 .
. 6.1.1.2 DeriVed V-functlom tsrssueesesesussnssssrae
 6.1.2 O-turictions
6.2 The Semantics of & Sate MECAINGE ..i...cciviccriceioeseiorrescrsresssses T8
- 6.2.1. The State: &t d" Stats Machine “banidonm,nhu.n»n..uu».n 78

6 2 2 Th.\ wc"ﬂf vm “m oo-.-b.‘too.o‘c"‘“ n

..'Q‘I.'.‘...........l‘.. _:» 5

I...'l...'.l.’...... l I

7, COnolusions ..'.."...I'..I'.......'...'........I 82

7 1 EV!'UQ“O“ ese .-oo'n.ooocoot;go-ootalo’n..,ool'.c.‘Ql..-‘oocq..tO0”"..'.QQOI'I.I..O0.0.. 'z
7 2 To‘p‘c‘ fw Fuﬂh"m.mh ..0.."Q..OO.'.‘......‘..."............‘.I...... ‘5

Appendix I. Undecidable Properties of State Machines . 87
Appendix IIO PrOOfs Qoo.ooooo--o-cc.oo‘oouo;o.o‘-oooo' 93

R’eferences vv-o.oo----..o-_-oc.ooboooobooqoooooooooc. 100

Figure

Figure
‘Figure
. Flgure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

'FIGURES

1. Top h.lld Pu’h .ct.’bolo.rt.ooﬁvvoaoo.oooo
2- Bounded Int,g’r s“* L ERNENFERNNNEEN NN

3. Non-derived or hidden V-funstien v ...

4- Darivad V'fnnctionv *srsesrecerccssone
s.) -funmano :.‘........;CVV.‘.V...’;b.;“.'..'..'.

6. syMbol T“ble II..0...Q'O:........Q....'.

7. Syntax of & Non-derived Y fa n
8. Syntax of a ALY

l ﬁ ﬂf WW 560‘&.‘%80.00-
11. .Effect. Function LU BN BN BN BN BN O BN BN BN BN BU BN BN BN B N N NN 2N J

12- Q“Qu. ---o.c.bnooOto..oQ.oOoi.&st&..o.o
13. Bpeoiﬂoaﬂm of Finite In." g 8 t ..
14. Implementstion of Hatte 1H40:

*"’Q’,u

15- vm‘m‘ sessesesorin s eneen Q;,;q ;f!\-'.'."—;"’; .;:

16. Al‘l'ax --oo.doocoat.u&hgo»rmov‘?ﬂq!.@otdv-.

18. 9
19- Deﬂved V'funotlﬂa! 'essecesenscessevss
20' -funotiono.......’............."'....'

21 Turing_}““chinﬂ m_._l teesetossevevacen,

22. 'Purlng...muohi

_ 0. Syntax of a Dcrlvodﬁ V-hmotioh cocesss
Figure 10,

17. ana mmm»m.s....w. ‘

Qntul.‘qgg.lo e

1. Introduction
1.1 | Motivation

In the devétopment of our understanding of complex :pben‘dnem,the most powerfﬁl
tool available to enha'nc'e;' our comprehension 'is tbstndtion - Abstriction ‘arises from the
recognition of similarities between certain ob jects or processes, and the decision to concentrate
on these com’spoham&s and to ignore, for the present; their differences (Hoare 7261, Tn
focusing on similarities, one tends to regard them as fnﬁdimlmdlmrmle. and-to' view
the differences as trivial. | |

One of the earlfest recognized and most useful aids to abstraction i programming Is
the self-contained subroutine or procedure. Protedures appeared s early as 1945 in Zuse's
programming language, Plancalculus [Knuth 783 Besides, early developers of programming |
- languages recognized the utility of the eom:ept of a procedure. Curry, in 1950, described the
advanvta’g‘es of including procedures in the programining lmg\lﬁges bl!mg developed at that
time by pointing out that the decomposition mechanism providéd by a procedure woulkd aflow
keener insight into a problem bypermlmng consideration of “its separate, distinct parts |
{Curry 50). |

" The existence of procedures goes quite’ far' toward: ctpturing the meaning of
abstraction [Liskov and Zilles 74]. At the point of its invocation, a procedure may 'be treated
as a "black box", that performs a specific function 'by means of an unprescribed algorithm.
Thus, at the level of s invocation, 2 proceduire Separites ‘the refevant detatl of what it
accomplishes ferm'the ir’refevdﬁt detail of how it is implemented. Furthermore, at the fevel

of its implementation, a procedure facilitates understanding of how it accomptishes its task

-8-

by freeing the programmer from considering why it is invoked.

However, procedures alone do not provide a sufficiently rich vocabulary of
abstractions [Liskov and Zilles 75). Procedures, while well suited to the descrlpnon of N
abstract processes or events, do notaccommmm the mrwﬁmm objects. To
alleviate this problem, the concept of a data absfraction was introduced. This comprises a_
group of related functions or operations which act upon a. pasticular class of ob jects with the
constraint that objects in this class can only be observed of modified h}the;gpmnond s
related p’peratiqns [Liskav and Zﬂles'lSJ

A typical example of a data abstractlnn is an integer push dewn stgck. Here, the
class of objects consists of all possible stacks and the collection.of W operations includes
the usual stack operations, like push and pop, n operation to. cprate new stacks, and an
operation, op, to return the integer on top-of the stack.

Thzsuofoperaﬁonsmmadwuhadanm&nvﬂm;mﬂm
operations to create ob jects of the data abstraction, operations to mﬂdlf} b jects of tb.g dats
' abstraction and operations to cbtain information about :he souctuse or contents of OPPC“ of
the data abstraction. The first two categories of operations, which. inchide gush and pop, are
the constructors of the data aﬁstraction. Operations in the last category are {mguiry
op‘eravtton-s as they pravide information about the data abstraction. Top ‘belongs to this

category. |

Constructors can be f urther classif ied into two dif fc,r.egsz groups; information adding
operations and information .tmui_,ug operations. Information adding epentm phce new
- information in the data abstraction. For example, push is an information adding oéerat,ion

for integer push down stack. Its complement, pop, is an informtton removing operation.

-9-

This type of operation removes information from 'aﬁ"bbjed*of ‘the data zbstndlen and -
results in a new ob ject of the data abstfacﬁoh whote m@mm«:uam is a subset of the
information content of the original ob ject [Kapur:78). | 7

A data abstraction provides the same ﬂdtto abstrmbn e procedure and atlom
one to se'pmte the implememitiondetaﬂs of a data-abstraction from its behavior. - The
behavior of a data abstraction can be described by ¥ specification. A lpeciﬂcaden of a data
abstraction specifies the names and dcf ines the abstract meanlng of the assoclated operatlom
of the data abstraction. It describes wha't the data abstraction does but not how it is done.

on: “An”implementation of a data
abstraction ‘describes the representation of objects of ::the - data abstraction and ' the

This latter task is accomplished by an im

implementation: of the operations that act upon these objects. Though these different
attributes of specification and implementation are, in prastice, highly interdependent, they
represent- logica"y indepmdtnt ‘concepts [Guttag 75).
| - The main concern of this them is the specifination of data abstractions. -
Specification is important because it describes. the abﬂrmfm‘-_vhkk has been conoeived
in someone’s mind. It can be used as a communication medium among designers and
Implementors‘ to insure that an implementor undermndsthedumeﬁ mmmmm
data abstraction he is coding [Liskov and Ziiles 75].

| Moreover, if a formal specification techmque. one wlth an explicltly and precisely
defined syntax and semantics, is used, even further b«uﬂa ‘can be derived. Formal
specifications can be studied mathemancally 5o that quemom, wch as the equivabnce of two
different specifications, may be posed and rigorously answered. Also, formal, speclf ications

can serve as the basis for proofs of correctness of programs. If a programming language’s

-10-

semantics are deﬁne_rﬁ (om'nm (Miine and Strachey mm of a program wmten in
this tngudge can be formally proved. The correctness of the program can then be praved
by establishing the equivalence of these properties and the specificacion., Finally, formal
sp«ﬁmmnsmumwumwmw:wmmmmtamm
and Berzins 77). Since this processing can be done in.advance of implamentation, &t can
provide design and. configuration guidelines MMW ‘ |

1.2 Parnas's Approach to Bpniﬁuthn

The information contained I the specification of & dat ahetgaction can de. divided
imo a syntactic part and a semantic part [Liskey and Zilles 75). The syotactic part provides
a vetabulary 'of ‘terms or symbols. that are used by the sumantic patt to cmthqm
are wied in
capturing this meaning; either an expMWMkW&%MM#W
‘and its associated aperm are defined in terme of Wis modal, a¢ the class of ob jects 5

mesining or behavior of the data abstraction. Twe different . Appronche

defined. tmpucmy vid éucrlpmnsof theoptfmmbhﬂ and. Ziiee- 783,
Parsias [Parnas 721 has developed a W and - m for wsm
~ following goals in mind [Parnas 72):

D The specification must providé to the intended user
the ob ject specified, and nothing mere.

-1 -

2) The specification must provide to the implementor all
the information about the intended use of the ob ject
specified that he needs to lmp!emmt the :ptclﬁution
and no additionat Infbrmaﬂon

3) The specification shou!d discuss the ob ject specified
in the terms normally used by user and implementor alike
rather than in some other anﬁ& am :
When using Parnas’s technique, each data object is viewed as the state of an

abstract (and not necessarﬂy finite) state machine and, in Parnas’s specifications, this state set

is implicitly def ined. The basic idea is to sepame the operations of the data’ abstraction into

two distinct groups; those which do not change the stite biat ¥fiow wme‘upectof the stite to
be observed, the valué returning of V-functions, and those which chisnge the state, the
6plerationw'or‘Ofuncttons; The specifications are then written &ymﬂnﬁ’thee!‘fed of each

y defines the smallest vet of

O—function on the result of each V-function. THIs tivpht
states neces‘sary "to' distinguish the variations in’ €he résults’ of tie V-fanctions .il'L'iskov and
Zilles 751. It also determines the transitions arong thele sites caused by the O-Punctions.
Returning to the integer push down smkexthpﬁ.miﬂnﬂnnpmﬂm top and
push. Top is a V-function that is defined as hﬁg'i: the stack ‘is'not' empty, and pusk san
O-function that effects the result of top. Thmopérdﬁomﬁ!ﬁﬁf‘%wiedu in Figuré 1,
where def}th" is anather V-function whose definition 1s ndkt shown here.bm:-enem the
number of integers in the stack. Q_uﬁti"s around a 'V-function are used to Mdtuteitsvﬂln
after the O-function is exécuéed.l"" o | | |

A problem with this approach is that certain’O=functiohs thay have delayed effects

1. This interpretation of quotes differs from that in [Parnas 72, 5.

Figure 1. Top and Push

top = v-fm«onh,
Appiicabiiity Conditiel
nttial Vete: yndel el
endtop

push « O-ftha m;geﬁ e et
Appilcublitty Conditign: depth
Effects Seation Wp' « o

“depthy’ « depth + 1.
and push

pY, push has a delayed
 effect on tep in the sense that after & ngw Hleent s besy pushied pn the stack, the foremer

-on. the V-functions. In other werds, some_prupert

V-funciion only after some O-function has been weed. For exe

40 Of the stack element is nio Junger observable by J0p bt it witl be f pop i3 used.
Partas used. an tnformel Wog#age 1o expren thise deleyed offects [Parnes 72,750,

.effects in English, atummmmmw,_ wthmmiicut formw ﬁl?am‘m For

. »mb,mmlfy the interaction of ;nm\and muum. 3 yoeq the phrase “The

[Price 73) to represent aspects of the state. which are net immadintely dber

V -furictions are not operations associated with the dita sbstraction being def

-introduced to store values of other V-funcioms .and in ths menwer they sdive the

© representational problems caused by delayed effects. Since they muuapmm yerations of ‘(he

-13-

data abstraction, users of the abstraction should not be able to use them. As: 'ah’ example, in
the specification of a push .dvown stack, one could introduce a hidden V-function stack to
store the former top of the st#(:k element. | | |

This :approach has beeﬁ followed by resgar;hé_rs at the Stanford Research Institute
[Robinson 77], [Spitzen 76). However, their main concern ;vith Parnas’s. approach to
specification is its use in a general methodology for ‘the design, implementation and proof of |
large software systems [Robinson 75], {Neumaiqn 74). With this goal in mind, they have
designed a specif icat_ioq language, called SPECIAF. ‘fqr Qe;crlblng Parnas-type specifications

[{Roubine 76). But, no formal semantics havebeenprdﬂded for SPECIAL.
1.3 State Machine Specifications

This thesis ‘dev?lops a formal speciﬂcatlon technique based on Parnas’ ideas. The
specifications written using this technique are called state m::htm specifications aﬁd ‘employ
hidden V-functions. The spe‘cif‘icja'gidn technlquc described in this thesis is similar to work
being done at the Stanford Research Institute. No attempt is made to formalize Parnas’
notion of a modular properties section. | | .

An example of a state machine specif ication is given below in Figure 2. Here, the
data abstraction defined is a bounded integer stack with the foﬁoﬂng o“pe;itio’hs. Top is a
V_function that is defined as long as the stack is not empty and retiirns the top of the stack.
Depth is another V—function that reflects the number of integers in the stack. " Push and pop
are O-functions that insert and delete, respectively, integers from the top of the stack.

Notice that there are three different types of V-functions included in the

specification. The hidden V-functions are used to represent aspects of the state that are hot

-4-
Figure 2. Bounded integer Btack

~ bounded _stack = . state machine is pmh w m. depth
depth = non-derived Vetumetionl) returns W o

Appl. Cond,: trus..
initial Vaiue: 0
end depth
* stack = hiddan V-function(i:inwger) returng integer

Appl. Cond.: 151 g

initip) Valus: w

end stack

top = dorlved V-function() mwm Inuger
Apgl, Cond.: videpth = 0)
sinckidopth)

Derlvation: top =
end top

pop = O-function()
Appl. Cond,: ~depth = D)
Effeoty: ‘depth’ = depth -1
end pop

push O-functhn(l.mug«)
" Eftects: *‘&w " - dif
'stack’{depth + 1) = L3

end push

end bounded_stack

immediately observable. Recall the delayed effect of push on tep. When 2 new elqmmh
* pushed.on the stack, the.former top of stack element is. no longer mueby top but it will

be If pop is used. This value is siored In the hidden V-function stech. Hidden V-functions
. are nat dlnecdy aécessj.lale' to users of the data abstraction, but Jimited access to them .is

provided by the derived V-functions, which are defined in m of the hlddm -and

~15 -

non-derived V -functions. Non-derived V-function; arelboaccessibleto usersof ihe data
abstraction. . They are inquiry operations that reveal intrinsic aspects of thedata abstraction
defined by the specification. '

Note that the specification in Figure 2 uses two.data abstractions, namely the

integers and Booleans, which are distinct from the datg abstractio defined by the machme

These data abstractions are called the defining. abstractions. They are not rgsmcted to
contain only the integers and Booleans and can consist of an entire collection of ' data
abstractions. . The defining ébstractions are usually slmple Aabstractions that are used to
 construct more complicated state machine specifications. |

' The defining abstractions are used in. thg domam md fFange of tt;e V-functiom and
O functions. They constitute the lnfomtlon that the O-fupctions, the constmclms. add or
remove from.the data abstraction. Thqm@!sp thgresut:tm tbn V-f umtlom. theingulr y
operations, return. The ;:lefini.qg'vA;b:s;;g;im maswqu tqbedeﬁmd elsewhere either by
state machines or some other formal specif icationtechniqbe | »

The semantics of a state machine can be defined by giving the following
interpretation to the Vl-f unctions and O-functions. In every state of the machine, some
mapping is associated with each V-function. Thesemnppmgs characterflethe state Tﬁéy
represent the 1nfo_rm§tton fhat the V-functions reveal about each state, In fact, since the
derived V-functions are defined in terms of the nqu-;derived and hidden V-functions, the -

of the non-derived and

_state of a state machine is. cémphtely charagterized by the mappiny
hidden V-functions. The O-functions change the state of the maching by redefining these

mappings.

1.4 Uses of State Machines

As was previously discussed, formal specifications can i 'siudied mathomaticathy.
So, state machine spectflc‘anm's can be used to prove properties dcmuibmuﬂom or ﬂw
| e'q'un"aneﬁce of different specifications. Furthermere, they can be'usd a5 an ummbiguous
_communications medium among progrumrﬁﬂs due to'thelr precisely defined semantics. But
one of their most tmp&:mt uses will be to serve as the basls for proofs of program.
cbfrectness_. | o

Establishing program correctness can be described as a two step process with the
overall goal of showing that a program correctly ivigleents a concept that exlsts n
ot 1s niwded. This can be done by »
“to meet th!‘W‘ needs of

someone’s mind. First, a formal description of the conc

£ ormal specif ication. Then, the program is prd“ﬂ WM 10 the 3§

analytic means. (Hoare 722 has describved a metivod 10 &

However, Hoare’s method requires some utaj thth

state machines. Accordingly, this thesis also discuisds ty wmmte orer

‘pi*obf‘s of correctness using state machines.
1.5 The Outline of the Thesis

Chapter 2 presents a model for the semantics of state machine specifications. Fiest,

"the basic components that every state machine must contaii sre discussed. Then these Hash

‘components are used to develop a 'model for ‘the wenx ptics of a stite macmne The

“discussion in this chapter is abstract, presenﬂng only the objeas that tho basik mmpqmu of

any state machine must specify but not discussing an actval language to ;pedfy these: abijects.

-17-

Hence, the model developed is quite general aud"not tied' wa particufar ‘spe&flatt(_in
_ langdage. However. this model is restﬂcmd to m maduinesthat 0“'7 contain v‘”.‘"’
~ operations on the data abstraction defined by the machtne. B
‘Chapter 3 details an actual specmmuon hngmgc for uatc macMnes. lt is a
' complement to the abstract discusslon in Chapm 2 lnd uses the modd devebped ln Clupur _
2tof ormalize the semantlcs of this concrete spec!ﬂation Ilngptge |

Chapters 4 and 5 discuss and illumw) method to prove the correctpess of an
implementation of a data abstraction specified by a state mchm

Chapter 6 extends the model for the mndu of state machlnes ducﬂbed ln
Chapter 2 by lifting the restriction to unary opentlons. _

Chapter 7 concludes this thesis wlth an evaluquon of the work presented tud some

suggestions for extensions to the state 'machtne Mmﬁm hchalque. B

-18 -
2. A Model for Btats Mmhhm

" This chapter presanu a model for the semantics of state m :pedﬂam ln

Section 2.1, the basic componenu that every m mchiu ap‘d‘m st mm iu

discuissed. Section 2.1 only deffhes the syntactic constraint tha o ithte Grnchine apec
imﬂst satisfy ‘Semantic issues conoerMng whdser the maﬁac " MM or comim
are discussed in Section 2.2, which Msmmwwmmum»m

N DL

wa model for thesemanﬂcsofastmmachme Hm,mchmhf detex byautnf

states, where each state is modelled by a set ef fundions wm w the Mdden lnl! N
‘non-derived V-functions; O-functions define transitions betwoen states.

The discussion here ls abstract, mmm*m&”ﬁ”hﬁc e

of any state mackine must specify but not dummng the mi W nud to apoctfy_

these ob jects. Hence, the m::dz! dcvehped ere is W ;ml and uppﬁubil to my f
machine speclf ied using a combination of V-functions and O-functions. It is not, howevér,

applicable to state machines specified using sometilng shntiar o Parnas’s modular p operties

section.
2.1 The Basic Components of a St.uﬁ Machine

The state machines considered h&e are specified utlng V-functioné and
O-functions. In principle, one could define a state mm without any V-functions. Such
a specif icauon.. however, would be iiﬁguhrly uninteresting. Without V-functions there
would be no way to observe the state of the machine and, hence, ho way to dlmm |

member of the data abstraction defined by the machine from any other member. So, we

-19-
shall assume all state machines have one or more V-functions.
Furthermore, most interesting ’m,- machine speclf icmons will contain one or more
O-functions since, without O-Tunctions a state mucmne an mly speclfy a data abstnction

‘ containing exactly one efement.
2.1.1 V-functions.

As was diScussed in Chaptef 1 there are three types of V-functibnsﬁ'tl’ie non-derived
v- functions and the hidden V-functlons, which are prlmttive. and the derlved V-ftmctluu.

which are not primmve but are def ined in terms of the mber two.

2.1.1.1 Non-dcriygd ;nd,mqmg memm

Non-derived and hidden V~functions are cpectﬁed analogomly Each non-derived
or hidden V- function v has three sections In m deﬂnm a mapping dexrtption an

applicability conditjon and an initial value section.

ngure 3. 'Non-dorlved or khl&deﬁlv-ﬂmcilowv‘ ‘ “ ‘ ’

Mapping Ducﬂptiocr DyR,
Applicability Condition: %, P x D - Booleln
itial Value: init, efD, - ! WO

First, Iet [A - B denote the set of partial funaiom from the set A to the set B In
each state S of the state machlne. some partlcuht mpp!ng vs fmm [D - R yJ will be

associated with v, where D and R, are specified by the V-fmhns mpﬂng dm:rtpmu

- 90 -

Thls mappmg, of course, varies with the state of the mtcbine. ln genertl. the mapping
dassoclated with v wmnotbe total. Aun examplc m Fwezdcbml.mymw
assoclated with :tadc isa member of [integer - intqerl

ThesetsD andnvalmmryunfm z_»uudm

abstraction defined by the machine. In gm!. they will be tht cartesian product
Gy % ... X G, of a group of sets. But the G, are restricted 20 thiat’no ekmntof the data
, abstraction defined by the machine may be an element of any of the Gy This restriction
Vonly a-llow's the d,efln’luon of Unary opemtlom o m mm W&d b! the
| machine, For example, in the deﬁnmon of chc dlt& m W sof, it is not ponbh
to define a function which computes the union of twe sets. But, it is. Mhtnduﬁm the -

unary aperation, has, which'derermines if a- wmﬂrm ger.

Now since the state uf the machlm ls charm!m b; a
T 4R "

sl y"

 with each non-derived and hidden, V-function we can m;u the state set ﬂ 233 subst of

D, -»R]x x[D -an&g ﬂ

where{vl, WV Hsthesetofnon-écﬂvedmdhﬂdmv-mnfmemd‘m lam

cases, S is a proper subset of D. This occurs when an

Y ambyhiel 3

of @ contains, 23 an m
. a function that can never be associated with a non-derived or hidden V-fumtm For

example in the boundtd stack exampbur Chap

the integers can never be usocmed \ﬁth :t«t; ’ o
The applicability condition of a V-function governs when a call of that function by
a user of the machine succeeds. This section spedﬂes a puﬂal ﬁmcﬁnn ¥, from D x Dy,
into the Booieans Hence, the success s of a call depends on the state’ of the mnchine For mr

‘xeD and Se$ l (S,x) mustevahnatetotm- fonhev-mmtionwntum the value vs(x)

-9 -

‘ where vg denotes the mapping associated with v in state S. When ﬂv(s,xf equals fqlso., v
returns an error condition.

The initial value section of a noh;derived or hidden V-function v defines the
maf)ping associated with v in the initial state of the machine. This section spedfi?s one
member, denoted init,, of (D, - Rv.]. In prictice. for non-derived V-ﬁmdlom. init, is

usually a constant, total function.

2.1.1.2 Derived V-function§

A derived V-function v also has three sectbns in its definition: a mapping
description, an applicability condition and a derivation section. The mapping dcscrt'puou and
applicability condition are defined ii_r the same manner and have the same lnterprétatlon as
the mapping description and applicabiity section of a non-derived or hidden V-fub&bﬂ.

The derivation section is unique to this type of function.

Figure 4, Derived V-functionv -

Mapping Description: Dv; Rv
Applicabliity Condition: ¥ :D x D, -» Boolean
Derivation: der v such that (der vg)¢[D, - R] for states S

The derivation section specifies the mapplng associated with v in terms of the
mappings associated with the hidden and non-derived V-functions. This section defines a"

function schema, denoted der v, expressed as the composition of the non-derived and hidden

. -922-

‘,'V‘ f unctlons of the machine and other functiom asmciaeed vmh the eiements of D "The
particular mapping associated with the schema, denoted (der vs) w; on the mu S of
the machine whlch contains an interpretation for the m—derived lnd hidden V-f unctions.
LVAs an example consider the derivation section of tap in Figmz d thpur 1. In any state

S top returns the value stack(depth). This vnlue is. ai‘ oo\me, w on the mgpmg

associated with stack and depth in state S.
2.1.2 O-functions

O-functions too have three sections in their definition. . Theyare a mapping

description, an applicability condition and an effects section.

Figure 6. O-function o

Mapping Description: D,
Applicability Congition: ¥ : D x D, - Benlean
Effects Section: T : O x D, » D

In a given statg, each O-funcion ¢ Is ‘ammﬂsupﬂ - 55), where D, is given

by the mapping .de:mM and S5 "’A“‘é state set-of thé

. As with V-functions, D,
will, in general, equal the cartesian product of a group of sets Gy x .. X G,n. which are
_;gqn’strained‘ so that no elemeiit of the dnu;bmeuméeﬂped bythemlqhim may be an
clement of any of the Gy The range of the O-funcip s ms gpecfied by the mepping

description since it is understood that the range of all O-functions js the state set.

-23-

The applicability condition of an O-function determines when the O-function
changes ‘the state of the machine. As for V-functlom, ;hls sedlon def lnqs a partial function
¥, from D x D, into the Booleans. llo’m‘ust_: evaluate to true for the function to change
the state of the machine. Otherwise, an error condition It raised and the stile remains
unchanged. For exiample, the applicability condition of Mln Flgurei’ Of Chlp@ef 1
prohibits its execution Qhen the stack is empty. | ’ | v

The effects section of an O-function spgi:if ies how the f unctsonchangesthe state of

the machine. This section defines a p@rtial fgﬂcthn‘zo from ‘D§x ‘_Do into D. .
2.2 The Semantics of a State Machine -
2.2.1 The State Set of a Stgto‘mlql!o‘lytlp,__

As was pfeviously mentioned, a slateof a sme mchm ds modelled by mapplngs'
associated with each non-derived and hidden V-function of the machine. Hence, we view
the state set, 85, of a state machine in the foﬂuwing manner:

% c(D, +RyIx..xIDy - li‘v;'i -
where {v,,..v,} is the set of non-derived and hidden V-functions of the machine! Note
that D"i and R"i are specified by v;’s mappingdacﬂggim ,

Our purpose in this section is to define 5. Here, a cﬁnstructlve approach will be
‘used. Note that the initial state of a state machine is exphicitly défﬁndby the initial value
sections of the non-derived and hidden V—functiom. 'mnunhi;me. Q. can generate the

state set by means of the following construction:

1. Recall [A - B] = {f | f is a partial function from A to B}

- 24 -

D Qis an element of $5.

2 If Sisan element of 55 and o is ap O-fupction call, ,
then the state S* obtained by applylng oto§ is an element ol‘ ’

| 3) These are the only members of 55.
So, to define $5, it suffices to define the initial state of the machine and ﬂm! to dmﬂbc thl -
state changes caused by O-function calls or, in general, how an O-function cal mp:one
member of D into another. | | |
The tnitial state Q Is the tuple (nit, -l) cantaining the mappings derived
from the initial \;alue section of each of the non-derived and hidden V—functlom (Vi,....vh}.
Furthermore, the next state function has the following defintion.

Definition
Let o be an O-function with mapplng H In its nppllc;bimy cmdmon

and mapping T, in its effects section.

‘Let ac Do and’ Rcﬁ
Then,

T R i W RN=trye
NEXT(Roa) =

R if Wo(Ralsfalse

Thus, the state set is generated as follows.

b QedS.

2 If Re 8 and ois an O-function, then if NEXT(R 02) is defined,
NEXTR00) ¢S where aeD,,

3) These are the only elements of 55.

-9 -

In other words, the state set 85 is the closure of Qundef"t'he\ state transition function
assoclated with the O-functions. Note that in 2) above NEXT(R,02) may beﬂuvndeﬂmd.
This depends on the functions T, and %, o |

Recall that zq,‘,;;”; _partial j:pncti@. So, it is possible for m state S and x¢Dg
that T (S,x) is undefined. Then, if A (S,x)=true, NEXT(S,.0x) wouid beundeﬂaed. - This
situation is undesirable since when U (Sx)=trus, a statecblm should occug. - Fusthermore,
¥, is also a partial function. Here, it is possible.for some state S7 and x°«Dy, that %(S°x9
is undefined, again making NEXT(S".0x") undefined. These two considerations lead .us-%
the notion of a well-defined state machine.

Definition

A state machine is well-defined if for any S¢S and O-function o

NEXT(S,0a) is defined where acDg,

This» definjtion gﬁarantegs that in a well-defined _state machine, for every
O-function o, %, is a total f;unction from S8 x D inte ghcmmgud to is a satal
function from {(S2)¢S5 x Dy | U (Sa)} inte 8. This can. h&@‘b" iw of the

definition of NEXT.
2.2.2 The Semantics of V-funotions ind’bf—'fun'otlons

With this definition of the state set S5 of a state machine speclf ication, it is pouible
tof ormally define the meaning of the O-functions and V-ﬁmctlons. “This will be done by

defining mappings V-Eval for V-functions and O-Eval for O-functions such that

-2 -

Y—-Eval:s X NY - [A - R]
and
O-Eval:S6 x NO - [A -+ $5]
where NV s the set of V-function nares, A Is the set of srgubnehts, R is the set of resukts

and NO is the set of O-fanction names.

" First, It I8 necessary to ded) with some notationsl detaili. Here, the notation "B-x,y"

has the vatue x-if § Is true aid the valve y'if ' is fatse. ‘Tis itition wit be used to raise
‘wn error condition when a function's apphicabllity coridition 15 riof sktiifled. | B
O-Eval will be defined first. Now, given a state S and an O-function o, O-Eval

returns a function from D, into 55 U {error). So, using lambda notation, z
O-Evaks,o) = AafW (Sa) » NEXT(Saalemae)

O-EvakS,0) is not mecessarily total since either ‘W (52) *cir"*ﬂl:xfr(s,o;) can be

sk s 8 3

RSP TR Y
n in s wall-<

| state machine.

undefined. However, O-EvaS,d¥ is always x totaf fund »

For any V-function v and state §, V-Eval' wil remm 'a funttion from D, inta
Ry U lerror). First, for a non-derived or hidden V-function v and a state S, recall that vg
denotes the function asmcmgd with v in sute S. “‘8‘! for %}"@MV@w hlddﬂ

V-function v with applicability condition ¥,

V-Evakis,y) = Aal¥y(S) » vsgrror)

-97-

Finally, for a derived V-function v with applicabiity ‘condition 'v and derivation

V-EvakS,) = 2a.l¥ (S - (der vg)a) srror)

‘Note that V-EvalS,v) is not necessarily defined over the entire set D, sirncei':v'(s;a)
can be undefined or, 'deﬁénd.ing on the typeof V-funm,vs(a)or (g_g_r_ vs)(i)icla-na be
undefined when W, (Sa)=true. When this Is not the case, we say the state machine Is

2w

- cofisistent.

Def lmtlon
A state machine is consistent if V-EvakS,v) is a total function rom D

into Ry, U {ergor} for every state S¢SB and V-function-v. -

Ina éonsisteﬁt state machine, ", is always 2 ml runction from 3 X D lnto the

Booleans and vs or (der vg) is always a total flmcuon from (xtD l ' (s,x)} into R
2.2.3 An Industion Principle

Since any state of a' state machlné is geﬁented jbf mor more 6-!’ unction c;llx.sthe
structural induction principle [Burslau-ﬁﬂlx.hm.m : lmmllnducﬂm’ proofs
proceed by course of values induction on the wmplexity of the strm:mrc.!,2 whlch for state'ﬂ_'
machines, means that to prove the data abstramon dcﬂmd by the mchlne has property P
one must prove that the itﬁ:@;! state_has property: P,-ind ‘that 4 all istates produced by zero

through n-1 O-function cails have P, the P is true after n O-function calls. This is one

2. The general schema of course of values induitim'ou; the natural numbers is:
P(O), V {Villicj A P = P(P) + VKP(K) |

-28 -
advantage of the generative approach used in this mode} to defirve the state set.
2.2.4 Proving Properties of State Machines

Akthough it s not pessible o estsblish formaby thet iiate mimchine specification is
correct with respect to our intuition, there are certain m that a wpecification should

P"’F"’“‘! of a state

satisry to enhance our conﬂdem:e in its correctness. TFwo orss
’machine are wrhether or not it lsr well-defined or consistent. In.a well-defined mchm the

O-functions behave properly, either changing the state or iafmh‘ the user of an qrmr In
a consistent machine, the same is true of the V-functions. They either return a value or raise
an error condition. |

A state machine is well-defined wiven NEX'T is i toaa¥ fusiction. THis occurs when,
for every O-function o, %, ls a total function from 8 x D iMu the m: and St
~ total functmn from {(S,a)eﬁ X D R XCE inwﬂ |
Since S is defined generatively a state machine can be prond to be well-defined:
NEXT(Q ,0,a) is defined for all O-functions o and aeD, and then tmg

by using structural induction. As outlined in Section 2285 thild s

NEXTLNEXT(NEXT(Q 01,81 0089);..0, 1441
is defined for all ae D°i' n22 and then proving that
NEXT(..NEXT(NEXT(Q oy} 0530)....043)

is defined for all aj€Dg. In practice, however, it may be necessary to strenghten the

inductive hypothesis.to.sinoplify the. proof.

-99-

A state machine is consistent when, for every V-function v, ¥, Iel a total function
from 85 x D,, into the Booleans and, for every non-derived or hidden V-fnnction v and
state S¢S, vg isa total funct.ion from {a | ‘Dv and A (52} into Rv and for every dertved
V-function v, (der vg) Is a total function from {a Ia¢D, and W,(Sa)) into Ry. All these
properties can be 'established by q;lng stmcturalinductton in the manner outlined above.

In general, for most practical specifications, the task of nro,vtng_ that a state machine
is well-defined or consistent is not extremely difﬁcult but 'rether'tedlotts due to.the many
cases that must be verified. The hardest step in a proof usually involves discovering an
Inducti\te hypothesis that affows the proof tofo‘ﬂow rﬁdny These comments are illustrated
by the example in Section 3.3 of Chapter 8 where ; specification of a queue is shown to be
well—det‘ ined and consistent |

Note, however, that both the probtems of determtning whether or not an arbttrary

staten\achine is well-fdef ineti and determintng_ whether or notan ?a{r'b{itrary ;tate machine is
consistent are undecidable. This situation arises. since both problemscan be reduced to the
halting problem for Turing machines [Hennie 771. These two results are established for the
specification language of Chapter 3in Appmdix 1. However. they are not]angu;ge -
dependent | , |

The reductions for both problems are stmihr Below, the reduction for the questlon
of determining whether or not a state machtne Is well—deﬁmd ls sketched Here. we shall
actually reduce this problem to the blank tape haking problem ,\ghl_c‘yh}rii;.,ln tnrn.}re{duotb!e to

the halting probtern f ot' Turing machines (Hennie 77] So, consider a deterministic, one-tlpe.
| one-head Turing lmachine T. T't computatton on blank tnpean be slmtilate'd‘ by the

following state machine TUR.

-0 -

TUR comits o th fokowing foneons

 tapeli)

that correspené: 6 each st@hT’s computmbn S L R B LA T
It T’:mﬂ%mﬁm%mmmfmmnymha

-9 -

this corresponds to T halting. Thus, TUR is well-defined if and only if T does not halt

when started on blank tape.

-9%2-
3. A Language for Btate Machine Specifications

This chapter presents tl;e syntax and semantics af a speciﬂctnon hngmge 'fo"rlstatc
machines called ALMS (A Language for Machine §peclflat!ms). Saction 3.1. describes the
syntax of ALMS and Section 3.2 dIsccsses its semantics. | |

The discusslcm here is concrete. dealing with a specific hnguage and its semantics
This chapter isa complement to the abstract discussion M Cﬁlptér 2. Tt shows how an actual
language can be used to specify state machines and how its semantics can be defined using
the ‘model in Chapter 2 as a guide. The chapter concludes with an example dlccu'uing' a
proof that a particular machine is well-defined and eumtmﬂt

ALMS is similar in spirit and appmch to SPECIAL (Roubine 6], SRI'
spcclf lcatio'n fanguage based on Parnas’ approach. Howwtr. there are slgmficant
differences between the two languages ALMS was developed why to mmtnm how to use
the model in Chapter 2 to define the semantics of a state machlm apccﬂciutlon hnguage It |
is a simple language and does not have the features nor the expteulvapmnr that would be
found in a specification ianguage intended for uce in the devehpc’mm of software systemc.)
For example, when using ALMS to specify a. symbol table for a bbck stmctt!red language.
one can not define a V-function that returns the attributes associated with an identif fer in
the most local scope in which it occurs. This happem since ALMS contains no iteration or
recursion constructs. ALMS can be extended to have then features but this would be
beyond the intent of this chapter. N

SPECIAL, however, was designed explicitly for speclfylnj software systems. It is

intended to be used in conjunction with a methodology for the design, implementation and

.-33_‘

proof of computer systems [Roubine 76). It naturally contains more features than A_LMS; In
SPECIAL, there are more censtructs for defining: tln effects section -of O-functions ‘snd’ the
derivation section of derived V-functions. Furtbermore, SPECIAL permlts the def inition of

greater than unary operations on the data abstnction dd‘M b; Mmchine
3.1 The Syhtax of ALMS

An example of a state machine MMM unng ALMS is given below
in Figure 6. Here, the data abstraction deﬂned is a symbol nble for use ln a block
structured Ianguage lt has the followu ap&uﬂm Hd h L O-ﬂmctlon that places an
identifier and its attributes into the symbo! uble at the cum m level. We assume
here that an identlf ier.and its attrllzu&es are character lﬂ’miﬂd dengte this type by string.

The current scoping level is given by the mn«derjm Vg&m&m level. It can be

incremented and decremented by the O-functions tnc_level and dcc_lml.- respgctlvely.'
‘Retrieve is a derived V-function that returns thea(mbuguéf mjdm:mer ln‘:éa:'glven level
of the table and present? is another derived V-funétion that mdluhuwhether or not an
| identifier has aiready been placed into a given scoping lgvelof glye ,t‘ab.le.‘ ’,:ll'v_be,,_.fynctkl!ﬁs P
“and Py used in these two derived V-functions’s dcn:lnum‘uure _prajection functions that
return the first anﬁ’secmd compdnents, respectively, of an ordered pair “They simply permlt
one hidden V—functlonl instead of two. Finally, tablc_.vmagolia hldden V-function used
‘for storage purposes. |

This specification illustrates the three major components of a sﬁte machine
described using ALMS: the defining abstractions, the interface. descr'lptlo"nf and the

definitions of the V-functions and O-functions. The interface description provides a very

Figure 8. Symbol Table
~ symbol_table = state machine is add, inc_level, dec_levél, retrieve, presemt?, level

level = non-derived V-functton() rctums inma
Appl Cond.i true . :
Initial Value: 0
end level

table_storage = hidden V~functionla: intaget,l.ﬂrhg) returns string X Booleans
Appl, Cond.: true
Initisl Value: (don't care.false)
end table_storage

retrieve = derived V-funcMaJnteger,l.strhg) nhwm lmug

Appl. Cond.: Poltable_sioragelpdh) -
Derivation: retrievc(a.i) - Pl(tablemga(a.m

and retrieve -

present? = derived V-function(a:integer, mw ng) retiurne
App! Cond.. trus e
hvation: presentia,l) = Pztm‘“ orsge
end present?

add = O-functlon(i, Jistring)
Appl. Cond.: ~P2(table..storage(level,m

Effects: 'table_storage'(leveli) » (jtrun).
end add)

inc_level = O-function()
Appl. Cond,: true
Effects: 'level’ = level + 1
end inc_level

dec_level = O-function()
Appl. Cond.: level > 0
Effects: 'level’ = level - 1
end dec_level

end symbol_table

brief ciescription nf the V-functions and O#fum:tﬁlt" users of.ime-mcbine myempby
These functions, along with the hidden V-functions. are fuiiy defined in the body of the
machine. In these def initrons the defining abstr:ctims are used Here, they compose the
domain and range of the V-functrons and O-functions and further, through their

associated functions help specify the meaning of the V-functions md O-functions.
8.1.1 The Deﬂnix'ag- Abstractions

As was discutsed in Chapter I a state» mchine uses data abstractiom that are
distinct from the data abstraction defined by the machine. These abstractions are caiied the
_deﬂning abstractions. They are assumed to be defined ehewhere

In the remainder of this thesis, we shall use the integen, character strings and
Booleans as def ining abstractions and assodate the usual operations with them.
Furthermore, the set {A}, where A is the empty string. Wiii be used a8 the domain of nuliary
V- functions and O-f unctions | “ ‘

ALMS can, of course, have other def ining abstractions hesides these three We will
however, leave the actual collection of def ining abstm:tions umpecif led and only assume that
it at least contains the integers, character strings llld Booluns |

Note also that the collection of defrning abstnctiom an be augmented dynamicaily
in the sense that once a data abstraction is specified in ALMS such as bounded_srach in
Chapter 1 it can be used as a defining abstnction in other specifications ~ So, the
‘specification of a symbol table for a block structured hnglnge could use boundcd.;lcch in Its

specification. We however chose not to do this for the symbol tabie in Figure 6

-96 -
8.1.2 The Interface Doﬁaipﬁon'

In ALMS the inmface description of a state mchine provides a very briei‘
wdescription of the interface that the machine presents to the outside environment. lt oonslsts
of the name of the data abstnctlon dei‘ined by the machm and a iist of the functions that
users of the machine may empioy | | | o

symbol_table - state machine is add, inc_jevel, dec_jeyel, rettieve, pmﬁﬁt?. iev'éi :
The Iist of functions contains the name of every non-derived V--fum:tion. derived

V -function and O-—function in the machine The names of hidden V-functiom ma’y not

appear in the interface description as they are not avaiiabie oatside the machine
'3.1.83 V-funetions

Thls section specii‘ ies the syntax for the three types of V-functions of a state
machine, the non-derived hidden and derived V-fumtims. In the next section the syntax
of O-functions is given. Recail that non—derived V—functions are primitive aspects of the
data abstraction def ined by the machine Hidden V-functiom m used to represent aspects
of the state that are not immediately observable and are immssibie to users of the machine
However, limited access to them s provided by the derived V-ftmctions, which are def ined
in terms of the non-derived and hidden V-i‘unctions T | o

Throughout this section and the next it wiﬂ be necessary to use expmsions An
expresston is formed through the composition oi‘ the non-deritred and hidden V-f unctions

of the machine and the functions associated with the dei‘ioing abstractions It may aiso

contain elements of the defining abstractions and formai argumems TM formai arguments

-9
 serve as place holders in the expression. !

We now turn ta the, definition of an eaprm

thodgh all ‘expressions mWﬂm f(,) e
infixes such as + in examples.

i Anel«mmafadﬁhhgabmwhnwanWhuum '

S #y 5 WL et

2 If e,, - e;an expresucns and f is 2 o

V-function of SM_ or a fpnction auociated mmgtqp,’.ﬁ

. requires n arguments, M fley25) i3 an expressi

'WE shall also refer to expremom by the mnof vakie dvq m upon evaluathn

ﬁi ik LR

For example, a Boolean expression evaluntes m m of Telse, Nm t!m ‘this

¥ 2}3 Sl

def initton excludes derived V-functions fmm nan l!pmlon Thlt mm 1] ‘

’!%i

e

* made to simplify the aewdnuc definition T Séction 3.2 in’

o ﬁmumdmmnym

allowing derived V-functions to appear in expmuum.
8.1.8.1 Non-dorived\hlumiqu T

“The general ihema for defining non-devived V-

Figure 7.

- 88 -

Figure 7. Syntax of a Non-derived V-function

et & WOl RO o *l'tlv'""n“n’ iy i e
Appl. cm.: Boolccn cxpm;m
md name

where t, and t, ate Hames of defining abstractions and ket 0 {undefingd

for nullary V-functions such as level in Figure 6 and

Tiame = non=deHv W-memxm.«.:x,.a“) fetins c, “

for n-ary on-dérived V-fms $th as Aas ?‘fgén 8 of Chipler 4 -
Here, t., the name of one of Hhe depiming @ s, Wi aqulvﬂmt Ofkvﬁ
The X, are the formal

‘argumnts of the V—functlon. 'fhey,_mmt be mm Ala, 4, agein. Mm@f a def ining

Section 2..1. It Is sométimes referred to as the type of the V-funcsion.

Mabstraction, is caned the tytc of the formal argument X.

For a nulhry nou—derived y hmcuen. Dy, ;t (. _For sn. n-ary m—dmud

Y-functnonv D lstlx Xty e Y

For exampte consider the mapping dexrlpﬁou ef lm n Flgun 6.

level = non-doﬂwd v
Here, Dlevel = {2} and thd integer | and, in -y m,mjm ;me: level
is a member of ({A) - integer).
. The appltcabtm) comlttm of a non-dtﬂ\ggd Vq»tm contajins. a Boolean

expression that determines the success of a call to the fm Tis exp:

correct. This means that whenever an object is M m the espression,

its type must be

-39 -

"compatible with the type expected at that Iecacldn;"" Futtiver ¢, this expresﬁon muston’ly |
contain formal arguments that appear in the V-fcmctim] mlpping descriptlon |

o Thc inmal value section of a non-derived V-fum:tion tpedﬂes one e!emem of R, or
contains the specnal symbol undef ined Tbls restrlcts thc mapping assochud with the
| V—function in the inmal state of the machine to be eithcr a oomtant, total funcuon ora

L S gy
"’.“X&’ $

totally undeﬂned functlon The htter case is speclf ied by mm_e_g_

8.4.8.2 Hidden 'vquncmm

'Hidden V-functions' are specified in an analogous manner to non-derived

dm im;ipfng ‘description which

V-functions. The only differénee sccurs in the
contains the special symbol Aidden instead of m

Figure 8. Syntax of a Hidden V-function

name = hidden V-funcﬂon(xl A ,xn-(n) rotlmn tr

Appl. Cond. s Bddlean expression
Initial Value: init
. ond name’ SR

where t and t; are the names of defining abstractions and initet, U {undefined)

_40-
8,1,3.3 Derived V-funotions

The three sections in the deﬂnmon of a derived V-fumtiun are d!ﬂmd as folbm. .
The mapptng descrtpmm only diffcrs from the mappmg demlption of a non-—deﬂved or
_hidden V-function by use of the special symbel mm-dcmnd “The cwmn coudmon
exactly follows the syntax of the applicabﬁky mdmm d" a mn—deﬁved or hldden

V-function. The derivation section is untque for this type ef rmlm

i - ~ i & P - i

R EET LR PR) R S A

Figure 9. Syntax of a Derived V-function

name = derived Y-function(xyty...ity) roturnet,
Appl. Cond.: Boolean expression
Derivation: defining chuse .
end name

where t, and t; are names of defining abstractions;

The derivation section of a derlved V-»tumm \!_ n ; 3 m ﬂm deﬂms v in

terms of the other non-derlved and hidden V-fmn m‘itﬁl - e. Its symax fs
described as foltows.
If a derived V-function v has formal afga}niénu Xp - Xy and type t,, then the
derivation settion of v is of the form . . |
Derivation: v(x;,..x,) =€
or |

Derivation: if b then v(x;,..x;) = ¢ sise V(X Xy = €9

Here, b is a boolean éxpression and e} and e9 are expressions of type t;. Again,

-4 -
these expressions must be type correct and only use formal arguments of v.
3.1.4 O-functions

The general method ‘of specifying an O-function is shown below in Figure 10. -

Figure 10, Syntax of an O-function

name = O-funetlon(x‘tl. X) o
" Appl. Cond.: Booleau cxﬁmsm
Effects: equation;

equation,,
end name

where t; is the name of a defining abstraction.

The mapp!ng descrtplum speclf les the dmm of the O—functlon and identlﬂes the

'particular function as an O-function. Its synux ls o

name = O-function()
for nullary O-functions such as poplin Figure 2 of Chapter 1 and .

name = O-function(x :ty;...xnty) |
for n-ary O-functions.such as add.in: Figure 6. . Hem,; tr’!l the name of a defining
.abstr'ac_u‘on,and the x; are the formal arguments of the O-function. - They ‘must wam
Also, t; is the type of the formal argument x,.

For a nullary O-function, D is {2). For an n-ary O-function @, D is t; X ... X t,.

-42-

The range of the O-function is not specified by the

ng. description since it is

understood that the range of any O-function is the state set of the state amachine.

The applicability condition of an O-function contains a Boolean expression.
Naturally, this expression must be type corract and enly eontainy. Saringd acguments from the
O-function’s mapping description.

The effects section of an o—rmmmmamqg. stior m&mmm

the mappings associated with the m—dmv«i and iidden v-fmm are changed by anf

‘O-function call. Thcre are two types of W

equations. A stmﬂc equation in a state machine SM B miﬁ 5 fols

D Let v be a nullary non-derived or kidden V-fulctien of SM having type t and
fet € be an expression of type t. Then, |
| Vee

is a simple equation.

2 Letvbea n-ary (n>0 non-dcrlved v-fm or hm V-functmn of SM
having type t with form!hrguments x; of typet‘ mu.w«mﬁqpetm
€ be expressions of type t;. Then,

. 'viey,...e,) = €

is a simple equation.

Y

The quotes are used (o represent: the resuk: refirned by the V-function after

completion of the O-fumction call. An unquoted Vifuwetion deNotss the vilue retuinie

before the O-function call.

- 43 -

A conditional equatioh employs simple equations in fts definition. Let eq; and eqo

be simple equations and let § be a Boolean expression. Then,
' b then eq;
" and
lf b theneq; else eqy’

" are conditionu! equations. Note that this defvitton profifbits nésted conditional equitlom and
;‘ wéfe‘made”oniy o simiplify
the semantic definition in Section 3.2. No probleins would' aitse if thc restrictions were lifted.

blocks of equations following the then orelu “These réiticliol

Finally, the effects section'of an Ofuriction contains a mtmg ‘of conditional and
simple equa‘tlohs. Its syntax is |

Effects: qu ’

The ordering is immaterial. Of course, all expressions in the effects section must be type |

correct and contain only formal arguments of the O-function.

et o .

3.2 . The Semantics of ALMS
3.2.1 The Btaté Set

As was prevlously mentioned in Chapter 2, a state of a state machlne is compmly

specified when the mapping. assocmcd witheach: nan-derived and, m V—funmon of me.
machine is. given. Hence, vge»;uiewatbc;»m&e set, B, of 2 m machine in the follo\)lsg

manner:

- 44 -

Sc, »RyIX. xtD o Ry 1 -9
where (vl. .V} Is the set of non-derived and hidden V-functions.. Neke. tlnt D'i and R"l -
are defined in SectionsSlSland 3132 o |

Our purpose in this section is to define 5. Hefe, we shall use the same aﬁpéoach
outlined in Section 2.2.1, taking the transitive cmfeol‘m ‘Wt state Q under the state
transition {unctich. So, to define S8, it suffices to define the initial state of the m&ﬁ and
then to describe the state change caused by an O-funcuwnﬂ o

The initial state Q is the n-tuple (ilty, ..inity) where {vp...v,) is the set of

non-derived and hidden V-functions of the machine and

init, =
(@bl 2Dy } | if v;'s initial value
' R
conam bRy

Here, ¢ is the null set; Note that functions are repres‘em;d asﬁset: of ordered pairs.

‘To define the-next‘ state function of a mm%m mwco defitre, in
ggneral, how an O-function call maps one member of D into anahgr. \Tht: m‘a‘p_plng’iﬁ done
by the O-function’s effects section and we,no;w turn to deschg the ﬁeaning of this
section. |

Fhe basic components of an 0-functhn’i§f?e&t section sre theexpmsiom that are
used to build the simple equations and the condmonal equstions. These expressions are

formed by composing the functions associated with the defining abstractions- and the

~ 48 -

non-detived and hldden V-functions of the machine. So, the irst step in def lnlng ‘the. next
- state‘mapping is to specify the mtanmg of these expremsm. Fhvis will be done by aeﬂnlng
a function’y that eviluates an éxpression. “Thém, ‘using w; & g%vih be possible to describe the

ef fect of a single equation “This witf be doa'é in the defiition of a function E that specif les

."Finally, the total ef fect
of the effects tection will be specif fed by a functloh‘ft iv’ﬁlcﬁ,using E. combines the effect
of each equation in the effects section.

The meaning of an expression is L on two items First. it depends on the

- particular O-function or V-function call sipce, in e “l. the expressions wiil contain formal

arguments from the funcuon s def inmon Acmtl vgbugngn bg mbggtuu@ for these farmal

arguments. Second, the meaning of the expressions depends on the membe
V-functions. Note that the functions

gives an interpretation to the non-derived and hidden
associated Qith the defl ining abstractions have.a q:munt fiked interpreta;lon and are
independent éf members of D. N

in w's definition. " Finally, let a),..a,)¢D,,. Then to find the meaning of expression E, we

: So, let ReD and let @ be an O-function or V-function wltbe;;pmﬂm E_? App!

can proceed as follows.

D First, substitute a; for every occurrence of its corresponding fvormall argument in
E, obtaining E*. . Note, if Dy = {A}, this step is unnecessary since @ has no formal

arguments.

2) Now, to evaluate E*, we shall view R as an interpretation or environment. that

specifies, for each synibol A, the value Ap of A in R. If A is an element of a defining

- 46 -

abstraction or one of théir associated functions, then Ag is simply A. lt Alsa non—derlved
or hiddm V-function, then Ap is the function ausaciated with A i R TM value of
s, by RE* amlbdmmdby

“R» ME;, Ep) = Ag(l FEpRE Ek)

E* = ALEy..Ey) in R, following [Pfatt T73, wili be denm

Hed :‘?ﬁﬁimlfuwsgm

Since the non-derived gnd h‘gd;den‘ V-functions may not be Assa

R, it is possible that R K E* is undefined,

Thus, as outlined above, we can define a M function ﬁ(l,i,o,a) for Re®,
expmsm E i o's definttion and ub stich that
WREwa) - R E*

We imchode the O-function or V-function ame @ s 4 paresse

¥ b0 @ since it describes how
to substite the actual atgaments for the format

¥ the' sk ﬁ‘ VTS
we) s

appearing in an O-function o's effects section. Then siy. calf ofi) of o, where ach,, wouMd

change vy (0 the function
n(Rfoa) if X = gﬁtw

“’_R'(’X) -
vRix) if % » W &02)

Here, a new vaiue is returned for the argument (R.&08) and, otherwise, the old value is

returned.

- 47 -

To help indicate such> a function, we shﬁi use thé notation "i—ox.y" deve‘loped‘ in
Chapter 2. Recall this notation +as the vam * i 8 48 mm vMy lf lzls flh. So,
for "R above we have , - o

"R -‘Ax.[(x-p(l‘{-,a.o,a)) - p(RBoa)\vp(x)] L
Using this nbtatlon, we define in Figure 11 aﬁ, effects functlon -
| E(R,o.a,l_f}q) |
that specifies the change caused by an equation Eq on a V:-fqpcti;)ﬁ. E returns the new
mapping associated with the V-function. It shows the ef fect of 2 vslngle‘eqﬁatién andm the
entire effects section. So, in general E can not be obneyed outside the machlnc

The definition of E characterlzes the expressive power of the effécts section. If one
wished to increase the expressive power of ALMS by adding cumtrucu such as a while or for
all statement, the definition of ‘E would have to be extended. In fact, this 1s 'iﬁe_ only
definition that would. require modification. ‘Both‘g and TE wouild rem,aln. unchanged.
This new definition of E could use the definition in Figure 11 as its basis. The effect of the
new constructs could be defined.in terms of thg effgc’ts.of their simplel" parts in much the
same manner as the effect of the if-then-else mtement in Figure 11 is given in terms of the
f irst two clauses of the definition.

To define the next state function, we must combine the effect of all the equations in
the effects section. This can be done by calculating E(R,02,Eq for everj equation ?n the

effects section and then combining these mappings into a new state.

Flgure 11. Eﬂects Function

. Def imti_qg
Given a jtate mackire specification SM and ReD,

let 0 be an O-function of SM with Eq appearing in o's effects section md uD
Then E(R,0a,Eq) is defined as follows; :

i) If Eq is a simple equation of ‘the fomi W = ¢ where v isa panmeter—less V-f unction,
ERoakq - m,.:m,e.o.am |

i If Eqisa simpie equation of the form 'v’(w) = ¢, then
EtR,o.a.Eq’) - AX [(x-p(l?f w,03)) - n(R,c,o.a),vn(x)] |

CHD If Eqisa conditional equation of the form gf ¢ u\m $ where sis 'v’ - or 'v'(w) -,

E(R,o,a,:) L u‘ p(l.c,o,l) - tn
') :r pr,c.e,a) - fdu

iv) If Eq is a conditional equation of the form: if.c tho &y slgmapethon. i1 oo

ERoasp if pReoa) = true

'E< R 0a,Eq) =

E(Roasy i MReoa) = false |
First, define the function |

LT R, N i 1gign .
U fa,...a)i0 = | |

(a..a,) . -if 10 or i>n:

where i-is an integer. and (a,...a) is an n-tuple. This function changes the ith component

- 49 -

of the n-tuple to c.

Now, let 0 be an O-function with equations Eg;....

aeD,. Furthermore, assume

ReD - (D l-vR l]x .x (D, -onn].
Fmauy let £, = ERoa, Eqy) and et
k if E(R0a,Eq) changes V-function v\'s mapping

= | o o o
| m1 . if ERoaq) dosnt change any V-funciio’s mepping

Then:the total effect of the effects section is given by
TE(R0aEq,..Eqpy) = U LU U RGeS Jp [l Snd

mppingnocmed with it. f&lpﬁ&q[,...;%‘) -

g6 JRa) in Chapier 2. 80,

we can define the next state function as follows.

Definition '
Luouma-fumcmnwnamupmtm its appuusnxymdmm
and equatiom Eq;,.. ,Eqm in its effem nction

Let acB “and ReD.
Then,

TE(R 0a,Eq,...Eqq,) if w(Rboa)=true
NEXT(Ro0a) =

R ‘ if (R B02)=false

So, the state set can be generated as in Chapter 2.

e SR AL S i e L TR Tt e B et T T

D QeSS

2 If ReSK and o is ap O-function, then if NEXT®R a.) is defined,
NEXT(RO#)e S where aeD,

3) These are the only elements of .ﬁ.

~Again, we must consider the question of mm or ok NEXT. #8 wéll-defined.
-Thu is depcndent on and TE Rmu M ™ ﬁu& i_';,f")

v '_”'.t w funttien So, it is
possible for some state S and xeD that .«s,im: amm m YE ™ not necemmy
total so we can encounter a similar situation. Tﬁm two' cases wmpaad to the proMem

discussed in Chapter 2, when ¥(S.x) and i,f&,xx are et ined.

have defined the ardertng of the equations qu,. .Eqm 4 s

Mm.itispomme

Bigctp-Editry) Where #
thinistic or

for some state S &hd aeD that T%,wa, l*-«g%’ ” s T

Is a permutation from {1,...m} onto {1,..mi. mnmm‘ﬁ!»m be'

nat uniquely. defined in the sense. tha its value depen

equations: Eq,,...,Eq;,.

To handle these situations, we must introdice the: notiol of a weﬂ-dtﬁned state’

machine. Due to the last case, the definition. dm‘qp. g hithy: mmﬂzmwz since we'

must explicitly guarantee that TE is tmique!y d«m m iﬁ Qhw 2 tMs was’

unnecessary since:by definition T, was a function.

ds v the: il of the: snder” of the

Defi mgtm

A state machine SM Is well-defined if for any SeS O—function o
and a¢D, ,

both 1) NEXT(S,0) is defined

and 2 TEs0a.Eq...Eqy) = TES0a.Eqp(pyrEdpm
where equations Eqj,..;Eqy, appert it oy effects section

and w is any permutation from (1....m} onto (1,..m).
3.2.2 The Semantios ofAV’-functloxu and O-functions

With this deﬁnitiﬁn of the s_taie set 35 of a state machine lpedﬂcatlon,.it' is now
possible to formally define the meaning of the O-Iungtldns ancll‘ V-funcﬁom. As in
Chapter 2, this wil be done by defining mappings V-Evil’for‘v-functiomand O-Eval for
O-f unct;ons. ’ |

| O- Eval will be defined first Now, glven a mtc S and an O-functlon o wlth R
Boolean expression B in its applicabﬂity condmon O-Eval mums a function from D, invo

S5 U lerror). So, using lambda notation,
O-EvakiS,0) = aa{s(S,5,0a) -+ NEXT(S,02) error)

Again 0—§vaK5pf is not necessarily total but in a well-def ined stahe machine thls Is
_alwﬁys the c§u | | | o |

For any V-function v and state S, V-Eval wm remtn a functlon from D, into
'R U {error) First for a non-derived or hidden V-funaion v and a state S, recall that vs
denotes the funcnon associated wnh v in state S Then for my na;-deﬂved or hldd;n

v-f unction v with expression ﬁ in its appllcabmty condltlon

V-EvalS,v) = xa{4s(S,b,va) » vg(a)error]

-5 -

Finally, for a derived V-function v with expreision § in its aiiticability condition,

there are two cases.
0 If v's derivation m containg v(!;...g,‘}n t.thﬁ
V-EvaliS,v) = Aalp(SBva) - nSevaerror] |

i If v's derivation section contains if ¢ then Wy, xy) = ¢p olse ox),...x,) - 2

then
V-EvaKS,v) = Aaln(S,ya) -+ [iScva) » Q,_‘_S_&,.‘“’W,.’M]

At was memtonedmcmpmz V-tvusvmmmﬁnwmmfmﬁ
v into R U (error). wmthtstsn«mmwaydqmn&ﬁwnmmn -m

* definition is the sarme as in ch.pcer 2.
8.3 An Hxample

In this section, we outline a proof that a pnmt.t!ir stute mm B MM and
‘consistent. . The Tull details of the proof are contaied M Wm 2 om enmpﬁ
specification is iftustrated in Figure 12. This data lbstnm is a queue wlth tﬁree
opcratiom, insert which adds an lmeger to the rear of an qum ddm whkh m theé
integér ﬂfﬁefrmtafmequmaMﬂr:t_dcmmmmwamrmﬂ
the queue. The hidden V-function storage i3 used wm tﬁe m df tﬁe qum rrout
and back point, respectively, to the beglnning tnd end of ﬂu m Note that this queue can

hold an arbitrary number of integers.

- Figure 12, Queue

queue = state machine is insert, delgtc, f im,_glema\t o

first_element = derived V-function() returns integer
Appl. Cond.: ~front = back ~ 1)
Derivation: first_element = storage(f ront)
end first. elemem R

front = hidden v-umm; nmmm
Appl. Cond.: true
initial Value: -1
end front:

back = hidden V~functiont } mmx
Appi. Cond.: true
initial-Vaiue: 0
end back

storage = hidden V-funeﬂon(umeger) returns lnteger .
Appl. Contht-fremt> | z-back - - f
initial Value: undefined

end storage

insert = O-functionti:integer)
' Appl, Cond,: true : :
Effects: storage’(back - 1= {
'back’ = back - 1
end insert - '

delete = O-functlon()
Appl. Cond.: ~Mfront = back - 1)
Effects: 'front’ = front -1
end delete

end queue

-54 -

We shalt first show that the specification is well-defined. This wilk be_done by

initially proving a lemwha thtwumemmmum that the
michine is well-defined. Informally, mmwmmmmmmm

integer vakie. With the S of this lewwns, e will divoirly eotutbil o

‘well-defined.

Lemma For any S¢S, backgef{X} - wkm ﬁm&ﬂx)‘: -+ integer] and
backg » ¢ » fmism#h wmﬁ Sl

This lemvma can ummwmmmmmzn
The basis of the mmmwwwﬂ w¥ lefined to return. -1 and
o, mem&mﬁmm mwwwww
For any state, m:wtdccmmubcd bytmmmw Furthermore, delete
leaves beck mm«i mtmly mmnrwmmmw
satisfied.

We can now pme that the mmwmwm above femma. This
femma is: heipful because: MMMMME evalasted in amrt’s%m delete's
done. | | |

To prove that the machire is mﬁm m properties must be MM i
the applicability conditions of the O-functions inseve: md mcmmm; i) the next state:
function is-defined for both insert and delete; and, finuily, # mmmnfdf the equations:
in both insert’s and delete’s 'eﬂ‘ects sections is immaterial. MNote that i) ‘is" triviaily |

established since delete has only one equation in its-effects mm the two - equations: in

~-55 -

insert’s effects section modify different V-f unctlons. Thus, it ‘ls onlj necessary to deal with
i) and ii). We now complete the proof B - ”

Since insert’s applicabmty condition isa constant and delete’s applicabﬂity oondltton
only involves front and back, which were shown by the lemma always to return an integer
value i) is established. The second part of the proof is abo established by appealing to the
lemma. Since insert's and delete s ef fects sections only evaluzte Jront and back, it is clear that
the next state function is defined for both these O-functions.

We will now show that the specification is consistent. This involves proving that
the four V-functions are total. First note that the lemma gt:anntees that fnmt and back are
total. Storage and first_element, however, require more attention. .A,ga‘ln, we must introduce a
lemma and then prove the oesirod results directly from the lemma. The lemma shottvs that

storage’s applicability condition accurately describes its domain.

Lemma

For any S_tS, if frontg > k 2 backg, then storageg(k) is defined.

This lemma can also be established by tho' inductive approach outlined in Section
2.2.4. The basis is vacuously true sbince. in the initial state, back is greater than front. Now
assume the lemma is true for any state S. We must consider the ef fect of tn.mrMnd delete on
S. Smce delete decreases front by 1, the result immediately follows from the lnductlve
hypothesis. Now let S° = NEXT(S,insert,x). Thgre are two cases. Either frontge = backs-.'
in which case sto'rages.(fronts.) evaluates to X, or frontg. u!'backs.. ln’ the latter case,
frontge > backg. ~ and frontge = frontg and backge = backg - 1. So for |

frontge > k > backge + 1, storages.(t:)lﬂ '3“ defined by the inductive hypothesis. Also,

sMages.(buhsJ evaluates to x.
Tmmmmmv-nwumwmms.
To see that V- En&ﬁkuwhm&hmmﬁ.mﬁw&mwmm First,
_mssmm:MmmMnmum*mmm |
‘error is retwrned. mmmmmmumwmams

'VSc,bychehm m«mg nmumw h«qﬁn

-5 -

4. An Implementation Language for State Muchines

~Chapters 2 and 3 have focused ‘on: formatizing: the ‘semantics of state miachine
specif ications. The work accomplished in these:two:chiptry m Wy effe to write prétise “and

unambiguous specifications of data abstractions using: state Michinies.” Bist these it
are only mathesmatical ob ects. They-can not be wsed-direcly ﬁ%pcﬁhanyprognmﬁihg
language. ‘They.must first: be- imphmentld. “Fhus, mmmmm in any formalizition
is. to be able to describe fomauy when: & deta abstraetion Wﬂeﬂ by a state achine; is

properly implemented in some programming llw. W thts deftnlﬂon involves

the followlng First a programmlng language . for imphmcming statc mchlm mqst be
described. This topic is discussed in this chapter. Then a mcthod of provlng the

. correctness of an. im must be fixed. - This topic i Wested in the next chapter '

In this cham the - general - pnpmm w ny progmnmlng lmgﬁnge for
implementing. state .machine specifications - sve desch e panicular. the basic ‘data

abstractions to represent the specified .objucts‘ and: the: coitror constructs to implement the
V-functions and Q-funclions. mewmm mnmmms valid
since any programming language for immmm g muit'kiu‘cﬁlde thesc
features, - The acual implementation of these data -abstractions:sind tonitrol constructs Is

unimportant here.. Accordingly, this: detail ds- mﬁy suppressed’ in this chapter ‘Rather

“control. ‘constructs. to be used. with - state nachine wnﬁau are introduced. ‘Sb.
implementations of state machine specifications will be written in terms of other, simpler state
1machim specifications. For mstance. a speclmltion of a M Oollld be. implemmtcd mlﬂg

state machine specifications of variables and arrays to repment elemenu ol' the dau

- 58 -

abstraction and the control construc‘ts to realize the V-functions and O-functions.

To develop a definition of program correctness, it is only necessary to define the
relation between the objects of the specification :;tﬁd the objects of the implementation.
Hencé. since this chapter contains a general discussion of the ob jects of an implementation, it
is possible in Chapter 5 to give a general definition of program correctness. To prove that
this definition holds requires involvement with the semantics of the programming languiage
and identifying correspondences between ob jects of tﬁe Ianguage‘ and terms used- in the
definition. But these issues are not a major concern for;only stating the def(nition of a

correct program that involves state machines.
4.1 An Example

An example state machine specification and its corresponding' implementatibn are
given in Figures 13 and 14, respectively. The data abstraction specified in ‘Figure 13 is a
finite integer set. Insert and remove are O-functions that insert and remove, respectively,
integers from the set. Cardinality is a V-function that returns the number of integers in the
set. Has is another V-f unction that determines whether or not a given integer.is in the set.

Figure 14 contains an implementation of finite_integer_set. The set is stored as an
ordered sequence of integers in the array A.', INSERT,. REMOVE, CARDINALITY and
HAS are the corresponding implementations of insert, remove, cardinality and hasl Each of

these operations uses SEARCH, which performs a'binary search on the array A. SEARCH

1. Throughout this thesis, lower case letters will be used in the names of V-functions and
O-functions of a state machine specification. Capital letters will represent their
corresponding implementation.

-5 -

" Figure 13. Specification of Finite integer Set

finite_integer_set = state machine kctrdimlity. hu.k"remofe.; ku'ert\ |

cardinality = non-deslye M—fm‘hn(N‘qhu'ns integer
 Apph, Cond toum.
- Inisial Vplue: 0
end clrdlmllty

has = non-derived V-fmtlm(!-lnug«) returns Boolean
Appl. Cond.: true o : , i
initial Value: false
end has

insert = O—function(l integer)
Appl. Cond.: urdimlitydoo
Effects: 'has'i) = trne -
it ~has(i) then ard!m!lty’ - ardmllty +1
_mnd insert : .

remove = O-tmmch) o
Appl, Cond. true
Effects: 'has(j) = false

it hasti) %@My’ mgmmy 1

‘end remove

end finite_jntager_set

-60 -

Figure 14, Impiementation of finite lnteger set »

FINITE_ INTEGER_SET = lmplemcntaﬂonlslNSERT REMQVE,HAS.CARD!NAL!TY

A: array of integers initially undefined
COUNT: integer variable initially 0

. SEARCH = procedure(a,f k:integer) returns integer
¥ fuk
then return k
dise If agk. tead(Lf+ k72D S
then return SEARCHG S, ,L{h»k)/?.l)
eise return SEAW!.(ﬁa-‘k’lfﬂc»l.k)
end SEARCH

INSERT = procedurefi:integer)
it COUNT .read=0
then begin
A.change(0,i);
COUNT .change(D)
end : o
eise if COUNT. read<100 ,
t““ o et B | -
" if COUNT.read = SEARCH(,0COUNT .read)
then begin .
A change(SEARCH(1,0.COUNT rea
COUNT, changei‘ébvﬂ'r readall
end
sise if 'A. mﬁ(SEARGfHﬂ O’,COUNT md))-l
then return

else begin
for j;«<COUNT read step -1 M’smxtmmcounr.md) do

it b1 then Achmgd;.&md()-m
A.change(SEARCH(1,0COUNT read));
COUNT .change(COUNT .read+1); -
end
else signal error
end INSERT"

-6l -

REMOVE = procedureti:integer) »

if COUNT read=0
then return
. else
If A.read(SEARCH(1,0,COUNT .read)) =i ‘

then begin -
for j = SEARCH(O,COUNT md) lmtll COUNT read-—2 do

_ MMM}A read(je1));: ;
COUNT chmge(COUNT md-l)
end ‘ :

else return
®end REMOVE.

CARDINALITY = procedure() returns integer
return COUNT .read
end CARDINALITY

HAS = procedureli:integer) returns Boolan
it COUNT .read=0 .
" then return faise ' -
- olse if A. read(SEARCH(tﬂ,CQUNde))d
then return true
o eise return faise
end HAS i -

end FINITE_INTEGER_SET

returns the index where the biﬁary search stops. |
An implementa_tionv cohsists of thrée parts an 'me desc}lptlon. an ob ject |
. description and operation definitions. ’ - |
The interface description of an implementation provlde: a very brief descrlptlon of
the interface that the implementation presenu to the oumde mvlronmem. It comlsts Of the
- name of the data abstraction belng implqmented and a Ilst of the operatlon; that users of the

implementation may employ.

,‘362-

FINITEJNTEGER SET = mmmmumszn Rmovgaﬁ CAm,mﬁgerv

1‘37

Operations such as SEARCH whose names do not appesr in s il

erogedet (y ety

not be accessible by users of the Mpmlon I

j:.n} gl"§§}?

representation of the spedﬁod amm Hm mw%vmm will be

wieiss waly

specified as a state machine and Amswmumm&ﬁnuw

specification language could be used.

A: array of Inms M‘
COUNT: integer variable s

LR i;ﬂ? \

These phrases are syntactic sugar for the state m

enlg? utan M*%s

‘%g&*g&m A are used to

BT %*ﬂ:;%? #2551

represent the data abstraction. COUNT MWW*W L & M o Ihe set. These

“The body of me tmplememaﬁon mmur” ‘

A e b MRt P g

provaaewmmdcmmmmmﬁmmm the

iochriasy yramin st et A%

O-functtons and the non-deﬂved md a«w V-fm E hmmﬂ b implement

A 5 o gigrdns w TN
the hidden V-functiem smce they are uﬂkm to users. Au L thor should be
Oy c’é TIE RO G R

glven for every opermon that appears in the Mﬂl

€8n TRIGEMUSTEN TR B2 {‘t Ayl A rakoanen y'a- Lo

& x‘!

ln ‘our cxamptu. apeunon det‘mmnm uﬂ be writtn m v-ﬂmcuom and

ERE witmtes m}aei‘;& s RN

&

o functions grouped together by the uml mmi m ﬂm wwﬂ be fmd in, say,

E e ks ?""

ALGOL 60 or PASCAL Thm V-mncum and o—tm M M bc umrpmed as
' w W E i o

Figure 15. Varlable

X : type_t variable inittally a is equivaient to

X = state machine '.x.fe‘d,xxﬁ, n w"!':: G T L

- Korend mwwwrnm lype..t :
Appt. w&*ﬁ
.Initial Vdﬂﬁi
end X.read

X

bt
Effeots: X féid = |-
end xm 0

end X

where type_t i$ the name'of a deﬂhiﬂ; im at AL“S
~and a is an element of type_t or'y i ’

i

fms.- Assume that the implementition maintains a rééerd of the current state of the
machines in the object description: ' For example; it no O-functions hive been calted, :ﬁe
Iniplem'enmlon would view each state machine as being in its initinl state. Now, e_ac!i
:V—f unction call v(a) should be interpreted as B |

| | V-EvakS,vXa) |

where S, remembered by the implementation, is the current state of the V-function's
machine. An O-function call oa) is interpreted a3 |

O-Eval$S0)(a) = §*

-64 =
Figure 16, Array

X:type_t array initially a is equivalent to

X = state machineis X.read Xchange

~ X.read = non-darivad wmm’ returns type.
Apgk Cond.: true
Initial Value: .-
end X.read

X change Q-«ﬂmctbn(init
Ama. Cond.: trus. .
Eﬂnﬁ: X. M’l’ wi

end XW

énd X

where type_t is the | name of a defining. M‘IMO!‘ m
- and a is an eletﬁemof type_t or Inge :

where S is as before. Furthermare, the implementation now updates S to-§* and maintains
S* as the current state of o's machine until mothero-fmdwmh calied:

5. Proving an Implementation Correct

To formally establish the correctness of a prognm, one must prove that the prognm
is equlvalent to a specmcatlon of its intended behevtor by formal. analytlc rneans Thls
chapter is concerned with this process. dlu:ossing how to prove the oorrectness of programs
that implement data abstractions specif |ed by state machlnes. |

Here, the homomorphlsm property wm be used n the proofs In general thls
involves showing the following [Hoare 72&] Assume there ls a class of abstract ob jects ﬂ
With abstract operations Furthermore. suppote that x‘ is the concrete ob ject representlng an
abstract ob ject beoongmg to A, Let C'be the coliection of all sach x* Flnally suppose that
"W isa concrete operatlon that purpom to be an Impiememation of an lbstract opeutlon 0‘
Then, the homomorphlsm propertjv involvel deﬂnh\g an obstractlon function A mapplng
from € ono K and showing for every operattou that |

e (AN - Ak,

Before attempting such a proof, three steps must be performed Flrst. the concrete
ob jects used to represent the elements of a’ data abstractlon must be chnracterlled Thls is
discussed in Section 51, Then the class of abstrar.t objects R must be identifed. Thls is
done in Section 5.2. Flnally. the abstraction function mmt be descrtbed Sectlon 5.3 is

concerned with this Issue and the problem of ld&pttug the homomorphhm property to the

particular needs of state machlne specif k:attom.

- 86 -

8.1 The Conorete Bc‘pggq»oqta@io;x}‘

y,.;

usually consist or a couectm of objecu to repment the m set m & group ¢ of operations

that purpoft to impiement the varlous functions nf the m Sme of these operations
will lmplement O—functiom and othm will Imphmnm derived and non-derlved
V-functions Note that it is ummemry to impnamt m V—fgnkm sipce they are
| lnaccesstbie and not : an tntrlmic part of thc dm gmm |

A" of these operatiom will access or modﬂ‘y the mm oh that are mcd to

| 'represent the state set of the state mhim We Mmm :lt d‘ m wna!te obpcts
| by C lf a concrete operatton impiemu an OJuam o. ‘M wc vhw tbc operation,
'denoted wc. as a mapping from C X D lmoc LA ma V-funcftgu ,. then it ls»
am mapping from € x D, into Ry, By adoptmg mhvu:v. mﬁa{umﬁn C ln ,exphicit

parameter of each operation. This may dif fer f mm Wﬂ qu of the imphnenution

ﬂdteq‘emorby

corresponds to the states of A and COUNT remambered b;! the

We shall now describe c in more dcnﬂ En

s\

collection of objects For examp%e in theﬂ:uu mcgw sa amph of Chpptqr .3
i
Cc %, xBcount
A set such as S5 4 X S coUNT 18 100 large to use as the domain of the abstraction function

since it usually contains elements that do not mrmpmd to any clement of the data

B A YR e i A

-67-

abstraction being implemented. So, itis nedesury to describe C expllcitly H
The standard way to dd this is to use a concrete lnnrtant l Thls is a predkate
‘defining some relatlonship between the concrete varhbﬁs and’ thus placing a constraint on |
the passible combinations of vahres that they mxy také. Then,
Catxtim.
For the finite integer sot implementation, 1, is
0.< COUNT. rend <100 A (V1 M0§<j<COUNTrnd - A.read(i) <A.read(j)l
This predicate states that the imphmemamn of ﬂmu_nmpr_m contalns at most loo
integers-and that the elements between 0 and’ cew in ﬂ:e amy A are all cﬂstinct and
ordered. This latter condition is riecessary to imure the correctness of SEARCH. The
ordered pair
@I ¢ B4 x BeoUNT
satisfies I, above This ordered pair corresponds to both machines A and COUNT being in

their initia} states
5.2 The Abstract Objects

The elements of the concrete representation lc should lnlplemem or fepresent the
entire state set of a state machine speclﬂcetim However. a concrete object need not
represent a single state but rather a set of states. Thls occurs bmuse certain states may have
no observable differences. When this happem, we ny the states are ¢quwal¢nt So, a
concrete ob ject actually implements the equivalenoe clags of a state and we identify the class
of abstract-ob jects i ‘with mesetofeqmnmchuesofthemteset | |

For example, consider the specification of bounded_steck in Chapter L. Its state set Is

- 68 -

a subset of [Dy,cp = Rypaepd X [Ddepth - le, Nwmm two states
Sl = ({20
and
Sz = ({(LD) ((A.O)))
Here, ¢ is the null set. The first state ;. wmﬁmﬂ, smm&ma MJ‘M
s0 stack is totally undefined and deptk returns 0. (Résall our previous convention that the

domaln of nullary functions is (A}.) The mdm ! ornds ta stack(D) rétusning the

value 1 and for x#l, stack(x) is undefined. Abe-in &Q. &ﬁm the vakie 0. Thus 82 -
NEXT(NEXT(Q_.push,l),pop,A) where. Q, is. the m state of dounded_stack: These two
”sta.tes, Sy and Sy, are equyvg!ettt as far.as amgﬁemm concertied since-stuck is
- hidden from a user and depth returns 0.in either state,

Equivalent states are defined below. Intuitively, two states are equivalent whew it is

impossible for a user of the specification to deterimipe m;ﬁfmm them.
Definition
Two states Sy and S of a state machine specification SM are equivalens
if for any

Sl = O-EvaK..O- EvauO—EvaKS,, ol)(tl)),og(azﬁ)on(a"))
So* = O-Eva..O-EvaKO-EvaKss i agRagh..

where o, is an ‘O-function of SM, 2;¢D, . and nx0
either. N P T :
Sl - 52 = error
or : i
both Sl and 82 are undeﬁned
or’

V—Eval(sk V) = V- Evaﬁsz‘,v)
for any non—deﬂved or derived V-fuinction v of SM.

This definition guarantees that if a series of O-functions m applied te two equivalent

states, then two new states are obtained where the non-derived and derived V-functions

-69 -

behave identically. Furthermore by applying a series of O—functiom to the two states, we
make certain that all delayed effects become apparent. We shali denote the equivaience chu
of a state‘s by £s3. |
For example, for a state S of finite_integer_set in Chapter 4, [S] simply contains the
state S. For the initial state Q of bounded_itach, - h
£QT = (F{.00e Bpounded._stack!
where F is a mapping associated with the ii’iddén"‘v-t‘unéti(:n‘stack. In otber words, [Q] is
the set of afl states where depth returns the vakue 0. Note that £Q) is Infinte. This occurs
since the data abstraction tnrcgers used in boundcd_:ucl eumaim \ini' initely many element:.
If bounded.;tack used a data abstraction for the integers that had a bound on the number of
elements (such as the integers used in prognmming hnguages) then [Q;l and all the other
equivalence classes of bounded_stack would be. finite Furthermote bounded_;lack': state set
" would be finite. | o
The equivalence classes of the state set un be enumerated by using a normal form |
generation of a state as the representative of each equivalenoe class. A normai form
'generation of a state is either Q the initial state, or generated from Q by oniy using
. information adding O-functions. Recall that an information removing O-function deletes
information that was previously added by an Information nt‘i'ding O'-i‘unction. The same
effect can be achieved by initially not adding this informtion Thus, this representation is
valid since every state either equals a normalformgenention oris e@iiv;lent "to‘ a nnt'mal
form generation. For example, in finite_integer_set, h
NEXT(Q ,insert) = §

- Is a normal form generation but

- -

NEXT(NEXT(NEXT(Q .tnnn.v.rmvwmn

ls not However. it ts equivnlem to 8.
5.8 The Homoemorphism Prcperty

. It is now possible to state what the correcings of an implementation means.
Informally, the impiemecmnon of a data mem ts mm when. the ms of the

impiementatlon and of s corresponding Mmgm botpu ﬁ and there is at jeast

one object of the lmplemematton oorrenpmdhg to every abpu of lhg m ;bmlon This
is the usual meanmg of a hotmmorphm in mmgm (Fra}l_l‘ll 6.

.,~: s ;,‘

mmnmdefman '

Formaﬂy, to prove the correctness of an phemery
abstracnon f unction A from C onto the equivaleme chua cf '. the m let of the state
machine belng implemented A simp!e lnd mml wmy to do this is m first dcflne a

function f from C lnto 55 (eg. into the normal forms in §5) anll then dcﬂneme

functlon as A(x) - [f(x)] A must map ente the m obH“ the equivalence classes of
one-to-one mapptng from C onto the equlnleme cluap of ’ B0, many concrete ob jects
j‘can represent one abstrar.t ob ject N ,
« Now, after deﬂmng A one mult show for every Cec and O-funcmn »,
to- Evax«m,.»(xu Ltw (c.x))l‘
where xeD,, and for every non-derived or derlve;l V-fmcuenu

V-EvakHC)#)(x) = @ (Cx)

1. This is a slight abuse of notation. We assume Cetrord = errgr. -

R sy osEmE

m-

where xeD,,
' The above definition assumes that an lmplemultatlon of a V-fu unction does nat
modify the concrete representation. If it does, we must add the sondition o
LHOD = Eu (EXIT. | o
This could occur in an implementation of flaiti.lucpr.:a where iMS reorders the elements
of A. S :
We shailiustrate these ideas using the exampk in Chapter 5 Again we assume |
CC’AX’COUNT ; L

and

K imeger_m c mhn - Rhu] x (D tdlmllty = Reardinatity)-

First, wc,ci,nc S0 €y isamteofthelmyAdezlsa state of the variable . -

COUNT. It Is helpful to define the predicate IN(C).Co.), which s true If the integer 1 152
member of the.concrete set, as follows: |

IN(C) Caui) & (3PIV-EvaKCyA.readi() = 1 A Osj<V-EvaKCo,COUNT.read)].
| Informally, this predicate is true if there exists an ‘lmnger 'j lu'd'n‘that in the state Cj of A,
A.réad(J) returns | and j is greater than or equal to zero ind -leu than the vabe‘ret_umed by
COUNT.read in state Cq of COUNT. Then

f(<Cl,Cé>) = |

(i, true) | IN(C,,Coi} U {(i,ﬁnd I ~lﬁ(C,,C2J)) . ((A,V-EvaKCz,COUNT.rud)))

Now to establish the correctness of th; implementation it is necess:ry to show that 4

is onto &. This can be established b'y shéwing for everyISGS that there exists a CeC such
that LH(C)J = EST. Then one must prove that

1. LO-Evak#C),insert)(x)3 = LKINSERT(C)3

2. [O-Evak#C) removel] « EXREMOVE(C)]

S, V-EvaM#(C)has)x) = ms(c.;) ;

4. V-Evakf(C)cardinality) =
Comider proving 8. Here, it. hw@o”“ﬂ ﬂ!m x is or lsuot in
- the set, then HAS, respectively, returns trwe or-falon.. This. poapaety sowid: be shown by First
éroving.a lemma stating that SEARCH(x 0 COUNT Mmmmm where X
should appear in the array A. TMM@MM ¥ j M 1. and 2.
Furthermore, in proving 1. and 2, it woukd be #gonmsp 1o Show that beth preserve the

concrete invariant since A's domain is C.

-7
6. An Extended Model for Sfatc Mauhined

The model of a state machlne developed ln Clupter 2 does not allow the
specification of V-runctions or O-functions tlngqpcmoeon Mor more elements of the data
- abstraction defined by the machine. In this chapter. thu ms:won is lifted and the model is
extended to allow the specification of these greater than mty opuatlom.

To specify greater than unary operauam, tlac dctnu;bm of the O-functions and
V-functions must First be extended. O-functions and derived V-functions will now be
allowed to have more than one argument of the data abamctm speclfled by the machine
For example, this allows the definition of an O-funcﬂau, um which computes the union
of two sets, or the definition of a derived V-funcmn. MJMJ. which returns true
or falise if two sets have or do not have, respeotlnl] my oamen elements. |

O-functions will still retain their lnterpregatlon of clnnglng the state of the machind
but now this state change can be dependent on moretlnnmgmte ' Derived V-functions
will also have their prevlous lnterpretatlon expanded Now lnstead of allowlng the user
limited access to only one state, they will permit slmnhneom lcceu to more than one state.

Non-derived V-functions and hidden V—fundlom will, however, stlll be restricted
to their previous interpretation. So, they can only specify unary operations on the data
abstraction specified by the machine. This conforms to tllélf interpretation as l’ully
characterizing a single state of the machine. | |

An example of a state machine specification \illth gmtcrthan unary operations is
given in Figure 17. This is the specification of an tnfeger set that cin contain an arbitrary

- number of integers. The specification defines the usual operations (nsért, remove and Aas as

7
Figure 17. Specification of Intéger Set .

‘integer_set = state micmno la has. remové. lmen. m‘m COmNOn. element._?

has = non-derived v-fmuu«mw-mugm m Boalun
Appl; Condirtrine:
initial Value: faise
ond fvas

commom_element_? = derived Vafunotionlbysy
Appt cm m : ‘
ondoommm ekrmt_,?

insert = O-fmuon(l state,iinteger)
’ W mnv m .
Effects: 'has'(si) =
ondinsert

remove « O-function(s:state,i:integer) -
Appl. Cond.; true
- Effedta ‘hai'GD - fulay
end remove -

union = O-fmthn(sl,s?mw ’
" Appl. Cond.: true
Effects: (Vil{’hm'(:.l) W? v W]
end union

end integer_set

well as the operations union and common_element_? dunﬂbd M }ﬂ'lwn'& effects ucﬂon
defines the mapping of each non-derived V-function in.the new. staje that it creates. Note
that a for all statement has been added for this purpese. Any. grester than,unary O-function
must define tﬁe mapping associated with every non-derived.or hidden V-function in the

“new state that it creates so that this new state is fully characterized.

-5 -

We shall now formalize this type of specification by making a few extensions to the
model in Chapter 2. As in"that chapter, each machine is Metled by a set of states, where
each state is modeiled by a set of functions corréspoiding to the hidden ‘and ‘non-derived

V-functions; O-functions define transitions between states. . .
6.1 Extensions to the Basioc Components
68.1.1 V-funotions T

6 1.1.1 Non-derived and Hlddcu V-functlons

pog T ?nwr

Non—denved and hidden V-functlom are spedﬂed as in Figure 18. Note that 9 is

e, 3
T R M R TR + ERLAL o

now included in the mapping deswipuon 0. indioste. M ‘the V-function Is a unary
operatfon on the data 'lbstfteﬂbﬂ”‘m by the machine. The'remhnder'of the def inition
is defined in the same manner and retains the same mmmm as in Section. 2.l.l 1 of

Chapter 2.

b 5

Figure 18. Non-derived or hidden V-function v _

= ‘Mapping Doiéripﬂoiﬁ Y D,.R

Applicability. Congition: ¥ : ® XD s Baolean
Initial Value: ;m_,e(l) < R,)

So, the sets D, and: R, 4 the V~function's meppiiig description may not contain
any element of the data abstraction defined by the:fathine. And as before, since the state

of the machine is characterized by a set of 'mapptngs associated with each non-derived and

-7% -

hidden V-function, we view the state set 55 as a subset of
[D,l-o R"IJX x(Dv *R, Ja® -

where { ViV } is the set of non-derived and hidden V--fmd‘ Aheroachine.

A derived V-function v also remm the three sections in its definition. Hmvu.

these sections’ definitions and meanings are not the m as in Secbosi 24:1:2 of Chaptér 2.

Figure 19, Derived V-function v

Mapping Descrlpﬂon: Q", Dy R,
Appiicabiitty Condition W, % % D, - Booleas
Derivation: der v such that (der vgaelD, - R\] for states 5"

. As before, the derivation section defines a function schema, denoted der v, expr'emd
as the composition of the non-derived and hidden V-functions of the machine and other
functions associated with the elements of D,. But, ifvisa gmw than umary operaﬂun.

der v alsozspeclﬂes the state in which each m—dertsulmbﬂdm V-function should be

interpreted. For any states §" the mapping associatid “with' the schema is denoted by
(der vgn). | ?

As an exam'ple, consider the derivation section of common_slement_? in Figure 1.
_Fér any two states Sy and S, mm_ﬂmm_rmum the vaive

(Gidhasisyd) A hastsg,).

-7 -

This value is, of course, dependent on the-mappitigs assoclated with Aas In state S, and has
in state 82. ~ | - S |
Now, for any states S", the mappi‘qg_}zgssqcia;@efd with der y-is a member of
[(Dy -+ R] where D, and R, are specified by v's mapping dcscﬂpaon These sets D and
Ry can not contain any elements of the dati aﬁ‘nucti’on deﬂmd by the machine)

Finally, the appltcabmty cqndttlgqn%

the Booleans.

6.1.2° O-=functions

. L.

O-functions too have the meaning and interpretatlond the three saetions in their

definitien changed.

Figure 20. O-function o

Mapping Description: D™ D _
Applicability Gondltbn: ’o’ D" x D, - Bpolan
Effects Section: T: D" x D, + D

As with derived V-functions, the mappmg descrt!uonnow contalm or 'and D, to
reflect the O-functions’ extended capability. Fm{thenmre. D, is constrained so that it
contains no elements of thé data abstraction defined by the ﬁmichine. The applicability
condition and effects section are also extended to reflect the O-functions' new interpretation.

The applicability condition of an O-function now defines a partial function ", from

-8 -

”'Dn X D, into the Booleans. Similarly, the gffasts section of an Mm now defines a

partial function T, from D" x D,, into D.
,8‘;2 The Semsntios of a Sthﬁ u”h!no
8.2.1 The Btate Bet of » Btate Machine

Our purpose in this section is to define S5. Here, we shall use the same approach

outlined in Section 2.2.1, taking the transitive-closure of the ml state Qunder the state

transition function. The initial state Q is the tuple (init, l,....!_n_& ")mmm mappings

. derived from the initial value section of each of the ma-dcﬂnd and hidden V-functiom

AVl Furthermore. the next state function has the felmw dlﬂnmm

Definition S
Let o be an O-function with mapping description D" D,,

mapping ¥, in its applicability condition and mapping !;] kwﬂ‘m section.

Let acD,, and Rch"
Then,

TR i W (Ra)=true
NEXT(R0a) = N '

R . if N (Ra)=folse

Thus, the state set is generatéd as follows.

e e -

D QeSS

2 If o is an O-function with mapping dexctiption D% D, 'and S"c S5,
then If NEXT(S"0a) is defined, NEXT(S"oa) e §5 where asD;,

3} These are the only elements of 3.

Note that in 2) above NEXT(S":u.g) may be undefined. As mexghmd in Chapter 2, this

" depends on the partial functions T, and ;. To guaraptee that NEXT is always defined,

we introduce the notion of a well-defined state machine.

Definition
A state machine is well-defined if for any O-function o with mapplng deu:ription

. D" Dg and far any S"¢ S, NEXT‘SMWMWW»D@
‘This definition guarantees that in a- well—defined statc machine, for every
O-function o with mapping description D" D, l is a total Mction from S“ x D into

the Booleans and T, is a total function from {(S"ale 3"‘ % Dgl ‘Msegm into 55.

6.2.2 The Semantics of V-funations and O:-funations .

With this definition of the state set S5 of a state macMne speclf lcation.lt is posslble
to formally define the meaning of ‘the O~functions and V-funections. - This will be déne by
defining mappings V-Eval for \./-fu‘nctic;ns and O-Eval for O-functions such that

V—Evalx"' X NV 2[A-R]l" | |
and

O-Evat:S5" x NO - [A - $]

. where NV is the set of V-function names, A i; the sct of argumms, R is the set of results. ,

and NO is the set of O-functnon names. Note that the dmlm of V-Eval and O—Evai'

- 80-
have been changed to reflect the extensions made to the V-fum;iﬁd50-fumm;,
O-Eval will be defined fisst. Now,: given an O-function o with mapping

description D% D arid applicabiitty oo f;.l‘aafif s, O-Eval returns a

‘el ' ' i o Sl s A g
function from D, into S5 U {error}. Se, u notation,

 O-Evali$"ol = a1 (s%2) » NEXT® o) grren)

O-EvaKs"o) Js not necessarily total since either W{s"a) or NEXT(S"0a) can be
undefined. However, O;E\?_at(s‘,o) is always a total function in a well-defined state
machine. o

For any non-derived or hildden V-function v and stite 'S, V-Eva) will return a
 function from Dy int6 Ry U (erref). So for any non-derived or hidden V-function v with

_ applicability condition ¥,
V-EvaNs.) = aa it 8a) 4 Vi

Ri S m
N

Finally, for a derived V-furiction v with i

il 75, ppeibiy

| q‘:pn‘c_lﬂltion ,‘v awhgl_qeﬂvl_atloﬂ’ g_g_:; v, .

V-EvakS"y) = Aalll, (S50 (det Vg0 aitéh)

where S"¢ $" .’ .

Note that the function that V-Eval evaluates to is not necessarily deﬁmd over the
entire set D, since the applicability conditloqfcn'n be uﬂdqf ined m-.depmdmg 0'_'" the tYPC of
V-function, vg(@ or (der vgnia) can be undefined when the applicability condition

evaluates to true. When this is not the case, we say the sme machine is wmmmt

Definition

A state machine is consistent if, :
for every state S¢ 35 and non-derived or hidden V-,{unctlm v,
- V<EvaKS; v} s togal function frorn D 0to R, U lm}

and if,

for every derived V- unction v with mappmg ducﬂption p D and S $"
V- l-:val(S",v) isa ml funetion from:Dy- mmwu teryor). '

In a consistent state machlne for non-derlved and htddcn V-fum:tiom. vs is always’
a total function from (st g | (s,x)) into R, and for dtrlnd V-functions. (gg vsn) is

. always a total function from {x¢D lll (S".x)) inm R

-82-
7. Coneclusions ’ <o

The aim of this thess has been the developme

umwmm technique

for data abstractlms based on Pamas ldeas. Flm. l mﬂ

ﬁ»

state machine specif icatiors was daebped “This ‘model: gave ﬁf*m ’comtructlm for the

b3 e
WY ARAL

'state set of a state machlne and then used the state set to feml!ze the semamics of the '

N SR TR ¥ éi A 6}‘?’&:)i ST

V-runctlons and the O-functiom Mso the notiqns of a veli—deﬂmd md of a comlstem

RESSSEE SN RO TR L R
 state machine were introduced Next tMs ubstract model was used to fm“u the lermntics

(!’!‘ig‘-k% e 53] Kﬂ?x ‘?'

of a concrete specification languagc fer state mlchinel This hagange was used to specify a
number of data abstractions and also to Iﬂumu how to prm a mr state machine is
well-defined and consistent. = Then a proof methodology to use with state machine
specifications was discussed and ﬂk_lstr_ated. . This methodology employed the homomo;rphism
property to establish the correctness of an implemennum of a m mchm specification.
Finally the model for the semantics of a state machine wm was extended. This new
model allowed the specification of a greater class of data abstractions tban the previous one.
In this final chapter, the usefulness of the state machine specification technique is
evaluated and reviewed. This evaluation is then foflowed by mmggesﬂons for further

research on state machine specifications.
7.1 BEvaluation

The state machine spedf ication technique is best suited for the speclf ication of data
" abstractions. Its conceptual basis of a group of functions opertung on a state set matches

quite well the notion of a data abstraction where a group of functions operate on a coflection

:‘prthcsemantlcsofa_-

g .
S T L NELP

-8 -

of objects. To construct a state machine specification of adau abstraction, one mtsit model
the objects of the data abstraction uslng the V-functions of tbe machine Ina sense. this

corresponds to modelfing the ob jects of the data abstractlan by using lnﬂmte arrays So the

~ state machine technlque is a variant of the abstract model ¢pprmh [Berzlns 78], [Yonezawa

77) ‘where one is restricted to modelling ob jects of the data abstnction by using infinite
arrays. o) |
~ In the abstract model ipptoact_n, the ob jects of a data abstractidn are represented in
terms of other data abstractions with known propemes ectabllshe'djby fnr‘malws‘peclf lccttons
given in. advance. Then the operations of the data abﬂnctionbelng defined can be
specified in terms of the operations of the known ab;traalom selected as thc reprcsentatlpn.
So, a model for the data abstraction is devéloped. This differs from axiomatic :fecgﬂcadom
(Zilles 74), tGogucn 5], [Guttag 75] where the behavior of a data abstraction is given by
axioms ‘relating its operations. ‘Currcntly research is beingdoneon both the_setechnlques.
Since any comparison made betweenl abstract model and axiofatic specifications will apply to
state machine specifications, we shall limit the f‘oliowiug ducumon to a comparison of the
abstract model and state machine techniques. |
In using the abstract model approach otle is free to choose the data abstractions used‘
to represent the speclned ob jects Thus it appears that abstract model speclf ications wouid_

be easier to construct than state machine specifications. In fact, one can encounter diff lculty

in using the state machine technique to specify an abstraction whose objects can not be

modelled well by arrays such as lists or trees.
Another issue in ccinstructing state machine specif ications Is that one usually wishes

to write a specification that is well-defined and consistent. So it will be necessary to prove

-84 -

that these two properties hold. "Studying the proofs lnv Appendix 2, it appears, at first glance,
that the proofs of these two properties ar_e.rather comphx Hm&whtb the ymot.s in
Appendix 2 may indeed be somewhat cumbersome, they arebmt;am qgme simple and
straight ..forward. ' They ér;maﬂ!y rely on the definitions in Chapter. 3, The most 'Cmuve"
‘step in the proofs was the introduction of the lemmu 7 Even Iwn,bpwever. the creativity '
| involved was minimal. For eﬁ'amp}g. Qhen i mmd work on showipg that the ;pccifinﬂon |
’of queﬁe was well-defined, I did not begin wizhk.the first lemma. It was qnly when | was
forced to show that both front and buk could he evaluated in any uate that | realized ti\at 1
had to prove'thl_s Ifemm;‘. So, in carryipg out the mmmm Saction 2.2.4, | found '
the extra cqndlthn 1 nge;igd_m sj;ppliff the proof Tbhgxm was WM w.,l;gl_) I
attempted to show tyhat Y-Eval(s.f irst_elemegt) was ml o |

I feel $hat in mostcases it will be necessary bo prove ;Mpqumms to_help in

carrying out proofs of properties of state machine specifications. However, it appears that

these Iemfn;s are usually quite easy to discover and that the actys! seps in the proof will
involve one in time mnwmiﬁg. but not difficult, work.

However, it apprars that proving the carrgimess of, n Jplr

ntatign. will be. more

2 property_holds but
ing. This latter task is not

difficult. Here not only is it necessary to show that the h

one must also ;how that the abSiractlon fum:tton is an m ma

s‘imple. One must first characterize every equivalence class of the state letand then show
that there exists an elqunt of the concretg.og jects ““tmapsmm element.

To prove that some property holds for an abstract m Wflﬂ tion of a data
abstraction, one must show that the property holds in the d""mmm'i model. The

difficulty of this proof depends on how well chosen the mgdeH& Thus proving that a

-85 -
property holds in a state machine specification can bé easic’r”or harder than proving that the
same property holds in an abstract model speclﬂmton acc&nilng to the aptness of the latter

- specificiation’s model. However proving the correctness of a data abstraction specif Ied by

either technique appears to involve equal difficulty,
7.2 Toplos for Further Research

One area for further research is to determine the usefulness of tﬁe state machine
- specification technique: Spetifically, can staté fachine apedﬂatiom be useﬁ successfully in
the design and development of Iarge scalle software systemis? Research that should help
answer this quesﬁm LR eummly being done at SRL Thcy ‘have used state machlne type
specmcattons in the design of a provably secure opefatmg system [Neumann TI} and are
developing a methodology for the ‘development of sortware that uses state machine type
specifications. Their preﬁnﬂmry resufts in thl: ared Hive beén encouraging | |

Another research area is the extension of the state machine apeclf ication tachnlque’s'
error handling capabilities. At present, when the applkaﬁllity condition of an 6-!‘ unction or
V-flanctjon cﬁlua‘tes tb faise, the'fUH;:ttm rﬁum the\ special symbol m Clearly, this
does not give the user any clue as to what has caused the error. More information shoul@ be
givan. Furthermore, the manlng of returning an error message has not been discussed.

The specifications could be extended to alluw one ﬁo define more descriptive errc;r
messages. lForl example, cardinality in the finite set spaclﬁcation of Chapter 5 could return
an error message such as “too many elements” when one attempts to add more fhan 100
integers to the set. Parnas has noted that more information is ﬁeeded to describe how his

specifications handle errors [Parnas 72, 75).

Anothier extension to state machifie specifications. can B, fidde e ih the class: of dati
“’""“'m’l’“ﬁm T“Wmm“m , e Have ahatied thab et denk. b

| spedﬂed by a state machine are immutable. In an immitalile sty

RRPRp— m

behavior of the states ln a state machine specmmim An o-rem o, wmm glven 2 mté

7 abstrictivh are cohstants; 1.6, théir

S aid xe Dy does hot feliry S, but instead retarfis a “ew m & Fum-érmon. n‘ the
tioh amamim*'- Similar
behavior is also éxh’lbitiﬂ By & V-fufiction. However in & el M*m ethon the

behavior of thie objects may chinge, An atton

O-functﬁm' ois agam g-ivtn 8 ma ,* At 1, % corgitib

passed 4 fiutiblé object may return a diﬂm L,
computation history. T, an obvious tople fer furiiéh, RN 146/
‘_ machine techmque to aﬂow the Wf‘ ,

studylng how abstract model specifications can. be s .t m ki i, sbsirsiatons

o R
LR

~-87-

Appendix I- Undecidable Properties of State Machines

In this appendix, we shall show that it is impossible to decide algorlthnﬁéilly
whether or not a state machine, specifed in ALMS, l.s’ well—deﬂned &’ooﬁsistem. _‘ This is
established by reducing both. problems to the bank tdfﬁ: "l;lmng problm' for Turing
. machines. The blank tape haiting problem is the problem of determtnlng. glven & particular

Turing machine T, whether or not T halts when started on blank tape This problem is
undecidable [Hennie 77]. |

The definition of a Turing machine used here is glvén by (Kennie 77. A Turing
machiné consists of an infinitely long tapé coupled to a finitc u;ﬁtrol ufﬁt The “t‘ape 'whlch
acts as the machine’s memory unit, is ruled ol‘f lnto squares Each square may be lnscrlbed
with a slngle symbol f rom a finite alphabet Z, or it may be bhnk The special symbol ﬁ is
used to represent a blank. The control unit can shift the tape back and forth and ls;able to
examine one square at any time. | o

The control unit is capable of assuming any one of a fixed, finite numbtf'of states.
We shall only consider deterrhinistic Turing machines. So, at any given time, the state of the
.control‘ unit, together with the currently scanned tupe'isfm”bol‘. uniqute determlne; the
behavﬂor of the Turing machine. The Turing machine has two actions: it m;y'éitﬁcr Aalt
.or carry out a move. Each move consists of wrmag a symbol on the currehtly'stinhed tape
square, shifting the tape one square to the left or right, and causing the thl unit tg enter

a new state.] The action of the Turing machine is characterized by the successive moves that

1. The symbol that the Turing machine wrlte; need not differ form the symbol that is
already there and the new state need not differ from the current state. :

occur when, initially, the control unit assumes some predesig
finite number of the tipe squares are inscribed with symboli and the rémainder are Wft

© blank.

A Turing machine is representsd by x groupo

: 9% % d 9,
where g, Is the current state |
| s; Is the symbo!m the tape head
8y Is the symbol to bepﬂm on the tape
dielright, left I8 the direction of the head’s movement

qy, is-the next state

Each quintuple must have a distinct prefix q; s, The ww Q ”';: Mm cantrol
‘unit is in a state q and is scanming a symbol s such that q s Is not the prefix of any
quintuple. '

So, assume we are given a Turing machine T with quinugien

% %%, 4%,
ahd initial state G,
Now, consider the state machine given in Figitra 2L
For the notation &d), -
1 if d = right
Hd) - |

-1 itd =jeft

-89 -

Figure 21. Turlno_muchlm_ﬂ__i
Turlng__machine__m_l = state machine is tape, state, head_pos, move

state = non-derived V-functionl) returns character string
Appl. Cond.: true :
| Initial Value: 9

end state

head_pos = non-derived V-function() returns lmgger
Appl. Cond.: true
Initial Value: 0
end head_pos

tape = non-derived V-funcﬂon(l Integer) rutums chancter strlng
Appl. Cond,: true : o
initial Value: #
end tape

well_defined_? = hidden V-function() returns integer
Appl Cond.: true
initial Value: undefined
end well_defined_?

move = O-function()
Appl. Cond.: true
Effects:
lfseate-q, A tapelhead_pas) = s,thmnme-q,, :
if state = q; A tape(head_pos) = s, then *head_pos’ = head_pos + l(d,
if state = =g, N tape(head_pos) = 5, then 'tape'(hud_pm) 5,

lf state = q n tape(head_pos) -5 then 'state’ = qh

if state = qi A tapeltead: pos} u, then W_pos - hud_pos . S(d,

if state = =q N tape(head_pos) 5 then, 'W‘(hgd,,pq;) -)

if ~((state -q A mpe(had_pos) -s Y. v(sme-q‘ A npe(hud_pos) -3 »
~ thentap#(tiend_pos) = “ well defined ?

 end move

end Turing_machine__1

-99 -

Turing_machine .1 simulates 8 by having a state; ingits, stats 3k (91, syery steg.in. W¥s
computationt. . .

Now, Turing_mach Jugm

Turing_machine R _1 cotrelponding to the final slnp n m W" InsS,
| MGstate - ¢, A mm_wws, LA L% Wﬁﬁﬁw.rwe)

F1 I

evaluates to true. But, thie equation
hpe‘(hud_pw - ﬂw.?

ok b eyl Ay L B e
Yo g

is undefined since the V-funciion wﬂmj WN :

Turing_machine_W_1 is ot webl-defined. SE
Going the other wity, mwmmﬁ;w

only be caused by ~v~ o
tape'thead_pos) = well_defined ?
since the ther equations only use total V-functions, TINE' SRl

~((state q, /\Mﬁﬁdﬁ ﬂ, !V%—Wi-%i\w.pﬂ oy

T et o w imty ¥y

is sstlsried so ” must halt

!‘; o ie

Now, consider the state machine tpedﬁumn in Figun 22. 'ﬂm state machine is

not consistent if and on!y if ﬂ halts wim\ mmu on m we

Geng Demdinges 3 3

nm. assume] ;akm: mm wazfmmm mmar ‘which
state - fq‘ * A '

‘evatuates to: trm G&Iplgu‘ Q Eval ,y . ’ l .

V-function consistent ? is not total. By revcmng this :mt. it s mt ﬂut if

O

Turlnanachine M_2 is not conmtem, "N mm on blank elpe

e e Y v

-9]-

Figure 22, Turing_machine_ R _2

Turing_machine_MN_2 - ita_te machine is tape, statc. consistent_?, head_pos, move

state = non-derived V-function() returns: character string
Appl. Cond.: true '
initial Vaiue: %,

end state

head_pos = non-derived V-function() returns integer
Appl. Cond.: true
Initial Value: 0
end head_p‘os '

tape = non~derived V-function(i integer) returns character string
Appl, Cond.: true
initial Value: %
end tape

consistent_? = non-derived V-function() returns integer
Appl. Cond.: switch
Initial Value: undefined
end consistent_?

switch = hidden V-function() returns Boolean
Appl. Cond.: true
initial Value: faise
end switch

‘move = O-function()
Appl. Cond,: true
Eftects: '
nxm-q,' N upe(hud_pu) -5, then 'stise’ %,

Hsme-q‘ Aﬁp&(m_pui-ai mmw ﬁed_yuu‘(d,

H sate s g, A&p&wwﬁ, on g

| "m-g o mpithand,pon) 52y
lfstate q,r\upetm_’u)..‘. .

end Turing_machine IN_2 T

. -98-

~ Appendix II - Proots

This appendix contains the proofs of the lemmas and the theorems in Section 3.3 of
Chapter 3. We shall f lrst show that the spedﬂcmm ls well—deﬂnod Thls will be done by
inmauy proving a Iemma that captures the key properties necessary to insure that the
machine is well-defined. Then, with the aid dmm m we wm Jimly establish that the
specification is well-deflned | | | | “

First. some notwoml details must,he hapdlgd. Wae.shall denote the initial .mtc of

queue by Q.. its state set by 35 and adsumé

S c (Dstorage -+ nge] x{DbiCk -» le X [wa -» Rfmt]

gmr_n__ For any §¢85, backstwd -*Wl and; frqmgd(?d > Imeger] and
backs X K frontg where ¢ is the null set.

Proof by induction: .

" Basis: By definition,
ka-m 0} and fromQ (o .

Inductive step: Assume for all
" 5« NEXT. NEXT(NEXI(Q.DI‘WW”&“ 13n-P ¢
where a¢ DQ‘. n22 and oy linsertdulete) thatbackgeliA) -x immger) and
frontgel{a} —» integer] and backg » $.# frontg. - We mumt show for all
= NEXT(S,0,x)¢ S5
where xe¢Dy, and we{insertdelete} that backgeel{a} -+ lnuger] and fronts-d(xl - integer)
and backge = ¢ » fronts. '

Case I: backge
Case la: @ = insert
Then S* = NEXT(S , insert , x).
§ Since (S , true , insert , x) = true, ,
8t TEGs, imert, x, 'storagelback - 1 = I, back’ = back - D o
- EB(s | insert, x, storage'(back Daid,insert,x, 'back' back -
=S, L
Since S°¢ 8§, S; is defined and. hence ;
Sy = = E(s, insert , x , 'storage'(back - l) -Dis deﬂned
Then $° « E(Sz ,insert , x , 'back’ = back -1 N
- (storagesz , X, oS, , back - 1, insert , 00, rf’ﬁ)_msz)v
= (storages {2, Sg b back. +M m} :
= (storages {(x backs -m, freqts)
Now backs - bat‘ks and so by. the lndwve hypntheslt.
itisa member of [{2} > integer] - {¢}.
Thus, backg ¢ [{X} -» integer] = ($). <
Case Ib: @ = delete N
Since S* = NEXT(S , delete , A) is by asmﬂptim deﬂned there are two
cases relating to ¢(S , Mfront' « back - 1), delaae M ‘
Case Ibl: p(S, ~Afront = back - 1), delste ., A). = false.
Then §° = § and by the inductive hypothesis,
backgel{r} = integer] - (¢}
Case 1b2: 15(S , Mfront = back - D, d!m) = true.
Then §* = TE(S , delete, 2 , 'front’ = front - 1.’
S0 backg = backg. which, by mmum h”lothém.
is & member of [{A} - intsgerY - €9y,

Case 2: frontge.
Case 2a: @ = insert » :
Here, 5* = TE(S , insert, x , 'storage'(back -) = § , 'back’ = back - D).
So, frontgs = frontgel(A) - integer] - ($) by the inductive hypothesis.

Case 2b: ® - delete

Case 2bl: p(S , ~(front-back D, delete , a) = faise.

Then 8° = S and by the lnductlve hypothesls,

frontgel{2} - integer] - {$). ;

Case 2b2: p(S , a&frmt-b;l;k l) deiete k)-tru.

Then 5* = TE(S , delete, A , front' = front =D
- Es, delete, A, 'front’ » front -
-(storages.backs ((J\ p(s front l delgne A))}) '

' -(stonges.backs.((:\ Sk front - l)))

-(stonges backs m frmts l)))

fronts.c[{)\}-’lnmgeﬂ-lé) . o '

We can now prove that the machine is well-defined using the above lemma. Three
properties must be established: 1) the appliabmty conditions of the O-functions insert and
delete are defined; i} the next state functlon is dﬁ‘imd fur ‘both ‘{nsert and delete; and,

ﬂnally. i) the ordering of the equatiom m both mm: urd ddm: eﬂ'ects secttions ls
/

immaterial. Note that iii) is trivially estahmhd singe dmfshu»only one ,quatlon in its
effects section and the two equations in nsert’s effects’ nctlun modify dlffcrem V-functions.

. Thus, it is only necessary to deal with i) and ll) We now maplem the proof

Case I: The Applicabllity Condition
Case la: Insert’s Applicability Cmdition
(S , true, insert x) - S P truo
= true
‘Case Ib: Delete’s Applicability Condmon
1(S , ~Mfront = back -1, delete, M =S P ~(from back -1
V- ao(fronts backg - I

-96 -

By the lemma, both frontg and backg are members of [{A} - integer] - (¢}
so ~frontg = backg - 1) is defined.

Case 2: The Next State Function
Case 2a: NEXT(S, insert, x)
By Case la, (S , true , insert’, x) = true
So,
'NEXT(S , insert , x) = ‘I’E(s insert , X , storag e(back - 1) = i, 'back’ = back - D)
= E(E(S insert, x , storagc'(back Db , insert , x , 'back’ = back - 1
Now, :
E(s , insert , x , 'storage’(back - 1) =)
- OxL(x = n(S back-Linsert,x)) -+ p(S.i imert,x)mages(aﬂbuks.f rontg)
= Ox.[(x = backs -Dax, storages(x)] b&cks fronts) :
=S°*
Note that backg is defined by the lemma 5o §° is defined.
Ecs*, insert, x , 'back’ = back - I
= (storagegs , {(x , po(5°, back - 1, insert, x))) froms)
= (storageg. , (A, backgs - D}, frontg)
- (storagegs , (A , backg - Y, frontg)
By the lemma, backg is defined and hence NEXT(S , insert , x) is deﬁmd
Case 2b: NEXT(S , delete, 2) '
Case 2bl: 4#(S , front = back = 1), delete ,) = false
Then NEXTI(S , delete ,) = 5. .
Case 2b2: (S , ~front = back - 1) , delete , A) - true
Then NEXTI(S , delete , A) - TE(S , defete, A , 'front’ = front - D
« E(s, defete, A, front’ = front - D
= (storageg , backs m a(s from 1, delwe »m
= (storageg , backg , o, S ¥ Front < DD '
- (storageg , backg , {(% , frontg - DY)
So by the lemma, NEXT(S , delete , 1) is defined. B

-97-

We will now show that the specification is consistent. This involves proving that

the four V-functions are total. For front and back note that

I} back

V-Evak$, back) = Aalm(S , true , back , A) -+ lm"is » error)
=Aaltrue - backg , error)
- J\a.backs

2) front

V-Evaks , front) = Aa.[p(s true, front A) - froms m]
= Aaltrue - fronts m]
= Aa. fronts

By the lemma, both backg and frontg are defined.

To see that both V-EvaKS , storage) and V-Evak§ , firsi_element) are total, we
must again introduce a lemma and then pmvé the desired results vdlrecﬂy»fran the lemma.

The lemma describes the domain of storage. -

Lemma
For any S¢S, if vfronts 2 k 2 backg, then storageg(k) is defined.

_Basis: Since fromQ;- ({x,-1) and bad:Qw((a,O».'tﬁez’vahWyfﬂbm.

Inductive step: Assume for ali :

S = NEXTX.. NEXT(NEXT(Q °l"l)'°2"2)" ﬁn—l‘n-l)‘s
where a;e Do, nx2 and oic(imert,delete) that if froms 2k 2 backs. then stonges(k) is
defined. We must show for all .

$* = NEXT(S,0x)¢ S |

S e R e sz

- 98 -

where xeDg and we{jnsert,delote) that if - Erontige a-k 2 Satkgs, Shan sansgtys(h) is defined.

RPN

Case I: o = insert
Note xe¢Dp ot
Case la: frontgs = backg.
Then storageg«(frontg.) evalaates to x
due to the equailnm worage'(back. ~ B =i and Dok’ « budk ~ L
Case 1b: frontg. = backs.
Then froms. > backg. _
and frontge = frofitg and backge = backg - 1.
So for f rontge > k 2 backge + L storsgeg«k)
is defined by the inductive hypotlmh
Also, storagesfbacﬁs.) evakntu to T
dué to the équations storige’(back i - tmm aw L

Case2:oi'o-delgete |

for !r%; 2% 2 bathgy ; storagag 4. -
Is defined by the inductive hypothests.

To see that V-Evals , storage) is total, note thig -

~ V-Eval($, storage) = Aalp(S, froh,tzizhd{ , storage , ah) - Wﬂ.m)

The desired. result - immediately. foﬂﬂm Fo::sve that

V- Eval(S first_element) is total, note that for any S¢ 5§

V- EvaKS first element) R
- Aa[gt(s ~Afrofit = back - D first element,M -+ p«swfmﬂcy A
= Aal~frontg = backg - 1) -» storageg(fronts) , ggror]

-99 -

If ~frontg = backg - D is false, then

V-Eval($, first_element) = Aa.error.
Otherwise,

V-Eval(S , first_element) = Aa.storageg(frontg)
Now frontg > backg so, by the lemma, storageg(frontg) is

defined. Thus, we conclude V-Eval(S , first_element) is total.

- 100 -
References

[Berzins 78] V. Berzins
Abstract Model S pecifications for Data Abstractions - - -
forthcoming Ph. D. Thesis M IT (1978)

.[Burstall 69] R. M. Kurstall .
"Proving Properties of Programs by Structural lnducﬂm
Computer Journal Vpl 12 (1969) pp.11-48

{Curry 50] H. B. Curry

"The Logic of Program Composition”

Applications Scientifique de la Logique Mathematique

Actes du 2° Collogue International de Logique Mathematique 1952
Paris: Gauthier-Villars (1954) pp.97-102 [Paper written in March, 1950]

[Knuth 76] D. E. Knuth, L. T. Pardo
The Early Development of Programming Languages
Stanford University, STAN-CS-76-562 (August 1976)

[Fraleigh 671 J. Fraleigh
A First Course in Abstract Algebra
Addison-Wesley Reading Mass. (1967

[Goguen 75) J. A. Goguen, J. W. Thatcher, E. G. Wagner, j B. erght
"Abstract Data Types as Initial Algebras and the Correctness of Data R

Proc. of the Conference on Computer Gmﬂatu Pattern m and MG Strudurcs
(May 1975) pp.89-93 ' ‘

[(Guttag 75]]. V. Guttag
T he S pecification and Application to Programming of Abstract Data Types
Ph D. Thesis, University of Toronto CSRG-59 (1915) -

{Hennie 77] F. Hennie
Introduction to Computability
Addison-Wesley Reading Mass (197D

[Hoare 72a] C. A. R. Hoare
“"Proof's of Correctness of Data Representations”
Acta Informatlca Vol.l No.4 (1972) pp 271-281

-101 -

(Hoare 72b] C. A. R. Hoare

"Notes on Data Strycturing”

Structured Programming pp.83-174
A.P.LC. Studies in Data Processing No.8
Academic Press London-New York (1972

(Kapur 78) D. Kapur
Towards a Theory of Data Abstractions
forthcoming Ph. D. Thesis M.LT. (1978)

[Liskov and Zilles 74) B. H, Liskaw, §. Zilles

"Programming with Abstract Data Types" .

Proc. ACM SIGPLAN Conference on Very High Level Languages,
SIGPLAN Notices Vol.9 No.4 (Apr. 19 ppto-n9

[Liskov and Zilles 751 B. H. Liskov, S. Zilles’
“Specification Techniques for Data Abstractions” S C
IEEE Transcations on Software Engineering SE-1Vol.l 197 pp.7-19

[Liskov and Berzins 771 B. H. Liskov, V. Berzins
"An Apppraisal of Program Specifications” ot T e e
Computation Structures Group Memo 14i-1, MLT, (Aprii 1970

{Milne and Strachey 7]
A T heory of Programming Language Semantics
Halsted Press New York (19%) ‘

[Neumann 741 P.G. Neymapn . = - .
Towards a Methodology for Designing Large Systems and V erifying thoir Properties
Gesellschaft fur Informatif, Berlin (1974) ' RN

(Neumann 771 P. G. Neumann, R. §. Boyer, R, J. smxuquvm.k Robinson
A Provably Secure Operating System: The System, Its Applications, end Preofs
SRI Fianl Report, Project 4332 (February 197N

{Parnas 72] D. L. Parnas :
"A Technique for the Specficiation of Software Modules, with Exampies”
Comm. ACM Vol.I5 No.5 (May 1972) pp.330-3%6 '

(Parnas 75) D. L. Parnas
"More on Specfication Techniques for Software Modules”
Research Group on Operating Systems I, T. H. Darmstadt, Fed. Rep. of Germany

[(Pratt 76] V. R. Pratt
"Semantical Considerations on Floyd-Hoare Logic”
17th IEEE Symposium on the Foundations of Computer Scaince. e@ct. m p.108-121

[Price 73] W. L. Price

Implications of a Virtual Memory Mechanism for mﬂmg Protéction in & F My of
- Operating Systems
Ph. D. Thesis, Camegie-Meﬂon UMvemty {June 1979

[Robinson 75) L. Robinson, K. Levitt, P. Neumann, A. Saxena
"On Attaining Reliable Software for a Secure Operatin
Proc. International Conf. on Reltable Software 19V pyp.!

{Robinson 77] L. Robinson,; K. Levitt o
"Proofs Techniques for Hierarchically Stroctured Prograss”
Comm. ACM Vol.20 No.4 (April 197D pp.271-268

[Roubine 76) O. Roubine, L. Robinson
SPECIAL Reference Manual
Stanford Research Institute, Technical Report CSG-45 (Augml 196

(Spitzen 76] J. Spitzen, K. Levitt. L. Robinson
An Example of Hierarchical Destgn and Proof
Stanford Research Institute (january 1976)

{Yonezawa 771 A. Yonezawa

S pecification and V erification Techniques for Parallel Programs M on
Message Passing Semantics

Ph. D. Thesis, M.LT. Labsratory rwcmmmn-ht

(Ziles 74) S. Zilles
"Algebraic Specfication of Data Types”
Project meogrm Repéﬂ m ﬁp&-&ﬂ LT.

