MIT/L.CS/TR-203

SYNTIIESIS OF SYNCHRONIZATION CODE FOR DATA ABSTRACTIONS
by

Mark Steven Laventhal

June, 1978

[his research was supported in part by the Advanced Research Projects Agency of the

Department of Defense, monitored by the Oifice of Naval Research under contract
NOOOI4-75-C-0661, and in part by the National Science Foundation under grant

DCR74-21892.

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge, Massachusetts
02139

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR-203

S_’NTHESIS OF SYNCHRONIZATION CODE FOR DATA ABSTRACTIONS
by

Mark Steven Laventhal

June, 1978

© Massachusetts Institute of 'ﬁchnobgy 1978

This research was supported in part by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval Research under contract
NO000I4-75-C-0661, and in part by the National Science Foundation under grant
DCR74-21892. '

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge, Massachusetts
02139

This empty page was substituted for a
blank page in the original document.

-9-

SYNTHESIS OF SYNCHRONIZATION CODE FOR DATA _ABSTRACTIONS
by

Mark Steven Laventhal

Submitted to the Department of Electrical Engiﬁeering and Computer Science on.june 23,
1978 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

ABSTRACT

Synchronization code is necessary to control shared access of an abstract data object in
a parallel-processing environment. This thesis explores an approach in which a
synchronization property can be specified in a high-level nonprocedural language, and an
implementation for the specified property can be synthesized algorithmically. A problem
s pecification language is introduced in which synchronization properties can be expressed in
a structured but natural manner. A method is then presented for synthesizing an
implementation. An intermediate form, called a solution specification, is first derived,
representing an abstract solution to the problem. The derivation of the solution
specification accomplishes the transformation of the specification from nonprocedural to
procedural form. The solution specification can be translated directly into a source
language synchronization mechanism, such as a monitor.

Specifications for common synchronization properties, such as the readers-writers and
bounded buffer problems, are expressed in the problem specification language.
Corresponding implementations are then synthesized for these problems. In addition, the
derived solution specification can be used in analyzing the soundness of the original
" problem specification with respect to criteria such as freedom from deadiock and starvation.

THESIS SUPERVISOR: Barbara H. Liskov
TITLE: Associate Professor of Electrical Engineering and Computer Science

Keywords: synchronization, synthesis, data abstractions, abstract data
types, concurrency, interprocess communication, monitors,
deadlock, starvation

This empty page was substituted for a
blank page in the original document.

-3-

‘Acknowledgments

I wish to thank a number of people who have contributed in various ways to my
completing this thesis. First of all, I want to express my appreciation to my thesis
supervisor, Barbara Liskov, for all the help she has given me. Not only has her technical
' ad\./ice invariably been sound, but her patience, encouragement; and support during my

many years as a graduate student have been invaluable.

Each of my three readers, Irene Greif, Carl Hewitt, and Liba Svobodova, has
contributed important insights to different aspects of both the research and the presentation

of this thesis. My sincere gratitude goes to ali three of them.

Many of the graduate students in the M. I. T. Laboratory for Computer Science have
helped to create an interesting, stimulating, often diverting, and always supportive

atmosphere in which to work. I want to thank in particular my officemates Dean Brock

and Toby Bloom.

Finally, 1 wish to thank my wife Carol for her deep and constant support and
encouragement. It is she who has enabled me to persevere throughout my graduate school

career, and from whom | derive my inspiration.

This empty page was substituted for a
blank page in the original document.

-4.

Table of Contents -
Abstract........ veneranens erretesesaseessssasararreansaense eveereriiinasianaeetneiinannns eeerin R 2
Acknowledgements................... everteresessrerasesiertersesarnaesiesssenssrrnan et 3
TADIE OF CONLENLSeoevorevececesesssssssessessessessssssssesesessesesiensemnsaesssgossasesssessens 4
L IRtrodUCtionccoeiiiiiniiiiiiiiieiinn e it s i i B
11 Goals of the thesis...............cooiiiiiiiiiiiii i b e 6
1.2 Synchronization Mechanisms.cumrrieieiieiriiiiiiiisi i i 8
1.3 Specifications and SYNthesis..............ooooirriiiiiiiiiiii 12
~ 1.4 Overview of thethesis..........coovvveinnanni, TR IL SO T TR DIUCPRPS PR | 2
2. “Theé Problem Specification Language............ccccvereeenenniinniiiininninnnns e e 17
2.1 Introduction........c..iuviiiiiiiiriiicier e Sesederiren it odie s e sbeaens 17
2.2 Data abstractions and Synchronization.............ocoovviiiniiiiiinn e 17
‘23 The guardian model of synchronization.................c..itivivninie.. weenein 2b
2.4 Overview oOf the lANGUAGEe..........oorneiiiiiiiii e 23
~25 Syntax of the IARGUAGEcoooiiiiiiiiini il e 27
2.6 Semantics of the languagecc.o.ooiivni Bl ieviimeneseieseiindennees 29
27 EXamPleS......ooiiiniiiiiiii e SO S RTFRRNE s PR U IR | |
3.. The Solution Spec:ﬂcanon reieer e 42
31 Introduction............oveeiiiiiiiiiiiininin bevreersesserairennenenaaes veveneereeeinbinses 42
3.2 The basic solution specification StrUCLUFe..........ccooorutiiiiiiimmniiirniniriinees 43
3.3 Additional features of the solution specification e fiaaiiil 49
3.4 Semantics of the solution specification eereeeiereer e s e aetaeaeaaaes 59
4. Derivation of the Solution Specification...............cooooiiiiiiiiiii e 63
4.0 TNEFOAUCHION.evevvvirrirereerireeeseniieeeesnrnnesessnnnnaaseesesssasasseaessssaesan e sannes 63
4.2 The derivation algorithm............ooiiiiiiiiii e 66
4.3 Use Of Previous SLALeSc..ieieeiiiiniiiiiiiiiiiiie it cstse st 80
4.4 An example USING A PreVvious SLAE ..,.....iiiiiuiiiiiiniiiiii ettt en 85
45 Incorporating argument CONSLIAINLS.........oooviriiiiiimmiimnrniiieerci i tnianeee 94
4.6 Justification of the derivation method ... 102

4.7 Failure of the derivation algorithm............cooeiiiiiiiiiiiii e 12

-5

5. The Source Language Implementation.. ieeireesieneeeencininiernnecineeaneensl vaeaens 1
B0 INIrOQUCTION.coouniiiiiiiiiiiiii i rer e ee b e rre e ee e et e e e e e e e e ees 17
B2 MORMIOTS......ouiiiiiiiiiiciiciiiee e cereriee e s eee e s e e s eae s e rae s e st senn e e ebnsnennres 118
5.3 The basic monitor implementation...............c.ceeeeerrreriiuereierrerreerserrneeennnnenns 120
5.4 Previous state informationcccceeiiiiiiiiinniiiinininenrrenereeeniiicanneeeeneeoes 128
5.5 Qualified Gates...............oocuiiiiiiiiiiiiicce e 129
6. Complete Examples of SYNthesisccoouviiiiimimmiiiicerrrireneereeeererieererenncnnes 153
6.1 INErOAUCHION.ceuiiiiiiiii et et e et e eee e ee e e e e s e e e e e ae e e e 153
6.2 Bounded Duffer..................ocoiiiiiiiiiiiiiii e s ssieese e ven s 153
6.3 Writers’ priority database.............cccccevereeeiiereinineiiinnuiuieesereeieneeenneseaeenns 158
6.4 Alternating priority database...........c.c.cccoevervennee.. T TS 169
6.5 Disk head scheduler...............ccooiiiiiimiiiiiiiiiiiiiinreies it ereieeanesessessnsnanns 180
7. Detecting Erroneous Specifications............c.cccoevveererrrrnnans eersesemistierenenseesianiiaiees 190
T INMrOAUCHION.oeviiiinniiiiiiiirinee et s rreesorcnssssasnnsanssannnsessbarannsnsnrononies 190
7.2 Deadlock detectionccoiiimiiiiiciiiiiiiiiirireeereeneeresreesrereeneeneranrarensnns 192
7.3 Starvation detection..............cceeiiiiiiiinuiiiiereniicn e ee e s oo ein e s s e e 200
- 8. Summary and Evaluation............... e Chevisudinmensasarrsnsrstacasniserses 206
8.1 Summary of the thesis............. ettt e e T 206
8.2 The specification language...............cccevvvrmennennne. O U 209
8.3 The synthesis Methodc.oiiiuiiiiiiiiiiiiiriirreneerrreeeeie s s sesniesosasnsns 212
8.4 Comparison with path expressions eveererertratsarrererasatrratasrraaens revees 216
8.5 FULUI® WOTKoovnniiiniiiiniiiiiiiiiitieiei s rinaesrsaeesssaessamsconssenssnsnssosanss everes 221
Bibliography........ AT PR eessreeneseincnsnas 225

Biographic note...........cooiiiiiiiiiiiiiiniiicnnneeenrnan, eeerraraons reaeens feesriraeseriesensnanenns 228

-6 -

" Chapter 1

‘Introduction and Biok'grouixci“’
1.1 Goals of the thesis

~ This thesls is concerned wtth the problem of synchromzmg accesses by concurrently

KR AU

executmg processes on a shared data object Overall the thests has two ma]or goals One is
to deslgn a htgh -level language in whlch synchromzanon properttes can be specmed ina

nonprocedural form. The other is to devise a method for translating such specnfrcattons

into actual sourte language:code that implements: the specified properties. -

The rehabnllty of computer soﬂware has recewed a great deal of attentton in recent
years. The reasons are both economic and intellectual Rapld advances in hardware

T, B

technology have dramatlcally decreased the cost of hardware relattve to software as well as

Lo

expanded the range of complex computer apphcattons for whlch new software is requnred

,1,{5 el : : tE

As a result the cost of producmg and mamtammg soﬂware has beoome more than ever a

ma Jor concern. Since testmg and debuggmg mcorrect programs consume a Iarge share of
total software costs, methods for |mprovmg the rehabtltty of software are increasingly
important from an economic viewpoint. At the same time, the intellectual dtfftculty of

producing high quality software has become more generally appreciated. The study of how

to produce complex yet reliable software systeins represents a fertile area for research.

-7-

One productive approach in this area hasbeen the study of language support to
enhance software rehabxhty The range of current work'in t)vhe?area is quite broad, as
illustrated by [LDRS77]. A particular aspect of this approach that has received wide
attention has been the idea of abstract data types [Lis}]:-lénguage support farabstract
data types grves programmers a faclhty for rmplementmg data abstractions analogous to the

;" V

capabrhty provrded by procedures for functlonal abstractlons. Fouowmg a methodology

usmg data abstractlons has been found to be a srgmﬁcant ald in producmg rehable

software.

A number of languages have. heendeveleped. and in-many. cases. implemented, that
rnclude mechanisms supporting the concept of abstract data types (eg [Lls77]. [ShaT77],
[Ges77]). Because of a lack of facilities in these languages for creauon of muluple
concurrent processes and mterprocess commumuuon, their range of programs until recently
has been restrlcted to smgle—process computatrons However, it is obvrous that many of the
kinds of apphcauons for which the rehabrhty provrded by data abstractions are needed
such as operating systems, require such multrprocessrng apabrhties In mtroducing facllmes
for concurrency and interprocess commumcation imo these hnguages. It is necessary to do
s0 in a manner that maintains the phllosophy and methodology that such Ianguages

support.

This thesis explores a particular approach.to & key preblem.in. this-area. The issue is
the proper synchronization mechanism for a language that supports an abstract data type
mechanism. Specifically, it is assumed that objects of abstract types in the language are

shared among different processes and can be accessed concurrently. This means that some

-85-

sort of synchronization mechanism is required 1o regulate these concurrent accesses.
Synchronization may be required both:to maintain. the: internal- consistenicy of the objects
- and to implement higiver<level scheduling decisions.

The epproach taken‘ here rntrolves | spectryihg w‘sy“nchr.omz.atlon 'pro;\)erttes (’in a
hrgh -level nonprocedtxral Ianguage, snd‘;btiaimng automancally an implementatton for the
specified property. Synchromzmg concurrent accesses to data can be a complex, error-prone
task. Since the:reliability of programs that accessishared data depends upon the correctness
of the synchrenization, it is highly: desirable that:the synchmm:atimmeif be implemented
as reliably as possible. If a specification language cin be developed that is powerful enough
to express- synchronization properties of ‘interest, .and: for which implementations: can-be
synthesized automaticaily without too:much effort, then:it can be:incorporated into.a source

language that supports data abstractrons Programs in the source Ianguage can specnfy

R S IERIT

synchromzauon properues nonprocedurally ata htgh Ievel and the comptler can produce

g

the actual code usmg the synthesls algomhm Thrs would be a very attracttve altematlve to

pedts wibio ooy o

the range of synchromzatton mechamsms currently avathble some of whtch are surveyed in

il

the next section.
1.2 Synchronization mechanisms

Whenever concurrent processes share access to common resources it is necessary that
accesses by different processes be coordmated The purpou of synchromzatton code in the
broadest sense, is to bring about this coordination. One kind of coordination involves

limiting the combinations of simultaneous accesses allowed on a resource. That is, it is

-9-

© sometimes mecessary for certain accesses to exciude others from taking place at the same
time. This may be because the resource can:inhereritly support-only a limited number of
concurrent Faccesses. For instance, a ohysiczlzdwicgfsueﬁasa card reader must be devoted
to a smgle process at a time. Alternanvely, the nature of the accesses may be such that
t:ertam kmds of accesses performed concurrently wodid lead to moonsistent results. such as

the case of two slmultaneous updates toa database.

When certain accesses are prevented from occurring immediately, provision must be
made for these deferred accesses eventually to take place. This is another aspect of
coordination that must be handled by the synchronization code.- Not only must a
mechanism exist for deferring accesses. Decisions must be made as to when . deferred

accesses should occur, and these accesses must be activated in some way.

In 'workm;g on synchromzatlon problems ‘it has been found that writing
synchromzauon code is a conceptually dlfﬁcult taskk more dnfﬁcult in general than ‘wrrt‘mg
sequentlal programs. Thls drmculty arises from the non-mtdntwe‘ nature of many problems
that arise in synchronization, and the combinatorial problem‘associated with different
possible sets of concurrent accesses on a resource. Therefore, several gencrat:ons of
synchronization mechanisms have evolved, reactihg 10 the: increasing. -complexity - of
concurrent programming applications, and to the resulting need for better, more

well-structured synchronization mechanisms.

-10 -

Originally, concurrent processes wnmmﬂcatedthmugh ~common shared storage.
Access to this common: storage was lumuy%‘eon@kdrby,"bcuf',; which - were set prior to
accesses and reset afterwards. Setting a lock was accomplished: by means of an indivisible
"test and set":instruction, usually implemented in- hardware: - This: mechanism- was quite
unstructured, and certainly did net:provide: great-confidence in:its reliability. In addition,
lecking protocols inveolved:"busy waiting", sathata:pro&ss ‘prevented from performing an
access because of an already set lock was forced to perform essentially: useless computationt
while waiting for the lock to be reset. With the advent of multiprocess timesharing

systems, this became unacceptable.

An important step forward was the development of tive sesaphore:mechanism {Di68),
on which two. operations are possible.” Operation P-avcomplishes a “test-and ‘decrement”
instruction, similar to setting a lock. However, the result of an unsutcessful"test" i to block
the given process and place it on a quéue associated with the semaphore. This eliminates
the need f&r’busy waiting. Operatidn V. increments:the semaphore and dequeues a process
from the associated queue. With processes communicating via ‘semaphores and using just
these two - operations, nearly all common synchronization problems can be solved. In
addition to solving the busy waiting problem, semaphores, unlike locks, cari be required to
be fair. This means that service is'granted in such a way that a-givety process is not kept

waiting indefinitely while an-arbitrary number of other processes proceed.

-1-

A complete geﬁention of a&erhative-mecmmxm then'appeand, ill of them in some
-way variations on the semaphore contept. The propesed aliernatives were designed to
improve somewhat on the power of the semaphore mechanism. A difficulty common to
sermaphores and these alternative mechanisms:becamie appirent, however. They are at too
low: a level, comparable to goto statements in the area of control structures. While
sufficie;wtly powerful to. . solve -—s'yuchronmtion ‘problems, . they do not provide the

programmer with enough structure to make these solutions easy to construct and reliable in

operation.

Recent emphasis on “structured programming” [Dij72a] and language constructs
suitable for producing reliable software has resulted in a new genetatmn of synchronization
mechanisms. Many of these new constructs attempt to internalize weli-structured disciplines
developed for the use of semaphore-style mechanisms, in much the same way that the while
statement internalizes a structured style of writing'lnops.originally developed using goto
statements. Among the noteworthy mechanisms in this group are dndiﬁonal critical regions
(Bri72] and monitors [Hea74), both of which embody'the idea of accessing shared data only
in indivisible segments of code. Both also seek-to relate the scheduling mechanism for
' def.erred accesses directly to properties of the shared data as another step to,wa:d(«bett‘er
structure. More recent alternatives have attempted to improve further on these mechanisms.
For example, serializers [Hew77] have drawn on experience with the use of monitors to

build even more structure into the mechanism, and thereby correct certain perceived

. deficiencies in the monitor construct.

-12-

It is certainly easier to program solutions to non-trivial synchronization problems
using these well-structured mechanisms than with‘ semaphores or the like. However,
synchronization remains an area of great complexity, and thus unreliability, in any large
concurrent system such as an operating system or database management system. There is
still a large conceptual gap between one’s understanding of a synchronization problem and
the code one must write to solve it. This has motivated recent work whose goal is to allow
the expression of synchronization problems in a more natural form, and in some cases, to
obtain automatically an implementation for the specified property. Some of this work, and

its relationship with this thesis, is discussed in the next section.
1.8 Specifications and synthesis

Originally, synchronization problems were expressed simply in natural language. The
informality of such descriptions was a contributing factor to the unreliability of the
"solutions” proposed, as well as a source of controversy over just what a problem description
"really” meant. After the widespread acceptance of semaphores, many problems were
expressed via a representative program using semaphores. The circularity inherent in such
a description is obvious, since the sollutions to the synchronization problems also used code
involving semap.hores, and the distinction between “problem” and “solution” bec:;me
negligible. More importantly, the expression of a synchronization problem at the level of
actual code, while bridging the gap between specification and program, left the same gap
between people’s intuitive understanding and the specification. The “correctness” of

specifications remained problematic.

-13 -

A number of informal arguments abowt-the. correctness..of. an:algorithm or the
meaning of a .mechanism have relied on the notion.of "state” to reason indirectly aboﬁt;;he
effect of synchronization code (eg, [Hab72], {Bri?2), [OWiT5]). This—sagpmsh'vas.umd by
Hoare in censtructing. formal .proof rules. for . menitors in .«ﬂ-lm74}.~aﬂouc\!_et.,~such=-an
approach does not really . formalize . the meaning .of -synchronitation cede and
synch.r.oniza.non,.groblems themselves, but only in their rejation. to aprogr&mor system as a
whole. Issyes of medularity make it desirable to formally specify:synchronization -behavior

in isolation from the procedures being synchronized.,

Recent efforts to create structures thro;ngh which kto express ésynchronizétion problems
include [Rob75]), [Owi76] and [Gri76] [Gri?6] sontains in addition-a system for synthesizing
solutions from the specification language automatically. However, in all these cases what
can be éxpressed is not a synchronization problem it@f, but rathcr the abstract solution to
the problém. “This is an improvement over a "specif“tcation'i iﬁ the form of a céﬁc?et:e
program using semaphores, but it still does not allow the specnﬂauon of a synchromzanon
problem independent of its solution. In order to do so, it is necessary to have a
nonprocedural language for describing synchromzatwn behavmr that is independent of

notions of how to implement that behavnor

Path expressions [Cam74] are a nonprocedural language for expressing
- -synchronization problems. In addition, unpbmentmons can be derived direct'ly from path
expression specifications. Path expruﬁms represent the. most-nearly comparable work to
this thesis, .both in overall goals am-i. in basic approach. A discussion ,aﬂd. evaluation of

path expressions will be deferred until the approach of the thesis has been fully presented.

-14 -
A comparison of this approach with that of path expressions is presented in Section 8.4.

‘[Gre75] iﬁtroduces a theory and notation for describing system behavior, including
synchronization behavior. This theory involves the notion of events, over which a time
ordering relation is defined. The notation introduced in [Gre75] is very general, in keeping
with the abstract level at which events are discussed. The specification language used in

this thesis represents one approach toward refining and structuring that notation.
1.4 Overview of the thesis

The view of synchronization taken in this thesis is illustrated in Figure L1, which
illustrates the sequence of events involved in accessing a synchronized shared resource.
This view shares with a number of other recent approaches the importance of
encapsulation. The unsynchronized resource to be shared and the synchronization
mechanism for that resource are encapsulated into a 'single "synchronized resource” module.
The details of the coordination between the two are hidden from the outside world, which

can only access the resource through this higher-level module.

The distinguishing features of the approach here concern the structure imposed on
synchronized accesses of the resource. As indicated in the figure, every acce.ss involves a
certain fixed sequence of events. The process wishing to make an access first communicates
this desire to the synchronization mechanism, and this is denoted as the "request” for the
access. When the synchronization mechanism permits the initiation of the access on the
actual resource, the "enter” event occurs. The termination of the access is communicated to

the synchronization mechanism in the "exit" event.

-15 -

Figure 1.1. Accessing a synchronized resource

synchronized resource module
unsynchronized synchronization
resource mechanism
&—request
& —_—
<& enter
exit—

v

-16 -

The specification language of this thesis is designed to describe propertiés concerning
the time order of these abstract events. Chapter 2 presents this language, both its syntax
and semantics, and includes a number of examples of its use. The synthesis of an
implementation for the specified property is described in Chapters 3 through 5. Chapter 3
describes the abstract solution specification structure, in which events are implemented by
abstract notions called “gates”. The algorithm .for deriving an equivalent solution
specification from a problem specification is presented in Chapter 4. Chapter 5 explains the
implementation of a solution specification in actual code, where the abstract gates are
replaced by procedures of a monitor. Several examples of complete synthesis for well-known
synchronization problems are presepted in Chapter 6. The detection of certain types of
erroneous specifigations, those that permit deadiock and starvation, is discussed in chaptgr 7.

A summary and evaluation of the thesis is contained in Chapter 8.

This empty page was substituted for a
blank page in the original document.

{7 -

Chapter 23

The Problem Spesifioation Language

2.1 Introduction

Th.e‘_ focus of this chapter is on the language used for expressing synchronization
constraints on _accesses to an abstract data object. . .Before the. langgage itself can_be
_presented, however, it is necessary to "set. the. scene” in-terms of .exactly what kmdef data
“abjects are being \tr__eint,ed. what the nature of accesses :to these. objects is, and :thgt; kind of
synchronization of these accesses is possible. These issues are discussed. in. the first-two
sections of this chapter. Then an overview of the language is presented, including some
motivation. Thisb dVerr;ieW should make it easier to uﬁd‘erstair;a the kfo“o{ving two sections,
Whichifo;';haliy define the sy;nt)a;(’ and ’se'rin.antric's df' tﬁe language, réSpectiVei;; Th; ?éhapter
con’c‘ll"lcies’ with ‘some examples of usmg the lajmg;nge' to expresscommon syncl;fbﬁiiﬁtic;n

problems.

2.2 Data abstractions and synchrenization

The data objects with which »thi; thesis is concerned.are of the sort that are handled
in a Janguage suppaorting the notion of abstract daa types, such .as CLU([Lis77)) or
Simula([Dah72)). A data object in one of these languages is strongly.typed, which is to say
that its data type is an integral part of the object, and represents.a severe restri,c.tionfon how
the object can be used. In particylar, there is associated with the abstract data type a set of

_basic procedures, or operations, An object of the type can only be accessed through. these

-18 -

operations, or through higher-level procedures:that-themselves make use of the operations.
Furthermore, it is only these opgri{igt;s, that are allowed, to-manipulate the lower-level

representation of the abstract object.

In general, aﬁ abstract object can be either mutable or immutable. An object is
mutable if it has state, so that its behavior can change over time. l‘fﬁmﬁtablebbje‘t’ts' do not
have state, and once they are created they are fixed fof all time. Thus they are not useful

for communication between paraliel processés, and torisequently are not “of great interest

~with regafd ‘to - synchronization. The data objects treated throughout this thesis: are

generally mutable. '

An operation of a data type whose objects‘alfg mutabley;an hgve the: function of
creating an object of the type with some. (possib!y paramcteriz._gd))in‘iti.a/lt sta;g, of accessing
the object s state without mod:fymg it, or of accessing and updatmg the state Assngnment
of the object to a variable is not conslclered to be an operauon on the object but instead
constitutes a (temporary) binding of the variable to the object. See [Sch78] for a more

detailed discussion of the semantics of a language such as CLU.

Synchronization is considered here to impo'e' a constraint | on the otﬁerwi;e
_unconstrained time ordering of accesses to an individual data object. By this model, the
ordering among accesses to different -objects is completely unconstrained, except for the
. normal sequencing order within each individual - process. This means that if
synchronization is required among actesses to several objects, then these objects must be

coflected together into a single composite object, with the synchronization applying to this

-19 -

new higher-level object. It is important to keep in mind that it is the accesses on an object
itself, not on any particular variable that happens to be bound to that object, that are of
interest. Concurrent processes that share access to a dat:a object presumably employ
different variables for the purpose of referring to it, but it is over the total set of all these

accesses that synchronization is required.

This thesis will not be concefned at all with the exact mechanism by which there come
to be concurrent processes, or with how such processes gain joint access to a shared data
object. It is not important whether‘b the processes represent concurrent‘ users of a
time-sha rin‘g system, or are created from one process by some sort of fork-join mechanism in
the language. Nor does it matter if the shared object resides in some form of central library
to which all processes have access, or if a reference to the object must be explicitly passed to
each one. The issue of synchronizing accesses fo an object by concurrent processes is
independent of such concerns, and the work here applies regardiess of how th?se issues are
handled. The important point is that there are processes executing in parallel that
concﬁrrently access the shared object. Consequently constraints must be put on the time

ordering of accesses to the data object, and this is the purpose of the synchronization.

A basic assumption in the approach of the thesis is that the units upon which
synchronization should be performed are the basic operations of the abstract data type. It is
felt that the type's operations are the right level at which to impose synchronization
constraints. 6nly these ‘operations are allowed to access and manipulate the more concrete
data representation of the abstract object, and so it is here that decisions by the implementer

of the abstraction as to what pattern of accesses is necessary to maintain internal consistency

- 920 -

make sense. The centralization of these .pperations in.a type module (such as a CLU
cluster) permits a single expression of constraints to cover-all -accesses of the vbject. Since
- the language ensures that all* accesses to the object are made through the basic type
operations, the discipline required for synchronization can be enforced wniversally, which
would not be true necessarily if higher-level procedures were chosen for synchronizing. On
the other hand, to the user of an abstracnon these operatlons are basic and the details of
their implementation are unknown (and in fact can be ;hanged wuhout hlslher knowledge)
Synchronization constraiﬁts at any lower levelr ‘ire: kllnvolvmg code internal to these
operations, therefore would not be meanmgful to the user. It is exactly at the level of the
basic operations of a data abstractxon that the two vxewpomts of the implementer and of the

user can and should be resolved in a smooth interface. This is true for the synchronization

component of the interface just as much as for the data component.

A very strict divisioh is assumed -between the synchronization and data accessing
functions involved in accessing a shared data object. This is based on the philosophy that
the task of synchronization belongs in a separate language comtruct, whose soie function is
synchronization. The operations of the abstract ‘data type, on the other hand, should be
completely unconcerned with _this synchronization, and written assuming that
synchronization exists that is sufficient to prevent anf conflicts between concurrent
' operation activations. Synchromzanon is taken to be umform across all objects of the same
type, reflecting the belief that a type consists not only of data a;cessing operations but the
synchronization on them as well. That is, all objects of a given type Vare synchronized in the

same way. This means that the same (sequential) implementation of a data type and its

-9 -

operations can be used with different synchronization constraints, perhaps embodying
alternative scheduling policies or maintaining different levels of consistency, to create

different data types.

2.3 The guardian model of synchronization

The model of synchronization that I use assumes there to be an abstract protection
mechanism that conceptually surrounds each abstract data object on which accesses must be
synchronized. (Recall the picture given in Figure .l.l.) This mechanism ensures that the
encapsulated synchronization mechanism, which I call the guardian of the data abstraction,
monitors all communication with the ovbject, in a similar manner to the "secretary” concept
proposed in [Dij72b]. Through this monitoring, the guardian is able to maintain the
synchronization state of the resource, an abstract representation of the history of accesses to
the object. (This is to be contrasted with the "data state” of the abstract object, which ;s the
state explicitly manipulated by the operations accessing the object.) The guar;lian uses the
synchronization state information to temporarily block any process attempting an access that
the guardian deems to be unsafe given its current state. The blocked process is allowed to
proceed when the synchronization state has changed in such a way that the accéss can safely

occur.

Accessing an abstract data object consists of invoking a procedure implementing one
of the operations of the type to which the object belongs. A given procedure activation
generates three distinct events that the guardian includes in the synchronization history of

the abstract object. The first event occurs when the guardian first receives notice of the

-”-

invocation of the given pracedure by the yser process. .I term this the request event for the
given procedure activation,:.A request event can .be. likened to.the act of “taking a. number”
in a crowded bakery, and represents the very first externally visible occurrence: associated
with the particular procedure activation.

The next event occurs when the process actually gams access to the object by

e

begmmng execution of the mvoked procedure I call thts the enter event for the activation.

U e

It is thrs event that often must be delayed by the guardnn untrl it can safely occur. Once it
has occurred the process may be assumed to be executmg the body of the procedure No
L oo

assumptrons can be made asto the relatlve execution speeds of dtﬁerent actlvatlons

- When the process has compleied execution of the procedure; it indicates this fact ta the
' guardian and exits from the reseurce. This is the-exit event, the last-event involved in the
activation. F requently it is the exit event: for one activation that triggers a delayed enter

event for some other activation. SO

This model of synchronization, of course. was»not Zconceived in a2 vacuum. It is the
resuit of a careful study of the kinds of synchronizan:on propertres that appear in the
hterature which presumably reflect the nature of real-woﬂd concerns. Procedure entry and
exit are natural concepts to use, since the basis of many synchronization problems is
spectfying which combinations of procedure -activatipns -can-_be-:allowed to execute
concurrently. Clearly the solution af such prebleros requires that a record be kept of which
procedure activations are currently executing, that is.to Y, which-activations have entered

but not exited. . Another large class ofsymhronmwmpezm ‘constituting what are

-93-

usually regarded as "scheduling” preperties, involve decisions as:to-which of a collection of
processes each waiting to execute some tprooedufe is allowed to proceed first. In order to
. deal with such properties, it is important to keep track of what activations have been
requested, hence the need for request events. -My investigation of synchronization problems
has failed to discover any other distinguished events associated- with:operation activations
that are as fundamental as these three. Since this model appears adequate for capturmg -
synchronlzotlon properties * of .mterest thece seems to be no need for usmg a more
complicated one. The exemples at toe end‘of ’thls chapter, \;vrltten in the problecn

specnfncatxon language that is based on the guardian model tesnfy to its generahty

The guardian model assumés that the set of all-events concerning a particular data
object is totally ordered. That is to say, while many: procedure activations can be executing
concurrently, only one request, enter, or exit event associated with a given object can occur
at a time. Thns total ordermg property is comparable to the fact that the arnval ordering”
for any partlcular actor in [Hew73] is total, and rehes ultxmatelj on soroe sort of "arbiter”

mechanism for each data object.
2.4 Overview of the language

The purpose of the problem specification is to express, in a clear and concise manner,
an imposed constraint on che temporal order of accesses to abstract data objects ’of a
particular type. To facilitate this goal, the language for expressing the specification has
been designed to be as general as possible, subject to the requirement that it be compatible

with the guardian synchronization model. That is, the guardian model paradigm of

-94 -

- request - enter - procedure body execution - exit:forms the:basis of the language, but
beyond this, the compiete. freedom: of first-order -predicate calculus ‘with equality and
ordering among integers is available. - Because of ‘the: power .of ‘predicate. calculus, any
~ meaningful synchronization constraint .that" ‘operates: on the-level of the time ordering of

individual events can be ex;pmmd .

Thns powér in fact, permlts speclﬁt:eatxonﬂs»ttt be written ttut must be jttttged errorieous.
Such an invalid speaflcauon may, for mstan;e, phd a ‘constratnt on the ctrctxmstances
. under which a particular request event can occur, whtch would be tncompattble with the
guardian model. For certain kinds of erroneous spec;ttﬁttt;rt;, the mvaltdtt’yvcan be
discovered in attempting to apply the synthesis aigorithm presented in Chapter 4 The
detection of other undesirable properties, namely deadlock:and starvation, can take place

after the synthesis is performed, and this is the subject of Chaptes 7.-

A specification is written for an abstract data type. and is mtended to apply

itr R A

independently to every object of that type The specnflcatlon expresses a constraint on the
ordering of accesses to the object, and represents the only such constraint. This means that
any ordering of events that is consistent with.the specification is valid, and in particular
that procedure activations are allowed to execute in paraliel unk§ constrained otherwisg by

the specification.

-95 -

The distinctive elements of the specification language concern events and their
ordering in time. Time ordering between events is embodied in the "temporalily precedes”
relation, which is denoted by the infix symbol * = ", and which is adapted from [Gre75].
This relation is a strict partial order, transitive and anti-symmetric. The parallelism in a
computation prevents the ordering from being total, but the set of events associated with
accesses of a particular abstract data object is assumed to be totally ordered, as explained

previously.

Each acfivation of a basic operation on a given abstract data object is identified by
the name of the procedure being called and the activation number. Procedure activations
are numbered uniquely for each data object according to the (total) ordering of the request
events associated with the activations. The convention used here is that activation numbers
are written as subscripts to the procedure name. The sixth activation of procedure p (i.e.

the activation associated with the sixth request for p) therefore is denoted "pg".

A particular event associated with an access is denoted by adjoining to the procedure
activation formula the event type (request, enter, or exit) as a superscript. For example, the
exit event associated with procedure activation pg is denoted "pe"“." Every event belongs

to an event class, eg. the p*™®" event class consists of the events p;°™’, po*™*", etc.

Activation numbers appearing in a specification can be any integer expressions, with
important special cases being integer constants and variables. Constant activation numbers
can be used to refer to a specific event of a particular class, such as the first one in a

history. Variable activation numbers are more generally useful, though, since they allow

-9 -

reference to a general member of ;m event class. In the absence of explicit quantification,
activation number variables are assumed’ to be universally' quantified. This s a useful
convention, permitting a specification that refers to event pi"‘"’.‘ for exampie, 0 represent a
constra'int on the enter event of any activation of procedure p. The use of expressions as

activation numbers allows a specification to deal with related activations, such as p; and

Pi.f-

It is possible, but not necessary, to include the arguments to procedure activ;‘nions. If
not included, they are assumed to be unimportant, and the specification applies to any
-activation of the particular procedure. Including the arguments-to an activation can be
useful for constraining these arguments in-some way; and thereby limiting the applicability
~ of the specification to those activations whouirgdmenu‘meet the ednstr;aint. The identifier
of the process making the procedure activation can-be used ‘&% éne of the arguments of the
procedure, so that if the ﬁentity of the particular process is important, it can be included in

. this way.

The actual abstract data object on which the synchronization is being performed is not
included as an explicit argument to any of the-procedures operating on it. - In this relspect.
this kind of specification resembles the “state machine™ specifications used By Parnas for
- specifying the behavior of the operations of an abstract data type (see [Par72), eg.). It can
be assumed that operations are called by a mechanism such as the "dot” notation of Simula
(IDah72)), by which operation p on abstract object X Qith argun;ents a ana biis called via
the statement "x.p(a,b)". A specification referring to operatioﬁ p &\ight list arguments a and

b explicitly, but no reference would be made to object x. The specification would implicitly

-97-
apply independently to each object x of the given type.

As an exémple of a specification expressed in this language, consider the following

expression, which also appears as example | in Section 2.7:
(pienhr ‘=> qjentw). o) (piexit = qjenhr)

This specification refers to two procedure activations, p; (the i-th activation of procedure p)
and 9 (the j-th activation of procedure q). Variables i and j appear free in ti1e expression
and therefore are universally quantified, and since no constraints are placed on the
arguments to the procedure activations, the specification in fact applies to any activations of
procedures p and q.. T he specification states that if the enter event for] is preceded by the
enter event for p;, then it is also preceded by the exit event for the same activation of p.
That is, a currently executing activation of procedure p (on a given objeét) excludes a
subsequent activation of procedur'e q (on the same object) until the activation of p is
combleted. Notice, though, that concurrent activations of p and q are allowed, as long as

the activation of q begins (i.e. enters) first.
2.5 Syntax of the language

This section presents the syntactic rules for well-formed specifications. The notions
identifier and. arithmetic expression are assumed to be basic. An arithmetic expression is a
series of one or more identifiers and/or integer constants separated by the usual arithmetic
operations. The other notions are defined in terms of these two and each other. In each

rule the concept being defined appears in italics:
(1) A procedure name is an identifier.

(2) A term is an arithmetic expression.

-928 -

(3) An activation number is a term.
(4) An activation name is a procedure name, subscripted with an activation
Anumber.
(8) An activation expression is either an. agtwatm ‘name, ar.an acuvauon name
followed by a left pa renthesis, folbwed by one or more terms separated by
commas, followed by a right parenthesns o
(6) An event type is one of the eloments of the set: {request ; énter., exit}.
(7) An event expression is an activation expression superscripted with an tjv?nt
type. , o L :
(8) An ordering clause is an event expression followed by the symbol =
followed by another event expression, - '
(9) An arithmetic relation is one of the elements of-the set .
. Relei{=,=® , <,>,£,2

(10) An argument constraint is a term followed by in arithmic:fehtion followed
by another term. ’
(1) A clause is either an ordering clause or an arguinent constraint.
(12) A specification is defined by: |

(a) A clause is a specification.

(b) If S is a specification, then (— S) is a specification.

(c) If S| and Sy are specifications and op is an element of the set

| Op=in,v, 2,8, -
then (S| op So) is a specification.
(d) If S is a specification and i is-an identifier, then V i (S) and 3 i (S) are

specifications.

The "argument constraints” defined in rule (10) may refer to the activation pumbers
and/or to the arguments to the activations (which are the “terms” in rule (5)). They may not
refer to the actual abstract data object in quesnon however since it does not appear as an

explicit argument to any of the procedures. In fact a general rule is that the arguments of

-929 -

procedure activations to which predicates may refer are limited to immutable objects, such
as integers. The interpretation of a relation on a mutable object would depend upon the
point in time at which the relafion is taken to apply, and might itself require
synchronization on the given object. Rather than becoming involved in questions such as
these, | choose to limit the predicates on activation arguments to immutable objects. This

restriction does not appear to be severe.
2.6 Semantics of the language

The definition of the language whose syntax has been formally defined in the
previoqs section can now be coml;leted by means of a formal definition of its semantics.
The purpose of the language is to express synchronization properties, that is, to constrain
the order of accesses on an abstract data object. The semantics of the Iangu‘a‘ge therefore
can be defined Iby specifying the collection of access histories that are valid with respect to
any given specification in the language. This is accomplished by defining a predicate
Valid(h, s), which decides for any history h and specification s whether h is a valid history

with respect to the constraint expressed in s. First, however, it is necessary to define the

concept of a history, and to restrict the concept to histories that are physically possible.

The first step in this process is to define the notion of "event”. An event is a 5-tuple

<p, t, X, n, a>, such that:
(1) p € P, the set of basic operations of all types.
(2) t € ET, the set of event types, where ET = {request, enter, exit}.
(™} x € Ob, the set of all data objects in the system, and p is a basic operation for

the type of x. X is the data object on which the access is taking place.

-30 -

-{4) n € N*, the set of positive integers. n represents the activation number.
(5) a is a vector [ay, .., a;,] where.gach clement a, € Ob.- a is the vector of

arguments top. 7 I o . i
| The typés of the objects a;, » 8, Must rrnatchvthe types of the parameters to
A partially ordered set of evvrents forms a computation history, provided that the partial
order fulfills the condition that each obj«t history is totally ordered. An object Aistory for
data objec't z is a subset of a computation history, consisting of all events <p. t, X, n, a> in
' the‘ computation history spch that x = z. AI! events in an object history are on the same
data object, so that the third component x of each event tuple can be eliminated, and each
element of an object history is simply a 4-tuple <p, t, ﬁ, a>. Throughaut the rest of this -
section, we will be concerned exclusively with object histories, though the' simple term

- “history” will be used.

Since the events in a history are totaily ordered, the history may be considered to be a_
sequence of events. A sequence over a domain D can be defined as either the empty
sequence [], or else the result of adding an elément d € D to the end of a sequence s, which

is given by the expression "add(s, d)".

Not all histories are actually possible. In order to define what class of histories are
possible, some further definitions are required. An event class for a data type dt is a pair
<p. t>, where p e Pand t € ET, and p ns a basi}c&‘o’p.c»ratkv:n qti‘rwdata ~typ¢; dt. The set of
occurrences of an event class <p, t> in a history b is.a.set. of pairs of the form <n, a>, where

n is an activation number and a is a vector of argu‘ment's, such that an event of the form

-3 -

<p. t. n, a> occurs in history h. Formally, this is given by Occurrences(h, <p, t>), where:
Occurrences([], <p, t>) = {}
Occurrences(add(h, <py. t), 0, @>), <p, t>) =
if (p = p; A t = t)) then Occurrences(h, <p, t>) U {<n, a>}
else Occurrences(h, <p, t>)
With the aid of these definitions, we can now define when an history is possible. The
predicate Possible requires a request event to precede the corresponding enter event, which
in turn must precede the corresponding exit event. Also the ordering of request events for

a given procedure must determine the numbering of invocations.

Possible({]) = TRUE
Possible(add(h, <p, t, n, a>)) =
Possible(h) A
((t = request A Occurrences(h, «p, request>) = {<i, a>|1<ic< n}) v
(t=enter A <n,a>e Occurrencesth, <p, request>)) Vv
(t = exit A <n, a> € Occurrences(h, <p, enter>)))

A few more definitions are required before the validity of a possible history with
respect to a specification s can be defined. An event expression is a 4-tuple <p, t, exp, v>,
where p € P, t € ET, exp is an arithmetic expression, and v is a vector of arithmetic
expressions, possibly empty. (The concept of arithmetic expression can be defined formmally
in the obvious manner.) Let the set of arithmetic relations Rel = {=, #, <, >, <, 2} and the set

of logical binary operators Op = {A, Vv, D, #}. Then the set of event expressions in a

specification s is given by Evexp(s), which is defined in the obvious manner:

Evexple; =2 e9) = {e),e0}
Evexp(expj rel expg) = { }, for rel € Rel
Evexp(—~s) = Evexp(s)

Evexpls; op sp) = Evexp(sl) U Evexp(sa), for op € Op
Evexp(3x (s)) = Evexp(s)
Evexp(V x (s)) = Evexp(s)

An mterpremuon is a mappmg f from expresslons to data objects that preserves the

meamng of all constants and operauons That is:

()] f maps every constant express:on to the correspondmg oonstant object
eg. f(I) = 1. A - ’ o)
(2) f is consistent with every operation,

eg. flexp; + expo) = f(exp)) + fexpy). -
(3) f maps a vector of expressions intb-the corresponding vector of objects,

eg. fl<expy, .- .e*pm>3 cﬂcxpf)ma f(exp).

An event e and an event expressxon ee match under an mterpremlon f if e and ee are
of the same event class, and f maps the acuvatlon number express:on and parameter vector
: expressuon (unless the latter is empty) of ee to the corresponding eomponents of e. Formally,
Match(e ee, f) is defmed as:

Matcﬁ(<pl. t, N, a>, <po, t2‘. exp. v>, f) -
(pp=pp) A @ =t9) A (flexp) =n) A (v =[] v fv)=a).

The validity of a history with respeActAto a speaflcatnon s can now be defined by a
predmate Valid. The deﬂmnon of Valid recurswely determines when a htstory is vahd
with respect to a specification. For a hlstory to be vahd the previous hlstory conslstmg of

all but the last event must first be valid. Furthermore the last event in the history must

-33-

satisfy the specification for all interpretations under which the event matches some event

expression in the specification.

Whether or not an event added onto a valid history satisfies a specification under an
interpretation is defined by another predicate Sat. The definition of Sat for a complicated
specification is basically just a matter of breaking down the structure of the specification, by
removing each logical operator and applying it t§ the recursive applications of the
definition, until one reaches the level of a simple clause. Satisfaction of an argument
constraint is determined solely by how the components of the clause are embodied by the
given interpretation, not by the event in ;;uestion. Whether an event satisfies an ordering
clause depends upon whether the event matches one of the event expréssions in the clause
<under the interpretation. If the event matches the first event expression under the given
interpretation, then it is necessary that no event matching the second event expression
occurs in the previous history. If the event matches the second event expression, though,

then some event matching the first event expression must occur in the history.

Formally, if h is a possible history and s is a specification, then h is valid with respect
to s if and only if Valid(h, s), where:

Valid({[], s) = TRUE
Valid(add(h, e), s) = Valid(h, s) A
' V (ee, f) (ee € Evexp(s) A f is an interpretation
N Matchle, ee, f) D Sat(h, e, s,)

The predicate Sat(h, e, s, f) determines whether event e added to history h satisfies
specification s under interpretation f. It is defined by the following equations, giving all

possible cases for specification s:

-3 -

- Sath, ¢, (<py, b, eXpy, VP> =D oy, o, €XPs, Va3l 1) =
(Match(e, <p. t, expp v,) D ... :
vo =[] A <flexpo), vo)> ¢ Occurrences(h, <pg, to>)) V
(vg =[] AV a(diexpg).a> ¢ Occurrences(h, <py; t5>))))
N (Match(e <p2, to, expz. v2> f) :> ,
(v = 1A <f(expl) ﬂv|)> € Occurrences(h, <p2, t2>)) v
(vy={ln3 a(éﬂexp,). 2> € Oclirrenicesth, <y 4>
Sat(h, e, expy rel expo, f) = (Kexp,) rel. ;‘tj(e&pa»..‘{abrd €Rel S
Sat(h, e, s, f) = - Sat(h e, s, f) '
Sat(h, e,slopsz.f) - Sat(h e, 5, f) op Sat(h e.sz.f), forop eOp
Sat(h, e, 31 (s),) = Im Satlh, e, slmfi), 1) R
Sat(h, e, Vi (s},) = V.m Sach, e.slmiil)
The notation s[m/i] in the last two equations represents the expression resulting from

substituting m for all free occurrences of iins.
2.7 Examples

This section presents a series of ex;mplefng the qsepf_; the problem specification
language. These examples have been chesen with two criteria in mind. First, together they
iltustrate the range of features that the language offers. Second.they specify realistic and
representative properties, covering a significant portion of the classic synchronizatioh

" problems that appear in the literature.

Example I: Exclusion
(Pj?M” =3 qjonlor) S (Ploxﬂ=q;MQr))
This specification has been discussed previously in Sectnon 24. It states that an activation

of procedure p excludes a subsequent activation of procedure q until the activation of p is

completed. -

Example 2: Mutual exclusion
ity . o0 \ it te
(pi.ll = qj.ﬂ O') | v (rqj.ll = Pi.ﬂ ') | | |
This specification is similar to example I, except that it is symmetric between procedures p
and q. That is, an activation of either p or q excludes any-cobicurrerit-activation ofthe

other.

Exawmple 3 Readers-w;iters property
| ((writei'""f = writej'“"'): > (writei"it = ua‘lfitej';‘"’)) /\
((write,*" => read,*™*") v (feadk"" => write,*"'*"))

. The so-called readers-writers property concerns two operations, "fead” and "write”. It states
that activations of "read” exclude thiose of "write™’ and. that an activation of "write” excludes
all other activations. of -either opefétion. This - has been re-shaped ‘into- an instance of
example 1 (an activation of "write” excludes all other activations of "write”), and an instance
of example 2 (activations of “read” and "write” mutually exctude one another). By
combining this specification with an instance of example 4, giving one qf the operations
priority over the other, or of examplerb, requiring an equal-ériorit;y first-come-first-served
discipline, one can obtain any of' the classic versioﬁs of the readers-writers problem (as

found, for example, in (Gre75)).

Example 4: Priority
(piwquost = qj-ntov) o) (Pionlu ,:,,anggr)

This specification gives priority to activations of procedure p over those of procedure q. It

-%-

does this by requiring tna_t so long as the activation of q has not yet entered, theh any
_ activation of p that has been requested must enter first, regan'.ﬂess of whether the request

event for p came after the request event for the acttvatton of q This is an example of a

scheduling property makmg use of a request event

Example 5: FCFS scheduling S AT

(B =5 g™ = (p*™*" = q™)
This specification represents an alternative to giving either of a palr of operatlons prlonty
over the other. lnstead it requlres a strict frrst-comrﬂrst-served d:scnphne between them. by

E

statmg that whichever activatnon is requested fu'st is the one to emef ﬁrst.

Example 6: LCFS scheduling . .

(pyrervest = p:f'W') A (pyreemst = ™). > (p™ = p™¥)
Here another alternative scheduling policy, though probably a:less likely one, is specified.
This Tlast-come-first-served™ property requires that of all the requested and pending

activations of a given operation p,.the one most recently requested:is allowed to enter.

Example 7 Operatmn pamng

' (a onter bJ'""') o (c enter = dj"'"')
This specnﬁcauon requnres that whichever order occurs between the entry of an actltratnon of
"a” and one of "b", the same order must hold for the correspondlng actnvetlms of “c” and
"d", respectively. Illustrated is the use of the same activation number fer activations of

different procedures, i for procedures "a" and °c”, and § for progedures "b” and "d”. The

. specification could be used for a data type in which operations 2 and b conflict, in the sense

-37-

of updvating the same part of the abject’s state;as do operations ¢ and d. If operations a

then the constraint spécified here might be necessary to prevent an inconsistent update.

For example, in [Esw76], an example is given for which, the operauom have .the
following meanings:
a: X := x+10;
b: X = x22;
cy = y+I0;
Codiy =y,
If the predicate (x = y) is the criterion for consistency-of ‘the data object, then this would be

part of the specification required. (Other constraints.also.would be necessary.)

Exampie 8: Producer-consumer (singlrerl':(t‘uffer)

(deﬁi‘i" N remi"";';) A ‘(ire‘mi““ = dePi;i'm.')
The "producer-consumer” problem is that producers and consumers must alternate in
depositing and removing emssaggs,,.resp‘ectiveiy,e'i{\ a shared buffer. This means that each

deposit, represented here by an activation of procedure <dep”, must 'precede the

. cotresponding removal, or activation of procedure "rem”. On.the other hand,.the removal

must take place before the next deposit can occur. This. specification again illustrates the
use of the same activation number. for a,c_tiva;iongn{;wogi_j_ffegen; procedures, as well as the
use of an expression ("i+1") as an activation number. Notice that this specification could be
rewritten so as to make the relationships between activfz;t}t)nkl;umb;ers more explic.it t;y

means of predicates on the activation numbers:

-38'.

=) D> (ep™ = rem *™)’ A*{mj‘“‘# dep,i"™™*"
“This specification is exactlj equivalent to the original; it makés'no différence whether such

.
[SSEINE 1

relationships are represented explicitly or imphicitly. ~ = 7

Exaniple 9: Bounded buffer R

(depi"‘“ = remi'“"') A (remi““ = depi,N'""') N

| (dep,” ™ = dep; ") A (remi"" => rem; ,;""*"
This example is a generalization of the pteﬁous one, in that the activation hu‘mbq of the
dep®™*" event has been changed from isl to i+N, for some integer N.~ The specification is
for the same problem, except that the size of the buffer is now N. This means that up to N
messages can be deposited in the buffer before fiffing it, so thit up to N successive “dep”
operations can be aflowed before”crie has to wait for a “remi™ operation. The last two
clauses state that the individual “dep” activations must be mutually fquQsjyg and execute in

first-come-first-served order, as must the individual "rem” activations.

Ex?uiple 10: Intervening activation

(™ = pj-um) > @k (p™=> g™ A g™ =5 p o) .
This specificati;::n represents a weaker property that is implied by the producer-consumer
constraint of example 8. It requires that between any two ctivations of procedure "p" there
must be an activation of procedure °q". This shows the use of an existential quantifier in a

specification to require a particular kind of event to-occur at a given point-in the history.

Example 11: Threshold of requests

Viik £i)n(i<k+«N) D (Piw =,(p£,,.,»

-19-

This specification places a threshold of N request events for activations of procedure “p”
before the first one can execute. Since this applies to any value of k, the result is that
whenever an activation of proceddre "p” is currently executing, there must be at least N

processes that are waiting on requests to execute "p”.

Example 12: E:fclusion on a restricted class of accesses

(Pi(a)ﬂ“" = qj(a)onhv)) (pi(a>cxiQ = qj(a)enhr)
This specification is identical to example |, except that a parameter has been given to each
of the two procedure activations. By providing the same identifier as the argument to both
activations, this specification conveys the information that the arguments to the two
procedure activations are equal. Therefore the exclusion constraint expressed by this

specification is restricted to activations with equal parameters.

Example 13: Predicate locks

Ca,b) A (pjfa)*me’ =>.qj(b)"“") > (pj@™" = qj(b)'""')
This specification again represents a restriction of the exclusion constraint of example 1.
Here, though, the restriction is represented by a general predicates C on the parameters to
activations p, and 9j: This suggests how a simple version of the concept of "predicate I’ocks"
might Be specified. A specification of this form can be used to state the syﬁchronization

constraint, as long as the predicate C for which exclusion is required is known ahead of

time.

--40.-

For example, suppose that the abstract data a,bj;eg.m;jrhi;h:pm,cadmes fp”.and:"q"
~operate is-a hierarchically organized datmbase. T he database comsists of a collection of files,
-each of which ;in turn. consists of a collection of: récerds.’ mw@m:migm express the

relation that records a and b are elements of the same file. T herefore, procedure “p" would

exclude procedure "q" only when they were operating on records in the same file.

Lot pi 0 idREedifE

The general notion_of “predicate. lacks™ was: iniroduced: in [Esw76)l The more
compljcated versions of ,thc,.lconcépt - discussed. .there wounld require more complex

specifications.

'Example 14: Disk h.ead scheduliﬁg
‘ «a;&ﬁh}'i___.,, ay'""') - (;iixn;,ay.m;)) A
((a (X2 = o, (I =5 2, (x2P™) A
(aj(x3)""”"' = ay (x)"™ = aj(xB)”'");A :
(A (%0 =5 2 (x1)*™) -A-
~ 3n) (2, (x0)*™* => 2 " = 3, (x)™) A
(X0 < Xl <x2 A(x2<X3.V x3<x]) V
(x0>x1>x2 A(x2>x3 v x3>x1))
D {a(x2)™" = a(x3)™™*))
The Iinal,exaﬁxple is the "disk head scheduler” problem; which appears in.[Hoa74], among
other places. The problem is to schedule disk accesses so as to minimize average waiting
time. The way this is done is to have the disk head sweep in one direction, accessing each
tréck it encounters for which an access has been requested, until no more requested tracks

~ remain in the direction in which it is sweeping. The head then reverses direction and

- 41 -

sweeps back, again accessing requested tracks as it encounters them. The essential idea is
that at any given point, the next track to be accessed is the one closest to the currently

accessed track in the direction currently being swept.

The specification for this problem concerns four activations of an access procedure "a"
on a disk, with the parameter (x0, xl, x2, or x3) representing the number of the track being
accessed. ‘The constraint expressed is that of the two activations (a; and aj) x;equested
during the time that another activation (ak) is executing, the activation allowed to execute
first is the one accessing the track nearest to the track currently being accessed (track xI) in
the direction currently being swept. The direction is indicated by the inequality between xO0,
the track that most recently accessed, and x1. Track x2 is accessed before track x3 either
because it is closer to track x! (either x! < x2 < x3 or xl > x2 > x3), or else becaus_e it is in the

right direction and x3 is not (x3 < xI < x2 or x3 > xI > x2).

This empty page was substituted for a
blank page in the original document.

-42-

 Chapter 8

The Solution Specxfication |

3.1 Introduétion

There is a vast conceptual distance separati‘né, ~oh the one hand, a problem
specification -written .in' the language desctibed in Chiipter 2, ‘and on the other, the
synchronization code that-impilements the specification.’ This is:because the specification is
Ca ﬁomprocedural, -requirements-oriented - expression - of: what should happen with no
indication of the means by which this behavior shouid be realized: ' Determination of the
procedural mechanism, that is how to accomplish the desired Fon;traint on the time order of
accesses, requires a fundﬁamental‘ traAnbskft;r‘rﬁation m conce;ts.' Once this defermination has
been made, there are still a number of details that need to'be worked out, but the remaining
work is basically that of ‘the back: end of “a -compiler, translating from an intermediate
language into ‘actual code {though the target code in. this case is still-in a high-level

language, not machine language).

I have chosen to split the deri\}ation process into two stages. The first stage is the
transformation from procedural to nonprocedural form. I:t can ‘be described Qithout
reference to the exact details éf particular sc»ur:cej blanguage c@strugu. The second stage
construcﬁ a-n actual rimplemcntation. The‘ int?rnQd;;té forh inté which the problem
spéciﬁcation is transformed byv thé_first stage is ca“ed. the’ ;solu;ion .?peciﬁcation. This
chapter presents an informal descripﬁén of solﬁtion specifitgations, followed by a formal

definition of their semantics. The method for transforming a problem specification into an

- 43 -

equivalent solution specification is the;-wh&,%%mcr 4 The translation of the solution
specification into synchron}i’zat_lopvcoge is tre;tedm Chapéer 5

Section 3.2 presents the "basic” structure of the solution specification, which is only a
first approximation to the actual structure. The basic structure deset';xbieclsxls qulte snmple
and elegant, and-in. fact the solutions s0.Mmany-synchronisstion-problems can be expressed
‘within it. Uoforwnotcly.j,thisz;sgmple stsuctm'~:la€ks sufficient expressive power for certain
. important classes of problems. :For this:reasen, it isinecessary:fo augtment the basic: structure
with-additional features, which are slescsibed. in: Sestion: 3.3; The formal semantic definition

of the solution specification appears.in Section 34... cho
3.2 The basic solution epeoifioofioo structure

The structure of the solution specification, as of the: problem specification, is. dictated
to some extent by the guardian: synchronization. madel.. That is, the: solution specification
must centain features corresponding t0-those.events associated with pracedure activations
that the guardian model distinguishes. Beyond this, there is some cheice as to haw rigid-a
structure to impose on the solution specification. Since the soluuon spec:flcatlon is an
intermediate form between the problem specsﬁcanon arld the generated oode the degree of
flexnbxhty represents to some extent where it lses on the spectrum between these two
structures. A very general solunon specnflcotloo sthrllctore‘correspmdm; to tvhe generahty of
the problem specn’u:atlon language would repfesent a decmon that the soluuon specmcanon
be relatively close to the problem specnflauon The pnce pmd for thns generallty would lie

s)‘,."-' EEAT S

in the dlmculty of translatmg such a solutm specnﬁcanon snto target code

- 44 -

The alternative choice made here is for the solution specification to have a rather
rigid structure. This means that, as indicated in the introduction to this chapter, the
fundamental transformation takes place in deriving the solution specification from the

problem specification.

‘The basic structure of the solution specification is for each guardian to consist of a
collection of gates through which processes accessing the abstract data object must pass.
The use of the term “gate” is taken from [Rob75), though the concept as used in this thesis
differs somewhat from the one introduced there. Specifically, the guardian for an object of
abstract data type t contains a gate for each event class of t. This means that for each
operation p of the abstraction, there are gates p"“"'s', p°""', and p"“. Each event
associated with an object corresponds to the passage through a gate in its guardian. For a
process to access the data object by activating procedure p, the process first must pass

through the p"°® gate, then through the p®™®' gate. At this point it executes the body of

procedure p, after which it must pass through the p*" gate.

Each passage through a gate by a process produces a (concepfually instantaneous)
change in the state of the guardian. Because of the total ordering on the events associated
with an object, the gaté passages for a particular guardian are totally ordered. The
ordering of processes passing through any single gate is first-come-first-served. This means
that unless a specification explicitly requires a particular scheduling policy for activations of
a given operation, the default policy assumed is first-come-first-served. The order of sgrvice
among different gates of a guardian is assumed to be fair, in the sense that processes at

different gates have equal chances of being chosen for service. That is, a requirement in

-45 -

the implementation is that-a process canot-starve because: of fack of attention- from the

_-schreduling mechanism.

Gates for request and exit event classes a?e uﬁeenditionaL s0 tﬁat processes cannot be
blocked in passing through these gates. A gate for an enter event class IS eer;dieionai.
however. - Associated -with each enter gate there is:some condition on the giardian state.
This condition must be satisfied in order for the process: making the activation to pass
through the gate. If a process attempts to pass throagh an enter-gate whose condition is
-not satisfied, then the process is blocked, and ‘must wait :until the condition becomes true

before proceeding through the gate.

Schematically, then, an activation of operation' p on a data object is lmplemented by
the abstract program below Since gate passages represent events, whlch are totally ordered,
the abstract code representing each gate can be consndered an mdivnsnble operation.

pr*e. update guardlan state

pe™®": wait until entry condition is sa"iisﬁed.

then update guardian state

execute body of operation p

exit

P~ ": update guardian state

It would appear that to represent a given solution specification, it would be necessary to
specify for each operation p the specific entry condition on gate p*™, and the particular
updates to the guardian state accomplished in each of the thiree gates. In fact, the form

chosen for the synchronization state of a data object defines a friori the nature of the

updates within all gates.

- 46 -

The history of a data object, and of the guardian for the object, consists of the totally
ordered sequence of events associated with all accesses of the object in the entire
computation. The state of the object represents some abstraction from the history that is
sufficient for predicting its future behavior. An alternative way of saying this is the
definition in [Gre75] that a state is an abbreviation for a class of histories. The
synchronization state of the object is the synchronization component of the state, which is

sufficient for the prediction of its future synchronization behavior.

The decision made here is to express the synchronization state of an object as the
number of events that have occurred at each gate of its guardian. The notation used is
that count(g) denotes the number of events at gate g. So count(p'¥**!) is the number of
activations of procedure p that have been requested, whether or not those requests have
been granted; count(p”‘"’) is the nuhber of activations of p that have entered, whether or

not they have exited; and count(p‘”‘“) is the number that have exited.

This decision has a number of ramifications. The implications for the expressive
power of the solution specification are discussed in the next section. The decision to use
counts forms the basis for the method of deriving a solution specification from a problem
speciﬁcation, as will be apparent in the description of the derivation algorithm in Chapter
4. With respect to the basic strugture of the solution specification, it means that in the
schematic abstract program representing an activation of operation p, each update to the
guardian state now can be defined to be simply incrementing the proper count. The

abstract program therefore becomes:

- - N T D oy R e s e

3
I
‘B

- 47-

- p"* s increment count(p™ ™) byl -
e wait until eptry. condition is satisfied,. ...
then increment count(p"*") by l
" execute body of operatlon p)
P increment count(p*™ byt ¢

That is, the ‘update to the synchromzauon state withm each gate consists snmply of

incrementing the count of events at that gate by L (T he quantlty coum(g) is snmllar to, and

in fact can be implemented by, the eventcoum notion |mroduced in [Ree??])

This means that the representation' of a par‘t»icula:r solution specnflcauon can consist
simply of the entry condition on :gate p onter for each operauon p of the abstract type Each
entry condition on the synchromzatlon state must take the form of a predlcate on lhe counts
of gates. The other (non-enter) gates in the soluuon specmcatlon are mdncated lméhcnly by

the appearance of quantities of the form count(g) mthin the entry mndmons

For example, consider an abstraction with one operatm op Suppose that the
synchronization constramt for thls abstractlon requlres actlvatlons of op to be mutually
exclusive, that is, at most one activation is allowed to’ be cxecutlng at a time. Then the
solution specnﬂcatnon for the abstraction can be expressed by statmg the condmon for gate

op*™*’ to be

count(op'“"') - eount(op"‘")

This is a shorthand way of saying that the abstract pmgram fo: accessmg an abstract data

object via operat:on op is:

--48 -

request,

op . increment count(op™®**!) by 1

op®™®": wait until count(op®™*") = count{op™"),
then increment count(op™*) by 1™~
execute body of operationop -+~ "

op®™™*: increment count(op*™") by 1

As a sgéqnd example, consider an abstraction with two operations f and g. Assume
that an activation of operation f is allowed to begin execution only if no activations of g
have been requested and are waiting. Also, let an activation of g be able to enter only if
exactly one activation of f is actively being executed. Then the solution specification for
~ this abstraction consists of the two entry conditions:
For gate f*"*". count(g"‘“‘"*)-eount(g‘“") B
For gate g*™*. count(f*™") - count(f*") =1 ‘"

In other words, the following are the abstract programs for activations of f and g:

Abstract program for f:

freavest. increment count(f**%**!) by |

f*™*. wait until count{g™**) = couit(g*™"),

then increment count(f*™*)by I .-

execute body of operation f

%. increment count(f") by l

Abstract program for g:
g™ ™. increment count(g"****').by |
g®™". wait until count(f*™*’) - count{f**) = |, -
then increment count(g*™*) by.l
execute body of operation g

g® " increment count(g*") by 1
3.3 Additional features of the solution specification

As indicated in the introduction to this ch;pter. the basic structure presented thus far
for the solution specification lacks sufficient power for expressing solutions to a wide class of
synchronization problems. Two new features must be added to this basic structure in order
to achieve the required expressive pawer. These addmonalfeaturc;, which are the subject
of this section, provide the ability to save and Juse _previous m,;,i;r\formgugn, and the
ability to use properties of parameters to operatlon a;tivatiops. ,T{he first to be djscussgd is

the use of previous state information.

In the previous section, the synqhtoqiuﬁon state ,wa‘sf_ggﬁnq:.i as some abstraction from
the history of a data object containing sufficieft infarmation. fer:the prediction of the future
synchronization behavior of the object. Unfortunately, the counts of all event classes do not
provide sufficient information. Sometimes it is ne;c;ssary to kndw not only how many events

of each class have taken place previously, but in what order certain of these events occurred.

- 50 -

There are a number of advantages to using integer-valtied counts to represent the
synchronization state. As illustrated in the previous section, it makes the abstract state
update within each gate of the guardian particularly simple. As a result, the actual
implementation of a solutlon specificatlon ‘m terms of a source language synchromzation
mechanism Whl(‘.h is the subject of Chapter 5 can. be both simple and effiaent This

efncrency is important in ensurmg that the synchromzation code rtself does not sigmﬁcantly '

M

affect the concurrency of the computation The use of counts is also important in terms of

the algorithm presented in Chapter 1 for derivmg a solution specrfication from a problem

STyt Y S IRPTE :
e l

specification For these reasons, it is desirable to remedy the lack of expressive power in a
R . iyl :

way that does not sacrifice the advantages of ustng counts of events as the basic form of the

synch ronization state.

The way to accomplish this is to add to the basic solution ‘Specification structure the
ability to save the synchronization state at the time of an event. The state of the guardian
then includes not only the current synchromzation state but also each prevnous state that
has been saved Condttions on enter gates can be expressed m terms of both the current
synchromzation state and any information saved from prewous»states ‘All the mformatlon
that is lost by abstracting from the complete sequence of events within the hlstory to the
counts of event classes can be regained by using the state at the time of prior events as well
as .the current state. Basically the reason for this‘is that vahen it is necessary to know
whether sotne particular event e; has precededsome other event €9 in the preceding
sub—history, this information can be obtained by comparing int‘orrnation in the states when

€| and ey occurred with the current state and/or each other. In Chapter 4 it is explained

-5 -

‘how previous state information is derived to express properties for which the current state

is insufficient.

A notational extension is neededto represent':preﬁous stdte information. Unless
indicated otherwise, quantines appearmg in a condmon represent bcur-ren-t state»vAalues
When a quannty is meant to represent a value m4 the state at some prevnous event. the
notation “e g" appended to the quantnty is employed where g 1; the namerof some gate
This means that the quantlty refers to the state saved just prior to the most recent event
occurr ing at gateg. For example the number of activations of p that had been requested at
the point at which the most recent exit event for procedure q has occurred is denoted
[count(preast) o q"'"] Notice that since the state is saved just before the mdlcated event, a
quantity such as [count(q**") e q***] does not include the q*** event actually occurring at the

point at which the state is saved.

As an example of a solution speclficatron that uses previous‘vstate informanon. consuder
an abstraction with two operations u and v. Suppose that it is demed not only that
activations of operation u be mutually exclusive, but that between any two successive
activations of u, an enter event fdr operauon v must occur. This can be expressed by the
condition

count(u*™*) = count(y™) A [count(v""") . u“"] < count(v'""')
for gate u®™*. The second COﬂjUﬂCt of the condition says that count(v"“") must increase
between the exit event for the most recent activation of u and the ume the next activation

of u is allowed fo enter. The corresponding abstract program for an actrvauon of u is:

- K2 -

request,

u increment count(u™*s!) by 1

enter,

u . wait until count(ue™®’) = count(u®®) A

[count(v®™®") @ u®™] < count(ve™*"),

then increment count(u®™*") by 1

execute body of operation u

u®™": save the guardian state, in particular the quantity count(v®"*"),

and increment count(u®") by I

Each event at gate u®™® uses the value of count(v*™*") saved at the most recent u* event

in its entry condition.

As before, a solution specification is represented simply by the entry conditions that
apply to all enter gates in the guardian. The state information that must be saved is not
listed explicitly. Instead it is indicated implicitly by the appearance of quantities of the form

[count(ec) @ gl, where ec is an event class and g is a gate, within entry conditions.

There is another aspect of information that is lost by abstracting from the history of
an object to simply the count of eve'nts in each event class. The history is a sequence of
events, each of w‘hich is described not only by its event class, which is to say the opera:ion
name and event type, but also by the vector of parameters passed to the operation. All
information concerning the values of these parameters is lost when considering only the
counts of event classes. For instance, it may be necessary for activations of an operation to
be mutually exclusive only if an integer parameter of each activation is non-negative. Such

a property can be expressed in the problem specification language of Chapter 2, but not in

a solution specification with the structure presented thus far.

4‘5-*%’ ERNEE

-53-

The solution is to "qualify” gates in the mww A gate is qualified by
the attachment of some predlcate on t"he paﬁme‘ters of thc associsted pr&edure’ activation.
Only if the parameters of an actwanon satlsf] the predmte does the process making the
 activation pass through that gate. An unquahfled gae,;mhwh,applae;;to,a;llxmlvauons of
the given procedure may be corisidered to be simplf*: speclﬂ caseof a qualmed gate, with

a qualifying predicate that is identically TRUE for all parameter values

Some neQ notation is needed in order to refer to’g‘ates. An unqual;i‘ﬁed gate, as before,
is indicated simply by the event class it is in, such as the p*™* gate. A qualified gate is
denoted by appending the qualifying predicate to the procedure activation cxpréssion.‘ The
rotation used is similar to that employed’ in set theory, with a verticil bar used to separate
~ the predicate from the activation expression. Therefore, {p(v) | CH)™ denotes a gate in
the p°™* evenit dlass that is qualified by the predicate C oni the vectorof parameters v to

procedure p.

As an example, consider the following' situation. Let an abstraction have one
operation h, taking a single integer parameter x.‘. "Le.t all activations of h with non-negative
parameter values be mutually exclusive. Then the" solutioni specification contains the
condition

count(fh(x) | (x 2 OF™*) = count((h(x) | (x 2 O)*™) -
for gate [h{x) | (x 2 O)I*™*. This means that the: gates for both the h®™ and h*** event
classes are qualified with:the predicate (x 2 '0), and that any activation of h whose
parameter does not satisfy this predicate need net pass through these gates. That is, the

abstract program for an activation of h with parameter x is: .

-54 -

h"®avest. increment count(h™™*™Y) by 1
he™*". if x 2 0 then) ‘ |
wait until count({h(x) | (x 2 0)I*™*") = count([h(x) I(;(>)1,
and then increment count(lh(x) | (x 2'6)1*™*" by 1 '
execute body of operation h with parameter x
h™™: if x 2 0 then |
increment pount([h(x) l(x 2 0)]"“') by 1
Since gate h™*! is not qualified, all activations must pass through it, regardless of their

parameters.

Allowing only one qualifying prediééte for ain’ event £I;ss would be overly restrictive.
It may be necessary to maintain counts of several different subsets:of events in an event
class, where each subset is dlsu.ngulshed by a different predicate on the operanon
parameters. These subsets may enther be dlspmt or overlap Also, different entry
conditions may be required for different subsets of the total set of activations of an
operation, and again these subsets may be disjoint-or overlap.. It is therefore necessary to
generalize the above structure by allowing more than-one gate for each event class. Each
gate in an-event class is distinguished by a-different. qualifying predicate, and each gate of
an enter class may have a different entry condition as well--When there is more than one
gate for an event class,-a process passes through exactly that set of gates whose qualifying
predicates are satisfied by the parameters of the activation. it is making. These gate
passages are assumed to all occur in parallel. It is this simultaneous passage through a

subset of the gates in an event class that implements the abstract notion of an event.

-85 -

The implementation of each event class by a ‘whole: set -of gates is'a fundamental

change in the structure of the soluuon specnflanon It is perhaps ‘best understood by

B bS o 3
AT FCEA RN

looking at the new abstrac& program for an acuvanon of operatlon p wnth parameter vector
v:

preavest. in parallel for all gates g in event class p""""";

......

_ then increment count(g) by
p*™*": in parallel for all gates g in event class p"""
if v satisfies the qualifying predicate of g,
then wait until the entry condition of g is sausfxed
‘and then increment eount(g)'byl B '
execute body of operation p .
p*"*. _in parallel for all gates g in event class p*',
if v satisfies the qualifying predlcate of g,

“then incremen :ttéwht(p"“'j by r

Since the events in an object “history are totally oedered, ach_:mm must be an
indivisible operation. This means that all gate passages makm;ap an event occur, at least
in a conceptual sense, in parallel and' simuitaneously. In-particalar; it means that a process
‘may not pass through an enter gate uniess it can pass through all of the enter gates for the
‘given event class whose qualifying predicates are satisfieqd by its parameters:: Only when all
the entry conditions on these gates are satisfied may: the: enter event, in the form of the

paraliel passage through-all these gates, take place.

-G -

As before, the processes that are blocked at a given enter event class are queued up in
FIFO order. However, they need not be unblocked in this same order. Each process in the
queue is waiting on one or more conditions, depending upon which qualifying predicates on
gates apply to the activation. The process that proceeds. first is the one closest to the front
of the queue for which ali entry conditions are satisfied. This may not be the one at the
head of the queue, since 'that process may be waiting at a different set of gates than other

processes further back in the queue.

It is important that the distinction between qualifying predicates}and conditions on
gates be clear. A qualifying predicate can be attached to a gate of any event class; and
represents a constraint on the parameters of the associated procedure activ:;\tion. If the
predicate is satisfied for a particular activation, then the process making the activation
passes through the gate, while if it is not satisfied, the process bypasses the gate. A
condition, on the other hand, applies only to an enter gate. This condition is on
synchronization states, the current state and perhaps also one or more previous states. If the
condition is true, then the process may pass through the gate. If it is not, then the process

becomes blocked, and must wait in a queue for the condition to be true.

As an example of a solution specification employing multiple gates, consider the
abstraction discussed above with one operation h. Assume now, though, that h takes two
integer parameters x and y. As before, activations of h for which parameter X is
non-negative must be mutually exdusive. In addition, though, we want activations for
which parameter y = 5 to be excluded whenever there is an gctivation currently executing

for which y > x. The solution specification for this example consists of the following two

-57 -

conditions:
. For gate [h(x,y) | (x 2)P™*" P
count(hixy) | (x 2 0)™*) = count(lhix.y) | (x 2. 0)I"")
For gate [hix,y) | (y = 5"

countihixy).| (y > X)) = count(lhix) | (y >)™

- These conditidfri\sv:r'equire two gatés with en.try conditions for event class h*™', with
qualifying predicates (x 2 0) and (y = 5). There must begatesm both the h®"*" and h***
event classes to maintain counts for the qualifying predicates (x-2 0) and (y > x). The

abstrac; program for an activation of -h with parameters X. andjy;ceasigs of:

c

- 58 -

hreavest, jncrement count(h™*®) by |
h®™e": in parallel, .
if (x 2 0), wait until
count({h(x.y) | (x > OI""*") = count([h(x,y) | (x 2 O}I**"),

and if (y = 5), wait until
count(Th(x,y) | (y > x)1I*™*") = count(lh(x,y) | {y > x)I"),

and then in parallel,
if (x 2 0),
increment count((h(x,y) | (x 2 0)}*"'*") by 1
and if (y > x),
increment count({h(x,y) | (y > x)I*"'*") by 1
execute body of operation h
h* in parallel,
if (x 2 0),
increment count([h(x,y) | (x 2 0)*") by 1
and if (y > x), -

increment count(lh(x,y) | (y > x)I*") by 1
That is, if both qualifying predicates (x 2 0) and (y = 5) are satisfied for an activation, then
both entry conditions must be simultaneously satisfied before its enter event. If only one
qualifying predicate is satisfied, then only the entry condition corresponding to that
qualified gate must be true. If neither predicate is satisfied, then the enter event can occur

without delay. In any of these casgs, count{[h(x,y) | (y > x)I*™e") is incremented if and only

if (y >).

-59-
- 3.4 Semantics of the solution specifioation

Thu-s far, the discussion in this chapter has relied on an informal, intuitive idea of the
meaning of the solution specification. ,» This section pi'e'serit's'it‘he formal definition of the
semantics of solution specifications. As was the case fo: the probiem specification language,
b' whose fofmal definition was presented in Section .28, the :semantics of the solution
specification structure are defined by specifying which histories are valid with respect to any

particular solution specification.

A qualification is a predicaté ona véctor of pargmeters. Thﬁ domain of qualifications
is denoted Q. One particular element of Q is the predicate that always returns TRUE. By
considering this special predicate to be the quahﬁcatmn associated with what until now has
been called an “unqualified” gate, we are able to cons:der all gates to be qualified. So, a
gate is a pair <ec, q>, whase first component: ec is an eveat class and whose second

component q is a qualification.

A state is a function from gates to non-negative integers. A state maps each gate into
the count of the number of passages through it. 'A condition isa predicate on a set of states.
If the condition refers only to the current state, then the argument to the condition is a
singleton set containing only the current state. When a condmon refers to previous states as

well, each of these states must also be in the set.

- 60 -

A solution specification consists of a set of gates, and a condition on each one of these
gates. (It is simplest to take the view that a solution specification assigns each request and
exit gate, and every enter gate not explicitly given an entry condition, the condition that is
identically TRUE.) The set of gates in solution specification ss is given by the expression
Gates(ss). For every gate g € Gates(ss), the condition assigﬁed to g in ss is given by
Cond(ss, g). The set of previous states that the condition on gate g in solution specification

ss refers to is given by PrevStates(ss, g).

A history is valid with respect to a solution specification if. for each event in the
history, every solution specification condition that applies to the event is satisfied at the
poin; in the history at which the e;/ent occurs. (Actually, only enter events have non-trivial
conditions, but for the sake of uniformity, it is easier to define the concept in terms of all
events in the history.) To define this formally, it is necessary to have functions that map
historiés into states, i.e. into functions from gates into counts. The function CurSt maps an
object history, the sequence of events associated with a given object, into the current state of
that object. Recall that an object history is either the empty sequence [], or else is obtained
by adding an'event onto some other history. An event is represented by a four-tuple of the
form <p, t, n, a>, where p is the operation name, t is the event type, n is the activation

number, and a is the vector of arguments. The definition of CurSt is:

-6]-

CursSt{[)) = Nfec,q).0
-CwStadd(h, <p, 1, n, 835) = N (ec,q). (if <p, t> =ec N-gla)
then.. (CurStthXes, @) + 1)
eise CurSt(h)ec, q)) -
The notatien used ﬁere is taken from A-calculus. Tha:fgmwh; "N x, y).-E" represents the

function of arguments x and y whose body-is given.by F.

The function MosRecSt (Most Recent State) map.s:'jah obpct hlstory and a gate into thé
state of an object at the time.of the most recent.event at that gate:.
MosRecSt([], <ec,q>) = A {ec,q) 0
MosRecSt(add(h, <p, t, n', a>), <ec, g>) = jf <p,t> =ec A.qla)
- -then .CurSt(h)
* else MosRecSt(h, <ec, g>)
The Cl;rrent state-after history h becomes the most recent state for any gate that applies to

the event added onte h.

It is now possible to formally define the valiidiftj" of a history h with'respect to a
solution specit;ication ss. This is gi;'en By ValidSS(‘:, ss), >where:
Valid$S([], ss) = TRUE
ValidSS(add(h, <p, t, n, &>), 35) - Varlidrssi(!‘i.‘s's‘)m/\
v (e, q) (<ec, g> € Gates(ss) N ec = <p,t> N q(a)
| D SatSS(h, ss, <ec, q>)
SatSS(h, ss, <ec, q>), defined below, is a predicate that determines whether the state

represented by history h satisfies the condition in solution specification ss for gate <ec, g>.

-62 -

Therefore, the definition of ValidSS simply states that a history is valid with respect to a
solution specification if it was valid before the last event occurred, and if the history

satisties the conditions for all gates that apply to the last event.

The predicate SatSS is easy to define. A'history satisfies a condition simpiy if the
current state plus the relevant most recent states of the history satisfy the condition. Recall
that the condition on gate g in solution specification ss is given by Cond(ss, g), and that this
condition is simply a predicate on a set of states. 'Formally, then,

SatSS(h, ss, g) = C(States),
where C = Cond(ss, g)

and States = {CurSt(h)} U {MosRecSt(h, g') | g’ € PrevStates(ss, g)}

~ The subject of the next chapter is the method for deriving an equivalent solution
specification from a problem specification. Section 4.6 justifies the method presented. This
justification relies on both the formal definition of the problem specification language given

in Section 2.6, and the formal definition of the solution specification in this section.

This empty page was substituted for a
blank page in the original document.

-63 -

Chapter 4

Derivation of the Solution Specification

4.1 Introduction

The subject of this chapter is the algorithm for analyzing a problem specification and
deriving from it an equivalent solution specification. There are two aspects to the
construction of a solution specification. Identifying the gates required in the solution
specification is relatively straightforward. This simply involves identifying the event classes
appearing in the problem specification. For qualified gates to be identified correctly,
however, this must be done after all argument constraints have been incorporated into the

ordering clauses of the specification, as explained in Section 4.5.

Constructing appropriate conditions to attach to the gates associated with enter event
classes is the formidable task. The algorithm for constructing these entry conditions is the
subject of this chapter. As explained in Chapter 3, the set of conditions on all enter gates is
sufficient to represent the complete solution speéiﬁcation. The other gates in the solution
specification and the saving of previous state information are indicated implicitly by the

quantities appearing in the entry conditions.

In constructing a condition for an enter gate, the basic strategy employed is to
determine, in terms of the synchronization state, what distinguishes points in a computation
at which an event at that gate should or should not occur. "Should occur” here can be

interpreted formally as satisfying the predicate Sat, which was defined in Chapter 2, relative

e R O ORI % T B TR S

- 64 -

to the given specification. In making this. deteemination, it is necessary to consider all
relevant subsequences ef : hisgories, ;peciﬁcal!ys those, sybsequences containing the events
mentioned explicitly in the specification. Each of these subsequencesl or “orderings”, can be
classified as either valid or invalid with respect to the specification. - At’ each ‘point in an
ordering at which an event occurs at the gate in questlon |t is posuble to charactenze the

!

synchromzatlon state. These mdmdual characteruanons can then be comblned

applop’l iately, based on the vahdlty of the ordermgs to form an ovetall condmon for the

gate.

The pa:mgnph abave summarizes the main phase of ‘the derivation algorithm. The
result-of this phase, which is presented fully it Section 4.2, is the derivation ‘for each gate of
a "preliminary condition”. For cases where the correct condition for.a gate‘can be expressed
solely in terms of the current state, the prehmmary condmon is correct. When this is not so,
the prehmmary condmon can be refmed by ueratmg over another pt;ase of the algorlthm
This phase, whnch is presented in Secnon 13 uses mformatlon saved at prevnous states m

the ordenngs as well as the current state. Secuon 11 contams an example of applymg the
algon ithm of Secnons 12 and 43. The one other aspect of the elgomhm is some mmal
processmg desngned to make the specuflcanon suntable for analysls. Secuon 4.5 descnbes thls
processing, in which argument constraints are mcorporated into the speclflcauon so that the
transformed specification consists entirely of ordering clauses. -Ttie algorithm is summarized
in its entirety in Section 4.6, and there a justification-is-presented for why it works. The Tast’
section of this -chapter, Section 4.7, discusses the class of specifications for which the

| algorithm fails.

- 65 -

An important feature of the approach to be presented is a property that I call
extensibility. This means that the algorithm can be applied to each conjunct in a problem
specification individually. If the specification s is of the form

S|NAS9 N . A s,
then for each conjunct s; of the specification, the algorithm derives one or more conditions
for gates in the solution specification. For each gate, the condition required for the entire
specification s is simply the conjunction of the conditions obtained separately from the
conjuncts s;. This property can be proved in terms of the formal semantic definitions of the
problem specification language and the solution specification. Informally, it is true because
each conjunct in a specification represents a separate constraint that must be met by any
valid history, so that the overall specification represents a set of constfaints, all of which
must be met. If each constraint is implemented by a different set of solution specification
conditions, then the joint overail constraint must be implemented by conjoining all these
conditions. This is because an event may validly occur only if it does not violate any of the
individual constraints. For this reason, the analysis of specification s can take place on each
relatively simple conjunct separately, rather than on the entire, more complex specification.

With regard to any reference in this chapter to specification s, the reader should understand

that s can represent a single conjunct that is being analyzed individually.

- 66 -
4.2 The derivation algorithm * -

This- secti;)n ‘de;scribes the essence of the dcrivatioq algorithm. It |s »asspmvchtha'; the
problem specification consists exclusively of ordering inforn;ation. in that all clauses, as
' defiqu in Sec;ion 25, are orderipg cﬁu§e§ qf the form g_ej = ,52), wbgre_ events elra:nd €9
refer ¥o procedure acti‘»va’tions for which arg‘um:ems‘arg”m;t iis;evc‘l.’ That i.s to say, thgrc are
no afgument constfaint clauses, nor ire arguments exphcntlyglven for an'y pro;edutg
activations. The conditions derived for the solutiqn ségcgﬁcat;qn in this phase of the
algorithm refer only té the current synchronization state, and not to any previous states.
When any of_ thg preliminary conditions dgri»veid-b‘yw thi; phase‘is inadequate, then previous
state information must be used in order to refine it. The method for doing so is p(esentgd

in the section following this one.

The algorithm' is presented here on a step-by-step basis. Each step first is described as
it works on a general specification s, and then illustrated dn a particutar specification. The
specific example used bfor itlustration purposes is example 4 from Sectioni 2.7, which will be
denoted here as specification s: |

pi et = qj'm > p*™ = (Ij'm'-

As discussed in Chapter 2, the effect of this specification is to give executions of procedure

p priority over those of procedure q.

-67-

Given a problem specification s, the first step in deriving the equivalent solution
specification .is to identify Evexp(s), the set of eyent expressions.appearing.in s. Informally,
this set can be constructed simply by. noting which event expressions are .contained in the
specification. The recursive definition of Evexp(s), which was presented.in Seétion 26 and
is repeated in Figure 4. -below, can be.used to formally construct ;Evéxp(s) for any
specification. For the éxample specification,

EVexP(SI) _ {pirm‘ﬂ' piéhlor' Qjm"}-

Once Evexp(s) has been constructed, the, next step. is to construct the set of possible
time orderings among the events represented by these expressions. Suppose a history
contains events that correspond te the event expressions in r.the specification. Formally,
using the definitions of Section 2.6, this means that there 1s some interpretation mapping
-the event expressions in Evexp(s)-.into.a subset of the events in the history. Then whether
or not the history. satisfies the specification. under this. interpretation -depends upon the
order among exactly these events. To analyze all.-possible 'histor;es that involve events
corresponding to the expressions in the specification, it is sufficient to analyze all possible

subsequences of these events: A subsequence of events. in a.history.is called a sub-history.

Figure 4.1. Definition of Evexp(s)
Evexp(exp) rel expy) = { }, for rel € Rel
Evexp(—s) = Evexp(s)
Evexp(s; op so) = Evexp(s;) U Evexp(so), for op € Op
Evexp(3 x (s)) = Evexp(s)
Evexp(V x (s)) = Evexp(s)

" Since ‘each relevant event is represented by an *‘évem*éxpfe’:’sim ﬁhppﬁri‘ng in
specification s, the sub-histories of interest correspond to-the possible sequences of the
expressions-in Evexp(s). Each sequence of évent ‘expressions that' ‘reﬁrcsgrits‘a" possible
sub-history is called an ordering. Every history containirig events represented by the event

expressions of Evexp(s) corresponds-to exactly one of the oraerings.

If the size of Evexp(s) is n, then therc are n! éefmutatms of thésé n events, ’but not all
of the corresponding sequences are necessamy posslble time orderings. To be a possible
ordering, a sequence must obey the basic constraint

Uy Wy g eMer oy e

for every procedure activation ug,. For e‘xam‘ﬂe. consider a case where

Evexp(s) = {x,"owest, x_snter, _onil, o reqast y o8 5p™.
While there are 720 permutations of these Sik-&vents; only 20 sequences represent possible
‘time orderings. An additionat 'constr.aint*tha‘t must be‘riiet by any ﬁrdériﬂg'-iﬁ that

| (M <n) D (u, T =y T,
since the numbering of procedure actiﬁtio”ns‘is based oh’ the order of the respedﬁe request
~ events. Thus, for a specification in which x; oot yiid X, ,I"""" both appear, x{"‘“"‘ must
precede xi*l"“""' in evéry ordering. These constraints are exactly the ones embodied in thc
predicate Possible defined in Section 26. Rulmg out all oi‘deﬁngs that are impbsiiblé
corresponds to restricting attentio;a to object histories that a;e; pos;gbleaccording to ‘t:hit

definition.

-69 -

Formally, the construction of the possible orderings among the elements of Evexp(s)
can be carried -out in two stages. The first stage consists of generating all permutations of
the elements of Evexp(s). Then every permutation that violates one of these basic

constraints is eliminated.

For the example specification s;, Evexp(s;) contains three events, as already noted.
Although there are six permutations of these three events, only three are possible time
orderings, since the other three violate the constraint that pi"’“"'" = p;*""*". These three

possibie orderings are:

n Pirequest = Pienier - qj,m.,
(2) pyeovest = qjenler — pi.m.,
(3) qjen'ev = pirequesl = piem.,

That is, in any possible history in which there are events corresponding to the three event

expressions in Evexp(sy), these events must occur in exactly one of these three orders.

Once the possible orderings of the events associated with specification s have been
constructed, it is necessary to sepafate them into two classes. Those that satisfy the
specification s are termed wvalid orderings, while the rest are invalid. Validity of an
ordering with respect to a specification s can be determined ‘by simply evaluating the
formula s. In this evaluation, either TRUE or FALSE is substituted for each 'expression of
the form (e; => eo), depending upon whether or not event e; precedes event ey in the given
ordering. Since it is assumed tl;at by this point the specification consists entirely of

ordering information, the result of this evaluation must equal either TRUE or FALSE.

=70 -

The ordering:-is valid when the formula-evaluatés to TRUE, and' invalid when it is FALSE.
- In terms of theformal semantics of the prablem speeification: langiragé: presented in Chapter
.2, this -corresponds - to: evaluating “the prédicaté :Sat for an oiNerwise valid history ‘that

contains the given ordering as a sub-history under an arbitrary interprétstion:

For the example, substitution of ordering (1)-into specification 5] yields the formula
: ‘-‘TRUEﬁmﬁ; TRy
which evaluates to TRUE. “Substituting: ordering {3) into-s; resilts in the formula -
FALSE D FALSE,
which also evaluates to TRUE. Orderings (1) and(3) are ;he;efoye bot{hﬂvalid with respect
to sl.‘ Substituting ordering (2) into s, however, ylelbds o 7;
. TRUE> FALSE) |

which is FALSE, so ordering (2) is invalid.

In describing the next step-of the algorithm, somé defiftitions are needed. A prefix of
a sequence is slmply any initial subsequence A specnal case is the empty sequence whlch is
a preﬂx of every sequence Any two sequences have a uru:;ue longm matching prefx whnch
they share. Gnven two dnﬂ‘erent ordermgs of n events, there isa umque k, where 0 < k <n,
nsuch that each of the ﬁrst (k - l) events in the two ordermp are ldemncal, and the k-th
events differ. The shared preﬁx of length (k - l) is the longe:t matchmg preﬂx of the two

+ orderings.

-7 -

1t is necessary to compare each invalid ordering with all of the ,vaﬁ-d* orderings in turn.
- In each:case, there will be a longest ma&ching;:pmftxftlnt»d‘eatwo,'orﬁcm»gsz'share,'which
:may be the empty saquemﬁe; Of all these longest matching prefixes, we ‘choose the one with
the greatest length. If this prefix is of length (k - 1), then the k-th event (more precisely, the
k-th event expression) in the invalid ordermg is the offendmg event of that ordermg The
offendlng event is the one at whlch the invalid ordermg first goes wrong . in “the sense of
vnolatmg the gpeuﬁcauon Thaf is, it is at thlsrpomt in the hlstory that the Sat, prédncate is
first violated for the specmcanon. Assuming that the offendmg event is in an enter évent
| class, a con;int;c;n must be attached to the gate for that event clgss in the solution
specnflcatlon o that the SatS$ predlcaté vft')r the solutnon speafn;:atm; is ’also vnolated at tius

pOll‘I[.

If the offending -event in the invalid -ordering is .not an. eater event, then the
specification is illegal, in that it does not agree. wieh; the basic..guardian model being
employed here. According to the model, only enter-events: can be conditional and so be
delayed from immediately taking place. If a specifm?knpﬁea that some request or exit
event should be delayed, then it represents a. property that. is incompatible with.this model.
" Such a specification cannot.be analyzed by the method presented here. (These cases are

discussed in section 4.7.)

Returning to the example specification §), orderings (i} and (3) have aiready been
shown to be valid, and ordering (2) to be invalid. For orderings (I) and (2), the longest
“matching prefix consists of the sequence of length one whase:-only element is p;"*%™** for

orderings (2) and (3), the longest matching prefix is the.empty sequence. The longest prefix

-72 -

of ordering (2) that matches some valid ordering is therefore the one-element sequence
[p;"*™**']. The offending event-in (2) is the event immediately following this prefix, namely
qj'""'. Thus a condition is required on the gate for the 4*"'*" event class to prevent this

invalid ordering.

In the general case, a cﬁnditio;\ r;xust be derived for each event class that contains ;n
offending event in one or more mvahd orderings. When this ;:ondiuon is placed on the
gate for that event class in the solution gspecxﬁation it must prevenz any sub -history
corresponding to one of these mvalld ordermgs. but allow any of the valid ordermgs as
sub»-histories. The derivation of the cendltion requlres the state, ie. the synchronizatton
state of the object, to be charactemed for each mvahd ordering at the point at which the
offending event occurs, 5o long as the offending event belongs to the given event class. The
method for characterizing the state is exphined below. A-disjunction of these state
characterizations is formed, to be denoted here as D, D; represents a general state
+ characterization of when the occurrence of an event fn the gi\;m event class would fail to
satisfy the specification. Similarly, the ~§tate must be characterized for each valid ordering at
the point a¥ which an event in the cﬁu occurs.. The disjunction of these characterizations is
denoted D,, which is a general characterization ofwhen the occurrence of such an ev?nt

would satisfy the specification.

The expression given by the formula (Dy A (~ Di» represents a preliminary possibility
for the condition required in the solution specification. The term (= D;) guarantees that the
expression is strong enough to exclude every invalid ordering. Conjoining the term D,

aids in the simplification of the formula. Since any conditions that are trivially true in all

-7

orderings of interest appear both in D, and in>Dy, suchrcondlﬂomv cancel out in the
conjunction of D, with the negation of ;.- These:conditions may arise from the f_acf.‘fo’r'
instance, that at the point just before an event in the. p*™™* class occurs, it is a!x;wa-ys true that
count(p™¥¥*!) > count(p*™*), since there is at least one activation (the one under
consideration) for which the request event, but not the enter: event, has occurred. Thus,
this clause is a component of every state characterization, whéthm!‘~the‘orderin§ is valid or
invalid. The conjunct D, guarantees that the negation of this clause is eliminated from the

condition.

The preliminary condition given by (D, A ‘(- Di» is knowﬁ to be at least as strong as
the condition required; since the term (~ D;) excludes all invalid orderings, ie. all histories
with -sub-histories corresponding to an invalid ordering. ‘The condition- must be tested
against all the valid orderings, however, td check that it is weak enough to allew all of them
as sub-histories. - This checking is accornpl';ﬁhéh ‘by- determining that the condition is
satisfied at the point at which the appropriate evert occurs meach valid ordering. If the
condition is satisfied at all these points, then the condition is correct, and the task is
completed. If this is not so, then the condition is too ‘strong, in“that it rules out some
ord;erings that are valid according to the specification. When- this-happens, steps must be
taken to refine the condition by weakening it:appropriately. This weakening process will be

described in the next section.

-74 -

In characterizing the synchronization: state. of the:object:at a peint in an ordering, the
~ ordering must be considered to represent-a subrhistory: that isi;embedded within: some
possible history. Except for what can be-deduced from-the erdering-itself, nothing can be
assumed -about the history or about the interpreaﬁm; by. which the event. expressions in. the
ardering are mapped into the; events in the history.- ;Thm;my;be:mmbmjary; number of
| events in the histery preadmg the sub-history,-snd - between. any -two events..in the
sub-history. It is known, however, that the history:is-pessible: Also, the. history can be
assumed to be compatible with the solution specification structure, since if it is not, then the

algorithm cannot succeed in any case (see Section 4.7).

The characterization of the state therefore: relies entirely an;the other events in the
sub-history represented by event expressions .in-the-ordering. - Since: the characterization
involves actual events.in.a history, rather than the eyeat expressions in an ordering, each
event expression. conceptually.is-replaced by a real-event, sa.that every variable within an
expression is replaced by an actual -value. ;Siaee'-,tmemtarmation-ufor making these
replacements is -arbitrary, however, nethmgm be-assumed: abput the values. All that is
known is that for any given history and interpretation, there is some: particular value for
each variable. For this reason, in the state characterization each .variable is existentially
quantified. ‘That is, every state characterization formula is.of the form.

3(ijy 0 i) (),

where {i}, ..., i} is the set of variables appearing free in formula S.

-75-

The body S o~f the state ch'a_racterization formula consists of plaéing bounds .on the
counts of event classes, based on which of these events occur before aﬁd after the point at
which the chal;acterizatiﬁn is beiﬁg made. It is assdhiéci thaf it;he characteﬁiation isv made
just bé‘ore the enter e/\)eﬁt of interest b&curs. 50 tilaf tﬁi7s> event'itse'if’ ;ﬁaS not yet tai(en place,
but every preceding event has occurred. The characterization contains a cliauAse

. o
corresponding to each event in the ordering, that iys, to each element of Evexp(s). For each
ee Evéxp(s), the count of the event clags cént#ining e is given either-aulowe:" bound if eb
occurs prior to this point in the ordering. dr a.n:!'ﬁppér bound ;if e occurs subsequen‘t to this

point. The bound in either case is the invocation number of e.

For example, let.e be the event expression x,*™*". If evens g;m?”'f; occurs prior to the
enter event in the ordering being considered, then the state characterization contains the
conjunct

count(x"‘"’)Z m.
The reasoning is that if x,*™*" has already occurred, vt’hen so have each of x;*™*" for (I < k
< m), so that count(x*™*") is at least as great as m.i .The count im‘ay be greater than m, as
other events in the x*™e" class may have takeh‘place in between event X' and the

current point, but it is not less than m. On the other hand, if xm'“"' occurs after the point

1

at which the characterization is made, then the clause becomes instead

count(x*™*") < m.

If X,°™*" has not yet occurred, then neither has X ™" for any k > m, so that count(x*"™*")

must be less than m. Again, other x*™¢" events may occur in between the point of the

enter

characterization and X s SO that the count may be less than (m - 1), but it is certainly

-7 -
less than m.

This method of state characterization relies on a first-come-first-served scheduling
enter

discipline at each gate. That is, it assumes that any history occurring prior to event X,

contains exactly

enter enlor]

X

[xlentu R

» X9
as the subsequence of events occurring at the x*™*" gate. This scheduling policy is built
into the structure of the solution specification, and so it may be assumed that if a correct
solution specification can be derived for a specification, then it must fit this structure.
There are specifications with which this first-come-first-servéd scheduling policy is not
compatible, and the derivation algorithm ~failsrto derive a solution specification in such

-~

cases. This point is discussed more fully in Section 4.7.

Since every state characterization formula is of the form
3 (ify w0 iy (S),
the construction and manipulation of the formulas D, and D; must make use of logical
properties of existentially quantified expressions. Because of the negation of D; in the
preliminary condition, universally. quantified expressions .must also be manipulated. A
summary of the important logical properties used for simplifying these formulas appears in
Figure 42 Properties (EI) through (E6) are equivalences applicable to existentially
quantified expressions, and properties (Al) through (A6) are their dual forms for universally
quantified expressions. (QI) and (Q2) apply to formulas involving both types of quantifiers,

and (D1) and (D2) are the distributive laws for A and V.

-77-

Figure 4.2. Logical properties of quantified expressions

(E2) 3G, (AG) ~ B()) o Ji(AG) A 3jBG)
(E3) 3 Gi,)) (A(i)) o 3i(A()

(E4) —~(3i(S) ® Vi(~8)

(E5) 3i(x2i A y<i) @ (x>y)

(EG) 3i(x <i) # TRUE

(A2) V (i,j)) (AGi) v B() » Vi(AG) v Vj(B())
(A%) Vv (i,j) (A®)) e Vi(A(i))

(A4) —(Vi(S)) o 3i(-98)

(AB) Vi(x<i v y2i) @ (x<y)

{AB) Vi(x 2i) L FALSE

(O 3i(S) A Vi(~8) “ FALSE

(Q2) 3i(P A S) AViI(QV —S) - 3i(P A Q A S)
(DD (x A y) Vv 1) ¢« ((xvava)
(D2) ((x v y) N 2) o ((xnAnz)Vvynn

Let us return to the example for an illustration of the above discussion. Recall that
the offending event in the invalid ordering is qj°"'°' and so a condition must be derived for
the q®"'®" gate. In ordering (l), the event qj""'" is preceded by events p;"*%s! and p;"™",
and has no events following it. Therefore, the state characterization q is:

3 (i,j) (count(p"®**) > i A count(p®™*) 2 i A count(q®™*") < j),
where the first two terms in the body-are obtained from the events preceding qj’“"’, and the

last term from the fact that q.°™" itself has not yet occurred at the point at which -the
9 Y p

enter request

characterization is made. In ordering (2), the event 9 is preceded by p; and

enter

followed by p,"™™", so the state characterization co is:
3 (i,j) (count(p"’“”’s') 2in count(p'"“’) <i n count(q""‘") < j).

In 6rderin (3), q.2"®" precedes both p;"°%*! and p.*™*', and the state characterization ¢ is:
g q; P Pi Pj 3

-78 -
3 (i,j) (count(p"“""'),;c:,i Aqount(p‘“"') £ ':A«,mt(q'“"')‘< ’j)..:

These individuailk,;gagagtéfilgtgét;g can now /be combined to. formthe terms :D>v and
D;. The disjunction for the valid ordenng3 Dvﬁj's equal to (c; V ¢cy), or
3 (ig) (eount(q""") <A

((count(p™**) 2 j A count(p*™™) 2 i) v

— '(i:aunt(p“"*f‘-"). < i A count(p*™) <i))).

The disjunction for the invalid orderings D, is simply Co, S0 that (- Dj) becomes
V (i.j) (count(p'™*™) <i v count(p®™*) 2 i v count(q®*) 2 j).
3 (cqgnt(qf""') <j A
 ((count(p™***) 2 i A count(p*™*) 2 i) v
(count(p™™) <i A gou;tt(pf“‘") <) A

v (i,j) (count(p"‘““s') <i V count(p“") 2i v eount(q'“"') 2 j).

This formula can be simplified. Since the terms invelving i:and j are independent in
both of the quantified expressions, thej ¢can be separated, using ‘logical properties (E2) and
| (A2) from Figure 4.2. This yields the formula: - -
3 i ((count(p™ ™) 2 i A count(p**¥) 2i) v
(count(p™ ™) <1 A count(p*™™) <i)) A
3 j (count(@®™™) < § A
(V j (countig™*™) 2 j) v

Vi (count(p" ™) <1 v count(p*™™) 2 i)).

-79 -

By distributivity property (D2), this is equivalent to
Qi ((count(p"“""") 2i A count(p®™*)2 i} v
(count(p™ ™) < i A count(p™*) <i)) A
3 j (count(@®™*") <j) A
v J (cd.l"ntk(qﬁ""‘\"'v)“zﬂ j)) |
: V— ;
(3 i ((count(p™®™*™) 2 i A coim’tr(p’"’") 2i) v
(count(p™™**) <i A count(p®™*) <i)) A
3 (count(g™™*) Qj) A
Vi (COUIIl(p"q";‘t) %i v coun-i(p‘i'")zi i)).
The first disjunct i‘s simply FAI;SE, sin;:e lt éontﬁins rtﬁe: cbnjunction.:of
3"j (coulit(q;“"') < j) | |
and |
V j (count(@*™*) 2 j:
This means that the formula reduces to the second disjunct,
3i ((count(p""”'") >in &uﬁ-t(;v)"‘“') 2 |) v
'(comit(p'-w:-"'):; i A couﬁt(p°"';?)) oA
| 3j (count@‘"'") < J) A |
v i (count(p’“""") < i v c;t'mt(p""‘") 2.1i).
* Each of the first two coﬁjuncts sinﬁpﬁﬁes to TRUE, 50 'tl;e et;tire férmula ‘reduc_es to
Vi (count(p"""‘") <i Vv count(p"‘"’) 2 i),
which is equivalent to |

count(p™®**) < count(p*™*")

-80-.

by property (A5). Using the a priori fact that count(p™®**!) > count(p*™¥), the preliminary
condition can be simplified finallyto: -~ .~ . " - Lo

- count(p™) . count(p™™).

To determine whether the prelirrttrtgry condmon lls indeed correct ano not overly
strong, it is necessary to test it at the appropri,ate!o;nt ir\ each of the valid orderings. The
valid orderings are (1) and (3). At the point of event 5;’"" m each of these orderings, the
condition | . | .

count(p"“"") - count(p'"'")
is satisfied, showing that it is weak enough to permlt both vahd orderings. Because of the
conjunct (~ D)) in the condmon it is guaranteed to be strong er;ough to prevem the mvahd

ordering. Thenefore it is exactly the condmon requtred for gate q ", and a correct

solution specification has been constructed.
4.3 Use of previous states

In the example presented m the last sectlon. the current state alone was sufﬂclent to

RS TH } S
derive the condition requ:red in the solutlon speclflcanon The purpose of this section is to
explain the method employed when thls is not the case, and ohe Oor more previous states

must be used as well. Informatlon from prevaous states is used to refine a preliminary

" condition that is too strong 0 that one or more vahd ordertngs do not satlsfy lt

- 8-

An overly strong preliminary cendméw:is‘ weakened by disjoining one or more terms
to it. The new- condition that résults is-strictly weaker than the preliminary condition, since
it is the disjunction of the preliminary condition and-other terms. “All valid ordetings that
satisfy the preliminary rcondit’iron’ therefore autdmati‘ca_xl‘ly‘saﬂt_:i‘s{yﬂ the n’evy condition. The
purpose of the weakening terrhs is)to include the remaihi;né \‘lalidv orderings as well. For
this reason the analyses for constructmg a Qeakemné terfh can dlsregard the valid ordenngs
satlsfymg the prehmmary condition. Only the remammg vahd ordermgs not permmed by
the prehmmary condition need be consldered, abng wnth ;ll mvahd ordermgs for which the

event in question is the offending event.

Each weakening term shares the pm‘p'er’t'y with the preliniinary condition that it is at
least strong enough to exclude every Vinvalid qrdering. Therefore, all” that need be :checked
for each weakening terh is which validn order‘i‘ngs thdt ha;le ;hds/far’heen excluded are
permltted by the given term. The method terminates when the condmon .; weakened so

that all valid ordermgs are allowed, or else when no further weakenmg terms can be

" constructed.

In deriving a weakening term, it is netessary first to find some event that precedes the
enter event in question in each ordering being considered, i.e. all of the valid orderings not
satisfying the preliminary condition plus all of the invalid rorderings in which the enter
event is the offending event. This event mdy be ihkany event class, and is not limited to
enter eventsi Once such an event is found,'the weakehihg term is constructed in much the
same way as the preliminary condition, but using state characterizations at this previous

event. The state is characterized at the point of the preceding event in each of these

-82-

orderings (but not in any of the other valid orderings). Notice that each of these
characterizations, rather than involving ordinary counts of event classes, concerns quantities

of the form [count(ec) @ g], i.e. counts of event classes saved at the event at gate g.

At this point the characterizations from the valid orderings are disjoined to form a
new expression D', and the characterizations from the invalid orderings are disjoined. to
form D;. The forrﬁula (D, A (.-1 Di')) is constructed and used as a weakening term by
disjoining it to the preliminary conditic;n to form a new condition. Tﬁis new condition is
tested to determine whether the valid orderings excluded by the preliminary condition are
allowed as a result of the weakening term. If all these orderings are pérmitted by the

weakening term, then the new condition constitutes the solution specification condition.

lf there are still some valid orderings not allowed, then the process is repeated on the
valid orderings still excluded. Here, however, each characterization refers to both the
current state and the previous state. That is, each characterization involves both current
counts and counts in the previous state. The weakening term (Dv’ n (- Di')) is formed in
the same way. This term is again tested on the excluded valid orderings, and disjoined to

the condition if it is satisfied by any of the excluded orderings.

For example, consider the specification
(Pi"“ = pjonior) 5
Ik (p,™ = q, "™ = pjcntor)'
When the preliminary coﬁdition is formed for gate p*™*', it is found not to satisfy the valid

ordering

-83-

(B py™ =gt =>p .
A weakening term must ‘tierefore be’ constructed for -this oidering. - The two invalid
orderings are | |
@ p™ = pe =gt
) g g e
in both of which the offending event is pj"’"’." The-thie event that precedes pj"'"' in each
of these three orderings is p;**". The state charatterization ati this event in eich of the
three orderings is: |
¢ 3G, j, k) (count(p™™) e p™] <i A [count(ti‘""')@ p™" <k
A leount(p*™*) e p** < j)-
o 3G, j, k) eount(p™™) @ p**" <i ~ [count(q®™*") @ p™] < k
A- [count(p*™*™) & p***] «'j)
cg: 3, j, k) ([coqnt(p"‘“) ep™<in m_[gqunt(q"‘"') ep™2k
A [cou‘nt('fy)‘k""'):o p"'“]‘< j) |
However, the formula (D’ A (- DN give;t by |
gnE- (c2 v cs))

is equivalent to FALSE, which is obviously useless as a weakening term.

Therefore, it is necessary to form new' characterizations of both the current and
previous states. These are gi\)en by: |
o 3G, j k) (céunt(p"‘“) 2i A count(q®™*") 2 k’ N count(p"““') <j
A [count'(p"‘") e p™™ <i A [count(q*™™) . p':’;“] <k

A Tcount(p*™*) @ p*™M] < j)

-84~

co 3 (i, j, k) (count(p*™) 2. i Aeountig®™*).< kA eoum(;;'"‘") <j
A [count(p®™)e 'éi'“ls i doount(@) ap* ek -
A [count(p™) e g <)
ca 3 (i j. k) (count(p™) 2.i- reount(g™*) 2 & A count(p™*) < j
N [count(p"‘*)fe P HAMW ep™ 2k
A teem(p"""h PMsi) S o
The new weakening term (By’ A (2 D) isoquabio . -
| ¢ A eg' veg)),

which simplifies to ' : .

coum(q"“").»[ml\liﬂ) p™

disjoining this term to the preliminary condition.. - . -

If neither ef the weakemng (te;ms Obt‘iill'led: as a’resl‘xl’f ef a given previous state is
sufficient to include all of the rem;inin;g ordermgs.thenanother previous event must be
found and the entire weakening process is repeated usmg the state at that event. Since this
may involve using the next-to-most recent etc event at a pamcular gate, a notational

r~ W

extension is needed to refer to such quantmes. such as [eouat(ec) e g]. etc.

The idea behmd the method is to fmd some property that distmgulshes the valid
orderings from the invalid ones. Unless the spec:ﬁcation is one that v:ohtes the underlymg
model, it is always possnble to fmd such a property A vahd ordermg that cannot be

®,

d:stmgunshed on the basis of the prehmmary condmon must differ from an invalid

-85-

ordering by the exact ordering of previous everits, rather than: by their absolute number.
At some previous event, then, certain other events must have occurred in the valid ordering
but not in the mvahd one, or vice versa. Usmg the state at that pomt allows the two to be

distinguished from each other Usmg only the prevnous state albws a weakemng term to be

constructed that involves only the re!auonshlps among quantmes at that prevnous event.
When thns is not sufficient to dnstmgulsh a" valld ordermgs then charactermng both the

current and the previous state permlts relatxons to be formed between current and prevuous

quantmes.

The weakening precess is repeated until-one of -two things happens. If every valid
ordering is allowed, by either the preliminary condition.invoiving the current state or else
by a weakening term involving some previous state as well, then a correct solution
sI)ecifivoation condition is thereby obtained. If instead, one or rhore ;rglid orderingsrare still
disaliowed, and no event can be found that precedes the enter event in qvu’esti'o’n in both tﬁe
disallowed valid ordering(s) ’and all the in;alid ordex:ivog’s. tﬁen the algorithm fails in

constructing a condition. A discussion of situations in which the method fails will be

postponed until Section 4.7.
4.4 An example using a previous state

This section contains an example of applying the algorithm as it has been presented in
Sections 4.2 and 4.3. The example chosen is ong for which the current state is insufficient
for expressing the solution specification conditions, and previous states must be used. The

specification to be analyzed here is example 7 from Section 2.7, to be denoted so:

-86 -
(ai.m.f =3 bjonhv) " (ci.n‘." =3 djﬂhv)

The first step in the derivation process is to identify the set of event expressions in the
specification. The set of event expressions in this case is given by

Evexp(s2) - {aiontu’ bj.m", Ci'"h', d.onhv}.
The next step is to construct ali pbssible orderings among these event expressions. In this
example there are no two events associated with the same procedure activation (such as

piuqu.st and piontor>' nor are there two request events for the same proced'ure (such as

Pi"***" and p;,;***"). Therefore: any of the 24 permutations of the four events in
Evexp(sg) represents a possible ordering among them. These 24 orderings are listed in

Figure 4.3 and numbered for the sake of future reference. ‘

Each of the constructed orderings is tested against the specification to dgterming
whether it satisﬁes the specification and is theret;ore vali‘t.'l,k or fails to satisfy if and is
invalid. For example, in ordering (6), (a;*"* = bj'""') and (" = dj"'"')‘are. both
FALSE, so that specification sy evaluates to the expression

| FALSE » FALSE,
which is equal to TRUE. Ordering (6) therefore satisfies the specification. When the
specification is evaluated for each of the first 12 orderings, it evaluates to TRUE, showing
each of these o‘rderings to be valid. Each of the last 12 orderings causes s to evaluate to

FALSE, though. 50 that these orderings are invalid.

-87-

Figure 4.3. Possible orderings for specification sy
') a.enier = b'anter = c_entor = d.entor

! J ! J
(2) aienler = cienier =3 bjenter — djentor

(3) a.enlev = cienter = djenter = b.entgy

: j

(4) bjenter P aﬁ"te' = d_anler = C-'M"
I J 1

(5) b_enter =d ‘enter = a"’""" = c.gn'.r
J J i i

(6) bjen!ev =3 djcntsr = cientar Y ai.nt.y

(7) C~°’n'" = d.enler = a_enier = b_enter
f J 1]

(8) C_entev = a'enler = d.entar == b'enhr
1 i] J

(9) c.enter avemer = b.enter = d,e’“"

(10) djen'er = Cien!er — bjenter = aiem"

enfer enter enter enter

(12) djenter = bjgntev — al'enter = Cientg'
(13) a‘enier = b_enter = d.enter = c'emer
) ! J J i
enter ent nter nt
(14) a, = d; o bje o = omter

(15) a_anter = d.enter = C-m'e' = b.ontgr

(16). bjenter = aieniev = Cientor = djentgy

a7 bjenter = cienler = djentev = aiant.y

(18) bjenter = cienter = aienter ___; djentey

enter enter enter enter

o, enter enter enter enter

(21) c‘-"'""" = bjen!er = aienter = djent.y

(22) djenfev = cientev = aientov = bj.may

(23) djenter = aienter =Y cienter R bj.m"

‘24) dJeMer = a‘eniév = bjenter => ci.n(gr

-88 -

The offending event in each invalid ordering can' be identified: by comparing the
ordering with. all the valid orderings to determine at what point: the invalid ‘ordering first
fails to satisfy the specification. For example, mvah;ior&enngﬂﬁmatches Valia ordering
() as far as the first two events are concerned. Smee this is the longest preﬁx that does
match the prefix of some valid ordering, the next event in (13) namely dJ"'"’, is the
offending event. When this is done for each of the 12 mvahd orderings, |t is found that the
offending event is d J'“"' in ordermgs (13) through- (IS), TV:""" in (16) through (18) b onter | in

(19) through (21), and a;*™*" in (22) through (24).

A condition is needed for each of the four enter gites‘ mentloned in"the Asnecificatibn.
Here the condition for the a®™* gate will be derlved To determme the condmon for thls
gate, it is necessary to characterize the state at event al"'"' in each of the l2 valid ordermgs
as well as in each of the orderings in which it is the offendmg event, namely (22), (23), and
(24). The characterizations one obtains for all of theee_nrderinge. using the characterization
method described in the previous section, are Iisted:in; Figure 4.4, with' characterization c;

applying to ordering i.

The formula that is obtained from disjoining the charaeierieeugns ¢; through cjo is
given by | |
3 (i,j) (count(a®*) <i A
((count(b®™*") < jn count(c*™e") > i) v
(count(b*™) 2 j A count(d*™) 2 j) v
(count(c®™) <i A count(d®™) <).

This formula is Dy, which represents a characterization of when the occurrence of such an

-89 -

‘Figure 4.4. State characterizations at event a, "™

Valid orderings

<
co: 3 (ii,j) (count(a
¢y
g

C52

CGZ

C7:
C 8:

Cg:

entor) <i

3 (i,j) (count(a

3 (i,j) (count(a®™*) < i-

3 (i) (count(@™"*) < i
3 (i,j) (count(a®™*") < i

3 (ij) (count(a®™*") < i

3 (i,j) (count(a®™*) <i -

3 (i) (count(a®™*) < i

3 (i,j) (count(a®™*") < i

¢io: 3 (i) (count(a®™*) < i

¢y 3 (ij) (count(a®™*") < i

clé: 3 (i,j) (count(a®™*") < i

Invalid orderings.

Coo: 3 (i) (count(@a®™”) <

Coz: 3 (i,j) (count(a"‘"’)j <i

coq: 3 (i\j) (count(@®™*") < i

count(b*™*") < j

count(b®™*) <.f- A “count{c*™*) < i
v count(b®™*) < §

‘c.ou ﬂl(bf""f) : ?.. J

count(b*™*) 2 j
count(b*™*) 2 j
count(b”*) < j
count(b*™*) <
count(b*™*") < j
count(b*"*") 2 |
cou’m‘(bom‘.r) > j.

count(b*™*") 2 j

count(b®"'*") < j
counts™®) < |

count(b*™*") <

A count(c®™*) < i

N count(e®™) <i -

A_countic®) < |
A count(c®™*) > i
A count(c*™*) 2 i
A count(c®™*) 2 i
A count(c®™*) 2
A sount(c®*) 2 i

count(c®™*") 2 i

>

A count(c®™*) < i

A count(c*™) 2 i A

A count(c®™*) < i

A count(c®™*) < i

: com“(dmhy)- < J)

count(d*™*) < j)

- count(d®™*") < j)

couin(t(donhr) < J) ‘
count(d*™*") 2 j)

count(d®™*") 2 j)

: coumkdonhr) > J)

count(d*™*") < j) .

count(d*™*") < j)

A count(d*™*") 2 j)

count(d®™*") 2 j)

' count(d*™®) 2 j)

count(d*™*") 2 j)
count(d*™*") 2 j)

count(d®™*") 2 j)

-90-

event satisfies the specification. The du;unctnonof €99:.C3 and Coq i Di‘,;;epgrg%ser’\t:ipgr% a
general characterization of when occurrer;ce would not satisfy the specification. This
- formula is equal to: s ; T IPTUCT R

- (i) counta®™*) < i A count®*™*) < j A count(@™*) 2 j). - .
The body of “this “expression. comtains the ‘three':eonjuncts “thit “appear fn all three

characterizations, whereas count(t*™¥) is greater thati of equal fo 1 in €0, But fess than i in

koD

the other r(Wo; o that these terms cancel out. '
The' preliminary condition that one obtains then is given by (BV:A-(H'D.‘.». which
equals
30 (countla®™™) <A
((count(5%™) < in 'é('i\;llt‘(ém) 2 v |
Ai(couurtt.(b:'"'k‘"’) > jN eoum(d""") 2j v
 (count@™) <1 A countd®) <) A
V (ij) (count(a®™*) 2 i v count(b*™") 2 v count(d**") < P
The terms involving i and j in the univer‘silyly"huimiﬁed ex‘pnssion‘ can be separated,

applying Iogicai brdpei'ty (A2) from Section 12Thisresults in the formula

-9 -

3 (i) (count@™™) <i A
{(count(d*™) < j A count(c®™*) 2 i) v
(count(b"“")é in count(d®™*7).2 Y
(count(c®™*) < i A count(d*™)-< M A
(Vi (count@™*) 2 i) v
Vj (count(d*™*) 2 j v count(d*™) < j).
Using distributivity, this can be expanded into
(3 (i,j) (count(@®™*) <i A
((count(®*™?) < j A count(c™*") 2 i) v
(count(b*™*").2 j . cqum(d??"') 24 v
{count(c®™*) <i A count(d®"*") <) A
Vi (count(a®™*) 2 i))
v o
(3 (i,j) (count(@*™*") <i A
((count(b®™*') < jn ‘cou;\t(é‘i'"') 2i) v
(count(be®") > A count(d™™) 2 j) v
(count(c‘""’) <i A coﬁnt(d“"’) < j») :/\
Vj (count(b""") 2j v cbunt(d"‘"*) < j)
T he first disjunct reduces to FALSE, due to the conjunction of
3i (coun;(a;';'") < i)

and its negation. This leaves the formula

-9 -

3 (i,j) (count(@a®™) <i’ A

(fcount(®*™™*) < j-A count(cs™®r) iy v

(count(b*™*} 2 j A couni(d*™")2j) v

(count(c®™*) <i A count(d™"*) < A

Vi (count(B*™) 2 j-v: count(d™*) < j).
T his can be simplified to |

Vj (count(d*™*) 2 j v count{d™*) < j),
or simply

“count(b*™*") > count{d*™")

using logical property (A5). This i§ the préliminary condition in simplified form. However,
when one checks this condition against each of the valid ordetings, one finds that there is
one ordering, namely (7), that violates the ‘condition.” This means that the,preliminary

condition is too. strong, and must be weakened sufficiently so as to permit ordering (7).

It is at this point that the weakemng method descnbed in Section 43 must be
employed. An event must be found that precedes aj "‘"' the enter event in question, in
ordering (7) as well as in each of the invalid ordermgs for which ai""" is the offendnqg
eveﬁt. those being (22), (23), and (24). The eingk e&em ehat occurs before a.-"“" in all these
orderings is dj“"'. Thus, an attempt is rmade to fmd a »coﬁ;ditio‘n"at this event tﬁet

distinguishes the valid from the invalid orderings.

-q3-

T he state characterization at d j‘""' in hr‘déﬁng) is given by:
3 (i,j) ([count(a®™*) @ 4™ < i A [count{b™*) @ d*™*<j A
[couﬁt(c'““’) ed™)2i A [count(d®™*) e d*™*] <).
Since all q(:‘antitie$ refer to the state at the d*™= event, the notation "e d*™e™" is used on all
counts. This becomes the term Dv', the disjunction of previous state chara;terizgtions for
. valid qrdefings. The characte;iiatiqt; fore;ch of orégrgngsﬁva(p). (23), and (24) is the same,
namelyr " | | ‘. |
3 (i,j) ([count(a®™*") e d‘""'] <i A [count(p*™ ™ @d*™ 1 <j A
[count(c®™*') @ d*™*] ¢'i- A [coant(d*™)e ct"“" Y <),
so the disjunction of characterizations D;’ is equal to. thi; a‘s>wekll. The proposed weakening
term is given by (D’ A (= D)), which equals |
3 (i) ([count(a"“;') e d*™*<i) A [¢ou|pt(b'“'f" ® ‘f'“"'] <j /\.
[count(c™™") @ d™™"1 2 i A [count(d*™*) @ d™*] <) A
V (i,j) ([count(a®™*") @ d*™*1] i‘: v [ct)_l;llt(b.'t‘.;) e d'"'"']:z iv
lcount(c®™*) @ d*™*] 2 j v [cwni(éi'"“') e d'"‘"]Z i |
Sirhplifying. this fo‘rmula becomes
3 i ([count(a™"") & d*™*'] <) A [count(c®™™) e d*™*7] 2 i),
which reduces to
[count(a®"*) @ d*"*] < [count(c™*") & d*™*']

by logical property (E5).

-94 -

When this condition is tested in .ordering (7); it is found to be satisfied. Therefore,
this term is disjoined: ta-the preliminary condition-to:obtain-the finab solution specification
condition:

count(b*™*") 2 count(d*™*") v [count(a®™™) e d*"*'] ¢ [count(c*™*") @ d*"*'],

-

The method iltustrated in denvmg the condmon for gate a‘“"' must be apphed agam
for each of the other gates b*™®", c*™er , and d"‘"’ Due to the symmetry of the specnﬁcanon

these derivations are completely isomorphic.

4.5 Incorporating argument constraints

The previous sections have preiented ihe t'met;h-odrfor derivmg kav solutiiitii specificatiiin
from the probieni specification under the assdnipiion thaf eiciiclause in.thé :specificatiogn is
an ordering clause of the form e = e2. for some‘eifents ;l and e2 When a specification
also contains other clauses in the form of argument consiramts, these constraints must first
be incorporated into the ordering clauses of the specification before the aigorithm described

previously can be used.

To simplify the discussion, it will be assumed that argument constraint clauses appear
* only as conjuncts in the hypothesis of an implication. A speciﬁatibn that dees not satisfy
this condition can be .transformed ;i;ito ‘an equivalent one.that does as follows: Any
specification can be put into conjunctive normal form (CNF) by well-known -techniques of
first-order logic. Each conjunct (which is analyzed scparaiely. as explained previouily) then
consists of a series of disjuncts, s&ne of which may be argument oonsti’aint clauses and at

least one of which must be an ordering clause. The general form of such a conjunct is

therefore:
NyVv-Ng V. .v::va Qv VO,
~where each N; is a (possibly negated) argument constraint clause and each O; is a (possibly
negated) ordering clause, and: j. > 0-and k 2 1.- This cati-be transformed, ising the tautology
(xDy) » (mxV y) into:
(("- |)A(-' Nz)/\ A(-'N)) > (Olv ka)
in thns way, aH of the argument constraint clauses of the spec:flcanon, some in ncgated form,

are brought into the hypothesls of the mphcatton. whxle all ordermg clauses are in the

8 PR
R HR S : Brc

: conclusnon of the lmphcatxon.x

An argument constraint clause can.invoive either invocation number variables or
arguments to procedure activations.. When a clause invelves invecation: number varisbles,
it simply represents a constraint on those variables appesring in _ﬂ\esspeeiﬁ'catm_w?his
constraint must be incorporated“into every state Charsctesization. Otherwise, the clause can
~be‘ignored .in the other steps of the derivation process. -~ -

P TR Ry

As an example, consider the‘;ﬁrrst conjunct ofthe alternative pfbduces-consumer
specnﬂcatmn of example 8 in Chapter 2: | "

o (i J) > (depl""‘ => remj""")
The clause (i = j) is ignored for the moment, and the ordermg chsss; is‘anablyzed by the
regular method. Of the two orderings pessible-on the twe.events in the conjunct, the
ordering (dep”" =» remj"""')z is valid; while the other: ordering (remj"‘"" => dep;*™") is

not. The offending event is clearly ;.f}emjm}lov,, and a condition must be constructed for the

rem®™®’ gate. The state characterization at event remj‘""' in the valid ordering would be

-8 -

3 (i.j)v(count(rem""") <j N count(dep“"_) 2 i),
except that here the clause (i = j) must be added as a conjunct of the characterization,
giving: L : e
3 (i) (count(rem®™*) < j A count(dep”™@)21 A (i =)

This expression represents D,,.

For the invalid ordering, the state ‘cvharactteryi-z‘at‘itl);ﬁ’ at event ;remj"""t" ’allso must incfude
the clause (1 = J) This formula is: - | |
3 (l,j) (count(rem®™*") < j /\Lcounl(dep""') <x| I\ (| - j»

which constitutes the formula D;. The preliminary condition is D /\(D.) or:

| 3 (i) (count{rem®™*) < | A count(dep®™) 2 i\ (i = j)) A

V (i) (count(rem*™*') > j v count(dep®™) 2 1. v (i » })).
‘When this condition is simplified, it reduces to:
~count{rem*"*') < count(dep®™), - .

which is the condition on the rem*"*:gate required in the w&uﬁen specification.” This same
condition is obtained when analyzing the specification

| tep " o rem o,
in which the same property is :spgcified. with the equality betweéﬁ the linvocation numbers

of the two activations indicated iniplicitly.

~This illustrates the generat technique for ‘handling refational ¢lauses that invoive
invocation numbers. As it shows, sich clauses are integrated in asreiatively simple manner

into the method previously given for constructing a solution specification, since they simply

-97 -

represent additional information that must be included in each state characterization. For
predicates on arguments to procedure activations, the matter is not quite so simple. The rest

of this section is devoted to discussing how to handle such clauses.

An additional assumption tha\.t will be made concerning relations involving the
arguments to proéedure activations is that all such relations are made explicit. An exarr;ple ‘
of an implicit relationship is a specification involving two procedure activatioﬁs pi(x) and
qj(x). Here the implicit relationship is that of equality of the arguments to the two
activations. This can 4be made explicit by changing the argument of 9 to some new
identifier y, and adding the predicate (x = y) as a hypothesis of the specification. The
situation would be handled in a. similar manner if the argument to q were not x but

instead (x+1) or any other function of x.

Argument coﬁstraint clauses are incorporated into the ordering clauses of a
specification by qualifying all affected procedure activations. Once a clause has been
incorporated by means of qualification, it can be eliminated from the specificatioﬁ. so that
the result of the qu'aliﬁcation ph;se of the algorithm is to transform the specification into
one involving only ordering clauses. After this transformation has .beén accomplished, the
specification contains some procedure activations that are qualified. Qualified activations in
a specification result in a solution specification containing qualified gates. Specifically, a
qualified gate is required in an event class for each event expression in that class appearing
in the .specification and invelving a qualified activation. The conditions required on all

enter gates in the solution specification, qualified or unqualified, can be derived by the

method already presented. In the derivation of these conditions, the qualifying predicates

- g8 -

on procedure activations are transferred to the associated gates. Both the enter gates for
-which conditions -are sonstructed, and the. gates-on. which -counts are taken, may be

~ qualified.

. Thhe general form of a qualified procedureactivation is: -
fpmiClv, tp st)

. where v is the: vector of parameters .téwoeedm':teﬁxaﬁm pjand -C is some predicate
involving these parameters.and- adso: possibly some new variables t| through t, that do:not
appear in the specification. (The use.of these "new” variables is explained below.) The
~qualifying predicate C represents an implicit restriction on the universal quantification of
the invocation number i in: the:expression, restricting- i- to 'those invocitieon numbers for
which the corresponding activations satisfy condition C. This means- that this event

expression can only represent events whose arguments satisfy predicate C.

Each clause that invelves only the argument to a sing:k procedure. activation is
- incorporated into the specification by attaching the clause to the given activation as a
qualifying predicate. For example, lelteut be the: vector of arguments to procedure p, and vo
be the vector of a;rguments to procedure q. ‘Consider the follewing specification, where—é,‘is
a predicate only involving:¥; andCo isexwﬁﬁw onlyinvolving ve
(Cilvp) A Colvgh) D

(py(v ™™t = qfvo)™) O (p(w)P*" =» qilwo)™ier).
~ Predicate C; can be: incorporated into.the specification by qualifying procedure activation
pj, so that p,(v) becomes |

lpivp 1 Celvpl

-99 -

Predicate Cq can be incarporated by. qualifying activation qj o
qu‘ voH Gﬁ(@l e
This transforms the speciﬁ_ea_tian itseif to:
(Ipilvp LCilvprrea™ = ‘qu(v.«z');k Colvadf™). 2
(Lpi(vy) | CvII™ = [q(vg} Colvoll™=.
The meaning of this specmcauon is that any activation of p satlsfymg quallfymg predicate

St
¢ and any activation of q satlsfylng 02 must obey the ordenng constramt glven. but other

activations of these operatlons need not. Thas is exactlyk‘htvlne»meamng of the onglnal
specnflcatlon If Cl(vl) and C2(v2) are both true, then the everits must satlsfy the ordermg
constraint in order for the hlStOl‘)’ contammg«thoae evenea to be vahd lf elther of the
quahfymg predlcates is not true, then“ the hlstoryi is valad accoeellng eo the specnflcatlon

regardless of the order among the events.

In deriving a solution specification for this specification, there: must be gates with
qualifying predicate Ci(v,) in the p"*™** and p*™*' event classes, and a gate with qualifying
predicate Co(vo) in the q*™*" event class. The entry candmons ;n the solu:non speeiﬁcation
are derived just as if the activations were Jﬁq};ﬁﬁed except that the enter gates for which
the conditions are dern/ed and the gates‘ on whnch counts are’ taken, must be qualified
appropriately. Wlthout the argument constraint predlcates, this specnflcatlonAv.vonld be S|
the example analyzed in Section 42 where the condmon

count(p"“"‘") ceunt(p‘""')

entov

was derived for gate q Wnth the predlcates mcluded in the specmcatlon the same

analysis results in the condition

-100 -

count([p{vy) | C{{v)I*™*!) = countllp(v;){ Cjlv))P™*"),
for the qualified gate [q(vo) | 02(952-)]"‘-",’. That is, the qualification Ci(v;) on activation
pi(vll) results in qualifying the gates p"™®** and p*™*, on which the counts are taken, with
this same predicate. The qualification Co{vo) on activation qj(vz) is attached to the q*™*"

gate for which the condition is derived.

A predicate involving arguments to more than one procedqre activation is converted
into a conjuﬁtt;on of aiffefent predicates, éach of whicﬁ only inyolves the arguments fo a
single activati;)n. Th'is i; accomplished by parameterizing the oSigian predicate in terms of
“some nev;r variable t. Once this is done, thén thé sarﬁe ’mctho‘d of qual‘it“icatiovnv as dis;usscd
above c.an be used. For example, the predicate (x =y) wféere X and y are arguments to
different procedure activations, is transformed into tﬁe two predicates (x = t) and (y = t).
Each of these two predicates is then incorporated into the specific:ation Sy using it to qualify

the appropriate activation.

As a result, the specification
=y 3 : _
(Y™™ = G > (a1 = af
is transformed into |
(x=t) A (y=t) D
(py(x)east = qj(y);'“") 2 (pi(x)'"';' => qj(y)"‘*"))
by parameterizing the predicate (x = y) Incorporating t?re two predicates (x = t) and (y ~ 1)

into the appropriate procedure activations further transforms the specification into

- {01 -

(pyx) |{x=t)}" 2! = gy} (yst)I™e) >
([py(x) | (x=t)]*™" =» ftyr Hy=orntery.
Since this is again simply specification s; with' qualifying :predicates on the progedure
activations, the resulting solution specification contains condition -
“countipix) | (x=)} ") = counttlp(x) | (x=)I""*),

for the qualified gate [q(y) | (y=t)*™*".

The meaning of this solutnon specnflcatlon is the followmg For whatever value of tis
equﬁl to param'o‘ater* ¥ of an activation of opél;ja;lon ;q, th;; enter ‘event for that achvatuon
passes through the gate [q(y) I(y t)]"‘"' The condmon for that gate is glven by |

_count({p(x) | (x-t)]"““‘") = count([p(x) i (x-t)]'"f"), .

for this same value of t. Therefore, the "gate” [q(y) | (y=t)] actually represents an entire set

T
-

of gates, one for each value of t, which is to say each possible va)de of y.

PR
. An argument constraint predicate can aiways be parameterized into several predicates,

each of which:involves only the arguments to one procedure activation. In fact, many such
ways of parameterizating a given ;;redicate are possible. For reasons having to do with the
implementation that are discussed in Chapter 5, it is desirable that at most one of the new
parametenzed pledlcates be a non- functlonal relaktlondvbertween the acthratloln' parémeters
and‘ the parameterizing vanable(s) and furthérmore that this pOSSlny- non-fdnétlhnal

relation apply to the arguments of the activation whose enter event is the offendmg event.

T his restriction can always be followed in piactice.

- 102 -

Once a predicate Has been parameterized, the resulting -pnedicates then can be used to
qualify the corresponding procedure activations. When all- predicates have been so
incorporated, the specification .consists entirely of. ordering clauses involving qualified
procedure activations. This specification can. be analyzed by the :method presented

- previously, resulting in- a'solution specification t&ﬂﬁinmg:qutW%gw.
4.6 Justification of the derivation method

Both the problem specnfication Ianguage and the solution spec:ficatlon structure have
been defined formally in terms of a common basis the valldity of histories This means

that the equwalence of a problem speciflcation and the solution specnﬂcation that is derived

g

from it can be discussed in terms of the same set of histones»b’eing valid with respect to
each. Rather than attempt a formal proof of correctness for the denvatlott method thls
section will present an informal justification of the method. The justification will rely,
however, on the formal definitions given for validity of histories. Thecomplete derivation
algorithm is presented in Figure 45, with the individual steps numbered for ease of

reference throughout this section.

In discussing the validity of histories with respect to both problem specification s and
solution specification ss, we can refer to the definitions of the predicates Valid from Chapter

2 and ValidSS from Chapter 3. They are repeated here-

-103 -

Figure 4.5. Derivation of solution specification ss from problem specification s

(1) Transform s into a logically equivalent specification in which all argument constraint
clauses are in the hypothesis of an implication and all ordering clauses are in the
conclusion.

(2) Parameterize each predicate on the arguments to more than one procedure activation
into two or more predicates, each of which applies only to the ‘arguments of a single
activation.

(3) Incorporate each argument constraint clause that applies to the arguments to a
procedure activation by qualifying each appearance of that activation using the given
clause as the qualifying predicate. The result is a transformed specification, to be denoted
s’ Specification s’ consists entirely of ordering clauses on qualified events, except possibly
for clauses involving invocation number variables only, appearing in the hypothesis of the
implication. These clauses are ignored until step (8).

(4) Construct the set Evexp(s) consisting of all event expressions, including qualifying
predicates, that appear in s'. The set of (possibly qualified) event classes associated with
these event expressions represents the set of gates required in solution specification ss.

(5) Construct all possible orderings of the elements of Evexp(s’), by generating all
permutations of this set and then eliminating all those that are not possible.

(6) Evaluate specification s’ for each ordering, denoting each ordering that evaluates s’ to
TRUE as valid, and each that evaluates it to FALSE as invalid.

(7) For each invalid ordering, find the longest matching prefix that it shares with some
valid ordering, and identify the event following this prefix in the ordering as the offending
event. If the offending event is not an enter event, then the specification is regarded as
erroneous, and the algorithm terminates without being able to derive a solution
specification. '

(8) For each enter gate (either qualified or unqualified) that applies to the offending event
in at least one invalid ordering, characterize the state at each event to which the gate
applies that appears in a valid ordering, and disjoin these characterizations to form D,.
Also, characterize the state at each offending event in an invalid ordering to which the gate
applies, and disjoin these characterizations to form D;. Any clauses in s' constraining
invocation number variables must be included in each state characterization.

(9) For each enter gate for which step (8) is carried out, form the preliminary condition
given by (D, n —(D;)). Test whether this condition is satisfied at every event to which the
gate applies that appears in a valid ordering. If so, then the preliminary condition is the
condition for that gate in solution specification ss. If not, then proceed to step (10).

- jO4 -

(10) Find. an event that precedes. the: given: enter event in-every valid ordering that. is
excluded by the condition so far, and aiso in every invahd ordermg whose offending event
~ applies to the given gate , Gt e 4 S :

(n Characterize the state at each of these pomts and form disjun&iﬁn# D,’ and D; of these
characterizations analogous to those formed in step (8)

(12) Tes{ all valid ordemgs suil a:ckxdedxo dmnmntwhnch samfy ‘theterm: (Dv ~ (D)
If at least one such ordering does satisfy this term, disjoin the term to the current condition.

(3) If some orderings still de: not 'satisfy the condition, ther repéat steps (If) and (12) but
using the characterﬂaﬂensbom fortmfﬁrmmwmd” at thépnvious event o

(14) Repeat steps (10) thruugh «13) until either all va!id orderings satisfy the condition or the
weakening term'in step'(I2), o no previoifs everit can ‘be found' ift ‘step-(10).- If the former,
then the condition formed by disjoining’the pretiminary ‘conditiol ‘anid N the weaketiing
terms from step (I2) is correct and is attached to the gate in solution specification ss. If the
latter then the meehod fnls to: dermé‘a sokm&! tpadﬁaﬁowﬁlr ﬁmb&m speciﬁcatm 5.

- 105 -

Valid({], s) = TRUE
Valid(add(h, e), s) = Valid(h,s) A _
| V (ee, f) (ee € Evexp(s) A f is an interpretation
N Match(e, ee, f) D Sat(h, e, s, f)

ValidSS([], ss)l = TRUE
ValidSS(add(h, <p, t, n, a>), ss) = ValidSS(h, ss) A
V (ec, q) (<ec, > € Gates(ss) N ec = <p, t> N q(a)
D SatSS(h, ss, <ec, q>)

It is straightforward to compare these two definitions. They are both recursive formulas in
which the basis case is the empty history [] and yields a value of TRUE. Also, both of the
terms for the inductive case, which is add(h, e), are a conjunction of the given predicate
applied to history h, and some term involving h and the last event e. Therefore, by
recursion induction ((McC62]), the two definitions are equivalent if and only if these last
terms are equivalent for all histories h and all events e = <p, t, n, a>. That is, it must be the
case that

V (ee, f) (ee € Evexp(s) n fisan interpretat'ion n Match(<p, t, n, a>, ee, f)

D> Sat(h, <p, t, .n, a, s, f) |
if and only if
V (ec, q) (<ec, > € Gates(ss) N ec = <p, t> A g(a)
D - SatSS(h, ss, <ec, q>).

The first term requires predicate Sat to be true for all interpretations under which the event
matches an expression in the specification. 'The second one states that for all gates in the
solution specification "matched” by the event, predicate SatS$ gs true. These two terms must

be equivalent for problem specification s and solution specification ss to be equivalent, in

-106 -

the sense that they allow the exact same subset of possible object: histories to be valid.

N I < I TS YL S
S SO EPRN - S U T S A TET Y Sk TP S
.~;}) P 7 N R R e Ao

Stept (1) through (3) of the -dérivation -methad trahsform the original specification s

- . 24 B ‘t}f‘ .;‘} P&
into a new specification s "To justify this tnnsformtion it must be shown that

specifications s and s’ are equivalent with respect to the Validity: preHiei!‘e"Vahd which

really means with respect to the satisfaction predlcate Sat lSwp“('l')‘ in ‘which al argument

gt ;-—1* é:f

',constraint clauses are brought into the hypothesis of an imphcation simply involves

- properties of first-order-fogic: Swep (2):In which predietres involving: hrgamems éfits o different
“activations are parametérized; is alio mathemsticAIfStuightforwadd -« =~ = - S
To Justlfy step (3) let us look at the transformation that it accomphshes We start

LOIRTED AR DUE Lo el

from a specrficatron of the form QV) > ’l- where Q is a qualifymg predrcate on some

: S TR
A E, ‘ RS -i &

pararneter vector v and ‘l ls some speciﬁation mvoiving only ordermg ciauses. According

to the deﬁnitton of Sat,

Satlh, e, Qﬁv) > & f) - (Sat(h.e. ij).f) > Sath, e, 3, D).

gz r—a*t‘g.

Furthermore Q must be some combination of arithmetic rehtions, which are invanant
under the Sat predicate, since

Sat(h, e, expl rel expz, O - (ﬂexpl) rel f(expg))

LY

This means that if the interpretation of v by f ntuﬁet the quaiifying predicate Q, then the

ordermg specificatton ‘I must be sattsﬁed by event e aocl hmory h under mterpretation f.

If Q_ts not sattsﬂed by the mterpretauon of v by f then it does not matter whether ’l is

- BRRiTEN iy
VRIS o TNRLEE T :

satisfied under f since the overail speciﬁcauon is nti:ﬂed regardleu This is exactly the

result of qualifying the appropriate procedure ;ctivmon in 5 with predicate Qon v. The
Foynbis S ATRLE =is%

constmnt represented by § must be uﬁaﬁed only if the qoalitying predicate itself is

-107 -

satisfied. Therefore, the transformation resuking frem step (3) is consistent with preserving
the meaning of the specifisation; and .the-value-retutned by the.Sat ‘predicate is; the same

when applied to the transformed specification s’ as to the original s.

- The:next steps -of the-algorithm construct_the. possible orderings of the events for
which - the specification contains : expressions. These ordesings -represent sub-sequences

- within general.histories. fl?he:ﬁistgry;:ia;whhkm;grdgriag is embedded is assumed (o.be

‘otherwise valid . with respect to. the. specification..Fox; thiv.reason, an--invalid -orderings

" reeb: - boashistory that isnot valid, while:aivalid ardering-‘maintaina-the -validity of the

overall history. Therefore, a condition that distieguishes: the: valid «from ‘the. invalid

orderings is required to distinguish all valid histories from invalid ones.

- Step (4) of the derivation-algorithm consisty ﬁi;ih.e consteuction: of the set. Evexp(s’) of
~event. expressions in the specification. This:can -be-accomplished by using the forraal
~definition .of this set -in Chapter 2.. The .gates required .in the selution gspéei&ga‘t‘ipg .are
- exactly the gates associated-with this set of event expressions. If-the.specification refers toa
cermin set of qualified event classes, the solution: specification.mist coptain exactly this set of
gates, since it is these classes of events that the:guardian must keep track. of in order to

implement the specified constraint.

- In step (5) all possible orderings among -the elements of Evexpls’) are constructed.
_ Each ordering actually represents a sub-sequence of 3 history;. containing. exactly those
events that are represented by the event expressiank-in:s’.under some interpretation. -Since

there is no restriction.at all on the quantification, the range of- the interpretation is the

- 108 -

complete set of all interpretations.: This means-that: the ‘orderings: together -constitute the
‘entire class of postitile sub-histories that tonsist: of the events: represented: in the specification

under any interpretation: ¢ 0 0 0 TSI TR DORLTTELL L Lat T

An ordering is considered: possible unless (a) there is some procedure activation whose

enter event precedes, its request.event, or whose exit event precedes its enter event; or (b)

“there are two request events for the same procedure:such that the invocation number of the

earlier one is greater thah the invocation-number-af the: later one-under.all:interpretations.

This step correspends to the ‘rahittihn’cbfsthgw of::\Valid: to- histories satisfying
‘predicate Possible, which-embodies these same restrictions. -

o

In Step (6), ?ach ;}dekrirl\g(is used to evaluate speciﬁcatiﬁﬁ s' F;esulting in“a
classification-of each orderifig as either valid or invalid. Since: tie: implicit interpretation by
~ whiich the event expressions correspond to actual events-is untestricted, an ordering is valid
“only if, under ‘any interpretation ‘Whatsoever, éach event in it satisfies the specification. An

invalid ordering, on ‘the other -hand, represeits a subhistory whith under some
interpretation does not-satisfy ‘the specification. -This is- equivatent to the definition of the
Valid predicate,; where for a history to::be valid, each event in it must satisfy -the

specification for all interpretations.

The identification of the offending event for each invalid -ordering in-step (7) is
straightforward. The validity of a histai‘y"with respect to a spacification is defined: in terms
of each successive event in the history satisfying the specification. Since the “history in

which the ordering is embedded is valid otherwise, the first' event it which an' invalid

- 109 -

ordering fails to match some valid ordering is the "offending” one. All events preceding
this one must satisfy the specification according to the predicate Sat. The definition of the
validity of a history with respect to a solution specification similarly is in terms of each
event satisfying the solution specification conditions. This means that the offending event
must be the point at which SatSS$ is first not satisfied, and therefore a condition must exist

that is violated here.

Step (8) requires the state to be characterized at each point representing either a valid
or offending occurrence of an event of the given (qualified) event class. As described in
Section 4.2, this characterization is made by existentially quantifying all variables and
putting bounds on the counts of all gates involved in an ordering. The existential
quantification of variables signifies the fact that the event expressions correspond to actual
events under some unknown interpretation, and that every variable is therefore replaced by
some unknown value. Each bound on the count of passages through a gate is either a
lower or upper bound depending upon whether the event at that gate precedes or follows
the point at which the characterization is made. If event xm‘“"' precedes this point, then

count(x®"*")

is presumed to be at least m, while if x°™*" follows this point, then
count(x°™®") is presumed to be less than m. For an event involving a qualified activation, it

is the count of the appropriately qualified event class that is bounded.

This characterization is accurate because the scheduling at each gate is
first-come-first-served. According to the solution specification structure, two activations
L]

whose parameters satisfy the same set of qualifying predicates must pass through exactly the

same set of gates. Since the queue for each event class is FIFO, these activations must

-110 -

proceed _in first-come-first-served arder.: The rest of - the state characterization. method
simply involves lmroducmg the existential -quantification : on- mvocaﬂon number. vahues

explicitly,. and .including any exphut constraints: on these values that may appear as clauses

ins.

}The charécteriza‘tio‘ﬁ that.is.fom%te-d» v!;'orﬁeact:‘ordeArVing répréseﬁ;s fhe most genéral
expréssion possible of the current state following the occurrcn& of a‘ suﬁ-history
corresponding to-the given ordering. - Nothing -is, -assumed- about: the: rest -of the history
except .what can be deduced directly from.the events. in-the ordering itself.. All unknown
values in the formula ate existentially quantified,-s0 the-formula:simply states that there
exist some values for which its bedy is:true. Fhat is-to say, there exists some interpretation
causing a sub-history to:correspond to this ordering.. Therefore, .-Bf.fth_t'-disjtmaion'of the
characterizations from all the valid orderings, represents: the: most- general expression of
when.an event in the. given qualified class. can;valily occur: Using the formal semantic
definitions of Sections 26.and 3.4, it is the most general characterization of CurSt(h) for
histories h which, when “followed. by::some -event ¢ in the given class, satisfies the
specification s’ (by the definition of: Sat) for any intespretation f. Similarly, D;, the
disjunction of the characterizations .from- all the irlwalig orderings, represents the most
general expression of when such an event cannot validly occur. . This means that it is the
most general characterization of CurSt(h) for histories that under some interpretation do not

satisfy the 'Specificatio'n' when followed by an event in the class.

-1 -

The preliminary condition formed by (Dv N -(Di)) in step (9) represents an attempt to
incorporate all histories with which an event of the given class satisfies the specification for
all interpretations, and to rule out ali those with which it does not. It is the conjunction of
two terms, one of which is the negation of D,, the expression of when the event caﬁnot
occur. For this reason, it is guaranteed to be a strong enough condition to exclude all
invalid orderings, and therefore all histories that do not satisfy the Sat predicate for the
specification. Thereforé. no history that does not satisfy Sat will satisfy SatSS for the
solution specification containing this condition for the given gate. Testing the condition
against all valid orderings determi.nes whether or not it is weak enough to allow all histories
satisfying Sat. If so, then it is the correct condition, in that it causes exactly the correct set
of histories to satisfy the SatSS predicate as well. If not, then there are some ‘histories that

satisfy Sat but would not satisfy SatSS if ss contains the given condition.

Progressively weakening the condition allows more histories to satisfy satss. This
weakening is accom‘plished by répeating steps (10) through (13) using érevious states, each
time disjoining the resulting terms to the previous condition if ihey allow more valid
orderings to satisfy the condition. The weakening term constructed from the first
application of steps (ll) and (I2) involves only quantities in the previous state. If this is
found in step (I3) to be not sufficient, then repeating steps (l) and (12) allows a term to be
constructed that involves relations between quantities in the previous state and those in the
current state. Since each weakening term is of the form (Dv' N -(Dl-')), just as the

preliminary condition is, no invalid orderings can become allowed as a result of this process.

By choosing each time an event that precedes the given point in all remaining valid

-l2-

orderings- stii not allowed by the coné#ion. the weakening terms constructed have a good
chance of including most if. not' all-of the remaining valid erderings. ' Therefore, steps (10)
through {13).in practice rarely need to be repeated more than ence<or twice. Eveéntually; aif
valid orderings must be included, uniess' the ‘algorithm. fails tue te-an” inability to find a
previous state in step {I0) to use in construeting’ new weakening terms. “Specifications for

* which this the algorithm fails are the subject-of the‘last section- of this chapter.
4.7 Failure of the derivation algorithm

The structure of the solution specification # ‘flexiBle-emotgh t6 ‘éxpress the solutions to
a large class of synchronization problems. ‘However; certaitt Yéatures do Himit somewhat the
range of synchronization coristraints that €an beexpfessed. The sohition specification’
structure is less general than “the problem -specification dunghage, -6~ that’ for some

speaflcatmns the denvauon algonthm lS unable to construct equwalent solutlon

specuf:canons. As noted in Sectlon 4‘2 th:s sometlmes |s mamfested by flndlng the

k] ,”i

offendmg event in an ordermg to be other than an enter event. Smce thls would lmply a

o

condmon on a request or exlt gate, such a specmcanon is mcompatlble with the solution

Aartl YIiils

LR

specmcauon structure that only places condmons on enter gates The algorlthm therefore

fauls whenever an mvahd ordermg is found for which the offendmg event is not an enter

St

event.

-3 -

The ~other manifestation. of incompatibility. with:athe:—,,structure; -of the solution
specification is -an finability;.to.;;[_tndt sufficient previous states. at which terms can be
constructed to- weaken cenditions. An. example of such an incompatible specification is the.
“last-come-first-served” (LCFS) scheduling specification of- Example 6 in-Section 2.7:

7 (Piyequest = pjteqpegl =?»pi'2"');, -9 (p3 onter ﬁontu)
When. the derivation algerithm. is-applied. to-this specification; the following preliminary
condition:is first constructed for gate p™*":
- count(p™™**) «.count(p*™*) + 1

This condition .is found not to be satisfied -by ane-of: the events occurring in a valid
ordering, however,-namely pj"-‘"' in the*\gakd, ordering |

4P:i"qu:°,"t ___% P }r’qwst =3 qunlov = p;onlu
~ This must be distinguished from the offending event p*'“"' in the, invalid ordering

pyreet = peet = penler wp poener
on the basis of previous state information. Since these orderings differ only in the identity
of wttich oflvthe two p°Me events occurs firstv,‘ and the |dent|ty|s not teﬂected in any
ptedicate on the patattnetert of the ttvo actnvatlons 1t 1s 'ob\'lit)tnsritnat the two cafnnot: be
' dlstmgulshed ln applymg the algonthnt, there are two prev:ous events at which posnble
weakening tertns can be constructed: the most recent. and ne)tt to-most recent p"""'St events
However, the state characterizations for the two nrderinés are ttlenttcal in each case,
resultmg in potentlal weak.emng terms that ere ldentlcellt FALSE and thus not useful. As a

result, the denvauon ends in fallure since no other poss:ble weakemng terms are avatlable

g f

- 114+

. The reason for tﬁe*failuté:of the aigerithm: om- this:specificition: is that the property
specifiéd requires two different activations to-be distinguished; noton the basis of their
parameters, but simply By their idéntity.” A “sohitioft speeification “condition for this
. constraint would- have to depend-oh not ‘6nly the numbér of previous events, which would
involve the current synchronization state, or even thé ordér of theye events, since this
information can always be obtained from prévious stite informéition; o expitined inSection
33. Instead, the constraint relies on distinguishing the: kiéntiry' of two different activations.
However, since there is no parametewmiiedprope?qﬁr‘ﬁhlch to distinguish the two
activations, the: structufe of - the: solution specification requirés‘that' the’ activations pass
through the same gate or set of gates for the p*™* event class in FIFO order. The
requirement in the specification of non-FIFO scheduling-is in direct contradiction with the
solution specification’ structure. This is° why the: derivation ' algorithey cannot possibly |

succeed in deriving a solution specification for this specification.

Syncﬁromzauon constraints such as the LCFS spécﬁnanon that rely on the ldentlty of
particular events are rather unusual in practlce, and thelr mcompanbihty with the soluuon
specnﬁcauon structure is not ternbly dnstressmg A second kmd of mcompaublhty. though
is demonstrated by a very commonly desired property. the flrst-come-ﬁrst-served (FCFS)
specmcanon of Example 5 in Section 2.7: o

| ("™ = qjvmsi) * (pl.M" = Q_l."f.,') |
This specification, somewhat surprlsmgly, is also one for whlch the derlvatlon of a solution
specification fails. The reason is that this synchromzanon cﬁr.igtraln’t cannc;t be lmpleménted

using one queue for each event class and one entry condition for each queue. An

- 15 -

implementation .using the serializer construct appears in [Hew?7] for a FCF§ scheduling
property on two ‘operations “read” and “write", but-this relies on the two operations sharing
the same: queue, though with different entry conditions. A momitor implementation was
devised in an unpublished note [Bro76], but here again the two operations shared a single

queue, with one of the 6peration‘i using a séc&hd:ﬁsﬂiia'ri queie as well.

The reason that a solution specification cannot be constructed for this property is that

Dok

it x;ould i)e neéssary tﬁ ;ave informafion at 5 previﬁus state that lS arbitrafiiy far baclg) in
the history. The solution speciﬁcatiojn structure allows states to be saved at the mﬁst fecent
-event at a gate, lfa»nd by ‘extension, at the next-to'mest récent, etc.. ‘However, the FCFS
comstraint requires that each -eriter everit' use inférimatidh- from: the' point in the history at
which the corresponding request everit toek place, which' may be arbitrarily far back. - That
is, the condition for- enter events: by different: processes must involve information saved at
previous states individually applicable to each process. Specificaliy; let
' -{@n««) pr’i:ﬁm o pltItYy

. be a quantity that for amy particular activation of operation-p represents the value of
count(ec) saved at-its request event. Then the-conditions on gates p*™*: and q;“‘9' could be
cxpressedfa's:‘

P [count(q'**¥) private @ Y. coumt(@™™*) -

enter,

q*™*": [count(p"™*®) private @ q"****'] - count(p'.""')

That is, there must be as many q*™*" events at the time of a p*™*" event as there were

request

q events when the given activation of p was requested.

-116 -

The use of this kind of .information that is "private™ to each process appears in
[Owi76] to specify solutions to synchronization probiems. Intérestingly, the LCFS property
can also be expressed with the use of private information. - The; condition. on, gate poe
becames:

(count(p"™”**!).- [count(p™™**) p.l'iVthi prTth .
(count(p°™*") - [count(p*™*") private @ p"™**))
In ‘other words, avll réquests fof P smcethns act:i‘v‘a’tid;l;'of ;p»‘v.vahs requestedmust first be

fulfilled.

" The solution specification can.only save states at-a "fixed™ distance back from ‘the
current state, where- "fixed” is:relative to .the number of events at.a gate. . Information
| privately saved by each process must be saved at states arbitrarily far back in the history.

Without such privately saved. information. the solution: specification- structure is unable to
express certain properties, including the rather straightforward FCFS praperty. This must
be considered a weakness of the solution specification and:therefore of the synthesis method.
However, it is nevertheless true that: mest. specifications are compatible with. the solution
- specification structure,: so that - ttn«deﬂ,vaﬁm;«aigomhm . dess . succeed ‘in oonstmamg
equivalent solution specifications in most cases. The next chapter describes the last stepm

the synthesis for these cases, the implementation of the: solution specification in actual code.

-7 -

Chapter 5

The Source Language Iplementation

5.1 Introduction

"The derivation of an equlvalent solutton speaﬁcatxon from Q problem specnfrcatlon
usmg the a!gonthm presented in Chapter 4, constitutes the major conceptual task mvolved
in -synthesnzmg actual synchromzation code. The denved ’solutton specuflcatlon is a
procedural representanon of the same ordering constramt that is 'expressed non- procedurally
:by the problem specmcat»on The fmal step in the synthesis is nmplementmg the solutlon
specnflcatlon m terms of an appropnate sourt:e Iatngha%e .sym:hromum(m mechamsm “The

translation from solution speciticatton ’to source Ianguage is the subject bf this chapter. and

while relatively straightforward, it is not completely obvious for all cases.

The:structure of the solution specification is general enough for it to be translated into
any one of a wide range of source language synchronization. mechanisms. For purposes of
explaining and illustrating .‘ghe,,translati;oh; techmque.ﬂ\enmmtor construct of Hoare
([Hoa74)) will be used throughout the thesis. An implementation-using an alternative
high-level ;ynchroni,zqtion,‘mer.hani‘srp. such as conditional critical- regions ([Bri72]). or
serializers ((Hew?77]) would be quite similar. If a Jawer-level mechanism such as semaphores
([Dij68)) is preferable, then an algorithm given:in [Hoa74).can be used to further transiate

the monitor implementation given here into semaphore cade.

-118 -

A fundamental assumption of the model-used here is that all synchronization for a
data object takes place through a sirigie centralized mechanism associated with that object.
This does not cause any problems with an impiementation in terms of monitors, or any of
the other constructs cited above. However, it does make the solution ‘specification structure
snmewhatvv incompatible with situations in which a dega object is disfributed throughout
seme decentralized system end where i‘tbie desiraﬁe fer the s;mhrmiutm control simila’rly
to be distributed. The structure of the solunon specnflcation does not give much ald in
decndmg how to perform the message passmg requn'ed In a dismbuted system to xmplement
the synchromzanon constramt For centrahzed synchromutnon mechamsms such as
‘monitors, though the mplementatnon is not too dnfﬂcult as wm be demonstrated once the

momtor construct uself has been mtroduced m the next sectlon

BT R NI Lt M

5.2 Monitors

The monitor is a synchronization mechanism that was first described by Brinch
‘Hansen in [Bri73] and defined more formally by Hoare inﬂim?ﬁ It grew out of the
"secretary” concept proposed by Dijkstra in [Dij72b]: A monitor is’an extension of the class
construct of Simula [Dah72], with one important difference. ‘A°monitor; like a Simula class,
eonsists of some local data and a colfection of procedures for mahiputiting ‘that data. The
major difference is that exetutions of the procedutes of a ronitof are mutually exclusive, in
order to protect the integrity of the local data. Processes’ Attempting toncurrent executions
of a monitor’s procedures must wait to'gain exclusive access tathemo‘lﬁtof This waiting is
defined by Hoare to be fair, and can be assumed to follow a first-come-first-served

discipline.

- 19 -

Monitors also contain features for explicit process synchronization. As defined by
Hoare, this takes the form of a condition data type, which represents a FIFO queue of
waiting processes. Two operations are defined on a condition for qﬁeuing and dequéuing
processes: "wait”, which causes the process executing the operation to enter the queue; and
"signal”, which dequeues the process at the head of the queue, if any. Both operations cause
the process executing the operation to relinquish possession of the monitor. A process on a
queue that is dequeued via a “signal” operation by some other process regains possession of
the monitor. It resumes execution of the monitor procedure it was executing at the point
immediately following the "wait” operation that it performed. An additional operation

"queue” returns a boolean value, indicating whether any processes are on the queue:

The notation used here will be based on the language CLU [Lis76] rather than the
Simula-based notation introduced by Hoare. Thus, a "wait" operation on condition variable
c is written

condition§wait(c);
rather than
c.wait;

as in [(Hoa74).

Hoare advocates associating informally with each condition variable a boolean
predicate on the local data of the monitor. This predicate indicates what condition on the
monitor state a process on the queue is awaiting. Making this association aids in proving
properties of monitors. As indicated in the next section, this association makes condition

variables suitable for representing the entry conditions in the solution specification being

-0 -
implememed;.‘-

5.3 The }basio monitor implementation

A comparison of ‘monitors with the solution :specification structure discussed in
Chapter 3 reveals a close correspondence between features of-one:and ‘the other. The local
data of a monitor is sufficient for representing: the state:information required in a solution
specification, since this state information can be represented: by -a gollection of -integer-valued
quantities. A condition variable in a monitor is a FIFO queue of waiting processes, and as
advocated by Hoare, has associated with it informaliy a hooiehﬁfpredidate on the monitor
data. These are exactly the features required for conditions associated ‘with enter gates in a
solution specrﬂcauon Passage through a set of gates assoaated with a grven event class
. must be mdlvnslble and produce a state change in the system Momtor procedures hre rdeal
}fo‘r implementing gates, in that they manipulate the local data of the monitor, and because
the enforced mutual exclusion on their executions makes. them indivisible ‘opera_tions.
Monitor procedures can take parameters, which is important since the behavior of ‘gates

sometimes depends on the arguments to the associated procedure activation.

It should be emphasized here that the monitor is being used to implement only -the
synchronization code, not the abstract data type as a who!e The monitor was originally
conceived in [Hoa71] to lmplement a shared data abstractron ltself Crmcrsm of the momtor
construct has appeared in some recent techmcal hterature (eg [Hew77]. [Had77] [Jam77])
The basis of this criticism has been that the use of monitors to lmplement abstract data

types leads to such problems as reduced concurrency, hck of modularity, and a potential for

- 121 -

deadlock through hierarchical monitor calling. As used here, however, the monitor is
employed within a data abstraction, for the sole purpose of implementing the
synchronization code required by the operations of the abstraction. The monitor procedures
are kept small in size, so that their use does not significantly affect the degree of
concurrency possible. Modularity is' enhanced by implementing the synchronization code
separately from the abstract data operations. Since lower-level abstractions are called from
the bodies of the operations, not from the synchronization code, the problem of hierarchical
use of monitors is avoided. (See [Blo78] for the advocacy of a similar discipline in the use

of monitors.)

. The monitor for a data type contains three procedures for each operation p of the
type. These procedures represent the three event classes associated with p, and are named
p-request, p_enter, and p_exit. It i; necessary that the procedures of the derived monitor be
called at the proper points within the data abstraction operations, in order to ensure that
the monitor is used properly and the synchronization constraint is embodied in the data
abstraction. Tﬁe form that operation p must take is illustrated below in Figure 51. The
identifier "m" is the name of the constructed monitor, and v is the vector of parameters to

operation p. This vector of parameters actually must be passed to the monitor procedures

only for implementations involving qualified gates, as explained in Section 5.5.

The monitor implementation of a "basic” solution specification that involves neither
previous state information nor qualified gates is straightforward. Recall that the abstract

program for an activation of operation p of the data abstraction in such cases is given by:

-122 -

Figure 5.1. Monitor calls within operation p-
p=proc.;
call m. p _request(v)
-call m.p_enter(e) .
. {(body of p)

call mp_exitiv)
end p;

pro™**. increment count(p™ ™) by 1

pTT: wait until entry. condit
' then increment count(p*™) by 1

execute body of operation p

p™™* increment cqunt(p““) by |

. For each quannty of the form count(ec) that appurs in one or more entry conditions
in the solunon specnﬁcatlon there is a correspondmg vamble of type integcr in the momtor
This variable is initialized to 0, and is incremented by l in the procedure that represents

. event class ec.

An alternative implementation coukl employ. instead a ;eparate variable for each
quantity of the form (count(ec) - countler)). since a condition almost always concerns. the
difference between. o counts.. The.inplemeptation. chosen hecs i, someubat simpler, foe
purposes of explanetion It does, however, incur the possibility of integer overﬂow since
each varlable is constantly mcreasmg over time. Mthough technlqu;scan be used to avmd
overflow by dynamieally extending tl;e precisit;n rdf‘-imegers. the ilternative mig_ht be

preferable in practice.

- 123-

For each enter gate with an entry condition in the solution specification, the monitor
contains. a . condition varjable. . The .bou!éan predicate inj‘o;mallﬁy! -assaciated with this
variable is exa‘zt.ly,.thetsamq.as.\‘vthe entry gqu'i,tjon,iwjtha.a;ach;;gqantigyi_of the form count(ec)
replaced by the corresponding variable. Let the condition variable corresponding to gate
p°™*" be pentry, and denéte the predicate associated with it as Cp,‘ Then the first statement
- in brocedure p-enter is

. if (= Cp) then cb‘nditioﬁf&iit(pentrﬂ{:end; .

Whenever control of the monitor is relinquished, it is necességg to gheck»the:pr,eg%‘icatgs
associated with all condition variables on which processes are queued. If o,nie or more of
these predicates are satisfied, then a sngnal opermon ‘i performed on one of the
conditions. The condmon) to be slgnalled must be chosen in a fair manner, so that no
process starves because the condition on which it is queued is never chosen for signalling.
This can be accomplished by using a variation of Dijkstra's "guarded commands™ [Dij75] to
implement a new kind of statement called a “choice” statément. 'Changing Dijkstra’s
notation so as to distinguish cholce statements froin ‘ordinary “ff stitements, -a choice
statement looks like:"

choose
BII Sl;
B22 52;

DS
end;

where the number of guarded commands n 2 L The meaning of this statement is the

following: The "guards”™ B, are simply boolean expréssions. If one or more of these guards

- 124 -

are true, then one of the true guards B.i is (li‘m—deter_minitely)‘ ‘selected and the

i
statement and Dijkstra's version. The mettiod for makinig the seléction’ between severa¥irue

corresponding stitement s, ‘is executed. There are two important differences between this

guards is unspecified but mustb? fair. Also, if hone of the guards is ‘true,” then the
statement is simply skipped. |

If the condition variables in the monitor are pentry, qentry, etc. ‘with corresponding

P .

boolean predicates C etc,, then the following choice statement must ippear at the end

p Cq
of every monitor procedure:
choose -
' conditionfqueue(pentry) A Cy: condition$signakpentry);
pondition’queuer(qemry) A Cq: condiriontsigm!(qentry),

end;
This ensures fthat whenever one or mere waiting processes can be degugqed. due to the
satisfaction of the predicates on which they are waiting, one of thém will in fact be
dequeued. The fact that the predicates in the guards include the conjunct of the form
condition§queue(pentry) ensures that the condition that is signalled does in fact have a
waiting process. As long as the w&tim is made fairly, the monitor will be a faithful

implementation of the solution specification.

A property of the monitor construct that is used here is that a procéss that is dequeued
from a condition variable via a "signal” operation gains possession of the monitor ahead of
any process that is attempting ta call a monitar procedure. This ensures that a process that

has been waiting for an entry. condition to become satisfied is allowed to proceed as soon as

- 125 -

the condition is in fact satisfied, and is not overtaken by a later-arriving process. This
property is necessary for the faithful implementation of the FIFO scheduling that is part of

the solution specification structure.

In practice, it is often possible to optimize the signalling statement by eliminating some
of the options in the choice statement. The basis for such eliminations is that the
corresponding guards cannot possibly be satisfied at the given point in the monitor, due to
the rest of the monitor code. In t;act. for many simple examples, at most one guard in the
choose statement can ever be true at any given point. However, in general the analysis
required to perform this optimization is difficult. Rather than becoming im;olved in the
details of when a given option can or cannot be eliminated, the simple-minded
implementation of always testing all conditions will be used here. (In practice, it might be
simpler to make a separate procedure. internal to the monitor for this signalling code. Each

of the regular monitor procedures could then call on this internal procedure.)

An optimization that can be made easily is the elimination of unnecessary monitor
procedures. If no reference is ever made to the quantity count(p®***!) or count(p®*"), then

the body of the corresponding procedure is empty. The procedure itself, along with the call

to it within the data abstraction operation p, then can be eliminated. Similarly, if there is

enter onlor)
’

no entry condition associated with gate p°™'*’, and no reference to the quantity count(p

then procedure p_enter can be eliminated.

- 126 -

. As a concrete example of a monitor.

ation, comsider. the . following
.specification: . . . B
(pi™™ = g™ > (p™™ =g A
«qjunler = plonhf) - (qjom = P.'"'"»
There are two clauses one gwmg operanon p pnonty over opentlon q, the other cxcludmg
new activations of operanon p durmg active execuiuons >of operauon q The solutlon
'specxfncatnon for this example consists of the condmons B o o
For gate q‘""' : coum(p"""‘") - eount(p'“"'))b
For ééte ponter. co'lrlrlitr(q'"":"i'-i édun{(q"“)

The monitor implementation of this solution specification containg. four integer
variables, representing count(p’™**), count(p*™*"), count(g®™*").and count(q®™). These
variables are named pr, pn, qn, and gx, respectively.. Each. variable must.be initialized to.0,
and incremented by 1 in the corresponding -manitor. procedure. T here are two. condition
variables, pentry and qentry, for the entry conditions on gates p""" and q'""'. The
predlcates assoc:ated with these condmon vamblesgare the analogues in terms of monitor
vanables to the solunon spec:ﬂcation emry condmons (pr - pn) for qentry and (qn - qx)
:foa ‘pentry. The monitor "ex” that is obtamed for this“ example appears in Figure 52 The
momtor procedures p_exit and q request have been ehminated as unnecessal:y Operauon P
of the data abstraction must call monitor procedu.rés' ex p_requesi and ex. p_enter (m that
" order) before executmg its body, whnle openuon q must call ;;rocedure exq enter before

executing its body, and ex.q_exit afterwards.

-*&7-

Figure 5.2. Monitor for example
€X = monitor,
pr, pn, qn, qx: integer;
pentry, gentry: condition;

p-_request = procedure;
pri= pi‘ + L
choose — . ,
' condztwniqueue(pcntry) N qn = qx: condition$signaKpentry);
conditionfquene(gentry) A pr = pn: conditianfsignakigentry);,
end; . '
~end p_request;

p_enter = procedure;,
if g = qx then condmon!walt(pcntry) end;
pn:=pn.s kL :
choose
conditionfqueue(pentry) A qn = qx: condition8signal(pentry);
condition§queue(gentry) A pr = pn: conditionlslgnal(qentry)
end; C
end p_enter;

q-enter = procedure,
if pr = pn then condmontwalt(qentry)ﬂ end
gn:=qn+ 1 :
choose
. condition§queue{pentry) A qn = qx: copduwntggml(pemry)
conditionfqueue(gentry) A pr = pn: conditwn’ngnal(qentry)
end,
end q_enter;

q_exit = procedure;
qx ==gx + [;
choose e ‘
condmontqueue(pentry) A gn = gx: condition$signakpentry);
conditionfqueue(gentry) A pr = pn: conditionsignal(gentry);
end,; '
end q_exit;

pr, pn,qn,qx := 0,0, 0, 0;
end ex;

-198 -
5.4 Previous state information

When a solution specification contains references to quanititiés riot onlyin the current
state but also in previous states, these quantmes must be mmﬁﬁ&iﬁiﬁ th! 'iﬁonitdr in a

different manner. Specnfncalll. a separate momtor vanable u req&ured for each quantity of

the form "[counf(a:) o gl ‘where g is some glte "ﬂlif’ﬁrlaﬂé of Ety”pe integer saves the
current value of the variable representing couat(ec) in the monitor procédure corresponding
to gate g. That is, it is set in the procedure representing gateg:ﬁyl&g:mng to it the
current value of the variable repthiﬁg coQﬁ«x). it can beuseéil’lfhe boolean
predicates assoc?itediyvfﬂi* cmdmon V;r@!es:h themwﬁyis’:avaﬁabk that represents

a quantity in the current state.

Consider example 7 from Chapter 2, the speaﬁcauon for opeﬁtm pmrmg
(enter _.o bjonhV) - (conhv =>djonhv) Ry :t.:,-—‘-:'

The derivation of the solutiofi specification for this eka

overall solution specification is:

For gate a®™*":

(count(b""") > count(d"'"')) v ([count(a"'"') . d"'"'] < [count(c“"')’. d'“"'l)

For gate boahr S LmI e s et cUnERTY T |
(count(a®™*") 2 count{c®™")) v ({count(b®™*) e c*"*7] < [count(d™")-¢ c*™"))
For gate c*™*".

(count(d®™*") > count(b®*™*)) v ([count(c®™*) e b"“'] < [count(a®™*) e b"‘"'])

For gate d*™*":

- l29 -
(count(c®™") 2 count(a®™")) v ([count{d®™*) e a®™*']) < [count(b®™*") @ a®™e"])

Since the entry conditions do not involve any requesi or exit gates, only four procedures are
needed in the monitor, one for each enter event .class. Each of the operations a, b, ¢, and d
must call the appropriate monitor procedure prior to executing its body. The variables an,
bn, cn, and dn can be used to represent the current counts of the four enter event classes.
In addition, eight other variables are needed to save the values of counts in previous states.
Variable amrd, for example, represents the count of gate a®™*" saved at the most recent
d®™e" event. This variable is set in monitor procedure d_enter to the value of an, which
represents the current value of count(a®*'). Similarly, variable cmrd represents the count

°Mer saved at the most recent d®™*" event. The predicate for the condition variable

of gate ¢
aentry on which procedure a_enter performs a wait operation is:
bn 2 dn v amrd < cmrd.

The predicates for the other condition variables bentry, centry, and dentry are analogous.

The complete monitor appears in Figure 5.3.
5.6 Qualified gates

The remaining issue to be handled is the implementation of qualified gates, which
arise in a solution specification from the presence in the problem specification of predicates
on the arguments to procedure activations. Recail from Chapter 3 the abstract program for

an activation of operation p in a situation involving qualified gates:

-430 -

Figure:5.3, Monitor for operation pairing example, - - ...

pairs = monitor;
amrd, cmrd bmrc dmrcAzntegef o
., amrh, cmrb, bmra, dmra;.integer; .
- aentry, bentry centry, dentry condiuon,

N

M:';{_% . o
a enter = procedure

if (bn < dn . amrd 2 cmrd)zm candition$wait(aentry); end;
an:=an+1;
~bmra :=bn;
dmra = dn;
_choose |, | Ty
) condmonSqueue(aentry) A (bn 2dnv amrd < cmrd) conditwnts:gnal(aentry)
, conditionfiqueugbentry) A {an 2 cn v bmrc < donic). andition§signalibentry); - -
condmoniqueue(centry) Adn 2 b v cmrb < amrb): cendumlsignal(cemry);
conditionfqueye(dentry) A (cn 2:an.vdgua « brara): eon aldentry); .
end;,
end a_enter;

b_enter = procedure;
if (an <cn A bmre 2 dmrc) then condmoniwait(bentry) end
bn:=bn + I; , : ,
amrb := an;
~ cmrb = cn;
~ choose ‘ '
condition§queue(aentry) A (bn 2 dn V.amrd < cmrd): condition$signadaentry);.
condition§queue(bentry) A (an 2 cn v bmr¢ < dmrc): condition$signalbentry);
conditionfqueue(centry) A (dn 2 bn V cmrb < amrb): mdition3sngnal(centry)
conditionfqueue(dentry) A (cn 2 an Vv dmra < bmzak o, Kdentry), -
end; ’
end b_enter;

 c_enter = procedure
if (dn < bn A cmrb 2 amrb) then conditian$wait(centry); md,
cn:=cn + |; -
bmrc := bn;
dmre := dn;
choose -
candatwnkqueue(aemry) A (bn > dn v amrd < cmrd)- conduion!sngnal(aentry),
conditionfqueue(bentry) A (an 2 cn v bmre < dmrc): condition$signal(bentry);
conditionfqueue(centry) A (dn 2 bn v cmrb < amrb): cordition8signal(centry);
conditionfqueue(dentry) A (cn 2 an V dmra < bmra): condition$signaKdentry);
end,

-131 -

end c_enter;

d_enter = procedure;
if (cn < an A dmra 2 bmra) then conditionfwait(dentry); end;

dn :=dn + |; :
amrd := an;

cmrd := cn;

choose

conditionfqueue(aentry) A (bn 2 dn vV amrd < cmrd): condition8signal(aentry);
condition§queue(bentry) A (an 2 cn v bmrc < dmrc): condition$signal(bentry);
condition$queue(centry) A (dn 2 bn Vv cmrb < amrb): condition8signal(centry);
conditionfqueue(dentry) A (cn 2 an v dmra < bmra): condition$signal(dentry);
end; '
end d_enter;

an,bn,cn,dn:=0,0,0,0;

amrd, cmrd, bmrc, dmrc:= 0, 0, 0, 0;

amrb, cmrb, bmra, dmra := 0, 0, 0, 0;
end pairs;

g

- 132 -

request, request
- ’

p in parallel for all gates g in event class p
if v satisfies the qualifying predicate of g,
then increment count(g) by I

enter,

: in parallel for all gates g in event class p*™*",

P
if v satisfies the qualifying predicate of g,

then wait until the entry condition of g is satisfied,
and then increment count(g) by 1

execute body of operation p

P

. in parallel for all gates g in event class p*,

if v satisfies the qualifying predicate of g,
then increment count(p®**) by | |
How this a.bstract program is implerﬁented in a monitor depends to some extent upon the
nature of the qualifying predicates. In all cases, though, it is necessary that each of the
monitor procedures -p_request, p_enter, and p_exit take the same vector of arguments as the
data abstraction operation p itself does. This allows the monitor procedures to test the
qualifying predicates on the arguments, thereby determining which gates apply to an
operation activation. Each monitor procedure implements the entire set of gates for the

given event class.

Qualified request and exit gates are easier to implement than qualified enter gates.
Since these gates consist only of incrementing integer variables, it is merely necessary to test
the qualifying predicate before incrementing. The simplest case involves a predicate
concerning only the arguments to the associated data type operation. A qualified count, like
an unqualiﬁeci one, is represented by an integer variable initialized to 0. The update to this

variable is preceded by a test of the qualifying condition, and is only made if the condition

-133 -

is true. For example, let the qualifying predicate be Q(v), i.e. the quantity to be updated is
something like count([p(v) | ij)]‘”‘“). If x is the monitor variable representing this
qualified count, then the update statement in procedure p_exit is

if Q(v) then x:=xsl; end,;

There may be more than one qualified gate for an event class, in which case a
separate state variable is required for each gate. The update of each state variable x; must
be preceded by a test of its corresponding condition Q;. Because more than one of these
conditions may be simultaneously satisfied, it is important that the tests be made in a series
of statements of the form

ifQ‘-(v) then x; = x; + 1 end,
rather than in one statement such as

ifQ‘l(v) then x| = x| +1
elseif Qo(v) then xg = X9 + 1
elseif ... end,

that could only increment one variable at most.

' A qualifying predicate may be parameterized, and so involve not only the arguments
to the associated operation, but also a parameterizing variable t. (There actually may be
several parameterizing variables ti., but they can be combined into one composite variable t
= <tj, .., t;;>.) For each possible value of t there is conceptually a separate gate, which means
there must be a separate quantity in -the state. For example, suppose tha.lt a solution
sprettication contains a quantity of the form count(p(v) | Qfv, _t)]"‘“). If the parameterizing

variable t were of type integer and could only take values from a restricted range, say | to

-134-

100, then this quantity could be implemented by -an array with: that' subscript range. The
n-th element in-the array-would represent the quantity eoiint({lp(v) |:Glv, WiI*").

In general of course, vanable t is not necessanly an mteger. and it is impossible to

’.*A k
o

know ahead of time all possible values for t. The same ldea can be used in the
implementatien, though; by employing an abstraction: that.captuies:this same effect.: The

parameterized type “counss{F]", where T represents: the type-of 1, contiins ‘counts for all

possible values of £, at-least conespiually, These counts are:zit:set to:0linitially when a new

object. of type-¢ountsiT] is created, and the count: cdrresponding tona: particalar value.ty is

incremented by the operation "incr” with t as argument.

In the actual implementation of the type counts[T]. the count for any partlcular value

,..\, vio o 3ET

of t is created and added to the object of type counts[T] only as it becomes needed The

L

implementation of this type in a Iangua.ge wnth dynamgc agrgys such as CLU is

straightforward. However, the dynamic creation of counts-as they are needed is an

R - i P L PR T R
- implementation detail; users of the type can.ignore this and use thé abstract conception of

all counts that are needed being created as part of the object initially.

" For the purpose of translating a-solutioh Specification into a monitor, each state

variable répresenting a qualified count whose predicate is p#fametérized by variable t'must

be lmplementea by an object of type ‘countslTI A “¢reate” operatnon for this object is

required in the initializatién code of the monitor. The' ' qualifying predicate ‘must take the

form’ qf"é"'fdnéﬁdﬁh elation between variablé t dnd’the- arguments of the procedure

activation, ie. the qualified quahtity must be of the Torm count(fp(v) 1 t = V)M, It is

-135 -

always possible to parameterize a predicate so that at most one activation is non-functionally
related to the parameterizing variable t. This activation should be chosen to be the one for
whose enter event the condition is derived. This means that only one value of t can apply
to any given activafion, and so only one count needs to be incremented. Incrementing the
proper count is accomplished by the statement

; counts[T I8incr(cou, f{v))

where T is the type of t and cou refers to the object of type counts[T].

There must also be an operation “get”, analogous to the “fetch™ operation on arrays, by
which the count for any particular value of t can be retrieved. This operation is used
within the predicates for conditions associated with parameterized enter gates, as e'xplained
below. The quantity

count([p(v) | (t = Rv))I*")
in a solution specification entry condition is implemented by the operation call
counts[T J8get(pexitcounts, f(v)), |

where the object referred to by variable pexitcounts represents count([p(v) | (t = f(v))]***).

Qualified enter gates are more complicated to implement than other types of gates.
Not only must a quantity of the form count([p(v) | Q{v)I"™*") be updated, but first some
entry condition must be satisfied, which means that waiting must be'implemented. - The
simplest case is when there is a single qualified gate for the event class, and where the
qualifying predicate is ohly on the parameters to operation p. Then there is a single
~ condition variable “cond”, just as for an unqualified enter gate. The wait operation on

"cond” is preceded by a test of the qualifying predicate Q{v) as well as the associated

- 136 -

predicate C:

if Qfv) n (= C) then condition$wait(cond); end;

When an enter event class contains more than one gate, each with a different
qualifying predicate and entry condition, then there must be a separate condition variable
for each possible subset of gates whose qualifying predicates may be satisfied by an
activation. The boolean predicate assotiated with each condition variable consists of the
conjunction of the entry conditions on all gates in the subset of gates to which the condition
variable corresponds. An unqualified gate, of course, applies to every activation, so if there
is an unqualified gate, its condition must be part of every predicate. In cases where two
qualifying predicates are contradictory, or where one implies another, some subsets of gates

will be impossible and can be eliminated from consideration.

For example, assume a solution specification contains the following entry conditions:

For gate p*™*": count(a®™e") = count(b*™*")

For gate [p(v) | QI(v)]*™*": count(a"**!) = count(a®"*")

For gate [p(v) | Q2(v)I°™*": count(b®*") = count(c®"*")
Assuming that predicates Ql and Q2 are not contradictory, and that neither one implies the
other, then there must be four separate condition variables. These must cover the
activations satisfying neither QI nor Q2, both QI and Q2, and either one but not the other.
The unqualified gate applies to all four cases, of course. Let variables ar, an, bn, bx, and ¢n
représem the quantities count(a"™®**"), count(a®"*'), count(b*®™*"), count(b™"), and
count(c®™*"), respectively. The predicates associated with the condition variables are then

c0: an = bn

- 137 -

cl: an=bn A ar=an
€2 an=bn A bx =cn
c3: an=bn AN ar=an A bx=cn
The code involving these variables at tﬁe beginning of monitor procedure p_enter(v) is:

if Q2Av) A QIv) A (an=bn Vv ar=an Vv bx * cn)

then condition§wait(c3),

elseif Q2(v) A (- QKv)) A (an =bn Vv bx = cn)
then condition§wait(c2);

elseif (- Q2Av)) A Qiv) A (an=bn VvV ar # an)
then condition$wait(cl);

elseif (an = bn)
then condition$wait(c0); end;

It Ql and Q2 are contradictory, then condition c3 may be eliminated, while if one implies

the other, then either cl or c2 is not needed.

A qualifying predicate on an enter gate .that. involves a parameterizing variable t
presents the mdst difficult implementation problem. Since this construct actually represents
a separate gate for each possible value of t, a separate condition variable is needed for each
possible value of variable t. To implement this, what is required is something like an array
of conditions, but with a dynamic range, so that new conditions can be created and added to

it.

The implementation uses a type called “conditions[T])". An object of this type contains
an object of type condition for each value in its domain. The initial domain of the object
returned by the “create” operation is empty. In general, the domain consists of the set of

values of t that have been explicitly added by means of the "add” operation. The “add”

-138 -

operation creates a new copdition only if one does not yet exiit for the given'value of t, so
associated with each condition is parameterized by the associated value of t, and so is of the
form Cp(t). Notice that while the exact set of conditions is determined dynamically by the
"add” operations, the form of‘ihé'prédiate for each one is fiked, eiccpt for the value of the
parameterizing variable t.

@l

The first step in nmplementmg garameterupd eutepgates

Lv‘

gates in the event class into all possible combmtwﬁlﬁMWﬁying predicates. If
there is an unqualified gate for the event class, then its entry coh&ition “becomes a conjunct
of the parametenzed condmon C (t) thﬁ &oere :'e Zl;:dll;;dug}lg(non parametenzed)
qualified gates, then the same analysis as to posublce fui!)ssgs gfsat;;ﬁec} ga,tﬁg&,’;r;pust;be made
as was discussed above and illustrated by the example involving predicates Q; and Q. As
before, there must be a condition reprelentinig each possible subset of gates through which a
given procedure activation” may ‘pass. * Sifice thére‘éré"paratﬁeteﬁzed" gates ‘this requires a
separaté object of*’ type* ‘conditiohsIT] “for - eaéh combination of f‘zg‘%t'es”"iﬁ*clliding' a
paraitieterized 'gaté.” "Thé remaifilig discussion focuses’ on a smgleobject of type

Sg Ry

conditions[TJ, but notés how'to generalize to'casés involving miny such objects.”

Given an enter gate qualified by some predicate parameterized by variable t, the
 relation R betwéen variable t-and parameter vektér v of the operition being ‘Gualified may
or may not’be a function. Tf it is 3 funition, the'quklifylng predicate takes the form t = f{v).
The condition on which to-possibly wait is thei fourid by callifg the “get” operation on the

objett ‘conds of type conditions{T] with argument f(v). ‘The “gét™ operation, similar to the

- 139 -

"get” operation oﬁ counts[T]), retrieves the condition corresponding to the value of its second
argument. T he code for waiting in the monitor "enter” procedure is therefore:
if (- Cp(f(v))) then condition$wait(conditions[T l8get(conds, f(v))); end;
To guarantee that the 6bject conds does in fact contain a condition for the associated value
of t, the statement
con;iitions[T]Sadd(conds. fv)),

is used to add the appropriate condition to the set of conditions in object conds if it is not
already there. This operation must érecede the waiting statement, a fact | that can be

ensured by'placing it at the beginning of the "enter” procedure.

An optimization that is possible is to only add the condition to conds if a "wait” is
actually performed. -That is, inste'ad of locating the "add” operation at t.he beginning of the
monitor procedure, instead it can be placed inside the tAen clause d‘ the if statement
immediately preceding the “wait”. In addition, after the process finishes waiting on the
condition, i.e. after being signalled, the condition created may no longer be needed. If no
other processes are waiting on the condition, then it could be deleted from object conds.

These optimizations would increase efficiency by keeping the size of conds as small as

possible. However, they will not be performed in the examples here.

Note that in certain situations, the range of possible values of the parameterizing
variable t may be quite limited. If this is so, then it might be more efficient to add all
possible values to the domain of conds initially, and eliminate the need for adding (and
deleting) new conditions dynamically. This optimization, however, relies on extra

information that is not contained in the specification but would have to be supplied in

- 140 -

addition by the specifier. In an actual system, this might be accompiishe’d ‘by having the -

system interact with the user to find ot about the range of vatues of 2 given parameter.

In order to signal the conditions contained in an object of type oonditjons[T]. the type
must have an iterator "domain” for accessing one by one (in an unspecnﬁed order) all vatues

of t for which conditions exist. By nteratmg through these values. all conditions on whach
proce‘scs may be wamng are tested The code for sngnallmg that appears at the end of
each momtor procedure is:

for t:T in condrtnons(T]Sdomam(conds) do
if condztton!queue(condmons['l‘]Sget(conds t)) A Cp(t)
then condition¥signakconditions[T Jiget(conds, t)); end;
. L R T T R X £ T T A
end; '
This serves to signal a procéss on any of the condition queues in conids whose predicates-are
true” “Where there are $everal different “Objects” of type" conditiond{T1 due to different”
combinations of gates with satisfiable qualifying predicites; thew'this iust be generalized so

that the conditions contained ih aff of them are ‘tested %tid" signidMed: (Notice that if the

optimizatiorf ‘mentioned earlier “of ‘déleting* iiineedéd tonditions were applied, then the
implementation of the "domtain® iteritor would have to funiction correctly in a situation in
which conditions could be defeted ‘while the iterator was uspendied due to a “signal™

operation.)

‘For an exarﬁple to illustrate’ the above discussion, stippose - that “the " solution
specification cofisists of the following p&rar‘r‘ne‘teri’iéﬂ entry condition:
For gate [p(y) [y s 1 =p)pner
" countla(x) Ft < I*™y% cotintllqtcl I 6" t)?“')

- 141 -

where variable.t is an integer. Then the parameterized quantities count(lq(x) | (x = 1*™*")

and count([q(x)'| (x =)]**") would be implemented by objects of type countslinteger], as
explained previously, named gentercounts and gexitcounts. They are created conceptually
containing counts for all possible values of t, with all counts initialized to 0, and are

updated by "incr” operations in procedures q_enter and q_exit, respectively.

An object pentry of type conditions[iﬁteger] cari be used to hold the conditions
required. The predicate corresponding to the condition for any tg is given by
countslintegerget(gentercounts, to) = countslintegerlfget(qexitcounts, ty)
~ Conditions are added to pentry by the statement
conditionslintegerl#add(pentry, y+I)
appearing at the start of monitor procedure p_enter, which takes the same parameter y as
operation p. The waiting in procedure p_enter then is accomplished by a wait on the
appropriate condition, retrieved via a "get” operation:
if countslintegerl$get(qentercounts, ys+I) # countslintegerliget(gexitcounts, y+1)
then condition$wait{conditionslintegerlbget(pentry, y+1); end;
The signalling code at the end of each monitor procedure is:

for tinteger in conditionslintegerl¥domain(pentry) do
if conditionfqueue(conditionslintegerifget(pentry, t)) N
counts[integerl§get{gentercounts, t) = countslintegerl¥get(qexitcounts, t)
then condition$signaKconditionslintegerliget(pentry, t)); end;
end,

The overall monitor for this example appears in Figure 5.4.

- 42 -

- Figure 5.4. Monitor for functiomal parameterized example
parafun = monitor; |

gentercounts, qexitcounts: countslinteger};
pentry: conditionslinteger];

q_enter = procedure(x:integer);
countslintégerincriqentércounts, x}; :
JSor tinteger in conditionslintegerl§domain(pentry) do
if condition¥queue(conditionslintegerliget(pentry, t)) A '
0 -coumtslintégir Mger(qehteronunts; T esamsfintegergetiqexitcounts, t)
then condition$signaKconditionslintegerliget(pentry, t)); end;
end; e g 0T s e TS T L s YT : -
end q_enter,

q_exit = procedure(x:integer),
counts(integerincr(qexitcounts, x);
for tinteger in cond|ttons[mt¢ger13domam(pemry) do

if conditionfquenelcon
countsintegerget(qentercounts, t) = cwnts[inuger]!get(qcmtcounts, t)
then tonditiorksigmaKeonditiohstinteger Iy Y, O end;
end;
end q_exit;

p-enter = procedure(y:integer), ~
conditionsfintegerlBadd(pentry, y+1); 4
if countslintegerfiget(qentercounts; y+1) # countslintegerMigetiqexitcounts, y+1)
then condmonfwaxt(condmons{mtegerkget(pentry, y+l); md
for tinteger in coriditionstiv Aty o
if conditionfqueue(conditionslintegerlget(pentry, t)) A
countslinteger Bget(qentercounts; tj « cousitifintegerMiget(qexitcounts, t)
then condition$signalconditionslintegerliget(pentry, t)); end; :

end,
end p_enter;

qentercounts := countsiintegerlicreate();

qexitcounts := countsfintegeriicreate();

pentry := condmons{tnteger‘ikreate(),
end parafun;

-3 -

If the relation R(t, v) that qualifies an gnmg?te is-not functional, then the enter event
must wait until-the entry condition repres:‘egtgd t;y predicate Cp(t) is satisfied for all values
of t such that R(t, v) is true. That is, the entry condition for an activation of p with
argument vector v is given by the formula.

Vi (R{t v) 2. Cp).
This is considerably more complex thar-the entry condition Gp(f(vf)), for the case where the -

relation between t and v was of the functional form t = f{v), as discussed above. -

As discussed above m cbnnéctioﬁ wnth parameterued tjualifying predicates that are
fubrkuctions, information a;bodt the range of poss:blevalues of the parameters could bé used to
optimize the implementation. Suchmformatlon would make a much 1gre'ater difference here
where the predicate is a_nonfunctional relation. In the absence of such information, which
. would have to be supplied by the user maddmon ;a the specification, the ,in}plemgntation
to be presented here must work ynder the assumption that. the.range of possible values of
each pax;arﬁeter is infinite. The re,sulg is a severe penalty in both complexity and efficiency. .’
It will be noted where user-suppliegi Fange mfmtm could. be used to simplify and

optimize the implementation.

An assumption is made here that the predicate Cp(t) is ir‘iitially. true for all values of t
That is, it i; assumed to be something like
count(lq(x) | (x = OF"™*"). = count(lqlx) | (x = I,
rather than . |

count{g(x) [(x = O1*"*) > count(lq(x) | (x = OF™).

If this were not the case, and assuming there are an infinite number of possible values of t

- 144 -

satisfying predicate R(t, v), then the entry condition
ViRt v) D -‘Cb'(t)) S

could never be satisfied, since there would always be some values of t (in fact, an infinite
" number) not satisfying the body of the quantified formuli: ‘Here is ohe example of where
information as to the range of possible values of t would be helpful, since in fact t might
assume only a small number of possible vahies. Iii the absence of an explicit range,
however, the range must be assumed to be' inifinite. - Atialysis to-détermine what subset of
the range could satisfy the relation ARwis qlearly beyro‘r‘td‘_tt‘nre‘ scopeo}f this work. 'The
assumption m;:de: Héfe appears to bé satis:fied for all cases c;f mterest.such as the aisk head

scheduler discussed in Chapter 6, and therefore not to be limiting.

In implementing a solution specification in Which an enter ‘Fate is qualified with a’
nonfunctional parameterized-preditate, we again iise the type conditions{T]. The type T by
which this type is parameterized, however, is not the type of the patameterizing véria"ble t,
but rather the type of the argument vector v, or more precisely of somé sub-vector of v.
The specific sub-vector ctiosen ‘consists of exactly those tomponerits of ¥ that are involved
in relation R, which can be determined by syntactic inspection of R. The type of this

sub-vector will be denoted “vtype”.

Because of the solution specification structure, thef® must be a 'sepérafe condition
variable for each subset of gates that eould apply to a given activation. If processes making
different activations pass through the same subset of gates, then they must do so in’ FIFO
order. This is implentented by haviﬁg"tﬁe processeswait ‘on the same condition, thus

ensuring FIFO order. “n'general, twd activations plv)) and p(vo) wait oh the same subsét of

- 145 -

gates when

vt (R(t, "l) e Rt, v2)).
Ideally, this formula should determine whether two activations wait on the same condition
variable. However, the logical pow.er necessary to perform this analysis in general is beyond

the scope of this thesis. Here again, information about the range of parameter values could

overcome the problem.

The implementation therefore makes a simplifying assumption, which is that two
activations of an operation pass through the same set of gates only if the sub-vector of
components involved in relation R are equal for the two activations. When the argument
vectors to different activations share the sub-vector to which R refers, though possibly
differing in other components, then they must pass through the exact same set of gates.
This means that in the implementation they must wait on the same condition. For this
reason, there is one condition for each value of the sub-vector of arguments involved in
relation R. What is assumed here is that two activations with different sub-vectors always
pass through different, through possibly overlapping, subsets of gates, so that in the
implementation they can wait on different conditions. This assumption is true for the disk
head scheduler of Chapter 6, for instance, and where the relation R is soﬁwthing like

t<X,
where x is one of the arguments in v. This is because if two values of x are unequal, then
there exists some value of t that is less than one but not the other. An example of where
the assumption breaks down is if R is of the form

t = absolute_value(x),

- 146 -
since x and (-x) satisfy this relation for the exact same set of values of t.

The object conds of type condmons[vtype] ls _dlfferent from the cqrrespondlng object _

Yr WEIETTIAGG

of type conditions[T] in the case of a functional relation. 'As before, the object is created -
init‘i(‘aAllly empty, anq condmons are added toit Qynamica“y m the momtor "enter" procedure
prior to the code for waiting. However, since the predicaee aesociaeed witn:eaeh cfondition‘
in conds is of the form o
VYR Y) D Cof,

it is necessary also to maintair a‘record of thése valués-of the parameterizing variablé t that
have occurred, sifice these are the values for iﬁtiﬂﬁfﬁ {0 ﬁhkﬁﬁy ‘asmmptlbh is initially
true, may have bécome Talse. THis is ccoinplishéd by savtn‘g the"set of ‘all relevant values
initially created ‘as the empty Set. Elements are ddded to The sét by the "insért™ dperation.
An “insert” operation must be performed in ‘each ‘mofiftot procedure in which quantities
involved in the pi"edica"t’e"Ci;(t) are liiiditeﬁ; “There’is also’ an ftéritor "elements” for

accessing the elementsof-the set.” =~~~ T

As was the case mentloned earher for tyge condmom{'l"], mformauon from the user as
to the range of possible values of t would permit an optimization to be performed with

respect to the object tset If the range is relatlvely small, then a“ relevant values can be

R i1 -’t..,

mserted into the set beforehand Thns would ehmmate the need to dynamncally insert

R

: . “ w
R ity £

£y div

values. Note that another optimization mentioned in connection with conditions[T], that of
deleting elements when no longer needed\,k_c’anno@ 'jI‘)eapplie(_! to tset, since any value of t that

has occurred may be relevant and must therefore be saved.

- 147 -

The code in procedure p_enter(v) for testing and waiting on the condition in object
conds is given by:

Jor T in set[Telements(tset) do
if R(t, v) A (= Cp(t)) then
condition§wait(conditions{vtypelfget(conds, v)); end;
end,

This code implements waiting on the entry condition-
Vt(R({,v) O Cp(t)).
The required condition is added to conds by the statement
conditions{vtypel§add(pentry, v);

at the start of the monitor procedure.

Notice that the “elements” iterator may be suspended in the middle of execution due to
the execution of a "wait". While it is suspended, new values of t may be added to tset by
other monitor procedures. The iterator must be implemented so as to function correctly in

such a situation.

Signalling at the end of each monitor procedure is complicated. The signalling code
must iterate through all values of z (a sub-vector of v) in conds, for each one testing
- whether its predicate is true by iterating through all.v-alues of t in tset. This code involves
an iterative loop within an iterative loop, with a “signal® operation performed at the
completion of the inner loop if all va-lues of t for which R(t, z) are true satisfy the predicate
Cp(t). (We take the liberty of saying "R(t, z)" rather than "R(t, v)°, since z contain; all the

components of v that are involved in R.) The code is of the form:

- 148 -

for z:vtype in conditions[vtypeBdomain(conds) do _
if condition¥queue(conditions{vtypelfget(conds, z)) then
ok:boolean := true; Ct
Sor tT in setlTMelements(tset) do
L ERED A CCO e
ok := false; end;

if ok then mdumtsigml(cmditimﬁvtypelgﬁ(mds. 2)); end;
end; R '
end;

The boolean variable ok keeps trackof w:hether/ thepregmte _Qp(t) is true for all values of
| t for which R(t, 2) is satisfied. If ok ls still true after the end of the inner loop, then
Vi(R(t z) O Cp(t)), |

is true for the given value of 2, and thérefore the cdhidition should be fignﬂfe&.‘;ﬁotiéé';that

if there is a process waiting on the condition queue fof , there must be at least oné value of
t for which R(t, %) Is trué, bécaiide otherwise there would have been no reason for the
process to have performed a "wait™. As before, in a situation in which there is more than
one object of type conditions[T], the conditions in each such object must be tested and

signalled by code of the above form.

" As an example, consider asolutionspeciﬁcation consisting of the condition:
For gate {p(y) l(y’fﬁt)]'“‘" ; e ' |
count{Tq(x) [(x = O1™*) = countllglx) | x = O

where variable t is an integer. Then as in the ﬁ‘rev‘i'i&*)s‘eiample. count([q(x) | (x = £)]o)

and count([q(x) | (x = t)™" are implemented by objects of :ty’pé; countslinteger], named

gentercounts and’ gexitcounts, respectively. An object pentry of type conditions{integer] is

-149-

used to hold the conditions required, ;hé single argument y. serving as the su.b-vegtor of v
involved in relatioﬁ R. Anobjectbetoftmm‘n}m tﬁe.‘ivahnes of t, to which
values are added by the statement ; |
in monitor procedures q_enter and g exit.. Theomie for waiting in procedure p_enter is
given by | | |

for tinteger in set[mtega]klements(tset) do .

if y<tn counts[intcgcr]tget(qmtercounts, t) *
countslintegergetigexitcounts, t)

th€7l SRS TNP R N SRSt S SR S
condition!wait(oonditionsﬁnugalga(pemﬁ. v)) end;
As before, the required condition is added to pentry at the start of the p_enter procedure by
the operation

| condmms(lutegcr]hdd(pentry. 7):

The sngnallmg code at the end of each monitor promdure is:

- 150 -

for zinteger in cohditidﬁs&ntégefﬂﬁrhﬁﬁ(pm&yy?lé“"’:
 if comditionSquenciconditionsbintegeritgetipanty, 1)) then
ok:boolean := true; !
for tinteger in set[mtcger]ielemcnts(tset) do
if 2<t A’ countsintégerBgaqenitércounts, t) =
~eountslintegeiig atqexitepunts,). -

then ok := false; end;

end;

if ok then cmditbnkiénikééﬁ"""’;""5 wagee(pentry z)) end;

B at -
S S : e

end;
end; R S

The monitor for this example appears in Figure 55.

.

A number of examples of the translatnon techniques discussed here appear in Chapter

R ?T ERE= z S ;:i»f,;*, i)"1 : EE

- 6. These examples actually illustrate thc entire synthws process starting w:th prablem '

specnflcatlons of the type descrlbed in Chapter 2, proceedmg to the constructnon of |
Y(\‘

equivalent solution specnﬁcat:ons via the method presemed in Chapter 4, and finally

translatmg these solution specmcanons into momtors as dlscussed in th:s chapter In
particular, the last example of Chapter 6, the "disk head scheduler”, illustrates the

implementation of qualified gates involving parameterized predicates.

- 151 -

Figure 5.5. Monitor for nonfunctional parameterizéd example

paranon = monitor;

gentercounts, gexitcounts: countslinteger];
pentry: conditions[integer];
tset := set{integer];

q_enter = procedure(x:integer);
counts(integerBincr(qentercounts, x);
set{integerlinsert(tset, x);
for zinteger in conditionslintegerdomain(pentry) do
if condition$queue(conditionslintegerliget(pentry, z)) then
ok:boolean = true;
for tinteger in setlintegerlelements(tset) do
if z <t A countslintegerl§get(gentercounts, t) =
countslintegerBget{qexitcounts, t)
then ok := false; end,
end;
if ok then condition$signalconditionslintegerMiget(pentry, 2)); end;
end;
end,
end q_enter;

q_exit = procedure(x:integer),
counts{integer Bincr(gexitcounts, x);
setlintegerlRinsert(tset, x),
for zinteger in conditionslinteger}idomain(pentry) do
if condition§queue(conditionslintegerl¥get(pentry, z)) then
ok:boolean := true;
for tinteger in setlintegerlfelements(tset) do
if 1<t A countslintegerget(qentercounts, t) =

countslinteger Bget{qexitcounts, t)
then ok := false; end,;
end,; :
if ok then condition$signaKconditionslintegerl$get(pentry, z)); end;
end;
end;
end q_exit;

p_enter = procedure(y:integer),
conditionslinteger§add(pentry, y)
for tinteger in setlintegerlelements(tset) do
if y <t A countslintegerMget(qentercounts, t) =
countslintegerget(qexitcounts, t)

- 152 -

then condition$wait(conditionslintegerliget(pentry, v)); end;
end; :
for rinteger in conditionslintegerl8domain{pentry) do
if condztwniqueue(cond|t|MSUM¢gaW!LX, l» then
ok:boolean := true; SN
Jor tinteger in set[integcr]lelemnts(tset) do o
if 1<t A countslintegerlget(qentercounts, t)

counts[lmegerngucoums. t)
then ok := false; end; , g }
end;
zf ok then mndamus;gpafgcmdnmnsbm,ganget(gemrx. 2%, end;
end; "
end; .
end p_enter;

gentercounts := countshuteg;;}krate()

qgexitcounts := countsintegerl§create();
pentry := condntnonshnteger]‘create()
tset := setlintegerlcueate(); . -

end paranon

- 153 -

Chapter 6

- Complete Examples of Synthesis

6.1 Introduction

This chapter bresents a ser.ies of examples of the complete syntﬁesis method. Each
example starts with a problem specification, and derives an equivalént §olution specification
via the method presented in Chapter 4. This solution specification is then translated into a
monitor implementation in the manner outlined in Chapter 5. The examples chosen for
this chapter are problems that commonly are addressed in technical literature on

synchronization. These are the bounded buffer, two different versions of the readers-writers

problem, with writers’ priority and alternating priority, and the disk head scheduler.
6.2 Bounded buffer

The ﬁrs.t example in this chapter is the specification of example 9 from Section 2.7, the
"bounded buffer”. The problem specification given in Chapter 2 is repeated here, to be
denoted bb:

(depi"‘“ = reml_enlor) A (remi"‘“ = dePhN.M") A

(dep;™™* => dep; ;™) A (rem,”" = rem, ,*"*"). |
The specification bb consists of four oonjuncts, and the solution specification is constructed
by analyzing each conjur;ct separately. Since each individual conjunct is quite simple, the
. analysis is straightforward. For purposes of reference, the four conjuncts are denoted bb,

bb2, bbz, and bb*.

-I54 -

The first conjunct to be analyzed is bby; - ‘
(dep = remy). ir
This conjunct specifies that the i-th "deposit” activation must finish before the i-th "remove”
activation can start. This constraint ensures that no attempt lsevermadetoremove 'é
message from the buffer before it has been deposited in. Since thgge are no argument
constraints in the conjunct, the first step. in the analysis is.the identification of which event
expressions are mentioned. The set of event expressions in the conjunct is. glven by

- Evexplbby) = {dep,™, rem,™],

~ The next step is to construct the possible orderings among the events represented in
the set Evexp(bbl) ‘With just two such events, only two ordermgs are possnble
(l) (dep,"‘lr =5 rem, ‘“'") o
(2) (rem*™*" => dep,*")
In evaluating whether each is valid or invalid, it is obvious that the first is vaﬁd while the
second is not. Equally obvious is the fact the the offendmg event in ordermg (2) must be
the first event, namely rem; ot This means that a soliition speafmuon condmon must be

enter

derived for the rem®™* gate.

Characterizing the state at each event in the rem evant class,. one obtains
characterizations ¢; and cg for event rem;*™* in orderings (1) and (2), respectively:
¢ 3i(countidep™) 2 i A countlrem*™™) < i)
g 3i (count{dep™™) <i A countirem™*") <)
With only one valid ordering, th.e disjunction of valid onfdering characterizations. Dy, is

simply ¢;. Similarly, the ck-isjunction.of invalid ordering characterizations D; is cg. The

- 155 -

preliminary ct;ndition. given by (D, A (- Di»' then becomes
3 i (count(dep®™™) 2 i A count(rem®™®") <i) A
V i (count(dep®™™) 2 i Vv count(rem*™*") 2 i),
which reduces to
3 i (count(dep®™™) 2 i > count(rem®™*")).
The quantified variable i can be eliminated, resulting in the simplified formula
count(dep®™®) > count(rem®"*"),

~ When tested, this condition is found to satisfy the single valid ordering, ordering (1),

showing it to be the correct condition obtainable from conjunct bb;.

Each of the other three conjuncts can also be analyzed quite easily. The second
conjunct is bb2,
(remiexﬂ =3 depj,N.m")-
This prohibits more than N consecutive "deposit™ operations without at least one “remove”
operation, preventing overflow of the buffer. The set of event expressions for this conjunct
is
Evexp(bbo) = {rem;**, dep; N

The two possible orderings are:

(l) (remioxii =3 dePi;N.M")

(2) (depi,N.m.' = remioxii)
Of these, the first is valid, while the second is invalid, with the offending event in (2) being

dep; ’N'""'. A condition must be derived for gate dep®™®".

- 156 -

The state characterizations for event dep;;\;"™ in orderings {1) and (2); respectively,
are given by ¢; and co: R S e -
¢ 31 (countlrem*™2 i Aeoumfdep"""’) < i+N).
o 3i(count(rem®™) <i A count{dep*™) < i+N),
The preliminary condition, (D, A (=~ D)), is equai tO'(éf K

T i (comnitirem®™) 2 i A~ coint(den®™ Y < 1N) A’

V i (count(rem™) 21 V' count(dep™®) 2 isN),
which simplifies to B
 count{em™) > count(dep™*y - N.
This is the correct solution specification condition forconjunct b;bz.ﬁyotice that variable N
in the above formulas is treat?d as a constant, since it is the parameter to the gb}sﬁ;c_:t da;a

type itself. Far this reason, it is not quantified and. cannot be eliminated as variable i is.

The last two conjuncts are identical,’ excépt that ‘bby applies to operation "dep” and
‘bby to operation” “rem". * Therefore, Whatéver condition “is obtilved ‘froni bbby for gate

enter

dep applies in corresponding form for rem®™* due to bby. The constraint specified by

~ each is that activations of the gimupentluh“mnst bé mutuaily exchlsi\;e and must proceed

in first-come-first-served order. This prevents interference by coricurtent activations of the

same operation manipuﬁting the nmelocal data; and guarantees that messages are

. deposited and removed in the proper order. 'Fot-cohjunct bb,,
Evexploby) = {dep"™, Bepiy ™).

The two possible orderings are: | S

(D (dCPi“* = dePg.l“")

- 157 -

(2) (dep;,;*™ => dep,**)
Ordering (1) is valid, but 42} is not. . The effending. m;n (2) is dep;, "'"'. so a condition

is required for gate dep*™e"

The State characterizations for. event dg&,,” i, orderings- (1) and (2), respectively,
aregivenbyqandey: . et Tl
£ 3} (count(dep "")?.LA mnﬁdep"“')s i)
| The preliminary condition, (D, A (~ Dy).is given by dcpn (169l . oo

3i (count(dep™™) 2 i A @

This reduces to simply .

count(dep”™T) = countidep”

which is the correct solution specification. sonditios

correct condition for bb1 is

count(rem*™™) = count{rem*®)

for gate rem*™*", '

The overall solution spec:ﬁcanon for spedimmn bb is amuucned by conpmmg for

W st e As:-:s.«" SRR A R S I AL

each gate the condmom obwned sepauuly fm the ml eonjuucts. Thls obtams

the followmg overall conditlons.
For gate dep""' o
’ oount(rem ') > eount(dep"*") P mt(dep""') - mnt(dep"‘")

_— y
R N ‘{; AV TR ALY 4

- 158 -

For gate rem*™*":

count(dep®™) > count{rem™*) A count(rem*™*)’= count(rem"*")

The monitor to implement this solution specification must have four integer variables,

"), count(dep®™),

depn, depx, remn, and remx, to'Tepresent.the quahtities cotnt{dep®
count(rem®™®’), and count(rem*™®). There also must be two condition va’rial;ies', depebtry
~and rementry, corresponding to theentfy ‘conditions - for ‘gates dep®™* and rem®™*’,
respectively. The boolean predicites associated with these conditions are

depentry: remx > depn - N: A depn ‘= depx

rementry: depx > remn Aifemn % ‘Ferhx |
Since the request events for the two operations are not used in‘the specification, there is no
need for procedures to implement the corresponding gates. The monitor for the bounded
buffer is presented in Figure 61. Since the intention is for ‘the monitor to be contained
within the type module for the abstract type buffer(N), the Viridble N inside the monitor is

bound to the parameter of the type.
6.3 Writers’ priority database

The second example in this chapter is a probiem that was iptrodt{qceﬂ@ﬂin}[Cou?l]., The
data abstraction in quéstion is # ditz;baﬁe, on whig:h_ two qpex_'rationusuare defined: “read™
accesses the database wnthout cl‘l;n‘ging it a¥ all, am;.l "'wr;lte" «upda.tes the d‘;:tabase: | In orrde‘r”
to ensure consistent accessing and updating, these two opera,tioqs must obey the
"readers-writers” property embodied in example 3 of Sectton 2‘77 In ;gl:iitipn. the scheduling

" policy desired is for activations of operation “write” to have absolute priority over those of

- 159 -

Figure 6.1. Monitor for bounded buffer

bb = monitor;
“depn, depx, remn, remx: integer;
depentry, rementry: condition;
dep_enter = procedure;)
if (remx < depn - N v depn = depx) then condmontwalt(depentry). end;
depn := depn + I;
choose _
conditionfqueue(depentry) A remx > depn - N A depn = depx:
condition¥signadepentry),
condzuoniqueue(rememry) A depx > remn A remn = remx:
condition$signaKrementry);
end;
end dep_enter;

dep_exit = procedure;
depx := depx « |;
choose
condition§queue(depentry) A remx >depn - N A depn = depx:
condition8signaKdepentry),
condition§queue(rementry) A depx > remn A remn = remx:
conditionfsignaKrementry);
end;
end dep_exit;

rem_enter = procedure;
if (depx < remn V remn = remx) then condition$wait(rementry); end;
remn := remn + I;
choose
conditionfqueue(depentry) A remx > depn - N A depn = depx:
condition§signaKdepentry),
condition§queue(rementry) A depx > remn A remn = remx:
condition$signaKrementry);
end;
end rem_enter;

rem_exit = procedure;
remx := remx + I;
choose
conditionfqueue(depentry) A remx > depn - N A depn = depx:
condition§signaKdepentry),
conditionfqueue{rementry) A depx > remn A remn = remx:
condition$signaKrementry);

- 160 -
end;
end rem_exit;

depn, depx, remn, remx := 0, 0, 0, 0;
end bb;

- 16l -

operation “read”, in order to ensure that each "read” operation accesses the most current
version of the database. Therefore, to the “readers-writers” specification of example 3 must
be added an instantiation of the priority specification embodied in example 4 of Section 2.7.
The overall specification is the following, to be denoted wpdb:

((writei'"'" = writej'“"') o> (w_ritei"‘“ = writej'""')) n

((write,”" = read; ™) v (read,"™* = writei'"t")) N

(write;" ™" = read ™) > (write,"™" =5 read,*"")

The specification contains three conjuncts to be analyzed. Of these, the third conjunct
has aiready been treated in detail in Section 4.2, with the names “p” and "q" used for the
operations instead of "write” and “read”. By the analysis in that section, this conjunct
contributes the condition

count(write"™™**) » count(write®*")

to the gate read®™®".

The other two conjuncts of the specification remain to be analyzed. They will be
referred to as wpdb; and wpdby, respectively. The first conjunct wpdb is
((write;*"*" = writej‘“"')) (writei““ = writej""")).
As with the bounded buffer example, there are no argument constraints in this or any other
conjunct. The set of event expressions contained in the conjunct is
. Evexp(wpdb)) = {writei"'"', writei““. writej"'"'}. _
There are three possible orderings among these thfee events:

(1) (writei'""' => write.-"‘"' => writej"'"')

(2) (writej"'"’ = writei"'"' = writei"'a)

- 162 -

(3 (wnte wnter’ = wntej‘""' = write, ""')

When ordermg (l) is subsmuted mto the conjunct wpdb‘, the result is the formula (TRUE =)

TRUE) or snmply TRUE so that ordermg (l) is vakd Ordenng (2) :s also vahd since it

evaluates wpdb, to the formula (FALSE > FALSE) Wthh slmllarly reduces to TRUE

Ordering (3) subsututed into wpdbl evaluates to (TRUE > FALSE) or FALSE so that

ordering (3) is invalid.

Comparing invalid ordermg (3) with the valid ordermgs (1) and (2), the longest

matchmg prefnx is the one-element sequence [wrnui'“*l matchmg ordermg (l) The

offending event in (3) is therefore the event foilowmg thls preﬁx, which is wnte """ Thls’

]
means that a condition must be derived for the wnte“"' gate

The state must be characterized at. the point-of each event in the write®™* class that

either occurs within a valid ordering or is the offending event in an-invalid .ordering.

There are five such events, write-"‘"' and write.*™ in each of the two valid orderings (1)
J g

eeeeeeee

characterization at event wnte ot ; in ordermg (l) as ch.' t T
g 3G j) (count(wnte"‘"’) <i A count(wffte"“") < 1 A veount(wrlte“") < i)
q j: 3 (n) (count(wnte""") > in count(wme'“‘") < J /\ count(wme"‘") > l) ”
coj 3. j) (count(wnte'“"') <i A count(wnte""") <j A count(wnte"") <1i)
coir (G, j) (count(wme""") <in count(wnte""")> j A eount(wnte"‘") <)

= i 3, j) (count(wnte’”'") >| N count(wnte'“"') < J n eoum(wnt I“‘) < |)’ }

- 163 -

The four characterizations. from the valid orderings are disjoined to form'Dv:

3 (i, j) ((count(write®™*") < i A count(write®™®) < i) v count(write®™*) < j)
Since there is only one invalid ordering, the disjunction of the invalid .ordering
characterizations D; is simply c3,. The preliminary condition is given by (D, A — (D))

3 (i, j) ((count(write®™®") <i A count(write®™) < i) v count(writ.e'“"-’) <)) A

v (i, j) (count(write®®) <i v count(write**") > jVv count{write®™®) 2).

T his reduces to
V i (count(write®™) <i v count{write®®) > i),

which in turn simplifies to

count(write®*") = count(write®™").
When this condition is tested for both write®™® events in each of the two valid orderings, it

is found to be satisfied in all cases, showing that it is the correct condition.

The other conjunct in the specification is wpdbo:
((write,”™ = read;*™*") v (read, "™ => write;*"*")).
The set of event expressions contained within wpdb, is given by
Evexp(wpdbo) = {writei"'"’, writei"‘“, readk"‘"', readk"‘“}.
There are six possible orderings of these four events:
m writei"""' = writei"‘i' => raqk“"’ = readk““
(2) read, ™" = readk"‘“ => writei"'"' =3 writei"‘“
3) writei““" = readk"'"’ = writei"‘“ = readk"‘“
(4) write;*™*" = read, *™*" => read; " => write;*"

(5) read; *™*" => write,"™" => read, """ = write,"*

- 164 -

(6) ready *™* = write; oeher oy vrriw;"‘ #fudk"‘v

% "*, Ay - e .

Whe;u wpdby is evaluated for each of these ordermgs. the results for ordenngs ® and
@ are e (TRUE v FALSE) and (FALSE v'}TR:lVJE) rcspeqwely mh of which equals
TRUE This 4means that ordermgs (l) andA (2) are vahd ‘For a.ch o the other four
ordermgs thc resultmg formula is (FALSE v FALSE), whmmh\ FALSE. showmg each'

Ve 8 Wil

of these ordermgs to be mvahd

The next step is‘to identify’ meéﬁendmg"cvm‘fnacﬁoﬁﬁe four invalid orderings.
Both orderings (3) and (4) match valid ordering (i) as far as the ?irit’é\?glt,wntel‘““' “The
. offending event in each is the second’é¥eént, Which T BotK cases is read; *"'*". Similarly,
orderings (S)-anid (6 both matchiorderiig (2] as fa¥*ad Te first Waht: f#4, ™, b that the
offending event iffeach casé ‘8’ wﬂnq““,’“ﬁ’rm%t’ﬁ%‘mumg Soliition

specification conditions must be derived for two gates, read‘“"'andyn}!"" ': oy

ER 2L T

In order to derive fhie condition for gale read™* it is necisiry to characterize the
state at certain events in the read®™¥ ciasi. Thé events ifi tHe clss occurring in valid
orderings are the ;r"eadk“"' events m}ordeﬂugs(l)“hn& &Y’fﬁé’ﬁﬁmd‘mg events in the

¥) and @) Derioting these

class are the occurrences of readk"‘"’in

PR

characterizations as c,r,;ez;m tﬁq are <
G 3G % (count(write®™) > i ‘A cotnt(write™) 3§ A
" count(read™™) <k A countlréad® < K)'
| Copt 30, K) (Count{wiRe™) < i ;A éont(writd*™) <
' ennt&ud"')<t A countlriad* ™ &y -

- 165 -

¢y 3 (i, k) (count(write®™*) > i A count(write®™) <i A
count(read®™®) <k A count(read®™®) < k)
gt 3 (i, k) (count(write®™*) 2 i A count(write®®) <i A
count(read®™®) <k A count(read®™) < k)
The two disjunctions are given by Dy = (¢, V ¢9,), and ; = {c3, V 4):
Dy: 3 (i, k) ((count(write™*) 2 i A count(write™) > i) v
(cohnt(write'""’) <i N count(write®™™) <i)) A
count(read®™*) <k A count(read®™) < k)
D;: 3, k) (count(write®*) > i A count(write®™®) <i A

count(read®™®) <k A coul'lt(read"‘“) <k)

The preliminary condition is formed by the expression (D, A (- D)),
3 (i, k) {((count(write®™*) 2 i A count(write™™) 2 i) v
(count(write®™*) <i A count(write®™ ™) < i)) A
count(rud"'";) <k A count(read®™™ <k) A
¥ (i, k) (count(write®®) <i v count(write®™) > i v
count(read"“'.'-) 2k v count(read®™™) 2 k).
This can be simplified to
V. i (count{write®*) <i v count(write®*?) 2 i),
which in turn is equivalent to
coun.t(write"‘"') = count(write**").

. This condition satisfies both valid orderings (I) and (2), and so is correct.

AT A

=166 -

Because of the symmetry of the specification wpdbe, agdsthergfpre of the orderings,
the derivation of the condition for gate write®*-is completely isomorphic to the above
derivation. Rather than repeat essentially the same derivation, I will simply state the result,
that the condition for gate write®™*" as a result of this conjunct is

count(read®™®") . count(read®").

The overall solution specuﬁcatlon for specnflcatlon wpdb is constructed by conjoining
the conditions from the mdmdnal con_;uncts The compostte condmons are:
For gate read®™*":

count(wnte""“'*‘) count(wnt ortery A coum(wnte""") count{write®*)

g

For gate write‘"f": '

count(write™) » count(write™) A countiread™") = count(read”"")

In the monitor into whici\ thlssolutnon spxlflcatlonis &anshted,;thcre must be integer
variables wr, wn, wx, rn, and rX, representmé count(wme"‘"‘") count{write*™*"),
count(write®*"), count(read"’"'). and count(read"”) respectlvely "There must also be
condition variables wrnteentry and readentry correspondu;;»t;s yth,e conditions in the solution
- specification. Their associated boolean predlcatu are o

readentry: wr =wn A wn = wx

writeentry: Wn = WX A I =rX
Notice that count(read"™**!) does not appear in the solutlon specnﬁcatlon 50 that no
variable is needed for it, and thus a prdcédu& read_rquat is not required. The resulting

monitor appears in Figdre 6.2.

Ty i ek RREGNR L

- 5T

-167-

Figure 6.2. Monitor for writers’ priority database

wpdb = monitor;
Wr, wn, wXx, rn, rx: integer,;
readentry, writeentry: condition;

write_request = procedure;
Wr = Wr + |;
choose § s
condztzm'queue(rgaéuury) A pg- vm,A wn = wx:
condutontsignal(mdu\try).
conditionfiqueue(writeentry) A wn = wx A I =rx:
condition§signalwriteentry),
end; P
end write_request; '

write_enter = procedure,
ifan=wx V = rxummdmon!wt(wﬁtmtry).md
wn = wn + |;
choose
conditiontqueue(radenn'y) A Wr=wWn A WNn=WwX
conditiondsignaKreadentry);
conditionfqueue(writeentry) A wn = WX A .rn = rx:
condition$signakwriteentry);
end;
end write_enter;

write_exit = procedure;
wX :=wx + [;
choose
conditim!queue(radmtry) A Wrs=wn A wWn=WwX:
)3
' candmoum«(wnma\uy) A wn=wx A m=rX:
condition$signaKwriteentry)
end;
end write_exit;

read_enter =~ procedure,
if wr * wn vV wn * wx then conditiondwait{readentry); end;
m:=ms+l
choose ' :
condition§queue(readentry) A wr =wn A wn = wx:
condition$signareadentry);
conditionfqueue(writeentry) A wn = wx A rn =rx:
condition$signawriteentry);

- 168 -

end;
end read_enter;

read_exit = procedure;
rx = rx + 1
choose :
conditionfqueue(readentry) A wr =wn A wn = wx:
condition§signal(readentry);
conditionfqueue(writeentry) A wn = wx A rn =rx:
condition§isignal(writeentry);
end;
end read_exit;

wr, wn, wx, rn, trx := 0,0, 0,0, 0;
end wpdb; '

- 169 -
6.4 Alternating priority database

The next example is a variation of the previous one. Again the data abstraction is a
database, with operations “"read” and "write” obeying the "readers-writers” property. In this
case, though, the relative priority of the two operations is to alternate, so that in a situation

in which activations of both operations are being continually requested, the result is that

. first a single "write” activation executes, then all waiting “read” activations, then the next

"write", etc. This scheduling policy is the one followed by the readers-writers example in

[Hoa74], and is referred to as the “fair database” in [Gre75).

The specification for the “alternating priority” database is given by:
(write;"™*" => write™™") > (write;”™ = write™*) A
(write,*" = read, *™*") v (rudk"‘“ = writei""")) A
((write;*™®" = readj'“‘“’“ => write;”") D (readj""" = write; ‘l"“")). A
((write; ! = readj""""' => write;*"'*") D>
im (radj"""'" = writem"“ = rmdj""")).

The first two conjuncts express the “readers-writers” property and are the same as for the
previous example wpdb. The analysis of the previous section need not be repeated here.
The last two conjuncts state the “alternating priority” property. The third conjunct apdbs
requires a “write" activation to wait to enter until all "read” activations that were requested
during the execution of the pfevious "write™ have done so first. The fourth conjunct apdb4
prevents an activation of “read” from entering until an activation of “write” has exited,

assuming that there is at least one “write” that is waiting at the point at which the “read” is

requested. This prevents new “read” activations from continually entering. Solution

- 170 -
specification conditions must be derived Tor these two cenjuncts

The first conjunct to be analyzed is apdby:
((write,*™"" = readjm"'ﬁiwrltei““)' 5"(r€idjm = write; ,*"*"))
The set of event expressions in the coRjunct'is’

Evexp(apdb,) = {write;***", write,"", write; |****, read "%, readj"""}‘.

i+l j
With these five events to be ordered, there are eightéén possible orderings. They appear in

Figure 63,

When each of these orderings ls used to evaluate the Wﬁatim apdbg, ;)rderings m
through (15) are found to be valid, while orderings (IG%’through"(:I&) are invalid. Since
ordering (16) matches ordering (1) through the first three events in each, the offending event
in (16) is the fourth event write;,**". Each of the other two invalid orderings (I7) and (18)
matches orderings (1) through (3) as far as the fifrst tWo events, 30 the offending event in

each is the third event, also write; l""" This means that a condition must be found for

1+

" gate write®™*",

enter

The characterization of the state at the point of the offending event write; |°" in

orc%ering (16) is givgn by:
3 (i, j) (count(write®™*) 2 i A count(write"“") <(i+) A gount(yvrite""') 2i A
count(read"* ™) > j- n ct-mng(mci"‘f") < j).
The characterizations ‘for orderings (l‘f) ;ﬁd (!8) are identical, ngfnely

3G,) (count(write®™®) > | A count(wriu‘f“") <(i+1) N count(wf!';e°‘“) < in

count(read™™*!) > j A count(read®™*) < j).

Figure 6.3. Possible orderingszf_o,r apglb,_ L

(l) wnte enter = readjw =) writg “" = m}m =2 Hmtei,]

(2) write,*™* = readj""“'" = mdj""' => write,™ => write; ;"""

(3) write; ™= =5 read, ™™™ = riad P b White], = write,"" |

(4) write; ™" = write;™ = read """ =y read ™ =3 write; "

(5) write,®™*" => write;”™* = mdfmwm o o read ™™
(6) write,*™* => write;"™ => write, " = ;qdl'""“’ = read;"™">
(7) read "™ = read; "™ =5 write,™ = writa®™" = write; ;"

(8) read;"*** = readj""" = write;*" = wrium => write,”"

i
(9) read; J""“"' => write,*™* => readj""' = wme‘ = write; l"'"' ‘
(lO) read j"""‘" =» wrltei“'"' =5 read j write' d => write,”*

(1) readj"""'" = wmc""" = wriacm"'" =5 mdj"'"' => write; oxit

(!2)read"""'"=>wnte"""=?wrium -awmei"“=>md“"' - '

J J

(13) readj""“'“ =5 write; ™ =5 write, ¥ @mdf‘"’ => write M"""

© (14) read ¥ = write, " wuaqﬂ'? = write; ,,*" aswj
(15) wntei""f" = write; 4 erler —» wmg jw = mdj”"'

(16) write,*™* = readf"““':pwn% = wﬂu,.,"‘" 2 read"

(17) write; -f=)de """"%df""‘!m& =—'M'ea(l'l

(18) write, "™ =» read ™™= =» write) [~ =» regd ™" = write,"™*

-172 -

The disjunction of these two characterizations is equal to D;:

Dj: 3 (i,J) (count(write™) i A Gountiread™ > | A counit(read®™) < j).

The state also must be characterized. for ﬂenuwrmi'e"'i"mdwme,,f'“" in each of
the 15 valid orderings. Tm;means th&t mmmmmnmm be formed.
However, ‘iany of the characterizations for different ordetings are identical: In fact there
are only nine distinct characterizations, wbu:ﬁ are Ilsted here: '

(a) 3 (i, j)f(count(wnte""') 2in count(writeﬁ“)<(| RV, count(wnte"") 2i N

| | couﬁt(read"’“‘;') > j A count(read"“") 2 j) C

(b) 3(1 JJ) (count(wnte""") >| A coum(wrnte'“’") (I “ l) A coum(wnte"‘") Zi A
coum(read""""') > j A eoum(read"'"') <j)

© 3G, (count(wme'“"') 2i A nount(wnte""") <(iel) A mg;(write"") 2inNn
couut(read""“‘“) <j A Mm@"""} -

(d) 36, j)(couat(wﬁté'""')« A countiwrite®™) < (i 1) A “count(wriee™) <i

| Eount{read ™™ i} ‘A countirend™eg i) -
(e) 3 i,])(coum(wme"!"')n A colmt(ivrité"’“') <*§i ‘1) A mht(write""') <i N

’ count(read""‘"‘#‘* j A wunt(ré&”"") <])

o Ry &xf‘;{.:g

® 3G, ﬁ (cognt(wr.te""") <in coun«wme"“") <isl) A coum(wme?"') <i N
count(read"™***) 2 j A count(read®™*) 2 j)

(g) 3 (i, j) (count(write*®™) 2 i A count(write®™®) < (i + 1) A count(write™™) <i A
-count(read""“'") 2 j A count{read®™*) 2 j)

(h) 3 (i, j) (count(write®™*) 2 i A count(write®™®) < (i + 1) A count(write™) <i A

count(read"*®*!) > | A count(read®™*) < j)

-1713 -

(i) 3, j) (count(write®™®") 2 i ‘A count(write‘“"’) <(i+ I) A count(write"‘“) <i A
| count(read™™**) < j A count(read*™*) < j)
The disjunction of these nine chardcterizations is Dv, which reduces to:
Dy: 3G, j) ((count({write®™*) 2 i v count(write™") <i) A

(count(read™™**) > j v count(read*™*') < j)).

The preliminary condition is (D, A (- Di‘)).
| 3G, j ((count(write"i"’) 2i v count(write®™) <i) A
(count(read™™**) 2 j v count(read®™®) < j)) A
V (i, j) (count(write®™*") = i v count({read™™**) < j v count(read*™*") 2 j),
which when simplified reduces to:

count{read™™*) = count(read*™*").

This condition must be tested for both write‘“."' events in each of the fifteen valid
orderings. In doing so, it is discovered that the condition is not satisfied for the following
events:

write;*™®" in orderings 13 and 14

write; ,;*™*" in orderings 5, 11, 12 and I3

An event must be found that precedes each of these events, as well as the offending
event in each of the invalid orderings. The only such event is readj"““‘". The state is
therefore characterized at this event in each of the orderings in question. In ordering (5),

the characterization at event readj”"“'" is:

-174 -

3G, j) ([coynt(write"‘“') eraad™ ™2 i n
[count(write®™*) @ read™ ™™ < (i + 1) A
[count(write™) o read™ 2 | A
[count(read™ ™) ¢ read™ ™ < j A
[eo‘um(réd‘“"')c read"™ ™).« §)
In each of the other valid orderings in question, it is:
3, j) ([count(wnte'“"') e read""""‘) <i A
[count(wnt "'") e md"""'"] (1 o) A .
[count(write* I"') e md"""‘“] <i A
[count(read"*"")- rcad"""“‘] <j A
[count(rad""") . read""“'"] < j) |
This means that the formula D’ is given by the dlSjunctlon of these two, or:
| D" 3 (i,)} (countiwrite™*") o read™ ™} 2 i A
[countiwrite™) @ read™] 2i) v -
([count(write®™*) @ read™ ™'} < i A
[count(write™) @ read™ ™) < i) -
[count(write*™*) @ read™ ™™ < (1 +) A
[count(read"“”"') . read"“““] <j A
[count(read""") . read""""’] < j)

. The characterization at readj"""’" in uch of the thrce invahd ordermgs is the same,

-m:-

-3,) (oount(write?™") @ yead P 2.i:n
. feount(write®)@ read™ ™} <.i):

- fcountiwri '

WMO mﬂ'ﬂ"“’] <jn

This formula is therefore.Dy.. The weakening term-is fermed by D’ n{~ Dy’):

G, ,) (([count(wme""") . md"""] 2in

[oount(wme"") . md""“‘"] > l) v

| ([eonnt(wrihe""’) . rud"“""]
[eount(wnee"')omd"""]d) A
| ?~ [eount(wme"'"');}eld"“"‘” l<(iol) n)

[count{read®™) e
v, j)«hu-mw
[MMQMR &y o

When snmphﬁed this reduces to:
| o [eount(wmt""') ° read""“"] - Seunt(wme"‘) . rend"'“'"l

-176-

This weakening term is tested in each of the six events in valid orderings for which
the preliminary condition is notsatisfied. It is found-that the weakening term is satisfied in
each case. Therefore, disjoining the weakening tefm to the preliminary condition obtains
the correct condition. The condition for gate write®%r from: confunct apdb, is:

co"nt(mam")ﬁ-'enunmt v

[count(write*™*) @ read™™**!] « [count(write™") ¢-read]

This condition makes sense lntumvely The ﬁrst dis]unct states. that there are no
unfuifilled requests for activations of "read”. The second uys that the most recent request
event for “read” took place at a pomt at whxch no acttvation of “write” was active.

Therefore, a "read” activation is a!lowed to proceed ahead of the next waiting "write”

activation if it was requested durmg the previous write activation.

There remains conjunct apdb to analyze:
((write, "% = radj"""i"‘# vﬁq""") >
3 m (read j""""'"&t%wri@em"%u&mdij‘“’")).
Unfortunately, the analysis of this conjunct ‘is -even more ‘complicated than that of the
previous conjunct, owing to the: fact that there are 30 possitsle orderings of the 5 events
contained within it. These wmdélngsfin'ﬁued in ‘Pigure 6.4
Rather than go through the deta:ls of the derlvatlon. the complete process will simply
e .,
be summarized. Of the 30 ordenngs. the ordermgs numbered n through (23) are found to
be valid. Orderings (24) through (30) are invalid, with the offending event in each being

read,*"'*". A condition must therefore be derived for gate read®™®. When the preliminary

-i77 -

Figure 6.4. Possible orderings for apdb

() readj""“‘s‘ => write; "% = write;*"*" = write,*" => read j"'"' '
(2) read j"““"" = writei"""‘s' = writei'“"' = readj"“" = writem"“
(3) read, ! = x\rritei'e""‘“"t = readj"'"' = writei"‘"' = writem"“
(4) read/*%*s! = read ™' = writei"""'" = writei"'"' = writem"“
(5) read,"**® => write;"*"**! = write,,"" = write;*"*" => readj"'"'
(6) read,"*™** = write, ™" => write;**** = write;*"*" = readj"""
(1) read ;%" = write " = write;"*"** = radj""" = writei"‘"'
(8) read, ™% = write;"*"**! = write,,,"™ = readj"’"' => write;*™*"
(9) read,**%! = read j"‘"' => write; """ = write,,"" => write;*"*"
(10) read j""""" => read j"‘"' => write,"™" => write;*™**" = write,*""*"
(1)) readj"‘""”l = write, ** = read """ = write,"*™** = write;*"'*’
(12) read j’““f‘ = writei"""’s' = readj"'"' =) writem"“ = writei'""'
(13) write ** = read."®9**! = read *"** = write{‘"“"' = writei"‘"' ‘
(14) write,,** => readj""""" => write,"* ™! = readj""" => write,*"*’
(15) write, * => read "9 = write,""** = write,*"*" = readj"'"'
(16) writem"‘it => writei"""'s' = writei"‘“' = readj"“"'" = readj"'"'
(17) write;"***! => write, ®* => write,""* = readj""""' = read j"'"'
(18) write;" ™% = write,*™* = write,""* = read-""f' => read j'“"'.
(19) write;"*™**! => write,"*" => read,""™** => write,,"" => readj"“‘,'
(20) writei"“““' = writei"‘"' = readj"““'" = radj"'"' = writem"‘“
2n writei""“"' => read "™ = writei"'"' = writem"“ = readj"""
(22) write;"*7**! = read request writ_em"i' = writei"‘"' =3 readj"'"'
(23) write; %" = readj'“""' => write ™ = readj""" =5 write,*"*’
(24) write;*™**! = read "*™*! = readj"‘"' => write,*™* => write,*""*"
(25) write;"* %" = r&dj"“"'" => read j""" => write;*™*" => write,***
(26) write;"*™**! => read "™ = write,""* = mdj"‘"' => write "
(27) write;"**** => write_ *" = readj"""‘“ =5 write;*™* => readj"'"'
(28) write,"*™**' => write, *" = read j'"""" = readj"'"' => write,*™*"
(29) write, "™ = write,”®** => read j""“'" = write*"* = mdj'“"'

(30) Writem"‘“ = writei""""t => readj"“"‘" => radj"'"' = writei"'"'

v Gmme o G, Gomme s G

[

-178 -

condition is formed, it reduces to FALSE. This is the extreme case of an overly strong

condition, in thar none of the 2 vahd orderings u allowed

The onl;, eveﬁt that preg;egles radi""“' m all 30. orderi;ngw%s -read; "“""‘ The
weakening term obtﬂmﬁ by corisidering the state at event readi alone is:
[count(wnte"“""') e md""“"‘] [eount(wme""") e md"“""’l
This condition is satisfied by. vahd ordermgs) through (20) but not (2‘7 through (23).
This means that the cham:teruations of both the current state and the prev:ous state at
© read;"***! must be:used at the same:time t6 obtain :nothet mkehing term for these three
orderings. The weakemng term obtamed is | L o
[cwnt(\vrizze"“) . md"‘"‘”] <couwt(\mn9'“)

which is satisfied by each of the ordermgs (21) through (23) e

The solu__t.ion»- specif_icagiqn, condltlon ,for ,‘;:agt,e' md""" _from thisconjunct is therefore
the disjunction of the two wegkening terms:
[count(write"*®**!) ¢ read"*et] . [eount(wrm""") e rad""""‘] v

(fcount({write®*) o read™ %] < countiwrite®™*)).

Agam thls condition makes mtultive sense. The ﬁrst disjunct states that no actnvatuons
of “write” were reguested but- wamng at the point. at Wieh ,;he “read”- anda ;pns!deratlon
was requested. The second says that some activation of wfte has exlted smce the point at

which this read was requesed One of these must be maebet‘ore thg M can enter.

-179 -

The overall solution specification for specification apdb is given by the conjunction of
the individual conditions obtained for each of the four conjuncts:
For gate read*™*":
(count(write®™*") = count(write®™)) A
((lcount(write™™*sY) @ read"™**!] . [count(write*™*) @ read“‘"""]) v
(lcount(write™") @ read™™**!] < count(write®™")))
For gate write®™®":
(count{write®™*") = count{write®)) A
(count(read®™™") = count(read®™*)) A

((count(read™™**) = count(read®™*")) v

([count(write*™*") @ read"*™**] = [count(write®") @ read"™**'))).

The monitor implementation of this solution specification requires three variables wr,
wn, and wx, to represent the current values of count(write™™**), count(write®"*"), and
count(write®™™), and three variables rr, rn, and rx, to represent the values of
count(read"™*%) count{read®™*"), and count{read®®). In addition, three variables are
required to save values at a previous state: wrrr for [count(write™™**) @ read™™**'}, wnrr
for '[count(wr‘ite"“"') @ read™™**'] and wxrr for [count{write®™®) @ read™**'] The values
of these variables are set in the monitor procedure read_request corresponding to gate
read™™**! by saving the values of the variables representing the corresponding current
quantities. For instance, variable wrrr, ii'epresenting [count{write™™**) @ read"™™**'], saves
the value of wr, which represents count(write™™**). The two Ot;ndition variables, and their

associated predicates, are:

- 180 -

readentry: wn = wx A (Wff = wnir V wxrr <wx)
writeentry: wn = WX A =tk A (fr=rn V wnrr = wxrr)

The monitor that is obtained appears in Figure 65.
6.6 Disk head scheduler.

The final example of this chapter is the “disk head ‘scheduler™ problem. Actually, the
specification used here is a simplification of the actual disk headscheduﬁng :st'peciﬁcation
that appears as Example 14 in ‘Section z?f""fﬁ‘e réaf ‘disk head scheduler keeps the disk

head sweeping in one directitn uftil all requestéd-dcdésses in that direction have been

made, then reverses the directibn and repeats. Accmses iré made as the requested tracks are
. encountered in the sweep, 5o’ that the next track to'bé accessed is the ‘One that is closest to
the currently accessed track in the direction being swept. The simpiification here involves
d:sregardmg the dlrecuon in whlch the d|sk head ls swupmg We amply wish that the
next track to be accessed is closest to the currently accessed track of an reques:e;i tracks in a
‘ gnven dlrecnon The requlrement that, the dlsk head Sweep. contmuously in.qne direction
untll no further accesses have been requested in that dr_ui':ection is omitted Thls allows the
specnfucatlon to. be consuderably slmphﬁad (thwgh it Mvmgoduces the posslbnhty ot

starvation, as noted in Chapter 7).

We assuime' here that accessing a disk tHck is accomplished by means of an operation
named "a® on the “disk” ditd type. This operition takes a single parameter x of type
"track -no", giving the value'of the track number béing ‘accessed. ‘Activations of “a” must be

mutually exclusive, since only one access can occur at a time. The first conjunct of

- 181 -

Figure 6.5. Monitor for alternating priority database

apdb = monitor; -
Wr, Wn, WX, IT, I, IX: infeger;
WITT, WNTT, WXIT: integer,
readentry, writeentry: condition;

write_request = procedure;
wr:=wr+|;
choose
conditionfqueue(readentry) A .
wn = wx A (wrrr = wnrr V wxrr < wx):
condition$signaKreadentry);
conditionfqueue(writeentry) A
WRn=WX A Im=rx A (Ir=rn V wWnrr = wxrr):
condition§signaKwriteentry);
end,
. end write_request;

write_enter = procedure;
ifwn=wx Vrm#rx & (Ir#r A wnrr # wxrr)
then condition$wait(writeentry); end;
wn = wn + [
choose
conditionfqueue(readentry) A
wn = wx A (wrrr = warr V. wxrr < wx):
condition$signaKreadentry),
condition$queue(writeentry) A
Wn=WX A rn=rX A (IT=rn V wWnrr = wxrr).
condition$signaKwriteentry), '
end,
end write_enter;

write_exit = procedure;
WX = WX + [;
choose
conditionfqueue(readentry) A
wn = wx A (WrTr = wnir V WXIT < WX):
condition¥signaKreadentry);
condition$queue(writeentry) A
Wn=wx AN m=rx A (Ir=m V wnrr = wxrr):
condition$signaKwriteentry),
end, ‘
end write_exit;

4z

S . - T

- 182 -

read_request = procedyre;
Ir:=1r+
WITT = WI; ;
WNIT = WN; T T
WXIT = WX; e :
choose Lo
conditionfqueue(readentry) A
WR = WX A (WITT = WNIT V WXIT.<MX) -
condition$signaKreadentry);
condition$queue{writeentry) A :
WN=WX A rn=1% A-(r =rm ¥ m-wxrr)

condizionfsignakwriteentry -
end; e
end read_request; e B e

read enter - procedurr. o
if wn = wx V (wrrr # warr A wxrr 2 wx)
then condition$wait(readentry); end;
m:=rn+l
choose '
conditipndqueue(readentry) A.
WN = WX A (WITF.» WAIT V wm<wx):
conditionfisignaKreadentry);
condition§queue(writeentry) A
WNn=WX A m=3x A{rrm mr-wxrr)

conditionfsignakwriteentry);
end; Coe e ,
end read_enter; - e

read_exit = procedure;
rx =rx + 1,
choose
condition§queue(readentry) A
_WR = WX A (WITTr = warr V. wxsr <.wxx-
condition$signaKreadentry),
conditionfqueue(writeentry) A .
WR=WX A =¥ A-(rrmre Vv wmtr-wxrr)
_condition§signakwriteentry);
end; o -
end read_exit;

wr, wn, wx, rr, rn, rX := 0,0,0,0,0,0; .
WITT, Wnrr, wxrr, := 0, 0 0;
end apdb;

- 183 -

specification dh specifies this mutual exclusion, and the second specifies the scheduling
policy desired: -

«amtniov = anonhr) o) (amuit =3 anollhr» A

((ai(x2)"""'" = a, (x1)™® = ai(x2)"“°') N |
a(x3)y equest =5 a, (xI)*™ => a j(xS)"‘"') A
(x1 <x2<x3 v xl>x2>x3) D
(aj(x2)* = aj(x3)"'"’)).
The analysis of the first conjunct has been carried out already in Section 6.3, where the
~ same property was specified for operation "write” as part of the “readers-writers” property.

Here we will consider the scheduling property conjunct dho.

First, the argument constraint predicate (xl < x2 <x3 v xi>x2> x3) must be
incorporated into the conjunct. The predicate alrﬁdy appears in the hypothesis of an
implication. It can be incorporated by pargme.terizing it and then qualifying the
appropriate procedure activations. The parameterized form of the predicate is

(xleu) A (x2=t) A (u<t<x3 Vv u>t>x3).
This means that activation a,(xl) must be qualified with the predicate (xl =), activation
a,(x2) with the predicate (x2 = t), and activation aj(x3) with the predicate (u <t <x3 V u >

t > x3). The transformed specification then becomes:

-184 - '

o (fgx2)] (2 = TP = [(x) | (x1 w2 (x2) § (k2 & OF) A
([ax3) [<t <x3Vu >t > x>t = fay (x1) | (xt = w)I""*
= taj(i:?.) [(a<t<xsvusts @My .
D ([aj(x2) | (x2 = OF™ = [a(x3) | 4 <t <x3V u > t > xIF).

Now that the argument cofistraint information has beehi iicorporated into the conjunct
by means of qualification, the fanﬁyﬁs;mtpm’d -rioronailly. There are five events
mentioned in the conjunct:

. Evexpidhg) = {ax2) £ (x2 = OF" ¥, {a,(x2) 42 w01, fay (xl} | (x1 =)™,
[3(x3) | {u <t < X3V w> t > x93} Hu <t < x3 v t> x)PN)
There are 30 possible orderings among these:five events.cRather than list all 30 of them,
only the two mvahd ones are gnven here: |
(|) [a i(x2) | (x2 - :)rw-" = [a(x3) I(u <te x3 Vus> t> x3)]"""‘"
[ak(xl) | (xl - u)]"" = (x3)|(u <t< x3 vusts> x3)]’"" =
- [a(xzmxz-c)r"" R
(2) [a(x3) <t < x3 Vust> x3)]"°""' = [a,(xz) l(x2 - t)]'“"""l =
lay (xD) | (x -u)]”“t =>[a(x3)l(u <t<xSVu >t>x3)]""" =
| [a(x2)l(x2-t)]““" -)
The offendmg event in each is [a (x3) I(u <‘t < x3 v u> t > x3)]""" Thls means that a

condition must be derived for gate [a(x) I (u < t < X v u>t> x)]""" Smce the state

. characterization is the same at the point of the offending event in both orderings, this

characterization becomes the term Di‘

- 185+

3 (i, J, k) (count(falx) 1 {x o™ 2 k A
count(fa(x) | (u <t <X Vu>t>)T)25 A cowt(iix) | (x = OF**) 2 i .A
count(@aix) fu <t <x vu > > M%) <f A eounelata) | (x-= SF) < i)

The term D, bemg the dnsjuncnon of 23 charactenutlons. u qulte comphcated
~ However, when the expressnon (Dy A (- D)) is oonstmcted the formuh can be slmphﬂed

cqnslderably The result of the snmphﬁation is to arrive at the followmg prehmmary

WIS O s0vE S
L ER NS PAVLA ERC S

condition:
Vi (count(fa(x) | (x = OF***) <i v count(fa(x) | (x =)J™*) 2 i).
This is equivalent to the-even simpler - - . |
countilatx) | (x =).« conmbliaixk| (x-= ™). ...

This condition -is found to satisfy all the valid: erderings, and therefore is correct as it

stands.

The overall solution‘s‘peciﬁcation for speuﬁcaum dhoonslsts of the rfoll‘owingr éafe
conditipnx '
For gate a*™*". eount(a“»-‘@) =-count(a™?)
For gate- [a(x) j{u <t <x v u> t > 2"
%) «.count{fa(x) } (x =)I*™*)

count(fa(x) | (x = OF®
whvere w is the parameter of the activatidn corresponding to
the most recent 2® event. - =

A monitor must now be constructed to implement this solution. specification.

- 188 -

The monitor must contain three procedutes a.yequest, a_enter, and a_exit, to
correspond to the. three. event classes. - Since” theré are: qualified- gates: in’ the solution
R specification, each of the monitor precedures must-take the same parameter X as-operation a.
There must be variables an and ax to represent count(a®'*™) and eount(a“"'). respecuvely
ln addmon. there must be a loal vanabie u of typ“ew\t;ack_no, the same type as’ parameter t
representmg the value of ther parameter of the most recent call on procedure- a_exit. This

vanable should be initialized to an approprme value wch as the mlnimum possnble track

number.

In order to implement the parameterized counts, thege must be.two objects atreq and
atent of type countsitrack,_nol to halk: she valder &f -coumtilatx}:b{x = OJ****) and
count([a(x) | (x =)I*"*) for all. values of x. -Procedure a_request increments a count in
atreq, and procedure a_enter increments a count in atent. Each of these objects must be:

created in the initialization code for the monitor.

The qualifying predicate on the p*™* gate
(Uct<x. v ustsxy .- "
is a non-functional relation. The entry cofiditiens must be-implemented by an object aentry
of type conditionsftrack_ne), thar~:bolds 1We - conditioris for - all::relevant values of x. A
~ condition for:a given vaiue of x:is added to aentry:by an “add” operation at the start of
procedure a_enter. The predicate assocnated with the' tondition:for ‘value t is glven by
an = ax: A cnts&gnt(&mﬁ w entshger(ntant; t),
combining the predicates associated with the unqualified and qualified gates. It is also

necessary to have an object “tracks” of type set{track_no] to maintain the set of relevant

- 187 -

track numbers. Elements are added to track by "insert” operations within procedures

a_request and a_enter. The resulting monitor appears in Figure 6.6.

- 188 -

Figure:8:6. Monitor for disk head scheduler
dh = monitor;

an, ax: integer;

u: track_no;

atreq, atent: counts{track _no};
aentry: conditions{track_no};
tracks := set{track_no};

a_request = procedure(x:track_no),
countsitrack_nol§incr(atreq, x);
set(track_no)insert(tracks, x)
for ztrack_no in conditions{track_nol$domain(aentry) do
if condition$queue(conditionsitrack_noliget(aentry, z)) then
ok:boolean := true;
for ttrack_no in set{track_nolelements(tracks) do
if u<t<z Vust>z) A
, (an = ax v countsitrack_nolMget(atreq, t) »
countsftrack_noliget(atent, t))
then ok := false; end,
end; :
if ok then condition$signalconditions{track_noMiget(aentry, 2)); end;
end,
end;
end a_request;

a_enter = procedure(x:track_no);
conditions[track_nol§add(pentry, x);
for ttrack_no in setltrack_no}elements(tracks) do
if conditionfqueue(conditionsltrack_nolget(aentry, x)) A
(an = ax Vv counts(track_noliget(atreq, t) * countsltrack_nol$get(atent, t))
then conditionfwait(conditions{track_noliget(conds, v)); end;
end;
an:=an +|;
counts{track_nol8incr(atent, x);
set{track _nol#insert(tracks, x);
for ztrack_no in conditions{track_no}#domain(aentry) do
if condition$queue(conditionsltrack_nolget(aentry, z)) then
ok:boolean := true,
for ttrack_no in setltrack_nol#elements(tracks) do
if u<t<z Vust>z) A
(an = ax Vv counts{track_noMget(atreq, t) =
counts[track_nol$get(atent, t))
then ok := false; end;

- 189 -

end,; ,
if ok then condition$signal(conditionsltrack_nol$get(aentry, 1)); end;
-end;
end;
end a_enter;

a_exit = procedure(x:track _no);
ax:=ax + [;
u = X;
for r:track_no in conditions[track_nol§domain(aentry) do
if condition§queue(conditionsitrack_nolfget(aentry, z)) then
ok:boolean := true;
for ttrack_no in set{track_nol}$elements(tracks) do
if W<t<z Vvus>t>z) A
(an = ax Vv countsltrack_nol§get(atreq, t) =
counts{track_nol§get(atent, t))
then ok := false; end,
end;
if ok then condition$signaKconditions{track_noliget(aentry, 2)); end,

end,
end;
end a_exit;

an, ax =0, 0;
u := track_nofmin();
atreq := counts{track_nolfcreate();
atent := counts[track_nol§create();
aentry := conditions{track_nol§create();
tracks := set[track_no}§create();

end dh; .

This empty page was substituted for a
blank page in the original document.

-190 -

Chapter 7

Detecting Erroneous Specifications

7.1 Introduction

The flexibility of the problem specification language makes it possible to specify a
wide variety of synchroni;ation constraints. Unfortunately, this ﬂexibility also permits
erroneous specifications to be constructed. Certain kinds of errors in specifications can be
detected in attempting to derive equivalent solution specifications. As noted in Chapter 4, if
a specification constrains when in a history, say, a request event can occur, this results in an
invalid ordering being found in the derivation algorithm for which the offending event is
of type request. Since this is erroneous, in that the underlying model requires events other
than enter events to be unconditional, the derivation algorithm detects this error and fails

to construct an equivalent solution specification. -

There are other kinds of erroneous specifications, however, for which equivalent
solution specifications can be derived. These specifications are compatible with the
underlying model, but the synchronization constraints they specify display certain forms of
undesirable behavior. Two such forms of behavior are the potential for deadlock and
starvation. Deadlock results from a situation being overconstrained, so that each of a set of
waiting processes is prevented from proceeding by the preseﬁce of all the rest. Starvation
means that the constraint that is specified may be too rigid, in that certain processes are

pre;rented from proceeding indefinitely.

N ot <IN A " 08 MBS

-19 -

A problem specification that manif@ one af these forms of behavior .results in the
derivation -of a solution. specification that does likewise, - Fowgver: the:forin of the solution
speci.ﬁcation makes the analysis required to detect these erroneous behaviors much more
tractable than for the problem specification itself. This chapter prueﬁtsalgomhms for
performing such analysi. They can be use, onee 3 sltion spciicatan has een derived

from a problem specification, as a check on the soundness of the original specification.

By the argum: in Chapter 4 justifying the derivation algorithm, the set of histories
aliowed by a derived solution specification is exactly equal to the set allowed by the original
problem spetificition. - This meafis’ that a potential for deadlock’ or Starvition cannot be
introduced into the solution- specification by the derlvation itielf, since if this were possible,
then there would have to be ohe or more histories valid with réspect to the problém

specification but not to the solution spectficition. Rather, sinte the sbiut tion specification

i

corresponds exactly to the problem specification in ic termé, ahy potential for

deadlock or starvation in the problem specification is mirrored in the solution specification.

" For example, a potential for deadiock would be reflected by thie existerice in a valid
history of request events for which' the corresponding énter events could ‘never ‘satisfy the
specification: * Assume the existetice of such -a history afid ktvaﬁdny with Tespect to a
solution specification. Then this same history must be valid with”réspect ‘to' the problem
R specification, and the entér events must fail o satisty the problem spécification, as well. Of ~

. course, the reverse is similarly true. ‘Thus the solution spécifitation must cofitain exactly the
same potential for deadlock as the problem specification. In a sithitar waj, starvation

implies that there are valid histories in which the request and enter events for a particular

-192 -

operation activation are separated by an arbitrary numsber of other. request-enter event. .
pairs. For a problem specification and 3, solution specification that are valid with respect to

exactly the same set of histaries, starvation in one implies starvatjon in the other.

Since the solution specifiéationis sta'te-orient'e&.\it lsa convement ’vfo’rm on ‘w‘hich 'tﬁ ‘
perform the ‘analysis for these propemes‘l"he solutionspecnﬁcauon ‘can be used to

determine under what‘ conditioﬁs if any; deadiock and starvation are possnble ‘Such a
possibility, though arises due to the ongmal pmbhm spedﬁcatm, and it is there that a

correction must be made

7.2 Deadlock detection

In a survey paper ([Hol72]).0n the mbm*msu“ edas, the situation in. .

which one or more processes in a system are. black ts that

can never be satisfied.” In the context of this thm deadlock. arises when a problem
specﬂfication overconstrains the order of events in certain situations so as to prevent any of
a group of revquestéd"access'es from ever oocufrmg “The entryoondinom in the derived
solution specification form a basis fﬁr chanct«uingpmubieéadlock utuauons ikn’ terms of
the synchronization state of the object. If deadlock’ 15 unpoalble. then each such'

[

characterization can be proved to lead to a oum‘adictm

The p;oblem of de'adlqck:,deteq'iqn has bmmm fairly extensively, particularly for
operating systems>(e.g. [Hav68], [Hab69]) and database Systems, (ICha'Ml) The bulk of this
work has used a common scenario for deadlock: Each process in a collection of concurrently

exécuting processes holds exclusive access to one or more scarce resources, and is blocked

-j93 -

because of a request for resources heid by other proocsses in the collection. The scarce
~ resources are commonly viewed as devices in the tase of operating systems, and locks in
database systems. Unfortunately, shared abstract data objectsare not really similar to’
peripheral devices, which are serially reusabie and must be f'p\.vngdf by one process at a
time. Nor is the database paradigm ot; settmg am‘ii rclessisbg locks onparts of the database
very applicable tor most situations invo!ving data vavbstrractions. Blocking of processes
competing for access to an abstract data ob;ect more oﬂen resuks from calls on pamcular

operations of the abstraction, rather than the suboomponems of the data object they access.

Closer to the mark, from this point of view, is the work by Holt ([Hoi7i}, [Rob75)).
Using a Petri net-based model, qut vieﬁs a system as a set of states with transitions
between them. \i"Vithfth‘is‘ approach, a frocess is "blocked® in A state’ when there is‘ no
transition it can make to-another stite. Deadiotk’ resilts from a process being blocked in all.

reachable states of the system. The approach to be desttibed in this section is similar.

4 TheA solqtion specification into_s\,r,bich “,'9 speciﬁqtim is trggsfomed is a convepient
form on which to prerfor‘mfi_eadlock apglysis. The conttolpomts gt whlch processes can be
blocked are the enter gates, and thecondntlons the processes are awaiting to become
unblocked are the corresponding e""l,,_‘,"“f‘,‘?‘?? Adeadlock correspondsto one or more
processes waiting at each of one or more gates, on conditions that can never become true.
(It is assurhed throughout that all operation activatiohs terminate, so that processes can

deadlock only via the synchronization code itself)

-194 -

For example, consider a data abstraction with two operations p and g. Suppose that
in deriving the solution specification from the problem specification, it is discovered that a
condition for passing through the p*™*' gate is
count(q""**") = count(q*™*").
Now suppose also that a condition for the q"™*" gate is
count(p"®**!) = count(p*"*").
Obviously then, whenever there is a process waiting at each of the two gates p*™*" and
q*™*', these two processes are deadiocked. Each prevents the other from proceeding and
thereby enabling the condition that it itself is awaiting. This means that the original

problem specification is in error, in that the constraint it expresses prevents either activation

in the given situation from ever proceeding.

In the general case, a necessary but not sufficient condition for a collection of processes
to deadlock over access to a shared data object is for each of these processes to be waiting at
an enter gate for a condition to be satisfied. Whether or not this situation is a potential
deadlock depends on whether the conditions on which the processes are waiting .can be
enabled by subsequent events associated with the shared object caused by other active
processes. The idea behind the deadlock analysis &hnique to be described here is to
characterize the synchronization state Of, the object a.t a potential deadlock point, a point at
which processes are waiting at enter gates. This characterization then contains sufficient
information for determining whether the entry conditions can be enabled by other active
processes, or whether the waiting processes themselves prevent the conditions from ever

becoming satisfied, in which case the situation represents a deadlock.

-195 -

:Each potential deadlock situation is dlstmguzshed by the subset of enter gates in the
system at which one of more processes are waiting. The terminology used here is that an
operation is blocked if there are processes waiting at the assocnatedeater gite to execute it.
If there are n operations defined on“an abstract datatype,then there are (2" - 1) bpotential
deadlock situations.‘since any su.bset of the operatlom may be blocked.except the empty
subset. An empty set of blocked opermons could not. of course, répresent a deadlock

situation.

A complication arises from the use of qualified gates in solution specifications. When
there are two or more enter gate!_n;fo: a particular operation, w,i:thva different qualifying
predic:;te on each, the easiest point of view to take is that they behaye like gates controlling
completely different operations. In the context of deadlock analysis, it is simplest to consider
two qualifications of an opéritioﬁ p, [p(v) | Q,(v)l and Iﬁ(v)’l‘ Qz(;")]. as if ‘they were
separate operations P and po. since each distinct ‘qualification of p c'al‘ti‘indepe'ndéht!y be
blocked, just as different operations can. The catch is that the qualifying predicates Q; and
Qo may not be independent, and if, for example, Q“.) Qa.then whenever [p(v) I Qyv)] is
blocked, [p(v) | Qo{v)] must be as well. In general, however, it is not always possible to
determine when one qualified ‘class is a subset of another. 'M(vays A'treating differéﬁt
qualifications of an operation as separate operations is a conservative ipproach which s
guaranteed nof to overlook any potential case ofdeadlock Throughout this chapter,
therefore, when reference is made to a data abstraction having n operations, the reader
should understand that the intention is for different qualifications of an actual operation to

be treated as separate operations.

-196 -

It is straightforward to characterize a situation in which an operation is blocked. If
C(p) is the condition for gate p*™*", then the condition of operation p being blocked is
expressed by the formula B(p):

(= C(p)) A count(p"I*s!) > count(p®™*’) A count(p*™®) = count(p®™™).
That is, when p is blocked, there are no active executions of p, but one or more activaﬁons

have been requested and are waiting because the entry condition C(p) is not satisfied.

Assume that the potential deadlock situations are numbered 1,2, .., (27 - 1), and let W;
be the set of blocked operations in situation i. Formula U; will denote the characterization
of the synchronization state of an object in situation i, by expressing the fact that all
operations in W, are blocked. ‘

U, -i A(B(p) Ip e W)
If U; is equivalenf to FALSE, then there is a contradiction in the information in the
formula. This means that the potential deadlock situation is impossible, and that a
condition on which an activition of one of the blocked operations is waiting ‘must be
_satisﬁed. If Uj is ﬁot equivalen; to FALSE, then it represents a chaﬁcterization of the

circumstances under which the situation can occur.

For a potential deadlock situation that is possible, the formula U; can be used to
deten;mine whether or not the situation in fact represents an actual deadlock. This
determination can be made by checking whether any of the conditions on whicﬁ blocked
opérati'ons are waiting involve operations that are not blocked in the given situation. If
not, then the conditions can never become satisfied, and the situation in fact does represent

a deadlock. If one or more conditions involve non-blocked operations, however, then there

e e AT ¢ s e e AR e e

- 197 -

is not a’ deadlock, since a subsequent event involving one of these operations can “unblock”
the situation and enable one of the waiting processes. - At the very worst, such an event may-
~ change the situation to a different pofential deadlock situation; t0 be analyzed: separately.
Therefore, it is sufficient to firid a single non-blocked operation that ‘is invelved in the

waiting conditions to disprove deadiock-for & given situation:

As an exémple of ;Seadlﬁck analysﬁs, consider the solution sﬁecificition for a writers’
. priority database given in Section 6.3. Since there aré two-operations, “read™ and "write",
there are three potential deadiock situatioris--provesses ‘waiting: only at the read*™*" gate,
only at the write® ™ gate, and at both gates. In the-first situation, WXI) = { read: }. The
description of this situation Uj is given by the "blocked” conditiort on the “read™ operation,
B(read):
(count(write™™*™) = count(write®™*) v count(write®™) » count(write”™™)) A
counf(nad;"'"-'") > count(read*™*)’ A count{read®™) = count(read*").

The condiyion on Qﬁich "rga(i" activations are waiting invoh%gs events associated with'
the non-blocked operation 'wrife". T,his is'r;otanv actpai deadlock sntuauon, gince the “réad"
activations themselves are not causing the blocking. Thls does not r’l‘et;s‘sarily meaﬁ that
the processes blocked at the read*™* gate will eventuatly procéed: There may-exist histories
in which these processes are blocked forever, i.e. they may face the possibility of starvation
(see the next section). What the analysis here stiows is’that circumstances exist, involving
possible future events associated with operation "write”, that make:unblocking of these
processes possible. Their being blocked need not be a permanent condition for afl possible

histories.

The second situation -is when only: "write” is: blotked, i.. w(z) = { write }.. The
description here is Ug = B(write): |
(count(read®™*) = count(read®™) v count(write*™*) = count(write**")) n
* count{write"*est) count(write’“"') A: countiwrite™) » count(write®™"),
which can be simplified to
. count(read*™®) =.count(read™™ n
coun_t(write"""_")s count(write®*") A munt(wrim = count{write®").
Since the blocking condition invoives the non-blocked -operation "read”, this is also not an

actual deadlock.

The third potential deadlock situation for the abstract object mvolves waiting raders

. and writers, so that W(3) = { read write } This situanon is chancterued by Uy = (B(wnte)

N B(read)): |
(count(read®™™) = count(read™) v eount(wme"‘"') » eount(wnte"“)) n
éount(wnte"""‘“) > wunt(wnte""") A éount(wme""’) - oonnt(wnte"") n
(count(wme"""'“) * count(write®™™) v count(write™*) » eount(wme"")) n
count(read™™**) » count(read®*)} A colmt(read™*) « count(read**),

Here there is a contradiction, between the first disjunctive clause on the one hand, md the

third and last eonjuncts on. thie other.. This reduces the formula to FALSE, proving the

 situation to be impossible. Since this disposes 6f ‘all. three potential deadlock- situations,

deadlock is proved to be impossible for this abstraction.

- 199 -

As a second example, consider the: bounded -buffer-example analyzed: in Section 6.2.
Once again, there are two operations, and therefore three potential deadlock situations for
this abstraction. The first is: when-only operation "fem™:is:blocked, o that: W(l).-= { rem }.
This is described;bt:&e.fonhoh«uf‘-:Bﬁmm)r N T T TR
(count(dep®™™) < count(rem*™*) v count(rem*™*) » countirern®™?)) A
count(rem™™*) >.coantirem*™¥) A coutit{rem™*) = count(rem*™),
~ which reduces slightly tec . . -~~~ . o e
- .countidep”™) S commt(rem™®). A . o -
count(rem™™**) 5 count(rem*™*) A count(rem*™*") = eount(rem"‘;)s -
Since the formula is not equlvalent to FALSE, the sltuanon is posslble However. the

Y

condmon on whlch rem” acnvatnons are waltmg, namely

i gms b -

count(dep"“) < count(rem'“'")

involves operauon dep that is ot blocked in the situation. Thls means that the condmon

[T S A -
need not be prevented from ever bemg satnsﬁed and so thu does not represent an actual
deadlock N

The second -situation. is whes: only:"dep™ 15 biecked; and ‘W(2)- = {'dep }. The
characterization of this situation is given:by Uy » Bldepk:- = -~ -t -
< +(eountirecs®™d) < countidep™*).--N- v: colintidep™) weoumidep™™) A -

which simplifies to:

- 200 -

count{rem®*) < count(dep®™*") - N A
count(dep"**!) > count(dep""") N count(dep""") = count(dep®™*).
This formula also is satisfiable, but once again, the waiting condition involves a
non-blocked operation, in this case “rem". This means that the potential for deadlock is

averted.

The third inactive situation involves boﬁr "dep” and "rem” being blocked. W3 = {
dep, rem }, and Uj = (B(rem) A B(dep)):

(count(dep®™™) < count(rem®™*) v count(rem*"*) = count(rem®™™)) A
count(rem™™**") > count(rem*™") A count(rem*™*) = count(rem*") A
(count(rem®®) < count(dep""") -N v eount(dep"‘"') > count(dep“‘“)) N
count(dep™™**) > count(dep®™*") A count(dep*™") = count(dep®™®).

For any value of N > 1, this formula reduces to FALSE, since it implies that |
count(dep®™'*") = count(dep®™*) < count(rem*™*) =
| count(rem*®) < eonnt(dep"'"") -N.
Therefore, the situation is impossible. In conjunction with the previous analysis of the

other two situations, this means that no deadlock is possible for the “buffer” type.
7.3 Starvation detection

A related problem to deadlock is the notion of starvation. Starvation means that while
a process that is waiting to access an object is not necessarily blocked permanently, a pattern
of accesses exists that prevents the process indefinitely from proceeding. The opposite of

starvation is fairness, which indicates that every process is guaranteed eventually to have its

- 201 -

request for access fulfilled. A method analogous to that used for deadlocks can indicate a
large class. of possible starvation situations, specifically those that are independent of

parameter values.

Unfortunately, not all starvation possibilities can be easily detected. For example, the
disk head scheduler example of Example 14 in Section 2.7 is star\}ation-free. but the
simplified version analyzed in Section 65 is not. The fairness of the former specification
depends upon (1) the ra‘nge of track numbers being bounded, and (2) the set of track
numbers being well-ordered. The proof that these are sufficient conditions for fairness
involves non-trivial properties of well-ordered sets. In general, properties related to
activation parameters, specifically to predicates qualifying gates in the solution specification,
involve analysis that is too complex for the relatively simple starvation detection method
outlined here. Such properties do not cause similar problems for deadlock analysis, since
there the issue is simply whether any activations of an operation can proceed under any
circumstances. Starvation analysis must determine whether an arbitrary activation
eventually can proceed under all circumstances. This means that interactions among
different activations of an operation become more important. For those starvation
possibilities that can be detected by the method to be presented, the same approach fo
qualified gates is taken as for deadlocks. Differeﬁt qualifications of an operation ar.e treated

as distinct operations, and each is analyzed independently for starvation.

- 902 -

"The motivation for the starvation analysis presented below is as follows: For a process
to starve, it must be kept waiting indefinitely at the enter gate for some operatioh. Since
the synchronization mechanism itself js fair in scheduling activations whose entry conditions
are satisfied, this can only happen if the condition on which the process is waiting is never
allowed to be satisfied, due to the presence of other operation activations. (As before, all
operation activations are assumed to terminate.) Therefore, it must be possible for processes
executing other operations of the data abstraction to overtake the waiting process.
"Overtaking” refers to the fact that even though the given process is waiting at an enter
gate, processes making other activations whose request events occur later proceed through

their respective enter gates ahead of it.

If operation q cannot overtake operation p, Fhen whenever an activation of p is
blocked, eventually all activations of q that were requested prior to the request for p must be
completed. Under circumstances in ivhich the activation of p starves, therefore, no
subsequent activation of q can proceed either. Thus the first step in the starvation analysis
for a particular operation is to determine which other operations of the abstract data type
can and cannot overtake it. The characterization of a starvation situation then state; that
the given operation is blocked, and that no “non-overtaking™ operations are cu;'rently active.
This characterization reduces to FALSE if there is a contradiction in the situation, meaning

that starvation is impossible.

. Formally. the method of analysns for each operauon pis the followmg As before, B(p)
denotes that p is blocked: e TE MR e e T : ‘
| (" C(P» N COIInt(P“W') > count(p"‘“’) l\ oount(p"“’) - mnt(poxd) T

For all q = p. construct the formula T(q. p) glven by o

B(p) A Clg) A (count(q"""') > countlg"™®).

This formula mdncates ‘under what cnrcumstanees a proc;ss ex;cutmg operatlon q‘ can
overtake the process blocked at gate p""" i.e. when there are requested activations of q and
the entry condmon for qis sansﬁed It T(q. p) is other than false. then it is poss:ble for anA
activation of qto overtake the wamng activation of p Therefore nothlng can be assumed
about operation q in a starvation situation for p. If T(q. p) reduces to FALSE, howkev'er.

then this overtaking. cannot occur, and a process. waiting .at p‘ﬁ?‘uﬂl cause a_process
| subsequently arriving atvq"""_.toﬁbe-bloc;_ad -as- well. This means that .no activations of q-
can be active in a starvation situation for p. Thewvmmﬂp)#mﬂ@mdb’
Coﬂjomwg to B{p) the farmula

count(q*'*) = count(q™)
for each q for. which T(g, p) is FALSE. - That is, .
. S(p) = A{count(q®™*) = count(q™™) | T(g, p).= FALSE) A~ B(p).

This indicates that since q.cannot overtake p, eventually no executions of. q will be active.
If S(p) is FALSE, then starvation of processes attempting to execute p is.impassible, in that
the hypothesized starvation situation for p contains a omtradktion. Otherwise, S(p)

characterizes a possible starvation situation.

- 204 -

Again, consider the writers’ priority database as an example. The condition for gate
write®™*" is
(count(read®™®") = count(read®™) A count(write*"*") = count{write®*™)),
so the blocked condition for operation "write” is B(write).

(count(read®™®") = count(read®™") v count(write®"*") = count(write®™™)) A

count(write"**!) > count(write®*") A count(write*"*") = count(write®™").

The condition C(read) is given by
count(write™*%") = count{write®"*) A count(write®*") = count(write®*").
This makes the overtaking condition T(read, write):

(count(read®™*") = count(read*™) v count(write*™®") = count{write®%)) A
count(write"™*!) > count(write®*") A count{write®™*") = count(write®") A
count(write™ ™) = count(write®*") A count(write*™*") = count(write®™™) ~

count(read"™ ™) > count(read*™*").
Since the second and fourth clauses contradict each other, the formula reduces to FALSE.
This means that the clause
count(read®™*) = count(read**")
is conjoined to B(write) to form S(write), the starvation condition for operation "write"™

(count(read®™*) = count(read™®) v count(write*™*) = eount(write"‘“).) A
count(write"™**!) > count(write*™*") A count(write®™*) = count{write®™) A

| count(read®™*) = count(read®*").

This formula in turn is FALSE, since the last two conjuncts together contradict the first

disjunctive clause. Starvation of writers is therefore impossible.

- 905 -

“If a similar analysis is performed for the "read™ opeéfation; Béread) is constructed as:
(count(write™®**) = count(write®*) v count(write®™*) » count(write®™)) A’
count(read™ ™) 5 count(read®™* A count(read®™*) = count(read™™). .
The condition of "write” overtaking "réad”, T{write, read), Is then formed: |
(count(wﬁte""""“)'* ootiht(ﬁrite"""—)*\i count{write®™*).» count(write®* %)) A
count(read™) 5 count(rexd®™™) A ‘countiread®™ -« count(read®™@) A
cou.nt(read"""')-count(read"‘") A count{write®™™) <« countiwrite®®) A
count(write®™) > count{write**). -
This formula is not identically FALSE, however, so that operation “write” can indeed
overtake "read”. This medns that the starvation”condition S{read) is simply equal to the
" blocked condition Blfead): Since S(réad)is ot FALSE, starvation 4F readers is indeed a
possibility, as expected, and can take plce under the ciféumstanees given by:
(count(write"™*!) count({write®™) v count{write™* = count(write™")) A
count{read™ ™™} > count(read®™®): A" :dount{read™™) « ‘count(read™”).
That is, as long as there are activations of "write” that are either requested and pending,-or

active, then requested activations of "réad” may starve.

R .

- 9206 ~

. Summary and Evalalition

8.1 Summary of the thesis

This thesis has explored one appmch to the problem of. specifying sypchronization -

properties and symhesmng source language code 1o implement. them..- The approach taken

ization, which. was -

has depended on a basic model of abstract data objects and. synchro
described in Chapter.2. The principal features of this quel are:
(1) Every dataob;ect 1s strongly.typed, and any access of the 1’"’.’“t must be viaa
basic operation of the type of theobjed. = = o _ ‘
~(2) Certain points in. time, called. events, are. distinguished in a computation
: hlstoryllwolvmg “‘msqda given data gbject. In particular, there are -
three types of events request events, which denote pracesses making. kmwn
thelr wish to gain access to. the objaa; enter evem;. which_denote swoesstully
gaining access; and exit events. which denote relinquishing access.
(3) The temporal precedence relation among events associated thh a gwen data
Object is a total ordenng relation. TR 9O B o
‘(4) The functmn of synchmnintioa is to eon:tfamA in cemtn ways the time
ordermg relation on a data object. in parucuhr the occurrence of enter events
within the total ordering. "rhis’ funmuomngml 't the ‘m.‘ni.‘.é of the
. operations by which processes access the ohject. and therefore can and should |

" be implemented separately from those operanom.

: =

- 207 -

(5) Individual synchronizatiori- constraints exist for each object in the system.
Furthermore, a sYnebronization constraint is asseriated with a data type, and

applies independently to each object of that type.

Using this model as a basis, a specification laugju&etwas‘ described in Chapter 2 for
expressitig-synchromization propetties of a"’ostncta‘ﬁﬁ ‘Wpes A ndation was dev iséd for
denoting events, ‘and’ the nfix “$jifibol "™ inehodGedd for "thie- time “drdering relation.
Specificaticris express coristraints th this Felation YA\'préditate’ ciitultis fofmulas involving
the time ordering between universally quantified’ evmtekpr&ioﬁ& “The quantification |
causes the constraiitto apply to all events of a given ciss in & history. By explicitly stating
the arguments to procedure invocations Invﬂvadhasﬁeciﬁtat’m and t’i"sii'.i‘g‘“";-’)redicatevs to
constrain these arguments; a euhétraint'on he =5 Télatich can’ bé made to sc‘é’i:tmely apply
to a ‘sub-class f everis.” The formal sematitiés of this ‘spetification fahguage consisted of
defining the validity of histories with respect to & 1:veﬁ§pédﬁcatimlsnumber of
exdinptes of the uséof the language to" express synchrofiizatiofi éonstraints appeared at the

end of Chapter 2. -

'To ;yn‘t’hesizeA source Ianguagecod; mplcmentmg tgi Es\pg%cnfu;gt:ons.ntwasfound to be
desi;a@lg to use afi mtermedute forAm.’} Thlsform. ca“edthe solutimi ,ngffququon, was
descnbed m C'haptgrll_’,. !; is an abstractrepresemauon ofdtl}esolgtionto a _wification that
is proceduralm nature butnnde?endent of the pamcuhr construct usegfornmplementanon
A solution ;pec_if.i_ca‘t'ionn‘cor’ri;ists o'f:g collection of gates, which are abstract implementations
of event classes. Synchronization constramts are mplenwntedbyattgchmg conditions on

the synchronizétion state to gates for enter event classes. Processes are only allowed to pass

- 208 -

through gates when the corresponding conditions are satisfied. The semantics of a solution
specification, as of the problem specification, were defined in terms of the validity of
histories. Translating a solution specification into an implementation using a
synchronization construct such as a monitor is quite straightforward, as explained in
Chapter 5. Therefore, the difficulty in synthesis is derivlling the solution specification from

the problem specification.

This derivation was the subject 6f Chapter 4. Besides simply identifying which gates
are needed for a specification, this consists of constructing appropriate conditions on the
synchronization state to associate with enter gates in order to implement the specified
constraint. The construction of these conditions is accomplished by an algorithm tha.t can
be broken into several phases. First, constraints on the arguments to ac‘tivations are
incorporated into the rest of the specification by a technique called “qualification”. Once
this has been done, all possible orderings of relevant events are formed, and each ordering
is identified as either valid or invalid with respect to the specification. The syn.chronization
state at particular events in both valid and invalid orderings is characterized, and these
characterizations are combined to form a preliminary condition. This condition is tested
among the valid orderings; it either succeeds in satisfying them all and is therefore correct,
or else it fails in one or more cases, and must be weakened by disjoining to it one or more
other terms. These weakening terms are derived in much the same way as the preliminary
condition, except that a smaller class of orderings is used, and the characterizations involve

synchronization states saved at previous points in the orderings.

-20§;

‘ Cﬁafifer 6 presented sevéral examples “of “commonly addressed “synchronization
ptoblems, which are specified -and then' synthésized By’ the ‘approach Hesctibed. These
examples certaifily do not constitute a' compilete tést of an Approach, but they do represent a
fairly broad range of the kinds of sjrthronizatibd Properties féund to-bé of real interest.
The topic ‘of Chapter 7 was' the’ dnalysis 6f 4" synchronization'‘Cortsiraint for possible
deadlock and starvation. The so'lution‘speciﬁcation is a convenient form en Which ‘to
perform thxs analysls Algonthms were presented that for any glven specxflcatlon can
dlsprove the posslbnhty of certam funds of deadlock or starvat:on. or deﬂve the condmom

under which they can_take phce.

8.2 The specification language
3 B S

There afe a numb‘ex"jé_f wais of evaluating thg specnflcatmlanguagedescnbed in
Chapter 2. The example specnﬁcaums in Sectnon 27 attes}tqto its power to express a wnde’
range of synchromzatnon propemes The derivanon method dnscussed ln Chapter 4 andv
fu»rther ljlpstr__ated by tlle examples of Q!np_terﬁ demonstratu its suitability as an input
language for the synthesns algonthm Two other relawd cntena are espeaa“y |mportant
though suby:ctwe in nature: the constmctability of the hnguage, how casy lS lt to write

specnflcanons and its comprehensibtlity, how easy is it to under;tand specmcatlons

TLETY Gin T

" Within the framework of the modét’ of synchrorization upori ‘which the language is
based, the language itsélf 1S quite coftvenient: for” wiitify synchironization -specifications.
Since all of the standard logical operators of preditate calculus can be-used, and formulas of

arbitrary complexity constructed, any constraint on time ordering can be expressed. T hese

- 210 -

specifications are relatively easy to write and to understand, since each logical operator has
a natural interpretation. The extensibility of the language permits a complex specification
involving many constraints to be expressed as a conjunction of individual clauses, each one
specifying a single constraint. This feature, illustrated by the different versions of the
readers-writers problem considered in Chapter 6, enhances both constructability and

comprehensibility.

There may exist grounds for criticizing the language based on disagreements with the
underlying model. For example, consider the choice of which points in time to be
designated as events. Each of the three event types request, enter, and exit has a un_iform
meaning, and each is necessary for expressing a wide class of synchronization properties.
Properties concerning exclusion of operations involve enter and exit events, and scheduling

properties use request and enter events.

'Disagreement may exist, however, over whether these three types constitute a sufficient
set. In particular, assume that some operation p may be blocked from proceeding, not
initially before the activation begins, but rather at some point in the middle of execution.
That is, suppose p performs a certain amount of computation, then must wait for some
synchronization condition to be satisfied, after which it completes execution with some
further computation. There is no straightforward mechanism in the model (and therefore
the language) for denoting this “intermediate™ event. Such a situation must be handled by
splitting operation p into two subsidi;nry operations pl and p2, which when executed serially

constitute the whole of operation p. The intermediate point within p is represented by the

exit event for pl and request event for p2 The condition on which it may be blocked is an

-2t

entry conditien for gate p2*™*".

‘ Whlle this may not be considered an aesthetxcally satnsfymg solutlon to the problem it

can be justlfled The event types request emer. and exlt were chosen m part because they
¥oamtsw RN

possess a umform mterpretanon mdependent of the meaning of the partlcuhr operatlon If
a new event type intermediate were employed, its meaning (the intermediate point at which
the operation may pause) necessarily wbuld be operation-dependent. Mofeover, a single
intermediate event type would not be sufﬂciemforhmdlmgbp«aﬂonsthat may be
blocked at more than ohe intermediaté point.” For the sake of generatity, theft, it would be-

necessary to have an anbounded number of event types intétrredi irediite-1, interinediate-2, ...

YRS IEY

Whatever such an approach might gafrf in con htibf? the fanguage would surely be
lost in reduced comprehensibility. The soliition chidhen mstéﬁdéf%pﬁﬁ ptitting the operation p

into component segments pl, p2, etc. seems at least as satisfactory.

* There is another important aspect of the spetification linguage used here. That is the
ability to use synchronization spetit;ﬁiioﬂs.’ﬂohg‘ﬂth “the bodiés of the operations, to
prove properties 6f ‘the data abstractions. One Rind of proof is of the {serial) correctness of |
an operation, with the synchironization “specification used o show that all 'possibly
interfering operation activations are = exclutled ' ffom concurrent “execution. The
synchronization speciﬁeation also can be used to demonstrate that céttain types of éxception -
handling are unnecessaty. An example is the bouhded buffer spetification analyzed in
Section 6.2, by which it can be‘shown” that an activation ‘of the "rem” ‘operation never

. operates on an empty buffer.

-22-

One limitation of the specif_icat.ion language is an inability to refer to the state of the
abstract data object to which a specification applies. Thefe are good reasons for restricting
the language in this way, as ex;ilained in Chapter 2. It is also true, at least theoretically,
.that any state information can be expressed [ingterms of events in the history. However,
capturing state information via histories can make the specification of certain p.roperties
rather awkward. For example, the disk head scheduling specification of Example 14 in
Section 2.7 could be simplified significantly if reference could be made to whether the disk
head is moving up or down (at thi; point at which a certain event occurs). This limitation,

however, does serve the purpose of maintaining a clean separation between the

synchronization aspect of the data abstraction and the actual operations.
8.3 The synthesis method

The method for synthesizing synchronization code from specifications was presented in
Chapters 4 and 5. The justification of the alg:rithm for deriving a solution specification,
and a discussion of cases for which it fails, is presented at the end of Chapter 4. Failures of
the algorithm really reflect an inability of the relatively rigid solution specification. to
capture certain synchronization properties of interest. For example, the algorithm fails on
the first-come-first-served specification because this property cannot be implemented using a
_ Separate queue for each operation of the abstraction. On the whole, though, and
particularly with the use of qualified gates to capture parameter-related properties, the

solution specification structure is able to express the solutions to almost all synchronization

_problems that can be specified in the problem specification language.

-3 -

The monitor implementation of the solition specification is relatively straightforward
in‘most cases. The exception to:this:is the handling -oF parameterived gates using:the types
coumts{T] and conditions{T1 The implenentation: of parameterized enter gates in
particular, especially ‘where the qualifying:-predicate i not-a. funttionat -refation; becomes
quite- complicatéd. As noted inChapter-§, ‘a: certiin-amount of sinplification” would be
possible if the user were to supply the: Tange of valuel that eati garameter could assume.
This information could also be used to preventithi decreuse in expressive power that results
froert' having ‘to make certain assumptions about the-solution specification. conditions -in

L

order to construct a correct implementation:

Chapter 6 contains a small set of examples in which implementations are completely
synthesized from problem speciﬁcations. In fact, a considerably Rirger number of examples

have been worked out, mcludmg all of the speclﬁcatlons presented as examples in Sectton

2.7, with the exceptxon of thm explncntly cnted in Chapter 1 as fanlures The method
[RS 3,}- 7
appears to sausfactonly synthesue lmpiemematlons for a wnde chss of spectfxcauons except

IR FEE T A S Nt 2 obp oot Iz ZEoelr

for those propernes for whsch solutton spec:ﬁatms annot be obmned as noted above

Two' other measures of the synthesis fiethod aré impart;

ft-t0 distuss here. ' The first
of these, the ‘practicality of the- sywthesis algdritfim, appears opén to question. In the
derivation of the solution specification, ali> possible erderings of- the ‘event expressions
contairted in°the specification st be considersd, and' since n évents may have as many as
n! orderings, the algorithm is necessarily exponential: In & less- fotmal sense, the practicality
is weakened by the complexity of ‘some of the steps. of the algerithm, particularly those

requiring a logical simplification of formulas. Compensating somewhat is the fact that the

- 214 -

formulas involved are of a restricted form. Therefore, a small cpllection of special-case
simplifications, such as those appearing in Figure 4.2, rather than the 'power of a
general-purpose logical simplifier, would probably be sufficient for implementing a system
based on the method proposed here. Also, the ability to analyze each conjunct of the

specification separately helps reduce the overall complexity.

Still, improvements in the algorithm Aare required to make it practical in, say, a
compiler. The algorithm as it stands can be used manually by a person to implement a
synchronization constraint expressed 'in the specification language, or to informally check a
hand-coded implementation. Further work, as discussed at the end of this chapter, is

needed to automate the algorithm.

With respect to the other measure of evaluation, the efficiency of the synthesized
source code, the metﬁod can be judged to be quite respectable. There are certain
inefficiencies that necessarily result from the use of a relatively fixed structure. Two aspects
of the fixed structure here are particularly restrictive. One is the use of separate condition
variables for different enter gates, which prevents Vthe queuing of processes waiting to
execute different operations on a common queue. The other is the derivation of a single
entry cond-ition applicable both initially when a process first attempts an access and

subsequently when testing whether to allow the deferred access.

-215-

As a result, the synthesized monitor for the "aiternating priority database™ example of
Section 6.4 is awkward compared to the rather elegant monitor coded by hand to solve the
same problem in [Hoa74]. Much of this awkwardness, however, is due to the simple-miﬁded
implementation of testing for possible signalling all condition variable§ at the end of each
monitor procedure. As indicated in Chapter 5, optimization of the sighalling statements by

eliminating provably unsatisfiable options is often possible.

On the whole, synthesized implementations approach hand-coded ones in terms of
efficiency for a large class of problems. The fact that all synchronization code manipulates
only integer-valued quantities, and that entry conditions always consist of linear equalities or
inequalities of such quantities, keeps the implementations efficient. The effiéiency can be
enhanced if other obvious optimizations are applied to the results of the straightforward
synthesis, such as using a single variable for a quantity of the form

count(ecl) - count{ec2),

rather than two separate variables for the two different counts.

Where the efficiency of the synthesized code becomes unacceptable is in cases
involving parameterized gates, such as the disk .head scheduler of Section 6.5. ln.order to
accommodate the structure of the solution specification, the parameterized types counts(T]
and conditions[T] must be employed to implement what amount to entire arrays of counts
and conditions. Here, the fixed structure of the synthesized implementations becomes a real
barrier to an efficient implementation, since "good” implementations of such properties make
use of special mechanisms such as priority queues. With the exception of parameter-related

properties, though, the performance penalties paid for most specifications seem to be within

- 216 -
the limits of what can be reasonably expected from an automatic synthesis system.
8.4 Comparison with path expressions

As noted in the introductory chapter, the work on path expressions (ICam74), [Hab75),
[Flo76]) most nearly matches this thesis in terms of overall goals. In evaluaﬁng the thesis,
then; it is instructive to compare it with the path expression work to see to what extent each
meets these shared goals. In terms of this comparison, the path expression language is
restricted to its original description in [Cam74) Later versions have added successively
more features to the language, with questionable results. The original language simply
contains the basic features that make path expressions analogous to fegular expressions,

; ", the alternation operator “ , °, and the repetition

namely the sequencing operator
operators "{ ..]” and “path .. end". The analogy with regular expressions embodies the

basic philosophy underlying path expressions.

The approach both of this thesis and of path expressions is to constrain the ordering
relation on accesses to some shared abstract data object. Access of _tﬁe abstract object is
limited to a collection of basic operations associated with‘the type of the object, and so each
language specifies a subset of possible object histories involving these operations to be
~ valid. For path expressions, activations of the operations are treated as units, while this
thesis has denoted three particular points in time associated with each activation as events,

and deailt with these events rather than the activation itself.

-9f7 -

The path’expression . approach’ is to-specify ‘a global constraint for the- ¢complete

sequence of accesses represented by the overall hlstory The specnflcatms of thrs thesns on(
PR T T Sl B g g

the other hand, represent local constraints for mdmdual operanon activations; because the

activations invelved: in & specification are ‘quaitified; the éonstraints apply *inﬁiviaué‘ny to

each activation in the history. My intuition ‘1§ tat 16eHl conistraitits ‘ar® inferently simpler,

both to construét and te comprehend, and thit pecple Avust transtite giobal-constraints into

locat ones to understand them. This §s'a subjeet MW' sieht, however. -

ML

.
(3 RES

Tﬁe pattr exére#non Iarrguage uses as basncnouom the concepts of mutual excluslon.
sequer;cnng and concurrent repetltron These areat a hngher levet than the more pnmmve
temporal ordermg relauon =». Use of such higher-levei concepts facilitates the expressnon
of propertres that are based ;bsety on them For example theimders-wnters property.
appearing as Example 3 in Section 2.7 in the form o

J
(Gwrite*™ =5 rexdy ™) v {mai“a-a writei"‘“'»

((write;*™*" = write.*"*) > (writei"“' = writej“'"')), A

can be specified by the path expression -
path {read }, write end.

The gain in tomprehensibility ahd constructabitity-is obviots.

However the same result can be achaeved by usmg some sort of macro facnhty wnth the

2

Ianguage of this thesrs For example, MUTEX(p, q) oould be employed as a sborthand
abbreviation for the mutual exclusion specification of Example 2 in Section 27:
(pie:ii = qjonhr) v (djui' =3 pioahf).

and the readers-writers property then could be expressed as

- 218 -

MUTEX(write, read) A MUTEX(write, write).
Such a macro facility would also be useful in identifying specifications for which
implementations have already been derived in the past, thus eliminating replication of

previous effort.

The use of higher-level concepts as basic to the pith expression language has the
disadvantage that properties not closely related to these basic ones can be rather difficult to
specify. For example, consider the writers’ priority database example analyzéd in Section
6.3. There the property was specified by adding to the readers-writers specification above
the following conjunct, giving priority to operation "write” over “read™:

(write;"*®*s! = readj"‘"')) (writei""" = rmdj""'").

The path expression specification for the same example appears in [Cam74] as:
path readattempt end
path requestread, { requestwrite } end
path { openread; read }, write end
where
réadattempt = begin requestread end
requestread = begin openread end
requestwrite = begin write end
READ = begin readattempt; read end
) WRITE = begin requestwrite end
There is quite a lot of extra effort involved in adding the single property of priority to the

readers-writers specification, and in terms of comprehensibility it leaves much to be desired.
Even more discouraging is the fact that giving priority to "read” over “write" is done in a
slightly different manner. Little wonder, then, that in the next version of path expressions,

appearing in [Hab75), priority becomes another pre-defined operator in the specification

- 219~

language.

The languages of both this thesis and path eetpresslons chnm the virtue of
extensibility, meamng that further constraints slmply can be :dded ‘onto prevnous o.nes"'
without changing the existing specification. As the above example illustrates; tﬁis i;s'nét
quite true of path expressions, since the addition. of the. writers! priotity property requires a
change in the expxessoon o£the mders-urugr;, pmeﬁ.y -as wall.. In this Jhesis, new

constraints can always be conjoined.to existing ones.

The writers’ pnonty database example also xllustrates the fact that with path

expressions new operatnons sometlmes must be invemed for tﬁe speCIfic:tlon of desu'ed

- Ehakitra

properties. In this thesls thls is also true, but here* |t is hmued to the smgle category of

breaking an operatlon into senal ‘sections of code in between whlch the process executlng

1 }{‘:5;;&:': ML H .j

within operations must be handled in the sam@”iiy.ihfiet. M&f’, 13 mhy also be

necessary to construct a new operation whose only purpose is to call an exustmg one such as

. “»_ rrrrr

"requestwrite” in the example. Other example&vm bpth [Qm?;} nd [Hab75] contain

numerous other such “hidden” operations used: h—‘vﬁi‘o‘ﬁi*ﬁﬁﬁ"'%ﬁ*?meral a clean

. TyEes S
separauon of synchromzauon code from the data abstracuon operatmns themselves seems

TR TR oy

les&feasibkwuhpathexp;mom Y R

- 220 -

" The final comparison with respect to the specification languages themselves is that
path expressions contain no facility for expressing properties that involve the parameters of
operation activations. The only way to handle such properties would appear to be for the
" operation body to call different hidden procedures based on the satisfaction of different
predicates by the parameters. Path expressions could then express synchronization
constraints on these hidden procedures. There is no straightforward mechanism, however,

as there is in the language of the thesis.

The main thrust of the dis?ussion in this section so far has been that the specification
language of this thesis is superior, particularly in terms of criteria such as c(.mstructability
and comprehensibility, to the path expression language. With respect to synthesis, however,
theré is no question that the path expression approach‘is better. A simple recursive
algorithm in [Cam74] can automatically implement any constraint specified by path

expressions in terms of semaphores and integer counters.

In general, there is a tradeoff between expressive power of a speciﬁcatic;n language,
and relative ea;se of synthesizing implementations from it. Because the path expression
language is désigned around a few built-in properties such as mutual exclusion, “canned”
implementations of these properties can simplify the task of synthesis. The greater
generality of the language of this thesis results in a far more difficult synthesis problem. It
is interesting that in later versions of the path expression language ((Hab75), [Flo76)),
additional features are added to increase the expressive power. Thes_e‘later papers do not
include automatic implementation algorithms, and the problem of synthesis would appear

far more difficult for these more complicated versions of the language.

8.6 Future work: - -

There are a number of areas in which the work of this thesis could be extended in the

future.h Generally, the specification language itsell‘ seems sound as it stands, with the

possrble exception of the mability to refer to the data state of the resource. which is an issue

that should be mvestlgated Further work is also needed on using specnficat:ons in provmg

properties of data abstractions.

As noted in Chapter 5, mformation about the range of values of certam parameters
would be very helpful in constructtng implementations ol‘ argument-related properties An
automated system could mteractively ask for thts information from the user. However it

could also be supphed as part of the origmal speaﬁcation, tf the specnficanon language were

extended to handle it. .

The synthesis method described” here’ cin’ only be Viewed ¥s “a “startitig point for
pursuing this general approach The synthesisfalgonthm is | very complicated and while

' this is dictated to some extent b the eneralit of the |f1cation lan a e. the com lexuy
Y the ge yolt ff“ 8“ 8 P

almost certainly could be reduced, perhaps dramattcally, by looking at alternative strategies

S

One area that could particularly -benefit from a 'di‘l’l‘erent‘ipproach‘ i the use of
QUali‘fiéd gates for argument-rélatedpropefmsAsmlilcafed‘“aﬁéve’m Section 83, the
implementations resufting from siich cases afé ufizccéptably inefficient. Tt is unreasonablé to
have to perform a detailed search ifi detérmining the state ‘variable io"be‘up‘dated or the

condition on which to wait. A change ifi the basit ‘solution specificition structure would

probably be necessary to achieve acceptably éfficient Wnpleritentatiofis of argument-refated

-999 -

properties. Unless some alternative were found, it might be better to eliminate
argument-related predicates from the specification language entirely, even at the cost of

reducing the power of the language.

The use of information private to each process, as discussed in Section 4.7, represents
one possible direction for extending the power of the solution specification. Private
~ inf;:;rmation would permit each process to look back in the history to a point whose state is
important only to that process. This would increase the range of applicability of the
derivation algorithm. Of course, adding this feﬁture to the solution specification requires
modification of the algorithm so that such information can be derived. This issue would

have to be investigated.

An alternative to private information would be a more flexible solution specification
structure. As noted in Section 8.3, the ability to employ different queuing straéegies and to
have different entry conditions for a gate depending upon context would add expressive
power to the solution specification. Again, the impact on the derivation algorithm would

have to be considered.

Another idea that might bear exploring is the use of more powerful data types than
simple integers in both the solution specification structure and the source code
implementation. Specifically, sequences of events may be a more natural concept by which
to translate properties from history-theoretic to state-theoretic terms. One potential difficulty
is the fact that there is no theory of sequences as rich as number theory, and no good

analogue for sequences to the < relation on integers, which is so basic to the synthesis

-223-

algorithm. Also, the problem of source:level optimizations, which has. been addressed

briefly in the thesis, would become much more serious. .

A limitation of the work here that has been mentioned earlier is its ae.p‘endence’ on a

centralized synchronization mechanism for each data abjest. This limits its applicability in

situations where data objects may be distributed. widely axound a system of geographically
distant processors. It would be intéresting to explore to what extent this centyalized-control
bias is built into the underlying. model, and see what problems. have ta be overcome in

devising an implementation suitable for distributed systems.

"~ An interesﬂting'ﬁ'bﬁlem' growing out of the Epproachhere is whether or not
synchronization constraints for an abstract data type can be derived automanca“y from the
_i‘_mplvementat'ioqﬁgf the:itype_. vaiously,;qgggi?ggyfych as whether one operation should
have ’pl;igr.it_y@ over another can only be decided by a person, smce there is no inherent
reason o choose ane prioriy cheme over ancier, Howerr, th cade implementing the
* aperaions of a type pusibly augmene by some interna) conteny reqinement fr the
lower-level reéresentation of objects of the type, can provide enough _,Ji%r;l,fqr{p'_oaf;op; lo
determine many classes oi" synchronization constraints. Which operations must be mutually
. exclusive of each other can often be determined by anaiyzmg the manipulation of shared
variables used in the implementation of the type. A number of ‘techniques ‘employed in
optimizing compilers can also be used: Heuristics such as dead ‘codé elimination and
~ dependencies in the ordering of operations. Success in investigating this area could lead to

the partial elimination of the need for synchromzatloncode itself.

- 224 -

Of all the areas open for_ future work, however, the most obvious is the need to
implement in an actual system a method such as the one described in this thesis. Many
ideas look good on paper, only to founder when actually put into practice. A certain
amount of system design has been done on paper, in order to help determine the feasibility
of the system. Nothing has been actually run and tested, however, and only an actual

implementation ultimately can be convincing. as to the feasibility of automatic synthesis of

synchronization code.

This empty page was substituted for a
blank page in the original document.

-m-

;Blbliqmphg

[Blo78] Bloom, T.,-"Synchrenization Mechanisms for Data Ahstncﬁons M s thesis
(forthcoming), M. I. T., 1978. o

(Bri72] . Brinch Haasen, P, A Cauplrheu of Twé Syuchrdtﬁzing Concepts . Acta,
- Informatica 1, pp. 190-199. - . -

[Bri73) Brinch Hansen, P., Am;mam;?m&wam ‘Englewood CIiffs,
N. J.. 1973, . \

[Bro76] Brock, J. D, and Laventhal; M. S., unpublished: note.

[Cam74] Campbell, R. H, and Habermann, A. N, “The Specification of Process

Synchronizatién by Path Expressions®; M@EM“&M‘%& Vol 16, Springer
Verlag Heldelberg, 1974.

[Cha74] Chamberlm, D D, Boyce, R F and Tralger, l L “A Deadlock-l"ree Scheme for
Resource Locking in-a Dita-Base Envirohmesit?,: mmu Nonh«-Hdhnd.l A
Amsterdam, 1974, pp. 340-343. :

[CouTl] .Courtois, P }., Heymans, F.,and Pama.&l;... "Genmnmt Gm:ol with 'Rudcn’
and 'Writers'™, Comm. ACM H, 10, pp 667-668. ST)

(Dah72} - Bahl 0. Ja ."l:hemhnl m Strm _M M_L»
Academic Press, New York, 1972. . s)

[Di68) Dijstra, E.W Wmlw BM_M
Academic Press, New York, 1968.

[Dij72a] Dijira, E. W., Notes o Strucurss Brogramesing’, Seructured Programming
Academic Press, New York, 1972.. g :

[D|]72b] Dijstra, E. W, "Hierarchical Ordering of; va ng_gg _m«__n_s
Techniques, Academic Press, New York, 1972,

[Dij75] Dijkstra, E.. W auazded (;nmnﬁnds. NW md Formt Denvauon of
Programs™, Comm. ACM 18, 8, pp. 453-487. » 2 LA

" [Esw?6] -Eswaran, K. P. Gray, J, N, Lorie; R A;.and Fealger, L L, “The Notions of
Consistency and Predicate Locks in a Database System”, Comm. ACM 19, Il pp. 624633,

[Fio76} Flon L., and Habermann, A. Ny, "Towards-thé' Construction of Verifiable Somvare
Systems", Proc. ACM Conference on Data, SIGPLAN Notices 8, 2, pp. 141-148. :

- 929 -
[Ges77] Geschke, C. M., Morris, J. B, and Satterthwaite, E. H., "Early Experience with
Mesa”, Comm. ACM 20, 8, pp. 540-553.

[Gre5] Grmf L, "Semantics of Communitating :Paratlel Pm MAC-TR-I.M MIT.
Project MAC, 1975.

[(Gri76] Griffiths, P, "S¥YNVER: An Automatic System for the Synthesis and. Venflcanon
of Synchronous Processes”, Ph. D. thesis, Harvard University, 1976. L R

[Hab69) . Habexmann, A. N "Prevention of System Deadiocks™ Comm. ACM: 12, 7, pp
373-377.

[Hab72] Habermann, A. N., "Syachronization of Communicating : Processes”, Comm. ACM’ _
15,3, pp. 171-17%6.

- [Hab75) Habermamn. A N "Path. Expremms Camegmm Unisvzrsuy. -
[Had77) Haddon, B. K., "Nested Monitor Calls Ogrgtmg stt Rewew ll 1 pp 18-23.

[Hav68] Havender, j w, Avondngeadlockm Hui&-TukiagSyum IQM Syg]_
7.2, pp. 74-84.

‘ [Hew’B] Hewitt, C., Bishop, P, and Steiger, R:, A Umweesa% Mﬁr Actor Ponnahsm for
Artificial Intelligence”, Proc. 1JCAI, 1973. Al Lo U ; :

(Hew77}. .Hewitt, C; and Atkinson, R, "Parallelis and: Synchroniization in -Actor Systems ,
Proc. ACM Conference on Principles of Programming Languapes, 1977, =

[Hoa74] "Monitors: An Operating System Structuring: Gmapt Cﬁ__ M l‘l 10, pp
549-557. V3

| [HolH] Holt, R.. C, "On Deadlock in Computer Systems”, CSRG Techmcal Report 6,
Depaxtment of Computer Science, University of Toronto, 1971." .

[Hoi72] - Holt, R. C., "Some-Deadlock Properties of Computcr Sysoems ACM § E{_l ing
Surveys 4, 3, pp. 179-19.

[Jam77] jammel, A.], and Stiegler,.H. G, "Mmgers versus Monwors) Informanon
Processing 77, North-Holland, Amsterdam, 1977, pp. &7«830

[LDRS™7] Proceedmgs of -ACM Conference on Language Deslgn Tor Reliable Software”,
SIGPLAN Notices-12, 3.

(Lis74] = Liskov, B, and Zilles, S, Pfogrammmg mth Abstntt &ta Types SlGPLAN
Notices 9, 4, pp. 50-59. - ‘

- 2217 -

[Lis77] Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C., "Abstraction Mechanisms in
CLU", Comm. ACM 20, 8, pp. 564-576.

[McC62] McCarthy, J., "A Basis for a Mathematical Theory of Computation”, Computer
Programming and Formal Systems, North-Holland, Amsterdam, pp. 33-70.

[Owi75] Owicki, S. S, "Axiomatic Proof Techniques for Parallel Programs”, TR75-25i,
Cornell University, 1975.

[Owi76] Owicki, S. S.. "An Axiomatic Proof Technique for Parallel Programs Il: Shared
Data Abstractions”, Stanford University, 1976. ‘

- [Par72] Parnas, D. L, "A Technique for Software Module Specification with Examples”,
Comm. ACM 15, 5, pp. 330-336.

[Ree77] Reed, D. P, and Kanodia, R. K., “Synchronization with Eventcounts and
Sequencers”, M.1.T., 1977.

[Rob75] Robinson, L., and Holt, R. C, “Formal Specifications for .Solutions to
Synchronization Problems”, Stanford Research Institute, 1975.

- [Sch78) Schaffert, J. C, "A Formal Definition of CLU", MIT/LCS/TR-193, M.LT.
Laboratory for Computer Science, 1978.

[Sha77] Shaw, M., Wulf, W. A, and London, R. L, "Abstraction and Verification in
Alphard”, Comm. ACM 20, 8, pp- 553-564.

-~ 228 -

Mark Steven Laventhal was born on November 4, 1950 in Englewood New _]ersey
He. grew .up. in. Bergenfiekl, New Jersey, #h ~Detreit; Mir.higan. -afd-'in Broomal,
Pennsylvania. He’ gtaduated “from: Marphe-Newtowh Bigh: Sthisiok in Newtowr - Square,
Pennsylvania, in 1968. From 1968 to 1978, Mr. Laventhal has attended the Massachusetts
«Institute of Technalogy:: ‘bié received: the S Brutid §:M: egress i W'Bepartment of
Electrical Engineering and Computer Science in February, 19747 #is"'S: "M {hésis* was
entitled "Verification of Pregrams Operating on Structured Data”. From 1972 through 1975,
My, Layenthal received a: Natiomak Science Poufidation Gradaste Feflowship. ‘He served as
a teaching assistant in the Department of Eletricut ‘Engiriedpitig ~and ‘Comiputer Science
from September, 1975, through January, 1977, and as a research zss:stant under Professor

Barbara Liskov from January:1977 through June-1978; .-

Mr. Laventhal worked at the Thomas J. Watson Research Center of 1. B. M.

- Corporation-in Y oritown Heights, New York, daringstive simuners of 197 and 1977 Heisa

member of the Association for Computing Machinery, including i§*8pedial ‘Tnterest: Gioups

on Programming Languages and Software Engineering. He is also a member of the Tau

.Beta, Pi engipeering . hmmq seuety and: the Eri}(zwa Nu mm& engineerktg
honarary soc:ety oty D Beiogs s £

In-August; 1978, Mr. Laventhal will assumte azpesition’ with the Data Systems Division
of Hewlett-Packard Corporation in Cupertino, Califorpims: Hexis: married to-Carol .
Goodman.

er Lgmen Tt o
sFIAFE RN

R EREETEERINONG

CS-TR Scanning Project ‘
Document Control Form Date :] 09 475

Report # L= 5-TR-&0J

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
Laboratory for Computer Science (LCS)

Document Type:

B(Technical Report MR) [J Technical Memo (TM)
] Other:

Document Information Number of pages: 7€ (3% 5~1macEs)

Not to inciude DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
)Z Double-sided)X(Double-sided
Print type:

O Typewniter [] offsetPress [LaserPrint
[] inkJet Printer k{ Unknown [0 other
Check each if included with document:

M DOD Forrr(;k) O Funding Agent Form K Cover Page
Spine Printers Notes Photo negatives
O Other:
Page Data:

Blank Pagesey pege numben:

Photographs/Tonal Material wy pege numbes

Other (nos descripton/page numben
Description : Page Number: (V] 2 Wir

Imace mae? (1-23¢D warlep TITLE & Branie &, BLanks 3 Bk
416, unirBLK 19- TS, LIS 42-€, cwxmk
(3. |8‘7 WNHBLK 190 - l:):f wmmlx 335~ 193
[-277 24S)fuhcam'lh\htoum SP)NE‘meTgR< NpTxS Doﬁ-l)JTR&'B(g)

Scanning Agent Signoff:
Date Received: _@_ /)24 95 Date Scanned: /0130135 Date Returned: _/ / X498

Scanning Agent Signature:_ZAM_‘én;g__ Rev3/o4 DALCS € Sontrol Form catiform ved

R

: READ INSTRUCTIONS
REPORT nowmnm PAGE BEPOBE COMP OMPLETING FORM
JT. REPORT NUMPER, - NP 2. GOVY ACCESSBION NO.
iMIT/LCS/TR—203 e . N
‘ Synthesis of SYnchronizatton Cede ﬁarﬁnaea 3 ok L$w.,wi, et ’
jAbstractions - . ; ,»1,':;>¢w;_ & - BEPORT NUMBER
: n) Mﬁ%—f{%)
17 AuTnoit-) e T ‘-wcm*amWA“t“”"'E“m
: ’ Nﬁﬂ@t&—?Sdﬂﬂosél

Mark S Lavanthal - T :

» R SR Dd§74-21892 .

B l‘tﬂf’ommc omAmgAtm YTy mn Aapness T 10 ugsw Pao.necv TASK

] MIT MLaboratory for Computer Science
545 Technology Square “uﬁf'ﬁvﬁ&ﬁk NN
Cambridge, MA 02139 :

11. CONTROLLING OFFICE NAME AND ADDRESS Director 12. REPORT DATE

j{Advanced Research Proj Agency ociat ram{ June 1978
.Desgrtment of D fense 7 Ogé yIin 38u33§g Wég%huazanPAGEs

Wilson Boulevard ioﬁai
Arlington, VA 22209 washington, D.C. 20550 231

T4 MONITORING AGENCY NAME & ADQR“B(” different from Conuoﬂ!n‘ Office) | 18. SECURITY CLASS. (of thia report)

j0ffice of Naval Research .
{Department of the Navy Unclassified

4 Information Systems Program 5a, ggEELDAStlEICATION/DOWNGRADING
Arlington, VA 22217

6. DISTRIBUTION STATEMENT (of this R_o’on)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, H different from Report)

18. SUPPLEMENTARY NOTES

| 19. KEY WORDS (Continue on reverse side if necesssry and ldentity by bleck number)
’synchronization interprocess communication
Jsynthesis monitors

Jdata abstractions deadlock :

4abstract data types starvation

{concurrency

izo. ABSTRACT (Continue on reverae side if necessary and identify by block number)

Synchronization code is necessary to contro] shared access of an abstract
jdata object in a parallel-processing enviromment. This thesis explores an
japproach in which a synchronization property can be specified in a high-level
Jnonprocedural language, and an implementation for the specified property can be
synthesized algorithmically. A problem specification language is introduced in
which synchronization properties can be expressed in a structured but natural
manner. A method is then presented for synthesizing an implementation. An

DD , :2:"73]473 EDITION OF 1 NOV 88 |S OBSOLETE

T oo SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PA

20. intermediate form, called a solution specification, is first derived,
representing an abstract solution to the problem. The derivation
of the solution specification accomplishes the transformation of the
specification from monprocedural to procedural form. The solution
specification can be translated diréctly into a source language
synchronization ‘mechanism, such as a monitor.

Specifications fof common synchronization properties, such as the
readers~writers and bounded buffer problems, are expressed in the
problem specification language. Corresponding implementations are
then synthesized for these problems. In addition, the derived solution |

. specification can be used in analyzing -the wowndnese of ‘the origimal
problem specification with respect to criteria such as :freedom from-
deadlock and starvation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.I.T. Laboratory for
Computer Sciences.

darptrgt. wpw Rev. 9/94

