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Abstract

This dissertation presents a collection of protocols for coordinating, transactions in a
distributed information system. The system is modeled as a collection of processes that
communicate only through message passing. Each process manages some portion of the data
. base, and several processes may cooperate in performing a single transaction.

 The thesis presents a model for computation in a distributed information system in
which the sites and communication links may fail. The effects of such failures on the
computation are described in the model. The thesis discusses implementation techniques that
could be used to limit the effects of failures in a real system to those described in the model.

A hierarchical protocol for coordinating transactions is presented. ‘The accesses to be
performed during a transaction are pre-analyzed to select the protocols needed to coordinate
the processes that participate in the implementation of the transaction. This analysis can be
used to guide the organization of the data base so as to minimize the amount of locking
required in performing frequent or important transactions. An important aspect of this .
mechanism is that it allows transactions that cannot accurately be pre-analyzed to be
performed and correctly synchronized without severely degrading the performance of the
system in performing more predictable transactions. ' '

‘A novel .approach to the problem of making updates at several different sites
atomically is also discussed. This approach is based on the notion of a polyvalue, which is
used to represent two or more possible values for a single data item. A polyvalue is created
for an item involved in an update that has been delayed due to a failure. By assigning a
polyvalue to such an item, that item can be made accessible to subsequent transactions, rather
than remaining locked until the update can be completed. A polyvalue describes the possible
values that may be correct for an item, depending on the outcome of transactions that have
been interrupted by failures. . Frequently; the.most-impartant sffetss: of a transaction-(such as
the payment of money) can be determined without knowing the exact values of the items in
the data base. A polyvalue for an item that is accessed by such a transaction may be
sufficient to determine such effects. By using polyvalues, we can guarantee that a data item
will not be made inaccessible by any failure other than a failure of the site that holds the
item. ’
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A strong motivation for the development of these prowcols is the desire that the
indiv:dualmﬁadwmm&rmmw il ,-and that a site or a
group of sites be able to continue focal ations when a failure has isolated
them from the rest of the sites. Many of the previous coordination mechanism have only
considered the continued operation of the sites that remain with the system to be important.
Another motivating &cmwfwthcdzvehpmudtbw“kﬁnﬁuthnhmny

"degree

apphummepom? exhibits 2 of locality of reference, in
only 2 small number of sites. By mem
mechanimmm“ ‘ - of this loeality of r i‘;_“-auum;nmm: .
simple, efficient, and rebust for the particiiir application.

keywords: distributed data bases, synchronization, message passing systems, reliability.
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Chapter1
Introduction

Recent develbpments in electronic technology have made practical the interconnection
of a large number of computer systems to form what I will refer to as a -gis'tg‘jl_)g“ ‘gﬂ

igfogm' ggn system. Each of the computer systems. (ar gites, as they are more frequently
called) in the multmg system maintains, some. infarmation . md tools for accessing that

system.may not. be.under the
control ,pf a singlé administrative authority. A distributed information system allows any

~user of any of the individual sites controlled access to-the entire body of information

.managed by the system, while it allows each of the lndivtdm computer systems to. control

the use of the tools and information that it holds.

L1 Reasons Fer Distrihution .

There are several good reasons for choosing such an orgmlutlon for an information

- system rather than pladag all of the information. in-a single. lazgw, shared computing facmty
‘I.will discuss some. of these reasons brisfly,

LLI Autonomy

A very important reason for choosing-a distributed otganluuﬁn for.an information
system is the autonomy of the individual sites.. A mnmmoumm ‘has:shown that
the ability to partition .the authomy and mpomw for: infermation management in a

- distr;but_ed system is.the most important reasan for mybmmmm:imbuted
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information syastems. In a distributed system, each site has control over the information that
it manages, and can ast #ts @wn policies for controlling the avatiability of that information.
As we shall see, autenomy thas important implications for the assumptions that can be made
about the cooperation of individual sites in the execution of processing operations, and‘for
the protocols that can be used te coordinate such operations. ' '

1.1.2 Refliabitity

A second reasom for distribution is reliability. There =~ two ways in which a
distributed informatton sysiem can be made more relisblé than a central facility. One way to
achieve greater relisbility in a distributed system is to replicate information, smmg it at two
. or more of the sites in a distributed sysiem. Replication hm the availability of
information in a system with unréliabile sites. A single failure does nat make replicated
information inaccessitfle. Ustforturately, modifying replicatedl information is much more
has gone into the development of protocols 1o updste replicated dats, the problem remains
difficult, and such upiiates are costly in that they require ‘extensive communication between

sites, reducing the economic advantage of distribution.

A second source of increased reliabiiity, and ene which 1 .consider to be much mere
’ imponént; is the the failure of a singli_ site or communication fink dees not necessarily make
the entire system fail, while in a single, centralized system, the failure of a single component
frequently interrupts all jprocessing in progress. The individual sites in a distributed
information system will ‘be smatler and simpler than & single farge computer system with
storage and processing jpower ‘equivalent to the total of that of ‘the individual sites. This
simplicity should mean that the sites in a distributed system full dess fraquently than the
single machine of a centralized system. Thus if a distributed systern:can be constructed so as
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" to limit the effects of a failure at one site to the interruption of processing that- Mﬁlres
information at that site, the reliability of a distributed information system as seen by any

individual user will be substantially better than that of a"siﬁgle shared machine.

1.1.3 Economics

e

A third reason for oistribution is an eooootnlc_ advm;*ge that makes a group of
small computer systems less costly to manufacture than an equivaient slngle large machine.
A single computer with a certain procesing rate and uonge capaclty costs submnthﬂy more
than a collection of smaller machines with the same aggregm proceuing rate and storage

size. In addmon to the computing hardware, commniunon and somnre development

contrnbute to the cost of a distributed lnformation system quuently, the informat!on to be

- mmanaged. can be partitioned in such a way that.mest-of the:processing operations do not
rre'quire information from more than one of the partitions. Exch partition can be assigned to
a smﬂl:oomputer system capable of performing tive Muqlmed for the information

| in that partition. The cost of mmmunmmbemm sites> i such a symmld be

-refatively smail. ‘If the extra cost of developing mgreferwdiuﬂm ‘information system

can be kept small, & distributed: information:systeny amay:be substantially Jess costly than an
equivalentl‘cenml'fadmy.

1.1.4 Flexibility

A fourth reason for distribution is ﬁexibility. Changes in the amount of information
to be managed by the system can require increasing or decreadng the stouge and processing
capacity. In a central system, this may require rép

different capacity. In the distributed system, eapadl'} ehurgu an Muenﬂy be

ating ¢ theemlre machine with one of a
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accomplished by adding or deleting sites, with minimal impact on the sites not being
changed. |

Consider, for example, a corporation that has wa:equmdambuduﬁ. and needs to
modify its administrative information management systers to manage the new subsidiary.
Merging the information management systems of the parent My and the subsidiary
mammmm&vmamx lt‘thcinhrmﬂmmagm:ystem
beingmedbymmkdwm W«,mWanhmpmhedby |
addingmeammwmgethemmy'

1.2 The Concurrency Coatrol Problem in a Distributed Information System

Several problems must be overcome in order to make & distributed information
system as easy to wse as a central facility. The subject of this thests, and: what 1 believe to be
the most difficukt of these problenns, is controlting the sequencing of user specified processing
operations. ‘The result of performing sach processing opérations cehcurrently should be the
fame as that obtsined by performing them in some sequentisl ceder. Before this problem
 can be discussed in detail, we mast have 2 mase precies definibian of the way in which stored

information can be manipuiated. For this purpose, I adopt terminciegy that has commenty
been used in data base systems.

1. In meamﬂuamhfm;ynmnftmmmmmuﬁuymym
compatible, requiring virtually no effort for the merger. Even if the information
management sysiem of the sulmidiary owist-be subsiantiadly medified t0.fi8 4mip the patent’s
distributed system, this effort should be less than that required 1o merge both into a single
shared facility.
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The stored information consists of a set of individual data items, each of which
represents Sotre independently accessible piece of information. For @ich’ data ftem there is a
current value that is the information that that ltem cur;gug!] eunmm,l A 9-.!3& base state is
a map'ping‘ from the set of items that makes up the data base to the set of values. specifying

_the current value of each item in the data base.

The high-level opeérations that are to be performed on stored information are known

‘as transactions. A transaction can be viewed 234 funition Hiapping one'data base state to

another. Each transaction is performed as a set of primitivé operdtions, cafied sccesses, on
individual data items. Some accesses to an ftem’cause the’éutferit valae of that item to'be

changed, and are known as u'ggg‘ tes. The set bof items whose values are changed- bytihe

- transact'ion‘ are the output items of the transaction.2 The new values produced by the
- transaction for these items are known- is:the:éutput values of the tnnsactluu. Eacﬁ _
‘transaction computes its output values based on the valuu of the ttems In the data base state
that is the input to the tunsacnon The items that are used by thf tranuction ln computlng :
. iy gEett :

the output values are refered to as ngu L@_, ;nd their values u supplied to the

transactions are the ngug a!ugg of the tnmaction

 The user of a distributed information system views sach mm as a simple,
complete operation, such as "depum $50 in account number:135427. - Each: transaction "seess”
the effects of previous transactions in the values that it obmns for its input ltems. A
problem arises when several transactions are performed ooncurrently Each tnmactlon tuay
see the effects of the-othets on the shared data isems:: Ins ceder to peeserve-the illusion that a
transaction is a simple, tomplete opmtim. the trandactions shust be atomie, in that each |

. The term "version” has also been used for what I will refer to as a value
(Reed78,Stearns76]. '
2. This has also been refered to as the write set of the transaction [Bernstein77].
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transaction sees sither all or nome of the effects of each other transaction on the data items
that it accesses. The definition of atomic will be made more precise in a later chapter.

The problem of insuring that transactions which are run concurrently are atomic is
known as concurrency cemtrel aad is common to both distributed systems and to centratized
data base systems, where transactions are run concurrently to increase the utilization of
resources. While there is a great deal of Hierature op this general problem, the particular
control, and make many of the mechanisms that have bean devaloped 1o solve this problem

system.

13 Basic Assmptions aad Geals

_ Tmmw@hminmtmkugawmhaﬂm»uﬂnawmp@expwbhnm
ummmmmmummmmmmmuabmﬂn'
effects of fakares. mmmmmmmmmmmmm
: mwahuumprmmmmmm Theuuwmmdgukmy

muwﬁtﬂwwlme&nﬁqmmmm for many
uses of a distributad information system a3 described above.

1.3.1 Implications of Delay

- A characteristic of distributed information ‘systems. is that communication between
sites is slower, more costly, and iess reliable than communication within a site. An
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implication -of this characteristic is that unnecessary inter-site communication should: be

minimized, even if this requires more computation or more storage at each individual site!

' A second implication of communication delay is‘that no-one site can: readily obtain.a
view of the global state of all transactions in progress: State information:from:remote sites is
" delayed in communication ano may be out of date. ‘Thelack of glebal state information

makes: concurrency control schemes in which seme decisions:(such as déadleck detection and
*back‘up) are"oude based on ‘gloﬁal information awkwazd -fér-use in idmbun&fmfm
| system. Thus, ideall; the protocols used: fwmmm afiow ench site
“ito bm its-actions on its local state:only;

A third impllation of delay ls that any operation lnvolvlng several sltes may be
delayed for a long period of time before it can be completed Thls means that the
information should be organized such that frequent or important operations an be
| 'Ioacompmmd -!ocally ‘at some site. - While: [ :will.uiot diseuss the: task of jpartitioning
information tn detail, I assume ﬂ\attheopendomaoheﬂkm!dﬁhibua high degres of
":»bcauty of referenoe. Each operation requires only a saail amount of the: total informetion
“available, - and ‘the information can be pastitioned s0 Mw&wopmw require

information from two or more sites.

This assumption is necessary to make a disributed tnformatien system practical. It
' .seems quite reasonable for many applications, tnthdhg management information - &ptoms.

1. T am not addressing the concept of a "multi-microprocessor” distributed system consisting
of a large number of small processing and storage elements linked with very hlgh bandwidth
communication



- 1.3.2 Partisl Operability

As noted above, the individual sites fn a distrsbuted information system should fail
less often than a single centralized system of equivalent processing power and storage
“failed site; then n transattion Mvelving enly a small mamber of siies Showid be less likely to
be affected by & fatlore tn a distributed tnformation systom tran & would be in & centralized
system. Thus as 2 goul, the meckianim for performing transciens should aliow a group of

sites that are mwmg and tan communicate With each other -perform transactions local
to that group. 1 refer to this goal as partisl opecebdlity. The: most important aqn:tof
partial operability is to mw my transaction that is ammty lﬁetl ) om of the sites to be
performed whenever that site is operating and the requw to perrerm ﬁ:e transaction can be

communicated to that me

This is a very different form of enhinted reliability from that schieved with
replication, as described by Alsbery et sl {Alsberg] | believe that the goil of partial
operability more: accarately reflicts the fieods of ment m We shalt sen later thiat
both replication of daws within one site and replication of dite foeme-at severs sites fit
naturally into the mechanism that I am proposing. | |

An implication of purtial operability is that the dependence of one site on another to
pcrform pmety focat tranmsactions maist be minimized. - Restocols requiring & site eoreeetve

external authorization to perform local transactions;: m s that ted by Tm i
[Thomas76), shoukd be avoided.



. brought up to date on recovery.
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A more important implication of partial opetability is that error detection and

recovery are concurrent with the execution of transactions. “Backward error’ recovery

- strategies [Randell78], which stop processing new transactions. ‘""e" .an error is discovered

and cause the data base state 1o be "rolled. back” t0 2 previuly saved state known to be

4 _Wlng, continues
", that it may not be

consistent, do not achieve the goal of partial aperability. . Recauy

during .error recpvery, a site that encounters an error can, "gey behin

‘iaware of recent transactions. For example, a site l,wlqmg, a my of 3 redundatp,t data base

sransacion that wverfomm ave «w Tm M"«mmr mxhwmm"*

record any information.sent to a site during a failure of that site, 30, that the site can be

S e e

1.3.3 Autonomy

As noted above, the autonomy of indhzidual sites in a distributed information system

is an important reason for choosing such a system over one with a central shared facility.

" One implication of autdrfomycdnsfstent with the goaY o partial operibitity ‘i "thit”‘i‘hdivldual

sites should not be depétident on the systefti‘hs' a-Whole i°that thiey shoukl be capabie-of

. O

catioh 'with ther sites; Tias ‘We cannot

performing local transactions when not in
assume that a site which is not in communication with any other sites stops all ang. as

is done by SDD-I [Bernstein77].

Another mplimtion of autonomy is that eacip site eontrolsthe opentions that cn be

performed on the data items that it holds. Thus oy mg may remse to perform some

operation at any time. One method of dalmg with this goulbility is m require that uch
transaction obtain permission ta perform all of its component °P""“°"’ before any of these



.m-
oper;tiom is carried out This can substantially incrusetlncmtof petforming some
transactions, by increasing the need for locking (see Chapter 4).

For nian’y transactions, the administrative policies of all of ‘the sites that must
cooperate are known in advance and examined In determining wisether or not a site will
cooperate in performing a particular transaction. Verifying that a transaction will not
encounter access restrictions s simifar in principle to verifying that utnuualon preserves
consistency constraints (i.e. that it always maps one consistent state 1o another). T will assume
that even though the sites are autenommous, they will cooperate in performing a large class of
common transactions. Thus in many cases, the acceptability of a transaction to be run can be

simply ve:fifi’ed before it is run, and will not interfere with synchronization. Dynlmicauy .

changing access restrictions must be checked as a transaction is run, and will add to the cost
of perforrhmg and synchronizing transactions.

1.4 Related Work

The work of this thesis concentrates in two main areas: concurrency contral in data

base systems, and reliability techniques. 1 will discuss the previous research in these areas
separately first, and then relate it to this thesis |

1.4.1 Concurrency Control

Several papers [Bernstein77,Gray?,Gray7)Stearns76] discuss the problem of
controfling the concurrent execution of transactions 50 that each sees a consistent version of
 the data base. Gray et al. Gray®) g-ivé definitions for feur different levels of comimy
and discuss focking strasegies o achieve each. Atomic transactions as 1 have defined them
maintain the highest fevel of consistency (level 3) defined in that paper. “This is the level
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that places the greatest constraints on concurrent execution of transactions.! The locking
strategies presentcd by Gray are efficient, in that they allow the data base to be constructed

s0 that a high degree of concurrency may be obtained with little k;cking overhead.

A second paper by Gray-[Gray77] discusses a mechanism far concurrency contral in a
distributed syﬁtem thit makes use of the. locking  strategies described in. the. first paper
While  this mechanism performs transactions .correctly. uniess -highly .improbable failures
.’ occur, it fails to meet two of the go.nls outlinesd. aboye. .- The logking strategy allows
| transactions to deadlock, requiring some mechanism to detect. deadlock and.abort one of the
© tramsactions involved in a deadlock in order:to allow. the others to proceed. Dcadlock
E detection requires a view of the global.»\;smtcA Ofallamﬂm in progress, "W“‘&S“'

condition of making decisions based on local information.

The two-phase cdmmlt protocol used by Gray and others insures that a transaction is
atomic, no matter what failure occur during mma If.a failure occurs at the wrong
time, however, one or more of the sites involved in a transaction may be obligated to hold

onto -locks_set by the transaction until the failure is recovered, preventing the g?ecu;ipn of
| transactions hdl to that site that set locks which conflit with those set by the transaction
suspended by the failure. This viplates our goal of parthl opcnblllty |

1. While the authors claim that forcing all transactions to see level 0 or level | consistency
allows transactions to be constructed to sée higher levels of consistency; and may save-locking
overhead by allowing many transactions to run at the lower levels of consistency, they also
point out that outpit values produced’ by a trankiction Teflet thé ¥%vel ‘of consistency that
that transaction-saw. These low-level consistency. values are propagated by any transaction
that reads them, so that transactions desiring a high level of consistency can never read
values produced by those observing a dower leveli - Thus low-level of consistency transactions
would appear to have very limited use.
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| Aw&ymmwmwm]amammmmwm
data bases n Wiich e S are partitioned among sites and each transaction is performed
by a process that mhigrattes wmong The sites that hold the values that the fransaction accesses.
Each site is Tesponsiise fur controlting the execution of transactions at that site, and the sites
WMM‘CW%W and when & wanistion s-completed. The
authurs&wibe a iuss of control sigorithims ‘that werk by assigning an order to the
m'empang ‘to acoess the same dut, jpossibly by uborting -and m them. The necessity
of ‘restarting ‘Tome ‘travsehion fhat s completedl . sUNaWKial amount of processing 13

Several papers [BernsteinTlHaminer78RothnieT!] discuss the SDD-1 database system
in which the set of tramsacsions % be performed ‘on the dat bese is-analyzed 10 determine
the amount of ocking weeded. Tratisactions are-dividetl into ésses'by the sets of iterns that
" they read and ‘write, and transattions in the same class are performed seriully with respeet to
each other. Trumsuctions in different ciasses can be performed ‘concurrently. The conflicts
Detween the sets of fenw reatl and written Dy different chusses are used to select
synchronization protocols to ‘be ‘used to coordinate concutrent transactions from -different

classes. Frequently, transactions can be run concurrently with little synchronization overhead.

The approach used in SDD-l of preqnalyzmg the set of expected transactions to
minimize the synchronizstion overhead for ﬂnm common t: sactions seems to be very
remmng The ‘proct that this technique works, (ie. that all trau tions are atomic),
however, ‘is ‘so long mﬂ ‘vompticated as to ‘be unconvincing. Waking SDD-1 robust in the
event of failures also appears difficult. The mmmmpmm frequently
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involve waiting for messages that may be delayed by failures. The techniques used to insure
that delayed messages do not cause excetsive "‘delayf;ii’i*" the processing of transactions are
‘extremely compﬂcated and may reduce some of the emcm:y of this synchrmiution scheme
by reqniring additional message exchangés o |

The rcliability Agoal of SDD-1 is also somewhat differentfrom that of this thesis. The

goal in SDD-1 is to keep the system as a whole ruﬁning, even if this means that sites that are

‘separated from the network while involved in a tnnsactiontﬁatspans several sites must
stop. Thus SDD-1 does not achieve our goal of partial operability. S

1.4.2 Reliability

The work in reliability is perhaps less developed than that onooncurrency control.
An importaqt paper by Johnson and Thomas. Uoh%mldscﬂbes an; algorithm for
~updating redundantly stored data such that all copigs mnvgrge to the same final value. The
paper uses the notion of a timestamp, Whichemr&seﬂhe“ﬂ" “1 which updates should be
Pe!fofme_d, so that all copies converge to the same final value, even if the updates are
_delayecii duplicated, or arrive out of order. Timestamps have been usad in many. protocols
for reliable synchronization. This paper does not discuss tbgp@lemof syn;_hrénmnm for

concurrent updates.

Thomas [Thomas?6] proposed an extension of the ideas in that paper to provide
synchranization. An ;Igérithni was developed to allow uﬁdim to be performed as long as
more than half of the sites were functioning. The algorithm is complex, and several flaws
| were found in the early versions. Another major problem ‘with the Thomas algorithm is that

it applies only to cases where the entire data base is stored at each site.
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Alsberg and Day {Alberg76] have developed a robust muki-copy update aigorithm
with a somewhat different approach. They designate one capy as the primary, and insist
that all accesses occur through the primary copy. The other copies serve only as backups in
case the primary fails. This strategy eliminates one of the major advantages of replication of
., data, that of greater concurrency in access. The algorithm does, however, seem applicable

whcre the only concern is greater reliability, and not gmm mncurmncy

A forthcommg paper by Lampson and Sturgis [I.ampm‘l&} presents a gemral
discussion of performing atomic transactions in a distributed system. Thg paper presents a
method of storing and updating information in a single machine, such that it is preserved
and updated correctly even if crashes occur during upd:m. This storage technique is useful
for implememtng an atomic update within one site. | |

Thellst partwnmpwpargim an algorithm for performing updates at several
vdtfferem sites atomically. kmnpmm!dpmttw wdmmmemmnm to
each site, such that dering most of the procedure, Mmmwmly decide to abort |
the update if messages are siow in arriving. There is sifl, however, & time window in which
2 site must wait for the arival of memage from other another site, and cannot decide
whether or not to abost the update if such a message is slow in arriving. This algorithm is
similar to the two-phue commit protocol described by Gray [Gray77] and that used bf Reed
[Reed78] The Lampson and Sturgis algorithm makes the ‘tl;m_n window during wﬁith a site
can not abandon a transaction interrupted by a failure quite small by insuring that all of the
computation done by the tms#tim will be completed before any site is- ,pteven&q from
abandoning the transaction. This is accomplished via extra steps in the protocol.and extra
message exchanges. Chapter 5 discusses commit protocols in much graterdemt
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Reed [Reed78] is also working in the area of robust t}ﬁéhtbniiition mechanisms. He

has developed a scheme in which each value assigned to an ftem can be named as a version
" of that item. The scheme allows a transaction to obtain.a set of ‘gmytqajly\mmj&tﬂent values
~ for the items that it accesses by choosing the proper yersion n@rgs& This_scheme is subject
‘to the same limitations as the Stwmandkomntthmin that a transaction may
need to be aborted to avoid deadlock. This problem is solyed by having al (of the updates
performed by a transaction (by creating new. yersions). be.

al until the transaction
. has been completed.

This same mechanism ‘of conditional transactions is used to solve the atomic
distributed update problem. The mechanism is simple and convincing, but still leaves a time

, _window._in: which a failure can.cause delay in pro

1.4.3 Relationship of this Thesis to Previous Work

This thesis presents a model.for dismbuud Wﬂmm the effects of

nputasio gp;emedhm'tgumtlhhmm in
which components can fail.and failures effect the outcome of the, primitive operations of the
model. The thesis discusses implementation techniquu that can be used to insure that the

ﬂ-lewut?S.ngittTlli_ Thc madel describes co

actual effects of failures conform to their effects as described in thc model The techniquu
"used build on the work of Lampson and Sturgis [Lampson?&] and Gny [Graym a

‘While much research has been done on.the problems of synchronization in message
based models of computation. [Atkinson8 Halead78HewitZTL; much of this wark has
centered on developing primitive synchronization techniques, thas achieve mutua) exclusion.
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abort one of she ansaciens to ressive the Sextiodk and aliow the bthers 10 proceed. The
conCIrToncy Shan sving athvr desdieck aviiding ackishizatish 3dvinies, by postponing the
acmalmmgmfammm&kmaddmmhmuawﬂmmthm

cmmctmg ‘transaction which smeeds that resource. mWnMsummry locking '

that restricts concurrency.

urderinwhmnmmmmd Wﬁ&emwmmv
efficient use of the kints of communication MWMMMWM!
, mmmmwmmwmm

The mhmgu:nndmmrdmmmcﬂminvdmmmﬂym&mem
pattern wmm:mnmmmzmmmwmmmbm more fine
grained in that the actual derivation amwﬁammmmmm
transaction 'is usedl dn She anutyuiz, mather than basing the ettt on-the assumption that
every outptt of a sransaction depends on every muam%’sm mmm
ﬁn be performed with minimal overhead due to the synchronization.
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The thesis includes a proof ‘that ‘i‘t""{s' impossible to solve the “atomic distributed
‘upda'te." praoblem for.all cases in a way that achieves ;b;e_v;;gqgl,of partial operability, given the
semantics of tﬁe ng presented here. The Pproof applies, pm;mems advanced by [Grgxm

,,,,,,

A novel approach’ to the atomic distributed update préblem' is presented. This
~ approach inyohies keeping several ‘current values for some data ‘items, and builds on the
version naming synchronization schemes of Reed [Reed78] and Stams et al. [Stearns76]
_.Tﬂhi_,sg‘approach .l,s‘po/t limited mzhemniwwsmmmganmth dlscused lri this

thesis, but is applicable to any of the synchronization schemes discuss

| above.
To sﬁﬁi&tarize, I feel that the 'imborfant contributions of this thesis are:

- A model for distributed. computing in which, Met,;‘em of failutu‘
- are well specified and implementaﬁon techmqua for meetlng these

- specifications vkl

-A ‘vtechnique for ‘coordinating what ‘1 refer t0: a5 -an “atomic
broadcast” that can be implemented efficiently in the kinds of

~ computer networks ciitrently used to cofivect ‘sites in distributed
information systems .

A technique for analyzing a set of transactions to be performed to
determine which ones can be performed without locking

- A mechanism for locking data items at' several sites in order to
~ perform a distributed atomic update without allowing a fallure to
" delay actess to ‘the locked datd indeﬁntafy in'most cases
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1.5 Thesis Plan

mputing that is used
$iem that béhives as

throughotit thé thesis.

formulated in terms of thiik iHodel. The chapter discussés severdl ways in which the order of
execution of transdetions tin be controlied; and shiows that ofily one of thiese achieves the
goal of pirtial oerability. |

 Chaptsh 4 ISl & dimple synckrohizdtion probi Bkt tondlied F coordiftating
BibkBedst AW Atoric broddcii distHBitis 4 st 6 messigsd 1o
a set of receivers siich thit the order in which any one receiver sees messiges from several

what T refer 6 4§ dH Etditie

such broadcasts is cohisistenit with the order ifi which the broadess
other receiver. A sifflé mechidhisi & péHohm ?ﬁi‘ ﬁiﬁ ) ism Thls mechanism
forms the basis 3? th Syhichfonization mechanlsm fot cohcﬂrréﬂt ms discussed in

Chapter * ‘mpkﬁﬂll Ldaiis

i are received by any

% of this mechanism that. mamm of zhe syhchronization
constraints imposed. by the mmm&nldtion netwhtk are discussed, 'y
distribute the messages with very little overhead mriﬁ&iiiﬁié to the ‘enforcement of

synchronizitihﬁ eonstriints.

itnplementmons

Chapter 4 disclisses the problem of synchronking transactions. A technique for
analyzing & set of traRbictiohs to détérmine What syhchronization protocols are needed is
‘discussed. This ahalyéis is used to show that correct synchrohization of all transactions
cannot be accomplishied With a protocol that achieves the goal of ﬁdmai qpmmmy. Three
different classes bf trahsactions are distinguished, on the basis of their access patterns. A
mechanisth that builds dh the atomic broadcait mechinism of Chapter 3 is presented to

perform. transactions. This mechahism can be tailored to minimize the cost of synchronizing
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transactions that are expected to be performed frequently. The mechanism is general,
however, in that any transaction, expected or unexpet.fted.‘ will be correctly synchronized.
Unexpected transactions have little impact on the efficient operation of the synchronization

mechanism for the expected transactions.

Chapter 5 considers the implications of the need for locking on the goals of partial
;operibi!ity and autonomy. These goals dictate that a site that has set a lock for some
transaction should.be able to decide to abort that transaction if a failure interferes with the
prompt completion of the transaction or if the transaction violates the access policy of the
site. I show thit‘ there is no protocol that can be used to insure that no fﬂllure can prevent a

' functidning site from promptly completing or aborting a transaction requiring Iockihg.

As a solution to this problem, I propose a novel mechanism that allows locked data
b_items to be made available to other transactims before the completion or abortion of the
| lock“ing transaction is decided. This. mechanism is approprhte for systems in which the
ability to perfonﬁ transactions in real time, without long dehjs waiting for locks to be
"rc'le‘a‘seAd, is important. |

- Chapter 6 presents a comprehensive example showing how to apply the techniques of
this thesis to a typical distributed information system. The example is an inventory control
‘system described in a report on SDD-1 [Bernstein77] The technlques of this thesis are used
.. to develop a robust synch_roniution scheme >for this example with little overhead due to the

synchronization.

Chapter 7 summarizes the new ideas in the thesis and discusses areas for future

research.
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Chapter 2
The Process Model of Distributed Computing -

» _This chapter presents the model for distributed ‘oo,t‘nputing that will be used in
discussing synchronization in a distributed information system The first section presents the
model which includes specii‘ications of the efrects of failures on oomputation expressed in the
model. Implementation strategles for ‘Himiting the- impsa erseeuni failures to the to the
failure effects specified in the model are discussed The seoond section poses the problem of
performing transactions (as described in Chspnr i) stommuy irt the fr;mework of the
model. Various techniques that could be used for synchronintion are discussed to show that

' only one of these can be u’sed by a system m«mm goﬂd‘pertmwpenbility

© 9.1 The Model

- Based on the assumptions and goals set forth in the previous chapter I will now

descnbe a model for computation in a distributed informstion system. In order to centralize
the description this chapter presents aii oi‘ the model even though some of the concepts will
” not be used untii much later in the thesis This model inciudes tuo forms of oommuniatim
message passing, and changes in state observsble by hter oompuntions. Message passing
may occur between sites or within one site. Communication through state changes, however,

‘occurs only withina single site.



2.1.1 Definitions:

The basic unit of the mode! is a m‘ A process can be viewed as the unit
within which communication through state changes can occur. A process consists of a local

state, a set of jnput ports, and a set of process siep specifical
performed byapmsukmplminammsofmm A process step maps an

The computation
'lnput local muandasetofinputnmugesinmmwwhalmandnmofomput
messages. Mpwmwﬁnmwnuwmuamm.bymmg. :

A set of input ports for the step. Qnem»mﬂudbym'
step from each port in this set.

The outp! Iou!mteuamnction ofthe input bulmumd the‘

Asaafwmntmg»mdthdrdmm Both the

fontents . and e 9 Poss. e apecified as.
mmmmwmwmmu»m%mm

An important point to note about a pracess step is that it computes its output
messages and output local state. Thusasingkprmmpanbeuudtoperform
'mmnmmmwmwmewmmmmauwvd nthcr:hanslmply
retneving information. from the focal state or mﬂm mfmﬁm n the Jocal “state in
responsetomeuages Thismpmmyofapmessupmpamwwnundmme'
lmplementaumnfatnmactm nwiﬂbedlscuuedmcmmeri "

1. The word process has been used to denote a number of ill specified concepts in the
literature. My use of the term process is not inconsistent with the common usage of the term,
however the reader should realize that the term has 3 very specific meaning in this thesis.
Other terms that have been used for very similar concepts are Actor {Hewitt76], and message
handier [Reed78].
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Conceptually, each process resides at one 3ite, its home site. The home site of a '

process is the location of the process state of a igrocess. IMMsmalso is responsible for
carrying out process steps. The fact that each process is implemented at a single site will be

used in determining the effects of failures on. the execution of process steps in this model.

~ Each of the process steps of a process is atmmc with respect to the other steps of that
process. The output local state of one process step becomes the input local state of the next
step in the sequence. The execution history of a process consists of the sequence of: steps
that have been performed by that process.“jFor each process p, there is an ordering <ﬁ on
the steps of p, such that s; <p %9 if 5; preceded sy in the execution history of . .

~ The set of messages that a process has received in uch of its prooess steps and the

’ initiai locai state of the process i‘orm a complete descriptlon of its execution history l'-'rom

the messages received at each step and the process step speciﬁcstions. one can deduce the

' messages that are produced and the chmges made to the process sute The input messages
‘to each step can be represented by asetlof [message.port] psirs describing the messages
. received and the pom at which they were received.

anure 21 shows an example of an execution hiseory The figure shows a Iist
describmg the input messages to the process steps of P The ﬂrst prooess step of P is
represented by the bottom entry in the iist, with subsequent process steps higher in the list.
This list may be thought of as a log that records the mesnges rereived by P. When a
process receives messages.at a single port only, the execution history can be represented by a

list of messages received, as each step receives a single message at that port.



Figure 3.1

-Thehmlmﬁapsmhyﬂmuummnﬂmaﬂyuww
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mymmmm»mummmswm»mmmw
wquenm!mm '

1. Note, however, that several processes may send messages to the same port.
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_ One can view the execution of a process as belng performed by ‘ini ‘interpreter that
carriés out the exeeuuon of all of the processes ‘i'n & system. 'nm interpreter maintains a
lo‘eal‘ state for each procus and a set of messages for elch Iné_ut port. vOne cicle of this
interpreter selects a pmcess step specification of some ¢ process, selects a message from elch of
the input ports for that step, and carries out the sebcnd step. The inmpreter deletes the '
'recewed messages from, the sets of messagg for the input pom,changes the loal mte of the o
process, and adds any output messages produced to the seg of pending mesuges for the
| approprhte ports

The imexpretanm can be distributed . (me lmerpfeter !or each prooen) because the

| onlyrinteuc;im«bvetweensteps ro ,';:;lsthe nnding

pwuofmotherprm This
betweentindmﬂbuud

“of output messages produced by process: o inpu
-_lm.etunon can easily be_accomplished b! _message passin

- : 'iuterpreters.

i 2.l..2'Effeets-of- Failures in the Model |

The process step speciﬁcations completely spedﬁcy any oomputauon ukmg phce in
: the absence of failures of the underlytng mechanism that carrm ‘out the proeess steps. This

. vsection discuue: the kinds of failures that can ame ina duu'llmnd mfomltlon sym imd :
thelr efrect on the execution of process steps and on memge pusing betweeﬁ proceuu. “Two
‘_ extemlons of the process model to include a spedﬂauon of the eﬂ‘ecu of mlum on
B i mwntion are presented. | '
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Twoammmkm;armmmmmmummmmm'-
”,fanum.andeommunmmm Amﬁmnh&wmmmdmaw
| mumatmwuwwm ‘Vimﬁmmmumw
‘damaged Ammmmmwmwnhmmm

" damaged, or delivered to the wrong reciplent. Mia! M migues can be used
_whmunMofﬁMimamm ’

M«mdMMwmmudemmﬂmmwm |
| ammmwvmmmmmm White 1 is impieib nmnm«m‘
the ‘probabifity of undetecied communicilion errors ‘cin “be 't > de arbitear ’
| -mm mmam wm:am" doction. 1 wit theretors make
" arbitrarily small, but nen-sero probabilky of an undetected ervor. If any mesage that bs-
-Mmuumnmmmmymmwmmm |
Iutordd&yadw

Themmmaﬁ‘&afamwmnm_nd

f.failurem;yzbem ﬁammmwmmmmdammp tim

utiutsiteis

hmm&attheumeofm

'lNommmumdmwmnMWkamtha
cmmfmmMam»ummawxmm-
10 the error detection mechaniem but does not correspend to the original message.

2. Many communication sysems exhibit ancther fullure mode in which a message is
duplicated. In designing & comewnication pretocol, one has & choice as (0 whether to
guarantee that all mesages are delivered reiiably, possibly delivering some twice, or to
gmrmmmemmmaﬁMnmwmymaﬂml
have chosen the latter akernative. In the next section, I intreduce the concept of robust -
WWMM%M‘M“MM&W ‘
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step might be left partially completed, with the focal state of the process corresponding to
- neither the input state nor the output state of that step. Thistanbe prevented by using a
“ robust storage management technique for storing the local state of a process. Such a
~technique aflows a group of updates to be made amiﬂﬂy to fiformation stored at one: stte.
such that if a failure occurs either-all or none of the ‘updates tﬁe‘ place.’ The atomic stable

storage mechanism of Lampson and Sturgis [Lampson76] is such a technique. A description

of all of tﬁe updates to be performed, known as an intentions s list, is formed and written to
-permanent storage in a single operation before any of the updates are carrled out. A failure
occurlng before the intentions list is gmeed or-one ngmm the wﬂmng out of the
_ intentions list causes none of the updates to be performed. Onty'the intentions list has been
writteni, however, the error recovery mechanismy can' use'#t to fnsure that all'of the updates
specified will be made, even if the site making: the updates fafls after having partiaily
completed them. The write-zhead-log protocol of Gray [GriyTi aiso- provides the same
capability for making a collection of updates atomieaily, by wriing out a description of the
updates to be made to a log tape before any oftheme: are mude. .

Each process step can be nmplemented as an atomic update to stable storage Thls
implementation insures that a site failure leaves the local state of a process exewtlng a
process state either at the input state to that step or:the- mutfm of that itep, and not

some imrmediate state or mixture of the two.
2.1.2.2 Two Ways to Include Failure Effects in the Process Model

By using the low level implementation techniques discussed above, one can constrain
the way in which faitures affect execution of processes, rocess . By stigmentirig’ the definitions of the
process modet to include specifications of the effects of failures, we can produce a modet that
 describes computations in a “real” distributed information systems in’ which *site- and
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communication failures can occur. The choice of the specifications of the effects of failures
should be made 50 a3 1o reduce the effects of actual failures on the model, but also to be sure
that an implementation of processes in which the effects of failures are limited to the
specifications can be obtained. IMMMWW@MI&&,
.mmpmmmmuhmuwmmmmmmxasmum
severely.

2.12.2.1 Simple Processes

Using basically the techniques described above, one can build an implementation of
processes in which the effects of a site or communication fallere are limited to lost or delayed
messages. This is done by using.error detecting codes. to. detect communication errors and
storage. Some care must be taken in the implementation of a process step ta.insure that no

lmlbhfauuuuummummwmdydmwmskgmmda

process step to be repeated. Ifapmuuepurmmd.ammpﬁhﬂymphmd
then umaysendomtheamememgetwiu(mbefmebdngmndmﬂmaﬁu).

_ may modifymhcalmuasiﬂt had reoeiveddveummmgem

These undesirable effects can be avoided by petiaming a process step in three
stages. First, delete any record of the input messages to the step so that.a site failure
occuring at this pbim would cause them to be lost. Then, perform the process s:ep and
update the local state of the process to reflect its completion. Finally, distribute the output
message's.,of the process step to their destination ports. A site failure occuring hcfom the local
state of the pracess is updated can resuk in the process step not being pesformed, or an
apparent loss of all of the input messages to that step. A failure after this point may cause
output messages ofﬂu@nobebst No failure causes the local state of a process to be
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modified as if a process step were performed twice, or ciuses the messages produced by a

process step to 'appear to be duplicated.

A less likely result of a site failure is that the information stored at a site in
permanent stable'storagé is dainaged. This can be detected, with high ﬁr&ﬁibility, through
the use of error detecting codes. As with communications Thikires; however, it is impossible

t0 detect all such errors, The local state of 2 process can’ bé replicated within one Site to
decrease the probability that a falure will destroy all copies. A protess step is implemented
" as an atomic uﬁdate to all of the toples of the process state. Ay cdpy of the Jocal state of a
pfocéss that survives a site faflure can thus be used to becoiné thé currént focal stite of the

process.

To summarlze. the effects of a site failure can be- limlted to lost messages (through a
' “process step that was aborted after receiving messiges), or de!ay of processes at that site.
~This is achieved by using atomic stable storage to repreaeﬁt the local state of processes,
replicating locai states, using error in error dé@alng-maé ‘to detect damage to a local state,
and .,indeﬁnitély_s\iSpéndin_g any process for which no valid local state can be found.

Limiting the effects of failures to lost messages or dehyed execytion can easily be
achieved without excessive communication or pmssmgovgrhud Many applications
'reqmre a higher degree of reliability. In the next section, I discuss a different
implementation of processes that gives a greater degree of réuibluty with greater overhead.




2.1.22.2 Mw Precesses

The effects of failures on simple processes are we!!spe:iﬂed, but stilt undesirable for
- most applications. For many applications, guaranteed delivery of all messages sent by a
process to a port is desirable. This is a very difficuk mmwmmumm)r
. of the delivery of any. pagticular message by a commugication faijure cannot be prevented.
I order to clarily what I mean by gearanteed deivery, } vill-introduce a constraint that |
 refer to as sequencing on the delivery of messages. Sequencing implies that messages sent
from one process $ to 3 poet ¢ are received at g mMmmmwmmmm

. mehpatqdememmmg<qouthemagummiveduponqtofb‘et‘he

total order in which thote messages were received. For gach. process p the ordering <), on
the process steps of p describes the order of occurrence of thoe steps. What I mean by
q, the order <g in which the messages sem by # are received at q is exactly the same as the
 order in which the stegs that produce these messages, are onders by <, This reeans ot
~ only that the messages are received at q in the same order in which they were produced, but
also that there are no gaps in the sequence of messages received. Reception of message m
sent by $ to q can only ctur aftr reception of any mewage m fof Which m’ <y m.

process steps from the actual communication of messages from one site to another. This aan

ng the execution of

be ,doaevby ma!ntatnmg & process datsbase for each process. The process database for a
process # contains the local state of g, an input message quene for each input port to p, and
an Mwmfwm port to which § has sent a message. Each output
message queue contzins a list of messages and a transmit sequence ggm (TSN). The



- numbers (RSNs), one for each process that hias sehta”rhesia
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input message queue for a port'q contains a list of Mmesssges ahd a set of receive sequen

stored using. atomic: stable storage, so that a sicé failure dmgm does not: cause a

process database to be Ieﬂ in some intermedmte state

A pracess step of p can now be implementad ‘a5 an atemic: update to the process
database of p, which removes the messages ‘recetved: by that wep from the: input message
queues, changes the local state of p, and appends: the: messages:produced by thilt stép to'the

output message queues. (I theze._ is no queue for some destingtion port, & new one i3 created).

N R

Messages can be transfered from an output message queue of a process p fos a

destination port q to the input message queue for q with a robust communication protocol

using the sequence numbers RSN and TSN. Briefly,: ‘aach/sisei periodially ‘attempts-to send

the first message in any non-empty output queue. atuching the TSN of that queue to the

message sent. When the site holding port q receives a message sent from p it vertfies that
‘ the sequence number attached to that message is equal to the RSN of q for p and tf s0
_updates the process database of the process assocmed with port q to add the message

received to the end of the input queue for-q, and ‘to increment thee RSN -of port q for p.
Whethe_ri or not the sequence number. of the message receivéd is‘correct, the receiving site

‘sends.an - acknowledgement to:the mtm.p‘mihhgéﬂwtm of q for p. This
- acknowledgement - informs the ' sender of . the ‘most - recently . received: ‘message.:- ‘The
_,acknowledgement either acknowledges - receipt..of a m - tniouns the sender that

retransmission of some message may be required. When the site holding p receives such an
acknowledgement. it vmﬁu that the sequence nugaber: in *tl&athowhdgm is the same

_as the TSN of the messa,ge queue for q in theptooeudm of pnand tfso dolens the

first message in that queue and increments the TSN.



-
; I wiil net st this point explain how the message queues are initially set up when two
processes first begin: to communicate with each other. This is samewhat compitcated s will
be discussed at length in- Chapter 3, where a use for rebust WWUW

This implementation of processes gulrlmw deﬁvery of inter-process meutges in
sequence. The cost of.the-protocol is- the eutra messages {acknowledgernents) ased, and the
storage required for the message quedes and -seqrence ntmbers: - This ¢ost is small if eich
Pmmm with selacieely few processes, and: 16 messuges in: the m-w&in
promptly forwarded.! In she synchromization protocols msed W this: thesis, ewch’ prosess
converses direcay with Mdy fwmmmmwammmm

is sman.
2.1.3 A Justification for This Model

Anumbadmodekh&vebempmpmedfordtstﬂbuﬂdmuﬂng If‘adthatthe
model described zbovebeurefkm:hegukmduampﬂmd‘thekmdofdimm*
informatiun system discussed in Chtpm L |

moclel [LiskovT] Sahzer78] lov the: object model informaten: s sepresentad’ by typed olsjects.
For each type of oltjecs, there is & set ‘of operations, sdth: as ol - sulrrars; muliply, and
divide for imteger-objects, witich cark be usd to: murvipuinte objess of: that type. Ty #dition

to primitive-objects, mm or boolsens; aivy Waet: TRy Gefing i riéw type of objects,

L Amy site that does mee wish to devele space to lsrge input oF ebtput messige quetses can
refuse to execute @ process step for a process with non-emp ' output queyes, mplgm refuse
to ackmowledge a Messagé e to & port Wit & ridh-inpt "Fhiese m do.
hmv«,mmmmwuyord«dm if the appjication requices. buffering. between
processes.
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describing the operations that can be performed on objecu of the new type and a
representation for ‘objects of the new type. Compumlon is’ perhrmed as sequenees of
operatiomonthesetsﬁf’objects o ’

While the object model is a very natural one for many | users, several problem; arise
in the applicatlon of the object model to distributed computia% The most_serious of these
] problems is that it is unclear what the approprlate-semantlcs for aocessing remotely managed
ObjeCtS should be. Many suggestions have been made, incliding’ treuung all ohject references
uniformly, ‘Whether’ focal or remote ‘treating references ‘fo ‘remote objects specially and’
- maintaining a'local copy of the remote Ob]ec’t;'ahd ﬂi‘ﬁ‘llowm'g‘ referencesto remote objects.

and instead  using meisage oriented comuinicition’ between  sites. “The first of these
'suggestions is difﬂcult to imp!emem. while the othefs vbﬁte ‘the eonwptual slmplicity of the
‘ object mﬂ , ,; , a: .

.The uniform object model (in which a user computation does not distinguish
between references to local and to remote ‘objects) is difficult to implement reliably.
‘Opera'ribri‘s that involve “objects at different sites can fail ‘in“different ways (due to the
possibility of communication failures) than opentiom ‘on objects all at one .site Hiding the
different failure modes from the user is difficult or impoutble. f‘urdng the user to deal with
the problem of determining what the outcome of a. seqwnce of operattons on objects will be

if failures interfere with their normal oompletion

Several similar semantic modds bmd on message passing: have been developed for
. distributed computing. These include Actors (Hewitt76), the u-cakulus [Halstead?8), and
- data flow [bennii?Sl These models in their pure form all describe computation such that
the only communication between primitive computation events .ls through explicit message

passing.
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Tmmmmammawmmmmtmm
35 a group of ¢YEmS wsck event being the reception of 5 mwsage by an Actor. Ome
problem with mmm is that exactly which Actors are priitive, aplementing their
effects directly rather than sending messages to other Actors to achieve ther ‘effects, is left

umspecified. ﬂmkﬁma&mﬁmdﬁ%tﬁewm“muamn_

mmdaww znyﬁvdthacywdm

'.Wsmdmmmnmmmmwmwmw

This primitive mechanisny can be used farmodm omputatk

n in which; the processing to

be applied to some message s ok known in advance and is dependent on some futare event,

such as sioring  data item for later transactions. Cells are yiso used to nglement events in

which two or more messages are Iogictl!y "received” (by using cells to store messages), as the

Actors model does not allow an Actor to receive two or more messages in 2 single event.

Thé p-caiculus is similar in principle to the actors mm k. however, provides a
mechanism for introducing primitive functions that are not implemented by message, puliug

wsammmstmmwummmmmmm‘mmm,

'vmecbamsm called a m is. mmduad to provide a way for a pair oﬁmelnges o be

received in one event. wmm token mechanism is, more mﬂ using a

cell, it is stilt mher m to uademmd Moreover, the im

) 1:-,

systembasedmmmmdmk(andmfsatmpmupmwdform

tokers.

of & dlstﬂbuted

- cells and
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Data ﬂow schemas have frequently been used as a tool for describing fepetitive
processing, such as computing a Fourier transform. A data flow schema pfo'vide_s a natural
mechanist for events in which two or more mesiages are received, unlike the above models.
Unfortunately, ‘computations in which the processing to be gpglbd to some message depends
highly on the contents of the message are hard to descrlbe in data flow Recursion and

Anteration are somewhat difficult to express naturally, and ;mtlz add to the difﬁculty of
impl_em_entation, A data flow description of computatim where a lot of infgpnanon is stored

for later (unknown) use, such as a data management system, is awkward.

* The ptocess model previously described is an attempt to bring together some of the
good: features of the models described above, without the ‘disidvantages.. The two different
forms’b of ‘communiczition provided in the process model represent the properties of
' communimtion in a distributed system better than either obaervation of state changes or
_ Message passing alone It is easy to specify the effects of a i‘ailure in a system based on
processgs}.» and to build an implementgtion of processes that meetsthe specifications.
Distinguishing between intra-process ani'l inter-process oommuniation encourages the user to
plan his applicationhmrcfully so as to minil;niul_linnocostagy gotmnunigation between sites,

and to plan for site or communications failures.

The process. model also captures the concept of autonomy.. Al stored data’ is"

represented by the local states of the processes. No process can ‘be “coerced"” into performing

- some function for any other process. All access'to stored Infoéthacion is mediated by some

process that can implement its own access control policy. Thi:allomthe problem of access

- control to be largely ignored in the model, as each process can provide its own access control
policy. At the same time, the process step specifications of a process speify the access control

policy of that process by stating what the process does in response to the m_éssages that it
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receives. T'hss sa wueer iimplenventing ‘some Rpplication can ‘examine 'the process step
specifications of jprocesses (providing services thit ‘e wishes to use and can in many cases
determirre whetmaurmmm ‘restrictions will be encoungered :in ‘his mpmum

' Wiso iritverent iin 'the spracess model s ‘the notion that some: processing activities can
be pertormed simpgly by ome site. Kithough ach process ‘has an ‘oversil spacification of its
operation, in-a res] eystem most processes will be implemented from smafler pieces. 1 will not
specify ‘whit ‘those ipheces are, us ‘the ‘Implementation ‘of process ‘could ‘be ‘bassd on a
_‘message ‘passing system, ‘a oomveritional pmgnmmmg ﬁw, ‘or ‘the object Ml.

depending on what iis dheenwd most conventent. ‘Within one; ‘tiowever, one need not

deal with ‘the ‘special ;problems ‘of a distributed information Aystem, a8 ‘each process ‘is
executed solely at ome site. |

The rmechanism used 1o specify a pprocessing ‘event that logically receives messages
from two ‘or “miore ‘sources (multiple jports) seems “much ‘more ‘natural .in the ;process ‘medel
tham the mechanisms using ‘célls or tokens. As events in Which ‘two or more messages are
received are commun iin:many apphications and ‘can ‘e consthucted mm ‘the ~ﬁﬂmﬁim in the
Actors or p-calctilus: Trodidls, tere ‘seems to be no reasen:not to- include cms lmpomm spwm
case in the motel. ‘Inclusion -of this capability identiftes Tor ‘the imphmnwr of the system
the cases mnzwomwsfm ‘being received by what xwaymdp;muap This
makes it simpler 10 Constsuct an ‘efficient and robust in o than if the muki-port

Teceive were 3imulsted using sowne’more; general mechanism.

The association of ‘seversl independently named pom with ‘one process is a very
useful fuawre of the process ‘model. It.can be used to graup seversl lndepéndmt proeessing
activities that wish to communicate via a shared data Base in a singte proeus ‘Such

processing activities can ‘e implemented as independent process wep spéc‘lﬂmtiom of the
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same process,' each of which receives its input messages titrough a different set of input ports.

This use of processes is similar to a monitor [Hoare74] or a critical section. .

A second, mere important feature of ports is that they pr&étae a way to classify the
messages sent to a process before messages k’a‘re reoei'ved ' One 'ippiiutiOn “of this "&Sﬁbility
would be a process with several queues of pending messages that are serviced with some
' priority algorithm, not necessarily in the order in which the manges arrived. Ports akso ,
allow a process to temporarily igiore one class of messages” tvﬁile exchanging messages with
other processes to complete some processing atéivity. - ‘T¥ls use of ports will be demonitrated |
by the locking strategy discussed in Chapter 4.

The differences between my model and the others are a reflection of different goals.
' My ‘model is an’ attempt to provide a way to express appliauons for a distribuud
information system clearly, such that the effects of fillures afé well specified: Others have
been more concerned’ with formality and minimizatioh of the prifitive concepts.

2.2 Atomic Transactiong Revisited

This section examines the problem of performing tunnctions ammically as expressed
in the framework oi‘ the prooess model. We show how the sinple dei‘initions of tnnsactions
given in Chapter l can be stated in terms of the process model and show how to express the
property that transactions are performed atomiaily as constninu on the order of execution
of process steps Sevml mechanisms that could be used to oontrol this order of exewtion to

achieve atomic transactions are discussed.
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. 2.2.1 Expressing Transactions in the Process Model

Recall that a transaction is a set of accesses to stored data ftems. The definitions of a
data management sysiem given in the previous chapter can be mapped oma 'thé process
model by using several processes (at lcast one for each site) which I refer to as dats
managers. Each data manager maintains some of the data fters, a3 components of its local
_ process state, T’Thev process steps of a data manager perform the meo the data items
heid by that manager. If a data item is replicated, with several sites having copies, then
several data manager processes maintain capies of that item. o |

A transaction in t‘he.procas model consists of a set of process steps of the data
manager processes which together carry out the accesses needed to perform the transaction.
Each data manager may perform several steps in carrying out a single transaction. If
communication between managers is required to_perform a transaction, thén the ou:put
mugesofsqmofﬂwpmm:mpetform thatmnucﬂm will be used as input
messages in some of the other process steps performing the same transaction.

In addiﬁon to the data manager processes, which lﬂ\pleﬂ@t accesses to dati items,
there are transaction m which perform the function of mmhtlng from a high level
| descriptioni of the tnnsact:on to a set of messages to be sent to the dau managers These .
_ messages direct the data managers to perform the necessary accesses to urry out the
transactions A more detailed description of the mnction of the data managers and
transaction processes is g!ven in Chapter 1, Whlch discu:m mechanisms for performlng

transactlons.
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59292 Pefforming Transactions Atomically

Intuitively, a trapsaction is atomic if.either all or nqnq of its- effects are visible to
;. other transactions. There.are two ways in which one transaction. may. observe the effects of

‘other transactions: messages sent by steps. of one. transaction ‘that are received by steps. of
.-another transaction, and the modifications of local progess: states, that are: made by steps of

one transaction and later observed by steps of another transaction. . .

.. The first method of observation, direct message - passing, _gggﬁly.-égcur& This is
: -besa«u%e a trﬁnsacn'.onv i5.a complete, “‘Wﬂdmtpmins activity and. dpes ot in general
communicate gixgg}y with other transactions. The: exception tn. this case is.that the yser, y:hﬁ
_submits a transaction, (by sending a memg:MuMdWMiﬂ{OWm :yﬂefn);. ARy
~ know of other transactions by having received. messages. sent .from_other transactions.
_S}Controlling scqumcmg of transactions so that. the order. of transactions as. pqrmwed from
exp_h_ctt Jmessage’ passing is consistent with their order as perceived from. gbservations of
Mifimtims to jocal state is relati.vely simple. For the moment, I will presant a. definition of
atomic transactions that ignores this method of observing ordering. Chapter 3 discusses this

~ problem further.

- The secénd s,qurce- of communication between t{gglsggtim§ the local process states, is
much more important in most applications. = Recalt ‘that fora“ch pi‘ooasp there is an
ordering relanonshlp <I' that defines the relative order of ocanrence of process steps of .
These local ordenng relatnonships can be used to deﬁne an orderlng of the transactions as
7 follows

Transaction Ty < Ty iff there is a process p and process steps s; and
89 of p such that s; is a partof T}, and sy lﬂpatf‘of?‘z Ind 51 <p
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Thus two transactions are ordered if both mta@! steps of the same process, This gderinz
is a reflection of which transactions may Inv;:dincsly obnrnd affoctsof whkh other

transactions. A transaction Ty can also observe the effétrs of sokie transaction Ty indirectly
if there is some transuction Ty such that Ty « ?,munwmm« ofprécw steptof
some process p) and Ty < Ty foecause of the ofiéi- of piticess Weps’of some othér process ¢.

 Indirect observation can ocear becitise the effects ‘of & thildcain mify deperid on the vailiies

| that that transaction saw.

| The condition that we require for  transucticn i be atomic 15 that either all or none
transactions is performed atomically, thén the ¥ffvcti ‘of those transactions (modifications
made to the values of dats ftems and meitigés profuckd by th trmsilctions) are the ime as
I the transactions were petforssed serially in som ‘séquenice: Wit exch transaction béing

~entirely cormpleted before the next transiction i thie sequencs 1 Bégu i, “This requirément
anbeexpnmduneﬁﬁdkhnmrhe<mhﬁmmmwm “of
Mﬂsﬁﬁm‘“llms: o B IR R BT Trws £0 0 ‘

Transaction t is atomic with respect to a set of transactions T if
- there is no sequence of transactions t;, ., t,, in T such that t; < t;;
Cforiienandt, <t<ty Equinhuly.asuafmnucﬁom:is )
atomic if the transitive clsurél of the & drdeﬂng e' i a*""‘pii—‘ufa“l-'
order on that set of transactiops. . i e

In order to insure that a set of transactions ls performed aomlcally, we must insure
that the < orderlng r»uttmg from any eoncurrem execuuoh of tlme mnuctiom is cycle free.

~ One way to insure this is by choosing the assignment of data itm to data managers mch

K

L Throughout this thesis, 1 will use the wpamgm 3 wdmte a nﬂquve transmve
closure (i.e. x <* x for any x).
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‘that for each transaction there is single data manager that can perform that transaction.
- Thus each transaction 18 seenby oniy one data:manager, and @ cycles in.the < ordering can

- arise.

This approach can be re]ected because the lssignment of data items to managers is
not soleiy under control of the system designer The autonomy of individual sites dictates
that certain items must be managed by prooesses at oeruinsites. Some trannctions may need
to access data items from several different sites. Because each process must be executed at

‘one site, there:is no way to have ong: d;ummmwfom a trapsaction at several
sites.”

» Perhaps a more serious objection to this propoui is that it makes the addition of new
?transactions, which access items in patterns that were not plmned ﬂifficult or impossible.
Adding a new transaction may require oomplete redesign of the sysiem s0as to allox  new
transaction to be performed by a single process. T

| We therefore must show how to coordinate transactions that involve process steps

from several different processes. This can be acoompiishd by oontnomng the order in which
the data managers perform the process steps which perform accesses of transactions. The
."'next section discusses four primitive mechanisms that could be used in ooordinating the

L TERG M L SETRRETH

process steps of the data managers.

ot

L Recail that the specification of the effects of failures on the execution of a process was
greatly simplified by the fact that each process is excuted it‘ohé site: Therefore, we do not
wish to abandon this assumption.
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2.2.3 Primitive Synchronisstion Mechanisms in the Process Model

There are several mechanisms available in the prooess model that could be wsed to
-'straln'the order in which processing operations are performed by processes. These
_ mMnimmHkundmmmmnwhﬁmmﬂnMomemcﬁom
atomically, inmhcheumemyumamwchummﬁﬂu
'_Mmimsmmmmmmamymwmmmmmmm
problems.

To achieve the goal of partial operability, the synchromization - scheme for
transactioni must allow a transaction that is purely jocal to one data mmnger to be
performed whenever a request to perform that transaction ismtm:hedmmmger Thus
synchromut!on mechanisms that do not’ atiow such mucduu ao bo puformed prompz!y
should be avoided. The goal of partial operabmty wm thm serve as & gmdu m umg

synchronization techniques for transactions.

One synchronization techmque that has a!rudy been intmduoed is the sequem:mg of

messages sent between processes. Sequencing consists of guarameeing that messages sent

t‘romoneprocesstoapoﬂarereceivedatthntpatmthenmeordermwhkhtheywere, '

produced by the process. As we shall see in the next chnpm robust and sequenced message
communication is sufficient to provide proper synchrmlnﬂou of mny kinds of tnnsuctions.

Sequencing alone does not compromise the goal of partial operability. The only case
in which the constraiﬁt of sequencing prevents a message sent from a process p to a poi't q
from beiﬁg promptly received and acted upon is the case in that there is a previous message
from p to q that ‘has not yet been feceived at q. Using the implemaﬁatlon of robust

sequenced processes described earlier in this chapter, this situation is quickly’ renedied
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whenever it occurs. Unfortunately, as we wilt derfonstrate in Chapter 4, sequencing alone'is

not sufficient to perform all transactions atomically.

A second technique that could be used to’control the order of execution of

transactions is one that 1 call explicit:focking. ‘Expﬁdt"ﬂmg consisés’ of postponing the

reception of some class of message by a prm‘v s unitil someotfier” friessa
Chagpter 4 will discuss focking in gheaterdetail-#nd wilf intraduce & fiacharnism for explicit
focking nto the process mode, - |

A synchronization scheme using exphcit locking dou not achieve the goal of partial
operability Using explicit locking, 2 data manager could postpone the receptlon of a request
“to perform some focal transaction until that dats’ ‘iianader hxd received ‘other messages.
© Explicit tockin‘g could' cause the local transaction toibe d‘eﬁye’d indefinitely.

‘Se«

Sequencmg and explicit lockmg both conmj:l the order of prooessing operatlons by
contromng the order in which messages are received ny pmeau. Another appmch to the
control of the order of execution of processing operations is to conirol What'action is taken by
a process on receiving a message. The following'two: spnchromtiatioli techniques use this

approach.

One w‘iy in which-a process can postpone the processing _operation. requested by a
message that that process receives Is to record the message in the local state of the process.
The stored message can be retrieved and acted on in a later process process step. One could

 call this technique squireling.

- Using squirreling, a transaction local to one datk fhanager can be delayed indefinitely
because the request to perform that transaction can’be’iquirreled away indefinitely by that
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data manager, panding mefmwnrw Tmmmmmm
thcgoaiofpcma}opcwﬂuy

Another mechanism that can be.used to.postpone. the, pracessing requested by a.
message is.to have & process that receives a mesyge that the process should not yet act on
send mmmmmrm other process mayld either. - ' on the message, or
pass it on again, pessbly Wack to the tst process,, This, teshalque coukd be refered to a3
MM!!!!. Buck passing also does not achieve the goal of partial operability, as a -
rquesttoperformamacﬂmcwld bedeferndmmmwbdngpludfrmpw

to process.

© Both buck pasing and. squirceling are what could be called implicit Jpsking
(because request messages are not explicitly pasiponed,. but the requested. processing  is
postponed) lmphcitlockmg is characterized bythehathnmwmpmmpsofthc

data mamger reccivmg a requmt are used to perform the | procedsing reqlnmd by a mange.

When two or mepxmmpcfamgu(;wue used tna.rry Qut a
transaction, the gosl of partia) aperability.is not-achjeved, If two or.more process steps carry
out accésses for a transaction, mmmmawtham::mm-amm those
steps may have to be excluded from occurrtng between the two steps. If a failure delays the
ction, then transactions local

second step of a data mmf Pﬁ‘farmtng for s trin
to that data manager that must be excluded may be imm MY“ If only one I

nep(oftwomme)afadaumagap«krmmhmmm tbén_some

R ITarE

“by the Tirst step of the

condition must be preventing those accesses from being
data manager. The manager must in effect be waiting for some. mesage before it will

 perform the accesses for the tramsaction. That mesuage coukd be delayed indefinitely,
delaying the transaction.
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To summarize, the sequencing mechanism is the only one of the t&hniques for
controlling concurrency in the process model that ichieves the goal of pattiai operability: In
4_Chapter 3, we will demonstrate a mechaniM‘ that Mses segtteneing to provide control for
‘many processing operations. In Chapter 4 1 demonstrue that JSequencing ;Ioneﬂis insufficient
: for coordination of all Ppossible transaction, and show thg.ﬁ; some mechani:m in which two

process steps of some process are used to perform one transaction i needed.

TR IR T S . H
PEPNTARRE TG LI oI PERS s

2.3 Summary

This chapter preoents a semantic model for a distributed information system in which
 the effects of failures are well specified. The model oombines features of Actors, Data Flow
_ and the Object Model. The model makes a strong distinetion between two forms of
' communication inter-process messages, and intra-process communication through shared

state information.

| Two different classes of failures in a distributed information system were discussed:

site failures and communication failures. We showed two ways in which the process model
could be extended in order to include a specification of how computation is affected by such
failures. One extension (simple processes) was eosy to implement, but allowed failures to
‘have .relativ"eiy severe effects. A second extension (robust sequenoed processes) limits the
- visible effects of failures, but requires more overhead in its implementation. The remainder
| .of_ this thesis will make use of robust sequenced processes in d_eveloping algorithms for

. performing transactions.

The problem of performing transactions atomi_oa'll_y is transhted into the terminology
of this model, and a plan for an implementation of a distributed information system based
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on the model is given. A condition for determining whether or not a transaction is atomic is

Finally, techniques for controlling the order of execution of’*p‘m steps were
discussed. Omofthaemhniquu(sewmdng)mﬂmntobemrwnhwrgalof
partial operabifity.. Other techniques aliow & faflure to delay {he compietion of a local
_ pm.qmmm,m:snmamuM‘im‘mqm
coordination of some kinds of transactions.
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from the execution history of & For a process that receives messages at one port only, the
v'uxmmh&mymmwm“amawmm”mmen%
| This representation can be viewed as a log, rmmhmncﬁndbyputtu
Teceived. The mast recently received message in the execution history is at the top of the list.

Ideﬁneammmkamﬁmmddmmm A
'bmdmzmumuwbyamo{mmw,lmwﬂnmmm,ts_
’amemge.andp‘is:hemetzmmhndm)wmhmtum Thundividual
messages that mkeupa hmduﬂumr«mdmumwonhobmdm The
order in which a gmp otmeivtng processes receive a group cfbmm mmagu can be
derived from the order in whlch the eompomntsof thou m are rcuind by the
»indivtdualprocesu& meuambmwwn,mnz.umm“m<ng
1fB,mumammgem,MMapmmAszmmammzmmtmp, _
and my <, “‘2- This definition: is completely ansiagous ia the defilnition: of the .« ordering

i e ‘ s ?

Eigumi-&l
Th@&mﬂﬂﬁh&MMﬂmmwﬁwhmuw

PN R S

'Wwﬁﬁmi
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Chapter.' 8
AtomiovBroacicswAi:in‘g- N

etan BT

: Many transactions performed by a dtstnbuted informetion system mn be decomposed ‘

oones ¥ e 38

into independent component operations, each of which is performed et one site and does not
" depend on any other site In the modei of the previous chapter eech component of such a
transaction is performed by a single process step.: AII of the messegee thet form the inputs to
_ these process steps can be constructed in advance. before any step is performed The

ordering of such a transaction relative to other tnnnctions is eontrolled by the order in

5,

which these messages are received

b s

o -in this chaptet. I 'imroduce.a mechanism for gtomic broadcastiag, which distributes
a set of messages to a set of destination ports so that they are receivéd atomically with respect
to ‘other such sets. If an atomic broadcast is:used to distribute the input messages for a

transactiou mth independent components, that isaniictien is- pesforraed, atomically. Atomic
broadcasting isa simpler problem than that of coordinating erbitnry tnnuctions

3.1 Definitions

For convenience, I assume that :all messages and all ports are uniquely identified.
Many processes receive messages at a single port only. For such prooeeses. 1 will use one
identifier such as p to refer both to.a process and the port at which that process receives
m'e_ssages.‘ Recall that for each process p there is an ordering <p on the messages sent to p
that reflects the order in which those messages are received. Each message m is included in

the order <p when it is received by p The ordering ' for a process can be determined
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on transactions Simihrly, a broadcast message Mis atomtc with respect to some set of

broadcast messages if the < ordering on those messa

* Figure 3.2 illustrates the reception of three bmdcast niecsiges"'that were not atoniic.
By incIudes two component messages "‘IX for X and’ m]y “for V. Simﬂaﬂy 32 and 33
" contain components for X and Z, and for ¥ and 2z respectively “In fhls exdmpie. X receives a
'icomponent of B before one from Bo, ¥ receives a oomponentofbg before one from 32. and
| Z receives a component of By before 33 These orderlng relatlonships constitute a cycle

mmd be constq\md to be ordered is |
if the sender. of one message was one of the receivess of the gther. For.the moment, L will |
ignore this kind ot_‘ ardering, relationship. A later section extends the notion of an atomic
broadcast described here to include such relationships.

A second way in which ‘two broadcast mes:

Figuro 8.2
Non-Atomlc Broulcutlng
82 L] {<M2'x.x>.<m2,z.2)}
By = {<my v, Y>. (Mg 2.2}
Moy my |- | ey

X

- R B s X

B2>Bl Bl’“! Bs)nz
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32 An lustration of Atomic Broadcasting

The independence of the process steps to be coardinated in an atomic broadcast (the
steps that receive the messages that make up the broadcast message) makes coordination of
atomic broadcasts simpler than coondinaton of more geners]eperaion. A imple rea werld
amldgy may mp to illustrate this point. Consider anomu.ln which atlmnuniatton is
 through interoffice memos. Sending some important ngtice to all cmplopu about a change
in working procedures is an instance of an atomic bmdcut. The mtlee should be sent
atomically, 30 that employees working on and camnuniathg abant the same project receive
the notice at the same point in their work. This cirf be ctomplished relatively easily
through the office mail system. At one instant, ail of the noticeé are entered into the mail
system and take their places in the queues of mail Waiting to be delivered to arid' read by the
employees. After that, each empbyee wm find tﬁenm:tmempam (rmtm to other
mail) in_his list of messages. ltdoesnotmtter tbatsomeempbyeeon vacation may not see
.the memo for a month or more, as hewill euntmllymuin tinpropumumnhﬁve to

other mail.

Compare this situation with that of a group project, whidl raqimu a jom Ms;ien
by agroupofempbyea Tommplenesuchapmmuum-!ym Mtoathcr work
in progress effectively requires that each group  member set ukh a certain time for the
discussion. Scheduling the meeting is a much more dimcuk ppbhm than phcing a notice
in each employees in basket. A md. more serious problem is that if the meeting has to be
suspended for some reason, the members of the group can not M@my other project that
may conflict with the group effort, as the effects of such work will mot be known to other

members of the group.
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This -analogy ‘is “crude, but’ gives a feeling ‘of the dﬂ'ferencu involved. The

distribution of the memo as an atomic act'is easy, Deciuse theré-are no- chstritints on when

the recipients actually read’ the ‘memo. "It is' sufficlent ‘(O"'p&"& ‘Hye! thémo in the correct

:_sequence'in‘ each employee’s mail.

‘3.3 A Mechanism for Atomic Broadeasting -

~ In this séction,- I present a mechanism for coordinating atomic broadcasting that uses

~ robust sequenced communication between procésses to distribute the”‘éovﬁponent messages of a
broadcast message to their destination ports. The sohmon “uidsTprocesses that I reféf to as

message forwarders to distribute these meisages. Each méssage Forwhrder receives messages

| _at a single input port A message forwarder hasa siriﬁle‘ procelsi stepsped cification Which can
 be descrlbed by a finction M) = {lm,p1}, mapping ach muuge reoeived to a st of output»

- SE

The messages received or_ sent by a message forwarder each contain a set of
component messages and destination ports. The mthponenu of each such message .fgr{m;a

‘subset of the messages that comprise some atomic broudcut. Each process step of a message

forwarder recelves some input message ahd partitions thé components of thiat mésuge among

the output messages that it produces. For each suth’ s&p thé" oﬁtput esmgethcr

contaln exactly the same set of compénenﬁ as the fnput meiﬁgc t that uq‘)

IE

The protocol for atomic bmdqsﬁgg Wﬂ% a,!;l of ;he procga;u -in the system,
n processes, and data managers), ina bierarchy.. Each process
# has a unique parent f in the hierarchy. I will also describe this relationship by saying that

p is a child of /. I say that p and g are relatives if either p is the parent of ¢ or ¢ is the
parent of $. In the hierarchy used for this protocol, each process f that is the parent of some
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other process is also a message forwardes, and there is.a single message forwarder r which is
the root of the hierarchy, and is an ancestor o_t;llnthc;.m _The transaction processes.
‘and data managess, form the leaves of this hierarchy. Any hieraschy of message forwarders
can be used to perform atomic broadcasting. As we shall ses, bawever, the ocganization of
the hierarchy determines the number of messages that must be sent to distribute each
broadcast, and should be made with some knowiedge of the expected communication

patterns.

- In order to send an atomic broadcast, a process formulates a single message

containing a set of components, ‘each of which specifies a message

to besent gnd a

destination port. This single message is sent to any message, fonnrder that is abovz all of

_the destinatms in the hierarchy. Recall that each step qf an forwarder partmons the

components of the message received among the output messages produced Each message
forwarder sends output messages only to its children in the hierarchy. ;Q" recelving a

_méssage. a message forwarder partitions the components of that message such that each

component is sent to the child that is above the déstination port of that component in the

hierarchy. R

 Figure 3.3 illustrates the operation of this protocol in distributing the three broadcast
messages showﬁ in Figure 3.2. The processes are organized in a th:ee-level hierarchy, whm
f isrthe parent of processes ¥ ’and.Z. and 7, the root, i,.S_tth parentof f gnd'X. Figure 33 a
shows the orderings for all processes after By and By ﬁave been received by r and B, has
been receivéd by f. Figure 33 b'shows an intérmediate state if ﬂwdim'tbinbn of messages
to X, ¥, and Z. Figure 33 c shows the final state when s computients of all three broadciiats
have been recelved. - |
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Figure 3.3
Coordinating Atomic Broadoaits with Message Forwarders

Bl {[mlx.XL[ml Y.Y]} 3. 8 !
By = {[mg x.XHmy 7.Z]}
Bs = {[m, Y.YMII‘3 1.2]) The Initia.l Exooution Bt.t‘

=
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Figure 3.3b

An Intermediate State
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Figure 8.830
" The Execution Sta_tayAqftrcrr Delimy 61"2;31. FVBg. and 33

Ez ’
B
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Abriefargammﬁrﬂumofthemmuﬂmhm A more detailed
.andmeformlpmutwm:nappmqixmgmm Mymbmdaunmuges
‘ BlandnzammMWbymmpWthhwW
forwarder receiving messages connected with both brondcasts. - Because the message stream
betweenanytwopmusequemed theorderofmbmsqmeedbyamuage.
- forwarder is preserved as the messages connected vdth those: broadcasts travel down the
hierarchy toward their destinations. This sequendng mw ttm no pair of broadasts in
the<orderingcanformacych (ie theremmmgaforvhkhll By and By < By).

The proof that m hrger cycles can arise is mbstanﬁal:}nm complicated. The
proof of the mgemmr protocol given in the Wﬁx"@ym cycles of all sizes.
This proof uses the properties of the hierarchy to show that no cycles can be achieved
without a violation oi'uqamtng between a process and its parent in tm hierarchy.

There are sexeraf desirable properties of this protocol that are not obvious. One is
that each process executes a single process step for each broadcast. This moehanum does not
use locking as defined in Chapter 2 "The salution insures that el pmvimmmg the
‘Message forwarders, receive the W mmdismbuung a mmmmny ,
 The transaction " synchronization mechanism described in the next chapter makies use of this

praperty.

Another point to note is that the protocol works for structures of message forwarders

petwork for the logical
_ organization of processes used in the protocol. A synchronization network is simply a

othef than hierarchies. 1 will use the term synchronitation

directed graph that describes the parent - child refationships among processes. The proof of
the message forwarder protocol given in the appendix depends on the synchronization



-65 -
network only in that it requires that there be at mostoneptth 4in the synchronization

network between any two processes. This property is,.of course, satisfied by a hlerarc_hy.

A second requirement that must be imposed on the synchronitation network used in

the distribution of a broadcast B is that the destinations of the components of B must have a

common ancestor in the synchrqgl{z\_ation‘netjmrk._ If this were not the case, there would be

no way to distribute B using the protocol, because there it no’pfoces! to which B can be sent

| inmally If we are designing a synchroniution network capable of coordinating any

- broadcast message mvolving a group of processes, then we must tmure that all of those |

processes have a single common ancestor. Thls requirement, taken 'together with the
. requlrement that there be Aat most one path between processes ln the network  means that
~such a synchronization network must be a hierarchy. If, however, the set of broadast
. messages (or at least their destinations) is known, and a synchirohtiation network is‘being
designed specifically to distribute those messages, then it #s posible that's non-hierarchical
etwork could be used. This is ifiustrated by the exampi i Chipter 8. 0

"8.4 Other Ordering Restrictions on Broadcast Messages

| ‘The above protocol insures that each process recelvtng\a mppnmt of a broadcast
4 ret:eive\‘s'y that component in the same order relative @.tme?f—;%hﬂ broadcasts. Thus a
broadca.,-st_’is: atomic as viewed by the receivers, Recall, however, that there l:g,notherwayin
~which the processes may perceive ordering among broadeasts, in that the sender of one
broadcast may have been a recipient of otherlu;oadmts.

In general, each process step that produces a broadcast may have received some
knowledge about other broadcasts. This potential knowledge can be described by the should

follow relationship among messages described below. Each message m sent by a process p in
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a process step s should follow a message m’ received by ¢ whenever:
~ a) There is a message m"' received by ¢ in pmemmpsof in a step
that preceded s, and m' and m”™ are components of the same
OR

b)Thereisamsagem recetvedbyptnmp;orinampthat
preceded s, and m” should follow m',

This relatiomhip describes ordering constraints among memgu that must be enforeed in
order to prevent the system from behaving anomalously if the correct klzerpreutlon of a
messagemsent byapmmpma-pquw;mquvm'Mnd meuagu
containing information that was dulnd from broadcasts nmivcd by p b-fen p sentm.

_ chxamph.wlmuldinmamubmdannndmypnchxkmbcdeposuadat :
the bank and checks drawn on my account to pay menthly billa, i would be disturbing to me
if when one of those checks was sent to my bank to.be cashed, hgamm.m the deposit.
This kind of behavior does not violate the definition of an atomic broadcast given above.
In this example, there are two separate actions: my distribution of. thcdepom and payments,
and my creditor’s sending of t.he check to the bank to be cashed. Each of these could be sent |
ina separate atomic broadcast, however they cannot be pa‘rf_éf the sarie atomic broadcast, as

the debtor’s action is not known until the check is méived Nothlng in the definition of
‘atomic bfoaddisting prevents these two broadcast messages froin being aqumced in the
apparently anomalous order, ‘because the. causal’ re&tmdaip ‘between the two events that

»

produced these broadczst messages is not rawgnmd
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Unfortunately, the protocol described above allows such anomalous sequencing to
occur. Consider the hierarchy shown in Figure 33. A mque m,mt to both X and ¥
must be initially sent to the message forwatder r. Itis posslble for X to receive its
cotngoneqt. and construct and send a message to ¥, and haye thjs new message received by

Y, before the component of m sent to ¥ is received at Y.

A simple extension of the message forwarding systém described above provides
correct sequencing. Each broadcast B must initiafly be sent to 2 ‘message forwarder f in the
 hierarchy that is an ancestor of the sender of B as well of ‘&s"s1l oftheibro”ce!ﬁsasaodated

with the destination ports of B.

Notice that if a component of some broadast B has been received at any port, then
any component of B that is destined for a process p lnd has not yet | been recelved by P must
_be awaiting ‘reception at the input port to some process th;t is an ancestor of p The
extended protocol prevents anomalous nquencing by tnsurlng that 2 musage B enters the
hlerarchy above all of the Mmessages that B should follow The sequenclng of messages
between the message forwarders then insures that any message that B should follow wm be
received at its ultimate destination before B. A more detailed proof appears in the appendix.

Thls sdhition to anomalous sequencing is _very slmple (th‘oughz the proof that this
solution works is somewhat complicated), and ustly lmplemmbed Therefore. I will only
consider the implementation of the more complete sotution
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3.5 Implementation

In this section, 1 will present two simple implementations of the synchronization
advantage of communicalion technology that makes distribution of one mestage to several
reoeivcrsrehnvely inexpensive. There mmy opnmwms that could be used to
improve these implementations. 1 present them Mmm that. such .a system could
uﬁ”hiWMMlhnnﬂWﬂymmwmm'
, unmammmmmmﬁmm

3.5.1 Atomic Broadcasting Using Point-to-Point Communication

Inchapmtwolprwn&edastmpkimpiumhﬂmofmbuumqumced'
communication. Thukmumnmbemddmmmwm
Robust.wqumccdmmﬁhﬁenmmmthammﬁmamgcfmrd«m-'
some port arrive in the sequence in which they were prodiced, and are no It In addion
'mpropﬂmcm;wmmmthehmmhydmefuwudeumbe_

‘maintained.

A ser&otnpmbianefthepmtocoldambdaboveformugefmrdmisthat
each process that sends a broadcast message must know the hmtion in the hienrchy, of
uchofmedmathemmofmnbmmu. ‘I‘Msknowhdgeunmryto
mtamgemm«ma'above‘aﬂﬁmm& Asmdpmbiem is that

sach process may send messages to a large number of ports. This is expensive using the
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implementation of processes described in Chapter 2, because message queues must be

maintained for each such port.

~ I solve these problems by changing the protocol for distributing the components of a
~ broadcast slightly so that each process need onlycommunidtewith its parent and children
in the hierarchy. This is accomplished by changing the“i:rocess ‘step specification of a
message forwarder so that if all of the components ‘of a message received by a message
forwarder are bound for descendants of that mesuge forwarder. the message is partitioned
among the children of the message forwarder as before. If, however, the destination of some
component is not a descendant of themessageforw;rder. the message is sent, intact, ;o the

~ parent of the message forwarder.

~ Tosend a breadcast u;iri_g this ‘modified’ protocol, a process "formuletes a message

containing a list of the component messages of the broadcast, and sends that. message to its
‘} parent in the hierarchy This message rises in the hlerhrchy untll it is above all of the
. Qestmation ports of the components of the broadaast (as ‘gell as its sender). When the
~ message reaches a message forwarder that is above all of the destinations, it is dismbuted as
. before. Each process communicates dlrecgyﬁonly with its immediate nelghb}ors‘ in the
hierarchy, thus the nuqber of message queues neededto l_!'!!l‘?"! _ro‘blg‘st\ sequenced

communication is small.

We can now consider how the necessary information about the hierarchy could be

~ maintained. Each message forwarder f must know WHhich ‘processes fie below ‘each of its

Ippvi

children in the Hieriréfiy. This knowledgé could be built into each 'm forwarder, or be

built into the structure of process names. If the life of the hierarchy exey‘eeds:tﬁe usefulness of
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individual processes, however, we must expect that processes will be created, deleted, or even
- moved in the hierarchy, and that these changes must be reflected to the message forwarders.

In showmg‘howmaddaprm lwiﬂmmammnforgmﬂng ‘unique
prooessmm.andwﬂmwmme&epmm:mmaddedtothe
,’ hieurchymyahudybepaﬂdit. !almameﬂatkkm&bhwgmmmefma
‘ponmmewhkhprmmivumsgxesutham This k

_ﬂbwsthemuuge
fmumnmdmmmmmﬁmssdammﬁmmm port.

" To add a process p to the h‘iéﬂrchy", some memgefcrmtderf is selected to be the
parent of p. Process p.mfiérmsfof this choite by mdtng % 'w for ldoption tion” message.
‘This message establishes the message queues and sequence namn fbrmdlng messages
from  tof. Message forwarder f can reply to p either by acoepting ‘y;r_remmtha request.

If the request is accepted, the mhmunﬁxmﬁngmmagafmpr is
estabhshed with the sending of the reply, and p can begin to send and receive atomic

- broadcast messages. Message formrder f sends a ‘message to its parent which is propagated -
up the hierarchy informing all processs.thit are now ancestors of p of the presence of p.
Before any message can be sent to p, the sender must be informed of the existence of p. Any
message that could inform a process of the presence of p must either have been sent by p or

should follow (as defined in the previous section) some meu&gc s’ént'by' P The’ﬁaemgu
| that inform the message forwarders of the presence of p will always precede any message sent
by # (and therefore any message that should follow a messtgeaemby p) at the am;;'of
~ #. because of the sequencing - Thus any message forwarder encountering a message with a
component sent to p is guaranteed to know whether or not p is one of its descendants. |
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Special care must be tiken when ‘the request for adoption is  rejected.
Communication failures can cause either the request for-adoption or thé’t"eply to that request
to be losL We must be sure that loss of messages cannot cause p and f to become confused
such that one thinks that the request was successfhl while the other does not. Such confusion

- is particularly likely if the request is re—trgh_;ghittgd by p gf S does not respond promptly.

This problem is similar to that of initiating a connection in a communication pro_tocpl,t ;u;h,

as TCP [Cerf74] or DSP [Reed?6]. The solution that 1 am using Is similar to that of DSP.

. When a message"forwa’rder} rejects a request for idopt’i&h'.“ it may be doing so because
it-has insufficient resources to establish communication With & mew child. If this is the cise,
we do not wish to'bur‘deti the message forwarder with the task of remembering that it has
rejected a request. Therefore, ure must keep in mind thatif a message forwarder f is sent a

request for adoption several times (because the sender of the request re-transmitted the

request when f did not reply promptly with an accgptanm). then S may first reject the request -

and subsequently accept it. (Once a request has been accepted, however, the message
forwarder can know to accept-any subsequent re-tranmummof that request) This means
that a process that has sent a request may not negotme with another potentlal parent if it
receives a rejectlon or no prompt reply.. If the original . reqamt (or a re-transmission of the

ortgmal request) were later accepted, this could allow one procea to have two parents in the

hierarchy. Thus we require that if a process receives a rejection (or no reply at all), it must

either keep trying (re-transmitting . its request) untﬂ it is aeeepted or cm a new unique

name and attempt to establish communication with another parent.

This apptoach may result in a message forinrdet adoptmg aproce,u that no longer
exists (because that process has chosen a different name), but this does not cause a problem.

No messages will ever be sent to or from such an abatidoned process. An abandoned process
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will be detected and deleted from the hierarchy through. the same mechanium that deletes
| _ processes that is described in the following paragraph.

A process can remove itself from the hierarchy bylnﬁébng a message to its parent
notifying its parent of its intention to leave the hmrchy When a munge forwarder
receivés siich a request, or a message forwarder can reliably determine that one of its child
| processes no longer exists then thatmgemmmmhmmmequmfor
that process and inform thcamaofthemgeformd«oftbe dhnppunme of the
~ process. Oncea thukﬂthehhmnhykm%dmntwmmmmwm
_uniless it can be determined that no process remembers the old name.

A process p can be moved from one location in the hierarchy to another location in
the hierarchy in a series of small steps of the form shown inl’igure 34, Each sudlstep
changestheparentofffromfmg,wherefisthepamutofg.erguthep&rmtofj ‘Both
ammmmaymmmmaymmmem A |

Dy Mammggwfm“mw,qiﬁ-am
movemeat.mdmpsmdmgamgumf

2)freoeivesﬂusrequeu.andperfmmanamicmdmcattonofiu

state with the follewing changes: A requiéit to'close is Put at the end
oftheouzpmmmgeqmugfmpp’smg&tspmipthew@m

message ‘queéue for g, and fs view of the hitrar hmmdm-‘
reﬂactpsmom ) :

Qprewxes&emqumsforcbcfmfdmit:mwpqm
ofmemgesiorf pnowmdsanqmufer&doptmmg

i)gmceimtherequutfrmfmblhhuaqnmt‘orpand

accepts psrequestforad@tim gmugd:minviewofthe _
hierarchy to include p

The fast two steps take phce_,in_‘ekjther order, depending on. the relative timing of the
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Figure 3.4

Moving a Process
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messages sert from f to g and g. No knowledge of the move must be propagated beyond f
and g N«ezhotmmcmm{wmwﬂbeWMﬁnmwprwm;fm
refmmg the request for adoption. '

3.5.2 Atomic Broadcasting with a Broadcast Medium

In mnymﬂﬁmanhhmru,ﬁizmm@ywmdamgema set
of receivers than toaslnﬂtdeuimtm AMMMuaﬂng network
[Farber72) or an Ethernet [Metcalfe76] has this property, a dbu ‘communication through
‘shared memory on a single site. Our scheme for atomic bruﬂasting can be modified to
take advantage of this ability to distribute component W of a broadcast to several

receivers.

In the absence of errors, a broadcast network acts like a message forwarder. Each
site presents its messages to the network. The network receives one message at a time, and
distributes that message to the intended receivers. Messages sent through the network zr2

totally ordered, just as messages sent through a forwarder.

To send an atomic b@daﬂ message to a set of receivers qgtithe“sime-network. all of
the component messages of that brgad’ask are packaged into a?; single message for the
network. If the packet size of the network is too smali to hold ail of this, the contents of each
componeht 'message can be pre—dlaributed‘ to its intended receiver. The sender picks a
unique Aidmtiﬁer for the broadcast and attaches it to each component message, sending the
component messages singly or in groups to the intended receivers. When such a ooinpone'nt

| message is received, it is saved by the receiver and not placed in the stream of incoming
messages. When all components have been distributed, Ath_e sender sends a message

containing the unique identifier to all receivers using the broadcast capability of the
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. communication network. The unique identifier is used by the receivers to identify the

component message that was pre-distributed and insert thatmeesage into its stream of
incoming messages The broadcast networks designed thus far all have a packet slze Iarge

enough to accomodate such a unique identifier.

If very large messages are sent, it would seem that.we are not pbtaining any benefit
from the availability of the broadcast mechanism over the pojnt-ta-point scheme described
above Note, however, that if we were to use the point-to-polnt scheme for coordinatlng

atomic broadcasts among the processes executlng on sites connected by a broadcast network

- then in genera_l each eo_mponent of a broadcast message would have to be transmitted over

the network twice, once to reach the common ancestor of the recipients, and once to reach its

. destination. The protocols of this section transmit each oomponem of a broadcast message

) thus savmg extra message transmissions.

_ If the network and sites were completely reliable.!m:luding all components of an
atomic broadcast in a single message would be. sufficient cq)_?distrib'ute _the component
messages atomically. Unfortunately site failures or slrnplelackof buffering can cause a site
to miss a message from the network. To solve this problem, there must. be a mechanism that
uniquely orders the broadca_st messages, even if failures occur during the transmission of a
broadcast; Such a mechanism would allow each site mknow the.order in w‘hlc'h incoming

‘broadcast messages should be processed by that site, even if failures cause some of the

transmissions to the site to be lost or to arrive out of sequence. A mechanism must also be

provided to allow a site that has missed a message to obtain a cbpy of that message.

L. This excludes re-transmissions necessitated by errors. . _ °
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This can be ‘acmupushad by appointing' one site as the coordinator of the
broadcasting. The coordinator has the responsibmty for arbitrating the bmdust messages
on the network, and does 50 by assigning a sequence number to each. To send an atomic
" broadcast, a site assigns a unique identifier. to that bmdcut md trammits the oomponenu
“of that broadcast in one or more transmissions on the broldast network Each transmission
is identified with the unique identifier, 3o that the receivers aan' identify the transmissions
that are used to distribute an atomic broadcast. " |

‘These transmissions are seen by every node on the broadacast network, including both
the recipients alllid,l the coordinator site. Each recipient reeeivsand stores its component of
the broadcast from the transmissions used to distribute that component. This stored
component is hot yet included in the -input Me queue of the recetvlng process at that
site. The coordinator receives and stores all of the componenu When the coordmuor has
received all of the components of an atomic broadcast, the coordinator assigns a sequence
number to that broadcast and transmits 2 mesiage’ to all sies cofitaining thz sequence
number, the name of the sending  site, and ‘the *setiding site’s unique identifier for the
broadeast. This message informs afl feceivers ofoanponmufﬁut breséicast of the proper
muminwhkhmmmuwmmmﬁmwfmahabmdmu
t to the sender of the

broadcast that the broadcast has béen distributed afid the sender can delete it from tu‘oucp/ut'

ENE SOy Yo X TR

The message from the cnordinator also serves as an’

‘message queues.

It is rehtivéty simple to see that this scheme works if no errors occur, as it is
essentially the same as the scheme for distributing large broadcasts in the absence of errors
described above, with the exception that the mordlmtot dutﬂbmes the single message that

demands all receivers to include the broadcast in their input munge queues, rather than
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having the sender of the broadcast do this. To see how this scheme also works in the event

' nm nessages are lost on the broadcast network, htusmﬁderthepouilﬂemrs

One error that can occur is that one of the transmlmom used to distribute the
components of the broadcast is not received by one or more sites. If lt is the coord!nator that
misses one of these transmissions, then the coordinator wifl fiever detéct the broadcast as
being comPle&, and wilt not send the sequence number messige. Aﬂera suitable timeout
interval, the sender of the broadcast can dmu«mmmg ﬁ'iﬂiiﬁ’ (because it ddes not
~receive the mesagrfrom the coordinator) and can retransmit the: canpmenu. Any site that

received the components correctly the first time can- idefitify and" discard thc retrammlssion |

because of the unique identifier assigned by the sending site.

_ If one of the receivers fails to receive a comipottent mmmy, ‘but no-other errbrs
occur, then eventually the coordinator will transmit the sequetite number for the broadeést.
The récetv?r* will discover that it has not stored the componenit fot the'broadcast identifted
in the mes‘sageséﬂt by the coordinator, and tan request fé‘tmnﬁmmﬁhﬁf that component by
the coordinator. Thus the coordinator also acts as a- bickup fdrﬂbﬁimug copfes of lost

messages.

Another error that can oceur is that the the message sent by the coordlnator may be
mnssed by one or more sites. If the sender of the broadcut dou not see thls -message, it will
begin a needless retransmission, which »a‘gain can be d!scove_rgd( and dlgcardeq_ by the:

receivers. The coordinator can retransmit its mw

sage to acknowledge the distribution of the

broadcast to the sending site.
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_ If onhe of the receivers misses the coordinator’s mmagz,thismuynmhe immediately
‘detected. The receiver will detect that it is out of date when it next r-amaameefm
the coordinator That receiver can then reqnest retransmission of the musaga that it has
missed from the coordinator. | |

The protocol described above for -atomic bmdemipg using a bmdcut
. communication network is relatively simple, makes etficient, use,of the netweek if no errars
occur, and works correstly if messages are lost. or duglicated by the network, There are
‘several points about this. protocol that.mugt be clarified before.it cap be.used. as the basis for
a practical impbnmnmmmbmm L

The coordinator site must récord all of the bréadcast messages, and must keep each
 broadcast untif it knows that that broadcast has.been received by afl receivers. In order to
.avoid having to save braadcasts forever, we can have.each. site pes iul!y ssnd 3 message
mntaining the sequence mimber of the most recent broadcast that that; smaha; received
correctly. The coordinater can use these messages to, detarmine, when It Js.safe.to delete a
saved broadeast message; and when a site s ut of date,and, shoukd:be sent, information
~ about one of the saved broadcaiﬁ. ‘The message sent by the coordmmr must idemt; which

of the sitcs are receivers of the broadcast. This mformation can be dmrmmed from

i wi’ PSRN IO SISV

m the message by using a
bit vector with one bit for each site indicating wﬁe’iﬁer or not that site is a recéiver of the |

* examining the components of the broadcast, and ¢a

broadcast. Theé bit vector is used by a recemfng site In order 1o detérmine whether or nct
that site’ shouid have reeeind a colmonem of t‘he brosdaast. This in turn tells the sne

whether or not it mtssed the transmission of the component by ﬁi’i ﬁn&er
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Each site must keep track of the most recent sequence number sent by the coordinator

- that has been seen and correctly processed: by:the: site.in a typical application of this
protocol, it might be-.th_e case that each site is a reoeiverin relatively few of the:atomic
'*brqad_castse, lf;zthisr«is the case, it may. be necessary to filter thiecmessages sent by the sender
c.and. by the cegrdinator in the receiver's. nmkmdn arder to aveid: interrupting the
__receiver. unnecessarily, This could be done by Amaintaining:a register in a site’s network
_interface, which contains the sequence number. of the mest pecent-broadcast that that site has
correctly processed. When a message from the coordinator is seen by tﬁc-mum it -‘
examines the message to determine whether or not the muence number in that message is

it

“one greater than that in the register in the network interi'ace. I this is so, and if i:he message

does not describe a broadast in which the site is a receiver. then the register is incremented

’ and the receiving site is not interrupted lf a message i'rom the eoordinator does not meet
53 IR PR T PIRCL S T F) S a Pt L SR
these conditions then it is reported to the receiving site, which either detects that the

ST

sequence number indicates that the receiving site is out oi' date. or that the message pertains
“to the receiving site. lf the message pertains to the receiving site. then the receiving site
' incorporates the broadeut described by the message into its input message queue (in stable

o3

storage) and then updates the sequence number in its net;workﬁinterfaoe.' Otherwise. the

Te

receiver requests retransmission oi‘ the missed mesnge(s) from the coordinator

1. Notice that if a second message comes in before a message received by a site has been
. [Ancorporated, the, sequence .number in the. network interface of .the site:mey be out of date.
This causes no problem, as the site detects that it has missed the second message and

-+ immediately-obtains it.. The sequence number:cannot be:upinsed :befure ‘the ‘message has
been recorded in the input message queue, as a failure of the site may cause the message that
has been received butnotyetreoorded in the queue to be lost.
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3.5.3 Use of Broadeast Netwetks md Point-to-l'oint Commnieetioa ’l'ogetlser

The schemes for pmidhg synchronization of atomic broudcasts usinig a broadeast
network can be used in conjunction with ' the message - provitols for :ﬁa:» to polnt
micxwon in a network with a number of different physical emimifiication Mﬁl To
dosomoetemmnﬂy wwmmmmmmwsmnmm
should be made children of & single message forwarder represnting the métwork. Other

- bmdast networks und sites are Hinked Mswm“ L il iI"!“”Y‘
connecting networks. :

To see how thns is done. consider the physicel oommunlatlon topology shown in
‘Figure 35. The physlcal cnnﬁgumion is three broedast subumvorks. with sites F and G
acting as gateways between thl and N:tz and betwm Naz and thi respecnvely One
}possnble efficient hierarchy for this network is shown in thure 3.6 This ﬂgure is a skeleton
hierarchy showing one message forwarder for each siae The proeesses at a slee would be
descendants of the single message forwarder shown for thst stae. C.onsider a bmdcsst
'.message sent by a process at site gto processes at s:tes D, E H md I Site G would use the
broadcast network Net2 to distribute components to sites D, E and F This message
forwarders at D and E would route their components to the proper desunstlon processes.

The message forwarder atF would use Net3 to distrlbute the messages for H and L

3.6 Evaluation

The algorithm described here for coordination of an atomic broadcast I3 only one of
many that could have been used for this purpose. 'ﬂw &uirubmﬁy of ‘thls a%orithm as
posed to the others depends main!y on the: extent tg: wm tm hmnhy of mesnge
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Figure 3.6

A Physical Communication Topology
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Figum 8.6
A Logio&l Topglegy tov thp Hotmk n( Flgurc 3.5

o/é ol o/c'»\o

forwarders reﬂects the logical ‘and physical mmumauqn paths in the distributed

- informatlon system

I have already arguéd that many applications for a distributed informtim system
exhibit a strongly hierarchical organization. This is a reflection of hierarchical management
policies. If the hierarchy of message forwarders is chosen so that processes that need to
communicate frequégtly’ are nearly always children of the same message forwarder, the
message fbrwa?det scheme involves little extra message passing beyond direct cdmmunlcation '

_between processes.



- 83 -

This is particularly true if the physical communication network is also hierarchical.

If the physical communication network is hieﬁrthic?af (oountingbroadcast networks as a
single node in that hierarchy), then the atomic broadcasting mechanism descﬂbed here is as
reliable as any other communication mechanism. ‘Each message follows the shortest path in
lthe hierarchy between its source and destination. Two transmissions take place for each link
in the h'ierarchy.that a message traverses (one carrying the message and one cirrying an
acknowléd_gement). This’ is the minimum number of messages nee;led to deliver a message

reliably, and the synchronization adds no extra messages.

If, however, the physical communication ‘nétwork is strongly noﬁ'-ﬁierarcblcal. with

many alkternate paths between any two ites, imposing a logical ‘fierarchy may cause

communication between some sites to be very iniefficiént, where a direct link between those

 sites exists. This problem can be alleviated to soiie extent by sending the contents of all

large message‘s.‘over the shortest possible route, and sending a message header through the

h_ierarc_hy to ‘designate, when the pre-distributed message contents are to be included in the

incoming message stream of the receiver, as was done for broadcast networks with small

pacicet sizes. This technique reduces the communication overhead due to the hierarchy, but

' does not reduce the vulnerability of the hierarchy_to failures. If much communication is
lodl, however, this vuinerability may not be a problem.

The message forwarder scheme has severa] advantages over other synchronization
mechanisms for distributed systems that could bé used to coordinate atomic broadeasting.
One_gdvantage is its simplicity. The message forwarder protocols can all be described by
simple statements. Each step is deterministic, and the .only source of non-detpmﬂnlun is the

order in which two messages sent to the same process are received.
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- The inability of two processes to determine reliably whmrmnotmemgenm
between them was received does not cause a problem in the message forwarder schewe.
Using the protocols described above, once a mesage has been 3ont, the sender assumes that
that message coukd have been received, and does. nat take any action inconsistent with that

assumption.. mammmmuummmkm
through

Another interesting feature of this solution is that the sender of a broadcast need not
participate in the completion of a broadcast. Once the broadcasi message has been delivered
to a message forwarder, it will eventually be delivered to alt receivers, even i the sender
mm. The sender of a Mmm homumkmmm broadcast will be
delivered, as that depends on the availability of the memssage forwarders and receiving ports,
and on the order in which messages are received by thse ports, The brosdcasts from one
sender are, however, delivered in the same order in which they were sent. |

A third distinctive feature s that the order in which a breadcast s received relative
mmhucmﬂkﬁngbmmummmmmm The decision is distributed
mgmMeMnmmghmdemwMMd
‘which performs some arbitration. 1naummmmwamm
concurrent memges;dnceatMmphubmamdbtmge its order relative to
other messages has been fixed. Posponing this decision by distributing. it among the
message forwarders provides greater flexibiliy that can b important. in same circumstances.

Even after some of the component messages of 2 bmadtut have been received by
their destination ports, other messages from the same broadcast may stilt be heid by the
earlier. This flexibility is important if the communication network connecting ports
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_ partititms, in that broadcasts local to one or the other of the partitions can continue to take
* place, even if there are messages from more “global” broadca;ts th;t have not yet been

delivered. . The extended protocol and the implementation Above gugnntee that

IR L B A

_this flexibility does not allow messages to arrive out of erder, intbnnpxponewlvmx a
message. B will have received any message that the sender.of B could haye been aware of
beforg-‘receiving B.

The message forwarder scheme takes advantage of "loaﬁty of reference® in
communication- more effectively than many other synchronization schemes that could be
applied to atomic broadcasting. Some schemes, such' as those using timestamps, require
| periodic communication among all of the sites. Such a :cheme would be expensive for a
' -distributed information system in which most operations involve only one or a féw sites.
Sending an. atomic broadcast using message forwarders, in contrast, tequiruv only the
partici'pation of the sender and receivers, and possibly a few additional sites holding message

forwarders.

One pbint that remains to be explored is to determine exactly what kinds of
operations can be performed using an atomic broadcast. This question will be answered in

the next chapter.

3.7 Summary

This chapter has discussed one simple synchronization problem in a distributed
information system: that of sending a set of messages to a set of destinations "atomically”. A
mechanism was ‘developed to provide the proper synchronization by using message

forwarders to distribute atomic broadcasts to their receivers. The mechanism was extended
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to prevent anomalous behaviour if correct interpretation of one message depends on prior

reception of some message.

implementation that was independent of the physical communication network, using robust
moved within the hierarchy of message forwarders. A more efficient implementation that

s
W

takes advantage of a broadcast communication network was also outlined.
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Chapter 4
Atomic Transactions in the Proom Model

~_In this chapter, the problem of perforﬁﬂng transactions atomically in a distributed
‘information system described by the pfocéis model of Chap&r 2 is considered in ’gre‘ater
detail. A method is presented for describing the data flow that 2 transaction auséiam_ong
the items that it access?s. The difficuity of . coord!mt‘in'gf transactions to be performed

atomically is shown to be dependent on the interaction of their data-flow dexription#.

‘A synchronization scheme consistent with the goals set forth in the first chapter is
developed. This scheme makes use of the hiérarchichl mechanism for atomic broadcasting
described in Chapter 3. The mechanism is simple, efficient, and frequently avoids locking.

4.1 Analysis of Transactions

The té’chniques needed for synchronizing a set of concurrent transactions are
-deﬁendent on the data flow among data items caused by performing the transactions. The
set of input items .to each transaction and the way in which those inputs are reflected in the
updates made by that transaction affect the way in which transactions interact. I will use an
- abstraction wl.\ich. I refer to as a transaction graph to describe the data flow between items

caused by performing a particular transaction.

A transaction graph is a directed graph in which the nodes are the data items in the
data base. These arcs show how the output items of a transaction are qm‘ved from the

input items to that transaction. The transaction graph for a particilar transaction T
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contains directed arcs pointing at each item that is updated by T. For each such item i,
there is an arc running from each item | such that the new value ‘lﬁm to i by T depends on
the value of j seen by T.

Figure 4.1 shows the transaction graph for a simple banking transaction. This
transaction modifies the values of three items, x, y, 2. The mnuction }poruld represent a
bank’s action on cashing a $50 check for a customer, where x upmthc amount of cash
disbursed by the Sank, y represents the account balance, and 2 represents the customer’s

“overdraft protection” loan account!

Figure 4.1 ,
A Bimple Transaction Graph

® @D

T_hd- Transaction T:

Set x = x-50;
If y <50 then do;
Setz=2+y-50
, Setyi-o;
end,
else Set y = y-50;

1. In this simple example, we assume that the overdraft protection is unfimited and ignore
any other bookkeeping that must be done by a “real” banking system. =
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The transaction graph depicts the way in ‘which the odt'puts of the transaction are
. computed. The arc from y to z in the transaction graph of T reflects the fact that the value
for y must be obtained bcfbrel the value ’produ"'ced'by T for z can be determined. Such arcs
 describe constraints on any impMntim of a transaction it that the access to an item that
is the source of some arc mﬁst be performed before the access to the item that is the

destination of that au'c.l

In the process mode_l of a distributed infofmatioﬁ syste"m.{a trahsaction is car_rled out
as a set of process steps. A transaction graph can be {iséd to construict a slmlﬁr’ibstracﬂdn‘,
IWhid{ I refer to as an activity' gr_a_Lh_, describing the data flow among the process steps tﬁaf 3
implment a transaction. Two points cause an ‘activity gnph for a transaction to differ from

its transaction graph:

1) Several of the items accessed by a transaction may be held by a
single data manager, allowing all of the accesses to those items to be
- performed in a single process step.

2)‘Some data items may be replicated, with copies held by several
sites. This mexns that one xccess in the tramsuction: graph may be
performed by several process steps in the activity graph.

The nodes of an activity graph are the processes that participate in performing the
transaction. For each arc from an item X to an item y in‘the transaction graph for T, the
activity graph contains one arc pointing to each rhanager that hokls a copy of y from some
r_nahager holding a copy of x. Arcs connecting a process to ftseif are not shown. If an item x
- Which is the source of some arc in the activity graph of T is. replicated, then we have a

choice of which copy of.x_to use in computing the output of T dependent on x. This choice

1. Note that if a transaction graph contains a cycle, thls means that some item in the cycle
must be sccessed at least twice in any implementation. '
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is reflected by the arc in the activity graph of T connecting some process holding a copy of x
to the process that holds an item whose new value dcpend:on x. If transactions are run
atomically, then all copies of a replicated item seen by a transaction have the same value, and
thus the choice of which one to use wi}i not effect the output values produced by the

transaction.

Figure 4.2 shows the activity graph for an implementation of the transaction depicted
in Figure 41, in which each of the items i3 replicated at two.of the three data managers.
iplementation of T. M; holds copies
“of items x a.nd y. The new values produced for these ltcms “depend only on their previous

values,so a decision has been made so that M 1a tp compute the new values for its copies of
t,heQe items from their previous vilue# at M. Similarly, M, is to use the old values of the

- The graph indicates several decisions made about the

copies of y and z that it holds to compute their new values. M 3, however, holds a copy of z,
but no copy of y from which tooompute thenewnlueﬁ!z. Am hasboen made that
M, is to obtain this informauon from the copy of y held byMz.

Notwe thut in this mmple. aH three mmm m iuthe eamputauon of the
outputs of the transaction. This muiu in some dupucauon of effort. as, for example, both
- Mj;and M; compute new values for x. We could have censralized the computation of the
outputs of the transaction in one of the three.managers.and distributed the results to the
other managers, which would have lead to a radically MM activity graph.

The model of a transaction used in this thesis, in which’ "Vaf:loﬁs parts of a
transaction are performed in parallel, is different from the modeél used by n'.nny' other
researchers in which the accesses required to carfy out a trtnactim take place in some well
defined sequence. Aﬂowing for paraliel execuum of variws pum of a tranm:mn not only
allows the transaction to be completed m hm abo, W%ﬂn task of &mdlmlm
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because the synchroniution mechanism can choose the order in which two pam of a
transaction that are logically lndependent (such as those performed by M 1 and M 2 in this

- example) are performed

The arcs in an actlvlty graph represent comtnints on the order in which the process
steps used to perform a transaction can occur. Some step of a prooess that is the source of
one of these arcs must be completed before some step of the pmoess that is the destination of
_that arc. Recall that performing a transaction atomically. with:respect to other transactions
also constrains the order in which process sueps occur. The difficulty of .coordinating a
group of transactions to.be performed atomically. depends on the interaction among their
aaivitj gxéphs; |

- For a group of .itr‘amactions.'we can construct a joint activity graph, which is a
merger of the activity graphs of the individual transactions. The joint activity gnbh
contains an arc between zwoprqces;es whenezgr\mg;gtgv;t'y%m\ofm transaction in the

Flgure 4.2
An. Aotlvity Graph For- nlnﬂm&hﬂou of T

Assignment of Items to Managers

My xy My:yz _ My: Xy




-92-
group contains such an arc. Each arc is labeled with the names of the mmacttons that
contribute that arc. Figure 43 shows an examp!e of mch a gnph for three nmple

*tnnuctions.

Each of the thrae transactions is respomible for one of the three arcs in their joint
activity graph. This ts because each tramactlon mmfm lnform:uon for an item held by

‘one manager to an _imm heid by some other manager.

Activity graphs and joint activity graphs ca‘njbé viewed as finer gratned versions of
the ‘L-U graphs used to describe transactions in Sﬁb‘!{m’rﬁ " The ih’alysl’s of
transactions {h SDD-1 does not examine the derivation of outphts from inputs, but instead
assumes that each output of a transaction may depend on any of the inputs. In fact, each
output mﬁy. depend on only a small subset of the vahm @d. afact thg; is represented in.

activity graphs.

Activity graphs provide a simple way of descﬂ&lngthe way in which input values
seen by a transaction affect the wtpm values produced The arcs in an ’a.ct'ivvity gnph also
describe ordering refationships among ﬂvepmwmps that carry out a transaction in that |
~ the process stép- at the source of same arc must NWW*MM scep that is

the destination of that arc.

The next 'sectio'n of this chapter examines the impact of the. pattems of accesses of a
group of transacttom, as described by their joint activity graph, on the synchroniution |
techmques that must be used to mdimte those transactions. |
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Figure 4.3

A Joint Activity Graph

Transactions:
TiSetB=B+A
Ty:Set A=A+B
Tg:SetC=C+ A
Assignment of Items to Managers:
MpA

M2:B
M3:C
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4.2 A Simple Approach to Transaction Synchronization

vln the previous chapter, I presented a Mﬂmhmm to distribute a set of
messages to a set of receivers as an atomic broadcast. This mechanism could be used to
distribute a set of input messages to the process steps of a transaction. In this section, I
explore the applicability of the atomic broadcast mechanism to the problem of performing
transactions atomically. I show that that mechanism can be used only when the joint activity
énph of the group of transactions to be performedudon not contain a cycle.

The s:mple synchroniution scheme developed for atomic broadcasting cannot be.
used directly to wordume a transaction that has an ictivky graph cmtainlng an arc
connecting two processes. This is because there is no mytoducribemh a transaction in 2
| set of independent messages to be delivered ta the data managers as an atomic broadcast
" The process step at the source of an arc mustbemhmmeamugeducﬂbm the‘
access to be performed by the process step at the dmmof that arc can be formuhtc_d.

One might expect that the atomic broadcast protocol coukd be nndmed somehow in
order in to synchronm a group of transactions using nquuchg of meuages between
processes to control the order of process steps. If the joint activity graph of the mnucttem
does not contain a cycle of arcs, then this can be done, as will be smmmem:
section. If, however, the joint activity graph of the set of trahsactions to be performed
contains a cycle, any protocol for coordinating the transactions ‘must use some form of

locking, as will be shown subsequently.
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4.2.1 Synchronization of Transaction Croups Without Cyclu' )

- First I will show how to ooordmate a group of tramactlons whose Joint activity graph
contains no cycles. The approach I will use is to modify the message fomrder scheme of
the last chapter to allow a process to act both as a message, forwarder and a data manager.

Such a process receives a message and produces a group of messages for. its, chlldren in_the

hierarchy in each process step. The messages produced need not be a simple partitlonlng of
the message received; but can depend on the local state of the-feceivirig’ process.

One can perform the translction depicted-in Figure 4.2, for ‘example, by making
process M 5 the parent of both M and M 3 in-the hierarchy. ‘The transaction could then be
performed by . sending a message oescribing the transaction to* Mz using* the atomic
broadcast protocol described in Chapter 3. ThuMpW thifough the hierarchy
until it reaehes M} When this message is received M, that data mamager performs ‘the
specified updates to its copies of y and z. In the same process step My fomnis the portion
performed on x and z for M. M 2 includes the current vahle ot; y in the messgge sent to

»lncloding some of the data managers as message forwarders: iﬁ‘the hi¢rarchy atlows
some of the process steps of a transaction to be petformed beforé the input messages sent to
other steps are constructed, while retaining the hierarchk:al structure of message sending.
Recall that the message forwarder protocol of Chapter 3 lmures that all of the prooesses.
message forwarders and data managers ahke, see 2 W os atomic. The requect to
perform a transaction in this scheme is treated Iike an atomic broadust, and thus is seen as

atomic by the data managers.
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A group of transactions can be performed atomicaily with the modifisd message

forwarder scheme whenever a hierarchy of message forwarders and data managers can be

constructed so that the arcs in the joint activity graph always run from a process to one of its

descendants. This can be done whenever the joim activity graph contains no cycles. In a

later section, T show how assignment of data m'mdiann be chosen 30 as to
eliminate cycles from the joint activity graph of any expected group of transactions.

4.2.2 Synchronization of Transactions with Cycles in the Joint Activity Graph

If there is a cycle in the joint activity graph of a group of transactions, then there is
no way to construct a hierarchy so that a process that is the-seurce of some arc is always an
ancestor'ofthedmmwon process of that arc. Tmmmm«pmm
be used. The following paragraphs give an argument 1o support the claim that any protocol
that correctly coordinates a group -of transaction whose joint activity graph .contains a eycle
must use Iockiug

_ Consider first a group of two transactions that form a Cyde. such as Ty and Ty in
Figure 4.3. The execution of a transaction consists of i set ofpfooess mps. The arcs in the
Joint activity graph indicate that T) must be performed by a set of process steps in which a
process step of M, precedes a process step of M. Similerly, in performing Ty, & process step
of M, must precede a process step of M.

To perform the two transactions atomically, either both steps performing T‘l must
precede both steps for Ty, or vice versa. To peiform the trmuc:ﬁm without locking, recall
from chapter two that at most one- process step of each data mamger can be used for each

transactlon. and that the sequencemg of messaga between proceues is the only restmtlon
| that can prevent a message that has been sent from being received promptly We must



-97 -
therefore prevent, somehow, the situation that the process step of Ty at M; and the process
step of Ty and M are both completed before either transaction 1s completed. This can be
showﬁ to be impossible by demonstrating that this undesirable situation can be forced to
occur in an execution of any protocol for the synchroniution of Tl and 'l'z that does not use

some form of locking.

- Consider the state of the system during the execution of Ty in which M, is
E pcrformihg its process step of Ty. If Tg were begun at this point, the sygchxpni;ation
protocol must prevent the execution of the process step of M, related to Ty from preceding
~ that which accomplishes the completion of T}. Without using locking to control the order in
which messages are received, the only way to control the order in which M o receives the
messages pertaini-ng to the two transactions 5o that the undesirable order is avoided is to
have both messages sent by M, and use sequencing of messiges between M 1 and M, to

force the messages to be rec!ived in the correct order.

Thus to force the execution of the process step of M, ttut complem Ty to precede-

that that begins Ty, both of these process steps must be triggered by messages sent from M.
This means that the execution of Ty must include two process steps of M, one that precedes
- the step of M, and orie that follows that step. Using two steps o of one process to perform
oné transaction is a form of locking, therefore it is impossible to coordinate the cycle of two

transactions without hcking.

T_his argu’rﬁent can be extended to cycles of any size by demonstrating that unless
locking of some forfn' is'.used. then it must be possible to reach a state in the ex@tim of the
syStem in which each transaction has completed a process step in one of the processes in the
| cycle, making it impossible to complete the exemtion of the mnuctiom atomically. We are

left with the conclusion that some other mechanlsm must be needcd in order to synchroniz.e a



-98 -

cycle of transactions. The locking mechanism used in this thesis s explicit locking. This
locking mechanism consists of delaying the reception of S message until some other memge
Jrom some other process is meivect.l Locking is to be avo;idqd w!mwcr possible, because a
failure of the sender of the expected message, or of the mmmcattm network, may delay
processing of mesngu fm other sources. This violates our ngl of partial operability, as
now a group of functioning sites cannot necessarily carry out a transaction purely local to
those sites, because one of the processes involved i the transaction’ may be Micked, waiting
for a messige from some other site. nnmumummmmnm
CImpter 5. ' ' o -

The particular mechanism that | will use for locking in the process model is to place
2 pre-requisite on the process step specification of a process step. A pre-requisite is a
predicaté that may include variables in the local state of the process. A process step is not

performed unless the pre-requisite for that step is samtkd.\ By placing a pmm on all

process steps that receives messages from one of the input ports of a procu:, one can inhibit
the reception of messages at thut port until some condition is met. :

With this locking mechmtsm, we can now extend themuctlm synchronization
~ mechanism in the previous section to coordinate ubi;nry groups of transactions.

L Note that in sequencing, it ispm:ih&etha@ﬂnpmm dnmehpatpund.but
only until a message sent from the same sending prms is received
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43 Classes of Transactions =

On the basis of the activity graph of a transaction. we can group trapsactions into

\\\\\\

terms of the mechanisms needed.
431 :Trans'actions with Independent Components

The slmplest class is that of transactions whose activity graphs contain no arcs. |

mm_. A transaction
with an activity graph with no arcs can be perforied atomically using only sequencing by

refer to ‘these transactions as tnnnctiog g

using the hierarchical protocol described in the preyious section, st_tqh,n transaction places
no constraints on the organization of the hierarchy, as any hierarchy can be ysed. The
_hierarchy can be chosen to optimize locality of reference, without gotgcem for introducing .the
neod for locking in theso transactions. |

~ An example of stich a transaction would be a transaction which adds 5% interest to
all of the savings accounts in a bank. The new value of éaéh account depends only on its

| pretrlout value. No matter how the accounts are distriblited among data manager processes,

each manager can compute the new batiinces of the accounts that it' holds solely from their

previous balances.!

It is instructive to see jutt how large this class of transacttons is. All "query

transactions 'which do not perform any updates to the data bue. fall lnto this chss. A

. query transactton can .always be performed by mdlng out a sgt ot‘ roquelts to the data -

L In this simple example, I have d&libemwlv ignored. otlur processing that such a
transaction may be required to perform in an actual banking system, such as accumating: a
total of the accounts or of the interest paid.
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managers as an atomic broadcast in order to obtain a consistent “snapshot” of the data base.!
Such requests can be sent as an atomic broadcast, using the mechanism of Chapter 3, in
order to obtain a snapshot that reflects either ail or-none of the effects of any other
transaction. The sender of the requests can then gather the rcpliu and use them to satisfy
the query 2

A second class of transactions that always have independent components are
transactions that only make‘ updates to the dgublsg. !lf thenew yalqg,that a transaction
gives to items are completely independent of the previous state of the data base, such a
transaction has independent compoﬁents.

| A third class of transactions that always have independent components are
transactions in a fully redundant data base; such a3 that considéred in {RothnieT7,Thomas761
Many of the protocols that have been developed for synchronization of transactions in a
distributed data base work oﬁly for the fully redundant case. This point suggests that
synchronization of transactions in a fully redundant data base may be somehow egsier than
synchroniiation in a data base in which each site holds. only a. partial subset of all of the
_data items. In fact, the fully redundant casé is easier, becauge all of the transactions in a
' fully }edundani data base have independent components, allowing synchmniz#lm to be
accomplished without locking.

L. If the data needed to satisfy a query cannot be accurately predicted in advance, this may
be a very large set of requests. An exampieofmch aquerywoim be “téll me the value of
the record that this record points at.”

2. Alternatively, the requests can ask the managers to make ooples of the dm items
involved in the query, and the copies can be processed ‘to satisfy the query in any efficient
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Actually, a fully redundant data base violates the assumption made about locality of
‘referenc'e,‘ as all transactions that update the data base involve all of the sites, All such
- transactions must be sequenced by the root node of any hmhy used for the ﬁkmhial _
synchronization scheme.| A much more interesting case is that of a data base that is not
completely redundant, but still has the property that all of the input ltems to a transactlnn
exist on any site that holds an item updated by that transaction, All tramacuom in such a

| :system have independent components, and may also exhibit lacality of reference.
4.3.2 Transactions With Predictable Data Flow

A second class of transactions based on activity graphs is those with activity graphs
with well defined arcs. I call this the class of transactions with predictable data flow. Some
of the précess steps that perform such a transaction must’be ounpletedbefore the input |
messages to other steps.can be produced. A transaction in this class cannot be performed
atomically using the atomic broadcast scheme in every hierarchy, but instead requlm that
‘each process that is the source of some arc in its activity graph be an ancestor of the process

that is at the destination of that arc.

"An example of such a transaction would be the simple check cashing transaction
depicted in Figures 41 and 42. Any implementation of this transaction requires that an

access to the item‘y precede the access that updates the value of z.

l. Note, however, that query transactions can always be lmplumnted as belng local to one
site and run efficiently without locking.
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4.3.3 Unpredictable Transactions

A third class of transactions, partially distinguiched from the second, is those for
which it is impossible to predict which items will be accessed &hd how until some of the
accesses are performed If we were to construct an activity graph for a transaction whose
access pattern is compietely unpredictabk, that graph must indu&em arc between each ﬁair
~ of managers. Such a transaction would cause a great many cycles in when included in a
jbim activity graph, even though the probability that each arc is used in any particufar

invocation of the transaction would be mn This suggests that such transactions need

special consideration 3o that they do not add to the cost of pumrming more predtcnble

‘mnsactions

| An exahp!e of such a transaction would be a transaction following a tinked list of

records. performing some processing on each entry in the list. - For such a mactton, it is
impmsible to predict which records will be accessed beibre the transaction Is run. The
transaction could potentially access any record in the file conmﬂﬂm the linked list, and
might tran#fér information from any of those records to any other record.

| It shéuld first be noted that unpredictability comes in degrees. Frequenﬂy.'d'ne can
- Iimit the set of items fhat a mr;saction could access, for example to the records .in a
particular file. Even relatively crude bounds can reduce the nuM of arcs in a
transaction’s activity graph to the point where it could reasonably be tmbed as predictable.
The assignment of data items to managers can greatly afféct the 'impad of unpredictable
transactions. If all of the items that could be targets for accesses of suéh a transaction are
under the control of a single manager, the unpredictability d;sa_pp_ean. Thus if
unpredictable transactions are frequent, the choioe of the mtgnment of data items to

managers should be made with this in mind.
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The three classes of transactions discussed above are'a categorization bf transictions
according to the difficulty of performing them atewieally. ‘1 am assuming; and this
assumption appears to be consistent with current practiee, that the most frequent transactions
- will be those of the first two classes. In fact, in many cumnt ‘applieetions of distributed
“information systems queries are much more frequent than npdfatu. making the transactions

with mdependent components the most frequent. With this essumption in mind I have
| ’designed a mechanism to prov:de correct synchroniutton for ail three cluses of transactions
that is substantially more efficient and robust for tranactions in the ﬂrst two chsses. This

mechanism is the subject of the next section.

4.4 A Hierarchical Scheme for Transsetion Syuehroni_ution

P T

In this section, I present a mechanism for syncbmmtien of tmesactions in a
distributed information system that makes extensive use of the igas developed

above and in
Chapter 3. The mechanism is described in terms of mtrictiens on the petterns of message
passing that can occur during the execution: ef amaien. ln ﬁmeltt seetion I consider

the implementation questions in greater detail.

 The mechanism that I will use for synchronizing transections is an extension of the
message i‘orwarder mechanism described in Chapter 3. The proeesses are organized in a
hierarchy inciuding both data managers, which hokd items, end message forwarders. which
metely relay messages. Some of the data manegers mey act as message forwarders as well.
Each' process in this hierarchy now has two types ‘of ports..a mg& port. and some M
door ports The front door ports are used for receiving requests pemining to new
transactions, while the back door ports provide 2 rmchenism that aliows a process to receive

additional messages pemining to the current tnnssction mlwut enabiing reoeption of
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requests from new transactions. This mechanism, together with the use of pre-requisites on
process steps, will be used for locking.

A transaction can be initiated by any process by formuhung a message describing
 the accesses to be performed. This me:age invoku a set of prooeu steps that together
perform the mtended transaction. Some of these proeeu seeps are lnvoked by messages
received at the front door of some process, while othm are tnvoked by back door message
reception Mesugessem to the fmudoorofmprooenmfoﬂowanmihr proeoeoleo
that used ln atomic broadcasting

Messages sent to the front door may only be sent to the relatives (in
the hienrchy) of the sender.

A process recemng a message from one of its children through the
fmntdoormyetthersendthemmgemmthefraudoorofm
“parent; wmmmqmwam«nmpafwmmy

processtngdmredmthemngemdmwm the
fromit doofs of its chikiren.

'A process receiving a message from its parem through the front

 door may perform the desired: procsssing-and’ send : ‘mtstages to the

front door ports of its children. '
Messages sent to the front door folbw the cﬁrea route in the hierarchy between the
~_Process that initiates a transaction and the dau managers that perform the transaction. The
vsame argument that was used to prove that the hiem'chy of message forwarders correctly
synchronizes atomic broadcasts can be used to show that the tramctiom are atomic as
ordered by front door message receptions Not all transactions can be performed entirely
‘with front door message receptions, however A back door message is required whenever the
process step to be performed byoneprocessdepmdsmdau heid by meotherpmthat
is notoneofitsancestors. Inordumpreventthes&pnnvokedbybukdoormfm
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introducing ordering refationships that would ‘make ‘transactions 'ﬁm-amic. several

restrictions must be applied to back door messages:

Any process involved in a transaction may send a message to the
back door port of any other process involved in that transaction.

Thermp;jonofamngeummmqapmm,,
conjunction with some transaction must be preceded by the

reception-of some: message: mmm at the front
doorofthatpmm

: yanoecur
. ‘door about the

No steps recelving messages at the front door of a pi
between the stép that recéives & v
transaction and the steps that receive mesy
about the same transaction.

These restrictions uken together. lmure«tbu &uafgmwofaprmnhndma*
partlcuhr maqﬂmmmnwunmﬂwmmw@msmumwdwa

| -tnnsacuon is invoked through the front door. .Thus. the. mwaﬂmm»u

‘observed through all message receptions is the same as that obmved only through the
Wﬂmdmuatthefmtdmmmmmmmmm
atomical!y

“Thie restrictions on back door messages require advance planning before a back door
| message Thus'the:m&i"ge sent to the ﬁb‘nt“édoar of a pro&atlm will wbsequmﬂy be sent
a back door message must contain a mm which cautes that process to stop receiving
‘Thessages at its front door until the expected back door fessege 18 received. ‘The next section
describes how the messages are constructed and routed to achieve this effect.
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This section discusses several details refated to the lmpmuon of the hierarchical
locking scheme. FimlmwmmWMH the . implementation of a
: transaction are constructed from the description of the transaction. This is the responsibility
of the transaction pnau. :!m;b tive individuat dm mmgm m nbo send messages as
outputs of GMMW they: pam. MW%W ooordination of
mugumm“hﬁd&mmmmwmmdm lnthepmliws
- section. mmwummxmmmm be sent to a
large number of processes witkou actually deﬁvcrhg t‘be npem in. mou cases. This
implcmmtanm makes it practical to run unpredictable transactions using this mechanism.
* Finally, T discuss the probliri of choostg: the hierifthy of prooesses. "This vietarchy should
" be chosen 50 a3 to m cloiely to thé physical comfmication etwork topalogy; to' reflect
"locality of reféfonce” in: the transactions to be rum, ‘"‘:”"WL‘W- o

V4‘.5.l} Constructing the Messages

We must now show how a transaction process can perform its function of translating

e that wm'

from a_high level dw}ption of a tnnsactlon to be ggrfomd into a messa
evmtually cause the desired transaction to be performed in mrdmee with the
| synchroniutim rules described above. | wﬂl first oonsidgr .the class of maactiom with
predictable data flow, for which it i possible for the tranuctlm
accesses to be performed (or at least the manager pmu that perform those accesses) in
advance. Later, I witt show how the scheme cau be extended tomam with

ep,kn;owslw,m.of

‘unpredictable flow.
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For a transaction with predictable data flow, the transaction process can know in
advance what accesses are to be performed and thus  could ‘formulate a message to-be
~ distributed to the managers deccribing those accesses. Two steps must be carried out in
'formulating the set of messages. First, the eeeecses wae performed muet be derived from the
high Ievel description of the transaction, and then the,m of mngu,;o be,distributed to the

managers must be constructed. The. first of these tasks is performed by the transaction

_ process

The second mk requires knowledge of the hierarchy as. well as knowledge -of the
transaction. We could require each transaction process to have this kno\rledge.. allowing it to
formulate the set of messages described below, however it seems more natural to delegate this
task to a process in the hierarchy that is above ell ol' the duta rnanegers that are to

‘participate in the transaction.

~ The transaction process formulates a description of the trannction that describes the '
accesses to be performed This description may be similar to a tranuction graph for the
‘transaction. The transaction process then sends a message containing this description to its

parent in the hierarchy.

Each process receiving such a description of a tranuction to be performed examines
-_the deecription to determine whether or not all of the daia ihems accecsed by the transaction
are h_eld by data managers that are below the receiving proceu in the hierarchy. If not,.the
description is forwarded intact to the parent of the receiver. - If afl of the data managers that
are to participate in the transaction are below the: receiving process in the hieraichy, the
receiving process' has the knowledge to generate tlie-w ‘necessary to perform the
* transaction. | The receiving process formulates a duaiptien of the transaction in a set of



:Wrmamum ' '

Eachmmgerhguvmadmmmofmmmnuw

perform. TWis decription way be ot any Tevel that i@

description of what messages are W be produced and their

Each manager that must produce input for its descandants in the
MyMafumhmmmn given 2
description of the input to be produced. .

Tmmmmummmwamamﬂmnm
rw&ved&mghlnfmdmmmmwmwhm Ewchmch

}meuageupmmndum

A-MMquaWthmhmmmmm~wm
wm:fitmkuawfwﬂ If not, the message is partitioned according to the
'mgewaMamﬁcm3demmmofM lfthe
mag!muauampmfuu thmMukuuMuxthemge.

The action taken dqnmm whether or not:the compenent of that message destined
- for M contains a jock request. If it does not, then A peeforens svhatéver acoess is-specified (it

s guanmud to have sufficient infermation %0 do se), ‘pessibly mm other
_mmnﬁﬂuwu%dmnhuhwﬁ*mmm
dtnribumﬁnmpmmdthemugemmcbmmmdmwtheamk
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broedcas_tlng protocol. Any back door messages to be-sent by: M are ako sent by the same

prt)cess step.

If the message comtains a lock request for M, then M- cannot. perform all of its
accesses until it receives additional information: Seme-of the sccesses to. be performed by M
depend ‘on receiving additional information frem tome ether peece'u. M dmzibutes the

componentsofthe meuagetois nhi&mtpodﬂymmdmmmn to
;.include values efdete items held by M), snd: tendeeayln:km meueges that. are

~requested. M then stops receiving messages at its front daor until necessary back door
- messages are received. When M receives all of the-back.door mesmges associated with the

, trmsaction that sent the Jock request, ummmm.mw re-eaeble
message reception thrulgh the front door. | ‘

‘Some. care must be taken with back door menaﬂtoenidcmmem The back

‘door messages of several concurrent transastions for-some process may become intermingled,
caunng a back door mmarxinnupmbm&emmdhg Jock: reqaLm.
~ The simpleet so!uﬂonaothi: probhmisteusetsepente bltk door pert- for euh
transaction. The transaction process.initiating & transaction: choses an identifier for each

, transaction. This identifier can be combined with.a process:name to;ferm?e ‘unique back -

door port for each transaction and each prooess involved in that tramaction A process that
has received a lock request can then enable meuage mtbn only through the beck door
for the particular transaction being performed -



4,52 Coordinetion of Unpredictable Transaction

Two problems must be overcome in applying this mechanism to transactions with
unpredictable flow. Each precess that could receive a back door message in performing a
transaction must beum; lock mquut. Because the set of data mmrs involved in a
transaction cannot be predicted until some of the transaction has been performed, all
accesses that cannot be predicied s advance 1o be pebformed by sending messages o the
back deor of the approprinte manager whe the accass to be pahnmd is known. The
messages dependent on the items that the manager holds.and the information it receives in
the back door messages. Any transaction can be performed in this way. |

The second probleny comes in determining when a transaction has been completed, so
_ that the data managers sent lock requests can: release: those locks. Because the set of accesses
to be p«famwmkaminthpm‘m has m a-lock ‘request does not
: know when it has m all of the: messages connected with the transaction that it will ever
recetve and thus when to release its lock. Each manager must remain locked until it has
 received alt ofthémuagwthtt pumn to the transaction that sent the lock. request.

A simple solutmn to the problem ¢ determimng when an unpredictahle tranuction
has been completed is to have some process moniwr the progress d that tnnaction When
the transaction has been complewd, the monitoﬂng process can mdv out b;ck door messages
" to all of the recipm of Iofks to release the locks. This strategy may sound very inefficient,
however the next section discusses the 'problem of distributing the lock requuts. and
describes an efficient implementation of locking for unpredictable transactions based on the
approach of this section.
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The progress of an unpredictable transaetion 1§ ménitored by having each procéss
that finishes some portion of the transaction report to'a monitor process. ' Any process can act
©- as the monitor for a transaction, however coinmunication wilt probably be minimized if the
. highest process in _the hierarchy ‘involved in. performing the' transaction permmn the

monitoring function. -

Each message (front door and back-doer) sent in perferming a transaction carries a

completion weight. A pmimmgammmﬁmamgmmm weights
- to thehessagaehatnsendssothatﬂnuwdgm:umwm Eachr process step
redistrtbum the completion weight of the-mestage: thatit- veceives ‘among : the messages
~ produced by that step. No message is ever assbgned a oompletlon welght of zero. and every
message sent by each process is given some compietion weight.l lf a step produce: no output
-‘f.mess_agcs for other processes involved inwthe::tmm. t-instead produces an output
message for the monitor containing the entire completion weight received at that step. Thus
cqmpletion weights are gradually returned to:the wmw process as thu ‘various
' process stepsofthemsuﬁon are completed. - ‘The transaction hdmwmnthcmpbﬁon
weights in the messages sent to the monitor-sum to one2 -

L. An optimuatlon of this scheme would be to recognize the special case of a a message
containing ‘only-lock requests. In performing an’ “unpredictable tfiinsiction, many of the lock -
requests that are sent may be completely unnecessary, and need not be delivered befare the
transaction is completed.” We can speed up" ‘the’ recognition’ of the completion - of the
~transaction by assigning, any message. containing-oniy . lowk. requests a.completion -weight of
zero. If the locks in that message are nmry, some other message with a non-zero
completion weight -will be forced to wait uhtil the:necessary:-Jocks;are:received. The next
section describes a scheme in which the number of messages that must be sent to perform an
" unpredictable transaction can be substantially reduced by postponing or eliminating delivery
of unnecessary lock requests.

2. The arithmetic on completion weights must be done carefully so as to avoid loosing or
. gaining completion weight due to round off error. One could maintain completion weights

- as rational numbers rather than as floating point solution 30 as to avoid round off error.
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through the hierarchy, being forwarded only when “"pushed” by subsequent messages or the
completion of the transaction setting the lock. -

This can be accomplished by. ?Ilgghtly modifying the imp!emenmion of the processes

" in the hierarchy. Recall that each such process maintains a queue of messages to be
_ delivered to each of its relatives in the hierarchy. The implementation described in Chapter
2 attempted to forward message from ach. of these queues nhmever they were non-empty.
One could instead construct the implemenmion 30 that messages are forwarded from a
queue only when the queue contains a message which 5 not purely a Iock request. |

Consider the hlerarchy and transaction deplcted in Figure 44. The transacuon uses
the values of data stored at M to update data at Ms. M's only particlpatlon is to take the
‘value produced by M; and use it in.an upd_lte. This transaction would be implemented by
sending a message containing components for both M; and M. When this request reaches
My, these components are separated. The component for M, travels quickly down the

. hierarchy to its destination The compment for Mg [ i. contains only the Jock request,
“and will not be sent from M4 to Mg until pushed by addltioml requests. Thus it is Ilkely.
~ that while M is computlng the value to be sent UQ M,. the lock request will be held up
awaiting. dellvery to Mg. Thu aliows M to continue to participate in tnnactions local to

the right hand half of the hierarchy while T is being performed at M,

This examnle raises another problem that must be solved: that of insuring that the
lock request for a transaction does arrive eventuaily, and arrives before the back door
| messages of the transaction. This problem is partially solved by using a unique port for
receiving back door messages related to each transaction, as mcethe back door message

'arrives. it will wait at its unique port until the corresponding lock request arrives. It would
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be desirable if the lock request could be delivered promptly once the transaction has
produced a message for the back door port. This can be achieved in one of two ways.

The implementation of a process could notlces when a message is v}altlng at the back
door port and send a request up the hierarchy to forvmﬂtny fock requests. This strategy
would be effective, but may requim additional ‘message sending: - If the communication
network topology closely oorraponds to the synchronization’ hierarchy, 2 second strategy may

. be more gffective. _

If the communicaﬁon’ network topo‘logyv closely panlbﬁ the topology of the him;’chy,

then any message, including the back door messages, must essentially ﬂow ilong the arcs in
| the hierarchy to' reach its destination. We can take ﬁvﬁajgéofz:thu=&ct to provide for
prompt fwwardmé of lock requests when appropriate. : Each process that-is not-a leaf node
in the hierarchy now has a third type of pert, a - pats threugh port. Each:m process is
- always ready to receive messages at its pass through port, and.pass them on: to-one. of its
relatives in the hierarchy. The pass through ports. providers mechanism to send:back door
messages from one process to another in the hierarchy through itervening processes. Each
such message is identifted with its ultimate dm«&mmech port of
‘the pareht‘-of the sender. When a process: receives s :message at its pulthroughpott it
passe's it on either tc} tﬁe pass through port of -one of‘m-féhﬂwu;iw; if the ukimate

destination is a relative of the receiving process, to the ultimate destination port.

The pass through ports provide a mechanism to allew each process in the path of a
back door message to notice its progress. A protess can match & Jock Tequest with bnck door
messages that it is also forwarding by the unique port 1D of the destination back door port.
When a process has a back door message to be:forwarded to'one of its relatives, it checks its
queue of front door messages to be forwarded te the ssme relative for a corresponding tock



-H6 -
request. If such & request is found, then: the back door mpsage G be combined with that
promptly forwarded, as it is new not solely a lock request.

'ompmammum If the Jock request is contained in a message
MWMMM““M”WKW“W%M
mumwmmmumw m»mmm
to which the lock WMMMmyMW:MVMM&wMKBMM*Mv
modifytt. mmmmwuuxdmgummmmmw
yetacknwledged. |

In the mmw Figure 4.4, when M, has. finished computing the value that it
sends to Mg, it sends it as @ back dur message. This message pmau up-the hisrarchy
hrough the pass through pers of My and M. When M., sitempts to forward. this messege
to Mg, it motices the corsespending lock request. ik combines the back. door memage with the
lock request, and sewds: the: comibined: mesiage: to the front dosr of My:>'Wiken My receives |
the combined messuge, it pesforms the specified umm realises shat its role in the
'ﬁtmnmmmmqwmnmvmmm i, however,
Mg mmwmmwmmmmmumﬂ
‘remain locked until thase messages were received.

Pass through ports also provi&e i mechanism to opttmne the" exécuti,on of
* unpredictable transactions. In an unpredictable transaction, a«gmsmrpm 'm)""e
sent lock requests, and later Jock releases and not pasticipate in performing. the transaction.
Using the scheme for forwarding lock requests dascribed: above, most-of. theae requests will
ot be delivered until the transaction has been completed, and. will awais forwarding at.some
level of the:lsierarchy. Thus while an unpredictable transaction may send out 2 great many
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Yocks, few will actually be received. ‘When the transaction is completed, however, lock release
| messages‘wiil be sent ot for all of the partictpants in the triénsaction. Because these are sent
" ouit &s back door mesnga, the processes forwarding the lock reléase-meisages will attempt to
combine them with the Jock- requests stilt awaifing fonni'ﬂitig “Whe' 2 Tock request is-
combined with a.lock release, it is known that the lock is unneceisary and both messages can
be discarded. -

* Usifig this implementation, it isiﬂt"ety that most ¢k requests will be retained at a
- high level ifi the hierarchy. Most'of the unriecessary fock ‘réquests Wil becanceled at a high
 ‘level, efore much effoft as been expended in delivering théin to their destinations. This

. implementation makes it practical to run transactions that are véry unceftain and must lock a

" large number of martigers but in fact perform very few sccisses. If, a3 ussumed throughout

 “""this thesis, most of the traisactions involve managers with tmﬁma &tow level of

' the hierarchy, then running a transaction’ that ‘sets many urmetessary-locks interferes very

little with the execution of most of tre transactions, &3 the lock Fequests that aré not needed
_never reach the level in the hierarchy at which they would interfere with the more frequent

transactions.
4.5.4 Choosing the memchy

Several considenticm should guide the choice of a :ynchroniution hierarchy for a
distributed informatiqn system. The higrarchg should reﬂect the patterns of Iocality of
reference inthe expected transactions. There are frequently natural boundaries of the
" applicition, such as the focal and regional offices of an ofganization using a distributed

" information systerh for inventory control, which can guide this cholce.



| ln many cases, the wpdogy of the onmmumcation network closely panllels the
pattcrmofhulltybfm Thuubmuumxumfgrqn;mthumuu.
' ‘ wnmmnam'

~ communication netw 443 wisie. Thus. the.topology. of such, e
~ resemble the patetn of kcallsy of reference in ABY single.s

A third factor u’ilii\‘e' che

cé of the hierarchy s the c*packty and reliability individual

easonable approximations for the expected transactions, one can estimate
d impbrts ﬂm'mymmmgh each ste. . Them shosld, he ysed
| in evaluating whiether or hot a ptrﬂdahr org‘niza:ion is suitable, by imuﬂng that each site

od mestage tralhit, 4nd’ that Very lmporum

transactions do gt depend i the mihsm:y ofa site that Mﬁaﬁmﬁ in uhrenabk

Another factor to be considered is the dulre to, gvpigl lod;tng l.c;t:k,lngc is

undesirable both because it increases the number of messages ,that muxt be sent (the lock

' request messages), and viohm the goals of autonomy and pamal operabihty A process that
" has received a lock request is dependent on other processes to complete the transaction and
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refease the lock before it can continue processing other transactions. In the next Chapter, I
wm present a mechanism that provides a solution to this probie‘m allowing a process that
‘has teceived a lock request to continue processing other trinsactions Before the outcome of
' :he"‘”mnsactfbn sending the lock is known. It is stifl désirdble, h&%ever to reduce Id‘ékihg.
and to choose the hterarchy so that frequent trinsdctions do not’ require locking, dnd
" processes mnaging frequently used data are rarelyfocked. V

4.6 A Rejected Alternatiye Solution

This solution is of oourse‘onl»y one of many that could be used for the problem of
controlting transactions. There are several solutions that provide correct synchronization
with simpler protocols. “In this section, I distusé Briefly oné of these akternatives ind the

" réasons for its rejection. e

Considerable complexity is introduced :gtd the scheme by the ability to begin a
transaction at any level of the hierarchy. If we had required all transactions to begin with a
reque:t sent to the root of the hierarchy, it would be ‘easy to 1ck a farge portion of the

h h’i:'htlerﬁ.rc.l‘iy in order to perform some mnsacﬂon‘fmsowldbed“meafoll‘oﬁs o

| 'a_nfcl-p.a,ms, ;,on,,-;he components of ,t.hﬂ

, tolht;hildmu beforp. ._,ltj the process
_hccess, or if one of the |

rquires input_from one of its children to compbtg its
requests forwarded cannot be completed solely based on the information in that request. the |
© process sets a lock and stops receiving new messages until it can comple_te its requested action
and distribute all of the necessary information to each of its chikdren. Each process makes a
local decision about locking and there is no difficulty detecting when a transaction has been

completed.
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Figure 4.5
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- Several prints shewt thissohition shetiid: e patett: - Ong’ k“MthW of

o transactiom can be performed without locking. The hierarchy can be arranged 30 that the

transactiom expemd to be most
problem of deadlock detection and preventian, and the “distribueet
 described in the next chapter, do not arise:

atomic update problem”

A mﬂ point is that deadiock pssible in this M The lncks are set in
 messages- distributed in an aemi hmdqst M if any lock sex by a transaction Ty
 precedes a lock set by & fraesiction w,anormms; ;r,wmmmr,m
,mububmommmxm deadlock. o

Anotlnr point was mumnd, by Etgu;rfﬁ Wlm hckwkmnd frequently the
semngoflockmn bsmmmmmwmammmmm The
scheme presented does this by delaying ardering decisions, and distributing the decision of &

Thg hm’ll’clﬂﬁﬂ ﬁ

operability to some exsent, ‘Withous locking

forming transaction achieves the goal of partial
7 transyctin mpmuwanud
 the processes and mmmmnmnemmmmmwmmn must
communicate in perfotmlng the transaction are mmm While this does not completely
achieve the goal, as it is possible that two processes wﬂl be prevented from Peffﬂﬂﬂint some
transaction because of the unavailability of their parsnt l» the hm'chy. thc hlem'chy can
be tailored to make this circumstance unlikely.

'nmmmm Without locking, the
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Locking introduces the possibility that a process will be prevented from performing
- local operations because a failure has delayed the transaction setting a lock. In the next

chapter, I present a mechanism to deal specifically with this problem.

This chapter introduced a method for analyzing the pafterm of the accesses
~ performed by a transactions, namely transaction graphs and activity graphs. Using'these
transaction graphs, we demonstrated that sequencing of messages betweep processes is not
_itsglf shfﬂdent to provide synchronization for some sets of concurrent transactions. Three
classes of transactions were discussed. Many of the transactions that we expect to be
- performed in information system fall into either the class of transactions with_independeﬁt :
components, or the.class of transactions with predictable data flow. (The transactions in the
éxample system discussed in chapter 6 are nearly all in the first class.) These are the simplest

transactions to synchronize.

A meéhanlsm was presented to coordinate concurrent transactions using the atomic
broadcasting mechanism devek;ped in Chapter 3. This mechanism correctly synchronizes
-transactiohs of aII- ‘three ?:Iasses, but works most efﬂciuitly .(in terms of the number of
‘messages needed) on transactions in the first two classes. The mechanism can be optimized
| to perform those transactions that are known to be important at the time of the design of the

system.

The impl'emeniation of this mechanism was considered to show how the messages are
generated from a description of the transaction, aﬁd how the processes ire impiemented.
This ,.impl'ementation demonstrated techniques to reduce the amount of overhead caused by
transactions requiring locking. Finally, the important properties of this solution were

summarized.
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‘conﬂictmg with_that lock until the locking transaction is.

305 -
- Chapter®
Polyvulues. A Mechanism for Perferming Atomio B‘pdam to
Distribntoé Data

In this chapter, I consider the implications of using ioékl"ng' on the problem of

“achieving the goal of partial operability. First, I'show that ho systeri that uses locking can
~achieve this goal. A mechaniism is presénted that solves this problem, by allowing a process
~that is participating in 4 transaction and has set’ a tock to install theresultt of that

transaction conditionally, so that it can release the Tock ‘shd contiriue processing other
transactions before knowing whether or not the transaction setting the lock will be completed.

5.1 Motivation (The Troable with Locking)

In the prey‘lous,éhapt“er, it was demnmpdthagmfumof bCkhlg is necessary
for synchrnnxt;zlng‘ certain_groups. of transactions. uml’. bc,ki‘n_g,ﬁ oompromlses the
goal of partial operability, as a site that has received a. lockcappw, gerform local transactions
E .. One could imagine a

~ solution to this problem in which a site that has recgygd a lock could abandon that lock,

aborting the transaction settlng that lock. This must be done in such a way that if a lock is

| abandoned all of the sites ptrtlclpating in the transiiction Which set that lock wil decide to

RS

abort that transaction

To achieve the goal of partial operability, each site must be able to decide whetber .
or not to complete the transaction without consulting other sites. In this chapter, I refer to

the decision of whether or not a transaction has been completed as the outcome of the
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In order to achieve the goal of partial. operability, IM:M*MUS&‘H& exclude
transactions local to procass. X.or to ¥V indefipitely.. Faﬂu« of -X or of Y or ofthe
communication. network: connecting them may, howsver, delay any memge. sent between the
two 'indefinltely.e This means that each process must atanypeint be.able-to decide whether
or not to abort the. tnnm,inrprogrw wuhmmmm other processes, .

A protocol of message exchanges between X and 14 that decldes the outoome of a
~ - transactioni can be viewed as series of process steps in ;ch proeeu. Each of these steps is
triggered by a meuage that may. be dehyed indefinitely; so:that after each step, each process

must be prepared to decide whether or not to-abort the mm ‘This.decision must be
based only on the information that that.process had: before beginning the:-protocol and the
-infarmation gained from messages. received. while performing.she protecol..Both processes
~ must make ihe same decigion at.any point in;the protocol.

If a failure delays messages after the first step of the protocol is performed in each of
the processes, at least one of the processes must decide to abort-the transaction, - This is true

because the transaction being performed requires locking, and a transaction requiring

lockmg cannot be performed with a single process step in each’ process. Therefore, after each
process has performed one step of the protocol. at. least one of the processes must have

insufficient information to complete the transaction, and thus must decide to abort.

e
If the execution of the protocol is not delayed. by a failure, a step .must be renched

after whlch one process. would decide to complete the transaction jf the next message in the

protocol were delayed by a failure. Let the first step of either process afber whlch that
process decides to complete be known as the commit point of the transaction and assume
that it is a step of process X. After the commit point, X would decide to complete the

transaction if a failure delayed the completion of the protocol.
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 Now consider the decision made by process ¥ if & failure were to prevent
step of ¥, ¥ cannot beeffectad by the completion of thakstep; ki Nehce munt mxke the same
decision befure the commit peint as afer. This is would Be o Contradiction, us ¥ st either
decide to complete befure: the commit point, violting: the: daiiem
wasthefirststepaﬂerwmchmh«prmdecﬂedmmnpi&u.or)’mstdeddetoabm

after the commit point, nwmng in an inconsistent du:idon. H

-transaction requiring locking, and mm-mrmﬂu M ‘'Way 60'thieve the goal of partial
 operability while porforming transactiont reyuiting locking The argiiment depends on the
 property of the process modet that the mmwmt process stép are
limited to one procas. and that the observation of The ‘complition -of mﬂp by any
other process may be delayed indefinitely.

'5.1.2 Approaches to the Problem of Abortable Locking

There are mem appmches that can b§ used éo reduce the probibiﬁzy that a
»faulure during the. execution of a transaction requmng Iockmg wiil cause mdeﬂnm delay.
ﬂThese approaches provide only a partial salutton to the probhm of zchmmg the goal of
partial operabimy because a failure or combination of failures during the execution of a
transaction can cause indefinite delay of transactions ‘that tu comphmy ml to a -
functionhgsiteoramtﬁcmmwbemm rconsistent |
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~ 5.1.2.1 Accepting Inconsistency

- One possible ‘solution that has not been extensively used is to a=ceept a small
* probability that a transaction requiring locking wHl*hot be fiéforified atomicatly if a faflure

occurs at the wrong time. ‘This approach is hot agiprepriste for & Epplicitions, as strange,

inconsistent ‘results may occur. If the consequéntes’ of Mot ‘being ‘ablle 1o perform some
" transaction profptly are worse than ‘the conséquences of & syrichtonationi errer, (is would

be the case for a trangiction controlting’the Taiiding of an Aifpline) then It may be desiruble

10 use a protacol in which a failuré at the Wroig tiine cause & transaction'to’ be partiéfly
perfohned or may cause the transaction to be incorfectly sequéncedt” with: other mnnaiom.
This kind of strategy has been used in image processing ‘systeis’in’ ‘which the data base'Has
i inconsistent state. To 'my

‘a great deal of redundancy that allows ‘any obsefver to tok
. knowiedge. there areho dutributed data mansgedint dystems that use this appnach

. 5122 _Av'o‘iding Locung

Another approach ‘is to use synchronlzquon prmoools that minimize the need for
| loclung The protocols pmemed in Chapter 4 of this thesis and :tme wsed by | the SDD-1
 distributed data base system[BernsteinTT) are two examples of this approach. In Chapter 4,1 -
examined the problem of organmng the data bue 50 as to reduce the amount of locking
required, Locking cannot be avoided entirely, howéver; inléss the’diita base'is r@p]iawd s0

“that each sité has a complete copy Such rephica 'elitr&n. irvindtes locktrlg‘b‘ut makes all

transactions that update the data base require the pmlclpiiiﬁirﬁ‘m of the sites, elimtnating

transactwns that are local to one site.
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5.1.2.3 Minimizing the Windew of Vulnerability

The approach mast frequently taken to lacking in a distribyjed. system ia to minimize

the time. interval during, which a failute Gauses indefinite debay... One example.of this

approach is the twe-phase commis - protecol . desssibmd. b GMIGNUL Each site

. participating in- a teansackion goes theaugh. two, phases; a mmm which Jocks are set
-and the site.computes the saslts of the Lran:

40 make the updates. raques

_does not yet know the outcame. 1f a falure daiays thy, sompletion of,the Jock phase at.a site,

~the site can deside.on its,own. 1 abort the transaction, and, afl e, will aventually decidg on

" their own to abort.or Jae takd. of the decision te aport, 1 fuiure dslays, messages during the

| wait phm however, a site must mmﬂ it receives }M@ lgdmﬁbl wm of

the tramaction

hxthcmmmwmmmmmsm but

Figure 5lgivuaﬁnm state machine demlptbnof thcamonofoncofthe sites in
tocol.  The sows Tour ‘s Hecutio wﬁ.m m.uma

_ In the Jock state, a site waits for messages. mnmq@géhe lpfmgg:
. complete its portion of the. transaction by determining the new yalues for the items at that
,alte updated by the tranmaction. Alter thess have been receiyed, the. site enters. the wait
phase and sends an acknowledgement message indicating this. fact.  If a (ailure. dejays. the
reception of messages by a site in the lock phase, that site can abort the transaction by

sending an abort message and entering the abort state, discarding any computation done by
the transaction. In either the abort or the done states, the site is ready to accept new




o
transactions. The acknowledgement and abort roessages sent by the Mmmumuhtdby
a coordinator for the transaction until either ail sites WW:=Q¢W§¢. or any
site has sent an abort. The coordinator then genmm donc or lbort meuages for all of the

pamcipants -

“The mvm behind this protocol is that the e that sach.sitg spends during its
lock phase computing the results of the transaction is Ilkely to be longcr than the time spent
during the wait phase. This is not necessarily true, as one site n?iy uke much Ionger than

e N

Flgur, 5.1
A Two-Phuth Pml

Receive New Values [
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the others to complete Ha pertion of the transmesoh, caveing the ther sites to remain in the
wait phase for s long peviod of time.

| Lampson and Sturgh [umml present another commit protocol that includes an
extra round of mage exchanges to avoid this problem. In their protocol, no site enters its
wait phase until &% of the computation of the transaction has besit comple

o at Aif sites.
5.1.2.4 The mynm _A'wmeh

’l'he motivation behiad preventing a transaction from hoiding on to a lock
indefinitely is to be able to run other tnmamom that Med w m the dan that hu been
‘locked without indefinite delays. quenﬂy the mulu produced by a transaction depend
only loosely on the input vakns seen by that trinsaction.” If the dutputs to be produced by a
transaction holding a lock are known but the outcome of the transaction is uncertain, there

are two possible sets of cumm values for the updated items. One could uﬁﬂm two sets of
values to determimkr some transaction wamng m mmw values, whether or not
that transaction depeads on which of the poulble sets of values is correct, Any transaction
that does not depend on which set of vaiues are used can be run using either set before the
outcome of the transaction with the Jock Is dwclded The polyvalue scheme dmrlbed in the

next section is a gmﬁmion of this idea.

5.2 The Polyvalue Mechanism for Avmihg Dday Due to Locking

| This section presents a mechanism that mmymmatheprw«uofmwrmg
that no transaction isdehmm«mmdydnemabckutbymomertmm
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5.2.1 The Polyvalue Concept

If a two-phase commit protocol is used to perform a transaction. a site that has
'reached the wait phase knows output values of the transaction If those values oould
somehow be conditionally installed, such that a transaction aecessing one of the updated

items would see both values, then the locks on the updated items eould be released This can
d be accomplished by mstalling what i refer to as a My_g_g_g for each updated item A
polyvalue is a bookkeeping tool for keeping track of several potential current values for an
item, dependmg on the outcome of currently pending transactions.

A polyvalue is a set of pairs, <v,c> where \ is a value and c is aco gggtion, which is
a predlcate on a set of identifiers for transactions The pair <vx> in a polyvalue for some
item 1 specifies that I has value v whenever c is true when c is evaluated ina model where
transaction identifier T is true if T has been comphted The oonditions in a smgle
| polyvalue must be disjoint (no assignment of truth to the transaction identifiers makes two
conditions in the same polyvalue true) and eomplete (for any assignment of truth values, one

' condition is true).

Each transaction is assigned a unique transaction identifier. When a site that has
"r'.eached the wait phase for a particular transaction T cannet-determine: quickly whether T
 wilt be completed or dborted, that site installs polyvalues for #it of:the iters:that T is trying

to update. The polyvalue installed for an item I has two pairs;<v’, Tssand <v,~T>, where v
was the value of I before the execution of T, and v is the value produced by T. This
polyvalue describes the possible values that eould be the current value of I, depending on

the eventual outcome T
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Before instlintion, owth polpvaiie iz simplified in thres seps. Firwt, individusl pairs
are-expanded. Any pair «v.or whesew hfanW k»aqﬁed by a: m -of pairs.
This gmp mmmmaf the form: "”b‘i“" &r mh pura«w thntm inv. Next,
| mdunkmp&sanm 'Binpam w,,c;»nnd &W m u,a- vz,m mphmd by
the single: pﬂr mfafm? Tmmmt pam mmm u L pnulhle tbat several
 different pouibkm of the peading traanctiem muld pmdme l:he same value for an
item. Fimﬂy themndmm mched unmh ;mr hwapmud,mdauy pttt a.c»fnr whlch
cis legmuyfazu is discarded. | |

’l"hts simpifﬁmuon pmudure reduces the polyvalue comtmcud to one. in which mh
pair hasasmple \mim.alnd ﬂ:enumrofpﬂrslsmwmiud Apolyumwtthasingle
pair <vic>, must mvcamdmon < which lshgiaﬁy mu md is mduunguhhable from a
simple value. Thus tbe prmadure for constmcting polyvﬂau !‘ar the mmlts of a pending
 transaction can bedescﬂbed without zmung tbamm&emorold valuesofthe
‘updma items mmmmm as qmm ww m o

5.2.2 Periorming Tmims ‘on Polyvalues

»mmﬁm WW Mmﬁnﬂuﬂ&“ﬂu@u!m&pﬂ walue
waducetl MWMmmﬁmm mm nmmh |
ud;mmafmunm ‘

Iwm ﬁmducribethempumﬁm phmnfamlytnm m which input vﬂues

R Sy
arereadandnuqmtsanmw Eachpelrmnmi'muttafnmdmnve
=1 TR T R

tranact.ium!’ uchd‘uh&hwfmtbemtrmncﬁenmidﬂamtutnw for
inpnt items. Each alternative transaction T, is tagged with a condition c, which is derived
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froﬁi the cqnditions on the input values read by T, Each. polytransaction ‘hegmtpwith a
~single alternative transaction T, which beginsmm items,. in- performing . the
~ transaction. When an alternative transaction T accesses an.item, whose current value is a
polyvalue v = {<vyc;>}, T is partitioned info 3. yat of aketnative transactions, {Tepe ). each
of which has the 'same history as T¢, and each of whigl

acquires the corresponding condition c;, in addition to theprevious condition, c,v on Tc. If

c/Ac; is logically false, then T Ac; AN be abandoned, and not t:r:t'nptlt:!ﬂl
o Thus:the number of alternative transactiofis’ grows as ’l potytransaction T is run.
_ Each of these aiternative transactions runs up to thevnftpm (1€ each runs untif the |
outputs have been computed and distributed to all of the gppmprlate sites) Each site
: recewing outputs of T constructs a polyvalue for each Item l to be updated This polyvalue
}contalns the pairs <v,c> where v 15 the value produiced bygiT for l | |
» If all alternative transactions of T produce outputs for some item I, then this set of
- pairs will be complete and tiisjoint.2 If, however, there are some altematives of T which do
- not produce a value for I, then the conditions of the a‘temadvec which do produce ‘values
for I will not be complete. This can happen If the decision of whetherornotTupdates I
depends on the input values seen by T. “Under ‘:ni outcome of pending tranact!ons for
‘which T will riot produce a new value for 1,1 would retain its prev’lous value. Therefore. if

the conditions on the’ alternatives of T which produce a new value for 1 do not form a

~ 1. ‘As will be shown, cutputs produced by & ‘akternative trhnuction with a condition that is
logically false will never be used.

- 2. T begins with a single akernative with condtnon true. As the mpuutton phue of T
~ progresses, akernatives.of T are partitionsd acerding 4o: the :conditions: on:the polyvalues

that they access. Because the conditions on the pairs of any. MuuuLpolyuhe are

complete and disjoint, the conditions on the altermtlm of T are at my polnt ootwm and

disjoint. . P 2 ,



-1 -
complete set, mmother piir ev',—C's is wdded where v* 1s thie:previous vatue of T, and ¢ 5 the
Togical OR ‘of ait of the condiions on the new waloes Tor T8 The wait plmvo‘f a

mmmum e can be preduced from the outputy of the pith |

5.2.3 A Simple Example

Let us consider a simple example invelving three items at thm sites, and three
transactions on those items. Let A, B, and C be the itens, and let.the transactions be

Yol A 2 ROt (A A< 101 BB 10
r;-ulzmom;g_n_mc_c‘m

T5=ifB >0 then B« 1058

Now assume that before the tnm are mn,mhi«m has vake IV, Ha thilyﬁ occurs
during the wait phase of T, preventing the site holding B fromiumtu(thtwmt of T},

then that site gives B a potyvam of {<200,T >, <m.~1T,s} If T3 1s now run, it will be run
| ~ as a polytransaction, because of the polyvaiue of B. Ta would produce new vtlues for B and

C of {<00,T >, <0,~T >} and 200. If a fatlure occurs during the wait phase of T3 again

preyentiﬁg_ the site 'ﬁﬁfdiﬂg B from learning the outcome of T, then, ;Mr simplification, B
receives a polyvaiue of {<0,~T AT 35, <00(T |AT VAT (AT s, <200, AT 35}, - Now, if
T 3 1s run, it s performed as three akernative tramsactions, Tw‘,of these. akternative
transactions produce updated values for B, while the altmmwfw-ﬂ",h?‘z doss not,
because the input valug for B read by that m tramsaction n two small. Thus the

l. One could alternatively always add this pair, and rely on the simplification protedure to

discover that ' is logically false when the other conditions are complete.
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- polyvalue assigned to B by Tj; -after simplifition is {<0,-T ;AT 5>,
<I05(T JAT V=T JA=T 3>, <A0T fA=T ).

This example shows the mechamcs of manipulating polyvalues. to perform

»/ el

transactions. even after the occurrence of improbable failures. From this example it Is hard
. At et

to see what has been gained as one cannot determine from impection what the values in the

data base are, or what transactions have been oompleted

The answer is that in many cases, a polytransaction will produce ‘simple output
. values. 'I'his is true of many query transactions, which attempt to determine whether or not
the value of some item falls.in a certain range. In many cases, 2 query about an item can be
| answered without knowing the exact value of that item. A polyvalue can provide all of the
_ tnformation necessary to answer oommon queries. Conslder. for example the tett made by 7'2
on B. The decision made by this test is the same when applied to both oomponents of the
polyvalue for B. - |

Another area where polyvalues are useml is that of transactions that ha\te real world
effects, such as authorizing transfers of money, or allocating a ral world resource, like a seat
on.an airplane For such transactions, it is frequently more importcnt to know what the rul
world effect is than to know what the eventual values in the data base are. lf such a
. transaction is run on an input set containing polyvalues. then the ml world effect can be
accurately determined when all alternatives produce the ume effect. ln many appliutions.
.important real world eﬂ“ects can be determined without knowlng the exact valuet in the
database |
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Cansider, for exampie-a. transaction. hich s to withdraw- m from a: savings

account for which thcm balance is represented by & polyvalue. - The imporaant effect

that the tmuabnmduﬁewkklthbabummtmmumwvemeum

from the withdnul. Compmhgencﬂythembahmhthemmed not occur

rapidly The tnm of ﬁmd: depends only loonly on the hchm m the ncnwnt in that it

needmlybedetenﬂned m::mm&mtﬂpﬂ&kmdpendm‘
transactions, greater than the amount withdrawn. Thus in most cases the withdrawal can be

quickly authosized. |

53 Recovery of Pending Transactions

Themhmhmduaibedahovehmlkpdyvammmemksdamnummr
' delayed in the wait phase by a temporary faikire. When that failure is recovered, the wait
phaseofrmbemsplaed Mnmgwhumrhwbewnpmdorm Thu:
the vamatmtmmmmmrammmmmmwnof
'polyvaluaanmwm G *i

Asitekammgofthecompknonortboruonofammrcmmm
polyvalues by re—evakuung any cmdmon that depends on the wwome of T, mbstltuting
either trucor‘fai_fwrdcpmdmgonwhetherTmmorm This
| substmmon umphflcs conditions that invoived T, md npm shaphﬁaﬂm some of these
| condmommybmbgiaﬂyfdu Thus kmhdgcofﬂnmphtbnornboﬂioﬂof
pending tmumcﬁmsmbeuwdmredmﬁnaumbu ofpouwhvam whkhapolyvakn- |
represents. Eventually, if the outcome of all pending transactions is known, each polyVlhle
will haveonlyompairwnhtm&tmmatumbghmﬁlu.mmdnbenduad.
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to a simple value. Some mechanism must be provided, however, to propagate the knowledge
of the outcome of a transaction T to sites holding polyvalues with conditions- involving T.

Such a mechanism must insure that all sites that hold a polyvalue with a condition
dependent on a transaction T will eventuaily learn of the outcome oi‘ 1' We also desire that
knowledge of T be deleted when it isno longer necessary (ie when no condition involves 7).
~ The record of the completion or abortion of a pending transaction is similar toa commit
record [Reed78] for that transaction Unlike a cornmit record however, knowledge of the
outcome of a transaction may still be needed even alter all of the output values of the
_ transaction have been installed. Any polyvalue could pmntially refer to any pending

transaction.

One could have each site maintain a table of outcomes of pending transactions, and
use a system-wrde garbage collection strategy to delete entries that are no longer relevant. .
While this scheme would worlt it would be inefficient”in the case that dependence on the
.outcome of pending transactions does not in general spread very far Most sites do not need

to know the outcome oi‘ mast pending transactions ‘

Another possible mechanism is to give a site that creates a polyvalue for a pending
transaction the' responsibility of mamtaining a record of the outcome of that transaction until
- such a record is no longer necessary When a site wishes to reduce a polyvalue it must aslt
all of the sites that are responsible for maintaining a record of the outcome of the
transactions appearing in that polyvalue of those outcomes. To‘do so. ini‘ormation must be _
passed along with the polyvalue to determine the relevant sites to aslt This scheme is

similar to that used with possibilities by Reed [Reed78)
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tramsactions. Ome guwislern i bt it woskd e -diffisuk o datesraine when the secord of the
mm.mmmmww and some form nfmbngz collection
may be necessary. AMpwhmmm&emmtmmmshem
wammmammmmmum mqnirm
gemyhmmqummﬁmmhammndmmﬁemuam)mme
» -omcmafﬂwmmm is determined. Tumwmmmm
pwblems byﬁmibnmthemmmyfm mmining the putcome of a pcnding
 transaction :magth%ﬂmhmm&nkmdwﬂmmmtm

that it holds that cmmﬂy ‘htw: jpolyvalues. Thts ubleb used 10 mne all.of rhe polyvaluzs
. that can be reduced whentm ‘site vmiwuamuage inﬂwm tltewmne of some
pendmg tramntm A mdtsbhmmmed ataeh me knwn umemctien table,
keeps track. mmwmwﬁm tmmcﬂam. M entry of the
.tramactim tabb contains a transaction identiﬁer, tts mtmmc (comphwd aborted, or |
pending), mﬂasmwmmmmmhnmmw upmmm the outcome

of that transaction.

To maintain it -transaction :table, a site must mm an emry for ach ‘transaction
identifier that appears in a condition of a pelyvalue at the ume ﬁm that polyvalue is
installed!] When a site sends a .messa,ge .containing @ polyvalue to some other site, it must

1. Mo action is required if the site already has a table entry for that transaction. -
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record the name of the site to which the polyvalue was-sent in the transaction table entry for
each transaction identifier that appears in a condition lﬁthltmudue

The information in the transaction tables in the various sites is used to control the
distrlbution of knowledge of transaction outcomes. Each site that receives a commlt or an
abort message for a transaction that it prevnously knew as pendtng can update lts table entry
for that transaction, and reduce any polyvalues that.depended on that mneactlpn. A site is
requnsl_ble for informing all of the sites that are listed in its transaction table entry for the
tra_nsactipn of the outcome. This list was constructed to include all of the sites that. were
given..-information dependent on the outcome of the transaction, and therefore may hold
polyvalues dependent on that outcome. Once all of these sites have peen informed, the table

entry for the transaction can be deleted.

With this scheme, knowledge of a pendlng fransaction pmpagates only. to those sltes
wh:ch have received polyvalues dependent on, the outcome of that transaction. If a great
deal of computation. has been based on the outputs of a pending transaction, then informing
.a,,il of the a'pproprlate sites of the outcome of thattranuctlon mpyrequtremany message
excha'ngg;l] lf the outputs of a ,pending transaction are pot uged.bmver. only tn_e?svlt‘es that
hold those outputs need be informed of the outcame of the transaction. | |

Figure 52 shows how this scheme works in the. e)tample described above. Let Ty
and T2 be the two transactions described earlier on items A, B, and C. Assume that these

items are held by sites 4, B, and C respectively. “The ﬂgure shows the values of these items

1. In fact, if the polyvalues depending on a pending transaction are used frequently. a site
may have to be informed of the outcome of that transaction Yeveraf'tiines. ' It is possible for a
+ site to receive a polyvalue dependent on the outcome of a tran on, after that site had been
informed of the outcome of that transaction and had forgotten that outcome. A site does not
need to remember transaction outcomes indefinitely. SR ,
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and the tables of pending transactions in the: sites uumm these items at several stages:

- initially; after Ty is suspended; sfter Ty is suspendett; ifver Ty is eventually compieted; and
after Ty is eventuaily aborted. | ' |

5.4 Use of Polyvalues in the Hierarchical Loek!ng&:bm

The discussion of polyvalues thus far has been at a refatively high level, 50 as to be
: applkable tp-ény distributed system Mwhichlbckhtg mm souifides &hyis nesded.
“The_polyvalue mechanism described above could eidily be inéorporated into most of the

N dtunbuied update algorithms that appear in the teratisr . "1"shall now consider how to -

apply these ideas specii‘kiﬁy o the distributed hcking ‘scheme déscribed in the pmam

chapter.

Recall that in-the Jocking scheme of the previous chapter, any process producing
outputs to a transaction depending mmammmmpmm is niot one
of its-ancestors tn' the hieratchy Is sent & Tock requiit méssagl. The lock rejuest thessage
catises the process t refise to receive any new mestages mm to Geher transacions mﬂ
the transaétion issulng the Jock 15 completed. The prodeiséi InvelVed in the transiction
exchange messages until each locked process has mﬂm&iﬂm mition to preduce itsodtpms
and release its lock. In order to apply the mwpt of polyvaluu. thh laclung strategy must
~ be modified so that each ocked process goes thmugh m _phases, a computing phase in

whnchthepmcmwabammbckandmmmwum and a wait
phase in which tbehcimnabezbam&med mmmmmm

I will first consider the cauoca predictable tnnum,wm theut of processes
making updates is independent of the data’ values seen bytbemm Thh amngmon

simplifies the task of deciding when a transaction can be compieted, as each process making
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Recovery of Pending Transactions

10
Transaction Tables:

(empty)

Initial State

00 0

(),  (empiy)

A

{<°’TI>0 <IOO,'1T1>}' :

. Transaction Tables:

T ppending,i}

Afer T 1 is Suspendéd

S T P e

{2007 p, 400-Tp} 100

Typendingdl .. (empty)

A

{<OFp, <100-Tp}

After T3 is Suspended

n somel g Wizt . . c

{OT AT 3>, ROT ;AT 2>,  {<I00,T 5>, 200T 25}
© . <MOOLT AT KT R g} i3 10 e

| -Trinsacﬁon""riblci:' -

4

T,.péndianiC}“' D | szmdlng,{}i: | .
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* After Ty has been completed;, and A and B have been notified. -

R e e e .
| 0 0T, <200,~T 3>} ;aoo;-r?. <200,T 3>}
- Transaotion Tables: | . | -
(empty) T,M.lC} | | | .TZ.pending.{}
Afer C has been mmmj
And T'5 has been aborted.
0 o 200 ‘ 100
Transaction Tables:. o

_ updateskm wmummmmm&cuﬁmmmwdm

is known m:»dvame.

For eii:h trmum. oneprm serves the function of transeetion goordinator.
Tmmnuammdmmmmerewmyfwmmmdmepm
‘invelved mmemmhnmmmmtmu Toqumcmm,m
mubemmmhd&emmmmmmhammm
The protocol of Chapter 4 must be slightly modified to send ewary puocess ihws.is.to perform

anupdmzh:hmm nm:mmm«mcmmm
mtywmmmmagusmatmm&emmmmmmmp The extra

locking is needed in implementing polyvakies because we wish to be able to abort the
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' transaction if the completion of the transaction is dchyed and thus annot allow any

manager participating in the transaction to complete its portion of the tranuction before the

. decision to complete is made.

Each process performing an update thus receivu a lock reque:t. along with any other

" instructions’ for completing the transaction. When a proous ‘has enough information to

‘ perform its update it’ sends a rudy message to the ooordinator (For any procus whose

update can be made ‘without inputs from other proomes. this’ luppem immediateiy) Before

 sending the “ready” a_ process can-decid, o abandon ity Jock at.any point and cause the

transaction to be akorted. After sending she “repdy” mestags, 3 Figoess enters its wais. phase

and. canngt, abandan its lock. When all of the. procestes that were sent lock requests have

answered‘ "'ready" the ooordinator decides to complete the transaction and. sends. 'oomplpte"

'messages to the back door ports of the processes which received locks. Upon reoeipt of the

complete” message, a process completes its update and inabhs noeption of new requests. If

* too much’ time elapses before the coordiriator ‘Tecives "'&dy messages from all locked
“"":processes, the coordinitor ‘can ibort the update by sending abort" muages to all ‘l‘he

rudy" oompiéte and “abort™ messages must afl ‘be identified ‘with a unique identifier for

the transaction (probabiy usigned by the trinsaction pi‘ooca“ﬂut initinted‘ the tnnaction).

Each process in this protocol goes through two phases, 3 Iock phase before sending
the ready message, and a wait phase after sending that message. After having sent a “ready”

' message,aprocess knomthenewvamathatmmmiulouimtewmtakeonua

L‘fx

ﬁresult of oompieting the updlte. The proceu an. insteod of waiting for a oomplete"

3

*abort" message, decide to install polyVaiou for these items. Each "data nunager prooess acts
like a site in the poiyvaiue scheme described in tbe first port of this chapter Mesngu sent
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contain polyvalues as weil.

from data items can

Two problems must be overcome in extending this whm to atbitrary transactions.
First, mmﬂmmmmmbhmkmwmmemmmszMumem
ofpmmmklngmumkmmadnm Swogd,mm ;hatpamcipam
n themmwnmuahgahkmummmuhummngaf@ewma it
vmmveuamﬁmmmm»makmm Qu\m;phm

i
:

b2t AL E

mmammmmmmmcﬁspwi,mmmwm weight
-mmmm MmWM:ﬂ

tor can nlﬁo ‘act a8 the

BT

Wemmwmmwghtmmtmmmgmsbe
| _performed with a two-phase protacol. Mpmeus step of an pncertain transaction which
prepares a set of output values to be insiaid must reium some. completion weight 10 the
coordinator w%et&ar o7 mot i also sends messages 10 other. processes. Ttgg. mﬂm;or thus

receives messages containing completion weigm ﬂmggch process that has updated Atems to
be . mstaﬂed When the completion weight sent o the ouwdtnator mchu on.e. the.

A3

| _ooordinator sends out lock-release messages as before. These lock-relaue messagcs are
s m:mm»mm:acwwm S

In this protocol each mmager can at any pomt dedde w abandon lts lock and o
continue processing other transactims ~To do 30, a mmggr mﬂs any upda,tes that the .
transaction lns made as pslynhes md simp!y igneru any furtim meuagu about that
transaction (except for the Jock retease or abart metnga from the tnnac;ton ooordtn&tor)
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This action may or may not cause a transaction to abort, 4’dép‘¢nﬂing on whether or not that

transaction. requires. further participation by thgmn;ggt wpkhhughmdpged it. If the

lete. the transaction, then

eventually, the. completion. weight returned to_the.co

- will. sum to 1, assumipg no
other, manager decides. to abort. If, howevgr. the. manager deciding to abaudon _the

. transaction must. perform additional gmm complete. the transaction. (either by
. ;supplymg more mgms,vor making. updates, the mqumon WAL pot. complete, bacause the
q.portion of the transaction dependent on the abandoning manager can not_be completed.
.Eventually, the, coordinator will decide to ahotuhc transaction.

'T'hls scheme allows the polyvalue mechanism to be applied to the execution of

two phases, a lock phase before it is computed, and a wait phase after it has beén computed,
. and the manager _holding the updated item has replied ta the goordinator.

"“Another point_ that should be noted aboit the use of polivalues in the locking
scheme of‘Chapter 4 is that the protocols that allow abortable locking described above may
require that more lock requests be sent than the slmple protoools of Chapter 4. Note,
hbwever, that any transaction th'at.;lde's: not mquireglockingwﬁi’ththe simple protoools still

does not require locking, we are only increasing the number of locks sent for transactions
that already require locking. | |



A .. 48 -
85 Restricting the Spread of Palyvalues

The polyvalue mechanis# s expensive in thit polyvahisi consiing'd gréat deal more
space than do simple Vales, and a polytransiction - may Tequire ¥“gfest det more
computation. The simpls anatysta of'tie polyvillié'ichema ahd & ilititon of the protocol
reported in an sppendix to thE théis deiwitabe that In Y Y’ bl uribeF of

polyvalues In a disiribisted Information e s ‘qutié sméil ™ $hodkd fifther contrt be
mecessary. any site ai préven the propagation of puyViast b nif sty paljvitits as

‘results dmwmm mﬂmm mﬂmmﬂmw Outcoriie of the

polyvalues

In a system with real time Tesponse requiiernents, wumir’_iﬂ’ ¥EbRAbIe b ‘ekpect that
the set of transactions that must be performed in order & gmdugahmg rejults at the
__proper. time will be kmwn A is gminly these trg igns that spoywl‘.bgw rformed as
:_pqutrgnsactm:, 0 :m i mmhlg, the peeded resuks qm@ e n&n{g{e@ despite uncertainty in

the database vaiyes q\ge,tqghe presence of pending transactions -H«B?‘l values, .

Consider a system controlling some mﬁnﬁfiﬁtﬂm * operation “in ' which sevénl
Alcitty focibed ‘neat’‘the
components th_at they mommr and control. Several different kinds of transactions act on the

'%f“

computers are used to control the manufacturing and are

data base. There are data entry tdm&ctiom that are run periodically to m&r data about
the operation being controlied into the databi;n. There are also monitoring tramuttions
which are run periodically to determine whether or not the database values indicate any
potentially dangerous conditions requiring immediate corrective action. The monitoring



-149 -
transactions are structured so that many examine only values local to some site th order to

insure that a communication failure cannot interféfe with monftoring.

In addition to these two kinds of transactions. there are control transactions that'

direct the completion of specific manufacturing tuks. There are also transactions that
“implement administrative decisions to change the M@uﬁﬁg process by modiﬁying items.
representing parameters to' the. contr& and moritortng trafisittions, and: transactions’ that
- vallow the state-of the manufacturing process<to be - exathined. “The mbdhitaring transictions
: .need'todn»perfmned in rexl time in-order to pmmmmmﬁepmuimmor _
 the mnufmurmgprm -oi*?‘bogc“sm mwmmﬁmma hagsrdous
si'tuationv. These monitoring transactions examine the values produoed by the data entry
transactiom and the parameters of the prooess to detect problems. Any normal set of

o fE

parameters and data inputs will not trigger corrective :ction B

| In order;co;imu‘m zhot_«.-th'e:momtoiﬁmg W"W?iﬁ:mimzpiyﬁbes.
- shouidzboiuoed for any data items: that might:be MWMmmmnm ~The
‘ -oontrol effects of the monitoring transactions shoukd be Wdﬂwm vmwthe
data-ftems. descrmiag:\the process, as long as. thesedata items: réflect normal qentim The
‘_'ﬂ«cramactiom which: dinct specific manufacturing tasks:and the transactions implementing
. administratlve decisions may involve updotes to data items at.several sites, and thus may
.require locking The Iocking peri‘ormed for such transactions should allow the creation of
" poiyvalues for their outputs if some faiiure preventi ti:e Iocksﬂ:om being quickly rcienca
- Trangactions representing administrative control of the manut‘octtiring process or
control of specific functions may be deemed less irriportant, and may not be executed as
polytransactions if necessary. Any process holding items accessed by the monitoring
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transactions, however, must be prepared.to install polyvajs
the monitoring transactions.are not delayed. .

, 5.6 Suvnu'm"y.

Thuewmmmm“am#m dwmw
-,woblem It was:shows: that. i is inepassible, givan the friuce semantics-of the process madel,
to -eomm_»;ct » protosel witich pesioems & diswtibwted pcdave atesnically while not delaging
- access, to. the updated- items ma,mym e, m‘fw,*“e
 discussed 10 avaid the distributed atomic update m*mmmmhm
The remalnderofthechapter pmamedamceptmf«d wua pdyvalue which'
may provide a practical solution to this probl«nbn mny cam. devaluu allow an update v
- to be performed conditionsily, such: that: mmwmm&mmswm are
presented to: subsequent tssmsactions. - In mmm ‘where the Mimpommt
effects of transactions depend only loosely on the exact valwes stored:ifs the dati base, the
| rpblymde scheme allum tmmm uudmw even when the
exact uiues of items: in the data hnmnmdmwmmmthu have been
started but not yet completed. |

Thls chapter pmenud some simple exnmples of the mechanics of manipulatlng
_ polyvalues and discussed a posslble application of polyvnluu in a process oontrol system
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Chapter 6
Appltoation of the Techniques te:the. w of & Diltributod
Information System

- of an overall

The past four chapters of this thesii haye preaemad varjnm,\_ﬁ;j ]

approach to the" probkm of tobust synchrontn&n ia dﬁmum& ion system. In

this chapter 1 present an example of a dismbutod lnformtﬂon syste;n and show how the
techniquesﬂm l have: dquhped can be applid mﬂarm &Mmmn scheme that
- satisfies the goals set forth in Cthter L This aolution is compared ‘with those using other
distributed symroniuﬁoﬁ schemes. S e

 6.1'Twe:Problem -

The chosen example is an inventory control system for a chain of supermarkets. The
. problem is sdapied from an.example given in.(BermueinTl) . Tha data base s used to keep
~'track of mewu of various praducts. Acans of. hgmmmpklnmetc.) on_hand, on
.. order, or. jn transit at mh individual market and at the wagshousss that. mpply the markets.
.. 'FThe sugplx «<hain_of the supermarkets is MMamm of. magkgu supplied by
local distributers, groups of local distributers supplied hy. sagional distributers, and 40 forth.

" The following sections describe the data md the mnumom to be performed
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6.1.1 The Data Items

For ench location (warehouss ov superrgasket) the dams bise contiime-a iset of data
items describing each product. These are: N LIRS s

Quantity on Hand (QOH) -- The quantity of thit product stored at
that location.

DQOH) -~ Ttp ulafbowmchof

,mmmw

Re-order Quantity Threshold (RQT) ~ A minimum qumtlty of the
 protuct:ta-heeg on handi Wi QOM: mamm onder

is submitted to bring gpu up, toDQQH s e
Quantity on Qrder (QOO) - The ;M g mm }g}“
been ordered from the dmnbum for this location, but not ‘yet

been delivered.

Quantity in Shipping (QJS) ~ Theamount of the product that has

been shipped from the distributer for this location, but has not yet

bun dcltveml ,

(ie. there is no slngle trahsaction’ that W*inpue m Wb*m or ore
products), 301 will conitder only the items pettiming fo 4 single produtt: I ace, a ‘typical
‘supermarket fﬁay stock a tokl ‘of*10,000 différent pm mmmmm of these
" items exist ﬁ:r“ehgftmwm T T ST

The data items pertainifg to eath of the prwm dire: indep

o ind ‘_‘

The five ucms are maintained for each locauan, m;rku or warehouse To
distinguish between items describing different locations that are used by the same
transéc:ion. I will use subscripts, such as QOH@ to designate the level of the distribution
hierarchy to which an item pertains. Level 0 designates tﬁé local markets, while increasing
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subscripts designate more global distributers. Phis ‘is sufficient to dlmguﬂh ‘the items
‘because each transaction accesses items-pertaining to it most tWe: lecitions: 2’ location and its

~ supplier. AL

612 The -Tramhnt -

unloading of a truck to the data base, and to detemine wan some world action should

x;;‘\ a\‘

‘be: performed to keep NPPM of all product.s available. For each product there are four
- diffeten Kind§ S Henmctions mammw jd Recétviiy.

ERER ST U I H G

- Point of sale transactions (P mnncmns) update. the qunn:y on, hand $o reflect a
| customer purchase P tnnacums take phce only on the, ,QOH for the locations
. correspondlng to supermarkeu and nm on thou for ghe d}gﬂbnm For a typial

: supermarket, there a;e aboutzs,poo P tra__f pegdly S

Re—order ‘transactions (O transactions) gemme new orders for merchandue which
hasbeendepleted Ano:nnncnonumifmo,ou QOO, RQT, and DQOH for
some Iocation and prodpees x new WMQQQ Mw approxlm:mly 20(” o
_ transactions are performed per day to. dewmine which pmducu must be ordm

Shipping transactions (S transactions) reflect actién’ by a distributer to fill an ordtr
A shipping transaction exaenines the QGOH: of the distsisutar and the QJS and QOO of one
of its customers in order to dg;wg how much of the m to ship to that customer. The §
transaction updates the QOHOHMJMWM%@O of the customer to reflect the
shipping decision. S transactions are Mlt ﬂwriié*of about 15 per day per Iocauon

RS SO |
L
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location. Each R sransction adds the amount seceived t0-QON, and: subtracts it frem QIS
“and QOO. About 15 R transactions take place for each site each day.

‘ These transactions are mrim in Table 6.1. In the paper which is the. source-of |

this example, the authors were unconcered with the details of how sach transaction derives

" its outputs from iulnput vales. lhavethuefmmddm‘dmgum in deriving
amoremplecedm:pmnormmm e o

. are presumed wu,ke as a

Nae in pankuht dm the receiving. transaction
| panmthetmmoftheproductrecdved andwuuﬂm:mwmw«pdautheim
.QOO QJS, and QOH. An R transaction alwaphuimmdmtcmvpmmnbeuuse the
'new valueofmhafthelmupdwdepmdsaﬂymmpnﬂomummdmthe'
ptrameterQ Anmbupcubkmwpmtbnmﬁbewmunvammswmm
theamountreu!ved,thmmklngthemvﬂlmonOOmdQOHdcpmdel& 1

| Table84 . . |

Transaction o Dékcptdn S Frequency
P L QOH=QOHAQ) . . . 25000
o | | QPO, ~ O(QOH;, QOO; DQOHY RQT) 2600

R pe— |
QO0,; == QOOHQ) |




believe that my interpretation more closely 'res;emls,_!_gst.whu} would happen |

-‘5-

in a real inventory

control system, as the parameter Q represents the amount actyally received, and may not

~ correspond to QIS for variety of reasons.

Having a complete description of the data.base and.the transactions to-be performed,
we can now praceed to analyze the system.using the tnols devaloped.in Chapters 4 and 5.

6.2 Analysis of the Transactions .

" In this section, I present transaction graphs for the transactions to be performed by
the inventory control system. These are. analyzed ta.qxplore the ways in- which the
transactions interact with each other. This analysis is:used to determine the protocols peeded

|  to perform the transactions using several differens.organizsions of the. data base (choices of

which items are heid at each-site). The choice of the:synchwepization. network for each of
these organizations is discussed. . Finally, I discuss-the. use of .pelyvalues in this distributed

- information system.

6.2.1 Tronnc_tion Graphs for this Application

The transaction graphs for typical transactions from thue four classes are shown in

Flgure 61 The P transactlons are the simplest. as uch P mnuctlon aooesses and updates a

“single data item P transactions will have lndependent oomponems in any organlutlon of

the data base

_ The R ‘mnsactions are somewhat more complex;-as they access and updats three
different items. *As noted in the previous section, howeves, she new value of each of. these

~items depends only on its previous .value. Therefore the. transaction graph of an R

transaction does not contain arcs interconnecting the three updated items.
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The O transactions wpdate » single data e (QOO Rir- some mxm do 0
has arcs connecting QOH, RQT, DQOH, and QOO W6 QOO. © *

© The S transactions are the mast comples. Bick'S transscsion dpdates twoitems (QJS
for somé ocation uct QUOM o i sappli), Besed o ehe pIVISEE a4 three diffurent
items. TmmmMmmmmmmofmwnmw
QJS, QOH, and QOO to both QIS snd QUH. Thess syclis:indicate that § transactions are
likely to reqmn 'loem; m'my organization of the & dats base.

The four kinds of srunsactions taking mu vmm&mchmrchni
organization of the'locations inferect. Fhis m#mhrimnﬁﬁ, whk.h_
shows a joint tramswction -graph’ for the transictions txking place-ut three: levels of the
i the sume Wiy that & ot acitvity graph b coninudied frem dividust sutvity. graphs.
To distinguish between the transactions taking place at different levels: of: the dissribution
| hmfchy; each transaction idemtifier is given 2 subscript wm the level tbat that

. R

The mmmzmgmemmmmggat tm :bepmming tobeperfarmed
exhibits a hig'h dqmofmutyofrefm Rmmangmpod sothataﬂofthe ‘
nmsp«ummwambmanmnmmdbyamkmmg« theonly
transactions that require the participation of more than one manager are the § transactions.
These trassaceions reprosent mwmwmmw be rin-{though they
probably repressnt & Wighr: proportion of the processing, Secaner:chey atre more complicated
than the more frequent transactions). | |
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6.1a P Transactions

- 6.10 0 Transactions 8.14!8 Tmmtlou




A Joint Toansnstion Greph of The leventeny Tranesctions

622 Orguhhg thee Data

In this section, lwmul«memidxffm!ntmyz mummdmlm could be
assigned mmm E&chﬁthwmzlmnﬁbﬁ?fofmahhnkdimsudm
mmcmmurmammmmu%mmm“amm The
mu;g,mdmm would be based on the desired level of avaikbility for the
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- data items as well as the cost of performing:the transactions and the processing and storage
-capacities qf thetsltugbpldin‘g the data mamgcr processes. - .
A slmple organiuuon for this dau bue would be to Mgn all of the items
W pertaining to one site to one data mamger proc& ;hit;hexecutu at that me. A jolnt
_activnty graph of the four transactions as performed in wch an organlution is deptcted in
figure.6.3. The graph shows:that kr:&his;orgtmum the: only type ofi transactions-requiring
| 'covnmﬁniaﬁonvb'etwm'dau' managers are the 8 :transactiéns.-' All of the other sranssctions
€an be performed by one of the managers-aione;sbectuse akof theiitems involved in any of
; thé«oﬂicr transactions are.under control.of & single data.-manager. ' - |

; | Flguro 6.3 i ; ,
An Activity Graph for s Sgn}plo gats Bm Orgqgllatjon :

Aﬁsignmont of l"tomsto 'ﬁmg vors:

Mo My Mg
QOH . QOH  QOHg
Q00 QOO QO0,
RQT, RQT, RQT,
DQOH, DQOH; DQOH,

QJSg QIS . QISg
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In this orgamication, most - transactiens: would m no inter-manager
synchronization at af, and the rave: 8 transsctions weaid:itéquire: locking ‘with sny
smhmmmkﬁmmemmﬁmmedwdmach‘
Smuaetml mnmmafmmmmuwg:mmnpmmmu

B S

‘ orgmiutm nm ﬁn M pombh mnge :pue.

. While the S tranenctions. sve infroqment, the wecessityof hacking wheile performing kn
s tianeaction is uadisirsbie Lacking: makes the 2w sites involved in pecfosming u S
transaction vuinerabie ta fulsees during the-sseentior of: the ansction: - Mafry systegtes
can be used to reduce this veinerabilicy Suan acteptaible ewel; suck: x5 wsig polyvatises {43
will be discussed in a later section), or running the § transactions at a time when there is
little other activity, such as after the stores have closed. We can avoid the necessity of
loeking for the 5 transactions by reerganizing the data base:

TMmmmnugmmnzmu,mmmmwMum
QIS ‘items at onie samages Sard o the GOF! Thevis ot 166 higher Vel Fanuger. We can
avoid zmm-m wmmmq;s,mwmmwum A
pmmumwhf&um segapization is siown mf!’iglgg‘.si

In tmmdmmWaﬁmwf@ the Sm:acuons
are agammmwmtnmd,smm,;; RRgErs. ‘mperformed by
twoofthemmm:admmmm Uwﬁkcthepmmorgmiuﬁen

£
however, Msmmm&my‘mmnihm&mbcmm

that anamzmdaq,mmsmmnmwm
locking. :
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Flg‘un 8.4

An Aotivity Graph for a more ofﬁolent Organizutlon of tho
Data SR AE e LTI

Assignmont of Items to Ma.ugor-. |

Mo. ‘ “1 Mg
QOH | QOH, QOH,
QOO0 QOO 1 QOO,
RQTy 7 RQT} RQTo
DQOH, DQOH, DQOH,

‘ Figure 6.4 shows the joint activity gnph for 3 locations in the hierarchy of |
distributers and supermarkets. Ina mhppllcation. there would be several supermarkets for
each local distributer, and several local dlstributer;. “This makes the joint activity graph
somewhat more complicated. as shown by Figure 6.5. | H

Flgure 6.5 shows the Joint activity graph for this organiutlon of the data, for a
system in which there are four supermarkets (Thus four M, mlnagm) being supplied by
two Iocal distnbgn_ers. Each manager and each transaction mhﬁekdwﬁh two subscripts, the
first indicating the level in the distribution hierarchy and the second indicating the location
" at that level to which the manager or transaction pertain,. The gn;;h &'hlergrchlul, with
an afc, from each manager to its parent. Notice, howev;;. sha using the Wrem hierarchy
in Figure 65 as the synchronization network would not albw tin transactions to be
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performedwuhwemhg Mmmmformnommgen)mun'mm
mfmmmmwmmmymmws nsactions. . If.the arcs in

Figure&.&mrwmmmemmmummmmgb‘ym .

the hierarchy in the joint activity graph as a synchronization netvmrk I will refer to an

'. activitygnphofthemef!’lgmﬂbasMMMWdtmﬂuh it from a
hienrcbk:zlgnph inwhkhtmumammmmﬁwahmmmhoﬂu
~ children.

N Flgm 6.5 :
A More Complete Activity anh




=163 -
Given this organization of the data base, we must: chose a synchrnnszation network
. that allows the transactions ta be performed with- thepruonaisafchapter 4.“While the four
~ classes of transactions described here.do.not invoive any transactions that:access a large
number of items, presumably in a real inventory control system there:wouid be other
transactions much less frequent than those in the four classes which perform functions such
as changing the parameters DQOH and RQ_T or allowing a user to obtain a snapshot of
the quantities of some item in the various Iocations. ln order to provide the ability to
synchronize any possible transaction on the data the organization of data managers must be

,;er\ hytt

. hierarchical

Any hierarchy of data managers that is consistent with the: imrted; ‘hierarchy
defined by the arcs in the joint activity graph must be some linear ordering of the nodes.
- The conditions that M 2,0 be a descendant of all managers. and that some process be an

ancestor of aII managers. and that there can be only one path between any pair of managers

14

. FNE
force a-linear ordering "This is not a very desirable organization for synchronizing the

transactions 'because the message sent from some manager Mt to M,, 1 in performing an §

G

transaction may have to be routed through many other managers that do not otherwise
i participate in that transaction This makes S transactions expensive and vulnerabie to
failures, owever a i'aiiure occuring during an S transaction does not unnecessarily deiay :

other transactions, because there is no locking

- Another alternative is to abandon the abili't; to performany arbitrary transaction
and restrict the synchronizatign mechanism to.acting .on thefourehmdwiqu above. If
we are only interested - in performing these four, ;traggagt_i_otta then the only commmnication
among managers that is needed is that described hp-the jolnt agilvity.g@ph of the four

transaction classes. A non-hierarchical synchronization network could be used to coordinate
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processes), mmaﬂmwm mumw tnnemctions
| mmmm

Thm th%mmmﬂbebgﬁﬂy rganized hmmwmd hmhy All

ofthe mnmmmizmm asmm unlym data manager.
"'.Tommsmawmummmwn,mumm
QOO;.. TMsmmmmmnmarmmmmunmwnm
which holds QOH, 4 and QIS,. muwmmwmmmmmm
_ ransaction with wo decking.

. Thuwgmmmﬁmemugmschﬁymmmwmﬁmeammof
| mkingammmammmwmmwmwmmum
'mdsoumm mmmmmum;nmmmwm
kmanageninwhichnhmm&m:ymhrmiamymymm“ﬂﬂsmy
m&eﬂmﬁﬁmukmmmmmkm«m mmammm
thetnnmﬂomawdﬁndtﬂhuawp«mmﬂyﬁmdmhnawm
- guidance system, Mmmammdmmwwmmm
'thekmdwfmwmmmmmmmwnmapm

6.2.3 Replicated Organizations of the Data Base

duta dem. T ohis section, Jmmmammw the: diita items are
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transaction will be delayed due to a site being inaccessible); ot in order to éliminate locking

Sl n

. - by making more of the transactions have indegeiiderit cormporie

One could, by repliation; make all of the transactions have independent caﬁpmenu.
This effect could be achieved by making fure:that ‘whenever a- maiiiger hokis a copy of
some item L, it also hekds copies-of all of the ltems needed- by the trandactions thit apdate [
in order to make that update. For each:item 1 held ‘by-a manuger, mtmamgermm also
hold copies of alt items from which arcs:in the joint: tm%nph point at-L.* Thus, in
~eﬂ‘ect, ueh mungsms;mpyd‘l mwmmpuﬂ alk:ftesis that are finked to I by
.a chain of arcs:in the joint transaction graph: The: joint ‘Wangaition + -aph of Pigute 6.2,
indicate that a site ‘holding a copy of the items QOH, or Q_OO, st abso hold eoples of the
items QOHj. QOOJ RQTj DQ_OHr and lej for all j g l. because of the chain of arcs
linking these items to Q,OHi and Q_OOi Thls pments an awkward problem as it means
‘that in order to make all tnmactlom have lndependem mmponmu, a single site must hold
copies of all of the ilaems and therefore. must particpate in all of the transactions. It
‘ therefore does not seem pm:tical to avoid Iocking through thls tppmch

~ This particular application appears ta have-Hitthé need for replication to increase the
availability of data items. The transactions that-are mest crificil'to perforrv quitkly are the
~ P transactions and the©:transactions. 'While-we could réphiice tﬁcQ_OHo items-ifi order to
increase the availability of these items, there seems to be little p?int ifl doing 50. Beause the
P transactions are by far the most frequent, repliating the QOH:la;ms would ldd greatly to
the amount of communication and :possibly the-amownt .of computation-required. A more
appropriate approach might:be-to maks the sites: which hokd. the QOH; items highly
.. reliable, Another approach:that could be used is to use several sités to hokd the data .lﬁe'l'm
péftai_rﬂné to eiéh supermar‘ke:. partitioning the items so that for each product, there is one
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site that holds all of the items that. pertain. s0.that product. - Thia approsch may allow the
individual sites to be MM.%MMMQW site: managing:all
itemns for a supermarket.

It would also, presusably, be important that O transactions be executed prompily, to
vuinerable o falures, we - couki -replicate e itoms ‘accessed: by the © - transactions.
Unfortunately, the O transactions:at ench lecation acsess: many-of theitertis for that: looation,
k*f-‘"dm& the QOH . oms. - Tiwss, replicating. dsems. o asake; O tearmemgtions: more refiable
\muMMy qfapmqiemmmun&tmwm ﬂu

Anottmorgminmafthedanmtmtgﬁtbeuudkmnpmuthcmsi and:
'QOOithhuMIaadM‘,lmhhanmpbofmm Flgms.bshomajoim
" activity graph forthhorpnim. Inthtsorgamnm M,md M‘,, uch lnve copiuof

dusstl D0

the items pemmmgmmdmamﬁmbuumiwhuuoﬁ M Thhorgmiutiondoes not.
provide any’ reihbmty wdvamge over the ﬂrst orgnmuum mﬁdend in performing the
- human managers in charge.of shigping and recaiving.ak the ¥ite2 00 determine the status. of
| ,orders more easily, even if a failure Wmm locations.

6.2.4 The Uae of Po!yvaues o

Anather »mypt? increasing the availability of the datacitems: in the event of a fatiure
is to use the polyvalue mechanisn described: i Ghapter & Ak noted: above;. the P
_transactions are the maxt criticsk. While lacking i all of theabewe organisations of the data
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_ Figure 6.6
- An AetMtj Graph for a Redundait Dita Base Organization

Assignment of Items to Msmors.

Mo. M1 , Mz -
QOH,§ QoW  QoHy
Q00 Q00" = QO0y
RQT, RQT, . RQTy
DQOH, DQOH, DQOH,
QUsy Qs sy
QISg QIS
QOO0 QOO0

base is rare, it is possible that a failure during one of the § mnsactlons could delay access to
“the items used by those transactions. THis coukd in twrn delay-uther transactions.

By uslng the polyvalue mechanism descrlbed in Chapnr 5, ‘we an avoid this dehy
Two factors suggest that the polyvalue mechanlsm would be effective in eliminating
unnecessary delay of transactions local to one site by failures of ether sites. - First, many of the
transactions depend only Ioosely on the actual data base vnlues The O tnnsactions. for
example, make a decision of whether or not to order that depends only loosely on the items
" read Second very few of the transactlons reqmre locking thus the probabllity that a

‘n,

transaction requiring locking will be lntermpted by 2 fanure ls unall.
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Notice also that most of the zamsastions Mould not propagate polyvalues that have
been introduced intv:the.data. base.. The P transactions and R:taniactions de:pet propagate
information among items in the data base, while the other two types of transactions may
pmpagmapdyvthzwntunummm This meins that if a polyvalue is
introduced, ttﬂmmmmummwmmm

Whether or not the poiyvalm mechanism should be used for tlm application
-vdepends on the actual cost of bnpkmmting polyvahies (in m ar the extra checking that
| must be perfonned in the course of performing a tnnm m handle the possibility of
polyvalue inputs), and the concern for reliable operatm 'rhe cost of implementing
polyvalualsnotltke&ymbehigh bmﬂnbmeﬂnml&dyb&mﬂ as so little locking is

performed mﬁﬁsknpmmmumm&enm&dywmpdyvamm“werbe
produced.

6.3 Comparison with Other Heebuiﬂm‘

Several other mechamisms could be used for performing syachmniaation of the
transactions in this example. This section bﬂtﬂy compam some of the uther mechanism:
‘that have appeared in the literature with the solmion dumbed above.

6.3.1 Comparison with SDD-1

As this eumpie is derived from one used for the SDD—i system for synchromumm
.of distributed data bases, it seems nauml to begm any eompumon with SDD-I This
discussion presumes that the reader is basicafly famﬂhr with the GDD'I mednnum and the
solution to this probhm ustﬂg SDD-L



,sendlng-a message to each of the data

“data.

| complicated, and may. involve many exira
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'Using the analysis and protocols of SDD-1, ene concludasthat the P transactions and
the O transactions can be performed by the simplest. (p}) protacal. - This protocol; requires no

locking and in fact closely resambles.the protocol used 0. perfosm:these transactions: in the

solution described above. The ather two transaciion.classes, hawever, require the pd:protocol

o of SDD-1. This protocol performs hsking, by: forcing: the-Vaziows data-manpgers to perfarm
. transactions.in time-stamp order. Thus SDD-1 locks far: two of she. four transastion. classes

while my mechanism Jocks. for only one. The.reasn that Awp. of .the transaction classes

| ‘requi‘re Ioclting in SDD1 is becayse the analysis nmqmwbysm ot recognize

that' the R transactions actually have three independent oompmenu. Whﬂe these

.cornponents must be performed atomlcally wlth mpeu to other transactions, there ls no flow

of information among the three components, thus they can occur in any order with rupect m

each other. The more ﬁne-grained analysis used in the mechanlsm of thls thesls disoovers
this fact which allows these transactions to be perfomed wtthout locklng a | ‘

The locking protocol used by SDD-1 s similar in’cost to that used in ‘this thesis, if
the SDD-1 mechanism is implemented simply and without m to.failures. . .Both involve
rs which. wmmmxdm in mmwm '»
ONA), MELIAZON: 88 maudcd 10 move the

performinz,tb! transaction with as many ad

YR

The robust. mmmton of the . SDD-1 protocels [quner’l&].qu. is very
‘ ym»u quise difficukk.to_be
surethamemniameeﬁmmwmme‘m‘hm_
to stop all mm PWS o
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The robust imphemencation: of : the: SBD- “proeohs ssempts ‘1o minimize the
probability that & felfvire wilk-meke: duate inwcconstbié Vet the use of abortable locking,
and a. voting strategy o durmine when & transaction: paseses its commit point. Using these
mmmymmmmwmﬁumummmmg
needed wmmmmmm "Hv comtrast, using the
-potyvm mmwmwavmammmu%addmmm
:Wmemwmmmwmmw mmamm
mmmmmmumw

| Inmmry,zhepmkundinmbthwmﬁkdzwbeﬂghdylasandy(in.
tcrmofprooemngpuwer mdmuuguum)muhﬁvea Ktnbhhvdofrobusmas |
'»:hantheprmuofsnm ThudwmmMmMnm”humb
_zmnsnm.asmemofmmmmwmmm |

6.3.2‘) Cemparim‘ wmn Gu_y': locking stutqlu;

transactions atomitéally. THis mechanisr coult ber ibed fBr this ‘exiimple, By assigning the

items in the data base to various sites.

The protocols used by Gray require locking Wherrever tWo or more sites are involved A
i one transction. Thur the 8 and nmwwmwm this exaimpte.
The locking mechanisms proposed By Cray ire & metfiui gl

ach_tmaction at each site, and a deadlock detection
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focks in which no transaction can proceed. Thi cost of settingthelocks needed to perform a
transaction is similar to the-locking mechariisrhs of SDD-F and this thesti: © |

The problem of deadiock ‘detection, However; adds to the tost of Gray’s scheme.
- Deadlock detection requires amalysis of the sets of locks’ tiekd by alf tritnsactions at all'Sites,
and may -be quite costly in a large system. maggmtmmm detectioni- éan’ be
partitioned. so that deadlocks among smafl gﬂﬁpid‘ ‘sites canv be detetted more ripidly and
“with less computation than dadlocks involving a large number;_ of sites. Thls strategy is
| Iikely to work reasonably weli in this appliatlon as eech transaction lnvolves only a small

S . CARER

number of sites Deadlock detection still represents an additioml cost in openting the
sty nede
system, over that of using the protocols of SDD-I and this tlsesis which use pre-analysis of

the transactions to avoid deadlock situations

6.4 Summary

_ This apolication (the distributed supermarket inventory system) is typical of the
kinds of distributed information systems which. this thesis addresses. The analysis shows
that the transactions exhibit a strong degree of locality of reference, and that most of the
| transactions can be implemented without locking. The choice of which of the data base

organizations and synchronization hierarchies to use for this lppliation depends on the

- ’cqncern for reliabihty, and the desire to maintain ﬂexibility to perform transactions other

-than those initially planned The overhead of synchroniution in the organization ln which
the hierarchy parallels the hierarchical organization of the locations is very small, as very
few transactions require lockiné. and no extra messages are used for the synchronization of

“transactions which do not require locking.




-1m2- |
 The polyvakie mechaniess described:in chapter five can be used in this application
to minimize the probabiy that a fasiure will delay transactions...

 The implementation of this ;ppmummmmmoonm thesls was

~.compared w&h two other  distributed data base congayres mmm Thu '
 comparison szwmmdmmwwmummmm
| ammmmmmuawmmm

| lnmw:mmumhmimnmhaMmdMMmbemwbceﬁkum
androbustfortms:ppuadm Mtheumumnnmmmmagmtdalof
” ﬂexibmty. lnmngthuym mmmmcmmmmwmapm
theabllkywmmumphmndmmmumy
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Chapter 7 °

'Conclusions and Areas for Further Research

Yol
ol

This thesis has presented 2 mode} of synchrosization.of transactions i 3. distribused
information, system, and seyeral mechanisms for. proviing,such synchronization. This
tant contributions. of the thesis tg;this field, and suggests some

~ areas for further investigation.

chapter summarizes the impg

71 Sﬁmnliry of Thesis Work

The work of this thesis has concentnted ln two areas: devebpment of A model of
computation ina distributed information syuem nnd devebpmcm of :pecmc mechanlsms for
concurrency control in such a system The major ldeas of thc thesh in each of these areas
 are summarized below. S ’

7.1.1 A Model for Diltrihu_ud Computing - . .

The process tnodel of distributed computing presentedin Chapter 2 lsai fnmwork
in .w'hvich computation i a distributed infermatios- Wg.um :'This model
. specifies. that ciae effects of site failures or cormmunication: failures -are: lost or delayed
messages. The thesis discusses techniques that could be used-te provide an.implementation
ofihcconeepuln ttnpmnwdcliorwhkhthed‘fmafﬂhmirem wtlnse
specifications.



- 174 - .

I developed two basic strategies for spachronizing transactions described in the
process model: locking and sequenciag.  Sequencing achieves the g0 of partial operability
defined m-cma ﬁthhckMgmyaﬁwa"Mudmemhwammmthu
is local to some other site. In Chapier 4, I demonstrated that locking was needed to correctly
coordtnaumemdmm Ciupwiymdwmrwmechunthn
#n any implementation of tocking, 2 tramaction’ 15cal to‘one’ Hie fmy Be Indefing
© by a failure at some other-site. ‘Taken together, these resuills: Jemoris

to achieve the gost of partial operability whilé corred

712 A Hierarchical Cencurrency Contro mnhgu_m |

cmsmmm«mmmahmmmmwmu
mnsam TMMMMWWMW Fmt.tthmsknphw
describe, and mmayammmm Many of the syachronization mechanisms
vdexribadmmeumum:ueqmmmpmmmm&mmm:n
very long and complicated. Tmmkmpmmufmpmhmwm
cmssm4qwm:mmmwwmu ‘
actual dmﬂbu&d hhrmﬁm system.

A mmm property of my scheme is thait it perférms well when the patterns
+of accesses 1o items i the distributed ‘data base show a-strawg Jecality of referenice. The
mechanism can be tailoced <30 that frequent transaceions’ cegire” fitthe overhead - for
. synchronisation. The mechanism can also be designod 10 4% 0. avoid lotking whenever
possible. The thesis describes analysis techniques that can be used to assess the cost of
performing the most frequent or important transactions. This analysis can be used to choose
an organization of tﬁe data and the synchronization network so that these mm; are
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performed efficiently and reliably. The mechanism provides cogrect synchronization for all
transactions, even those not anticipated in the design, however unanticipated transactions
n'iay be much more costly to perforni and more tikely to bedehyed by failures.

_ . t0. the, problem -of unavoidable
. delays caused by failures during the execution of a trapsaction.using locking. The polyvalue

Chapter 5 of the thesis presents: a novel solytio

mec_hanism; in many cases allows a transaction 9. be run eyen if the values.in the data base
accessed by that _tgagi;n;um can not be determined exactly, due to.a failure. With this '
" mechanism, important transactions that must be performed promptly are, in many ».,Mnot
deleyed by the locks set by other transactions. The protocols presented for manipulating
polyvalues again are most efficient if most of transactions are local to one or to a small
number of sites. This assumption of locality -of referenoeappelrs to be true of many

applications.

 The model and mechanisms of this thesis shed. some light on.what is a very. poorly
understood area of computer science. They do not by any means provide a complete solution
to.the problem, and in fact suggest several interesting. research problegas.

7.2 Areas for Fusther Research

There are a number of ways in which the work of this thesis could be extended to
provide a better understanding of synchronization in distributed systems. These include the
investigation of the applicabiiity of the prooess model bo ml physical systems. further
.investigation -of appliutions, betcer techniques for comtmcting the synchroniution
khierarchy. and implementation of the protocois. | A
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7.2.1 The Appilicability of the Process Mode!

The results of this thesis are based on the semantics of failures in the process model.
In particular, many of the reiﬁlts are based on the notion ttnt there is no single event
detectable by two pmu& mﬂy Whike 1 wm tm this is true of any
sender of a message can know for sure wmwammwmmd l“fthis is
the case, one mgmuwhwmpmamwmamm in’ Chapter 5,
 contrary to the arguments advanced i that chapter and Wf Several’ othér papers in the

" Hterature.

 Ancther related area for investigation is that of ways of including the effects of
failures iﬁ a model of computation. In tﬁe process model, I assumed that a failure could
delay any message indefinitely. It is possible that some less pessimistic assumption about
failures would lead t5'a workable model for a distribated informméioe systemm.” One might,
for example, assume that no more thari N sites fll ovurrently. WIS it would be
impossible to implement a system 5o as to ‘CoRforni t this aseiinption; if the probability that
the assumption is viokated is sufficiently small, then a distributed information system based
on the assumption may be accepeibly reifatsle; mmy&m to implement.

7.22 Applications

Thts thesis makes extemive use of the anumpﬂm tlm appuatiom of a dlstributed
information system will exhiba !oaaty of refermce m thek use uf dm ’nm ammption
appears to be true of some planned appﬁathm. howem m areﬁﬂ uaum of actual
applications may be needed to confirm the vaﬂdky of this mmpdon We may in fact
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discover that the flexibility of a' distributed information symm Wi eneourage different
: organtutiom of information that do not exhibit the mm, ‘

7.2.3 Analysis of Trannetlons

The thests presented techniques for determining the cost 6f performing a transaction
(in termsfof the number of messages required) uﬁhg various béh‘orgenlutiomofthe
data. Guidelines for choosing the- synchronization’ iétwork and datl base organiution.

2 ogamek e abe

given a destripﬁon of the most frequent transactions to'be 1, were given. These

| 'guidelmes are not, however, detailed algorithms that deslgn the | gn;hmnlwm mechanism
Considerable effort and ingenuity may be needed in choming an gptimal. or near optimal
-.synchroniunon network and in chooslng the auignment of data items UQ data mapager
. processes. These problems are simnar to many others that occur tn managtgg resources in a-
rithms for designing a. dlstributed
. im‘ormation system using the Menrchical synchronluﬂon me:htnlsm of this thesis could be

--computer system, and it would seem likely that good ajgoritt

derived _
7.2.4 Implementation of the Protocols

Finally, the thesis presented only a few simple impWNMS of the synchronization
_protocols Improvements on these lmplementatiom can no doubt be made. One area that
seems of particular interest is using the hlenrchlal synchronization protoools ina computer
tailored to managing data. The hierarchical spnchronization: fnéchanisin présented here fits
well with' the proposedmdek of mesmory for'a datu base mchfe: Thbﬁnchtnhmmy
lead to a very emdeht-lmplmmnon ofmdn machine o |
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| Ancther implementation issue that bears. further Invesigation is the design of 2

communication network that supports atorais. beondcaming. - I Chapter 2, techniques for
unngabmdauwwwkwkuphmmunmemr@rpramwmpm
The need mamdmmmuammmmumummdmmmm
’mestopsaﬂamkbfadum !thpna&leﬂntﬂle nction of the coordinator could be
‘lmplememed ineach site’s network mmmm:m;m;mmmmwwu
Mm.“wm cadcasting coukd be made efficint and. highly reliable.

| &vmtmcbmmmvebmdenhPedNunMavmlmammlprofa

)))))

o MntMtdsmmumm:dWMmmmmhm'

has a copy of every item. Thmchmﬂmhanbmécﬂapdwmpnpﬁated
'&umﬂhmﬁﬁmmh&mmdmmm-wmmda
process,inordertoobnhanmrobmimpl«mumofaprm Applicationof .
mmmmrmmmdupmdmm»mmammube,
an interesting researchpmbhn.mdm!dludmamw : d‘the

concurrencycm:m%muhmmmzed in this thesis.

This chapter has presented a-summary of the resits of this thesls, mm
some of the open questions that this thesis. leaves Unanswerer. dem«
this work are not decisive, however 1 hope that.my werk- Mmaﬁlm‘t@m ‘
mamymurkyandpooﬂymdemoodﬁdd
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Proofs of the Protoools

This appmdlx glm a more formal deﬂﬁmm 6&‘ m d’ the eomqm in the body of
this thesis and proofs of sore of the resutts. For simplicity of dmlpuon the definitions and
- proofs.in this appendix are for the version of the wm& provicol in whiict éach

broadcast message is sent iminediately to a process which- iummmofanofthe
receivers and of the sl,smler,Z In the :cmallmp c; tbg prolwol described in
, Ch'apm 3, each message may travel up the hmﬁ:hy in several hops. Thk duference does
not effect mmmmnmummwmm take place in
ithe dtstrtbutinn of a breadcast after that bmdwm nenched. Mmm ancestor are
used in determinmg the < ordering. This condition is consistent with the use made of the

protocol by the concurrency control mecharism presntd i Chagger 4, in which the proces
lteps that take place in. vtht distribution dame mwm@m the common
ancestor are the only ones which have effects th&t ouuid be obsrvcd by prooeu ueps related
“to other messages. |

Al l-‘urmalintion of Atomic Bmdcum

Jefinition: ‘Formhprmpthereummmg mmagusenttopwch
: thatm,<Pm2m‘m|wurealvdstprcfonmzmsmlvedatp.
Eachmagemtopi:inchsdedin<,%iﬂsmcdved
Definition: A brogdeast B = {[b, ,Rbiuamqewhichutobeuntto
' process p; as a part of B} ‘
Definition: For each message m, let B(m) be the broadcast message from which m

was derived. The set {m[B(m) = B} for some particular broadcast B



Definition:

Def initio_n:
' Qefin_ition:
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then contains both the component messages of B and any other
messages that are received in distributing those components.

For broadcast messages B; and B, there-is' an-ordering <, which is
defmed as B; < 82 if Bp, bi' b2 such that B(bl) Blv and B(bz) 32,

Broadcasting is atomic iff < is cycle free.
Let ~ be the 1nchrogizgtion g relationship. which is a

relationship among pairs of processes andi musl:satisfy .the following
constraint. The graph defined by ~ must have no directed or

.undirected cycles, .Tthus,:there m DOt:e%48: 2. 361-0h three or . more

processes py, ..o, all distinct, such that either ft, f’tot of h.] ~
for all i<n, and p; and p; are-relasid by &

“With these definitions, we can now define the message formrder proeocol by defining the
process step ‘specifications of the forwarders.

Definivtion.

Definition:

The process step specification of a me&uge forwarder f is definéd by
a function F(B): e

F(B) = {[(X(B.p)$] | (f p) A The set xw) is non empty}

.where B is the message received in 3. process sep,-E(B).is the set of

pairs, each of which lists one of the output messages produced by that

step and its destination process. and: X(Bip) isch set:describing : the
contents of one of the output maugu of the prooeu swp which is
constructed as follows: - .

X(Byg) = {lbglilbgleBAp~*g .

Communication between message Mfdenobeys the constraint of
Sequencing, which can be stated as follows. If by <, bo for messages

by and by and message forwarder £, and i W’ £ € F(by, and [, p] -
€ F(bz) where F is the prowobl speci " forf then b’l ,, 32
after both b’} and b’y hambeesreuwdb;f '
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A2 Proof of Atemic Bresdeasting

To.mmmwmmmmmmudaw'
message atomically, wemuushowmttthe<ordmngtnmymmnmcmbkbym
execution ofmepnpedﬂedbyt!npmmoluqchme Todcan.lwﬁlmowthut‘ormy
mppmmmchme«nn«mmmuqmmwmw then it will be
%0 after also. mmmmmmwmmm)m»
memmuw&mmfmw mwmmm by following
meprommn<mmmaumm

| Bﬁmem@mgﬂhthemﬁlmﬁ%mﬂawmmm
protocolthuwmbeuseﬁnmmpmf If two processes p and ¢ have each received a
message derived from the same broadcast B, mentlmuapmmr!ngnphdeﬁmdby
~nhmw’mm;pm'q.'2ad1mmmu‘mm:mmveda
muagedeﬂ*ved from B. 'Mil mmthe grtpﬁha no:ytiu. thus there is only one
pamwmnpmdq.mdthtpmmommhm%uawthemmknm
point, from whichitmuumchallmdpmn. hhmm&fwmmwhan
seenme:ugesfmabmduu!mhsaﬁﬂmm’»m%mpuh between those two
. processes have also seen messages from B. o

In each step of the protocol, some message m is received at some process g, possibly
- adding ordering relationships of the form b(m’).-< &m) for ‘messages m’ previously received
at p. We must show thatmmducmgﬂwrauommpb(m')?b(m)fmmymgem'
~ previously received at p can net introduce a cycle. The proof will be divided into 3 cases,
depending on the origin of m and ' -

CASE I m was not sent from a process P such that P ~ p. In this case, m is the initial
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entrance of broadcast message b(m) into the network of message forwarders. ‘Therefore,
before the reception of m, there were no ordering relatihships in ‘< iavoMng (m), so that
the receptionofmoouidnctﬁﬁ:odumacycle in-< '

CASE 2: m and m’ wefe both sent by some process P such that P ~ p. In t»hisl case, the
“process P must have reoetved a message-M suchi‘that BM) = BIm); and a'message M’ such
that B(M")"= B(m) in the process steps which prodicedm and 'm’. Because of the
" sequencing . of messages between P and p, the muugec vand: i imist have been sent by P
*in the same ofder that they:were received at p.  Fhus 8¢ erdering rehtlamhlpb(m‘) < Bm) |
| heufsefore.m_e reception of m (because of the réteptions of Mia#d M"at P)and' therefore,
by the ’ammpﬂm thatm&y&e’ existed befol%thenup!mﬂ%.queis created.

. "z E
i

CASE 3 -m was sent by some process P for which P ~ p, but m was not sent by P Thls is
the most difﬂcult case. To show that no cycle is introduced b] the reception of m in this
. case, I will assume that such a cycle is created and show that this usumptlon leads to a
contradi&lori or a violation of the éﬁnﬂitions of the protoool. |

Assume that the reception of m creates ncycle in the < orderigg . Then prior to the
~ reception of m, it must be the case that Vthere is a squet;g of broadust messages <By, ..
B> such that By < By, for 1 i <n, and By = B(m), and By, ~ B(m"). Consider now the
‘set of processes pp - bn- 13 which these broadcuts were ordered Now by the observation
noted above. there exists a path in the network from each of these prooesses to the next
process in the»chain. - Also, there exists a pwtlkm py'awd - P, ‘as-both: have received
‘messages derived from b(m), and there exists a- pm:m»;pn_,vm f:.“;ﬁfbpth Hive
“received messages derived from b(w). Thus-becawme of mﬁ*:mw of ‘broadcasts, thete must
exist a path between P and p. If the path mmtrm chin ©f broadcasts does not go
through the direct link between P and p, then we have discovered a cytle in the
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syachronization netwark, violatiog the condiions of hesprotesel. § sl show that 4f that

. path does go theough the-disact link betwasn the two wacesses then sither the sequencing-of
messages between P and P has been violated, ar,a- cytie.snisted in dbe < selatinnship before
the mpum of matp. | |

Ifthe;pl&h betwesn P and ;mm;by;&hemaﬂf Mmm includes- &he
 direct lipk, then zome traadcast, <all it By, maust.haue been. seen by both P, and p, and

 furtharmore, we knew:shas.P:mu have sesebved & snesmge denbusd foare By, and s o result
~aent a mesiage 1o . The brondoasts B and. Bim) must have besn andersd by metage
 rocaptions 2t P, and Rim). < By, as stherwise thawe, ekt be a apule in She chale. of
broadcasts. New by sequencing, the vaception of a5 5 Rt precede mmﬁm-
mgewmmnrwhﬁhkimpmhh aweknwtwamgedeﬂved fmm Bj
must havebeenmimdatp Thummdmﬁmdmmﬁmithmwubbfora

ertE o { ’

cyc!etoarisefmmmewimefmnpffthem!ypm Pmdpismedirectﬁnk
" Thus another distinct pathmmtukt in the sfmhremm mor& betwnn P and p,

forming a cycle with the direct tink.

This com;ﬂem the: praofofthe third and hstmse.thmehesmhmmmn protoeol
of Chapter 3 torrectly coordinates atomic broadcasts.

i SN L R I St
A3:Correct Relative Sequencing of Broadivasts

In this -section, .1 damonstrate thiat:the sprobocol dessribed in /Chapter 3 for atomic
Joroadcasting ‘cormectly ‘erdess ;toraic ‘broadcass :such Shat &R0 nover aeceives -some
IHESSage:m Wmmm message:that: o "shoub: fellow”. ‘Tie:praof sill be for:the
simplified case.in-which she = selationship:s a simpletieraschy. .
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Recall that the "should follow” reléuonshlp among messages was defined as: Each
message m sent by a process p in a process step 5:sheuld faliow a-message m’ whenever:
a) There is a message m” received by p in process step s or in a step

‘that preceded.s, and m' and m": are:components - of the same -
broadcast. ’ '

OR

b) There is a message m” received by p in step sorina step that
preceded s, and m” should follow m’. - :

A key factor in this definition is that if m should follow w, then some process must have
recewed a message derived from b(m’) Using the maage fonvarder protoool of Chapter 3,
if any process has received a message derived from a broadcast message B. then for any
process p» if p will eventually receive a message derived. from:B, then that message must be
represented in some me#agg,awaiﬂng reception at # ot at one of the ancestors-of p. This is
true because each broedcast message enters:the. hierarchy . onceand 3l components flow
~ downward in the hiemchy fram the point of eatry. N&m an be received before
 the message is entered in the hierarchy, and once & eesige is eatered, each component is
either above or at its ukimate destination.

T will now prave the claim that for any message m, there can:be no message m’ such
that m.should follow m’; and the Mwmmt containing: m.'dn above
that for m in the hierarchy. This, combined with the observation about the .message
forwarder protocol described in the previous pangraph is sumclent to prove that when a
message m is recelved at a procas p, no message m' that should follow m will subsequently
be received at p. |
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~ The pfqofoftlutehm will be by induction. - Initially, the clxim is true, as there are
no messages. We must show that in amy stste for which the Chie i true, the reception of a
‘meuagemataprmpuspctfhdbythepmodmmmmmmbmmflha
- There are two cases: mﬁmmmmbyhmdﬁm”ﬂmmmmtby

"~ some other process.

CASE I: m was sent by some process P such that P ~ 5. When m was sent, all of the
messages that m should follow must have been int the hierarchy {or alrexdy received) and not
~ above P in the hierarchy. Tmmamwwmpmnm'
P, magesthatmshou&dfdmwmnetheabovepinmmanrchywhmmumivedat
b.

'CASE2:m was not sent by-the parent of p. In this use. weé mast consider the messages that
m should follow. These are afl components of each. brosdcast inessage B for which $, the
sender of m; had received & component prior to- the sending of i “The climi was trile when -
M was sent, 30 ho mmmu follow any of thése broadiasts could: have been above
s at the time that m was sent. Therefore; becuuse § mast be an ancestor of s, there are no
messages that shoukd follow m that are above p whet m is- recétved ot p.

This completes: the proof of the claim, and thus the proof that broadcasts are
sequenced cosrectly by mmmmmwammt synemmiuﬁon

network.

While the proof of correct sequencing of messages mding to the “should fo"ow '
relationshlp is somewhat involved, the principal of operation of the promcol is s}mple Each
message pushes the messages that it should follow along paths in the hierarchy as it goes.
The protocol works because there is only one path between any two processes in the
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hierarchy, so that no message can sneak ahead of its place in the sequence of messages going

to some destination process.
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An Anslysis of the Propogation of Pulyvalues

A major area of concern regarding the polyvalwe scheme presented in Chapter 5 of
this thesis is that failures may cause the number of items having polyvakies to become large.
This would waste storage space and cause a great deal of extra computation by the
polytransactions acting on the data base. This appendix presents a simple model of the
dynamic behavior of a distributed information system using the polyvalue schome. An
. _mly:hhgivmmshwthagwiﬂzmmbhm&tduwmlaﬂd
'&;hniamt&nmdwmmmmmmmquwmu A simulation of
me'systmagmweammmpmuedmn |

B.1 A Model for the Creation and Deletion of Pelyvalues

At any point in the execution of a distributed information system, we can calculate
cmexmnmﬁ'mmmamusummmmm:‘
?he expéaed-&nnm'aﬁdﬂiehwmmdﬂn.’w These rates can be
expreanas:. | ' ‘

Creation Rate = Propagation Rate + New Failure Rate
Deletion Rate = Recovery rate + Propagation Overwrite Rate

Propagation rate is the rate at which mmnmwmvmmtm resuits in
items which previously held simple values. New failure rate is the rate at which updates in
pmgreunuwspuded.uuﬂngpdyvﬂuesmbemhi Recovery rate is the rate at
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, Which failures which caused polyvalues to be produced are recovered. “Fimally, propagatlon

overwrite rate is the (probably very low) rate at Which. an ftem with -2’ polyvalie i3 updated
by a transaction producing a simple vakse: This ocours only if a transaction produces an
output that is independent of the previous vaiue of theupdated item. '

With some additional terminology, we can develop more precise expressions for the

" creation and deletion rates. I will use the following terminolegy :te describe: the data base,

the transactions, and the failure characteristics of the, system:

" U - Update frequency (Updates/Second). This is the“rate at which
‘updates to the data base (not transactions) are made. U an be
calculated from the overall trantattih tite, ‘the. |
transactions which make updates, and the average number of
updates per transaction. L

s f‘ .

. W - The probability of an update being delayed by failyze. W-can
be computed from the mean time between failures, the time window
in which an update can be dehyed by a faﬂure. and the update
rate ' S T :

I - The number of items in the data base ) ?

R - The recovery rate for failures This is the rec Erocal of the
* mean time ‘to recover failures (in seconds). ‘I'hé" description of
. failure recovery in this way assumes that the mean time. ip. recaver

failures is exponentially dlsmbuted with mean of llr

I

Y - Update mdependence Thls panmeter is the probabmty that

the new value of an updated item Wik net>depend on’ its exact

previous value. A value of 0 for Y indicates that the new value of

an updated item always depends on its prevlous value. Coe

D - Dependence of updated items on other data items. This

. parameter specifiss on the. average the nysmber of-data iems.in the -
data base on which each update depends. -
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- With these parameters, we can approximate the rates described above. In the
. CXP{MG{W-&»WJOF the rates, P'W;cwaﬁmﬁu polyvaiues in the data
base. This is—a ﬁmm approximation in which the proportion of dats itéms in the data
base having polyvalues is assumed-10-be small thus: teems: dwwolving (P> Have: been
~ dropped. |

Propagation rate « U s D ¥ P/ T

New Failure Rate = U« W

Recovery Rate = P o R
pmoymmgu‘mm -

These tmanbemmedwpvethecxmednuafmdthemmb«of
polyvalucsmmemmm ‘ '

9B . UsW + UsDeP/I - UsPoY/I - PiR

This is a sir;)p_le linear differential equation for P which indicates that the number of
polyvalues would folbw' mupmml dmy ftemtti mma! mmmm, state value,
given that thepamnmmmdy Mibetm Hiﬁwidr dnﬁvsymm. The steady state
expected number of polyvales can bewum bymmmefchmgcqnﬂmm
and solvmg for P. From this. wm

_ UsWal
P't+¢—t'

Several: m-mmwpmptrm of this mm M ie upﬁmd Flm. it would
seem that the dmhnmr«&huw&mmmwmummm,uuexpmed
number of polyvalues to be infinite or negative. This situation arises when the propaguion
rate is equal to or greater than the rate at which polyvalues are removed through faiture
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recovery or overvﬁritten. If this were the case, we would indeed expect the number of
polyvalues in the data base to become large ln f;gn the number of polyvalues in the data
j base would ‘grow so Iarge that this snmple ﬂrst order analysis would no lpnger be correct, and
the number of polyvalues would be limited by second order effects which I haye ignored, (I
have, for example, ignored the possibility that an ltem involved ln a falled \update or the

target of propagation already has a polyvalue. and thus does Not represent a new polyvalue)

A second feature of the equation which miay séem’ strange is that it depends inf a
non-trivial way on I, the number of items ink the data base. This is because the creation and
deletion of polyvalues directly due to failures is not dependent on the data base size, while
the propagation ‘terms depend on the ratio P/I. If I is very large compared to !", then the
effect of propagation is small, as the chance that items with polyvalues will be used by
transactions is small. If, however, the data base is small, then the chance that items with
poly'velues will be involved in transactions is larger, and the propagation terms become more

 significant.

Another point to notice about these equations.is that-they are stable, meaning that if
the current number of polyvalues is larger than the expected number, the expected change in
| the number of polyvalue: isa decrme This indicates that if aome austrophe introduces a
.large number of polyvalues into the data base, the number ﬁ;oulda soon decreue to the
expected number, given that the values of W andqlt are nmem by the catastrophe.

Table B. gives some typical values for P. Seveulobservatlonsan be made about
_'\this data. [;ecreasing R ‘causes an increase iii :t"he numberof po!yvatues, ai would be
ekpected Incruslng W causes a proportloml increase - !n the némher of polyvalues.
Decreasmg I causes the number of polyvalues te rjae The pgmneters Y and D have little

effect, unless the values of the parameters are such that the denominabor of the equatlon for




P is near zero.

NotkethuevmformablypudmmbnmaMW«yﬂmthe
numberofpo!yvaluamimquue small, Tmmmmnmthepalynm scheme
’ ufusiblemadMiﬂmmmmmnMofammwrw
'eprsbnofthemmofmnpmnnvcym Thnmmofmnappendix
mmabwmmsammdunm«m-mmmm
pmmuofmm;ummm

| | Table B.1 o
Typioal Predistisns of the Number of Polyvalues in a Database
U v R y o P
I 00001 1000000 000! o 1 010
1 00GOL 3000000 - 600 - O - 10 ot
10 00001 1000POO  0.001 0 1 101
100 00004 1000000  ODOI et na
10 00001 100000 0001 0 1 11
0 00001 00,000 0.001 0 5 200
10 00001 100000 0001 0 7 333
D 00008 108000 0001 1 1 100
10 00001 20000 0001 0 1 200 .
10 00001 . 1A 000 0 e 100
10 0001 1000000 000 0 i - 1040
0 0005 1000000 000 o " 5030
10 00001 1000000  0.0001 o 1 1o
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B.2 Simulation of the Use of Polyviues

In order to verify that the approximations made in analyzing the above model do
not lead to : an inaccurate description of the behavior of the polyvalue system, I constructed a
simulation of the manipulation of polyvalues in a distribuued information system which is

based on the above model, but not the approximations made in the analysis

' | The simulation assigns umque identifiersl to }each failure cruting a polyvalue. in
order to distinguish them. For each item in the data base, the simulatlon maintains a vector
containing the identifiers of the pending transactions on whichv tl'ia:\ltem depends, refered ho
as the state of the item. An item has a polyvalue if its state is non-empty (i.e. if that item

~ depends on a pending transaction).

. Updates are simulated at the rate U. Each such update selects a random inteker d

with mean D, and d random items from the data base. Some random item is selected as the
“target of the update. The state of the updated item is replaced with a merge of the states of
_ the selected d items. With probability (1-Y), the previous state of the npdated item is also

merged into its new state.

Witli a probability W, the update is chosen to fail. A failure is simulated by
selecting a new identifier, adding-it to.the state.of the updited.tem-and selecting a recovery
time for the failure Recovery times are exponentially distributed, with mean /R. When the
‘rec.overy time for a failure is reached, the identifier of that failure is removed i‘rpm all item

‘states.

The limits of the simulatmg program precent the mon ofvery large:data bases,
or very high update rates. However, for the patameters M an easily be simulated, the
simulation agrees well with the predictions of the model. Table B2 contalns the results of
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the simulation for some sample parameter seiings. The ousbers of polyvalues obtained
 through the simuhum were in general somewhat smalier than those predkwd by the
 anatysis Thudtffermlsprmmydmwthemmmmuwhichpdyvahman
cmeedummm:mwmmzmmmmmdawmmm
-theurgetofaproptg:dmmytkuéybavea pdyvam

In conclusion, these results show that the polyvam scheme is fetuble for preventing
dehyduewlocklng.pmm that mmbhmmhhuwmmm
of ranum that introduce polyvakies. |

Table B8
nmuummm«m

P‘ﬂmlﬂllﬂ . o Sy Pfdm R i |

U w 1 R Y b P P
2 00l 10,000 001 0 i 204 = 200
5 00t 10,000 0.0 0 1 526 o7
10 00t 10000 OO e 1 nn 95
0 000i 10000 001 0 I i 074
0 00t 10000 0.0t 0 5 _ 19.8
0 001 10,000 001 1 5 167 58
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