MIT/LCS/TR-208

A MINTCOMPUTER NETWORK STMULATION SYSTEM

Brock C. Krizan

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR-208

A MINICOMPUTER NETWORK SIMULATION SYSTEM

Brock Collins Krizan

September 1977

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

This empty page was substituted for a
blank page in the original document.

A MINICOMPUTER NETWORK SIMULATION SYSTEM
by

Brock Collins Krizan

Submitted to the Department of Electrlcal Engineering
on June 25, 1977 in partial fulfillment of the
requirements for the Degrees of Bachelor of. . Science
and Master of Science in Electrical Englneering.

ABSTRACT

The design, development and use of cost-effective
computer networks require information about system behavior
given a variety of network structures and operational
policies. Because computer networks..are. complex systems whose
behavior is generally not intuitively understood, there is a
.need for system analysis tools . to provide.a wide range of
performance information.

This thesis describes a simulation system that generates
behavioral information for a class of minicomputer network
systems. This simulation system is modularly designed with
modules for network modelling, specification of the network
processing load, and simulation. (a discrete. event simulator).
The network modelling done with the simulation system is based
on a deneral purpose discrete. mpdelling; disecipline. Flexible
network model building blocks made from the basic modelling
discipline structures are provided to.the: simulation: system
user. To prepare a simulation experiment the user assembles a
network model from the building blocks and specifies a network
processing load. To generate performance information the
network model and 1load specification: are input to the
simulator along with simulation control parameters. On
completion of the simulation experiment the generated
performance information is output in a palatable form to the
user. Overall this simulation system iis _a.convenient and
flexible system analysis tool for minicomputer networks.

Thesis Supervisor (Académlc)‘ Liba Svobodova
Title: Assistant Professor .of Electrical Eng ineering
and Computer Science

Thesis Supervisor (VI-A Company): William Gimple
Title: Section Manager, Hewlett-Packard General
Systems Division

ABSTRACT

TABLE OF CONTENTS '

TABLE OF CONTENTS

LIST ‘OF FEGURES

ACKNOWLEDGEMENTS

CHAPTER 1:

CHAPTER 21
2.1
2.2
2.3

CHAPTER 3:
3.1
3.2
3.2.1
3.2.2

CHAPTER 4:

4.1
4.2
4.2.1
4.2.2
4.3

INTROGDUCTION

‘BACKGROUND
£&muiation Mode111ng

Sxmulaticn System Deslgn

;ﬁnnputgf%Network.SimuiiptpnuS&@gﬁq“@kgmpies"

DEVELOPMENT OF A sxmmmu s&sm

ﬂmﬂﬁthicn For- The Devtiﬂpneht Gf MRSS

‘Development Of Muss
The HPC Network Architectute

MNSE Design And Use

‘The MNSS Modelling Discipline

The Structute Of MNSS Hodels
The Preeessing Submoéei
The Cpmmunlcations Sgpmodel

Simulation Using The HPC System Model

~N Y W

13
14
20

23

28

28

31

32
,3!5

38

39
46
47
56

62

CHAPTER 5: MNSS IMPLEMENTATION AND USE oo . .65

5.1 Overall Structure Of A MNSS Implementation . 65
5.2 Representation Of A Simulation Experiment 68
5.3 MNSS Simulator Characteristics 73
CHAPTER 6: VERIFICATION OF THE MNSS IMPLEMENTATION 77
6.1 Simulation Model Parameters 79
6.2 MNSS Functional Verification ’ | 82
6.2.1 Process Switching 83
6.2.2 Remote Regquest Functioﬁing 84
6.2.3 Store-and-Forward Functioning 86
CHAPTER 7: MNSS EXPERIMENTS | ‘ 88
7.1 The MNSS Experimental Process 88
7.2 Two Simulation Studies v 90
7.2.1 Incremental Network Expansion 90
7.2.1.1 Experiment Results One : 93
7.2.2 Four Node Network Expansion 97
7.2.2.1 Experiment Results Two 99
CHAPTER 8: CONCLUSIONS 103
8.1 Limitations Of MNSS ’ , 104
8.2 Extensions To MNSS And Further Study 106
APPENDIX A: THE MNSS/3000 IMPLEMENTATION 108
APPENDIX B: VERIFICATION EXPERIMENT 111

APPENDIX C: EXPERIMENT RESULTS 113

RE FERENCES 119

2.1
4.1
4.2
4.3
4.4
4.5
5.1
5.2

5.3

5.4
7.1
7.2
7.3

LIST OF FIGURES

Communications Subnetwork Models 25
MNSS Modelling Structures - 42
A Job Processing Model ; 44
General HPC System Mode1<$£rugtq:e' o 48
Processing Submodel = ., L ._ o >‘ 49
Communications Submodel o v ‘ | !_57
MNSS Implementation Orggp;zgtion_ | w 67
Experiment Representatipn)ﬁrggkdown o | | 70
MNSS Probabiiity Distpiﬁu;&qpsi 72
MNSS Simulator Characteristics} |) 75
Remote Request Level Table A . _ 94

Incremental Network Expansion Experiment Results 95

Four Node Network Experiment Results 100

- ACKNOWLEDGEMENTS

The author wishes to express his appfeciation to the many
peopleﬂwho-have assisted in the creation of this thesis. First
of all, thanks go to Hewlett-Packard and its employees; to Jim
Cockrum, Bill Gimple, Eric Ha and John Hawkes for their
managerial and technical support, and to Sbhanilliams fot his
help in producing a polished copy'OfWéhié thesis. Special
thanks go to Liba Svobodova for her invaluable advice and
encouragement, provided frbm inception of the thesis préject
to completion of the thesis document. Appreciation is extended
to John Tucker for his enlightened ‘management of the 6A
program which made possiblé thé author’s .engineering
internship at Hewlett-Packard. And finally, Ehaﬁkstgo to Karen
Doyle for ‘her personal support dutiﬁgifhe'mahy“months of work

which wentﬂintofthis'thesis..

CHAPTER 1

A network is an interconnected or interrelated group or
system. Network systems have been developed for railroads,
telephone communications, mail services and electric power. In
each case the development of a network from previously
independent components has brought improved service at lower
cost.

Based on this tradition of success in the development of
network 9y§tems,‘it is not surprising tovsee a worldwide move
towards the use of data processing-oriented communications
networks (ie. computer networks). These ﬁetwb:ks are generally
formed by the interconnection, via communications 1links, of
coﬁputer systems. Among the goals in the move to -develop
computer networke are to provide information security,
processing reliability and cost-effective pfocéssing services.

The physical disribution of processing services in a
computer network can be exploited in providing’the apptopriate
degree of information security to interdcting‘ptocessing*tasks
with different security requirements. One way to do this is to
customize each node in a network to provide a different level
of sécurity (in terms of operating system safeguards, physical
protection of the computer, etc.). Then processing tasks can
be assigned to the computer system ‘with -the appropriate
security and at the same time retain a communications
capability to tasks with other security requirements. The

network approach to security can be more effective than

placing all tasks within the security structure of a single
computer.

The network approach to reliability is based on the
redundant processing capability inherent in a computer
network. If oné computer system in a network fails, the other
systems in the network can be used to dynamically recover from
the failure. Optimally, the processing load of the system that
failed can bé shifted without penalty to other systems and the
globally ébéérVé& operation of the.netwqu is unchanged. In
most cases though, it must be expected that a degradation of
network perforimance will occur after a single system failure.
This graahhi_ degradation of services, magde possible through
networking, is one way to avoid abrupt and total
discontinuations of service (ie. when the processor fails in a
computer systeéin with no backup processor).

pérhapé the most important feature of computer networks
is the potential to provide cost-efféctive processing
services. There are a number of ways to realize this
potential. &haring of hardware, software and information
resources can be dohe with a network of computers of different
characteristics. A user can access costly resources without
having those resources associated with the locally available
computer system (eg. an expensive peripheral need be located
on only one systéf in a network). Another way a network can be
cost-effective is by allowing 1local data processing at the

site of data acquisition and use, while at the same time

maintaining data 1links to remote processing centers (eqg. a
bank with many branches would be a potential network
application). This arrangement yields significant savings in
communications costs over a completely éentréliied‘proceSSing
facility. Yet another cost-effective characteristic of
networks is the allowance for 'a“gradgéi and consistent
expansion of the procéssing capabilitiesyéé they are required
by an application. Networking can offet‘a tange of procéssing
capabilities more expansive than is offered by any single
computer line. |

While computer networks have great potential in providing
a variety of data processing‘capabilities anahservices, they
also pose difficult deéign and impiementatibn problems. A
network system is inherently more cohplex‘thahkthe ‘individual
components that are linked together in the s&Stém. In so far
as the behavior of a computer system is difficult tobpredict
for a given user environment,‘prediction of the behavior of a
computér network system can be mind boggling. But this
behavior must be anticipated to some extent in order to
develop effective data processing systems.

There are two primary phases in the development of
computer networks. First, 'éommunications hardware and
software must be developed to alIow a'combUtet'system to
function in a network environment. Modems, communications
processors, programs to maintaih communications protocols, and

a host of other computer communications components must be

10

designed and implemented. The second ;phase of network
development involves selecting the approétiate computer and
communications options in order to \fiil specific data
p;pcéssing\needs.“ During both phases‘a né;work‘designer needs
insight into the behavior of ne,t:work__ﬁxsteﬁﬁ- o .

System analysis tools provide ihqumat@pp to supplement a
designer’s intuitive understanding of pg§wpgk pehavior. These
tools include hardware and ’softwéié mopigors for ’system
measurement, analytic models, and systgg‘»simplators, Most
analysis tools are restricted in their‘ application to
particular aspects of network behavior. The complexity of
network systems, coupled with the inh?;eng iimitations of the
analysis tools cause this restrictigp.v Thp;gﬁpfe, ih order to
cope with new types of networks,‘ﬁhgré i§ a continuing need
for new network analysis tools,) o | |

This ,th@§is describes the development of a simulation
system to be used for analysig of the 5éhavior>_of a
ninicomputer network system. The foliowing éhaptérs trace the
development of the Minicomputer Ngtwo:k,’S}ﬁulation;Sysﬁem
(MNSS) . Chapters 2,3 and 4 reyiew the peégg;ch into, and the
design of a flexible network modeliofka éa:ticular class of
minicomputer system (designated Hewieyt—Packard ‘Computer
systems or HPC systems). Chapters 5 aqﬂlﬁ déscribe theidesign
and implementation of an effective‘§ntgrgctive simulaﬁér that
uses HPC network models. Chapter 7 préﬁidésfa sﬁmmary of some

simulation experiments designed to demonstrate the

11

capabilities of MNSS. Chapter 8 reviews the progress made by

this thesis project and the potential for further work.

12

CHAPTER 2
BACKGROUND

There is a rich background of work concerned with
computer sgystem analysis. From this background are drawn the
techniques that are used to develop computer network analysis
tools. These tools include analytical models, performance
monitors, ‘and simulation systems., Analytical models are
usually very efficient but are 1limited in application to
relatively simple, well characterized systems. The use of
performance ‘monitors in network analysis is aimed at getting
very accurate and specific information. A fundamental
limitation of pérformance monitors is the necessity to have
available a working version of the system to be analyzed.
Simulation systems can be used to do system analysis at any
stage in system development. In addition, a network system can
be analyzed in as much detail as is necessary. The efficiency
of a simulation system in analyzing network behavior is in
general lower than that of an analytical model and the
behavioral information derived with simulation is less
accurate than that gathered by a performance monitor,
Simulation systems, performance monitors, and analytic models,
by having different operational characteristics, provide the
capabilities . for a range of computer- network analysis at
various stagés in system development and use.

The following sections review the most pertinent

13

background to the development of MNSS. This includes
simulation modelling techniques and the implementation and use
of computer network simulators. The principles behind the

design of simulation -systems in general, and MNSS in

- particular, can be distilled from the sea of work that has

been reported. This work can be characterized into two groups
corresponding to the principle stages in .the MNSS development

process. Initially models of minigonputerﬁnetwork_systemsegad,

to be designed to describe all significant features. Then an

effective simulator had to be designed. and implemented. that

uses these network models.
2.1 Simulation Modelling

A representative model of a system is required to do

~simulation. Models used for simulation can be divided into two

general classes: structural models and functional models [27].

Individual system components. and their conpections are

. represented in a structural model. This level of detail is

appropriate for tasks such as logic simulation of digital
systems [5]. A functional model provides a mare abstract
representaion of a system than a structural model. It
describes how a system operates and can be used for
mathematical or empirical system analysis. Extensive use of
functional models, in the foﬁm of flowchart models [2],

finite-state models [10], parallel nets [22] and- queuing

14

models ({23], is wmade in simulating complex hardware and
- goftware computer system structures,

The effectiveness of a simulation model can be gauged by
its ability to represent all significant system features -and
‘at the 'same time minimize the effort required to use it for
vsystem simulation. In the process of constructing a
simulation model there are a number of factors that impact its
effectiveness. These factors involve characteristics of the
modelling language used - to describe the model, and various

qualities of the model. Specifically they include:

1. the flexibility of the modelling language (ie. the model
description language) in abstracting real system
structures,

2. the efficiency of the modelling language in a simulation
context,; .

3. the eagse with which a model can be adapted to changes in
the structure of the systeim modelled,

4. the level of detail that is used in a model to repreéent
significant’ system features (that may be at different
levels of detail in different parts of the system
structure), and

5. the effort reguired to verify and validate the model.

Work is continually being done on modelling languages and

methods in order to deal with these factors.

15

A number of approaches have evolved for developing
effective modelling languages. One approach is to have”the
modelling language be identical towthe simulator programming
language (ie. the programming language used to implement the
mechanism for simulating the model) [ll]. While this approach
can vyield efficient srmulation processing, the process of
abstracting a system in this type of modelling language may be
very difficult. An ever expanding set of instructions ‘may be
needed to handle new and evolving system structures. A second
approach to developing a modelling language is to have only a
partial correspondence w1th the 81mulator programming language
(eg. using a simulation language such as SIMULA or GASP to
implement a modelling language) [16]. With this‘approach.the
simulator programming | language. ;performsf simulation
housekeeping chores and well defined activities such as table
construction, System representaion in the modelling language'
can be done with more ease than in the first approach, ‘but the
conver51on to the simulator language is more complex. Another
approach is to use a general purpose language (FORTRAN, APL)
[23] to implement the simulator, and have a separate modelling
language which spec1f1cally deals w1th the structures of the
system to be modelled. Representing system structures 1n the
modelling 1anguage becomes 1ncrea81ngly straightforward at the
cost of more effort to implement the simulator.

Whatever the relationship hetween the‘modelling langquage

and the simulator language, it is advantageous to have the

16

modeliing language provide convehient model description
building blocks [7]. Thé building blocks may vary from the 56
instructions ‘in GPSS-5 to the tﬁo-prinéiple structures in
DYNAMO. By having an effective set of bdilding:blocks a
modelling language can be used to r‘eﬁt"es‘éﬁt a ra'r'rge'of
different types of systems; a modeller can‘bé spared the task
of mastering several limited (special purpOée) languages. In
addition a model constructed using' a weil known set of
building blécks can be understood by more people than one
constructed using specialized, one-of-a-kind Structures;

Thé- complexity of a modelling langdége can be gauged by
the number and types of the associéted’buildihg blocks. In
general a modelling language becomes Qére difficult to use and
understand with larger numbers of buildihg blocks. The dégree
of correspondence <between building blocks and real sysfem
structures élso influences the cdmplexity of language use. A
modelling language for a limited and well defined set of
systems can incorporate just a few very specific building
blocks and be very easy to use. But a modelling language used
for general classes of systems must either have a great number
of specifiec building blocks or a smailer number that are Very
general. In either case the generalizéd modélling language is
harder to use thah a specific modelling language.

Given a particulér modelling langﬁage, the effectiveness
of a model 1is affected by the technigue of the modeller.

Modelling techniques that promote the development of effective

17

models include top-down development, modular design, and
submodel organization.

Top-down development is extensively used in software
development to facilitate debugging, functional verification,
and maintenance. It is not surprising that top-down
development has been constructively applied to simulation
modelling [6]. Design and verification activities can be
integrated together during top-down implementation of a
simuation model. Since the conceptual model is usually derived
in a top-down manner, this is a natural and efficient
approach,

Modular design allows a modeller to adapt a model to
changes in a system structure by making localized changes to
the model. The model can be effectively used in simulations in
which both parametric and structural system characteristics
vary [24]. Parametric characteristics are subject to variation
by changing single, usually numeric values; structural
characteristics involve functional aspects of a system and are
varied by changing the functional modules that make up the
model description. For example, with a modularly designed
network simulation model, not only can the line speeds and
message frequencies be varied (parametric characteristics),
but also the network confiqguration, communications protocols
and processor scheduling algorithms (structural
characteristics) can be changed. Modular design makes a model

easier to develop and adaptable to structural variation for

18

simulation studies.

Submodel organization is a hign 1level application of
‘modular design (several modules may be included in a éubmodel)
which is facilitated by the decompbsition of a system into
kseveral gystem components or subsystems, The simulation of a
system is restricted by time and cost limitations when a model
is developed at a very fine level (low 1evel)'of detail. By
using a swbmodellorganization, different ievels of detail can
be used in individual submodels to ease simulation
restrictions while maintaining the accuracy of the model
representation [21]. Submodel representaions may range from a
decision table to a highly detailed model (subject to
simulation apart from the rest of the model). By usiﬁg a
decision table or a simple fhnction to directly generate
submodel outputs from the inputs,’then'ahalytical results,
measurement data, and previous simulation results can be
utilized to reduée needless simulatidn. Where a detailed
representaion of a subsystem is needed féf modelling accuracy,
simulation on the desired low levei of detail can be limited
to thé specific submodel. Excessive simulation is avoided by
not having to model all subsystems at the‘séme low level of
detail. | '

A submodel organization can also be exploited in model
validation [3]. Each submodel can bé exercised and compared to
the corresponding real subsystem. The submodels will be less

complex than the complete model and easier to wvalidate. Once

19

each submodel is shown to operate correctly then submodel
- interactions can be proven correcij(orbgédefined to bééome
_correct). This stepwise approach'tqvvélidatiég‘avoids maﬁy’of
the problems of working with la:ge,andivéry éomglex models. It
is especially valuable where tﬁeré ié a model'céméiised of
~many duplicate submodels (eg. a homoggnéogg negw?rk mbdel Qith

each node being a submodel).
2,2 Simulation System Design

A computer simulation systemvprévides’faciiities to build
a simulation model, takes as input a ﬁorklogd description, and
uses a simulator mechanism to perfor@i:éxpefimenté. The
simulation model and worklgad’.desprﬁgﬁibn determine the
behavioral informatibn that is’ géner;téd and‘recgrded for
‘performance analysis by thé simu;atof. Oncé § siﬁulagidn model
or the build}ng blocks ‘necessary vtb fo;m a set of related
simulation models have been developed(the nextvsteﬁs in thé
development of a simulation system are thér design and
impiementaion of an efficient simulaﬁér» and a qomfortable
user-simulator interface. | |

Computer network simulators can be classified»aécording
to the form of the workload‘desciiption they ﬁse;bamong‘the
most common classes are stochastic and trace driven‘[27]. For
a stochastic simulator thé workldad is ‘described by
probabilistic distributions; resource demands are generated as

20

random variables from these distributions. In contrast, a
trace driven simulator operates with a workload tépresehied'as
a deterministic séquence ofb_reéoufée demands. Traée driven
‘simulation is very useful in tuning a system for well defined
applications. It cannot be used for an application that cannot
' be represented accurateiy by a deterministic sequence of
resource demands or where exact resource demand information is
not available; 1in these cases stochastic simulation may be
appropriate. Both types of éiﬁulattdﬁ can be used to examine
the performance of new system designs, alternative system
configuratians and resou:ce ‘manag ement strateqies.

An efficient performance anaiysis simulator generally
simulates only those events that change'the siﬁtem state. Such
simulators, called discrete event simdiatdts, jump from event
to event in simuk&teé time. Thellength“bf'fhé.juﬁﬁh (ie. the
real time that would elapse between two events) does not
effect the processing required to do a simulation; rather the
total number of events is the kéy‘ factor. Clearly the
efficiency of the simulator is directly related to the level
of detail of the simulation model. Increased detail is bought
at the cost of more events being generated duriﬁg simulation,
and concequently more simulation ptoceééing; ‘ |

' MacDougall’s BASYS simulator [19] for a disk-based
multiprogrammed computer systeﬁ’ is a ﬁfime 'example of a
discrete event simulator. It does gtochastic simulations and

is based on a gueuing model. Events é&rresﬁond' to the

21

assignment of a job to the CPU, the release of the CPU to wait
for the completion of an I1/0 request, etc. Handling of the
events is implemented in the simulator as event routines. Each
event routine performs the actions which correspond to the
associated event and also predicts followup events (ie.
schedules event routine executions). Event handling is
maintained by the simulator through the use of an event list
(that reflects the time segquence of events yet to occur),
queue information structures, and a,;gob table. Though the
BASYS simulator is used to simulate a simple system, its
operating principles can be adapted .to .do . more complex
- simulations.

| The character of the user-simulator interface often plays
a large part in determining the effectiveness of a simulator.
Given an efficient simulator and an accurate simulation model,
the user should be able to easily set up, run, and get back
the results of simulation experiments. This dictates a
flexible interactive environment, not batch processing. The
Computer Networks Simulation System _ developed at the
University of Waterloo [14] ©provides an example of a
comfortable user-simulator interface. Network topology and
traffic characteristics are input via a .conversational dialog.
Simulation output is available with or without data analysis.
In addition, message delay information can be displayed during

the simulation run,

22

2.3 Computer Network Simulation System Examples

One way to review computer network simulation systems is in
terms of the degree to which network components are
represented in the corresponding gsimulation model. A
simulation model may focus on a particular component of a
computer network (eg. the communications 1inks) and represent
the rest of the network system at a very high level. A
simulation system that incorporates such a SiMulatibn model is
used to examine component behavior as opposed to overall
network behvior. A simulation‘syétem that is used to examine
overall network behavior requires a simulation model that
represents all network components at some non-trivial level.
An important simulation system design decision is to decide
how completely the system is to be simulated.

Many simulation systems have been developed that focus on
the communications subnetwork in a packet switching network
{(7,12,13,26]. The communications subnetwérk.tncludes a number
of dedicated communications processors ‘interconnected ' by
communications 1links. Each communications processor receives
messages from one or more attached host devices (computers,
terminal concentrators, etc.), routes messades through the
communications subnetwork, and delivers messages to attached
host devices when appropriate. The simulation systems that
simulate this activity use simulation models that range in

detail in representing the structures (eq. communications

23

links, communications processors) of the communications
1subnetwork. The contrast between several éimulation models is
shown in Figure 2.1.

The simulation model used at the University of Waterloo
to study CIGALE (the packet-switchfné communications
subnetwork of the CYCLADES computer network)wié iilustrated in
Figure 2.la. The objective of this study was to observe the
behavior of CIGALE under vérious_traffic conditions. To do
this 1line speeds, 1line delays _ana buf fer utilization were
accurately modelled. The lines were aséﬁmed to be error free
and. the communications proceésor_serviceltime (to do packet
routing and buffer handling) was modelled as a constant. These
simplifications give an indication of how insignificant detail
(in light of the modeller’s objecti#eé) is kept out of the
simulation model representation. | | |

Figure 2.1b shows a simulation model, used at the Ecole
Polytechnigue in Mogtreal [1L2), which can be considered an
enhanced version oflthe Waterloo model. A more sophfiticated
hos£ device-communications processor interface is included,
representing message segmentatign.into packets:(eg.tmess§ges
are allowed that are larger than“the maxiﬁum'packet size)‘and
mesgage reassembly at the destination. Also packet
transmission acknowledgement and retransmission in caée of
nonacknowledgement (eg. 1line efro:s or insufficient packet
buffering at.the destination) is represented in the simulation

model. Overall, this simulation model can be wused by a

24

a. Model of a Packet Switch (Waterlod)
free buffers

pre———

A - —— = ——

{ —

j :_\l_h—‘r—" , '
I
= pr— >°““’"‘
R

\\\
/j—'—‘-u lines
input input COMM S
~ lines. quoue 11}
— ,4
output
queues

Nvisn: Task Quwe
e — 7T~
] ———
.) Rast Qutput Quawe
Arasen Tosk Sonw »

EB | ‘_WH]]}-‘....

= =

Nest Task Quewe

»
i &

L] M’-‘I Qeve

b. IMP Packet Processing (Ecole Polytechnique)

c. A Unified Model for Simulation of Communications Processors

i i S it S Sirep S

| "aGIpue
rnn;nisslon

———— e —— '

Single .
Server— , : .
Queue |) "—-—D"“‘_—'—""’
s Y — 3
——— - |
Input § 4 il ——3

— ::::s%

g“g:.,, Buffers
in Main

Memory

L R S —

«Multiple Singls

Processor Server Queues

@:3_

3TN
/ey

——

§’I

g%
|
|
I
t
I
|

suueyd 0/1

|..
|
‘4
I
|
L

-————uh Indicates the completion
of a Transaction:
Figure 2.1 Communications Submetwork Models

25

simulation system to generate more detailed packet (message)
traffic information than the Waterloo system.

A significant variation of the previously discussed
simulation models 1is shown in Figure 2.lc. This simulation
model, developed at the Network Analysis Corporation [7], is
intended to be used in simulations of communications
processors in general. The interesting feature of this
simulation model 1is the detail used to represent packet
handling (routing, buffer management). This detail can be
contrasted with the constant service time for packet handling
in the Waterloo model. In focusing attention on the operations
of the communications processor as opposed to network message
traffic, a detailed computer system representation for the
communications processor was required.

A fundamentally different computer network simulation
system was developed by Linsenmayer and Ligemenides [17]1.
Their simulation model combines a communications subnetwork
model (such as those in Figure 2.1) and models of the computer
syetems attached to the communications subnetwork. 1In
representing in some detail all major components in a computer
network, the Linsenmayer model can be used to simulate
computer networks as interdependent combinations of
hardware/software elements and user job environments. 1In
particular, studies are planned to examine various aspects of
global job allocation in a computer network. The ultimate

justification of a complete network simulation model, in light

26

of its inefficiency relative to limited models (eg. those in
Figure 2.1), is its usefullness in generating overall network
behavior.

MNSS is used for studying the overall behavior of a class
of network systems. As such, it 1is closest in design
(functions and limitations) to the Linsenmayer and Ligomenides

system.

27

CHAPTER 3
DEVELOPMENT OF A SIMULATION :8¥STEM

The development of another‘51mu1ationrsysten is Justifled
£‘1n light of the 1nadequac1es of existing simulatlon systems in
Vgenerating the behavior of constantly kevolv1ng network
‘structures. Even where 51mulation systems accurately generate
network behavior, there are often limitations ,in the
user-simulation system interface. The success of MNSS as a
network sYstem analysis tool rests on its capability to
provide a friendly user env1ronment from which 1nterest1ng
network behavior can be studied Each step in the MNSS de31gn
process was directed at achiev1ng these goals.

This chapter outlines the development of MNSS and
identifies those features that make the effort worthwhile.
The primary reasons for MNSS development will be presented,
followed by a description of the network system to be studied
and a general overvxew of the de31gn of the corresponding

51mulation systenmn.
3.1 Motivation For The Development Of MNSS

The motivation for the development of MNSS is based on
two primary desires: the desire to study the behavior of HPC
network systems and the desire to build al'better' simulation

system.

28

The design of a computer system (composed of one or more
computers) is based to some extemt on the anticipated behavior
- of the system in selected environnents. The systen design may
be optimized for throughput, response time, security or some
special requirenent. In all but sinple fenvironments, the
behavior of most computer systems is too complex to be derived_
by intuition and mental wizardry. HPC network systems are
under develapment and there is a need for an analysis tool to
study the complex network behavxor generated by alternative
designs. In the }initial stages of development some of the
- areas of interest are protocol design and resource management.
Once network structures have been developed, the.performance
of HPC networks of various configurations under realistic user
loads has to be examined. This nust be done to optimally
customize HPC networks to user specifications.

Simulatien was chosen as the system analysis technique
because of its capabilities in generating behavioral
information of conplex systems at various stages in system
development, The fundamental choice of simulation over
measurement was based on practical considerations. While
measurement is more accurate than‘ simulation in deriving
behavioral information, it cannot be used during early
development when HPC networks do not existiin measureable
form. In addition, there are non-trival iogistical problems in
trying to measure the performsnce of 1argejnetwork systems

that operate with a variety of configurations and user loads.

- 29

The advantage of simulation versus analytical modelling is
based on the 1limitations of mathematical models of complex
sytems. A workable mathematical model of an HPC network system
could not be developed to derive the scope of behavioral
information that 1is required. In general, simulation is
flexible, accurate, and efficient enough in generating HPC
network system behavior, to be effective as an analysis tool.

As was indicated in Chapter 2 many simulation systems
have been developed, with a wide range of capabilities, for
the study of computer network systems. Despite this abundance,
there do not seem to be any available simulation systems that
could be used to analyze HPC network systems. This is due,
in part, to the uniqueness of the HPC network architecture
(described in Section 3.2.1). Another reason to develop a new
simulation system 1is the inpracticality of adapting an
existing simulation system to .a new operating environment
(potentially different programming languages, processing
capabilities, and i/o facilities). A third compelling reason
to develop MNSS 1is the need for a simulation system that is
useable in a commercial environment. There is a need for a
better simulation system than has been previously offered.

A ‘better’ simulation system is one that is developed
according to the principles reviewed in Chapter 2. Using those
principles a simulation system can be made easy to use,
flexible enough to perform a wide variety of simulation

experiments, accurate 1in generating network system behavior,

30

and cost/effective as an analysisv tool. Any one of these
features can be found in currently available simulation
systems, but few systems integrate them all into #n effective
package. A goal of the MNSS developmgnt effqrt is to provide
an integrated system in which ali fécets of tﬁe system reflect
generalv design goals of flexibility, accﬁ;acy, ease of use,
and efficiency. This applies to thg simulation médel,

simulator, and user inte:face.
3.2 Development Of MNSS

MNSS was developed to incorporate features that are
advantageous for a general purpose sigulation system. The
modelling discipline, simulator, and usér interface are not
fundamentally restricted to the simulation of any one_cIass of
computer systems. The primary ’uée of MNSS though, is to
simulate the behavior of HPC network’systgms. The HPC network
architecture that is particularly suited,tb the formation of
minicomputer networks. Thereforé, 'Miniéomputer' Network
Simulation System (MNSS) is an appropfiate»designation for the
simulation system described in this. thesis report. The
following two sections present the égperal characteristics of
the HPC network .architecture and Qn overview of thngNSS

implementation and use.

31

3.2.1 The HPC Network Architecture

There are two basic aspects to the HPC network
architecture: 1. - the archltecture of the indivldual 'HPC
systems, and 2. the way in whlch network commun1cat10ns is
handled by an HPC system. |)

An HPC system supports a multiprogramming environment in
which . several 1ndependent programs 'can be executed
concurrently. A program is made up of onemor more”processes, a
process is composed of the software control structure for a
part1cular execution of code. Code and data may be shared
between processes within a program. All contentlon for system
resources (eg. CPU, memory, etc.) occurs at the process level.
The process control software' uses a pr10r1ty-ordered
preemption | scheme to arbltrate resource | content1on.
Time-slicing 1is used to delegate usage of resources such as
the CPU among processes of egual pr10r1ty.

There are two baslc types of processes- user processes
and system processes. User processes are the princ1pa1 agents
of a user in gettlng work done on an HPC system. The prlorlty
level of user processes may vary, but typically it is flxed at

a particular 1eve1. User processes can be assoc1ated with
several forms » of activ1ty,h 1ncludlng code executlon
(processing), short wait operatrons, 1ong wait operatlons, and
remote processing operatlons. The dlst1nct10n between short

wait operations (eg. disk 1i/o operat1ons) and long wa1t

32

.

operations (eg. terminal i/o) is made becanse long waits force
a process to losge control of contested resources such as the
CPU, whereas short waxts do not. Renote processzng operations
relate to remote process actlvity that is in1tiated by a
remote request. A process will make a remcte request in otrder
to do work on a remote system in an HPC netvork.’ Th1s may
include accessing a network database or runnrng a program that
works only on a particular system 1n a network. A user process
‘waits” for a' remote request to complete before it resumes
local activities (ie. processing, vait activities).

A system process is: generated by the HPC opereting system
to support user ecitvrties. Through system processes, users
can utilize HPC hardware and software resources ‘that cannot
ben accesged by user processes d1rectly. The reasons for using
system process intermediaries are to maintain the 1ndependent
actxvities of concurrently existing processes, to act as
agents for wuser process communication activit1es, and to
relieve ugers of the complications of low level HPC
operations. System processes are at higher priorlty levels
than user processes and consequently preempt user processes in
cases of resource contention. | |

In a network environment the system processes most often

seen are associated with communications activities. These

system processes handle communications request/response
initiation and network store-and-forward Operations; Once

communications system processes gain*CPU control'(by waiting-

33

in line behind other systém processes o;‘by preempting a user
process), they do processing, shb;t wgi;s, and link chtrol
operations to perform a communications function. There is no
long wait activity and, due to‘thg brief time it takes to
perform a communications functign, the commqnicgtiong system
process is not preempted (by ano;her_ggstem process) from;CPU
control.

HPC networks can be arbitrarily connected in locally or
geographically distributedvAconfigu;atipns.’Stoge-and-forward
facilities afe ‘used whenever‘ipformagiop’must\be tfansfgrred
between HPC systems that are not direct;y qgnngcted. The
communications links in an HPC network may be half or full
duplex, and can transfer 'infgrmatjgn at a variety of baud
rates (1200, 2400, ...). System processes maintain tﬁe
protocols (eg. SDLC, X.25) that are used to control the links.

There are three types of information ttansferred through
an HPC network: request méssages,vresponse messages, and. link
control messages. Request and response messages are generated
by a system process for a user;process.,Thé transmission and
routing of these messages is also handled by a system process.
A request message is generated when a user process seeks to do
work on a remote HPC system, When‘Lit arrives at the
appropriate destination, a user process ishstazted to dq the
requested work. When the work is pompletgd, a response message
is generated. This message is then sent back to restart the

waiting initiator user process. Link control messages are used

34

‘primarily to acknowledge the transmission of reguest/response
| messages and to aid recovery from link etrors.

All communications overhead (eg. use of CPU and memory
resources) is handled by the “host’ systéms in an HPC network;
there are no communications front end processors or network
store-and-forward machines. System processes, which share
resources with user processes, are used to do nétwork
communications. The performance of an HPC system is degraded
for lacal activities in order to provide network
communications capabilities. This is a reasonable tradeoff in
a minicomputer network where an investmeént in dedicated
communications hardware is not cost-effective. The HPC network
architecture is, therefore, primarily an architecture for
providing low cost communications services for a network

composed of minicomputers.
3.2.2 MNSS Design And Use

The two key steps inh the MNSS development effort were,
first to formulate flexible modéels to represent HPC network
systems, and then to build a simulation system using these
models. The guidelines for the development éffort were
dictated by the'goals set forth in Section 3.1, and reflected
many of the principles discussed in Chapter 2.

MNSS models, which are representations of HPC network

systems, are built up from a basic model of an HPC system.

35

Inherent in the HPC system model is an interactive
telationship of the representations of proceSsing and
communications mechanisms. This relationship is essential to
the HPC network architecture. Overall, MNSS models can be
characterized as complete network models. This is true because
all major network components (ie. local processing and network
communications) and their interactions are represented
non-trivally. MNSS models are described in'.a funétional
modelling language that has a small number of building blocks
to represent HPC network system feéturéa.

MNSS is implementated on an HP3000 computer in SPL, an
Algol-like programming 1an9ua§e." MNSS incorporates a
discrete-event simulator and an interactive interface. The
simulator uses an SPL version of an MNSS mddel‘to generate HPC
network behavior. The MNSS user interface is impleménted as an
interactive dialog. In many cases the user picks‘from a menu
of alternatives in order to run a simulation expetiment'and
get back results. |

There is a wide range of behavioral information that can
be generated by the simulator (due to a large extent to the
completeness of MNSS models). The wuser can request the

following results to be displayed by MNSS:
1. processing statistics broken down by node and process
type (eg. system process, locally or remotely initiated

system processes),

36

2.

3.

4.
5.

7.

cumulative remote processing initiated by local

processes at each node,

‘queuing statistics (eg. maximum ;engt@, mean lgngth,

maximum wait, mean wait) for user processes in the CPU

wait gueue,

queuing statistics for messages in the link wait gueue,

CPU utilization statistics broken down by node and

processor state (eq. systemi Or user process control,

idle, process handling overhead),
link utilization statistics broken down by link state
(eg. idle, transmitting),

the number of user process launchings (intiate CPU

_ control) per node,vand1

This

the number and average size of message gransmissions per
1 ink .

information gives a user the ability to do sophisticated

studies of HPC network systems.

37

Chapter 4
MNSS MODELLING

The simulation of a system initially requires that a
model of the system be conceived. MNSS utilizes‘a set of
related models that are abstract feﬁfesehtafions of HPC
network systems. The development cfﬁtheée ﬁdéels (referéd to
here as “MNSS modéls') was based on two generalzdesign
criteria. First, the models had to be applicable for use in a
simulation system. Essentially the cost,viﬁtéérms of human and
processing resources, to develop the simulation system and to
run simulation experiments had to be miniﬁiied;4iThis’required
reasonably high level models of HPC network systems and a
straightforward proceddre for the impléméntafioh' of these
models in a simulation framework. The second design criterion
was that the models be made to éontéin the variables and
relations that are significant in represehtiﬁg the behavior of
HPC network systems. This design criterion was balanced
against the first design critérion,-insuring that important
detail was not purged from the model in order to simplify
simulation system development and use.

The effort to design and implement MNSS models ran within
the framework established by the desién criteria. The first
step was to develop a modelling diécipliné; This.in#olved the
development of a modelling languagé' and a technique to

conveniently map ‘real 1life’ system structures into the

38

abstractions of the modelling language. The next step was to
construct high level building blocks from modelling language
structures that could then be used to build MNSS models. The
structural similarities of HPC networks f;gilitates the use of
these building blocks; this avoids stﬁ;éing from scratch in
modelling each different network. Tﬁe final step in the
modelling effo:t was to develop a systematic procedqre to map
modelling structures into structures in the simqlation system

programming language.
4.1 The MNSS Modelling Discipline

The MNSS modelling discipline facilitates the development
of functional models of systems,k- It represents a
generalization of techniques used in finite—statewmodelling
and queueing network modellihg. MNSS mode;iing;strqptures have
- close ahalogs in the structures of these modelling
disciplines. The five basic MNSS model structureé are
entities, groups, group transitions, entity‘sources and entity
sinks. | | 7

An ‘entity’, in the context of the MNSS modelling
discipline, is an object whose behavior is of interest. It
could be a shopper in a supermarket modél or a query in a data
base model (note that the MNSS modelling discipline is general
enough to be used to describe models §f systéms éther than HPC

computer networks). Associated with an entity is information

39

about those entity characteristics thet have a bearing on its
behavior in the system to be modelled.. Entities can be
classified according to common ch;tacneristics into “entity
classes’. Entity classes are used as a convenient way to deal
with entities. (particularly the_informetion associated with
entities) durning the consttuction of a model.

A ‘group” is a collection of entities showing a
particular form of behavior; the behavior of an entity over
time can be described by .the sequence of groups it nas ine A
group can incorporate a vatiety of,orde:ings on the entities
(of one or more entity classes) that occupy it eﬁ_eny point in
time, ranging from no ordering to a sophisticated queue
ordering (eg. FIFO, according to eneityH,class, based on
priority information associated vwith,an.entity, etc.). For
the supermarket model a group could be defined for the
shoppers waiting to be _checked_ out or the shoppers being
checked out. The waiting line.(a FIFO queue) is the ordering
in the ‘waiting’ gtoup,

Entities can come into existence‘in a model of a system
in a number of ways. They may be defined to exist in a
particular group when the model is initialized (in general as
permanent entities in a closed system model); alternatively an
entity may be created and injected into a group in the model
from an ‘entity source’. Associated with an entity source is
information that identifies the class of entity to be created;

this information that is used to generate entity

40

characteristics. An entity can cease to exist in a model by
being absorbed by an ’entiéy sink’. By using entity sources
and entity sinks, models of open systems (ie. systems that
interact with their environment) can be formulated.

A ‘group transition’ is a path from one group to another
group, from an entity source to a group, or from a group to an
entity sink. Each group transition has associated with it an
event routine. The event routine identifies the consequences
of an entity leaving a group or entity source via the group
transition. The consequences of a group transition may include
provocation of other entities to undergo group trahsitions
(immediately or at some future time), changes to group entity
orderings, or modifications of entity information. For
example, in the supermarket model a shopper leaving the ‘being
checked out’ group will cause: another shopper to do a group
transition to that group from the ‘waiting” group, a group
transition to be scheduled for the new occupant of the ‘being
checked out’ group (when all that shopper’s groceries have
been checked out), and the 'waiting' group to be reordered.

In order to provide a convenient mapping between a ‘real
life’ system and a model of that system, a symbolic notation
has been defined for the MNSS modelling structures; this
notation is illustrated in Figure 4.1. The presence of an
entity class symbol within the symbol for a group, entity
source or entity sink indicates that entities of that

particular class can occupy the group, source or sink. One or

41

<:::> entity class "E"

group (with entity classes E or Ej

%
O

entity source

[:::::::><g___ entity sink
N
7~

group transition

Figure 4.1 MNSS Modelling Structures

42

En)

more entity classes can be associated with a group, source or

sink.
Figure

rules:

1.

2.

4'#

A

shown

MNSS modelling structures (and the symbols shown in

4.1) are connected together according"to the following

Groups can be connected together by a group transition
as long as they have at leaét'bne entity class in
common ; | |

An entity source and a group?c&h be connected by a
group transition, leading from the source to thé
group, as long as they have at least one entity class
in common; ,

A group énd‘an entity sink can be connected by a group
transition, ieading froﬁ the group to the sink, as
lony asathéy have at least one eﬁtity cla#s in common;
One or more transitions can lead to and from a group,
from an entity source, or to an entity sink;

A path in a model established by the connection of
groups associated with a particular entity class must
be either a closed path or a path from an entity

source to an entity sink.

job processing model created using the MNSS notation is

in Figure 4.2, A job (an entity in the model) comes

from an external job source and goes into a FIFO queue ordered

processing-wait group. A job is transferred to the processing

43

>0 +—<0

Job Processing-wait Processing Job
Source Group Group Sink
Group Transitions Entity Class
1. job introduction
(::) Jobs
2. job processing begins

3. job processing suspended

L. job processing completes

Figure 4.2 A Job Processing Model

Ly

group when it is at the head of the FIFO queue and the
processing group is unoccupied by any other job. A job stays
in the processing group until it either completes the
processing it has to do, in which case it is absorbed by the
job sink, or it uses a system allocated amount of processing
time (ie. occupies the processing group for that amount of
time), in which case it returns to the‘pgocessing-wait group.
This model is very simple and not vety useful (it assumes
among other thinga\that there is na—overhead associated with
nmoving a job in and out of the proceasxng group) . In,arder to
get a more detailed model, additional groups could be added,
more descriptive information could be associated with jobs
(ie. the amount of memory required), and the group transition
event ontines could be made more sophlsticated (eg. taking
into acceuant 3ob memory requlrements,]Ob handllng overhead,
etc.) . |

In general the followingr‘proceduré "should be used in

modelling a system:

1. Isolate the system of interest and identify all
interactions between the system and its environment;

2. Identify those objects in the system whose behavior is
of interest and set up entity classes (with entity
characteristic information);

3., For each entity class identify the types of behavior

that are possible and establish a network of groups

45

for the 51gn1f1cant aspects of this behavior-

4, Consolidate the groups that are essentially the same
but that have different entity classes, -

5. Define group transition event routines for each group

transition in the model. |
4.2 The Structure Of MNSS Models |

MNSS models are designed to accomodate the behav1or of
user processes, system processes and messages 1n HPC network
systems. The composite behav1or of these objects encompasses
| all interesting system behavior as identified in Chapter 3.
Accordingly user process, system process and message entity
classes have been defined For an MNSS model, entities from
these classes exist 1n a network of groups,bentity sources and
_ entity sinks structured to represent all significant entity
rbehavior, ‘
| MNSS models can be built using an HPC system model as a
basic component. As such, the‘ HPC system model has to be
adaptable to arbitrary communications v onfigurations (ie.
network environments). A submodel structure has been developed
to enhance the flexibility of the HPC system model The
submodels that have been constructed are essentially another
(lower) level of MNSS model components.

Two submodels make up an HPC system mode1~ they are the

processing submodel and the communications submodel. The

46

processing submodel represents the bohavior of user and system
processes. - The bchavior» of these procenses is sffected by,
and affects, the flow of messages in‘ the communications
submodcl. The interactions between the two submodels emanate
from each submodel’s group transition event routines. There
are no group transitions between the processing submodel and
the communications submodel} but'fs group transition in one
submodel may trigger (by way of an erent routine) a group
transition in the other. | o c

To form a complete MNSS model, the communications
submodels of several BPC systen nodels are connected together
by group transitions. 1f two HPC systens are tied together by
a communications link in the network to be nodelled, then the
corresponding communications submodels are connected.

The overall structure of an HPC system nodel model is
shown in Figure 4.3.' The details of submodel organization and
interaction are discussed in the following sections on the

processing submodel and the communications submodel.
4.2.1 The Processing Submodel

The processing submodel is "illustrated in Figure 4.4.
This submodel consists of four groups, two entity sonrces, two
entity sinks and eight group transitions. These structures
are arranged to provide a reprsSentstion'of an HPC system

which describes the significant behavior of user and system

47

@-.J several groups _@
- with
: Processing
::::::::>____—> : . Submodel
. -
submodel interactions
)
several groups -
@___) with _<®_ > Communications
' . /] . Submodel
y

state transitions

communications submodels
representing other HPC systems

Entity Classes

@ -user process @ -system process @ -message

Figure 4.3 General HPC System Model Structure

48

user process
‘source

user process
sink

(::> ‘ CPU-wait .
: group group] system process
system process , sink
source
long~wait
group
remote-walt

Figure k.4 Processing Submodel

kg

processes. The entities that flow through the submodel are,
naturally enough, user processes and system processes. Each.
process entity has 1nformation associated with it which, along
with group ordering and transition information, determines
when group transitions are to occur. The nature of the
}information associated with a particuiar process entity is
._based on it’s entity class. 4 ' | | “

The following items of information are associated with

each user process entity:

1. The uservprocess type identifies the.user process as

| being either locally or remotely initiated

2. The complete time® is the processing time (ie.
residence in the CPU group) required for user process
completion. N o |

3. Tne ‘long wait time’ is thekprocessing tine until the
user process initiates va longluait or, if the user
process is doing a lon§ wait, tnextime_wnen the long
wait completes. » {

4. The 'remote wait time’ is the processing time until
the‘ uger process initiates a remote request (for a
locally 1nit1ated process) or a completion response
(for a remotely initiated process). For a remotely
initiated process this 1tem is equivalent to the

complete time.

5. The ‘process time distributions' are the time

50

distributions from which information items 3 and 4 are
generated (eg. when a user process terminates a long
wait the processing time until the next long wait is
generated using the appropriate process time
distribution). | | |

The 'meﬁory ,requirement' specifies the amount of
ptimaty memory needed to hold the'user process code

and data (ie. the infdrmation that.needs to be brought

_into primary memory to allow the process to run).

The ‘remote destination distribution’ is the
distribution that is used to generate the destination
of a remote reqﬁest for a locally initiated user
process,' or the response destination for a remotely

initiated user process (in the 1latter case the

‘distribution deterministically generates the source of

the,femdte request).

The ‘message size distribution' is used to generate
the size of a remote request message or a completion
response message.

The ‘remote process distributions'_ are defined fof
locally initiated processés only. They are used in the
generétion of a remote user process that is initiated
as the result of a remote requést. These distributions
include the process time distributions and the message
size distribution (for +the reply generated by the

remote process).

51

A system process exhibits much simpler behavior than a
. user process; a system process does not do long waits, and
also does not initiate. remote reguests. Consequently,:the
'information associated with a system process’ entity is a
subset of that assocxated with a user process entity.(‘The
following information items are defined for each system

- process entity:

1. The ’‘system process type' identifies the task of the
system process as either 1nitiating a remote request
communication or handling \a message from a remote
source (ie. routing it through the communications
system). |

2. The ’‘complete time’ is the processing time necessary

to complete theyappropriate,system’process task.

The four groups in the processing submodel are designated
the CPU group, the CPU-wait group, the long-wait group, and
the remote—wait group. The CPU group can be occupied by a
single entity from the system process entity class or the user
process entity class. A process in the CPU group has control
of the HPC CPU. The process may be d01ng either proce531ng or
a short wait, which does not result in: alsw1tch of CPU control
to another process (as discussed in Section 3.2, l). When the

process is preempted from CPU control, completes, 1nit1ates a

~long wait, or initiates a remote request,~an appropriate group

52

transition from the CPU group will occur. Preemption will
cause an entity transition to the CPU-wait group;”a long wait
initiation results in a transition to the long;wait group; the
‘initiation of a remote request by a ptécéss brings about a
transitibn to the remote-wait group;-‘ ana when a pibcess
ccmpletes it 1is swept away to‘an'éntityISink (user processes
to the user process sink, system processés to the syétem
process sink).

The three ‘wait’ groups characterize the behavior of a
process entity when it is not in control of the CPU. If a
processg eéentity is in the CPU-wait group then the process is
‘waiting to gain control of the éPU..The'CPU¥Wait group has a
dual FIFO gqueue ordering for system and'.user processes.
System processes and user processes Varé kept in seperate
queues. Wwhen the CPU group is uhoccupiéd and the CPU-wait
gtoub is occupied then a proceSs.will make a group transition
from the CPU-wait group to the CPU group. The process that
makes the transition is taken froﬁ the systemiqueue if it is
‘nonempty, else it is taken from the user queue. The presence
of a system process in the CPU-wait group causes a user
process in the CPU group to be preempted. The user procgss
undergoes a group transition to the CPU-wait group and is
positioned at the head of the user process queue, becdming the
next user process to be served. 1In addition, a user process
can be preempted from the CPU group if itkhas done a ‘user

slice’ of processing and there are other user processes in the

53

CPU-wait group. In this case the preempted user process is
placed at the tail end of the user process queue in the
CPU-wait group.

The long-wait group and the remote-wait group can only be
occupied by user process entities (system process entities do
not exhibit the behavior these groups represent). The
long-wait group is occupied by a user process entity when the
entity is doing a long wait. This group.has an ordering of
user processes based on the length of time each process must
remain in the group. When the 1long wait of a proceés has
completed the process undergos a group transition to the
CPU-wait group and is placed in the user process queue. The
remote-wait group is occupied by a user process when the user
process has initiated a remote request, The remote-wait group
does not impose an ordering on the entities that occupy it.
When a remote request has completed (ie. a response message is
received at the HPC node), the user process that initiated the
request 1is removed from the remote-wait.grOUp, and placed in
the CPU~-wait group.

The process entities ‘that £flow through the processing
submodel can be generated at MNSS model initiation to
represent a permanent user load, or they can be generated
dynamically to represent a user load that changes over time.
The processes generated as part of a permanent user load are
always user processes and are placed initially in the CpPU-wait

group (when the model is used for simulation, care should be

54

Yo

taken to avoid biasing CPU-wait queue statistics as a result
of this initial cohdition); system processes are generated as
a result }of the actions of user processes and as such cannot
be in existence at model initiation when no action has taken
place. Processes are generated dyn&micaily at the system
process source and the user process source, and are injected
(via group trahsitions) into ‘the CPU~wait group. .The user
process source generétes 'uger processes with all the
associated informatioh (éonplete time, etc.). The user
process generation capacity of the user process source,
coupled with the group transitioﬁ event routine (for the
transition from the user process soﬁrce to tbe CPU~-wait group)
that dictates the frequency ‘of entity generation, can
completely represent a dynamic user load on an HPC systen.
The user process source also generates user processes to
satisfy remote requests. The tranéition of this type of user
process into the CPU-wait group ié-triggered by the completion .
of the system process that handled the inéoming remote
request. .

The system process source generates system processes to
handle communications processing. The processing may be
required for »the initiation of a rémote request or for
handling the arrival of a response. A remoﬁe request is made
by a locally initiated user process entering the remote-wait
group. The completion of a remotely initiated process (ie. the

process is absorbed by the user process sink) signals the

55

initiation of a remote response. Both the remote request and
response cause identical communicstions_processing and hence
the same type of system process is generated (ie. with the
same completion times). A different type of system process is
.generated by the system process source_;to‘,handle the
.Acommunications processing for network message routing. This
processing is triggered by a group transition in the
communications subnodel ‘(to be discussed"in the next‘section
iin detail along with other interactions between the processing

- submodel and the communications submoéel).
4.2.2 The Communications Submodel

The communications submodel provides avrepresentgtion-of
the impor tant behavior of the communioetions'message flow.
" This submodel is flexible enough to be. sdapted to a w1de range
- of communications oonfigurations. 1 Two variations ‘on the
oommunications submodel are shown in Figures4.5. This Figure
illustrates. how half and full duplex communications
capabilities are integrated into the‘sghmodel. In general the
submodel incorporates,three types of-gronpsf(two of #hich are
'duplicated' for each,communications link moaelled), an entity
source, an entity sink, and five principle group transitioms.‘
The entities that flow through the submodel belong to the
message entity class.

The information associated with a message entity controls

56

Half Duplex -

message-in
group
]ink'Wa;t e ——————— r"—'—"—‘_—‘_-—'_—'——- ~~~~~ j
group A !'
] e |
- (O
message-in 43______7__ v ‘ 4fs_ —
group | Yink link-walt }
: group group i
another communications —
submode ' half duplex group ergan!zation

Full Duplex

message-in.

message
source

|
| group
| h,///r—__—
link-wait <::> 1 (::> >
> ! R
group] I - message
Tink { sink
group :
L"_—‘"_'"'_-—_""""T

message-in : v @ @s___J
group - g .
___\v/____j link’ link-wait
l group group
another communications L __ _ . o e ————
submodel full duplex group organlzatuon

s — — - — —— ——— — i | o—— a—

— e —— e —t —— o—

Figure 4.5 Communications Submodel

57

message
sink

the message flow through the communjications submodel. This
information is used by group transition event routines to.
direct the message to its local or remote destination. In
addition, once a message reaches its destination the entity
information is used to determine the correct group transition
action to be taken (eg. restart a .i6ca1 user'process or
generate a remotelly initiared user proeess).' The message

entity information'ihcludes the following items:

1. The 'message'type"classifies'the méssage as either a
remote request message or a resoouse'message. :

2. The"message source’ identifies 6ﬁe'user process which
initiated the remote request and caused the message to
be generated (for a response message ,the message
source is the user process ‘that originally initiated
the remote request). | '

3, The message destination is an identification of the
HPC system to which the message is directed.

4. The ‘message lengthv is the length of the message in

bytes.

The three types of groups in the communicat1ons submodel
are designated the message-in group, ‘the 1ink-wait group and
the link group. There is' only one message-in group per
communications submodel, but there csn be duplicates of the

link-wait group and the 1link group. ﬁssentislly the ‘link

58

section’, blocked off in the submodel 111ustrations of
Figure 4,5, is duplicated for each communications link (half
or full duplex) attached to the HPC system being modelled. The
flexible structure of the communications submodel lends 1tse1£
to representation of 'a‘ wide variety of HPC system
communications configutations. | ‘ |

The message-in group_can be occupied by multiple messages
with no ordering enforced on the messages. Msssages occupy the
message-in group when they have been received by the HPC
system and are being prqcessco. fhif méons tha; a for each
mes sage in the messqgs-in:grougwa syspco‘ptocess; generated
when the message sntered the nossage—inwgroup;‘is active in
the processing submodel. The }sgstqnfprocsssing to be done
upon arrival of a mes;age into_thgimegﬁsggfin group is for
message routing activiuies. This incluéssifdcicrmining-the
message destination; if the Qestination‘isi;hat psrticuiar HPC
system then the oopropriste usg{»procsssing accion is taken,
else the message 'is» started ”on_ the_-nsyn_to its remote
destination. - R

The action taken on a message, and the accompanying group
transition =~ from the message-in group, occurs when the
corresponding 'system »process_in thé ‘processingr‘submodel
completes and 1is absorbed by thewsYScemip;ocess sink. If the
message is directed to s remote destinstion;tche message will
make a group transition to an appropsiste iink—waitrg:oup. The

particular link-wait group chosen is determined by a routing

59

algorithm incorporated into the group_transition}event routine
 (the link-wait group is selected such that the message will be
routed correctly to its destination over the link associated
with the link-wait group). If the message is directed to the
local HPC system then a transition will occur to the message
sink where the message will be absorbed. If the mes§gge:is a
response to a remote request, this tnansit;pn will triggg; a
transition in the processing supquq;;ﬁ;ggﬁthe remote-wait
group to the CPU-wait’ group for thnguserl\ggocesgg_that
originally initiated the remote .request. cherwise the
‘message 'is a remote iequest anqu.remqte;x‘initia;ed:gser
process will be generated by the user process source and
injected into the'CPU-wait‘group;

A message will be launched from the messaggug99;ce to a
link-wait group when the system_p:ogeas;initigggg tq;handle a
‘remote request completes (ie. the p;dcgsa_is@abgdrbed‘yg the
~system sink). The message genera;gd,by:ghe message source will
be assigned descriptive inforggtion (source, ,destingtioh,
length) baéed on information associated with the user process
making the remote reguest. 7 ‘

In general the interactions between the processing
submodel and the communications submodel occur in conjunction
with transitions by messages to and from the megsage-in group
and transitions from the message souicg._ These interactions,
which are designed into the event routines, are the key to

modelling communications o?e:headvin the HPC . system.

60

The key to modelling a variety of communications
configurations is the flexibility to customize the
organization of the 1link and 1link-wait groups 1in the
communications model.

The 1link group can be occupied at any time by at most a
single message. A message in the link group is in the process
of being ﬁraﬁsmitted. (physically) from one HPC system to
another. Consequently each 1link group is part of two
communications submodels; it is the br idge that ties together
the models of individual HPC systems to form MNSS models. A
‘message leaves the link group and enters the message-in group
in the communications submodel of the HPC system to which it
was transmitted when the transmission has completed. The time
of transmissiion is based on the length of the message (a
message entity information item) and the speed of the link
(taken into account in the link to message-in group transition
event routines). Corresponding to every liﬁk,group in the
communications submodel there is a link-wait group. Mességgs
in the 1link-wait group are ordered in a FIFO queue. When the
link group becomes free for entry of a message (ie. there is
no'_message in it and the delays due to physical link control
have elapsed) the head message in the link-wait message queue
makes the transiton to the link group.

The event routine that is associated with the group
trangition from the link-wait group‘tc the>11nk'group models

the 1link control protocol used on the corresponding link in

61

- the real network system. For every variety Qf_ control
protocol there is a distinct event routine. For example, a
half duplex linkvcontrol event foutine Qould be concgrned with
delays in turning the link around and in switching.é link from
an idle to a transmit-ready'di#position. On the other hand, a
hard-wired full duplex link would have ah event routine that
is only concerned wiﬁh whether the link is free or’not‘(the
link is always transmit—teédﬁ and 'priénted ink‘ﬁhe right
‘ direc;ion). - |

Once the appropriate event routine fqrAa link control
protocol has been defined, the ﬁextvgtep 1hvmodélling a link
in the communications submodel isito make the appropriate 1ink
and 1link-wait group connecfidns. Thei differences in the
conections for a half and full duplé; link can be seen in

Figure 4.5.
4,3 Simulation Using The HPC System Model

Severéll,features of _£he HPC system model enhance its
potential as a simuiation model. Among fhesevare the types of
structures used in the model, the model’s levels of detail in
representing significant HPC behavior, and the flexibility of |
the model as a building block for MNSS models.

The structures defined by the MNSS modelling discipline
and ~ used 'in the HPC system modei can be conveniently

manipulated in the context of a simulation system. The

62

information associated with MNSS modelling structures can be
implemented as data structures in the simulation proqramming
language. For example, each entity class can have an
informatibn table, with each entry in the table corresponding
to an active entity in the moﬂel The group transition event
routines that control the'»action in the model - can be
implemented as procedures (pieoes of coée that are callable on
demand by the main simulator ptOgram). A group transition
occuring in the simulation model then results in execution of
the appropriate t:ansition procedure. In general, Mnss model
structures can be systematically converted to the programming
language structures of the simulation system.

Another factor that affects the conversion of a model for
use in szmulation is the level to which the model represents
a system’s behavior. A model can fail to be an effective
simulation model if it represents a system with too much or
too little detail.' Too much detail (ie, the model represents
some system behavior at too low a level) ‘can make the model’s
use in simulation a torturous exercise in overk111 On the
other hand, a model which does not represent certain aspects
of a system in enough detail would not be of use in simulating
all the significant system behavior. o "

The HPC system model utilizes two primary 1eve1s of
detail to produce a valid and effective model of an HPC
system. The processing submb&el represents one level of

abstraction of system structures. The communications submodel

63

represents structures at‘another, higher level. The message
in the communications submodel is an entity that is created,
manipulated and destroyed by the processes of the processing
submodel. _

| ’By modelling messages separately from processes, easy
correspondences can be made between HPC network communications
structures and structures 1n the HPC system model (eg.
communications links and protocols). . This ”multilevel
- modelling technique also avoids the | complexity hand.
inflexibility of representing communications in a proce551ng
model (in particular the group transition event routines would
be very hard to define)

Perhaps the key feature of the HPC system model is the
way it can be used as a building block for MNSS models. This
capability was shown in Section 4 2 2 1n the discussion of the
use of the 1link group in connecting HPC system models
together. Basically a network of communications submodels is
formed, with each communications submodel having a
corresponding proces51ng submodel The 51mu1ation system
1mp1ementation of this network model structure is facxlitated
by adding node and 11nk qualifiers to the MNSS model group
names., These additional qualifications are necessary since
there are several copies of each group in a network model made
up of several submodels. With each group inp a network
unambiguously identified, 51mu1ation systemhdata structures

can be easily implemented and managed.

64

CHAPTER 5
MNSS IMPLEMENTATION AND USE

There is a great deal of latitude in implementing MNSS.
The details of a particular iﬁpleméntaiibn ﬁéy\be shaped by
the specifiations of the computér system'on which MNSS is
implemented, or by the needs of the network aﬁalyst.who is to
use MNSS. On the other hand there are a numbéi of essential
features that should be common to all ef fective
implementations. These features invoive the overall structure
of an MNSS implementation, the repfeéentaéion'of a sihulation
experiment, and the basic characteristics df‘the simulator.
By nature they are both useful and feasible within the
restrictions of any particular impléﬁenthtioh. Théreforé an
accounting of ‘these features Shoﬁld':ﬁé'mﬁde_to guide MNSS
implementors. |

The following sections provide a discuséion of iﬁportant
MNSS—implementation independent features, Appendix A
supplements this discussion with a S;ief description of<sqme

interesting aspects of a pérticular MNSS implementétion.
5.1 Overall Structure COf A MNSS Implementétion

The overall structure of a MNSS implementation should
reflect an emphasis on top-down and modular organization. One

possible structure that does this is modularized based on MNSS

65

functions. A graphic view of this structure is given in
Figure 5.1.

Five major MNSS functions have been identified:

l, create a simulation experiment“specification,
2. recall a simulation'experimgnt specification,
3. modify a simulation expériment spécificatidn,
4. save a simulation eiperiment specification, and

5. run a simulation experiment.

These functions represent effective tools for performing
simulation experiments. A simulation experiment specif ication
is created by first initializing all relevent information
tables and then, th;ough useruintetactioﬁ, building a basic
network specification (ie. the number of nodes in a network
and how they are connected). OnCé an experiment specification
has been created.it can be modified interactively to produce a
variety of rélated specifications. 1In particular network
conf iguration informatibh (e§. iink vspeeds)‘ and user load
information can be manipulated. It is possible to create
non-volatile copies of an experiment specification, that is,
copies that do not disappear when MNSS use is terminated;
exper iment sﬁécifications can be saved and recélled later when
they are needed. A user can choose to run a simulation
experiment at any time with the available experiment

specifications.

66

mod I fy

input
‘simulation

‘parameters

simulate
-network

output
results

sub-subfunctions

Figure 5.1 MNSS Implementation Organization

67

create recall save , run
experiment | |experiment | |experiment | | experiment|| fexperiment
&— subfunctions

Each of the major MNSS functions can be 1mplemented as a
super module containing numerous subfunction modules (each of
which may contain sub—subfunction“modules, etc.).’ This
modularization according to subfunction isrshown in Figure 5.1
for the major function “run experiment', N - f

At the top of the top-doWn 'organization shown in
Figure 5.1 is a module which acts asﬂa switch between the
major functions. 1In particular this module is implemented to
switch control, at the request of the user,rbetween the five
major functional modules; the only exception is when MNSS is
first started up, in which case the user only has the freedom
to create or recall an experiment specification. Any other
function would be invalid because of the 1ack of an experiment

specification to operate on.
5.2 Representation Of A Simulation Experiment

The items of information thst ksre needed in the
representation of a MNSS experiment are dictsted hy the
characteristics of the HPC network models. For example; the
network representation must include the number of nodes and
links, the connectivity of the network, and link descriptive
information (eg. half or full duplex, link speed, etc.). The
management of these information items is to a large extent
MNSS-implementation dependent, but there are some information

management policies that are generally useful. Two such

68

policies deal with providing alternative representations for
individual information items and minimization of the
information reduﬁaancy in an experiment‘reptésentation.

In most cases a MNSS experiment representations will
contain a large amount of redundant information if the user
load for each node in the network is represented seperately.
This redundancy often resulﬁs from the use of a standard user
load that is specified»for more than one node in the network.
To ’reduce redundancy, information caﬁ be kept in ‘common’
areas where it can be accessedkby (ie. linked to) higher level
information structures in thev expetimént representation,
Information items or structures that are potentialiy used more
than once in an experiment are candidates for ‘common’ status.
This applies to everything from distribﬁtion specifications to
complete procesé specifications.

Figure 5.2 ‘illustrates an experiment representation
breakdown wifh common process characteristics and common
-distributiqns. The'common process characteristics, that might
be grouped together and shared by proceéses, include process
time distributions, memory requirements and message' size
distributidhs. A separate table(s) could be used to store
distribution specifications. Entriés in this table(s) would be
pointed at by entries in the process table and the common
process characteristics table.

The success of the common infbrmation item representation

scheme rests on three factors. One is the storage requirements

69

characteristic

. features
) table
process
information ~ : 1
table
1 2
~ 2
3 3
-
- [
M T :
. _
m
referances
distribution tab)es
T . T o= : T e es o : ~
: i . i . -
constant special S ; exponential

Figure 5.2 Experiment Representation Breakdown

70

of a reference link relative to the reqnxrenents of the common
1nformation; item. If an information 1tem needs more storage
than a 1link to thét item, then the iﬂfarmation item may be
best kept in a common table. The aecbnd facter is the number
of references made to. an 1nformatiea 1tem~ En general, the
smaller the storage dif ference between the item and a link to
it, the larger the number of reﬁetenceé that are needed to
justify common status. The third factor forésuceess is the
specification time that can be saved~b§~a uéer in creating
simulation ?xperiMents with standard process specifications.
Modifications of existing simulation experiments cén also be
greatly simplified. For mqst fo;eseeable MNSE implementations
a common informatioh item 6rqanization for experiment
representations is attractive in terms of system efficiency
and user convenience.

Alternatlve represehtatiohs fci individual items caﬁ be
provided in a MNSS 1mplementat10n by allowing a user to select
from a vargety of distribution types. These types could
inciude constant, special,' uniform and exponential
distributions. Figure 5.3 illustrates~theivarious distribution
functions. |

The constant, uniform and exponential distributions are
commonly used in modelling And:simulation. The function used
for the exponential _distribution is taken from MacDougall’s
tutorial paper on simulation [19]}. This function can be

adapted to generate a finite range of values by specifying a

71

constant special

prob prob pl

i-1 i
value = X value = X; E:pm <r <jzpm
=1 m=1
r = a random number
between 0 and 1
b
uniform exponential
[
1 <+
x
prob A
7 85 7T
///////, © I
s - I
< L |
. e 1
X1 X9 X
value = x7 + (x2 - x1) r value = -x, (loge(r))

Figure 5.3 MNSS Probability Distributions

72

max imum and minimum value. Values generated outside this range
are either discarded or replaced by the closest valid value.
This modification of the exponential distribution function is
useful becaﬁse information items do not always range in value
from zero to infinity (note that constant and uniform
distributions have limits).

The special distribution is useful for information items
with values that can only be generated from an unusual
distribution (ie. not constant, uniform or exponential). A
special distribution' consiéts of a finite number of values,
each of which has a probability. The sum of the value
probabilities is one. The number of values 1in a special.
distribution is dictated by the experiment specification
requiremenis of the parﬁiculax simulation study in which the
special distribution is used. In general a special
distribution can bé used to apprdximate any distribution and
is the alternative when constant, uniform or eiponential

distributions are inadequate.
5.3 MNSS Simulator Characteristics

An event-driven simulator is especially suited to the
simulation of systems characterized using the MNSS'modelling'
discipline. Events in the MNSS modelling discipline describe
the effects of the state changes of entities in a system

model. These events can be easily tonverted to the events of

73

an event-driven simulator. Another valuable feature of an
event-driven simulator is the capability for pseudo-coincident
simulation activity. This is required for network simulation
where several computer system nodes may be operating in
parallel. |

An event-driven simulator can easily be implemented with
a clearly defined modular structure. This structure |is
illustrated in Fiqgure 5.4a. The modulesican“be'divided into
two groups: those that maintain the veﬁent' list
v(initialization, event selection, event scheduling and event
rembval) and those that do event activities (the event
procedures) . The event list maintenance modules are
independent of the type of system being simulated. The event
procedures on the other hand are specific to a particular type
of system (eg. HPC network systems). By insuring the isolation
of system dependent featuréé,‘ the simulator can be
straightforwardly adapted whenever the system is modif ied.

The structure of thé ‘event‘ list is the key to
pseudo-coincident simulation activity. It is the place where
the' simﬁltaneous activities océuring throughout a simulated
network are merged into a serial stream of events. The MNSS
event 1list structure is shown in Figd:é_5.4b;.EaCh event list
item carries enough information to identify the event type and
where in the network system the event is to occur. The event
list is linked together with the next event to occur placeq at

the head of the list., The foremost event is pointed to by a

74

b.

The Event List

event t

node #

_event id 1

(“ next event

fext event

pointer i} (;

MNSS Simulator Structurg______
init
tables

A

event
(initial)

\
select
event

event event

?

- clear
event exit
T . simulator

Figure 5.4 MNSS Simulator Characteristics

75

event
procedures

B

‘next event ©pointer’. Event 1list items that identify
coincident events are arranged Qiﬁh the first-scheduled events
being foremost in the event list (ie., first to happen by way
of the event procedures). This procedure yields an adequate
ordering of events for MNSS studieSIOf HPC'nétwork systems
(where events aré frequent and limited in scope).

Appendix A discusses the MNSS/3000 implementation which
incorporates the ideés’ presentéd inxthis chaéter, Thére is
also additioﬁél generally applicab1e information on the
implementation of MNSS. The MNSS/3000 imbléﬁeﬁtétion is used
to pfovidg the simulation results that afet‘ﬁséd kin the

following chaptérs on verification and experimentation.

76

CHAPTER 6
VERIFICATION OF THE MNSS IMPLEMENTATION

In order for simulation results to be useful they must
represent a verifiable picture of the behavior of the systém
being simulated. Clearly it is not realistic to compare the
‘results of every simuiation experiment to measurements of the
cbrresponding real system. This would defeat the purpose of
the éimulatidn system to be more adaptable for study then a
real system. In addition a simulation system may be used to
anticipate the behavior of a system yet tokbe developed. 1In
this case no measurements are possible, hence other
verification techniques must be applied.

Effectivé verification procedures utilize a limited
amount of information about the predicted or measured behavior
of a system in order to prove that simulation results (in
general) are valid. Among the procedures that are often used
are the identification and verification of simulation model
parameters and the functional vérification of simulation
system operations.

Simulation model parameters represent real system
constants that can be isolated from complex system
interrelationships. They may be anything ranging from the
speed of a communications link to the time it takes to do a
particular task (eg. start an execution of a process once it’s

in main memory). The verification (where it is necessary) of

77

- parameters used in the simulation mpdel}can_be done,through
_measurements or the prediction of system behavior. ‘

The functional verification of the simulator requires
. matching behavior in the simulated system to behavioral data
produced by simulation. This can be done by first insuring
that basic behavior patterns in thekfsimulatgd system are

represented in the simulation model; if action "X’ always

L4 [

‘follows action 'Y in the simulated system £hen the same
sequence must be represented in the model. Theh the behavior
pattern results produced by the simuiator a;é verified ih view
of corresponding results gene;ate@vby th simulated system.

- Functional verification can be done at two levels.
First, fundamental behaviortpattern;regg;ts can be predicted
for a particular system and then confirmed for the éimulation
’system; This verification can be done to thevextent that

fundamental behavior patterns occur in a system and produce
predictable results. Another level of functional verification
~can be ' done through the use of system measurements.
Unpredictable behavior pattern results can be identified and
compared to simulatiqn ‘experiment :esults;v This form of
functional verification must be done with discrimination
because there are potentially an infinite number of behavior

‘patterns. |
The following two sections of this chapter will describe

the procedure by which MNSS is verified in light of HPC system

behavior. Because HPC network systems are in a development

78

stage, no measured results are available, but measurement
experiments are specified for later use. For now verification
of critical model parameters and functional behavior are

dependent on predicted system behavior.
6.1 Simulation Model Parameters

For the HPC system model three groups of parameters have

been identified:

l. system process completion times,
2. process switching overheaa,'

3. operating system constants.,

The values of the parameters in these three groups are either
constants or determined by a known function (of environmental
factors).b

There are " two types of éommunications system processes
represented in the HPC sttem model. In an HPC syétem these
system processes have associated modules of code that‘do link
control and message handling. The ‘generation of a systenm
process results in a reasonably predictable execution path
through the code modules. By taking into account the code
execution times of an .HPC system and the nature of the
execution paths, a prediction can be made for the system task

completion times. Based on this procedure the following

79

TN NN T T e R N T T

completion times have been derived; 200ms for the message
generation system process, and 100ms for the message routing
5ystem process.

In order to get more accurate values for system process
completion times, measurements could be done on an HPC network
'system' when HPC systems and measurement tools become
available. The measurements would require a message soutce, a
sof tware monitor, and at least a three node HPC hetwork (to
have message routing). The-software‘monitdr would take timings
at the end points of the execution paths through system
process code mddules. These measuréments (repéated many
times) would 'yield representative values for system process
completion times. |

Process switching overhead can, in general, be

represented by the following expression:
Tov = Cl1 + C2*Min + C3*Mout

In this expression, process switching overhead (Tov in units
of time) is a fuhction of the memdry requireﬁents of the
processes involved in the switch (Min and Mout-in units of
space), and the system code that must be executed to db memory
management (C2 and C3 in units of time/sbace) and CPU cdhtrol
transfer (Cl in units of time). System code execution times
can be predicted based on anrexamination of the execution

paths associated with process sﬁitching. For the first

80

implementaion of the HPC system model (ie. the implementaion
referfed to in this thesis) a standard memb:y requirement is
assumed for all user processes so the expression for process
switching overhead reduces to a cons;ant (lpOms is the derived
value of the constant). This Simélificafiéﬁ‘of the overhead
function is necessary because of therdifficulty to predict its
value in general.

Measurements on an HPCv‘system will be needed to
accurately define the parameters in the ovefhead function.
These measurements will require an H?C éystem, a software
monitor, and a controlled .usérrproceés_load on the system.
The measurement procedure would involve genérating two user
processes with a known memory requirement‘and then allowing a
specified number of process switches to_occur; ﬁyrmeasuring
the overhead associated with a variety of pkocess memory
requirements enough values could be generated to identify the
overhead function.

Operating system constants are set‘;o a‘specific value
when | the operating system ié implémented. Thgrefore no
measurementé of ch system. operations are needed. Some
operating system constants are fixed fdr all HPC system
implementations. For example, the minimum CPU control time for
a user process before it can be preempted by another user
- process (ie. the ‘user slice’) is set to 500ms. On the other
hand some constants are particular to an installation and must

be redefined for each différent HPC network. The window size

81

for a half duplex communications line is an example.

6.2 MNSS Functional Verification

There are a number of fundamental behavio: patterns that

are inherent in an HPC network system. These include:

2.

3.
4.
5.

Each of

continuous CPU bound,gxecution.withﬂa standélgne user
process (ie. there is no process switchihg oﬁerhead),
long wait initiation by‘ é ﬁioce§s, re@ovingv the
process from contgntion for CPU control,

process switchiné and the cbnSequent péerhead,

system érocessing resﬁltihg froﬁ ﬁétwbrk_message flow,
the startup of a remote user process after receipt of
a remote request,

the‘ completion of a remote user process resulting in
the gene;ation_of'a remote response message,

local user procesé restart Hdn ;rééeipt’of a remote
response, |
store-and—forward message traffic in networks that are

not fully connected.

these behavior patterns should be duplicated in the

behavior of the simulated HPC network system. To show that

this is indeed true specialized simulation experiments can be

defined that focus on a particular pattern of behavior. The

82

experiment specifications must describe a system whose
behavior can be predicted. If the simulation experiment
results are as predicted then the fundamental behavior pattern
that produced the results is verified. The experiment
analysis that follows is part of the process to funétionally
verify MNSS. |

In order to verify the functioning of process switching,
remote request operations and stere—aﬁd—forward mechaniéms, a
standard simulation experiment hag been specified. For each
MNSS function to be verified, aépropriate' user process
definitions are added to this speéificatioh. Appendix B gives
a summary of the standard experiment’in the MNSS descriptive

notation.
6.2.1 Process Switehing

The | simulation experiment used to verify process
switching has two CPU bound (no long waits) user processes
competing for CPU control. Neither of the déer ptocesseé ever
makes a rémote request so all acti?ity in‘ﬁhe simulated system
takes place at one HPC network hode. Tﬁe activity in the
system can be described by the following state-time sequence:

time > * 100ms * 500ms * iOOms‘* SOGms * actions repeated
Process 1 * wait * CPU * wait * wait * . e o
Process 2 * wait * wait * wait * CPU * e e e
The time intervals that occur when’both processes are in the

CPU-wait state represent the times when there is process

83

switching overhead. Given this simple behavior pattern and
knowledge vof the 1length of time the}simulation spans, it is
easy to predict CPU utilization and CPU-wait statistics. For
‘example, durning a one minute-peribd the“précess switching
6verhead is derived by dividing GOOOOms by 600@5 (the period
that includes one process switch)}ahd ﬁultiplying the result
by 100ms (or the time calculated to do QneAprocess switch for
the two processes involved). The overheedkin_this case 1is
equal to 10000ms. |

The pfedictions are confirmed by the statisticsbgenerated
by an MNSS experiment ‘(given in Appeﬁdix C). Thne the
fundamental process ’sﬁitching mechanlsh vworks - for MNSS

experiments.
6.2.2 Remote Request Functioning

There are eight distinct phases to the cycle of behavior

a user process exhibits. in making\remote requests:

1. a user process does local activity (processing and
long waits), '

2. the process initiates a remote request and an
abpropriate message is gehereted,

3. the remote request message is ,trahsmitted to its
destination, |

4. a remotelly initiated process is generated,

84

5. the remotelly initiated procesg runs to completion,

6. the remotelly initiated process completes and a remote
response message is generatéd,' |

7. the remote response message is transmitted to the node
of the ramote‘request‘originﬁtor,

8. the remote request originator is restarted for iocal

activities.

Reﬁote request behavior can be isolated and verified by
an experimént with a CPU bound process making remote requests
td a neighboring nbde (ie. no store-;nd—fprward). Given a
remote request interval of 500ms, message sizes of 100 bytes,
a link rate of 8000 baud, and a remote process completion time

of 500ms, fhe following cycle can be’predicted:

Tiﬁe(ms) > 600 * 200 * 100 * 100 * 600 * 200 * 100 * 100

Phase > 1 * 2 % 3 % 4 * 5 * 6 * 7 * §

<Using.this cycle, system statistics can be derived for a one

process, two node system. For example,'durning a one minute
period this cycle (2000ms) would be repeated thirty times.
Therefore local user CPU processing‘ and overhead (phase 1)
should be 30x600=1800ms and remote CPU processing and overhead
(phase 5) should also be 1800ms. These and 6ther _predicted
‘phase’ statistics verify the simulation experiment results

(Appendix C).

6.2.3 Store-and-forward Functioning

The experiment used in Section 6.2.2vcah’be modified to
show Store—and-forward behavior._ Instead of having remote
requests sént tora’node connectédAdirectlyito the driginator's
node, they can be sent to their destination thtough an
intermediary. Phases 3 and 7 6f the béhavibf’cycle given in
Section 6.2.2 have to be expanded to account for

store-and-forwarding:

1-2 ...

3. transmit request message to intermediary node,
3-1. process messagé and rout it to the appropriate link,
3-2, transmit message to request destination node,

4-6 ...

7. transmit response message to intermediary node,
7-1. process message and rout it to the appropriate link,

7-2. transmit message to response destination.

The remote request cycle time is lengthened to 2400ms
(using the Section 6.2.2 system parameters) with the changes
to phases 3 and 7 shown below:

Time>..100 * 100 * 100 * 100 *..* 100 * 100 * 100 * 100
Phase>.. 3 * 3-1 * 3-2 % 4 *__*x 7 % 7.1 % 7.2 * g

The modified remote request cycle can be used to derive
statistics for a system that has. store-and-forward behavior.

Durning a one minute period the cycle would be repeated 25

86

times. This means that ihe store-and-forward system
processing overhead (3-1 and 7-1) is equal to 2x100x25=5000ms.
This verifies the statistic for system process1ng in the
store-and-forward node generated by s1mulat10n (summarxzed in
Aﬁpendix C). | :

Funct1onal verification experlments must 'be used
1n1t1a11y to verify the 31mulat10n system and then whenever a
change is made to the structure of the sxmulation model.
Therefore an extensive set of experlments is v1ta1 to 1nsure

correct MNSS operation.

87

CHAPTER 7
MNSS EXPERIMENTS

Properly implemented, MNSS prov1des a convenient tool for
interesting sxmulation analy51s. The goal of this chapter is
to demonstrate the capabilities of MNSS (in particular
MNSS/3000 - see Appendlx A). An' exper1menta1’ process is
presented that meshes with the mechanisms of MNSé. This
process, which 1s essentially the w1de1y aclaimedf;scientific
method’, guides the MNSS "user | in doxng effective
experimentation. The 1latter section in this chapter presents
an outline for two 51mu1ation studies that are interesting in
light of commercial computer network applications. Sample
results from the two studies, produced using MNSS/3000, are

given with brief ana1y31s.
7.1 The MNSS Experimental Process

There are virtually an unlimited number of 51mu1ation
experiments that can be done using a fully 1mplemented MNSS,
From this profusion of experiments the MNSS user must select
those that most directly serve his/her purpose. This selection
procedure can be formalized into the MNSS Experimental Process
which, faithfully used, effectively focuses experimentatiOn in

an MNSS simulation study.

The MNSS Experimental Process is summed up by the

88

following list of steps:

1. Form a hypothesis dealing with the behavior of HPC
network systems;

2. Desigh é set of expgriments that conceivably will
demonstrate the veracity of the hypothesis;

3. Build a number of key experiﬁents that can be used to
generate, by way of MNSS experiment modification
facilities, the entire set of ihteresting experiments;
and |

4. Run the experiments, analyze the resuits and determine

the veracity of the hypothesis.

These steps can be repeated several times with continuing
adjustment of the hypothesis to account for experimentally
produced'information.v

The MNSS experimental ptocess can be used to structure a
broad range of simulation studies. For example, to explore
basic networking structures a ﬁypothesis ﬁight be: "Half
duplex communicatibns lines require significantiy more message
buffering for high message traffic than do full duplex lines."
This hypothesis can be refined through'experimentation to
state exactly the relationship 'between line protocol, line
speed, message traffic, and message buffering. Another type of
study involves network per formance dptimization for a

particular application. In this case the hypothesis might be:

89

"For distributed data processing application ‘N’ the most
cost—effective network configuration is a four node star, with
9600 baud full duplex communications 11nes, etc.“ Refinement

of this hypothesis leads to an application customized network.
7.2 Two Simulation Studies

‘The followrng simulation studiesv wereh done using
MNSS/3000._ The goal of the experimentation was to demonstrate
the capabilities of MNSS.' Due to the limited nature of the
verification ,of MNSS/3000 (Chapter 6) the results from the
studies should be regarded with cautlon. The results reveal»
general forms of HPC network behavior and are not predlctive
of the exact behavior of any- particular network When
MNSS/3000 is verified and tuned for a particular HPC system
(Eg.{ HP3000) the simulation results generated will be more

accurate and specific in showing forms of_network behavior.

7.2.1 1Incremental Network Expansion

Hypothesis: The incremental processing increase achieved by
adding a node to a network is sensitive to the

network’s line and node characteristics.

This was an awesome hypothesis to confront head-on, so

some simplifying considerations were in order. First, only

90

fully connected networks ‘were examined, each node in‘the
networks of interest had to be linked to every other node by a
communications line.‘ Second, the communictions lines in a
particular network all had'the same speCifications (ie.iduplex
type and 1line speed). Third, identical standard user loads
(based on a standard user process Specification) were used at
each node. Forth, the parameters varied in defining the user
load at a network node were limited to the number of permanent
user processes (formally described in Chapter 4, PP. 54) and
the remote request level per user process. The permanent user
processes were the agents of transaction data proceSSing,'they
‘were continuously active (which assumes an infinite supply of
transactions to be processed). All ;ere defined with identical
local proceSSing characteristics (ie. computation, short wait
and _ long wait requirements). In addition the destination of
‘remote requests originated by a permanent user process had
| equal probabilities of being any non—local node in the network
(ie. a central database application load was not considered).
Based on the hypothe51s and the associated limitations a
set of experiments was designed w1th a variety of network
conf igurations, duplex types, 1ine speeds, ‘network proceSSing
levels, and remote request levels. Each experiment in the set

was speCified by draWing parameter values from the following

list of alternatives:
1. network configuration - two,ithree and four node fully

91

o r

connected networks; v

2, duplex type - half and full duplex- |

3. line speeds - 1200, 9600 and 19200 baud- .

4., network processing level - 12, 18 and 24 permanent user
processes in the network;

5. remote request level - low, medium and high.

There are 108 potential experiments that'can be built with
different combinations of these alternatives.

The 1low, medium ‘and high ratings for the remote request
1evel are based on the expected proce551ng that occurs locally

before a remote request is 1n1t1ated (1e. the 1ocal processing

time of a user process from the completion of one remote

~request to the initiation of another). The “time between

remote request’ function is (l-P)T/P,, where P is the

probability of a remote request and T 1s the transaction time.
The transaction time is the amount of time (1n milliseconds)
required to do some basic amount of processing (ie. a
transaction). Each 'transaction’time' °f,PF§Cé§§i“9;d°ne by a
user ‘process gis directed either iocalig_or'remotely'(ie. a
remote request). -Single acceSsesﬁbtov a tdatahasev can be
classified as transactions, taking a. specific amount of
processing to complete. The remote /reguest probability is
defined for each user process,-andlis the probability of a
transaction needing remote processing (eqg. onehin five of the

transactions originated by user process A requires remote

92

Y

processing; this implies a remote request probability of .2).:

Figure 7.1 shows the table ofkuser process specification
values for the time between remote requests.. For the
experiments' at bhand, a transaction‘tfme of 250ms uas always

used.

7.2.1.1 Experiment Results One

Some interesting experiment results are presented in
graphical form in Figqure 7.2 (a, b and c). The simulation
experiments that generated these ‘resuits' were run for a
simulated time of 600 seconds. Up toj 20,000 euents were

generated with the runnlng of an experlment (four nodes, high

" remote request level, 24 user processes). Using a t1meshared

HPI000 this took 20 seconds of real time. For the results
given here all networks were spec1f1ed to have 9600 baud full
duplex 11nes, and had loads of 12 or 24 user processes.

The proce551ng performance of the networks studled can be'j
measured in terms of transactions per second (ie. the network
transaction processing throughput'generatedib§ the specified
pernanent user processes). Figurea7.2s shows the'relationships

(simulation derived) between the number of network nodes, the

remote reguest rate and the transaction processing throughput.

Trend lines have been drawn ’in Ato highlight these
relationships. These lines illustrate in a very rough way the

functions associated with various groups of data points.

93

remote request level

LOW MED UM HIGH
.25 2.25 1.00 .25
.5 4,50 2.00 .50
transaction
times
d
(seconds) 1 9.00 4.00 1.00
2 18.00 8.00 2.00
‘}
all values
in seconds
Figure 7.1 Remote Request Level Table

94

remote request level

a low
10 t med ium
8
transaction 6t high
processing
throughput 4
(tran/sec)
2
0 N g [S,
2 3 4
nodes
E.
100 ¢ remote request level
80 b .

U e __Tow
network 60 — * Tow
utilization 40 : medium

4
20 ¢ high
0 t +
2 3 4
nodes
c. remote request level
70 low
60 } med i um
50 |
network Lo high-
idleness 30 low
idl -
(3 1dle) 20 -
10
0 y } >
2 3 4
nodes
------ 12 user processes --==-- 24 user processes Lines: 9600 baud,full

. . 1
Figure 7.2 Incremental Network Expansion Experiment Results duplex

95

Figure 7.2b puts the transaction processing throughput
values shown in Figure 7.2a into berspective. Network

utilization is measured ‘as a percentagekof the theoretical

maximum transaction processing throughput (where there is no

system overhead due to communlcations or process sw1tch1ng).

The maximum value for a 250ms transaction time is 1/. 250 = 4

‘transactlons per second for one node or 4xN

transactions/second for an N node network.

‘The results given in Figurel7 2a ‘clearly showArthat
network transaction processing throughput increases "with
incremental network ‘expanslon, but that this increase is not
proportional to the number of nodes added to the network. As a
network increasese in size, network transaction processlng
efficiency (per node) can decrease due to communications
overhead or lack of work to do (assUmlng the number of“user
processes specified is‘a‘constant).'Figure‘7.éc shows that for
the network situations examined_here the falling utilization
(with incremental: growth) is due'to}some degree to idleness;
not enough processing ~work was avsilahle to-keep all nodes
busy all the time. | |

A partial solution to the idleness problem is also shown
in the Figure 7.2 results. An increase in the number of user
transaction processes led to decreased idleness (espec1a11y in
3 and 4 node networks) and increased network util1zat10n. This
illustrates the sensitivity of network utilization to the

character of the network user load.

96

Another potential solution to the idleness problem was
examined and found to be ineffective. This approach entailed
increasing the line speeds in the network from 9600 to 19200
baud, wh11e malntaininq a user load w1th 12 processes. If the
idleness was due to commun1cations‘ delays then this would
decrease idleness and increase'vneteork utilization. No
significant increase in network utilisntion}was shown when
experiments were done; ‘the idleness(,wasv not‘ due to
comnunications delays, but: rather tofdelags associated with

system processing.
7.2.2 Four Node Network Processing Characteristics.

Hypothesis: The total processing capabibxlity of a four node
network is sensitive to ~ node connection

characteristics and the applied user load.

This is another sweeoing hypothesis that had to be
diluted in scope in order to design initial experiments. The
simplifying‘ consxderat1ons' were the same as those of the
‘incremental knetwork expansion hypothesis with two
exceptions. First, star and node configurations were used in
addition bto a fully connected configqrstion,‘ Second, the
remote request destination distributions:in_sone experiments
were indicative of e centralized network dataoase application.

For these experiments one node was designated the database

97

processor (usually the central node in a star network and an
arbitrary node in ring and fullyvconnected networks), and most
of the remote reguests were directed to this node. In addition
the user processes in the database node were primarily
processor bound (ie. doing database maintenance) and
infrequently initiated remote requests.,

The set of experiments based on the simplified “four node
- network processing’ hypothesis was designed with various
network conf igurations, line speeds,l network processing
levels, remote request levels and remote request destination
distribution types (indicative of centralized end distributed
network databases). The experiments‘in‘this set were specified

using the following list of alternatives:

l. network ’configuration - .star, ring and fully connected
four node networks: '

2. duplex type - full duplex:

3. line speeds - 1200, 9600 and 19200 baud;

4. network processing level - 16 and 24 user processes in
the network;‘

5. remote request level - low, medium and'high:

6. remote request distribution - centralized and

uncentralized.

Using these alternatives 108 different experiments can be

built. The remote request level parameter is specified using

98

the table shown in Figure 7.1, with a transaction time

of 250ms.
7.2.2.1 Experiment Results Two

Selected results from ‘four node network’ experiments are
shown in Figure 7.3 (a and b). The results given in this
section are dfawn primarily from disfributed database network
experiments. The networks were specified with 9600 baud full
duplex 1lines and had loads of 16 user processes. Experiments
using centralized network database specifications yielded
inconclusive results and need to be supplemented by further
experimentation. ‘As with the results described in Section
7.2.1.1 the results presented here were generated by
experiments that ran for a simulated time of 600 seconds. In
addition, the ‘transaction processing throughput’ graph in
Figure 7.3a measures the same quantity, in the same units, as
the graph in Figure 7.2a.

The results shown in Fiqure 7.3 graphically illustrate
the effect of communications overhead on transaction
processing throughput. The' effect is most noticeable when
there is a high remote request level. With the star
configuration there 1is a higher communications overhead than
with a ring configuration, which in turn is higher than the
overhead in a fully connected configuration (since in a ring

the processor also has to perform message routing for messages

99

a. remote

- request
12 | o level
- . P . Iw
10 } v) e medium
L L —
. ——
transaction 8 L ;
processing ' ‘ ,
throughput [' _ '
(trans/sec) 6 _———d————_'—_;—_J_;;‘_______v____——high
2
STAR RING FULL
configurat?on'
b.
‘ ! STAR
5 (central node)
h =
CPU wait 3
(seconds)
FULL
2 -
1 }
STAR
+ ' : (point nodes)
low med um high
remote request level
‘Lines: 9600 baud full duplex Loads: 16 user processes

Figure 7.3 Four Node Network Experiment Results
100 °

destined to other nodes). This 15 _one cause for the
relationships of throughput values " in Figure 7.3a
(particularly for the high remote request level relat10nsh1p).
"There is a processing (system and user) bettleneck in the
center of ‘a star configuration cauaed by eonmunlcations
overhead. Figure 7.3b shows how long on the average a user
process waits in the CPU queue before:it'gains control for a
processing quantum. The wait in the center of a star network
is significantly higher than the wait at the points of a star,
or in any node in a fully confiqured network. At the center of
a star there is a great deal of message traffic that results
in communications processing and chronic preemption of user
processing. 7

The communications processing diéadvantages of the star
configuration wane into insignificance when the remote request
level is reduced. As 1is shown in Figute 7.3a, the star
- configuration is virtually eguivalent tn terms of transaction
processing throughput for a low_ remote tequest level. The'
»disappearence:~of the bottleneck with‘a.decreasing level of
remote tequests is confirmed by the results given in
Figure 7.3b.

The results described in this wsection reflect oniy é
small portion of -the information generated by ‘four node
network' experiments. For example, the results of experiments
- done with central database Specifications indicate that a star

network can sometimes operate as effectively as a fully

101

connected network even with high remote request levels (this
is because most requesté'éfé directed to the central node).
Further experimentation and - analysis is needed to proVide a
clearer overall picture of network performance with
centralized database applications. In any case the results
documented here demonstrate’what can be’done when MNSS ié used
within the context of a ciearly def ined network analysis

study.

102

CHAPTER 8
CONCLUBIONS -

The development of MNSS led to a number of insights and
iaccomplxshments that made the effort uotthwhile. The initial
careful examination of computer network systems identified a
need for analysis tools that could be used to explore the
complex behavior associated with th&se systems. MNSS Q&s then
developed to help meet this need.

MNSS is a muitifaceted system that includes a modelling
discipline, the building blocks for a set of minicomputer
network nqdels, and a simulator, Thetﬁnss modelling discipline
is simple fo use but very powerful as a method of providing
abstract representations of system structures. Using the MNSS
modelling discipline building blocks were developed for set of
miniccmputer. network models. The'principlé building block is
. an HPC saystem model. The modelled minicomputer networks are
cbllectibns of HPC systems. The rising popularity of hetwork
syétems (including HPC network systems) makes an understanding
of their}behavibr a valuable commodity. The MNSS simulator is
the principle agent in providing HPC network system
performance data, The flexible, easy to use characteristics of
the simulator are what make MNSS a worthwhile system analysis

tool.

103

8.1 Limitations Of MNSS

There are a number of limitations to MNSS in its current
state of development. These limitations encompass béth easily
correctable functional shortcomings and also more fundamental
design problems. |

There is no formal procedure yet defined that can be used
to initialize a network model in Such ‘a way as to avoid
noticable transitory effects when the modél is used for
simulation. Curkently with certain ngtwdrk situations the
simulation statistics generated for maximum queue lengths and
maximum queue waits reflect the initiél setup»of the model and
not the overall system behavior that is of interest (eq.
starting with» all permanent usef processes in the CPU-wait
queue may produce 'a system state that does not occur under
realistic load conditions).

There are two potential solﬁltions to this problem. One
solution 1is to 'ph#se in’ the permanent user load while doing
simulation with a system model. This would entail inserting
permanent user procéssés into the C?U-wait state over a period
of time instead of all at once when simulation begins. For
this to be successful the phase in time would have to be short
compared to the total simulation time, A second solution is to
begin gathering initialization sensitive statistics only after
all startup effects have disappeared. Thé simulation time

after the delay in statistics gathering should be sufficiently

104

long to insure that the final simulation statistics are valid.
The usefulness of MNSS results is now limited by the
incomplete process of HPC' system model verification.
'Completion of the verification prooedure presented in
Chapter 6 will result in proving the model correct for a
particular HPC system;' this is required hefore MNsS results
can be used with complete conf idence. In addition since the
HPC system model can be used to represent a class of systems
(ie. HP produces a series of computers w1th related
architectures), there must be an adjustment and verlficatzon
of the model for each type of HPC system-to be analyzed in a
simulation study. | - | |
There are a number of limitations in the current

implementation of the HPC model description. These include:

1. the model description lacks a specification for cOmputer
system primary memory sizes ‘that can be used in
calculating CPU-control process switching overhead,

2, there is no convenlent way to model networks of computers
with dlfferent processing speeds (1e. all computers in a
network must either have the same processing speed or the
user load specification must be adjusted to eccount for
differences), and .

3. the CPU—control process switchingﬁ overhesd does not

| directly take 1nto account secondary memory to prlmary

‘ memory transfer rates (there should be a parameter to

105

specify this rate for each system).

- These limitations can easily be overcome and will be

| eliminated with the next stage of MNSS development.
8.2 Extensions To MNSS And Further Study

With additional. study and development a number of
extensions to MNSS could be made to inctease.its capabilities.
The ‘extensions discnssed in'this section do not necessarily
‘f require major modifications to MNSS as it is currently
'implemented | | |

With some changes to the user load specification part of

the MNSS simulator, trace data compiled “by monitoring a
particular application could be used directly to specify the
user load for a aimulation experiment. This feature would be
very useful in doing a 51mulation study aimed at optimally
configuring a network for an existing application (that is the
application is running on some available system)., |
Selective submodel simulation is not now provided by
MNéS. By extending MNSS to. inolude this capability, users
would have more control in doingvsimulation studies. MNSS
could be used to simulate network neasage traffic with a full
HPC network model or with only‘the conmunications submodels
(messages wou ld bev generated iat message souroes using

frequency distributions).k The . principle difficulty in

106

_implementing selective submodel simulation is how to
characterize the universe as seen by the selected submodel.
This aspect of the universe must be reduced from an active '
simulation model to an analytic function or trace data (the
most likely solution). This mustwbe done:dynamically when a
user selects a submodel fot simulaticn. l
Models are -now described interactively using predefined
building blocks made from the basic modelling discipline
structutes (eg. groups, entities, etc) e These building blocks
(eg. processing smeodels, half/full duplex communications ,
.structures, etc.) are integral parts of an implemented MNSS;
there is no - possibility of simulating diffetent_types of
systems . (eq. computer netthks and:supetmarketsl. Additional
xstudyi into the convetsion of Muésyintcycnuenerally applicable
simulation system (GASS?} is e uorthwhiler endevot. In
‘particular, capabilities to interactively desctibe simulation
mcdels using basic MNSS modelling discipline structures can be
developed. If the capabilities of - MNSS are extended in this
way then a new range of simulation pOSSIbllltleS arise. The
‘scOPe of'these posSibilities can be determined to some extent
by determining the relationship of the MNSS modelling
discipline to other discrete modelling disciplines. The MNSS
modelling discipline is very general and may include many (or
all) of the modelling capabilities of these .other disciplines.
The potential for enhancement and use of MNSS'appears to be

virtually boundless.

107

Vi

APPENDIX A
THE MNSS/3000 IMPLEMENTATION

MNSS has been implemented in SPL on an HP3000 computer
system. SPL is an ALGOL-like language, which has constructs
applicable to structured programming (eg. while ... do ..., if
see then ... else ..., etc.). These constructs are used
extensively in the MNSS program for top-down structuring and
modularization of function. The HP3000 on which MNSS was
implemented - supports software sﬁch as SPL and mathematical
library functiohs (eg. natural log, randcm:numbéf'generatot)Y,
and hardware such as disks, CRT s and lineprinters. This
support was necessary in order to take advantage of‘the
interactive and simulation capabilities of MNSS.

This implementation of MNSS (MNSS/3000) has several
characteristic features that reflect its yersitility as a
system analysis tool. These features include the‘selection of
MNSS fuﬁction options from‘menus of alternatives, intelligent
dialog interaction, disk storage of simulation experiments,
and hafd—éOpy MNSS infofmatioﬁ display. These features are
needed not only for MNSS/3000, but also for any effective
implementation of MNSS.

A MNSS/3000 function menu is prefaced by the statement
"SELECT OPTION", and is composed of a list of alternatives
with associated numbers (0O-n) . The user is prompted for a

reply by a ">", and selects an alternative by entering a

108

v

number. If the user enters a number that does not correspond
to an alternative in the ‘menu, then "INVALID RESPONSE" is
output and the user is again prompted. A valid response will
result in the activation of thercorrespohding,altetnative.
Another form of interaction used in the MNSS/3000-user
interface is the responsive dialog. MNSS/3000 outputs a

question, prompts the user with ">" and then waits for a

. response. The tesponse is evaluated by HﬂSS/BODO and a proper

followup is output. The géal of ;he.rggpqnsive dialog is to
channel 'infOImation to and from MNS5/3000 without irrelevent
(dumb) questioning.

The nature of the display and storage of simulation
experiment information are very important in determining the
usefulness of any simulation system. MNSS/3000 provides the
cap&bilities to store and retrieve simulation experiment
specifications represented as disk files. A user can avoid the
trouble'vofk-respeéifying _an experiment each time it is to be

run. In addition, there may be standard experiment kernels

-that can be built upon to produce desired experiments. These

kernels can be kept on disk and retrieved whenever necessary.
Lineprinter output of MNSS/3000 information is provided at the
user’s direction to supplement the normal form of interactive
output. In many cases this 1is a desireable alternative to
information display at interactive station (eg. CRT ‘s produce
no printouts and teletypes often take ages to produce a low

guality printout).

109

A MNSS/3000 experiment 1is constructed in line with the
principles discussed in Section 5.2 ('Representation Of A
Simulation Experiment’). It can be used by the simulator to
generate behavioral information, saved for future use, or

modified to yield related experiment specifications.

110

APPENDIX B
VERIFICATION EXPERIMENT

'EEEEREREE B I

* *
+ NETWORK DESCRIPTION
kR k k k k k k k Kk h kX

NODE CNT=3
LINK CNT=4
LINK CONNECT DUPLEX RATE WSIZE DELAY
0 0->1 FULL 8000
1 1->0 FULL 8000
2 1->2 FULL 8000
3 2->1 FULL 8000

k k k k k Kk k k Kk Kk

%* i %
. MESSAGE ROUTING ,
k k k k k %k k %k %k %

NODE 0
TO 1 VIA 1
TO 2 VIA 1
NODE 1
"TO O VIA O
TO 2 VIA 2
NODE 2
TO 0 VIA 1
TO 1 VIA 1

Note: there are no uniform, special, exponential or destination
distributions specified for the verification experiment

111

BEK K Kk KK
*

« CONSTANT DIS
X k ok k k k k %

ENTRY REFER - VALUE
0 1007 20000000
1 1002 100
2 1001 500

*
*
*
*

k k k k k k k k k * %

* *
'y CHARACTERIZATIONS
k. ok k k k %k k & %k %
" ENTRY REFER CTIME CPUT LONG MEMC MSGL

0 1002 co co co 0 Cl
1 1002 cz ¢co co 1 Cl

* % % % h %

*
« TROCESSES
* k k k A %

6.2.1 Process Sharing

* ¥ ¥ %

ENTRY NODE TYPE CHAR RDIS RDES RCHAR .
0 (] 0. 0 co 2 ° 1
1 0] 0 co 2 1

* %k & Kk % %

*
« PROCESSES
ok k ok ok k&

6.2.2 Remote Request Functioning

* ¥ ¥ ¥

ENTRY NODE TYPE CHAR RDIS RDES RCHAR
0 -0 0 0 c2 1 1

Kotk k k k

*
» PROCESSES
* % % % k %

6.2.3 Store-and-Forward Functioning

* % ¥ *

ENTRY NODE TYPE CHAR RDIS RDES RCHAR
0 0 0 0 c2 2 1

112

* % % %k %

* % % X

* % % k %

6.2.1 PROCESS SWITCHING OVERHEAD

APPENDIX C

EXPERIMENT RESULTS

* k k k %k k k k k kx * %

* ¥ % F

x k k k k k k kx k k% % %

* % % %
* *
% CPU
* * Xk %
k * % % * UTILIZATION TIMES * * * % %
NODE SYSTEM LUSER HUSER OVERHD IDLE
0 0 50000 0 10000 0
1 0 0 0 0 60000
2 0 0 0 0 60000
* k k k Kk k %
* *
& CPU WAIT
* % % % % % %
NODE MAX-SIZE MAX-WALL ENTRIES TIME*LEN
0 2 700 100 70000
1 0 0 0 0
2 0 0 0 0

113

[eNeNel

TOT-WAILT
69400

0

0

LINK
% % %

¥ % ¥ %
¥ % ¥ %

LINK CONNECT

0 0—->1
1 1-0
2 1->2
3 21

* k % % % %

LINK WAIT

* % k k %

* ¥ ¥

LINK CONNECT

0 0=>1
1 1-0
2 1-2
3 2=>1

¥ ok ¥ ®

IRMIT IDLE

OO OO

60000
60000
60000
60000

MAX-SIZE MAX-WAIT ENTRIES

0 0 0

0 0 0
0 0 0
0 0 0

114

TIME*LEN

OO OO

TOT-WAIT
0

0
0
0

X k k k k k k Kk k k kK k k k Kk k Kk k &
* *
% 6:2.2 REMOTE REQUEST FUNCTIONING
k ko k k k k k ok Kk k k k k ok k Kk k k %
k k k %
* *
« CPU .
* % % %

* % % % % UTILIZATION TIMES * * * * %

NODE SYSTEM LUSER RUSER OVERHD IDLE REMPR

0 9000 15000 0 3000 33000 15000
1 9000 0 15000 3000 33000 0
2 0 0 0 0 60000 0

k * Kk k k% k %

* *

o CPU WAIT

* %k k %k k% % %

NODE MAX-SIZE MAX-WAIT ENTRIES TIME*LED TOT-WAIT

0 1 100 30 3000 3000
1 1 100 30 3000 3000
2 0 0 0 0 0

115

* k% % X% %
* *
% LINK
X k% X % %
LINK CONNECT
0] 0->1
1 1->0
2 1->2
3 2->1
* % % % % % %
* *
% LINK WAIT _
% % % % % %
LINK CONNECT
0 0->1
1 1->0
2 1->2
3 2->1

TRMIT

3000 .
3000

MAX-SIZE

1

1
0
0

IDLE

57000
57000
60000
60000

116

ENTRIES ITEM*LEN

30 0
30 0
0 0
0 0

TOT-WAIT
0

0
0
0

k k% k % %k %k k k k k kx kx x k k k% k% % %

6.2.3 STORE-AND-FORWARD FUNCTIONING
* Kk k % k k k k k k k k k k k *k k % %

* ¥ * *
* % ¥ *

CPU
* %

* % ¥ ¥
* % * ¥

x % % * % UTILIZATION TIMES * * * % %
NODE SYSTEM LUSER RUSER OVERHD IDLE REMPR

0 7500 12500 O 2500 37500 12500
1 5000 O 0 0 55000 O
2 7500 0 12500 2500 37500 0

* k k k k %k *

* *

. CPU WAIT

* &k &k k %k k %

NODE MAX-SIZE MAX-WAIT ENTRIES TIME*LEN TOT~-WAIT

0 1 100 25 2500 2500
1 0 0 0 0 0
2 1 100 25 2500 2500

117

LINK

* % %

* % F ¥
¥ ¥ ¥ %

LINK CONNECT

0 0->1
1 1->0
2 1->2
3 2—>1

* &k Kk k% %

LINK WAIT

* % % % %

% ¥ F
¥ ¥ ¥ O

LINK CONNECT

0 0->1
1 1->0
2 1->2
3 2->1

IRMIT
2500
2500
2500
2500

MAX-SIZE

1

1
1
1

IDLE

57500
57500
57500
57500

MAX-WAIT

0

0
0
0

118

ENTRIES
25
25
25
25

TIME*LEN

OO OO

TOT-WAILT
0

0
0
0

1.

REFERENCES

Adkins, G. and Pooch, U., "Computer Simulation: a

Tutorial", Computer, April 1977, pp. 12-17.

Anderson, J. and Brown, J., "Graph Models Of Computer
Systems: Application To Performance Evaluation Of An
Operating System", Proc. of'the International Symposium
on Computer Performance Modelling, Measurement and

Evaluation, March 1976, pp. 166-178,

Beilner, H. and Waldbaum, G., "Submodel Simulation",
Proceedings of the 1973 Summer Computer Simulation

Conference, pp. 167-171.

Bowdon, E., Mamarch, S., and Salz, F., "Performance
Evaluation In Network Computers", Proc. ACM SIGSIM
Symposium on the Simulation of Computer Systems, June

1973' pp. 66—75.

Chappell, S., et. al., "Functional Simulation In The LAMP
System", Proc. of the 13th Design Automation Conference,

Chattergy, R. and Pooch, U., "Integrated Design And
Evaluation Of Simulation Programs", Computer, April 1977,

ppo 40-45.

119

9.

lo0.

11.

12.

13.

Chou, W. and McGregor P., "A Unifijed Simulation Model For
Communication Processors", Proceedings of the 1975
Symposium on Computer Networks: Trends and Applications,

June 1975, pp. 40-46.

Conant, G. and Wecker, §S., "DNA: An Architecture For

Heterogenous Computer 'Networksf, Paper presented at the

third International Conference on Computer Communication,

August 1976.

Cooley, P., "The Underlying Structure Of Simulation
Problems And Simulation Software”, Eighth Annual

Simulation Symposium, 1975, pp. 45-55.

Coop, D., "An Analytical Approach To Measurement,
Evaluation, And Prediction Of COmputér Performance*,
Ph.D. Diss., Department Of Eleétrica;’ Engineering,
University Of California, Berkley, 1971.

Forrester, J., "Industrial Dynamics", M.I.T. Press, 1961.

Hoang, H., "A Traffic Simulator For Packet-Switching

.Communications Networks", Proc. of the 1975 Summer

Computer Simulation Conference, pp. 671-675.
Ireland, M., "Simulation Of CIGALE 1974", The Forth Data

120

14,

15.

16.

17,

18.

19.

Communications Symposium: Network Structures In An

Evolving Operatibnal Environment, 1975.

Ireland, M. et al, "Computer Networks Simulation System",

University of Waterloo CCNG Report E-25, May 1974.

Jasper, D., "Principles of Netﬁofk Design‘; Proc. of the
IEEE Computer Society 1974 Symposium on Computer

Networks: Trends and Applications, May"1§i4;‘pp;'1-5.

Jayakumar, M. and McCalla, T., "simulation Of
Microprocessor Emulation Using GASP-PL/1", Computer,

Linsenmayer, G. and Ligomenides, P., "A General Computer
Network Model", Trends and Applfcatiohs 1976: Computer

Networks, November 1976; PP. 155-161.

Lynch, A., "Distributed Processing Solves Mainframe
Problems", Data Communications, Nd@embéf/becember‘lé?G,

Pp. 17-22.
MacDougall, M., "Computer System‘ 'Siﬁulation: An

Introduction”, Computing Surveys, Septeémber 1970, pp.

191-198.

121

20,

21.

22.

23.

24,

25,

26.

R ST
s i oy o AR]

Mahmoud, S. and Riordon, J., "Protocol Condiderations For
Software Controlled Access Methods In Disttibuted Data
B;ses', Proc. of the Internatipnal Symposium on Computer
Performance Modelling, Meaéurement and'Evalugtion, March

1976 '] ppo 241"264.

Merten, A. and Teorey, A., 'Conqide;ations On The Level
Of Detail In smulatidn'_, Proc. ACM SIGSIM Symposium on
the Simulation of Compuﬁer SY#téﬁé; 3ﬁhe (1973, Pp.
137-143.

Nutt, G., “Evaluation Nets For Computer System

Performance®, AFIPS Proc. FICC, 1972, pp. 279-286,

Reiser, M., "Interactive Modeling Of Computer Systems",

IBM Systems Journal, 1976 no. 4, pp. 309-327.
Schneider, G., "A Modular Approaéh To Computer Network
Simulation™, Computer Networks: The International Journal

of Distributed Informatigque, September 1976, pp. 95-98.

Schneidewind, N., "The Use Of Simulation In The

Evaluation Of Software", Computer, April 1977, pp. 47-53.

Sh;ino, T., "A New Traffic Simulator For Network Systems

- SONET", Proc. of the 1973 Summer Computer Simulation

122

~

N

27.

28.

Conference, pp. 113-118.
Svobodova, L., "Computer Performance Measurement and
Evaluation Methods: Analysis And Applications"”, American

Elsevier, 1976.

Wecker, S., "The Design Of Decnet - A General Purpose

Network Base", Paper presented at ELECTRO/76, May 1976.

123

