MIT/LCS/TR-218
VAL--A VALUE-ORIENTED ALGORITHMIC
LANGUAGE :
PRELIMINARY REFERENCE MANUAL
William B. Ackerman
Jack B. Dennis

June 13, 1979

Tius blank page was inserted to preserve pagination.

VAL -- A Value-Oriented Algorithmic Language {
Preliminary Reference Manual
by

Wiiiiam B. Ackerman

Jack B. Dennis

June 13, 1979

The language design reported herein was supported by the Lawrence Livermore
Laboratory of the University of California under contract no. 8545403, and is based on
work funded in part by the National Science Foundation under research grant
DCR75-04060 and in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract no. NOOOH-75-C-0661.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Laboratory for Computer Science

Cambridge | ‘ Massachusetts 02139

This empty page was substituted for a
blank page in the original document.

VAL -- A Value-Oriented Algorithmic Language

1. INTRODUCTION

The programming language VAL (Value-Oriented Algorithmic Language) is designed for
expressing algorithms for execution on computers capable of highly concurrent operation. More
specifically, the application area to be supported is nﬁmerical computation which strains the limits
of high performance machines, and the primary targets for translation of VAL programs are data

-driven machines of the form under development by the Computation Structures Group of the MIT

Laboratory for Computer Science for high performance numerical computation.

Nevertheless, it has been our intention that the language not have idiosyncrasies reflecting the
particular nature of the application area or target machine. It should be reasonable for VAL to
evolve into a general purpose language appropriate for writing programs to run on future general

purpose data flow computers.

In the design of VAL we have given careful consideration to the recently developed body of
knowledge about program structures and language characteristics which support program
verification. We have found a natural consistencj between language design for support of
concurrency and language design for correctness and verifiability. This has made it possible, in the
design of VAL, to adhere to program structures and language characteristics that have been found
desirable for ease of understanding and verification, and ease of building a program by combining

separately specified modules.

We have undertaken the design of a new language because existing languages for numerical
computation have a serious deficiency: they reflect the storage structure of the von Neumann
concept of computer organization in that each language has some method of effecting a change in
state of the memory which cannot be modeled as a local effect. Fortran, still the most popular
language for large scale numerical work, is particularly blatant in this respect since it was conceived
as a high level notation for programs to be run on a machine of classical design (the IBM 704).

Key words: programming languages, applicative programming, medularity

The difficulty with-languages that aliow specification.of global state changes is that programs
may be written which are very difficuk o impossibie to analyze for parts that may be executed
concurrently. xmwmwmmmm-ofmmuamamauyu'
of the entire program. Only mmwunmmadnam imessentint

constraints on the sequencing of program parts.

In contrast, the language VAL is entirely free of side effects: each module or well formed
md:VALWMmaMIMMMWMdM
two parts together is to compose the corresponding functions. Such a language is functional
applicative. Awmfuwmmﬁ_ ,_,:,;mhmmmmmm
'ummn,tmmememmampmmmim This is
due to the difficulty of incorporating file updates snd inputioutput operations within the
applicative framewor, mmmamdm The efficiency fssue is
'*onumendmVALmeMMMthWb’__J
WﬂgnaMmmmmeWM&rMMd
programs expressed in funcional languages.

The file update and inputjeutput issues wil be addressed in fature versions of VAL in which
streams of valses will be introduced as a principal means for communicating between. program
modules. Medules. that produce streams as outptit or accept streams a3 input can be weed for
inputfoutput processes. Further, the implementation of transactions on a data base may be viewed
utlpepmneuhgofamdkwwam,mb'mn'm'gs&ﬁhﬁ“mm
holds the data base as internal data. If it is desired to realize nmmcurmqtnpmulng
transactions, the data base may be divided into parts, each with its own secretary module.

In developing the structure of VAL, it was natural for us to start from a language design
which is of high quatity, hweﬂdocummd and is close in spirit m‘wr goak. Such a language is
CLU {1, 2], developed at MIT by the Programming Mahodohgy Group under Professor Barbara
Liskov. hmmhr.uusdagndfmmmmmwmmmnmawd
weﬂthwght-unmnhulmmmmdbaﬁ:daquumt%mdempﬂndplud
structured programming.

g While we have adopted many of the Mudameuhudusofcw, VAL differs radieally from
.. CLU in that the latter, like many new Janguages, is: objest:oniented instead: of wajue-otiented. . In
keeping with this difference, the syntax and general structure of VAL are designed to reflect the
mnctional character of the language and our desire to ;uppwt highly concurrent program

‘ - execunnn

1.1 Acknowledgements

‘Current work on the deéelopment of VAL is funded by a grant from the “Lawrence Llﬁermore
- Laboratory of the University of California WLL): We. are:thankful 1o Gus M George
Michael and Lansing:Sloan of LLL for.their eﬂﬂmﬂuﬂ andisuppert.

. Several people have worked with us during. the: period .of design of -V AL, and:have fhade
major contributions to the language and this report: they are James: MeGraw and. Gharles
Wetherell of LLL, and Dean Brock and Ken Weng of the MIT Cofnputaﬁon Structures Group.
James McGraw also produced the Syntax charts appearing at the end of this report. Others have
influenced the development of VAL by suggesting features or requirements, and through their
criticism of our documentation. These are Chris Hendrickson and Tim Rudy of LLL, and Andy
Bodghtoﬁ. Randal Bryant, Clement Leung, Lynn Montz, and David Hirschman of the
Computation Structures Group.‘

The ideas in the language grew out of our gradual self-education about data dr‘ven
computation beginning around 1967. The students and staff of the Computation Structures Group
who have contributed ideas include Earl van Horn, Peter Denning, Fred Luconi, Suhas Patil, Jorge
Rodriguez, Chander Ramchandani, John Fosscen, Prakash Hebalkar, Jeffrey Gertz, Austin
Henderson, Steve Zilles, Craig Schaffert, Eliot Moss, James Rumbaugh, David Misunas, David
Isaman, Paul Kosinski, David Efis, Shekdon Borkin, and Glen Miranker.

We thank the National Science Foundation for their continuing support, and acknowledge
with appreciation the long period of support provided by the Advanced Research Projects Agency
of the Department of Defense. |

rmmunmmmwwwwmhsma -
' o:mmaq mxmammwmmmmMm

In addition, we thank Barbara Liskev and her students for providing in CLU 2 cofrvente
high quality starting point for our work e VAL.
12' Roforoneu
B} Liskor, B.H. ot ot, "TLU Refras mﬁmm wmm
R Mfuwmmamm”m L

2] Liskov, B.H. et a1, mmnm‘ mqm ncuzo

' langunges. there are no objacts thought ol‘ a raldigg in memo

2 LANGUAGE stmnv

o A program in VAL is a collection of separately tmuhtzsl, glrt; called Mdulu Each madule
contains the definition cf one exlemal functlon Thls fmctian L] mslhle to all other quum of

the VAL program by use of its name. A moduh may. also mtam the deﬁnluons of lnwrﬂal

functions. These lntemalmnctlomareused mlywnMnlhenlcdnk.MImMthm
modules

| The VAL Ianguage is apylicauve. that I, valuc-omnwd In ~contrast to many. other

ry and being u;dpted as the
“computatlon progresses. Even arrays and records are treated in VAL as matlmmdal valpes.

A function comyutesoneormoredata valuazsamnctlonofoneormorelrgumem values.
| Except for lnvocatlons ol‘ other ﬁmctlons. a functlon invocation ha ;mxonly to its arguments;
'.there are no side effects. Further a functlon remm no, gm lnformation from one invocation to
‘another each l‘um:tlon lnvocation is strlctly lndapendm l-:,lm ubu retumed bya ﬁmctlon
‘ depend only on the argumem values pmemed to lt -a VAL Mctlon lmplemum a true function
vﬂin the mathematical sense

The data types of VAL include the basic scalar types: boolun, lnlegtr real, and character
“Data structure values are either record values or aml valau. Reoords have a fixecl format in
which each field hasaspedfledtype Anarraytypehmmlmegerlndexntwd ltscomponelm

are of arbitrary but uniform type. Data structures of arbitrary depth may be specified-using nested
array and record types. Union types may be formed in wltlch ngt aflow discrimination among a

specifled set of ‘constituent types.

Each data type has its associated set of operations and predicates. Array and record types are
treated as mathematical sets of vaues — = just as the boolean, integer, real, and character types. The
gperations for arrays and records are chosen to support identification of concurrency for execution
" on a highly parallel processor.

Exceptions are handled in VAL through special error elements in eich data type. The
elememmdof:tgmtsthatoneormeopmndntmmmtintheapodﬁeddmtnotm
operation. mmda_wdgmmnummtm oanmom
‘mmovided |ntmm:mmmnmm o

The design of VAL permits type checking %0 be performed by the translator. The type of
each argument or result vakue of a fanction i3 speciied in the function definition's header. Each
vahenamuudhthebodydafmhnmummmmm The operations of
"'VALamWwMMWd&eMmumﬁkmﬂMMm
“kniown. smmmaaummmmwmaamwmu'
determined.

SMVALﬁandﬂffmfthmeyhmmmym
‘»mafatmmwm mmmwuvamamm an
expression - mmdmmamﬁm mmmmm
”mdnmlexpmmmmmxmmmwm«xmmma
'thrmupmmmmlmm ummmmm
Mdmmmmﬁmmﬁtmmwdnhuwhemlym
‘eperator. Awmmmsm”mmmewmdummy'
simuttaneously. Amwwmmmwmwu
"MMemmhnmmmgmm

24 ‘Notublon

In the BNF presentation of the syntax, hrge curly bnm { } indicate zero. or mre
repetitions of the material within. Lasge brackets [..]Mhummemmmma“m,
. appear zero times or once.

3. PROGRAM.FORMAT

| Programs are written using the ASCH character set. Np control" cha;acters other than tab
and newline are used, except in cbancter oonstants The of elements are operation and
punctuation symbols. real and mteger numben. character m%m m;. and names.

The operation and punctuauonsymbols are the following;:v
,] s , | .

u < > <8 >8 . s‘

f
? s

SN U S I

An integer number is a nquence of digits withoui a »dedmal point. Aml number is a
sequence of digits with either a decimal point or an exponent field. An exponent field is the letter
"E” or "¢", an optional sign, and one or more digits.

» | A character constant is a slngle charar.ter cnclcled ln ungh guom. A character stripg
: eonmmlsamingofzemwmechanctmemhedhdoubhg ’Wmmluchdﬂme.
tabulate, Space, newline, percent, and all control Characters _) themselves. A double guote
mybeplieedinastﬂngbyushgtwodnubhmm - |

byt g

A reserved word Is a word that always has a special meaning
.used in any context for other than their special
and in the syntax are printed in boldface in this report.

v Keaefvad words may never be
Rmed words in pmgram mmfm

The reserved words are: o R .
ed o ese . in pus
_arith_error elseif©. integer posover
" array - B onddl " | poo__mdor :
arrey_sddh endfor Mer res
array_addl endfun let record

array_adjust endif
endit

array_emply or

array_fill. endiat

array_Jimi. eval

array_remh. exp:

array_setl false

array._size for-

boolesn - forell

character function

A name is a sequence of lewers, digits, and uﬁmdw&kﬁt&ﬂuthnwm bea
letter. Anmmynotbethemuamvedm hnmmybeuuduavaluemma
fnction name, a-defifved type-name,.a record: Mmuamdugm These uses alt
MvatMmmmhmemammyhmmmmr
several ‘of these: purposes. ﬁrmw&ammﬁm;mmml Mth'
mﬁmmmmmwmumwmw.mm |

Upperandbmanlaminmaadmm:ammdmw bntallum
ofa nmormvedmdmuuhuemmupmm qumuyhnofmrembh

The sepanung characters: space, tabulate, and: newline are equiuht (except in- delimitmg
comments), and mty appear anywhere exeept within a pmgm'n ellmmt. Hmthey mty ‘wot .
appear within a.number or bumtheﬁamnfam&an@umaﬂmswﬂﬁmhu D=,
A separating characher is required mm*ndmmmor mernd ‘words. For
example, separatingch:nctersmnqutredtodwmnhthepmmmm'ﬂpth-naolua,
endif” from the name “ifpthen3eisedendif”. Sepmuqchmmmwm‘mmmu
punctuation symbols |

-10 -

A comment begins with a percent sign and continues to the end of the line. A comment is
equivalent to a space, and hence may be placed anywhere except within an program element.
Examples of names and constants:

ABC3_Q

34
.3141593E1
2.718282
5772157E-7
o

“abc""def"”

4. VALUES AND TYPES

The inputs and outputs of VAL exprssions:and functions.are ysiues. The:entire collection: of
valhies that may be: presented: to o, produced by VAL progiams: is:the value: dommin of MAL. The
value domain is subdivided into.disinet disjoint subdomains. that. are the: date types: of VAL.
There are basic types which inchude the familiar scaler valoes of computation; structured types in
the form. of arrays and resords. as defined: by the Raguge ser in: twrms.of simpler dats types; and
discriminated union types. '

4.1 Type Specifications

A type specification in VAL is » syntactic. constnct: that specifies:a data type.

Syntax |

type-spec 1:~ basic-type-spec

| onest.(ng-spec-{:mgapec |1

field-spec :1= field-name {., , fielil-name } type-spec.

tag-spec: st= tag-name { , tag-name | [: type-spec]

field-name 2= name

tag-name t1=mame

type-name 13 = name

For a basic type; the: specification. is simply the name of the type. For a eompumd type, the
necessary additional information within: brackets.

The array type constructor gives the type of the elements of the amy
Examples:

_ array {integer)
_ ,n”[mfl:!’“n

" The record type constructor gives the fieid mames and the type associated with each fleld.
Fhe field ‘names used withinmyreoo?d wmmmum Wihiere sevéral field ‘names
are listed with one type, the fields are all of that type. ‘ o ‘ R

Examples:

record [I, J : integer ; TEWP : real]
rocord[l rocord[x orroy[boolun];v chanctcr];TEw rnl]

- Anamemaybeusaduaﬁeldnmamdmanymhqm(wt,xy@mﬁ~M) |
»without conflict, since it is interpreted as a field name only ia the record cons or and in record
operations. Thesameﬂeldmmgmyhegaedlnmmlﬁmmmm

The oneof (union).type constzuctor. gives the tags and the type associated with each tag. The
~ tag names must be distinct. Where several tag mmm with one type,.the tags all.indicate

that type. If-the colon and folowing type. mmwm the null type is assumed.
Examples:

oneof [UP, DOWN.LEFT RIGHT]
oneof [FIX : integer ; FLO : real]
mof[mls array[lntegor] THAT THE_OTHER : record [C : rulsD boolean]}

As in the case of field names, a tag name may coincide with any other name without conflict, and
the same tag name may be used in several union types without conflict. =

Any type name used as a type specification must be defined by a type definition (see Section
4.5). , . . T oo PIEN M

4.2 Value Domains

Each data type is a domain of values.as described below. As will:be-seen, each data type
includes proper elements, and error elements which occur as the-result-of an: expression when
computation of a proper value of the type is impossible. &chdmmekﬁnﬂmchaml&dby
VMmdemthmmwMMSMW The aperations
for each data W«vuammmmanmmmmm
values of one type into values of another.

4.3 Error Values

The error elements are included to support the unusual treatment of qu adopted in
VAL as discussed in Sections 5 and 7. Themnmndmmnhemmdanmm
foflowed by the type specification enciosed in brackess, for example zore_dividefredl]l This is
‘because every vafue, inchading aﬁmmmmammumw
zero_dividetrest] is a different value from zero livide por] ‘

Two error values are members of evefy data type: the element Undefitype) resutts when
operand values are not in the domain of an operaior, for exainple; if the index of an array access
operation is outside the range of the array; the wieiint thiss_oRitype] resubts If the index of an
array access operation is within the array unge;hum,dahnm'm,atw index. o

4.4 Besic Types

The Null Type
proper elements: nil

- The null type occurs in a distinguished union {oneof) type where in one or more alternatives
no data value is required. -

-14-

The Boolean Type

proper element& true, false
error elements: undef{boolean), miss_eit(booiean)

The lntcgervapc Ty , :
proper clements: The integers between some ﬂmlu which are
implementation dependent. g E e R
error elements: undeflinteger), miss_eltlinteger],
pos_overiinteger], neg_overiinteger),

The elements pos_over[intagor] and mg_wuﬁdcw] mu that the meger value is
mohrge(pmnkvemnegauve)mbereprennumihemmm. The element -
u*nomﬂﬁemltndkm:themuhdamﬂmthnhumtheupmtyofthe
implemelmﬂon but whoeetmevahelsnotkmmbewtofnnge The element
zoro_d\'khﬁn(egar] indkammemultofa divimnormdum opuaumwnhmdivhor

The Real Type

proper elements Fbating point of real numbers
induding zero, with some m range which is
lmplememauon dependent.
error elements: undef(real], miss_eltiresl],
poc__over[rall. neg_wer&ull
u\dar(ndl n‘i.mwl
u*nown(ndl. ;uo,dvld'bodl._ |

| The elements pos ovor[roal] and neg_ov-rﬁcﬂ] lndm tbat the real value is larger
(positive or negative) than is repraemabie in dthew ﬂ;mg poim mhod of the implementation.
The elements pos_underireal] and neg_underireal] represent non-zero valies too smafl in
magnitude to be representable in the floating point method of the implementation. The element
mkﬁown[real] indicates the resuk of a computation that has exceeded the exponent range of the

implementation, but whose true value is not known to be out of range. The element -

zero_dividelreal] indicates the result of an attempted division by zero.

T he Character Type
proper elements: The 128 characters of the ASCIE chum set.
error elements: Undeficharacter], mies_siticheraster]

4.5 Compound Typee
Array Types

For each data type defined by same VAL tmem i m«m:ypm be defined
-bythetmwwm erraytTl N
PNP“M Apmmaymhmlﬂm«tw
WA range (LOH) mw m m mmgen md)
LO CHI+L Tlme are. imlmlvem:m the Mmd
clements. 1f LO = HI + | the array has no clements.
(2) A sequence of HI - LO + l-elements of type T.
morehumta Emy;mytmumﬂ'lmmm

Record Types

If ty,..., t, aré VAL type Wﬁmaom and "l' .<» Ny are distinct names, then
rocord[::i ATRIREE W tk]spmﬂaarmrdtype | o
proper elements: Eanhpfopertthleofthemardtypcisamofkpﬂﬂ

g vqd . ,(nk.vk)}whmmhviummnofti

errorelunerm tlldolﬂ'l!ﬂﬂ Clim”bue'risthemurdtype

-16 -
Union Types

- Eachielement of 2 union type is an elemont of one of severab vonstituent types, accompanied by
+a tag ‘whichindicates the comstituent:type: from Which thiglemens: was takers: I ¢y, .. . , 1, ‘sre type
:specifications, and:ny,. ..,y are distinct;names, then:oneofing sty ... pmes ity } specifies:a

pqnu!demem& Each proper eltment of the union:type-is a pair (0, 'i’
where 1 < i < hand v, i element of 4.
error elements: undef(T], M!O_dtm where T is the union type

.46 Type Definitions

o type-def :: type type-name = type-spec .
type-name 13 name.

A function definition may contain a number of type definitions which specify
- programmer-nited types used in the function. Each’ fjpe définition specifies that & “type name
‘denotes the type represented by the given type-specifitation. Fhe type specification part of a tﬁn
 definititn may contain type names defined in thie’ smé of dhiver définitions. Recursioh and mutual
33recursidﬁ are permiited intype definitions. Such typcdeﬁrﬁtiﬂmm]‘bé used to” construct data
- types ciifripose ofamyofmstmuresofmnmdeﬁih o o

Eximple:
type STACK = oneof [empty : null ; element record | vatve : real ; rest : STACK 1} ;

The name of a defined type may be, used ar;ywh_gl;g:_%ﬂ;ag! tmngﬂmm is permitted, eg.
as the type parameter for constants such as niss_ol((type-apegl

A name may be used as a type name and as any other kind of name without conflict, since it
is interpreted as a type name only in well defined contexts.

-17-

4.7 Edulvolenee:of Type Specifications:

Type checking is performed by the VAL mww that the type of each:expression
or subexpression matches the type: required: by:the-context: in-wivich it ppesrs: The«qn “of an
expression or subexpression: is.determined by kscunpm from eperators:and elementary:terms
as described in Sections 5 and 6. This must match the type required: by its context: an- argument. to:
a function must match the argument tmm inthe fumction’s definition; and an expression
on the right hand side of a definition:{see-Section 7.2) must-match the declared: type of the name on
the left hand side. |

The necessary test is to determine if two. type specifications are equivalent, that is, if they
denote the same type. Two basic. type specifications are ‘equivalent if they are the same. Two
array specifications are equivalent if their element typu are equivalmt Two record or oneof
type specifications are equivalent if their mponen types of constituent
types are equivalent; the order in:which they are listed. umsiga#fémt Amwm is
equivalent to the type appearmg on the:right hand side of its definition.

A compound type specification can bevswamdzs a.-tr_ee'wmr'mduxan labeled. MrTay,
record, or. oneof, whose arcs from record or oneof nodes are labeled with field or tag. names,
and whose leaves are basic. types. - Equivalence can: be farmulated in:tesms.of: this characterization:
Two type specifications are equivalent if their trees.are identical, disregarding:the order of arcs.. If
a type specification uses recursion, this.tree is. infinite; two such wtpummmumumen
infinite trees are identical.

Examples -- assume the following type definitions: -
type NM = real ;
type STACK = onecf [empty : sl ; element : ITEM],
type:ITeN = record { vslve : resl; rest : STACK];

-18 -

Then the following pairs of type specifications are equivalent:

real (A defined type is exactly equivalent
NUM to the type that it is defined to be.)
record [a:real;b:integer] (order of fields is not significant)

record [b : integer; a:real]

oneof [empty : null ; element : record [value : real ; rest : STACK J};
STACK (The (infinite) trees implied by these
type specifications are equivalent.)

8. OPERATIONS

In thls secuon mspdfythemdmw to each data typeot\ML. In the:
examples ofmmwwqmmmmjmwmxmvm reats, C
and D for mmAm&mmkli}ﬁm{Mm aud V for
values of arbitrary type.

S.1 Error tests

A number of'mf:an;prowddafors!m;em‘ The: following three are defined. for all
types:

operation o notation fanctionality

 test for undef is:undeflv) any -+ bool
test for all.errors is erron(V) any - bool

The test is error is satisfied: by all error values for: the type-to: which it is applied: undef,
miss_ oll,andaayothcremmhawc_dﬂduthatummﬁnnm Additional error
tests, such as is over, mdeﬁmdbehwformm

AW error test operations always return-true or faise; never an error value. They must be
used for testing for errors:in preference to-the equality operator (eg. "X = undefireeiT’), since the
mrmmMMMqumnhe

5.2 Null opeutiam

The null type is used to provide a case in a union type for which the: value: is irrelevant.
There are no operations.for this type except the error-tests is:undef, is mies_eit, and {s-orror.

5.3 Boolean operations

The boolean operations are the following:

operation notation functionality
and P&Q bool, bool -+ bool
or | PIQ bool, bool -+ beol
not ~P bool » bool
equal ' P=Q bool, bool -+ bool
not equal Pr=Q bool, bool -+ bool
test for undef is undef(P) bool -+ bool
test for miss_elt is miss_elt(P) bool -+ bool
test for undef or miss_elt is error(P) bool -+ bool

If an error value is an operand to a boolean operation other than an error test, the result is
undef[boolean).

5.4 Integer operations

The integer operations are the following:

operation notation functionality
addition J+K int, int - int
subtraction J-K int, int » int
multiplication J=xK int, int -» int
_division J/7K int, int - int
modulus mod(j, K) int, int - int
exponentiation exp(J, K) int, int - int

negation -] _ int - int

-9 -

magnitude ebs()) int int
maximum ‘-MX(J. K) | int, int - int
nintmum min{J, K) int, int - int
equal J=K ; int, int - bool
not equal | J~=K 1nt, it - bool
greater,less J>K,J<K int, int -+ bool
greater/equal, less/equal J>=K,] <=K int, int » bool
test for pos_over = is:pas_over()) int - beol
test-for neg_over _isneg_over()) int -+ boo)
test for unknown is.omknowry]) int - bool
test for zero_divide _ iszere divide()) int - bool
test for pos_over or neg_over tsgver()) int~hool
test for pos_over, m_nm, s arith_srror(]) int -» beol
unknown, or zero_sfivide | |
test for undef , -is undef(}) it - bootl
test fornihi_elt s miss_sit()) int - bool
test for undef, miss_elt, pos_over, b'-m(]) _ int - bool
neg_over, unknown, or zero_divide

The error value zero_dividelinteger] may rewlt from the division or mdulm operations.
The error values pos_overfinteger) or neg_overiinteger] may result from the arithmetic
operations if the result exceeds the range of numbers representable on the target computer.

If the error value undeflinteger], miss_eltlinteger], or zero_dividelinteger] is an
operand to any integer operation other than an error test, the resukt is undef of the appropriate
type.

The integer operators have the following special behavior with respect to the error values
pos_over, neg_over, and unknown. These rules are of course symmetric with respect to
exchange of the arguments to +, x, max, and min. These rules do mof apply if any operand is
undef, miss_elt, or zero_divide.

la. . pos_over+] = pos_over if]>0or] =~pos_over,
unknown otherwise

ib. neg_over +j = neg_over if] <O0or] -neg_over,
unknown otherwise

Ic. unknown +] = unknown

2a. - pos_over = neg_over

2b. -neg_over = pos_over

12 - unknown = unknown

3. J-K = J+(-K), so, for example, by rules 2a and 1b,
J - pos_over = neg over if] <Oor]=neg _over,
unknown otherwise

4a. J xpos_over = neg_over if]<-lor]=neg_over,
 pos_over if}>lor]= pos_over,
.0 if]=0,
unknown otherwise
4b.] xneg over - -(]xpos_over)
4c. Jxunknown - 0 if]=0,
~ unknown otherwise

5a. J<pos_over = true unles] = pos_over or unknown,
in which case the result is undef
5. neg_over <J - true unles] - neg_over or unknown,
in whkh: case the résult is undef
- The preceding two rules also yield true if the connective is <=, and false if the connective is > or

-3

>=. They are alo of course symmetric with M“mﬂf the arguments. and. reverss! of

6a. | abs(pos_over - ‘abelneg_over) - pos_over
6b. abs(unknown) - unknown

7a M(PO'_OVGI‘.])' - po._m
™ min(pos_over,}) -]

7 max(neg_over,]) -]

. minineg_over,) « neg_over
Te. maxiunknown,) - unknown

. - minunknown J) - unknown

an error value, the resuk is umdet of the appropeiate type.

5.5 Real operations

The real opentiohs are the following:
addition X+Y . mlreloreal
subtraction X-Yy. . - Mza!-'zs_u_' |
mukiplication X*Y . alpetepal
division X7Y eal ronl-+raml
exponentiation : expiX,Y) oo i real - resl
exponentiation with integer ' oaxp(X,]) real int - real
negation o X relemad
magnitude | CebeiX) petaerel
maximum - X, Y) o eml peal «pepl

minimum min(X,Y) . real real » real

-94-

equal . : o X =Y “renl, real -+ bool
not equal - : - Xe=Y . real; reat «» bool -
greater, less SX>Y,X<Y real, peal +bool
greater/equal, less/equal X>Y,X<=Y - realreal + bool
test for pos_over - is pos_over(X) real - bool

test for neg_over , is neg_over(X) - - reml - bool

test for pos_under s pm_mdor(X)x o -real + ool

test for neg_under is neg_under(X) - peal~ bool

test for unknown ‘ is unknown(X)peal »bool .
test for zero_divide . iszera_divide(X) real- bool -
test for pos_over or neg_over - is over(X) . . real -+ bool

test for pos_under or neg_under is under(X) . | - peal» bool

test for pos_over, neg_over, — 1 geal -+ bool

~ pos_under, neg_under, mkmn,or zem_divido

test for undef is undef(X) teal -+ bool
test for miss_elt ' is miss_elt(X) real - bool

test for undef, miss_elt, pos_over, is error(X) real - bopl

neg_over, pos_under, neg_under, unknown, or zero_divide .

The error value zero_dividelreal) may result from the division operation. The error values
pos_overlreal], neg_overiresil pos_undatireall or. neg_underirest} may resukt from the
arithmetic aperations if the result exceeds the range of numbers repressntable on the target

computer.

If the error value undefireal), ‘min_‘olt[rqal]. or zoro_dividelreal] is an operand to any

real operation other than an error test, the result is undef of the appropriate type.

-g‘

The reat aperaters hawe the following speciel ‘behavior with respect to the error values
wovu.mﬂm These rules. are of course symwnetric with respeet’ 30
mhangeofmwm+.x.mm mmummnwm 7

. pos_over: X =pes_swer iFX.2GMorX - pos_overer pos_under,
Ib. . neg_over+X « Meg_over PN SOBdrX - Reg_ever or neg.under;

id. pos_under+X » X if X 'wund ive proper value

th,” P”_.l-l* "*m M R LI

I _mwzo S m L

2 -pm_wlr = BEg_over
%. - neg_over - powsver
X - pos_under = neg_under
2 - neg_umnder - pos_under
2e. - unknown - unknown

X=¥ = Xe(- w.m,ﬁw;mmw’ ’
-WN neg. over W@Qdﬁﬁwwm
unknown otherwise

o

‘posover if X D10orX = phe over,
00 ifX =00,
unknown otherwise

4. X = neg_over = -(X xpos_over) .
X x pos_tnder - neg_under if-10<X <00°rx-nu_mdor

4c.
pos_under if 00 < thﬁﬂ%i@”ﬁm.* -
00 ifX =00,
unknown otherwise: =
4d. 'x*neg__undar - -(x:poa_mdor)
4e.

x:mimm'- 00 if X =00,
" unknown otherwise

52. X <pos_over = true unles X = bbb;_ov« or wlmovm.

| in which case the resuk is undef |
Sb. neg_over <X - true unless X's ek over or v
" in which case the resuk is undef

The precedlng two rules ahoyield true if the connective is <=, and fals® if the connective is > or
>=. They are akodmmsmmkwnhmmudwdﬂwngmand reversalof
“the connective. '

6a. abs(pos_over) - abs(neg_over) - pos_over
6b. abs(pos_under) - abs(neg_under) - pos,_uudor
6c. dn(mlmown) = uUmnknown

Ta maxtpos_over, X) = pos_over
) min{pos_over, X) « X

Tc. max(neg_over, X) = X

| Td min(neg_over, X) =« neg_over
Te. max(unknown, X) = unknown

7. minfunknown, X) = unknown

© Other than the abpve cases, if ariy operand to a real operation other than an error test i3 an
error value, the resutt is undef of the appropriate type. |

T M vy TR R e I gl L e

5.6 Character operations
The character operations are the following:

operation notation fusctionality

not equal ' C~=D _ sharchar » bool

test for undef . isundefic) charsboot
test for miss_elt L umm char - bool

lfan error vamuanmﬁmammﬁuﬁummmmma
undeficharacter]

5.7 Array operstions

The operations for the array data type array{T] inchude:creation of new. arrays, selection,
producing new array values by Wwwm array value, and combining arrays by
concatenation. Recall that an ariay ‘value consists ofa-range defined by.a low.ex:-LO, a high
index HI, and a2 mdﬂt&@ﬂmammmmtm may-be
‘miss_eft(T] : : ‘

create
select AR mﬂ‘l‘lm oT |
append Alj: V] array(T) int, T » areagT}
create by elements g:vi (int T -+ ammayfT] |
index of highest | array_Jimi(A) amy(T] it

.28 -

index of lowest array_Jimi(A)
number ofciemems - array_size(A)
set bounds errey_sdjustia,J, K) ArradiTl int.
extend high | ~ array_sddhA, V)
extend low erray_addi(A, V)
remove high B srray_remiiA)
removelow : - orray_remiA) -
setlowlimt o array.,ﬂi(A.J)
concatenate N AHB a
merge defined elements meMA; B)
test for undef is undef(A)
.mtrormias eit - ismiss eltiA)
test for undefor miss_elt iserror(A)

In general, the resuk of an array operation is the error element undef of the appmpmte type
if either an index operand is an error valie or an array operand is Undef or miss_eit. The
remaining cases in which the resuk is an error are specified below for each operation.

Create &ray_my[typesped

‘ Thls is acwally a oonmnt It is an amy of the indiated type. whoee low index is one, high
index is zero, and which therefore oonuim o elements. -

Createlfill array_filLO, HI, V)
This creates an array with the given range and all elements equal to the given value If

[,0 > Hl4l, the result is undof(mayﬂ']l This operation yields a proper array even if Visan
error value such as undef or pos_over.

Example:
array_fillk1, 10, 6)
18 an drray with 10-clements; all equatto 6.

 Select Afj)

Thisopenthnybﬂstheehnmtofmeamyhnm‘xj if]umtwithmmenngeofthe
amy.therewltlsm MmmummamMmy,Mmyu
anmvahemdiumﬁ{'ﬂorm ”

Append Al]:V]

ThlsmanmymlwAmmm*mnMJhnmrephudby

- value V. ThenngedAuup:ndedtsMwWMJ.Mmmmmm

expanded range are given thcubem_ﬂm'l mmxammnmam;u |
10, elements 4 through 9 will be miss_sit{T] in the resui.

Create by elements []:V)
This returns an array with low and high indices both J, and one element V at index J.

Al

There are abbrevmed notations for c«nposmom of uhct c"md and create by elements
operauomtomnpufymumdmmmmamysmdfwmm
multi-dimensional arrays. See Section 6.4. ‘

Index of highest, lowest array_JimiMA), array_Jimi(A)

These functions return the high or low index of A, respectively.

Number of elements array_size(A)

This returns array_Jimh(A) - array_limKA) ¢ 1.

Set bounds erray_adjust(A,J,K)

This returns an array with range (J, K), containing.the same data as A where possible. lf.!é} o

gmter than array_Jimi(A) or K is less than array_Jimh(A), some elements of A will be nbsent in
the, result. If] is less than array_JimlA).or K s greater than or
positions are set to miss_sitiT]

Extend litgk; low array_sddh(A, V), array_addiA, V)

. . These return the array A with its high index increpsed. by one or its. low index dect
one, and the given value V. as the new element.

Remove high, low _ array_somh(A), srray_remia)

These return the array A with its high index decreased by one or-its low ‘tidese iheraiised by
one. An element of A is lost in the resuk. If the array A has size zero, the result is undef.

Set low limit array__satl(A.)

This adds J - array_JimkA) to all element indk:uandm both o
ylelding an array similar to A but with the shified. its low index is J.
array_sotk[2:X,¥,Z15)
denotes the same value as | |
{5:%XVY,2}

where the abbreviated notation is defined in Section 64. =

Concatenate A|llB

This returns an array whose size is the sum of the sizes of A and B, formed by concatenating
A and B. Thehwindexdtherewhhthemutbcmmd«ﬁﬁ.mdﬁwdamofﬁ
retain their original indices. The indices of B are shmed as necessary.

Merge defined elements array_joiniA, B)

" This merges the arrays by elements. The low index of the result is the minimum of
array_limi(A) and array_limKB), and the high index is the maximum of ‘arrdy_Jimi(A) and
“orray_lmi B). Those elements of the result that are not within the range of either A or B are set
to miss_elt. Thouthatmwmmmemtgecrmargm“mmthewmdmg
element of that argument. Those that are within the range of both are set to the corresponding
element of A if the corresponding ‘clement of B is miss_sit, to the corresponding element of B if
the corréspmding element of A is miss_elt, and to tiss_oit otherwise. This operationi is
intended to be used to merge partially defined arrays, such as an array with only even elements
defined (the others being miss_sit) and an array with énfy odd elemeits defiried.

5.8 .Recerd operstions

The operations for a record type specified asT = recordi N, : T, P Nk:’f*],m‘ the
following. Ny ... N, are the field names,and T, ... T, are the corresponding types.

operation notation functionality
create C'M‘N‘l :‘Vl.;...;‘Nk :'Vk']
. Tl,...,Tk*T ‘

replace, 1 <i<k | R replace (N; : V] T,T;-»T

-32-

. test for undet is undef(R) T p_o_ol_

test for miss_elt is miss_sit(R) " T - bool
test for undef or miss_elt is error(R). T - bool

Create recorle:vl;...;Nk:Vk]

This builds a record value (N, V p Vi . » (N Vi) 1. All of the field names. associated with
the type of the recard being constructed must appear, in the Ust, though, some may appear with
etror values such as undeflT,] or miss _elt(T,)

Select R. N
| This returns the vahie of the ﬁamed field, that is, ViiEN =N,
Replace R replace(N:V]
This returns a record similar to R except that tth-ﬂcld is changed to. V.

Abbreviated notations are provided for oompound selectors and muldple values in roplm
operations. See Section 6.5.

5.9 Operations for union types

The basic operations for a union type specified 25T = on@ofi Ny : Ty ;.. .; Ny : Ty Jare a
create operation and a test of a tag. The tagcase control structure explained in Section 73 is the
mechanism for accessing constituent values from a value of union type. In the following, N; ... Ny
are the tag names, and T ... T, are the corresponding oonstimanttypes.

gperation notation -functionality

create, 1<1<k meke T(N;:V] T;~T
tag test;, 1 <1<k _ is N, (U) © Tabod

test for undef is undek(U) T -bool
test for miss_eit is migs_eltU) T - bool
test for undef or miss_elt’ ety T bool

The operations make T [N : V]andisN(U)mtype—mmaﬂyifNizangmofﬁw
type T and V' is of that constituent type. mmwmrtﬂ; Vlluhepaﬁ'(N; V)foc
any element V of T;. Therestt of is N, (U)kﬁhﬂl‘v (N,, y
undef(T] or miss_eit{T], or falee otherwise. o

5.10 Type conversion operstions |

characters.

operation | notation functionality
real-to-integer " integery real -+ int
integer-to-real _ o rodq) | int » res
cncerwms e dwem
integer-to-character character(}) int > char

In each case:an lrgument vuhvofwdufwﬂn_dt mmmm For ottver valies

lnt‘_c:or(x).

If X is larger in magnitude than is representable as 2 proper element of integer, the result is
pos_over or neg_over. If X is zero. &ﬂda.m_mmw!ﬂmn.mmu
undef. Ilespos_mdu'orm themtism mmmums’
rounding nonintegral values of X toward zero.

‘real(]k

All proper values of J are converted to the W!m reals. If J is zcro_dvido
r‘fpou__onr m_m or mu‘em& um o

This operation yields the ASCI code for the character C.
character()):

This operation is the inverse of integer(C). Its resuk for values not in the range of

5.11 Type correctness of operations

i

In VAL the type of value produced by each expfession can be determined by the translator
from the propertiec of the opentiuns as specified in thls sectm An epention in a program is type
correct if and only if the types of its argument expmﬂom are thc nme u t,he argument types
specified for the operation. Note that for ach opemor the typu of the results are determined
when the types of the arguments are known :

-5 -

6. CONSTANTS, VALUE NAMES, AND EXPRESSIONS

Ancxprmbnisthebaﬂcsynﬂdkmﬁdmmampkﬁmﬂmm Tﬁecm,
Of &1 expression is the size-of the tuple of vakaes it:tenctes, ressions. are sadd ap.conform if
the&emuﬁymmwmgnhamﬂ&mm The design of the
VAL mgnmmmarnymmamwmmmmgﬁm
expressions, may be determined by inspection of the program. mm:morwna
arity one is a constant, a2 value name, or an opesation, nmmdnﬂqm
The smhtqwdmﬁmamykamﬁmmdmmww

COMmMas.

6.1 Constants
A constant i3 a syntactic unit of arity one whose value and type are:manifest frofn fts form.

Syntex: |

constant u-lﬂltme |Mn , |
]wﬂmimlw{w acter-string-co
| array_simptyitppe-spec) o
"]W}mmfw
| pos_overitype spect | neg_overiiypespec

| Pos_underitype spec] | nog_underiype-spec)
| unknownitype-spec] | zero_divideitype-spec]

The vam‘mwxmmdmwmmmmmm
value and missing array element valie of the type indicated in the type:spec. For example,
: mmmﬂmmmnmwwmml These two constants

exist for alf types, inchuding array, record, and union- types. Themmmmmm
type are as follows: '

The only constant of the null type is the reserved word nil.

The constants of the boolean type ase the reserved: werds true and faise.
-The principal constants of the integer and real type are integer numbers and real numbers,
the format of which are given in Section 3. There are also the:following arithmetic error constants;

pos_over(integer) pos_overireal)
‘neg_underirest])
unknown{integer] unknowniresi)

zero_dividelinteger] zero_dividelreal]
The constants of the character type are the characters enclosed in single quotes.

A character string enclosed in double quotes i5 a constant of type srrayicherscter)
containing the individual characters of the string as elements. The it ¢haracter s at ifidex one.

" The array constant may__mptyttypc] denotes’ the amy orme indicated element type whose
rangels{l O).andhmcehasmebmems. o ‘

“There are no othet array, record, or union constants, but various constructing operators may
be used with constant arguments to denote "constant” arrays, records, or union elements.

Examples: |
(1:1,23,4,5] (array constant, seo SOC“M\ 76.4)
record [A:6;8:73) (record constant) |
meake T[A:6] - (comlmtofm\iqntypeT)

6.2 Value names

A valie name is a name which denotu a slngle oomputed value of a spedﬂc type. Every
value name is introduced eithier in the header of a function definition (if the value name is a
formal argument of the function being defined) or in a program construct such as a let block or a
for block. In either case, each value name has a scope and a type, and has a unique value of that
type for each instantiation during execution of the function or block with which the value name is

.97 -

associated. The scope-of a value -name:is the region of program:tent in: which ‘s refevence to the
value name denotes its value. The scope and type of any value name may be determined by
inspection aemmmmmmnwmdmwumm
present during. mmemmm ‘ '

The scope of a vakie name intraciased as.a formal asgument. of = fupction is the entire
function definition, less any inner scopes:thmi: resinitroduce the same value name. The type of such
a value name is given bya type dévimatin'in thifunction header. Its vakse s the value of the
corresponding argument for the mwmmm .

Example: o
funclion F (X : lntq-rmtmu real)
<exprassion>
endfun
Mwmumnmxmmwmmmmumwmmr
was invoked. mquulﬁm -

The scope of a value mkmedw mammmuu;m ac for block is
‘some region of the construct: that depends on. the nature-of the aonstract, eas. xmmm
re-introduce the same value name. mmmm&eqpmmﬁm walye name are
established wmmmawm '

Example:
jet
X:reel =30;
<snother decidef> ;
<snother decidef> ;
<another decidef> ;
N <expression>
ondiet »
The scope of X is the entire block, inchding the expression amrin.w any inner scopes that
re-introduce X. ltst;peisud;m mn,na.o mldmsw n Section u E

this block had appeared within: the scope.of X Wbymmmmtmm -

| with its value and type, woukd disappear within this let block.

6.3 Expressions

Expressions are buikt out of smaller expressions by means of operation syinﬁols.
Syntax: B | |
expression ::= level-l-exp | expression , level-i-exp (the arities ate added)
In the next 8 lines, the operators may only be used if all operands m.'ofarity one.

 fevell-exp 11= kve|-2-;ip Ikvél-l-ekp | level-i%xp (boo!ean “or”)
level-2-exp 11 = level-3-exp | level-2-exp & level-3-exp ‘(boolean "and”)
level-3-exp 1:= level-4-exp | ~ level-exp - -~ -(bodlean "not")
level-4-exp ::= level-5-exp | level-4-exp relational-op levekbiexp
level-5-exp :: = level-6-exp ' level-5-exp | level-6senp:5* - (array concatenate)
level-6-exp-11~ level-T-exp | level6-expadding-op levet-Texp -
level-T-exp 11= level-8-exp | level-T-exp mukiplying-op level-S-exp
level-8-exp 3:= primary I unary-op primary

refational-op 11= < | <= | > | >=| = | ~=
adding-op s3= + | -

‘multiplying-op ::= * |‘/ |

unary-op ::= + | - ‘

primary :t= constant l value-name (these have arity one) |
| (expression) (sithe arity as expreision in parentheses)

larray-ref l array-generator

l record-ref I record-generator (These eight forms

| oneof-test | oneof-generator have arity one)

| error-test | prefix-operation o

: | conditional-exp W |
| tet-in-exp ~_ (These five structures are
| tagcase-exp F ducﬂbed in Section 7.
| iteratton-exp ©They have arbitrary arity)
value-name 32« name

In an invocation, theamyoftheexpmmuwamummbemlmmenmof

© arguments required by theﬁmcuon

invocation 't:-m(!xm) '

function-mame t:= name .

array-ref ss= ptimary [expression}

array-generator :: = (expression : W{ ;expression : m}l
| primary [expression.: expresion.{ ; mm}l

record-ref :1 = primary . fieki-name o

In the next 7 forms, all expressions must have arity one: except as otherwise noted, and the resultant
expressions always have arity one. - R - '
record-generator 13= racord [fieki-name : expression { .mw} P
" | primary replece [fiek : expeeasion. { ; fiekd : expuession } 1
field :: = flekd-name { . field-name }
. fieki-name 1: = name
oneof-test st I8 tag- mmm)
oned—generator tte m type-spec [tag-name : expression }
- tag-name = Aame
error-test u-hmww s oit
| s error (expression) | is 2ero_divide (expression)
| is pos_over (expresion) | is neg_over (expeasion)
|iam_wu(mm)|hmmun)
| is over (expression) | is under (expression)
| is arith_srror (expression) | is unknown (expression)

The arities of the argument expressions for a prefix opefition afe as shown, and the result irlty is

always one.
prefix-operation :: - integer (expression) (arity = 1)
‘ | real (expression) (arity =)
| character (expression) (arlfy I) |
| abs (expression) | (arny . l) E
| exp (expression) (arity =-1)
l mod (expression) (arity =2)
| max (expression) (any arity)
|mm (exﬁfesiion) (any arity)
| array_fill (expression) (arity = 3)
l array_limh (expression) (arity = 1)
| array_Jimi (expression) (arity = 1)
| array_size (expression) ,(tmv-‘-a‘l)‘
| array_adjust (expression) (arity = 3)
} array_addh (expression) (arity = 2)
| array_eddl (expression) (arity = 2)
| array_remh (expression) fasity =).
| array_remi (expression) (arity = 1)
| array_join (expression) iy o 8)
| array_seti (expression)

B g A IENERCS R S B AR AN R S L e
™ '

(arity = 2)

Note that operators oﬁey the cquy precedeme rules: unaty plus and minus have highest
priority multlphcative opemon (=, /) are next; additive operators (+, -) are.next; " is next;
relational operators (<, <=, >, >=, =, ~-) are next; ' "~" s next. L next, and T has lowest
priority

m&wmﬁamm .,
A
true
3.7e-02
k4 :
XYz CJ 1 "POR®

X>28 7 <k

-X+3xB

3x(X+Y) i |)
func(3+X,) ("func® returns: one velus)
[3:2) - D wigge 5 fen
Al3:2]

AL43)

R.X.Y.ZI

record{A:P;8:Q)

R replsce:{ x.r'ﬂwmv :QJ

sA (W) S

make T [A]:3

is over (x) ,

it P thens Maw (e Suetion 7}

The syntax pmvides ammmmrwmm OMMMbMJ
mmememdeutMm

smeemu‘kl-émmhmmmmumndmmmghﬁuduyu
 select an-cloment ts With an expression suckas T 0 o7

ALJEKAL]
This-may be written
ALL K, L]

-42 -

- The append operation can be used for muki-dimensional arrays by using an expression of
arity greater than one for the subscripts. Thus
AL4KL:V]
is equivalent to
ALJ:AJILK:ALKI[L:V]]
that is, A with its J» K, L element replaced by V.

~ Several values may be appended at consecutive lndlces by us!ng an exprwion of arlty gruter

than one. a : :
AfJ:v,W,X]

is equivalent to |
A JV; HIW; J2:X]

If mukti-dimensional arrays are being used, the last index is the one that varies when multiple data

items are present.

 ALLK LV, W,X]

is equtvalent to
ALLKL:V;LK L :W; 4K Le2:X] ’

These expressions need not be constructed by listing expressions of arity one separated by commas.

Other forms of expressions with high arity will be described in Section 66. For example: |
A[J:TRIPLEX, Y, D)]

fills in indices J, J+I, and J+2 if TRIPLE is a function returning three values.

Finally, append operations may be composed by writing the] : V pam in sequence within the
brackets, separated by semicolons.

A[Jl:Vl;Jz:Vz;...;JN:‘VN]
is equivalent to
A[JI:VIIJz':Vzl...[JN:VN]

where, as noted above, }; and/or V; may be expressions of any arity.

-4

AR wmmmmmnmmmwmmwmmmsy
elements operation.
Examples:
[3:X;5:Y,2}

is an array with range (3, 6), and elements X, miss_olt, Y, snd Z.
[1:A] T

is a "singleton” array with-low and high indices both one:
6.5 Abbrevistions for record.operstions

mmwwmwmuﬂ' 1
R.A.8.C

Compound selectors. may- hutqumwmmmww
by periods:
‘Rreplcef A.B.C:V

" is equivalént to
R replace [A : R.A replace [8: R, A,anpha(c vm
that is, R with:its A. B CWWM V.

nﬁmmmyummwmmﬁ thwmm
bnckets.saptrmdhym)
Rreplecef A : Vi8:W;CD: X]
is equivalent to
((RW[A V]H'W‘[B WDW[W:X]

- 44 -

. 6.6 Expressions of higher arity

The program structures provided in VAL for conditioml ,

P \,,;tation and itmtlon are
expressions of arbitrary arity, and are described in Sectlon 7. Such expressions, or function
invocations, may occur in program text in places that require a. tuple of valies.of spetified types:
the argument list of an operation or function invoatiw the body of a function deﬁnmon a list of
array indices or elements in an arny operation o in’ Suiﬁﬂng the | prognm structures pruented in

- Section 7.

6.7 Function invocations

A function invocation consists of the name of the function foflowed by an argument list within
parentheses. (The syntax is the same for internal and external and external functions) The
argument list is an expression, whose arity and types conform to the arguments required by the
function. This information is given in the header of the function definition. See Section 8. The
argument list is usually written as a series of expressions of arity one separated by commas, but it

may be any expression.

| A t‘uncﬁon invocation is itself an expression whose arity and types are the number and types
of the values returned by the ﬁmction. which information also appears in the function’s header. An
invocation that returns one value may appear in expressions with complete generality, such as an
argument to arithmetic, array, and record operations. An invocation that returns several values
may only be used where expressions of higher arity are permitted.

In the following examples, SINGLE, DOUBLE, and TRIPLE each take 3 arguments and
return 1, 2, or 3 values, respectively:
K:=3 + Z x SINGLE (X + 1, 3, SINGLE (X + 2, 4, W) ;

In the following example, if P is false, F and G are defined to be DOUBLE (X, Y, Z), while
H is defined to be W: '
F, G, H := if P then TRIPLE (X, Y, Z) else DOUBLE (X, Y, 2), W endif ;

Since the argument Hist for any functiem may.be anyexpression, -t Ty Yex W
fanction invocation or other prugnm mma.
3 4+ SINGLE (TR!H.E ix, Y.

3+ SINGLE @, wm‘ﬁ'fm

4+ SINGLE MPM*&MW&;Q‘%W 30

‘The last enmple invokes SINGLE with threearguments, of ‘which the first two are either 4 and 8
or the two values returned by DOUBLE. "The third argament to SINGLE is stways X.

B L R S i R e RILT SR URL IV SN b i Lt U PR Y
R e R LT e S R s AT SRR L TR I i S S e

~ 7. PROGRAM STRUCTURES

~ The pregram structures described mmunwnmmmdapmu If their

arity is one, they may appear in nml;mmm:. ~
Example:
lf_Pthenx else Y endif + 3

This expression has value X+3 or Y+3, depending on P.

7.1 The IF construct

The conditional expression selects one of several. ex
boolean_ expressions.

dependlns on the values of

Syntax: |
nondit!onal—exp 1= If expression then expremon
| ~ { oiseit expruuan !hon cxprumn }
~ elge expression
endif

The expressions followlng it and elso“ are fest cxpmmlu Thclr zrky must be one and their
type. boolesn. ' The expressions foﬂowing then and else are the arms. Thcy must mnform to
each other, and the entire construct conforms to the arms.

~ The entire construct is an expression whose tuple of values is that of the fiist arm whose test
expression is true, or.,the'_ﬂnal arm if all m expressions are false. If any test expression -needed to
~evaluate the construct is an error value (undeffboolean] or miss_sit[boolesn)), the value of the
entire construct is a tuple of undef values of the appropriate types. (If a test expression has value
‘tme fater test expressions are not needed and may have ® e values without affecting evaksation
of the construct).

The if construct introduces no value names. All value name. scopes pass into an if constre.
If the scope of a value name includes an if construct, it includes afl of the expressions of that
construct, so that value name may be used anywhere inside the omdltiunal construct.

7.2 The LET construct

The purpose of this construct is' to: {ntroduice: one: or- mere- valie names, defiive: their values,
‘and @valuate an expression within: their scopesliat:is;mking sse-of their-defined valuss),

Syntax:

let-in-exp :i=
ot deckdef-part
in expression
endiet
 decklef-part 1:.=deckdef.{ ; m}[]
~ decidef 12 « decl
| dect {, dect } := expression |
decl ::-vabe-name{ nlue-m} typﬂpa:
def::-vshe-mme{ Mme'} W

Every value name introduced: in-a-jet Mmhwmwymmddm exactly
once in that block. The declaration may: bepm nﬁheduﬁm oritmyheby Mpnudhg,
thedeﬁnitim

X : intuer ; (declaration)
X3 (csfinition)
Y:resl =47 +Q; (déclaration as pert of definition):

The dectaration of a value neme must precede or be part of its definition. Each: value name
must be defimed before it is used (o the right hand’sidé of another definition). Diectarations and
definitions may be mixed in any order-as-long as these.requirements are met:

Several value nimes may be declared at once:
XY, 2:red;
This dectares all 3 names to be real.

. Several value.names may be defined. at once,. The number.and. types. of the.names must

eonform to the arity and types ef the expression on the right hand side..
XY, Z:=10,20,30;
P, Q, R := TRIPLE(X, Y, 7) ;

Several value names may be declared and defined at once. In this case, each of a group of
"'valuenamenamesprecedlngatypupecmcatimmdechmdmbedthatqpe
" 'X:integer,Y,Z:resl :=3,40,50;

This declares X to be integer, and both Y and Z to be real.

'The declaritions, definitions, and ‘combined déclarations md deﬂnimm are npanted by
semicolons; a semicolon after the fast is optional.

The scope of each value name introduced in a lot block s the entire block less any inner
oonstructs that re-introduce the same vﬂue nanp However. a vglne name must not be used in the
deﬁnitiom preceding its own definition.

All scopes for value names not introduced in a given IQ! I;lock pass. igto that block. Hence, if
the scope of a vaknemme(lntrodumd bymmmsﬂua)m;lotgbckmdthunm
name is not re-introduced, it maybereferrad mmwmamm

Example
Tet X :real; T:real;
TmP+37y -
X:=T+24;

inXx7T
. endlet

. In this example, the value of P is imported from thz;oym context. The scopes of T and X are

both the entire block. A reference to X in the definjtion of T m!d be {llegal because it is within
* the scope of X but does.not follow the definiton of X, The ariy,of ths consiruc is one, and. s
;ype. is r?al, because XxT has aritj one and type real.

49 -

Since a value name may not-be used untif after it has been defined, and must be defined only
once in a block, it may not:appear in'its own definition. ' Herice definitions such as B
I:=1+1;

ate rever legal in fet blocks {though they may occur in ier clauses of for blocks; see Section 7.4)

mexmmfmmmtnnmmmdmufmwm value mmes.tud
hence can make use of their definitions. Tmmmmmmmm

7.3 The TAGCASE construct

This selects one of 2 number of expressions, depending on the tag of a aneof value, and
extracts the constituent value, '

Syntax:

tagcase-exp 1:~
tagoese [valve-name = | expression [;]
tag-list : expression
{ tag:tist : expression }
endtag . ‘
| tag-list 11 = tag tag-mame { , tagname }

The entire construct is an expression whose vakues are those of the expression in the arm whose tag
name matches that of the value of the test expression. HMMRM&WM‘M
word otherwise is used. All arms must conform to each other, mdthtmremmamform
to the arms.

The expression following the word tagcase must be of arity one and of 2 oneot type. The
'tagnam:ppeaflngintheamofthemmuumbeugsoﬂmmhype lftﬁeyooﬂlpme
anmngsormmype,mMuamumwwmm tharwis “amiinqnmd

If a value name and ":=" appear after the word tagcase, that name is introduced for each
arm of the construct except the otherwise arm. Its scope in each case is the expression in that
arm, and its type is the constituent type indicated by the tag name for that arm. If an arm is
evaluated (meaning that the tag of the test expression matches the tag name of the arm), the value
name is defined to be the constituent value from the test expression. If the value name and "=" do
not appear, the constituent value is not made avaiiable inside the arms.

Example:
Let X be of type
oneof [A : integer ; B : array(integer]; C:real ; D : boolean]

If X has tag A and constituent value 3,
tagcase P:=X;
tagA:P+4
tag B : P[6)
otherwise : 5
endtag ‘
has value 7. The first arm is taken, and P (whose type is integer in that arm) is defined to be 3,
the constituent value of X. If X has tag B and constituent value some array whose sixth element is
2, the value of the above construct is 2. In that case, P is defined to be the array. If X has tag C
or D, the construct has value 5. In that case the constituent value is not avaitable, since the value
name’s scopes do not include the otherwise arm. (This is because the otherwise arm can

encompass different constituent types, so the type of the value name could not be determined.)

More than one tag name may share the same arm if they indicate the same type. In this case,
the tag names are all listed, separated by commas, after the word tag.
Example: ' ‘
Let X be of type
oneof [A : integer ; B : real 3C: integer]

Then the following is permissible:

tagcase P:=X; .
tag A, C : expression; (P is integer here)
tag B : expression, (P Is real here)
endtag

-

Al met valie names: other than: mmmmmmmmmm

.

‘ wmmammwummmwwcﬂmmum'
of undef vaiues.of the appnip 5 o

7.4 The FOR constrauct

nummlmm%ummh%u«”&
previous cycles. The construct: introduoss & anmber of valie
convey !nformuonﬁmquamthem

Syntax:
iteration-exp 1=

|Hot: decdef-part in er-end-andist

|upmmu
| iter def-part onditer

defpart-um def { i der} []

The loop names are those appearing in. the declarations Mmm. ing m !
for. These declarations and definitions have the sume form-as in a let e ing the w

-52-

The behavior of the for construct is as follows: The loop names are initialized, only once, to
the values indicated in the definitions appearing after the word for md thc first ltention cycle
beglns During each iteration cycle these names have ﬁxed values.

‘ The iteration body is then evaluated, using the current defimitions of the loop names. The
result of that evaluation is either a decision to terminate the iteration, with values to be returned, or
a decision to iterate again with new definitions for the loop names. |

_ The iteration body consists of an if construct, tagcase construct, or a tree of if, tegcase, and
let constructs, with a slight modification: the arms may either be conventional expressions, of may
consist of iter, some redefinitions, and enditer. There may be many arms of each type.

If the arm that is chosen for evaluation is an expression, the iteration terminates, and the 7
" values of the expression are the values of the entire for construct. All such arms must oonform to

each other, and the entire construct conforms to these arms.

If the chosen arm consists of iter, some redefinitions, and enditer, those loop names are
redefined according to the the right hand sides of the redcﬁniﬂms, and evzluauon of the body is
repeated.

Examples: ‘
for ¥ :integer:=1;P:integer = N;
do if P ~=1 then iter v := YaP; P := P-1 ; enditer
else Y
endif
endfor
This computes the factorial of N. It introduces loop names Y and P, which are both integer. Their

initial values are | and N, respectively.

The body of this construct is an ifithen/else construct whose first arm is a redefinition and
-.whose second arm is the expression "Y". Aecordmglx.»a;t the beginning .of each iteration cycle P is
tested. If it is not one, the iter arm gives Y the new value YaP and P the new value P»|, and
another cycle begins. If P is one, the iteration terminates with the value Y.

for T:reel :=X;
do et D:resl := (X/T-TV2;
in HD<spathonT
slsa iter T:= 7+ D; ondiler
ondif
endist '
endfor
Thlscunpumthesquanmotof‘x mﬁm’sm Thembodymaldbbck

hointroducetheumoufymmb nmuannmmmmmmmmm ‘
‘appears.

‘The next example mmhhmaw by inttially defining Tbbclﬁ?UT
and U mummmmmwmmmrnu Assume the type LIST
has been defined by -

type LIST = oneef [empty : m;m MIM r“;n‘t LISTH
A "LIST" is a chain of records containing an-arbitravy number (perhaps zero) of reaks.
for T, U : LIST = REPUT, make-LIST [empby.. 0l]}
do ml =T;
tag ompty : U
tag nonempty :
Hor
T, U := Lrest, make LIST.[nonempty : recond [-item.: Zitew s.rest : U J1;
endteg
endfor

“The loop vatwe:rames must ail be differsnt, Their scopes are the entire for constrmct less‘any
inner blocks that re-introduce the same name. They are dedlsred sk initislly: defined:fu the: seme
manner as in a lot block. As in a et block, each name must be declared exactly ance and defined
mmmmwmmmmwm in definitions afver s own. Each
decharstion; defitvition, ammwmmwmnsm
except the last, for wivich the semicolen-is eptionsl ,

e e L ‘ FR A E e e e D e Dnd st WL DT TR T e U W TR LARICUE A

_Within each iter arm the redefined value names must be?t,.umios the loop -names. These
redefinitions may make use of the previous values of all names, including the one being redefined.
These redefinitions do not include declarations, since the types of the loop names were deciared at
»thebeginmﬂg of the for construct. . Each udeﬁmmhm by a semicolon. exupt thev
_ ‘last. for chh the semlmlon is optional.

- Unlike the definitions in a let/in block or-the initial joop. value definitions in a for block, a
redeﬁnmon in an-iter clause may contain, on.its right hand side, Joop names. that appear on the
left hand side of the same or later redefinitians. In such a case, the."old" yalee is used, thazh.the
value that the name had on the iteration cycle just ending. If the name appeared on the left hand
side of an earlier redefinition, its “"new” value is used, that is, the resiit of that redefinition.

Hence a redeﬁnitlpn such as
Jimdel; '

is legal and means that the next iteration cycle is to begln with a value of } which is one gmter ’
_ than its value on the cycle just ended. In the factorial example.given above, the iteration clause
iter ¥ := YaP ; P := P-1 ; enditer

multiplies Y by the old value of P. If the order had been reversed: = -
iter P := P-1; Y := Y&P ; onditer

Y would be multiplied by the new value of P, and the example program would compute the
factorial of N-1.

The simplest way to redefine two or more loop variables in terms of each others’ old values is
to use a multiple assignment. For example: N
iter X, Y := v, X ; enditer

exchanges the values of X and Y for the next iteration cycle.

A loop name not appearing in a redefinition after iter retains its old value.

The: scopes: of sny-vakee names oiher than: the Joop: nawes pass from outer blocks into the for
block. | ‘ _

mnltwtmmmmwmmwmmmnm
ulaeatupbofwmdwmm Mummmmmwbm
‘dees not cause speciat-schion: * I tistises-divan:] ‘

“retdrived, Mmmwwwmm
75 ‘ﬂu qum

ThummMWmmmwmﬁmMWmmmmmMm
thmuamwwmmwﬁmmmMaMmm The former case
uwmmu,mmmmammmm“mumem«m
‘opem:ur Tmmmynaw«n&m mmummum
-Mhumﬂymtptuﬂﬁmapuﬁkwm:a o - |

This construct introduces owe-or woe: tadex: value ames of type: integer and 2 number of

optional nemponry vahse names, the Intter in the the samie wisiher #¢ in- = fot Block.
foralt-exp 32 .

forall mmmh[w]{ value-name in [expression 1}
[dectdetpart]
forali-bedy-part
{’ foralt-body-part }
endail

| forali-body-part :z-mmtﬂ Wq)aprm
forali-op u-ﬂ&’h}ﬂ'mlwtﬁ '

~ The index names are those appearing before the word . The tefporary names are those
appearing in the declarations and definitions. I

The index and temporary names must all be different. Their scopes are the, entitc oomtmct
less any inner blocks that re-introduce the same value name. 'l'hetypaofthﬂmmmimeget
The types of the temporary names are specified in tmmm As-inn lot expression, a
temporary name may not appear in definitions preceding<tyown. = |

Each expression appearing in brackets after the word in is of arity two with both. types .
number within those limits, the index is defined to be that noribet, thé défntioris of the hempora porary
names are mde. and all the parts are evaluated. When more than one index is given, this is done
- for each pom in the "Cartestan’ m«wwﬂumm&uﬁrmm of index
“values. - w

“In a construct part, the ‘expression is eviluated for ‘each ‘index valie, and for each
component of the expression, an array is formed having the same Wilts a8 the Hmns given for the
index and elements equal to the values obtained. If more than ‘ohe index Is giver, a
multidimensional array is formed, that is, an array of arrays, with the first index referring to the -
outermost array. If some component of the expression is an error value Ybfwme m vakue, that
amy element is simply set to that error value.

Example:

forall Jin[1,4)

X : real := squsre_root(reaky))

construct J, X, X+1.0
~ creates 3 arrays, all with range | to 4. The first is integer and contains values |, 2, 3, and 4. The
second is real and contains 1.0, 1.414, 1.732, and 20. The fast is real and contains 20, 2.414, 2732, and
30. This forall block is an expression of arity three whose values are these three arrays.

" forall Jin[AB)LKIn[C D)
construct <expression>
endall
is Squivalent to
forall Jin[A8]
construct
forall K in[CD) -
- comstraet <exprassion>
ondal
endall | - , ;
and constructs a two-dinwnsional array, mtmmmmmm EA, B }-and - whese
elements.are arrays whose limits.are {0, D 1 '

In an @val part, the opsration. must. be one.ob plus, times; min.mex,or, o and. The arkty
~of the expression must be one,and its type MAM:Wsﬁrimmfmlw integer for
plus, times, min, orimax, boolean for or or:and. The expression is evaluated for each index

value, and the aperation is.performed.on’ mm&maumm lt mukiple
lndlces are used, the: m&m on the sotise collection:of alues; fae-all
‘combinations of fdex vakses. '
Example:
~ forall Jin[1,N]

-aval plus Jx)

N
retumsEj’.

- The result of an entire forall block is.an expression constructed by concatenuting the results
of all-of the parts. S

Example:

forall Jin[1,N]
- X; real.;=square_rootiresl(s) ;
eval plus JxJ

construct J, X, X+1.0

endall

is an expression of arity 4 and types integer, array[hiegor].arnﬁrod). and aruy[rodl

If one of the bounds is an error valuc. or the lower bound is gmm than the upper bound |
plus one, the result ot‘ thc emire forall block is a tupie of undof vaiues of approprlate type& If the
lower bound is equal to the upper bound plus one, the rem& of ach eondmct part is an array
with no elements, and the resuk of each oval part is0,1, po:_ov.r. m;_ovw, fdu. or h‘uo if
the operator ts plus times, min, max, | or or ond. mpecuve!y “

The scopes of any value names other than the lndex and uemponry namu. introduced in
outer constructs, pass into the forall block.

£
ks

A R R i T

8. FUNCTION DEFINITIONS

A VAL program consists damammmm mwnmmf

Aty nitmber of “internal” functions:. Each.function: mmma,
plece-of text consisting of:

). Thewordfuncﬁnn. |
" (2) The function.name.and mmm«uymmwmwﬁ
and returned values. mmmmuummw‘

" (3) The type definitions uied in the mtion definition. imumnxm fmm,

sty

:ma«amtmsofuhuewmmw'wm ol
‘(4) The definitions of the mmw uum. fmmm“

mythusbemubmiﬁly , Y
(5) The expression giving mmmmmmm “Thists the bedy”

of the function definiion. o |
e e it sais e

The definition olan external function is an entire-module: in: VAL. mdw~ :
mmfwmmmmmm4mmm

Syntax:
module :,x:-,extemﬂ*ﬁmetim-det»
external-function-def :: =
function function-header
[type-externatdefpart]
{ internal-function-def }
expression
endfun
internal-function-def ::=.
function function-header
[type-def-part]
{ internal-function-def }
expression -
endfun

 type-extermal-def-part 12 = type-externatdef { ; WW}[¥
© o type-external-def 12 = Iexmﬂvdef ;
pedetpur ot {ypcir ;]
- externabdef 3 ammmmm«r : i
- function-header 11 = function-name (deck {; e«r}mw{ type-spec})f -

function-name :: = name

Example:

function sum_of_squares (X, \£ roal raturm roal)
XX + YxY :
endfun

Only the external (outermost) function defined in a module is mmble toother modules.

Optional type definitions may appear at’ter the header to give names to types. ‘These
user-defined names may be used anywhere in theé'function definition; inclading its wn header.
The type definitions (and external declarations) are upnmed from each other by micolons. a
semicolon after the fast is optional.

Example

» !unction complex_multiply (X. Y: comp!ex rettmc complex)
" type complex = record [re, im : : real];
record [re : Xre x Yire'- Xim % Yim ;im : Xim x Y.re + Xre % Y.im }
endfun

8.1 Th_e header and value transmission

The list of formal arguments and their type specifications appears in the header between the
left parenthesis and the word returns. These declarations are separated from each other by
semicolons. Each declaration may contain ‘seversi vﬂue names, which are’ upurated from each

~“other by commas.

8} -

The scope of the formal arguments is the body-of the function{the-expression);-less any inner
constructs which re-introduce the same value -name. - Thulrmm are.as;given dn. the header
declarations, and their values are the values of the:afguments: ,umm ‘The
types of the returned values are given in Mswmmww comwids,
appearing after the word returns. This list-of types-stist-sonfierm 00 the:bady. In- every
invocation of a- funchion;.the piwshee MWMM : petaened valses must match
those of the definition. :

The meaning of a function invnuumisufollm the&meﬁml’isdeﬂlqlb]
WMF(OI ... oy mm;, ‘
BODYEXP
. endfun
then;, assuming the deﬂnmmismrmmmmmmm mmvm
F(ARGEXP)

jsequivalentto , ~)
ggt 8y 1ty ... oy ty = ARGEXP.In.BODYEXP. sacBed

i8.2 The EXTERNAL declerstion

AN functions used in a module that are not defined M,MMMMWHM
external declration. This dmmmw amnm&” M bg ; copy of the
function's header, which is used bymmﬂw checkin

Example: .
function tan (X : real returns real)
external sin (Q: resl refurnsreel);
‘external cos (Q : real returns reel) ;

. sinfX) / castX)
not defined here, they must appear in externsl deciarations. (They must be defined in sther
modules or accessed in a subroutine library) The eternal declerations contain the headers for
stnandms,pstastheymlghtappurmehedm&ﬂmcmm Tbefoml

arguments appearing in the headers (°Q” in mmmwhnmmmsﬁmm |

-62 -

incmgled only for syntactic consistency. The intention is that the b
the modules defining sin and cos into the module defining fan.

cers ke, copled verbatim from

A module‘s external declarations must appear following the header of the otrtermost: ﬂmcﬁon
definmon of that module, even if the functions being declared are med only by lmemﬂ fumdom.
The exlemd declarations may precede, follow, or be mixed with tbe type leRRAIONg
outermost function definition.

8.3 Inheritance of data. type definitions, and external declerations

A function has access only to the data presented to it in its invocation. No data vatues are
imported from any enclosing function definition. Type definitions made in one ﬁmmﬂeﬁnmon
are inherited by ali functions subsidiary to it. A redefinition in an internal fnction. of uype mme
already defined in an outer context is not permitted.

External declarations made in the outermost function definition are inherited by all internal
functions. :

8.4 Scope of function definitions

The scope of an external function definition consists of all modules of the program except the -
module deﬂning the funcnon That is, aﬂy external function may be lmroked from anywhere
except in the module gmng that ﬂmctions deﬁnmon 'l'he scope of an internal function consists
solely of the immedlate!y enclomng mnctim deﬂmtlon Note that this pfecludes any recursion or

mutual recursion.

B3 -

Thempemksrcrfmmm wmmmwwmmw
function F (<header>) '
.xt‘fﬂd FF(%C&" ,’
type T = <type-spec>;
function G (<header>)
type U = <type-spec>;
feinetion M (<header>)
function N (<header>)

‘function H (<header>)
!MMP(W)

the-body-of | may-iveke: functions

FF(eermal) G, HGnternal)
' FF (axternal), M (imernal)

FF (externat) N Ginsernal)

. “FF {external)

FF (eaternal), P (internal)

v T ZZTO ™

the body and header of : may use defined types

- I Z X2 0Om
-
c

The modules comprising a program are mnslated sepamely The manner in which their
“names are used to access them in fibraries and the manner in whkh they are lmked into a complete
program is dependent on the implementation. No recursive invocations Aamggxterml or internal -
mnctimsarepgﬁnined. | B

Appendix | ~ Formal Syntax

module :: = external-function-def
external-function-def 1t =

function function-header

[type-externat-def-part]

{ internal-function-def }

expression

endfun
jntemakﬂmcﬁon—d;gf H T

[typederpar]

{ internat-function-def }

expression

endfuy
type-external-def-part :: = typevxteml-dd‘{ .!'fpe-exmm&dd‘} [;]
type-external-def 1« type-def | external-def
type-def-part 1:= type-def—{ ; type-def} [.]
type-def 1:= type type-name = type-spec
external-def :: = axternal function-header -
function-header 2= function-name (dect { ; dect } returns type-spec { , type-spec })
function-name :: = name '
expression 3= level-l-exp | expression , leveH-exp |
Tevel-l-exp 11» level-2-exp | level-l-exp | level-2-exp
level-2-exp 11 level-3-exp | level-2-exp & Jevel3-exp
level-3-exp 11 = level-4-exp | ~ level-fexp
level-4-exp 1: = level-5-exp | tevel-4-exp relationat-op level-5-exp
level5-exp 11« levelGenp | levelbexp Nlevebbexp.
level-6-exp :: = level-T-exp | level-6-exp adding-op leve-T-exp
level-7-exp :: = level-8-exp l Ieveiﬂ?-eip ‘multiplying -op level-8-exp
level-8-exp :t = primary] unary-op primary

refational-op :: = g],(,, l_) l hs} =J ~e
adding-op 1: = +‘-

multiplying-op 3:= x ' /

uhary-op =+ IJ"

primary ::= constant l value-name
| (expression)
I invocation
Ian'ay-ref | array-generator
| record-ref | record-generator
!oneof-test |oneof-gencrator
] error-test | prefix-operation
' conditional-exp-
| let-in-exp
l tagcase-exp
l iteration-exp
l forall-exp
value-name ::= name
invocation ::= function-name (expression)
array-ref :: = primary [expression]
array-generator ::= (expression : expression {

| primary [expression : expression {
record-ref ::= primary . field-name :
record-generator :t= record [ﬁeld‘name expression { ﬂsﬂm upm }]
| primary replece [field : expression { ; field : }]
field :: = field-name {. fied-name}

field-name :: = name

oneof-test :: = i tag-name (expresslm) , ,
oneof-generator :: = make type-spoc[sag nape : expmsshu 1l
tag-name 3:= name

* error-test 11 = is undef (expresslon) ' is miu elt (exprm)
| is error (expression) | is zero_divide (expression)

| is pos_over (expression) | is neg_over {expression)
| is pos_under (expression) "i‘:w (expression)
| is over (expression) | isumder (expression)
prefix-operation : :‘-}W'(GXPMYI‘ |
| rest (expression)
| character (expression)
l abs (expression)
| exp (expression)
| masc (expression)-
| Pwimy (expression)
| erray_fill (expression)
| arrey_size (expression)
| array__adjust:(expression).
| array: addt (expression)
| array. addi texpression):
| array_remitexpression).:
| array_remi (expression)
| erray_join (expression)
| array_setl {expression)
constant 11« nif | true | télse- ~
| integer-number | reat-number- |mm]mmmm
| ervay_emptyftype-spec]
| undefitype-spec] | miss_eltitype-spec]
l pos..om&vpmed | m...ﬂmkwi |
| unknownitype-spec] | M..d"id!ltyp&md
type-spec 11 = basic-type-spec
| compound-type-spec

| type-name g
basic-type-spec :: = null | boolean | integer l!.d lchtrutu X
compound-type-spec :: = array ftype-spec} |
: |record[ﬁe|dspec{,ﬁe|dspec}l -

| oneof [tag-spec { ; tag-spec } }
field-spec :: = field-name { , field-name } : type-spec -

' tag-spec ::= tag-name { , tag-name } [type-spec] :
| type?name $t= name | : :
conditional-exp :: = if expression then expression
{ elseif expression then expression }
else expression
endif
let-in-exp ::=

let decidef-part

in expression

endiet
decidef-part :: = decidef { ; decidef } [;]
decidef :: = decl

| def

|dec| {,decl}:z-expresa‘on‘
decl ::» value—name‘{ , Value-name } : type-spec
def ::= value-name { , Value-name } = expression
tagease-exp 3

tagcase [value-name :=] expression []

tag-list : expression

{ tag-list : expression }

[otherwise : expression]

endtag
tag-list :: = tag tag-name { , tag-name }
iteration-exp :: =

for decidef-part

do iter-end

endfor
iter-end :3= If expwmtmw
{ gt mer-emat} |
| tet decidef-part in iter-end:ondiet
| iter def-part-onditer
def-part 1= def { ; def}[,]
forall-exp :: =
forall-value-name lix [expression] { ,
- endall
forali-body-part :: = construct expression: ‘Mmm
foralhop 11~ phoe: Iﬁmlﬂakm -

FunctimikModule

Function
FUNCTION hondior

H| e] S [Covoron)

Function Header

i

Function
‘name

Formai)
parameter . < . > : Type-spec
O

Type and Function Definitions

—_ 1 y w——
name ‘ vaw

Function
header

EXTERNAL

y e

o Type: L
. hame |
g #

Null type
abbreviation-

- |

S

Expression*
- > operator
1 > Multiplying |
Expression operator
Adding
=1 operator
" Retational
» operator
1
Expreﬁ_sion
n N\
Expression 'u

1

Expression

1
Expression

*The precedence levels for these infix operators is
illustrated by their position in the chart; “unary

‘operator’’ is highest precedence, comma lowaest.

The superscript following ‘‘expression’’ indicates

+he number of values that must be represented
by the term replacing that box in the program.
— an exact number >’

—n
-

that arity is the onty legal one

any arity is valid

arity must-match arity of other
expressions in some chart

Expression

Primary

4= Constant ?
Value -
name
' n
Function :
name _ Expression
Array ref g - n
Pri ‘
rimary . [. Expression
Record ref . Field
Primary __*O——‘ name s
One of .
test Tag
neme -
Error .
tost Error
name
Prefix op Prefix | "1
name Expression
. n
Grouping op (
Expression
Array R
-genarator
>l Record -
generator
Oneof -
generator
> Conditional]
exp -
Let-in >
exp
> . Tagcase >
exp
Iteration -
exp
> Foral!
exp >

iteration Exp

Iter-end

-74 -

— o — ——

_J |

Decl-def-part iter-end
Value . n ’
— . ENDITER)r—r
A name Expression o
; Ot
n
‘ >
Expression |
Conditional -
g iter-end
TagbA)
> iterjnd >
Let
> iter-end >
Conditional Exp
- -{conditional iter-end)
——————
1 Expression K -

Expression

; iterend

Expramion
s i Gre v . s’

iter-end

[erermsion ¥ _.J

|

Merge -

operator

Expression

Definition

» \(a|ue

-Expression

Declaration

: Value . .
e »O a4 Typespec

Multiple Definition

) []
4 Declaration : ’@ 3R . ’,‘Em

Decl-Def Part

I w—-b Decluration . P@

l———»t Definition

——— M\flt.ip_la
definition

One
.of Generator

— G
—C=

CEXP B

MIN >

. ARRAY-LINH

{ ARRAY-FILL
bl ARRAY-SETL P

Constant

4

N

>< TRUE 'L
" FALSE }

|

¢

Integer
number

Real
number

String
constant

09 |

Character
constant

-O—
O

'

gt

ARRAY-EMPTY

MIS-ELT
POS-OVER
NEG-OVER

ZERO-DIVIDE

POS-UNDER

L

=0

Function name, formal parameter, type name,
value name, field name, tag name:

= they are all simple identifiers '

