COPYING COMPLEX STRUCTURES IN A DISTRIBUTED SYSTEM

Karen Rosin Sollins

May 16, 1979

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by the
Of fice of Naval Research under Contract No. N00014-75-C-0661

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

This empty page was substituted for a
blank page in the original document.

COPYING COMPLEX STRUCTURES IN A DISTRIBUTED SYSTEM
by
KAREN ROSIN SOLLINS
Submitted to the Department of Electrical Engineering
and Computer Sceince
on May 16, 1979 1in partial fulfillment of the requirements

for the Dégree of Master of Science.

ABSTRACT
This thesis presents a model of a distributed system where the

universe of objects in the distributed system is divided intb‘mutually
exclusive sets, each set corresponding to a context. This model allows
ﬁaming beyond the context boundaries, but limits communications across
such boundaries to meésage passing only. Copying of complex data
structures is investigated in this model, and semantics, algorithms, and-
sample implementatigns are presented.for‘three candidate éopy

operations. Of particular interest is a new operation copy-full-local

which copies a complex data structure to the boundaries of the context

containing the object.

Thesis Supervisor: Liba Svobodova
Title: ‘ Assistant Professor of Electrical Engineering
and Computer Science

Key words and phrases: copying, sharing, distributed system, message

passing, strongly typed objects.

. ACKNOWLEDIGEMENTS

There are three people without whom I could not have written this

thesis. I wish to thank Profeséor Libé Sva&adbvaffcr»thé'diligence\with‘

“which she has read and understood the nany dtafta of this'thesis. Her

"ability to help me extract and clarify my ideas has been invaluable. :

Mike and Peter, my husband and son, have provided the. moral and

. emotional support I needed through these many moﬁths, particularly the :
last two. They above all had the confidunce 1n meAthat I could and

~shou1d do this work.

- Im addition, I wish te thank Dave Cldtﬁ**ﬂlieﬁﬂﬁuﬁiéibki§ Jim
Peterson, Dave Reed, and Jerry Saltaer*for Heﬁpiﬁg me to clarify ny

ideas and writing. I wigh to thank uy~parznts, Axet aﬁéxxathy Rnsim,

“and sister, Susanna Bergtold'fot*ﬁhﬁir“Gamfidﬁnﬁa*inﬁﬁ61' Fiﬁalky,
" wish to thank all the wembers of the mmmswem Raseasrch Group for -
~ being themselves and providing a u&rrurimgféﬁvitﬁﬁh@ﬁtfiﬂ*ﬁ&ich%téldéx

‘research.

CONTENTS

Abstractcceeececas ceeesessscsansennonens ceevescsacscas eee 3
Acknowledgments «.ccoevesscscsoscsascscacasccscasssnsasnssnns o b
Table of Contents e rereeereaaaaas cecrecnarsanans 5
Table of Figures ceitesenees cresencsscnns ceseenaas 1
Chapter One. Introduction ..cesececcescoccncconccnnss cesssas 9
1.1 Model of a distributed sSystemccceecesecccccsss eees 10
1.2 The problem ...iceveeeccesccnccnans tesseesessssenennns 15
1.3 Related workcvvcveescanens cecessas eressecssassses 19
1.4 Plan for the thesis ...cco0eesececcccns essessescasssas 21
Chapter Two. Contexts I |
2.1 Naming envirommentccoceee. testcesessarsarsansas 23
2.2 Abstract networks ereeseessssssssscsescscaccean 29
2.3 Contexts as objects ..vececeaes T) |
2.4 Summary seescnannes ceceansceses cesesessasssasse 32
Chapter Three. The Copy Operations cerecstescane 33
3.1 Existing copying algorithmseeneceeevccccnccsncs 35
3.2 Proposed copy operations ...ceceieeeccccesnccscas seecenae 41
3.3 The copying algorithmseceveveeecceoccsnans veseenns 47
3.4 The recelver ...ceccvvecneoness essceacanns csesasceses 95

Chapter Four. Additional Mechanism for Copying ...cececceee. 39

4.1 Message-contexts and images cesecacsase veess 59
4.2 Layering in a nodecceeesesescscne ceesvssacanne s 64
4.3 The details of sample copy operations ceses 67
4.4 Preservation of sharingc.cevneeecnncsces ceecesess 15
4.5 The receiving end ..civeveeevecenncaccnscncne cevene oo 19
4.6 The local copying operations chesssascenccnns . 81
4.7 Additional issues teeceacserescssresaseaanncnons 85
4,8 SUMMATY .seveeverenonaneas T 90

Chapter Five. Summary and Conclusions

5.1 SUNMMALY +seresevsasncnnnascenases
5.2 Conclusion about the research ...

5.3 Suggestions for further research

Referencesc.veevsee ceetessaaeanne

FIGURES

1. Contexts and communication by message passing 11
.2, Communication within the distributed system 14
.3. Sharing of components within a data structure 16
4. An example of the copy-full-local operation 18
1. A mutable CLU object of extended type cesecsas 37
2. An example of an object ceassecsne cecsceseasena oo 43
3. The results of a COPY=0Ne .tiivcveesscssossessns coseees b4
4. The results of a copy=fulliievenenenceccececncnns 45
5. The results of a copy-full-localcveeeroenrcccnnes 46
6. Message-context and image for a copy-onec.c.... 49
7. Message-context and images for a copy-full 51
8. Message-context and images for copy-full-local 54
9
1
2
3
4
5
6
7
8
9.
.1
.1

. Receiving message-contexts .c....eeceeessassocecsnsses D7
. Layers In the system (on one node) serecases .. 67
. Operations in the T type MaNager .ccovesecesscesonnne e 712
. The generic copy operations A <
. The send operation for message—contexts ...ccseeseeess 74
. Sharing across context boundaries cesesssessesas 75
. Using copy-full-local for foreign components 76
. Using copy-full for foreign componentsceeoeceees 77
. The receive and receive-image operations 80

The generic receive operationseveeescecenes seese 80
0. The receive-message~context operationcceeeeee. 81
1. Modifications for local copyingceecercsscccecnnes 83

Chapter One

Introduction

Many aspects of computing are based on the ability to copy
information. The foremost of these is parameter passing by value; in
distributed systems, it is the only way to pass parameters between
program modules executing at different nodes., Since these parameters
may be abstract objects whose actual representations are complex data
structures, copying in this kind of environment is a non-trivial matter.
The second area is a more general sharing where copies of some objects
will be maintained at several nodes. Finally, copying is needed to move
an object from one location to another; this is different from the
previous, in that after an object is moved, there is still only one
instance of the object in the system. Each of these and possibly other
areas require the ability to copy objects. Each also requires other
mechanisms, which have, in general, been topics of research.l The

research reported here has concentrated only on copying, in particular

copying complex data structures.

In addition to the problems for which copying is a part of the
solution, there are a number of interesting problems that must be

addressed in developing semantics and algorithms for copying. For

1. For example, if several copies of a mutable object exist in a
system, a requirement may be that these copies be maintained in mutually
consistent states.

example, consider the situation in.ahich :a structured object is being

copted. 0f interest ‘here are thase 'components that .are contained by

naming in more than one other compoment, -in obher<uar&s»shared.by.ccher

.component objects. fA'4ectsionrmnmtﬁbewmadeaaa toimhather’or not thase

-ghared cwmpﬂaents are copind‘mnlywumne,.onae “For aaﬁh connain&ng objznt,

or once for each pointer: to the objnct. Anotkgr qnestion that -must be
answered 1s whether or not more: than one - kiﬁd af copy operation is
needed, and, if so, what the semantics of the. diffemant 0perations are,
In order to addness thege problems, A mcdal 18 neeeaaary. Thts‘ghapter
will introduce the model of«a'diatrihutadxsyntem,naed in”this résearch;
Using the model, a discussion of . the-prablem tn he snlved and an
introduction to the solution will fnlbou leuearch related to this work

will then be surveyed concluding with the pLan far the thesis.

1.1 ‘Model .of -adistributed systen

The model -of a distributed system used in thi# research assumes the
hardware of the'system to be a-network of ccnputers, each camputer
having its own private memoty’or namespace for objects Since a single
namespace in a computer provides~neithstwenough,flexibility in naming
objects ‘nor emcugh protection in accessing .ebjects, this work first
developsua“mudelfnfaécﬂﬂﬂ&ﬁ:tathaxzinﬂi&iti&eaﬁiiagrmpar;itioninguoffthe

namespace.

Each computer .or node in the distributed aystem supports one or
more contexts. The univerae of abjecxs on:a nade form - disjoint sets.

each set corresponding to a singlefcontext. Thus the context defines

- 10 -

.-.--sooosnoxm-l-\uN.—\o

FIGURES

. Contexts and communication by message passing
. Communication within the distributed system esee
. Sharing of components within a data structure
. An example of the copy-full-local operation
. A mutable CLU object of extended type caens
- An example Of an ObJeClL ...civerrevrcnerencsccnannenns
. The results of a copy-oneoco... teesssraaneeesenns
. The results of a copy~fullccivevevncencernneens
. The results of a copy~full-1ocalcoveerenecnoacens
. Message-context and image for a copy-onec.00...
. Message-context and images for a copy-full
. Message-context and images for copy-full-local
- Receiving message-contexXts ...ceieecevecsoseocvocasans
. Layers in the system (on one node)c.eoveceecenne
. Operations in the T type manager B T
. The generic copy operations ...eeeeeseccecececcccecens
. The send operation for message-contexts A
. Sharing across context boundariesceceeeeeeees
. Using copy~full-local for foreign components
. Using copy-full for foreign componentsecoeeosoe.
. The receive and receive~-image operations

The generic receive operationeeeeeveeeeceesencns
0 The receive-message~context operation
1. Modifications for local cOPYing covevveecerscecansans

11
14
16
18
37
43
44
45
46
49
51
54
57
67
72
73
74
75
76
17
80
80
81
83

protection of graups of objects.where a.group is-a subset of the set of

" all objects on-a-particularvmachine.

The system .model recognizes two kinds éf:entitiés;'activé and
‘passive. The active entities are called. piocasses, and can be executing
in no more.than one context at a time. Since procesoes -are not. of
primary interest in this research,: ;m further:&saumptions ‘a‘re» -made abo;xt

them. The passive entities are -objects. All objeets have three |
attributes, value or state, an@e,’ .and: type. Every object has:a value |
assoclated with it. An »objectv.w‘il‘lsa.hav’e the value of;:m associated
with it .when it is created. f,»‘Ob}e:ct ~:va1ue.s,mai'e v of ’.m'ae of t:wo : de,,g‘rees“ o'f
permanence, : making the correspending. abjectamm.able or: iumutable. An
jmmutable object can be. assigned sasvalue at mst onee, whereas as munable
object can be asa’igned—a walue ~x~mre“rthan-~~=omv v“»’!his,ais not meant to -
imply that either :of these-necessarily happena,: on];y that zhe
possibility exists. :At- the level of contexts, - every ohject will have :at
least one name, ‘and will-have-exactly ane-in ?.:'J;ﬁ-s home context. ' (As
‘mentioned previously, an object-may be nsmeable’ from a foreign context,
.and in order to.do-this:the feoreign context must-assign to the object a

name that is local to the foreign context.)

The third attribute of -an object is:its typa; every cbject is .of
exactly one type for.its whole life. Typve&s ;a'zdesé%‘ipﬁion nf -thome
characteristics that a collection of .objects have in common, a set 'qf ,
rules by whieh the objects:and the users af the .ub‘j@e;tis}must abide.
There exists a type: mnager»:cr fnssme-».:o!ﬁherf;het:hanm?flo: aach type (there

may be one instantiation of the type -manager per-_objgct that may be

-.12 -

considered an integral part of the object, or there may be an overseer
of a particular type) that insures that only certaip,operations‘can be
performed on the objects being maintained by it. In this work, se are
‘assuming a single overseer or type madager fo: all the objects oﬁ a type
at a particular physical nnde. Ekcepﬁ for the.mQBt ptimitife types
called base types, . ggich are provided by thenaystem to each context,
every type is defined“in termsmofwothﬁr types;Jtheﬂrepreaentstion of
such a type is in terms of the representations of other types, and the
operations provided by a type are defined in terms of operations on the
component- types.. - ‘The types that are mot- base: types: are~knowu as

extended types. An extended type object contains a list of the names of

its component object. Such an object“conteins nothing but nnmes locel

’,t s Pl

to the context in which it reeides The definitions of extended types
ks

form a network of definitions that must be based in the final analysis

¥

on the definitions of the base types provided by the system.

ok

Several eupperting mechanisws for this wmodel of contexts are
necessary. ~Thaae meehenis&s fornhthe‘keraeltv:?or the purposes of this
research, only the message handler and- stotage manager-are of cencern.
Figure 1.2 depict3~this»situetiont fThefnessage handler must be able to
(n pase'meseages between contexts local to & mingle computer, (2) pass.
messages from a local context out inteo the neétwork, amd: (3) receive -
messages and see that they are delivered to the correct local context.. -
The message handler transforms messages passed between contexts into the
kinds of messages that can be passed through the network hardware. The

message handler contains information about low level protocols. It ig

..13 -

Contexts'

sl e
' ¥

- nede 1 cowoc nodes?

Figure 1 1.2 A nodel of . the cemnﬂniaatien within and between nodes of the
distributed system.

quite possible that the low. level ueasages of the network do not
correspond to the high level messase objects or iggggg uhich will be
discussed later in the thesis. These high 1evel measages may be
buffered and sent in groqps, or aplit into snaller packets. Whatever 1s
done by the message handler at such a low 1ewel 13;hiddéaafrom the '
contexts and users. The storage manager, as its name indicates,

oversees storage of objects. - For each objectfstored in the nbde, it
provides a unique name in orde;«thaz the phyaical'object may be accessed
{through the storage manager). Each‘atot§g§ name is known to a single
context and associated with the local name aaaigaed to that object by

that context.

=14 -

1.2 The prbblem

The problem that this thesis investigates is copying complex
structures within the model that has been sketched. The complex
structures in this case are objects of extended type, and the copying of
particular interest here is copying across context boundaries. As was
mentioned, copying is needed for a number of reasons. This research is
a study of how to provide such copying: what the semantics of copying
should be, and how to achieve them. In order to investigate copying
further, we have set ourselves four goals: (1) any sharing that exists
in the original structure must be maintained; (2) economy of mechanism
by using a single approach in all copy operations defined (there will be
three) is desirable; (3) since all communication between contexts is by
message passing, the amount of message passing should be limited; (4) it

should be possible to send and receive component images separately.

Each of these is discussed below.

The first goal to be discussed is the retention of sharing among
components when copying an objects. Although a more common concern is
sharing among processes or users, this research concentrates on sharing
within an object. In the model assumed for this research, objects can
have arbitrary structure, including recursive containment. The simplest
question is whether maintenance of sharing would be necessary in copying
objects if recursion were not allowed, but sharing components were, as
in Figure 1.3(a). If sharing does not occur in a copy where it does in
the originai, the behavior of the copy may be different from the

behavior of the original object under the same conditions. Now,

- 15 -

(a) Non-recursive sharing - (b) Recursive sharing

¥

{c) Recursive sharing across context .Bounda'r.ies'.

Figure 1.3 Examples of sharing of conpanents within a data structure.

considering the more ceuplax structure that «ienelﬁu_é“ v reﬁursive
containment of components such ‘a8 the s&u&ﬁ;ﬁre‘ ﬁ: Pigure 1.3(b), it
becomes even clearer that such sh;ttng guacibi¢eo§iod in order to
terminate a copy operation which copiles “‘l:hé complete “st'tactqrg. Sharing
across'context boundaries, as in Figure'1l.3(e), ’sddsv a m dimension to-
the problem of copyiag. It does not introduce any-new reason for
maintaining sharing, however, recursive structures sre much more
difficult to detect across context beunwiu - ‘Thus, there is aveérj a

greater need for a mechanism that detects .such sharing.

et g
i

e A T SR A 12

s

g N3 ST AR A N 55 . e U

the local private memory or namespace. In order‘to provide flexible
control of sharing and to limit errotépzopagation, the only means of
communication between contexts is by passing:-measages. This censtraint
allows enforcement of arbitrary degrees of protection at the context
boundaries. It does not eliminate the possibility of sharing an object
across context boundaries, but does limit the means of access to that |
object' if an object is known beyond the boundary of its local context,
the only means of operating on the object is by passing the name of such
a foreign object in a message requesting that some operation be |
performed on the object in the containing context. The user will see a'
collection of contexts with messages flowing between them as in Figure

1.1.

ContextA - jContextB §] ContextC}|.

oot NooreT N/

Figure 1,1 bontexts containing objecis and communicating by message.
passing ‘ : :

This model of a context providee §£;{éziion';l aAlevel not
generally prnﬁided-inxconputer:syetemeisartgiescqunpn for a system:to
enforceuprotebtionwof the system as a whole; . the requirement of
passwords is pne.such mechanism. At thevothet‘extnemejfindiviﬁugl
objects are f?equentlyvprotected; two common mechanisms to achieve thig
are capabilitﬁes and access control lists. - Contexts allow -for

-11 -

, o‘per'avtio‘ns‘ ‘smilar to cgg ! 1mvd ﬁm are cnu :g

the boundary of the context contaiaiaz the m-i;;tmll object. Figure 1 4

level of the sttucture, cepying pointets tn ali tﬁe cnnponeubs of the

original. 1In fact, the copy uperatién 1% defined:by ealling cogzi on -“v~:‘

the original object, and then’ cnlling gggg& §ar éich zompunant, mgvingiif

Lhrough ‘the stru&entc wntil ail th@ eanpbﬁ!ata have;baea capied. ucégxﬁlﬂ

provides the standard senmnties f@: %apy by*eayyiag a&i af e object, e
cand ¢ ggx 1 ellows for crcatibnAof sp&c&<y tailura& capyins, in which :

,not'all the campunents-neu&~to»be tay&gd3~~iﬁ“this gnanareh';he~

. The model of the system ptesanxed Ln this paper 18 much more .

complex thau that cf GLU, all‘,;? data a&runtuxes to cross. eantext

,boundaries. As & reault, thia recearch haa ;ad tn & third kind of cnpy

' operation. the _*gy-full-local. f¥fl;ijii;‘: _wlueal aperation cupiea to

"is an example of this. On;y~gﬁua§‘c§;:;éfbaxj;jt

7 Figure 1 4 An example of the [

, o e T T
~original = ~copy

f'full~1«ca oyeratioa. The object
1abeﬁ-e3 with * is copied Into thﬂ obrect labélled % and the:

- component labelled 1 is copied into i'g The cungonénts labelled 2 and'ﬁ
‘are not copled. . L .

- 18 -

top"level (directly or through other local components) of the structure
and in the original context are copied. This copy -operation comﬁleﬁents;
the Otherrtwn in such a'wny'thatlthe thréiiprdviée*the user with"a“grett‘
deal oftfléxlbility'fn copying complex data structures across context:

boundariés.

1.3 Related work

The model of a‘dintributed”sYsteﬁ”Use&*inithiﬁ*&éséarct has been
influenced strongly by the work of Saltzer[18]), Liskov et al.[l0,11],
and Svobodova et al.[}9] In Saltzer’s work every object is associated’
with a chtéxt.or nuuihg'env&renﬁént;‘aii"ﬁhe nagesser pointere in anm - -
dbjégt are resolved with reSpect’to tﬁe cgntéxtéépecified for that
object. The purpoae of contexts in Saltr;rgs ﬁork is to achieve what he
terms modular sharing. A number of ideas from the ﬁork in CLU of Liskov
et al. uo 11] have influenced this work.» First, the work on CLU |
presents a strong justification for abstractions or strongly typed
objects and type extensiou. Second, the CLU syntax and approach to
modularity in programming has provided a banis for 1mplementation of a

number of the most important procedurea for this research. CLU also

provides approaches to the semantics of copying, the cogz and copy

opérations for arrays and rgcords,”aa mentiqned previously. Both arra§s
and records can be complex structures. The third sttong influence on
this research is the work on diatributed systeas af Svobodova et al [19]
The model of a distributed system in that work assumes gt;rd ians

communicating only by message passing. The universe of entities in this

_ model is divided into two kinds of entities, active, which are called

- 19 -

processes, and static, :called wbjects. A gnandian«;sfgqmposed of one or
moTe processes and the local address space (1he.dipectly accessible |
objects) of those processes. The local address spaces of guardians are
mutually exclusive sets of objects.‘ A peocesé or object can refet
directly only to objects within the same guardian. Across guardian
boundaries only processes may be naned ditectly, objects can be named
indirectly by using tokens, external namegefp;:nhgacts,fpassed to other
contexts by the context conﬁainins the<object;v The model used in thia
research is very similar to thnt of iwabodova‘et ni,, @xcept that this

work is concerned only with objectl,~nasm!£§hgareﬁﬁlupﬂt

It must be pointed out that a vntiety ai nopytng nlgorithms have
heen developedkby other peuple. Thene inciude thosa dnveloped simply as
copying algorithns (for example both 61ark [3] and Fiaher [5]) and those
with parciculer functions in mind sunh as gathnse collection (for
example McCarthy [12 13] and Baker[l] Althoush thesa works must be
iconaidered 1n a development of yet anothet copying algorithm they
present a common problem. They all use the copy thnt is being created
as part of the vorkspace needed to generate the copy. If copying is to
be petformed across context boundaries, such use of the cOpy 1mplies
increaaed message passing. Because of thefedst 1n ttﬁi"end greatef”
posaibiiity of failure due to the need for éeoéefafien‘Setveeﬁ7coﬁtextsg
for the purposes of’ this tenearch an alternative approech was chosen

SRR ruen

that avoids these problems.

The external marked database developed by Bishop[2] provides much
of the mechanism in his copying garbage collection for areas that our
message~contexts provide here. (Message-contexts will be discussed at
length in Chapters 3 and 4.) In our case the sending message-context is
the repository of the names of objects that have been copied (it also
has other functions) and the recéiving message-context holds the names
of the new objects containing the copies of the various components, in
copying from thé original object into an image and from an image into
the copy in the receiving context. Bishop achieves this in one phase

because he is not copying across naming boundaries.

1.4 Plan for the thesis

The remainder of this thesis can be divided into two parts. The
first is a further amplification of the model of the distributed system:
this is encompassed in Chapter 2. The second containé the discussion of
the copy operations proposed as a solution to the problem of copying

complex structures; Chapters 3 and 4 present this material.

Chapter 2 discusses in greater detail the nature of contexts.
Three complementary views of contexts are presented: (1) the context as
a naming environment, (2) the context as a node in an abstract network,
and (3) the context as an object. All three views are used throughout

the rest of the thesis.

Chapter 3 introduces the three copy operations. The mechanisms for
the copy operations meeting the goals discussed earlier are presented in

this chapter. This is then followed by a description of the algorithms

- 21 -

for sending and receiving im the contexts between which the copying is

being done. . : T A

Chapter 4 investigates in greatar detail two new types of objects,
proposed in ordet to achieve the copying diacucsed in Chapter 3. It is
then recognized that the siupleat approach to providinz cOpying for o
typed objects is to pxovide 3enaric opcrationu or procedures that can ba
invoked by individual type managers‘ Boaaihlc inpluuentations of the

important operations: are thcn,p:esent:dzr Oat eonclusion to be drawn ,

from this work is that most of ;he nschanisna necdad for cOpying can be

prbvidedfhy the syatem:to the individual conmnxtdyv&n@;hew£0§mh0i the
generic operations, and that thezefore inclading tha type specific copy

operations in particular type nnn&gc:a 1: aot vety difficult.

Chapter 5 is the concluding chapter of. the thesis.,-1t~summartzes
the thesis,'and then discusses poesible di:ectipna for~£urthe: research

related to this work. . i wr‘. Y e

-22 -

Chapter Two

Contexts

Contexts can be viewed as several different, but complementary,
classes of entities. As they were first presented, they appear to the
user to be namespaces. A context is an enviromment in which local
objects exist and can name each other using only names local to the
context in which they reside. An extension of this view leads to
classifying contexts as nodes in an abstract network. The nodes can
communicate only-by sending messages. It is also possible to
extrapolate from the brief discussion in Chapter 1 to the point where
contexts are considered to be typed objects themselves. Their behavior
should be strictly circumscribed; their structure and the operations

defined on them must be carefully specified.

This chapter will discuss separately these three aspects of
contexts. It will conclude with a brief discussion of how contexts will

be viewed throughout the remainder of the thesis.

2.1 Naming environment

Names are fundamental to referring to entities in a computer
system. There are situations in which the value of an entity is used
for identification, such as in an associative memory; however, this has

not be shown to be practical when the value of the entity has a complex

- 23 -

structure. Thus, we will assume that each entity must have a name in

addition to its value or state.

A naming mechanism, if it isjdciignedaand implemented §rop¢r1y, can
provide flexibility in tvo directions, modularity.ssd shering, as
discussad by Saltzer{18]. Ihe achievcncnn ofﬂnndularity in a naming .
mechanism means that encities can be na-ed (canx;inad) hy other entities.
without concern for what pames Qxe chouan uithin AlCH Qntity. In
particular, if two object: 1 and 2 uae. tha a&nm n@ne A to imply.
diffetent objects, 3 and 4 renpectivnly, then obJect L qhould.also be
" able to name dbjsct 2 uithout cauﬂing a‘;aahlnu uishwthe taference A in -
object 23 the reference A in objact l n&kL lﬁ&lk iaddca;e qb}ect 3,‘§ad,

the reference A in ebject 2 uill still Lnéﬁc&ﬁe ab;get h. Aa n‘naioned,
in Chapter 1, Saltzer s eontextall&} yrov&dﬁ eh&u ﬁacility. qu

contexts are modelled after hig in tlia r;apcag,‘ i

" The other 1mportnat goal of a nantng neehaniln ts sharing. Shpring
' 1mpliea cha: thcre is more thaa on04oecur§nnae~a£ th‘ nane~£or an . objact‘
or that tbere 1s more than On@ naaaxﬁer &h¢<cb§nc§‘ iuroﬁhet uordg

there 18 more than;one objenc nan&ns the shared objaet and thernfaxe

havins some form of accoss to 1t.‘ 81nse we previausfi
objects are identiiiqd hy‘n&n‘s, £33 :nunnnl«d&!u‘q;;;guguw~g:e nsed for.
a shaxed objocx, chey nnst@&n xhoifinﬁawunalznaa,;gnnﬁvg,go nhquane
name. Thus ac tha :tna»a no&ax.ncn~xn mndn,guinsi;wgst;inular aang* ‘the

name must he nnanlyabls uniqualxg‘hataditxggpn;,nchngganm,can,ha.uned

to provide this uniquenesa of name reaolution. At one end of the range,

there is a mechanism such as tha reﬁﬁnanec cree developcd by

- 24 -

Halstead[6]. Reference trees provide a basis for relative naming. A
reference tree for an object can be considered to be a connected acyclic
graph. The nodes of such a graph represent those entities that know
about the object in question. A given node knows for each object which
of its immediate neighbors know about the object. Using such a graph,
the object could have a different name for each arc in the graph as long
as each end of each arc maintains the necessary information. It is not
clear that this is a.useful approach to take, but it is possible. At
the other extreme, it is possible to have names that are unique for all
time. An example of such a mechanism is a capability system[4];
rapabilities are names that are unique for all time and unforgeable.1
Finally, it is sufficient to provide names that are all unique at any
specific time, but are not unique for all time. The standard use of

physical addresses is an example of this. At any one time no more than

one object can have a specific address in memory, but the same address

1. Some capability systems, have been proposed in which the object
name within a capability is a virtual address and thus is not unique for
all time. For example, Bishop uses this approach[2].

- 25 -

can he used by different objécts at different times. This last

dpproach is assumed in out model ali the objects on a node will be o
given names that are unique at any gi.vaa, tiu, ’ Tbe nanagtment and

resolution of names will be provided by:he ktmel of t:he node.

Within a node, even if the nede i.a a, pqul mmar, usgd by
only one person at a time, it may be. uyef.ul to hve qble to diavide the -
world of objects imto '_mllgr;vor‘l.da.. m; mbglmlyfm: ‘
convenience, or there may bs more prﬂtiagmm fox. it ‘such. as .
security or containment for 'verif‘ica;ieg:. Mmm;uaptqm S
overall uaning e,nviro'nge.n't in .;th.gj; uodg,mcu hwai,m smaller
environmeats called coagexta, Basically, s comtext will provide a name
resolving. ability for names known in the :gdggi,;gnv;mmt;m:o'thes& Vel |
names unique to the whole mde. 'mem;. of f@.‘lgéidheﬁwﬁ,;l:;be, divi,qeé;_,..__(

into contexts, such that every object will be in exactly one context.

1. As a matter of fact, in the Multics system, thate are names of all
three degrees of uniqueness. A segment that is shared by two or more
processes, probably will be kaown by a diffatent sagment number in the
KST or Known Segment Table of each process; thus there will be different
names for the same segment. At a different level {n naming the segment,
when a page of it is in primary memory, if two processes want to access
that page, their different names for the ‘informetion they want
(different because of the different segment. sumbers) must resalve to the
same physical address. On the other hand, if the segment is not used
for a period of time it may be moved from primary memory, and the :
physical space used for something else; the physical address now may be
an address of a page of a different segment. Finally, each segment has
a unique name by which it can be recognized. These last names are
capabilities; they are uanique for all time, and untom&ble. 'l‘hey are.
part of the information about a segment in an ent¥y 1fi 'a KST.” (Such a
capability exista in sddition to.the.full, innthgm o&;ghceggameng which
is a reusable name.) For a detailed diuwuion ‘the atg;giea syaten
see Organick{15]. S

2. Since this work is to a 1arge extent bued on Slltzer 8 work on
naming[18], the term "context" was adopted. :

- 26 -

When an object is created, part of the creation operation is the
assignment of a name local to the context in which the object is being
created to that object. The context is the repository for the knowledge
about whether or not a particular object exists within its domain. As
long as the context knows the local name and the storage name that is
associated with it, the object exists. Since it is the local name that
determines whether or not an object exists, and since the local name has
no meaning outside of the context boundaries, objects cannot move from
one context to another. An object can be copied into another context
but the resulting copy is a different object (even if the original

object is destroyed).

There are a number of reasons for using local names in contexts.
The first is that autonomy in naming is desirable, and often necessary,
if the distributed system can be partitioned or a node can be detached
from the system while continuing operation. If a centralized naming
mechanism were used, it would have to be accessed every time a new
object were created. If, on the other hand, the available namespace for
objects were divided, in particular, along context boundaries, eaéh
context could assign locally the name for a newly created object.N By
combining this with a globally unique context name, globally unique
naming can be achieved for objects. The second reason for using local
names for objects is in order to save space. Since the model of the

distributed system contains the assumption that there will be many

- 27 =

contexts at least one per node and prohably more, the namespace for

objects will be partitioned and.thetefexe;the,nnneeecen be smaller.

As mentioned in Chapter 1, all objects are typed.;‘en'objeet of
bage type can be considered to contain 1ts values, while one of extended‘
type, any extended type, can be viewed as liqt of nemes of the |
component objects. Since an object will reside 1n the same context for v

its whole lifetime, the names used for the conponents can and by

‘assumption, will be names that are local to that context. 'Permitting

objects of extended type to contain only local names provides a simpler
and more elegant model than allowing two different kinds of names,
depending on whether or not the named cenponent 1e local or foreign.

The simplification is coneeptual ae;wel;.es xn';n@;gnentatipn.: Ia -
addition, using only 1ocel,nanes{aLloyseﬁqxﬁtne?pg;eiﬁd&i;x;oiyu#tng‘
capabilities provided by the xncaLacqatexgnag;eqnitiqng;ep#e&%cs;onu-
beyond what‘misht be p:ovided.by.nxetuetdoeaeengtramntsukmposeﬂ;on SRS
message flow at the context boundary. qeﬁwtefese; an abﬁm&. of extended

type contains only a list of local naneegﬂ.‘«

The function of the context is toiteeoineﬁthe'nanee.need by the
objects of extended type. In those cases where it 1s desirable, -
conteinment Ey naming'fofeign‘conponenta‘enonid'be‘eﬁeiieﬁie,.that 15;‘
objects thet‘teside in enother‘context:\'df éé&r&é;'E{ﬁcé;'és"ﬁasﬁs£3£é¢
in Chapter 1, cammunicetion oetween”eontextedcen‘oni;hte aSQA‘JQing'
message peseing.Athe names of‘fareign coiponentoﬁeen‘only‘be received in

messages. It is also the case that such foreign co-@onents can be

~accessed only by sending a message to the corteét context containing a.

- 28 = .

request to perform a single operation on the object. If names of
objects can be passed outside the bounds of a context, objects can be

shared across context boundaries.

Now, it was stated that names within objects are only local,
resolvable by the local context. This means that contexts must be able
to contain (map from local names into) two forms of names. One form, as
already stated, is the néde-wide name to be resolved by the kernel of

the local node. We will call this a storage name. The other is the

foreign name that needs further resolution; the current context is not
capable of such name resolution. This kind of entry will consist of the
name of the foreign context and a name that is local to that foreign
context. The implications of this form of containment for sharing have

been mentioned in Chapter 1 and will be explored further later.

2.2 Abstract networks

We now have arrived at the following situation. We have a node
within a distributed system. The naming environment that it defines
contains objects that are all uniquely named. From the point of view of
the user this world of objects is composed of partitions which we call
contexts. An object exists in exactly one context. Each context has
the ability to name the objects it contains independently of all other
contexts. All communication among contexts is exclusively by means of
message passing. Thus our contexts are taking on the appearance of
nodes in a network, resembling the abstract network postulated in the

recent work done by Svobodova et al.[19]

- 29 -

Contexts allow for two types of protection. First, they provide

a simple means of limiting error propagation. Second, they allow
iﬁpleﬁentation of arhitrary_pxq;;ationwcahaktatn&s:nn»the'context;

authorization to have message préééssed‘iﬁa'opéféti¢n3»perforﬁed in

oe’s behalf within a comtext can be consttained to any desired degree.

The second type of protactionwnakel thc7£i£§ﬁ‘péﬁﬂi&&QaAVAsilong as
messages are not sent outsida a cantext. any errors that may occur

inside the context will remain contained within 1t‘ If‘errors,aause

messagas to be sent, providing eonxex£3fwith~th§ abiliiyrtofpréiéct» o

themselves to auy desired dagrea means tha& they can pxotect thenselvea

from external errors.

Dfawing on the compariébn;bf'cchtéktﬁkéﬁ#inédes éf{é ngﬁypfk, if_
two proéésges iust comnunicate; 1tfis neéissarfAﬁé'cOnaidet whethér or
not they are runniﬁg within the'aane uoﬁtext.«.A"ﬁrééésd?éieéniesl
procedu:es, and since all pxocedures are chjec;s and exiat within some

context, the process must ba by daiinitiun axacu&ing 8, pxacednre fram

within a context. (Ve will avoid a diacussion about uhether or not . the_

context in which a. procesa Tung 1a.£1xed fo: the life of the process or

not.) Now if two processes are executing within the aane context, they
can communicate throuzh a,she:ed dntn object. Ihis 1: not to say that
this is the most deairable form of cnnnnnication, but’ that it is }
~available, Qn :he othct hand, 1f tuo yrnceaaaa 1n separate cpntexts -
wish to conmunicace, they have to do. 1: by m&aaage passing.‘ We ‘are
viewing contexts as abstraetiona of andzs. nnd have postulaced that

processes conmunicate betwaen nodea by sending aesnnges through the

-390 -

commuﬁication medium. Thus sharing an object across context boundaries
exaggeratés the differences between the two kinds of sharing; if an
action is to be performed on object 1, which is local to context A, from
context B, (1) a request can be sent to context A for the action to be
taken at conteit A or (2) a request can be sent for a copy of objgct 1
to be sent to context B in oder that the action be taken on the copy.
These two forms of sharing have existed in situations where direct
access was possible from both siteé, but message passing accentuates the

differences.

2.3 Contexts as objects

As mentioned previously, the contexts must be nameable by each
other. It was stated in Chapter 1 that an object has three attributes,
name, type, and value or state. In light of this definition it is
possible to éonsidet that contexts are objects, in the same way that
other types of data are objects. There is something inherently
different about contexts though; the domain of the names they can
contain is different in nature from those contained in data or procedure
objects. The latter two contain only names that are local to the
context in which the objects exist. A context, on the other hand,
contains storage names for those objects that exist within it, and pairs
of names (name of another context and name to be resolved within that
other context) for those objects that are known to objects it contains,
but are not local to the context. Thus, context is a special type of

object. It must be a basic type since it provides one of the interfaces

between the user and the kernel. We will see later that parts of the

- 31 =

kernel must be able to sccess parts. of the. caatgxt type manager. -In
Chapter 4 we will discuss those operationa ﬁo,’t thg type eom:ext that,

will need to achieve the copying dimusmdmmpms; ‘and 4. .

2.4 Sumniarl

This chapter has discussed three Ma;mM .different possible

views of contexts. -As will become ele&rm Chap pre 3 and 4, we will
use all tt;\”ree sinultaneoimlj. A context contains th»e bbject‘ we wish to.
share by copying' In order to achieve the eopying, it ia necessary to -
‘ perform some opersuons on ccntaxt.s as objem aad mmetiues requeat: |

,_‘in f,omisn cmapo nents,

that contexts send mnues teo uch W 40 804
as part of cepying. Thus, we. ﬂllslivwaamdﬁf“‘nt"u“ °f_qa,

contexts without being explicit ab‘q‘ut' it.

- 32 -

Chapter Three

The Copy Operstions

In Chapter 2 we developed a better idea of what a context is. 1In
particular we can imagine contexts to be nodes ia an abstrsct network._

IR

Inside each snch node is a namespace contaiaing objeets.‘ As mentioned.

in Chapter 2 containnent and sharing of conponentsican‘occur across

context boundaries. It is also the caae that procedures can. be invoked,
: SO ¥

requiring parameter passing, across context boundaries.‘ Finally,

multiple copies of an ohject for reliability and accessibility nust be ’

considered. In all these cases copying nust occur when context

boundaries are croaaed. Therefore, the semantics of copying needs

investigation.

Copying must be clarified, if a cOpy of an object is to be created
it must be indicated precisely in which wsys the original and the copy
are the same and in which ways they are different. Clearly, the values
should be the same. But also, the behavior should be as similar as
possible. In other wotds, if an object and its copy are in the same
state and the same sequence of operatione is performed on both they

should be in the same state afterwards. This means that any sharing -

. that occurs in the atructure of the original should also occur in the

1
copy.

1. As we will see later CLU[11] currently does not do this.

-33 -

As mentioned previously, we will provide several different copying
facilities. In a sense, the most basic copy Operation is what we will
call copy-ome. This copies jns@_ﬁhe top level of an object of extended
type. The other copy operations could in ‘essence be built up out of
copy-one operations, by»cxplicitly taqunsttng,eopy~ong for each
component object. The second is the most enconpassing. » -full, it
involves copying the whole object the ce-piete ‘structure. The third is
something between the tue,,»ggz-fulk—laea&; It invalves copying just
that part of the object that ts local to the content containing the
object itself. There operatians will ba discusued in detail furcher on
in chis'chapter and 1n-ChapterJ4‘ Gonaidenctiou of the apparent
relative usefulness‘of thé three operations is postpoqed until Chapter

5.

There are a number of goals to: keep in mind, while exploring
coﬁying mechanisns. First, since there Hill be more than one type of
copy déeration, we should econemize on meehaniam,, ‘d a;temptvto provide
a single mechanism to achieve all the copy operations. Secoﬁd since -
all passing of information from one- context to another only occurs
through messages, the mechanisms sbould keep down the quantity of
separate pieces of informetion. that must move betweeu the two contexts.
in order to keep the numbervofrmessqges under»conttol. Thus, the |
representation of severai componentsa d;ﬁ.beLp#ékédytégether 1n'avsihglé
message. On the other hand, it seems useful to copy aﬁ object
plecemeal. There are three reasons fof this, First, this will help

reduce the amount of buffer space needed at both ends of the message ,

- 34 -

passing facility; Second, it wiil allow procecsing at the receiving end
to overlap vith sending. Third,,it'iev'rednceithe ;Aoaﬁt of information
that may need to be refranamitted:Teincewthedbigger thé°ﬁés§a§e, the

‘higber the poaeibility_of‘an erfor. ‘Both of these become important when

a large amount of information 6ﬁs£*bé‘pa:¢ei”§§¥iﬁg a Ebp& bﬁéiation;

It must be remembered that since we are eseuning,that all objects
are cyped. an object can only be manipulated through use of aoperations
defined for its type.; Therefore the copy oPeretionu muet be defined for
- each type of object that may ever need to be copied' on the other hand,
a different kind of copy, an internal one (createﬁimage) which will be
discussed. later, ie sufficient for type: that ure and will be only

components.

-

The chapter hasvthe follbwing plenb Section 1 provides a brief
description of the copy operations that exiet for the basic types of
RECORD and ARRAX in CLU[11] since our copy-one and copx-full are based
on them_ It also discuasee other copying algorithna._ Section 2
introduces :he algori;hne developed 1n this research. . Sections.3 and 4
develop the detaila of the algorithne for che sending and receiving
contexte”involved in a copy. é\dg§@i¥?§x§59!?¥5 is presented in ;beeg_:,

- two sections.

3.1 Existing copying algorithms

As we have mentioned P?evi°“91¥¢_QFU[11];PF9V$§9§,§¢§9°d;b35§359?v
discussing copy operations for extended types. CLU is-a strongly typaed

language. ' This brings with ft’tﬁé‘inplicﬁrion'tbég;eii‘9§€E§t19ns are

- 35 -

type specific. This means that thgre are no generic operations that can
be used on an obje;t. On the other‘bénd; copy operations are defined
tor most of the basic types of abstractions and type generators. The
two types ;hat have intérestipg cqpyippeiat;¢ns,g;e}atrays énd records.
These are aciually‘generafﬂrs“of infinite clasées'of‘mutable types of
ob‘ects.1 (This means that th@y can be usédfto'genéfate'tYpes based on
any other types.) For each, array and record, there are two distinct (',
copy operations, copyl aﬁd ¢opy.'fThe-éém#ntié§>(an4'i&pleﬁentatiou) of

| the array$copyl are the same as,thoée §f’th§ tééofdséoﬁylg Tﬁe same is
true for array$copy and.recotd$copy. Thus it éuffiééé'for'ﬁﬁe femainder

of this discussion to use the ﬁefnsvéopyl and copy.

The gimplest way to describe the behéVior of the t;o éopy
operations is to give an example. Figufe 3;ihdépiéfs’é'mutaﬁie”objéct
in CLU. The objéct contains twb*parks;:fﬁeﬂﬁééaér;960ntﬁiﬁing the
description of what is to f0116ﬁ"(3peéifiéaliy;‘the féﬁéypé; which
indicates the for of the represéhtation Gfithe Ebjééﬁ;‘and:the length),
and the actual reprgseniatioﬂiéf the object. This figure depicts‘an*
object that is a list of references to 6tﬁet'ébjé{ct's;. ‘A refétence, is
composed of several flag bits, somethiing under 10 bits to describe the
type of the object named by the reference (thidvactually is Qn index
into a table of pointers to deﬁcriptions of txpgg);,anﬂ ;ﬁe gd@tess of
the object. The copyl operation cfeateé-#\hhw object of the same type

having all the same references. 1In other words, vhat is returned by the

1. We are proposing in this thesis three additional mutable basic»f
types, contexts, message-contexts, and images. The latter two will be
~discussed in detail in this and the next chapters.. '

- 36 -

CLU object

~ reptype | length

‘flags typé address

. references

Global ‘table

L Type description

F;gute 3.1 A mutable CLU object of extended type. The header containa
the reptype, in this case’ references, ‘ahd "the length, 'in this case the
number of references. The repnesen tion of the object is the list of
‘references that follow the header. ~'The only place in which the type of
an object is stored is in a reference naning the object.

: quyl,qu:ation is a new reference hay;ngﬂghe same type ag\thg_o:igingl,
but a diffe:ent add:gss,_aqq thg:objegg%a; 5515 aédﬁgqg Qag;;be same -
.confents as the origina;'object§ ;;e, thg neV obje¢; points tg\a}} the
same objggts the origin#l doés.5 The copy wprks as fql}pwg,ilFirsc, a
coi:yl is p‘erf.ormedv on the ,qugét to be c_.gpi‘ed._ Ihen each ,i'lefgrenée‘.i‘s:, ; |

picked up from the new object, and a copy operatiah'1S'petformad>on this

- 37 -

1 :
component object. For each component, as it is capied the new

tlfirence is used to replace the old one in s;he cp.p;y of its coutaining
object. This process of copying con;mnent: emﬁium uatil copies have

been made of all the lowest level basic kypc obg_ocu.

There are several problems with tha"c-ofpy operﬁﬁiqn. Tl;e first om _ |
is a semantic problem. If sharing exists vi:l:t:hm a nmdmdthe '
record§copy operation is used, this shariag will mt;be p:éuﬁt_in the
newly creatgd object; an objeet that 1s ahnred by two components ﬁill be
copied twice. Thus the behavior df‘the c&py may not be the same as
that of the origzuml object under all mxm:inm fm: the pnrti.cuur
type. In order to achieve sharing that wﬂl ba cnpied, & diiftr&at copy ,

- operation must be implemented that takes c‘ogmzmlo,fv whs;g sharins is
to occur. The second problem u'i.su from thehplmtm uf"t:lm!‘:cnﬂ

environment in general. The lifetime of an object 1s mo war than .» the

lifetime of the process that created it. Aeapy fdmob@ect canbe
saved in some form in uconda:y etmgn. bat :Lf tlu mus chat cr:ga.ted
the object dies and a new px.joceais’ wants to ,r__et‘ruv": the Vinfnma«tion , it
vill by definition be in a new object. The name used to identify an
object 1s unique at a given time by virtue of {ts éb:?ft;;ihihs. ‘su*"‘addr'e‘fs*g.‘ -
When the state or value of an object is storedaruvod. all the |
addresses are ‘hoéifiad'”lo as to be féla“tﬁi!’"t:d‘" smm address

attachcd to the entity being etored mm tha nnec uced hy a proceu ‘

_ for objects can never gat into eecondary s&crm ﬁm ad objdct :I.a

1. This description conforms to the iuplmnmtion of GLH on the DEC20
gystem at the Laboratory for Computer Scimc, MIT.

retriéved from secondary storage, it will be given a new name or
reference (éddress) based on its new position in primary memory. Now
the object really has become a new object having the same structure as
the old one and which might be considered to be a complete copy of the
original. In this thesis, the assumption has been made that an object
can have an existence beyond that of the process that may have created
it. Therefore, the object must have a name that is not tied to the
creating process, such as an address in the primary memory allocated to
that process. If the name is not tied to a phyéical address, we can
arrange the naming mechanism and its interface to the storage mechanism
so that the physiéal location of an object can change without changing

the value or content of the object.

In ‘addition to the copying provided in CLU, other copying
algorithms must be examined before devising one to fit the particular
needs of this research. One approach that must be considered is the
copying dqne by various garbage collecting mechanisms. An important
such algorithm is that suggested by McCarthy[l2] and then later used in
LISP 1.5[13]), MACLISP[l4], and other list processing systems. This
algorithm passes over the information three times, first marking all
cells still accessible, second compacting or moving all the accessible
cells into contiguous storage, thus adding all the inaccessible cells to
the free list of available.storage, and finally updating all the
pointers, so they point correctly to the cells that have been moved.
There are two problems with this approach. First, because the algorithm

requires three successive complete passes over the structure, one in the

- 39 -

old 1ocation, one to.move the daia, and one in the ngwwlocagion, we
would not be abngto,achievg much.overlappipg,pivptqgegsing. Second,
this algoritbm‘rqquires ﬁnny-mg:e_g;ssqgas~;hqgﬁnggegga;y as will be
seen later. Another approach to garbage collection :hgs-,.‘be‘v.en_ dnv}elopeﬂ |
by Baker [1]: real-time ggrbage‘éelleg;igp,i Again, aquith the
algorithms mentioned above, :he‘origina}_ob;ggt,ég§ qogppnents are used
to store the name of the copieg; If weéw#rehto use an approach such as

this, additional message passing would be peceégary.

On the other hand, Bishop has developed.a'nqéﬁinisﬁ similar to
ours(2] for his compacting garbage collectb:;"Fét:iiﬁplicity he does
not modify the original quecclbging,copicd; bui'ratheéfﬁaiﬁtains~an
external marked database that aapa'therﬁghgg?gg oEJQctsziggpfthg.new
copies of theaevdhjects."An an;ryripfﬁkighdgtggpggg;fop,awgg;t;cglht
object 1qd1cgte§ that it has ﬁéan,cog;gﬂ Qn@'EEindﬁﬂ,éﬁﬁ,na!"9f the
copy. In ou:_mechgnisn,vthe{geapgggfggptqgg;ggggiQQ§?§191m§lar
function, although it also ,lnggga;qa;m% Listaf _those objecta to be
copied. The reason for this ié that Bishop félioga%gaghwﬁgth,to‘its
end, thereby copying the ngest.leye}_cnﬁpgngnts_f;fg;,”;nlfaét, and .
ending Qith the top level object. .Iﬂ Fhis.thgqiql°n§,°f,th9»3°alaviﬁgsp
send 1mageslas\qu1ckly as poasihlg,”nqg_igvok1§g the'qo?y;pg recur§1vg1y‘
on conponentg;“therefore.the‘nessaggfcongg;t §§‘;hg qeaqé,of ;at&ining:

the information about which cﬁnponpnts need copying.

Other algorithms for bopyidg list stfﬁﬁthres"the:heeh developed'byb-
Fisher(5] and Clark[3]. The purpose of these algorithms is to copy an

object of arbitrary size in a workSphce‘of bounded size. In both cases

- 40 -

" in order to achieve such a goal both the 6tig,inal object and the copy

are utilized by changing thefvaruqsf%ﬁfeﬁchadugtfpls*timéa;‘ These
algorithms have, from our point of view) probléms similar to thoge of -

the 3&rbage collection a;gorinhuﬂm,mwit necessary to.

W develop our‘owa: mechauiu for: wpym&g in the simtim in whieh all

communication takaa plact through uetsagﬁc, amn‘share it is désirable or
: even: neeessary to sead piem #f the: mopy*» atﬁgy in separate i

' meas,age;a .

,3;2”:Prqpntédrquzrqgcramianm

" This thesis will provide three varieties of capy operationa.» Two ,
of them are very oinilar to the tw prwi.ded y» cw as discussed 1n the)

preceding section.' 'I‘wo probleus were brou;ht up in relation to CLU,

3~ TR S A St RO BRI

IR first that CLU does not recognize any ahar:t.ns v:lt.hin an object and,

‘second that as can be seen in the ming uchaain uud in CLU an o

o«

object hac no e.xiatence without tha px.'ocen that cteated it. He are

s - R T e
;::,:g;; By o BE ‘~ el mrnEd

| assuuing tbat an objact has an existence tied to 1ts contaxt instead

It 1s the context that determines whe:her or not &n object exiats.

£ <0 ‘, 3 .-*,»..«1

“As we ».havg‘addmésbtdt; prt#iqui’l.’yﬁfsa‘-p,titeéf with each local nmina :
confext :vii]v.fif"ﬁe‘ a‘name of m ofm ﬁn&iﬁz?&; fuld: nage pair of &hév;féfl<
{context, "lbfcai“ ‘ﬂmf}",’-- 61*‘*& ‘st‘or&fgé“h“ﬁﬁ&@ﬁ#tﬁéi&%l‘y ideiitf!bi%’e:l the = -
.._object to the stétase umgtt 11& erdtr tha,t the- ebjeht éani’ actually ‘be
accessed. Also, as untiencd prﬁviousiy; when - an bhjéet: £é shaved: ﬁsy
" naming) by two ebnponnnts of«aanthér ebjéct ﬁﬁiéh@in Biing ‘copied thut

‘, ~.the sharing ;#hould B0% be.. 1091: tn M!ag &he ﬁep?‘ ST L SR

- 41 -

We will call the two copy operations that are modelled on CLU

copy-one and copy-full., The third copy operation is the

copy-full-local. This operation LQ‘the:aana;as:theasopywiﬁll except:

that only the origimal object and those compoments of it ia the same
context as the origimal ebject will be copied, wadile for the foreign
components only the names will be sent, 'tga&h;wﬁhe best way to explain.

the details of these operations is to consider an example.

Let us first consider Figure 3.2(3}. thxgm;h§utwthe remainder of
this thesis the abbreviation "L-N" will be used for "local-name and
"S- N" will be used for "atorage-aame" in naning objcets duxing the
discussion of examples and figuras._ He wiah to capy the object in
context 1 having a local name of L-ﬂ 18 to eoatext 5. Figure 3. 2(b)
shows the structure of the object L—ﬂ 18 as a block diagram Kow, in
order to perfotm a COpy-one Operation on L-E 18 tu create a copy in
context 5, four names local to context 5 nutt be;ch0ien (here L-N
31-34). Figure 3. 3 dnpicts what will be in coatext 5 after the copyaocﬂ?
operation; there will be a copy of L-N 18 of cantext 1 and fot each
local name used in the copy im coa&exx,stthere;will¢he»a/raference back
to the original componeat. Thus the ftrbt-nnaé,fuhsiuﬁollpﬂadcthrcushg»'
points to L~-N 8 im context 1, the secoad, te,LdN,li i@;cnntéxt 1, and
the third to L-N 9 in context 3. The first two can hé,zeﬁplvad to
storage names in coatext 1, but th¢~thi£dwcaa Qﬂl]'in context 3. Figure
3.4 presents the copy~full on L-N i8 of aautex: 1. in'ahia case all the

context 5. Now, there are no references back to the original objects,

- 42 -

!
i B R R s

context 1 ' context 3

L-N 18 [S-N 1 _ B
L-N 8 | S-N 2 ' L-N9 | §=N 5
L-N 12 | S=-N 3 ’
L-N 17 context 3, L-N 9

L-N 7 S-N 4 '

L-N 18 . - L-NB8_ L-N 9

"L-N '8 " m =t value
L-N 12 :

L-N 17
L-N 12 L-N 7

L-N8] [value]

L-N 7

(a) The names in an’ object, its ceupdnents, and the ralevant contexts.
- The contexts contain mappinge betwesn local names:and.storage-or. full .

 names as well as objects."L-N" and "S<N" -at4-abbrévViations for '
"local-name" ‘and "storage-name" respectively.

(context 1) -

‘ \kmtm R

(b) Block diagram of the structure of the object L~N 18 of (a)

Figure 3.2 An example of an. object.

- 43 -

context 5

L-N 31 S-N 6

L-N 32 | context 1, L-N 8
L-N 33 | context 1, L-N 12
L-N 34 | comtext 3, L-N 9

L-N 31

L-N 32
L-N 33
L-N 34

Figure 3.3 The results in context 5 of a copy-one on {contextl, L~N 18}

of Figure 3.2 to context 5. The coatext contains objects as well as a
mapping between local names and storsge or: fukk names. . ML=N" .and "'S-N"
are abbreviations for: "lecal-nane ‘and "etorlsﬂPnane" raspectively.

but ‘also we have 1ost the fact ‘that - one of the: conpenaate wae: in B
context separate from the rest, On the othar hand sharing has ‘been
maintained. Figure 3.5 depictS*thewcopy-ful&~loea£*on~L~Nw18 ofvoon;axt
1. Here again five local names are. needad in context 5, " but the
component that was in context 3, sinca that 18 not the conteXt that

contained the object originally being copied, was not cobied. Dnly ‘the

name of that object has been passed‘to the receiving coﬁ;ext.

At each physical node in the system, there muat Be 1nraddition to

the set of contexts reaiding there a kernel that .supports such basic

functions as message passing betueen contexts. coununication with the

hardware network underlying the systen, storage management, and
allocation of other physical resourcea that are shared among the

processes running in different contexts on'tha sane,node. A kernel will

- 4h -

context 35

L-N 31 | S-N

3
LN 32 | s-N 7
L-N 33 [5-N 8
L-N34 | S-N 9
LN 35 | s-N 10
L-N 31 L-N 32
L-N 32
LN 33
L-N 34
B L-N 3
L-N 33 |
LN 32 '
LN 35| LN 35

Figure 3.4 The resulta in context 5 of a copy-full on {context 1, L-N
.18} ‘of Figure 3.2 to context 5. The centext contains objects as well as
a nhpp§ng~bhtw&en ‘Tocal names ‘and storagé or Eull nawes. S o :nd S
MS-N'*are wbreﬂaﬁ%ht for ”Iocﬂun W ””itdragv—inme" R
respeCtively. F b ' : '

~ also provide mechanismse for enforcing security coustrainits of the

contexts it supports.

In copying.an object from ome context to another, images are
created within the sending context as previously described. They are
thep passed to the kerng;rdf the sehdigg context. We will postulate.a

message handler that deals with all the problems of passing messages

'among contexts on the local node and into and out of the network fo: the

- 45 =

context 5

L=-N 31 S-N 6

L-N 32 S-N 7

L-N 33 | s-N 8

L-N 34 context 3, L-N 9
L-N 35 | 8-K 10

L-N 31 L-N 32

} L-N 32 value
L-N 33
L-N 34

L-N 33 L=N 35
L-N 32 [value]
| L-N 35

Fig s;.s The results in gcnxaxt 5 of. a»cogg-gul'f3ﬁ_\l on egonxext 1,
L~N 18} of Figure 3.2 to context 5. Ihokcnm$§=&j ntaing. ohjccts a8
well as a mapping between local names and storage or full namss. . "L-N' -

‘and "S-N" are dbbreviations for "local—nana" and “ltarase-name" ,
respectively. S

-r

local contexts. The message handler must dttarniﬁq how to find the

receiving context. If the receiving context is on the same node, the
network need not be involved at aiI,"TﬁéVﬁéééﬁﬁééﬁﬁibééd'6ﬁt3of«the
sending context will sﬁnp1Y b@’bh?%éﬂ’di¥ébf1§fiélfﬁﬁ"fﬁ&éiﬁfﬁg$ébﬁteii}

If the receiving context is not on the local node, the message handler

1. We are assuming not only that the architectures of all the nodes
are the same, but also that the specification and implementation of the
extended and base types of objects that can be copied are the same on
all machines. By this we mean that the representation of an object of
extended type will be composed of the same component types on all nodes
between which the object can be copied. 'The problemé caused and avoided
by such a restriction will be discusaed in Chapter 5.

- 46 -

must prepare each message for transmission through the network to the
' . ,
correct node.

A3.3 The copying algorithms

The procedure that will be followed will be-similar for all three
types of copy operaticns. When it hasﬁbeénfaeeidid thatv&ﬁ'ebject’is to

be copied, the first step will be te“cteate‘iinésiegg-edncéxt;“ A

message—-context ie“an entity that is growable and?ﬁfii have ‘only a short
lifetime.' It is a mapping between the fndéx of ‘an entry and the value
of thatAentry. An entry is created as follows: each ‘name in ‘the
original object will be exaniced*to~fﬁ&&*the*full:hamé;‘{contekt name,
-loCaI"name}'pair;.for 1t.c This will become ‘an entry in the
ﬁessage-context 1f 1t 1is ﬁctltﬁere'alneeﬂi.‘\The»éntfy associated with
‘1ndeX'0‘w111 be'che.fullieaﬁe of the top level object being copied.
Meanwhile an image of the object wﬂlbe ‘crested ‘having in place of
each naﬁe in the object the index of the*entry‘ih~ﬁhe message-context
containing the full name of the component object. The image of each

\ component will have attached the 1edex used 1n the nessage—context.
Each object will also have the type attached. When an image of the
original has thus been created and an- entry for 1t has been made in the
meseege-context, it 13 ready to secd ‘ At this point an image of the

next object named in the measageecoete&t ie ereatedwin the same manner

1. This work does not deal with the communication protocols of the
network, although of course the message handler must know them. The
copy operations can know nothing about these protecels nor about the -
degree of reliability they provide. We will discuss reliability at a
later point. ' - Lo e o

- 47 -

as the top level object using the same message-context, thus adding
entries to the end of the message-context when necgﬁsary. Thiskis
tépeated until an image has been created and seﬁﬁifﬁf éVe;y object:name&
in the meéaage-con;egt that is toxpe;cogigd.:,Thefngaagggfcon:gxt-will
provide,tﬁe,names;of ;hpsg%qbigctsgtg,bg copied as companente. For a.
copy-one operation, the copying. is sﬂiyvpetféxméd;én?tﬁe‘tﬂpfl%Qel
objec;. Once the image of thé nbjgct.hagchaaﬁ‘qgnt,;ap;imagg‘of the -
message-context must,aléo be sent, in order to.create the correct ..
ehtries in the receiving congex:wfoﬁfhhaqnanes‘in &he ehject,being}
copied. For a copy=full, once images for all ;hgécgapqnen;s,have.been
created and sent,‘nothiqg norgggeg¢g,;9%5g;gpnf.W;Thg_ngasagefcngtext?is
of no mdre,uqe.,,Finally,,for a,capy—fgllzloealquﬁgatién,;gll the
cémponents that are in the sending context éill‘be;cobtgd,;and a,part;all
image of the massage—cdntext cop;aining thejindiceéyaudﬁgﬁtxias‘for,thg,'

foreign\referencea must be sent.,

The image cre@ted for each ¢b3§c£ copi;d‘ﬁili have ; :;o pﬁrt
header. One part is the index of the object’s name in the .
message—contekt. This.wéuld not‘be ne¢é§aafy i£ ﬁe éould,guaranteé that
all messages would be receivedlihvthé éaﬁe-ofderrihey were sent, |
however, such an assumption would be tqorréq:rictive.lrzThe other part
of the header is the type of the patticﬁi#t ;bject‘td whicﬁ thé>he#def'
is attached. Again this should not be néceﬁégry'iﬂ nostbc;sés'aséumiﬁg

that mesaagészgte'receivé&‘1h'thé d;déi,ggéh;‘yihg reason fqr,this‘tg

1. This assumption would put additional burden on the lower level
protocols, and since the overhead of sending the index ia low, such an
assumption is not considered necessary.

- 48 -

‘that if the order of arrival is predictable and the types of the

components are already known, Vauut:he,imgés}arrivg»fehsir types will be:
kn'ouﬁ'.' . laouevar, ‘4f the raicaive:rr 151'&:&@&1&; mltabgémzt »ofwtype‘ any, the
object being receiv«d must have. ita typc :tztched e K tm; An-order that
the receiver can haud it. to the cozruet nypn nmnason- In any case, . qwaaf
if we could ianre tha zataoning junc ﬂalkowad for incduding bQﬁthﬂfﬂ’
of the ‘header, . ;hey can be juatiﬁie:d on he, smmds that . they proviﬂe

-rednndancy,that:caarbe-uaadsicrfrelithikitya feoum

We will now examine some examples for a better understanding of the

algdrithms. The object to be copied again will be L—N 18 of Figure 3 2

(SR

7,Figure 3 6 depicts the cOpy—one operation. The messaze-context is set

R S @y ol mn

messagg-context

context 1; L-N 18

 mm&thL¢ B
COnt:ext l, L—N iZ

Pnro

'Figure 3.6 For the copywann oparation, the images. of object 0 and the
mesaage-context (without its first entry) will be sent in copying

" {contextl, L~-N 18) of Pigure 3.2. The. ﬂbbzawtaeian "L-N": is used fox.
Ylocal-name".

——————

up with the entry for the objeqt beingzaop&gd !a con&ﬁxt 1, L—N'S is :
first looked up and found to be local to chst conﬁgnxp Henca 1&& full

name ia»(contex; 1. L-N 8}.. Ihis entry ia puc in;o the nnassgg~con$q;; ,

- 49 -

an since it has index 1, a |l is put into.the first position in the
imageiof L-N 18 being created for sendinsgv‘Then the full nawe is found
for L=N 12 in context 1, and, since it ‘is met alveady in the
nnsaasz-eoneext a second entry is nade, and. anothﬁt Andex 18 put 1&&0
'thd image. BNow, when L-¥ 17 is ﬂollaﬂnd, Bt i# d&aauvuﬂad ‘that ramher
than ‘a ‘storage name in the context, ﬁhere A anathet {context" nsne,
local name} pair. This, then; is nﬂad as’ the*fnil nawe Lo put 1nte ‘the
-eesage—context in the same way as the ocher full nanes. The headex for
the image of object L-N 18 contains both the type and ; zero.‘ Row, the
image and the message-context can be sent (1n se@trnte nesaages, if
desired, as long as there is some means of tellin; the receiver that the
two really belong together).1 |

The copy-full operation is the most enconyaaains of che three copy
operations, and as such uncovers problems noi znaaﬂgnqrdﬂ with the other
two. First, the problems asaociated with shared,coapenents appear.
(This was not a problen in the cOpy-ane, slthough we will see it also in
the*copy-full—local operation.) We want to be 5ure':hat all such
sharing is maintained if that is desired. The messggédcoutext will do
this for us.' Second we must cunsider the pmubiﬁua«af hanéling fortisn

components. {(This 4is not a prublem in eibher et ﬁhe:other operationﬁ)

1.: Some optinizatton could 'be done here. First, since,’ anly ‘one
object is being copied the zero in the header is unnecessary. Second,
if no component ‘names the original dbjeéct; the entry for it in the ‘
message-context need not be sent. Third, we really do not need to. send
the message~context separately. Instead, we could use the full names
for the references, thus including the message—contnxt infornatian in
the image of the object.

- 50 -

B T SR R L B

In this case, in addition to the problems associated with acquiring a

copy of a foreign copponedt; we also musf:be:cérefﬁi to maintain shﬁrihg

components across context boundaries. In order to do this, a copy-one

operation should be performed on any foreign component. This means that
only the top level of any fbreign’c0mpéhént'pfﬁ34€hé’names it uses will'
be acquired. By this means the message-context will discover all

sharing, even that 1nvolving‘fofeign édmpdhéﬁts}

- The cqpy-full‘opetgtion-iswexgmpxified in Figure 3.7. Again, as

'meqsgge—cpntext
0 | context 1, L-N 18 |
1| context 1, L-N 8
2] context 1, L-N 12
3 context 3, L-N 9
4 | context 1, I~N 7
type | 0] “ ltype |1
1 vglue
- e
3 -
‘ type |3
value
type | 2 S
: 1
s | [eype T4
- ‘value

- Figure 3.7 For the copy-full'operation images of objects 0, 1, 2, 3, and
% will be sent, but no image of the message-~context need be sent in -

used for "‘local-name". '

copying {contextl, L-N 18) of Figure 3.2. The abbreviation "L-N" is

in the copy-one, the message-context i# created with an entry for -
{context 1, L-N 18}. Also, again, an image is created of L-N 18. Once"

this has been done, and the header of type and index 0 have been

- 5] =

attached to this image, it can be sent off. Now, the next entry in the
message-context, {context 1, L-N 8}, is picked up and an image of that
object is created as with the first. It is of a base type, and
therefore its value will be copied. Again, the header will be attached
to it, this time containing the type of this 6bject and an index of 1
(which is the index of its entry in fhe message-context). Now this
image can be shipped. Once an image of L-N 8 has been created, we can
pick up the next entry in thé message~-context. This is {context 1, L-N
12}, vwhich is an object of an ex;ended type. It contains a list of two
names. The first is L-N 8. When the full name i8 found for this,
{context 1, L-N 8}, and it'ia compared wifh the entries already made in’
the message-context, it will be discovered that there already is an
entry for that ébject. Its in&ex is picked up for the image of L-N 12,
but no new entry is made in the message-context. Now the next name in
L-N 12 is handled. It is found to have a full name of {context i, L-N
7} which is not yet an entry in the message—cqntext, 80 an entry is
created and the index of 4 is used. Once the header con;aining the type
of L-N 12 and an index of 2 have been attached to the image of L-N 12,
this step of the operation is complete. The next object to be copied is
{context 3, L-N 9}; a copy of this must be acquired frém context 3.

Once that has been done, an image can be created for this oﬁject having
in its header the name of the type of {context 3, L-N 9}.aﬁd én index of
3. The copy operation from context 3 must be a copy-one, although for

an object of base type as in this case, it makes no difference.

- 52 =

There are'sevéral issues that need mentioning here. First, the
copy of {context 3, L-N 9} will not be kept iﬁ context 1. TIf such a
copy were kept in the sending context, we would have a situation in
which the copy-full operation would have side~effects on the sending
conteXt;“this is clearly undesirable.1 Second, there may be problems
with acquiring that copy from a foreign context. It wil}, At least,
cause some delay; at worst, it may be impossible, causing the original

copy=full to fail. It is for this réason, and we will discuss it

further later, that we have added the copy-full-local operation.

To resuﬁe our example, we will assume that the copy-one on {context
3, L-N 9} into context 1 has been completed successfully. We now can
proceed to {context 1, L-N 7}. This is another object of a base type.

The value will be copied as with L-N 8, and the header attached. Now
when we look at the message-context, we see that all the objects named
in it have been copied and their indices attached to them in their
headers. Therefore wé do not need to send any part of the
message-context to the recelver of the copy, and the message-context is

expendable.

As was mentioned before, the final copy operation is the
copy-full-local. This seems to be particularly useful when one cannot
or does not want to involve other contexts. An example of the
copy-full-local operation is depicted in Figure 3.8. It is quite

similar to the copy-full operation. First, the message-context is

1. Of course, copy-full operations will always have temporary
side-effects,

- 53 -

megsage-context

context 1, L~-N 18
context 1, L-N 8
context 1, L-N 12
context 3, L-N' 9-
context 1, L-N 7

type 1 0 _tm_l_l_

1 value 1 -
2

3

PLWN—O

type | 2

s | type 1 4]

value -

Figure 3.8 8 For the copybfull-lecal operatiou imagea of objects 0, 1, 2..
‘and 4, and .a partial imsge of the meseage~context containing the fourth
entry {3, {context 3, LN 9}} 5 will be sent in copying {context 1, L-N
18} of Figure 3.2. The. ahbauvmmn *‘u—u’ Ads «ud zﬁnr “lmalmm".

created. The inages of L-N. 18, I~N 8, an& b—ﬂ 12 dre created. “When it
is discovered that the~next<entry An: th@»ﬂeseegewcqatext {context 3, LN
9) names an objeet in a foreign contemt, the tnnse far this=ohject is
not created, but the entry in thefmeseage—context is marked'for,futurer~‘
reference, Finally, the image of L-N 7 18 created. Any time after each ‘
‘image has been created, it mey be sent. An tmage of a partial
message—context must also be sent containing all those entries ie the
message-context that were marked es not copied. Once all this has been .
sent, the message—context can be deleted and the sender has finished his

T

part in the operation.

3.4 The receiver

‘As mentiannd?ptdvidnbly; the‘messagé hanafér*fbt‘theféending ‘

context will be pasne& inagan ftom the aending;context. and pass them to

xt is‘on the ‘same node in

the receiving eonzext; 1 the receivtng cf
the distributed syrmm as the sanﬂing cuﬁtgxt,’"’éht‘ rw cOn‘texta'will

make use of the same measage handler.A If the receiving context is on

another node, the sending nesnage handler will pass)the ipages out 1into |
the netvmrk;*a fozfej.gn nes,aase hand«ltr‘ wﬂ;l' :a‘kg‘ care ot them. Whether
.',°r not the network was’ used it 1s in the t%ceiving context that the
inages ere&ted by the sending coatext munt be' ﬁse@ Fo create the actual
copies of abjecus. He u&ll ptésent the reee!#iﬁgxpfacodures as a set of
' cases eaah to- be handiea diffemt&y, a8 tﬁue areé'so’ many poasible
Vordezﬁngs of the arrivals ef the parts of a copy,‘anﬂ’wé want processing
to: begin as soon a8’'a receive eonnand has Bneu 1asued aud at least one

image has arrived

He ‘must be able td 1deutify each piece of a cOpy as part of that
“c0py., Each piece vill be lsbelled with® fts own cype cnd 1ts index 1if it
is a copy of a.gqnponent or‘thexfaq; gh&g ig';s:apneasage-gqq;ex; or a
pért‘fhn:e¢£;’if'£he cqpyyns;gftop%~§§éié:lafgop§f£3¥lﬁiqé§1. The

procedure is as follows.

1. When the first image (component or message~context {mage) is

ready to be: grocessed; a 1oca1 regeiving_messa e-context

is created. 1t will contafn; fn’additfon tothe fndéx for

each object; the local name for thnt object once that n&me‘
 has been determined. '

© 2. When the’ hesuége~Edﬁtext"im&é%‘irfivesi“ifh“éntritﬁ:dre'\

processed sequentially. As each entry is processed, the
receiving messagé<context 1§ first checked. “If there is a

- 55 -

local name there associated with the index of that eatry,
this local name is used to find the, location in the local
context to place the full name carried by the .
message-context image. If t:haxa».tn o local name in the ,
receiving message-coantext for ‘that envtry, the context must
find a local name to refer to the. foreign object, this.
entry is created in the local context, and an entry is
created. in the receivi. ptaxt. for the.
appropriate local name haxias t:ht wapthte index.

3. When a component inaga arrives, chg receiving mssage—conteif. -

is checked for a local-ngme t used for the new object.
' If a reference to the arrivir menﬂn: ‘hae already been
received. in. another image, a local neme. will have. been
assigned. If not, one must be requested £rm the context.
Using the appropriate locel name, . the tnsge As. granﬁfarund,
into a copy of the original ahjact. 1f the object 1s of a
base type, its value is takea from the image. 1f it is of
extended type, each name is pmhad up out of the inage

Using this name as. an index: iato; the Wﬁemuxa,

look up 1s dome. If either that object’s image itself tuw o

arrived previougly, or auﬁtha:*rcﬁcnnaqueokahat object -
has arrived in yet another inage , ‘then there already will

~be an entry in the: regeiving mes reontaxt containing a
local name for the reference. 'i‘hii v.’.ll be umved in the
copy. of the compenent being crested, If there. is no local -

- name for the reference yet, the @oatelt must provide one. .
Thus an entry will be created in the receiving =
message-context, having the wpthta index and the
local name provided by the costext. Also an entry must be
made in the context, alths Luaeyjcgt will be assisaed
as yet; i.e., there will be ‘a local name ‘in the context
having no other pame. (&:Lc%mr mraga 9: full. name) '
associated with it.

4. Images are received wntil there are no . eatties in the context
that do not have storage names or £ull names associated
with them. At this point, the copy haa been completed and
the receiving message-context 18 oo lmgor needed. ;

When the message-context depicted in Eigute 3,.;9 («av)» is ;dded to Figu:ga ‘

3.3, and message-context in Bigm:e 3. & {b); t.o I’igm;"txf 3.I;and 3.5, we

can see the receiving contexta fox the cop;-ou, Mx:rfull, and
copy-full-local operatione after all the. inngpt d&pim:ed in Figures 3.6,

3.7, and 3.8 respectively have been received.

- 56 -

me ssage—context ’

10 L-N 31
1 L-N 32 : |
2 L-N 33
3 L-N 34

(a) The message-context that must be added to Figure 3.3 in order that
it depict the receiving context after it has received the information
gent in Figure 3.6, the copy-one.

messasp—context :
0 L-N 31
1 L-N 32
2 L-N_33
3. L=N 34
L4 L=N 35

(b) The message-context that must be added to Figures 3.4 and 3.5 in
“order that they depict the receiving context after it has received
respectively the information sent in Figures 3.7 and 3.8, the cOpy-full
and copy-full-local. ,

i

- Figure 9 nessage-context in the receiving context. The ahbreviation
TL-N" 18 used for "local-nane .

Chapter 4 Qill explore in gréate: detail the suppotﬁ Ehat must Se

. provided to achieve what has been discuased this far. In particular, itv
will investigate the types message-context and image and how they can be
used to provide those facilities the user needs while hiding what the
‘user does not need to know. Chapter 5 will compare the three copy
operations qnd peint out prqblems_and‘some»inferesting possibilities for

further research in similar directions.

- 57 -

- 58 -

Chapter Four

Additional Mechanism for Copying

In Chapter 3, ‘we discuased algorithms for copying to be ueed in an

D B S

~environment of contexts as . described in Chapter 2. We muet now explore

’l"

PR PRSI

the implications of these algorithms in terme of what new basic types
5..

are needed in contexts,‘what mechanisns are needed as supports below the
level of the contexts in order to achieve snch copying between contexts,

and the interdependenciee aooog these entitiee.' We will alao extend the

copy operations to include local copying.

4] neaegge—eontexts and impges

P Y
£ LRV

' Two special types of objecte were’uaed in Chapter 3 to describe the
copying operations that must be defined within the contexts. | -
'meseageecontexts anéviulges. These two types:are basic:types and
therefore provide an interface with the: lower:level or kernel of the
node bdpportihg the context. This section clarifies their
.charactetistica by deacribing the Operations defined fot these types.
Language constructs einiiar to those of ﬂLﬂ{ll} wdll be used tor this

purpose . NS P

As mentioned previously, me%sageueontéitt are ’inilar 1n.many ways

BT

to contexts. Each is a mapping from one kind of naies; - local to and
unique within® the context T other kiﬁdtwéf ntneez Hessage—conxexts

are used specifically for prepating fmﬁgee when eopying an object. A

- 59 -

message-context, as used im Chapter 3, is a mapping between the indices
for entriesein the message-context aed‘the caaé;ﬁiéaof those entries,
that is, the full names‘for'ebiects. We -will nodifﬁ tﬁis definition
s8lightly later in this chapter when discuising an 0pt1nization for local
copying within one context. A eesnaye~c0ﬁ$ext not only must keep track
of the component objects, but also ‘mast de seue other bookkeeping.
First, it must renember how msny Lndices have been uced.f Second, it
also should remember which couponentn,have been copied aad which have
not. We will depend on the message-context to provide the name of the
next object to be copied. In order to do thi.; the neaaage-eontext must
remember which type of copy operation it ts h&ndliﬂg.; The R
nessage-context must also overaee ‘the sendda; -pf a& 1nase of a partial

,message~context in the cases of the GOpy-ona and nopy—full—local

operations. Finaliy it must nelf-destruct. ’

Ten operatians are. needed.fer.the»meaaage—eonteit;: SOne~of'these'
are used only for. 1ocal copyins, and thetefote vill n@t be. used until

later in the chapter. The meeeage—context opetntions are as follows.

1. create (object-name, op-name) returns‘(message—contexf-name)

_ takes as arguments a:local name of a local gbject and the name
of a copy operation (copy-one,. copy-full, copy~£u11~local,
receive), creates a message-context, and returns the local name
for that message-context. . ‘

2. delete (mesmsge-context-uame): takes as an argument a local name
for a local nessage—context. deletes it frun tﬁe context, and
returns nothing. e , T ,

3. next~send (aesan;n~con;ea¢~nuna$ yieida (nbggct—nane. LT
context-name, indexl, object-local): is a CLU-1like iterator. On
each invocation with.the same msssage-countext-name it produces
another object-name from the mespage-~context until it has
exhausted its supply, Bo that the name of each object to be

- 60 -

copied has been given to the invoker exactly once. For each
object name produced it also returns the name of the context
containing the object, the index of the object in the
message-context, and a boolean which is true if the object is
local and false if the object is foreign. If copy-one is being
executed, only the name of the first entry in the
message-context will be returned. If copy-full is being
executed, all the names will be returned. If copy-full-local is
being executed, the names of all the local objects will be
returned.

create-image (message-context-name) returns (image-name): takes
the name of a message-context and creates an image of it to be

sent to another context. This transformation uses the

- information about the type of copy operation being done using

this message-context, and the name of the local context. The
image created will have its type specified as message-context.
The index field can have any value since it is not used for this
kind of image. If the copy operation is copy-one, all of the
entries in the message-context except the first will be copied
into the image. If the operation is copy-full, this is an
error, because no message-context image is sent, and this should
have been discovered before this operation was invoked.

Finally, if the operation is copy-full-local, only those entries
for which the context is not the local context will be copied
into the image along with their indices. This then is the image
that is sent to the receiver.

send (message-context-name, receiver-name) : takes as arguments
a message-context name and the name of a receiver, to receive
the copy. This operation manages the copying; it does the
following for each component to be copied including the original
object. The index in the message-context of the object is
found. If the object is foreign, a copy of it 1s obtained.

Now, regardless of whether the object is foreign, its type is
found, create-image is invoked for that type. Then the index
can be added to the image header, the names in the image
translated into indices using the message-context, and the image
sent. If the object was foreign, the copy of it created locally
will be deleted. Once all this has been done for each object,
an image of the message-context can be created and sent if that
is appropriate. See the later sections of this chapter for more
details of this operation.

local-send (message-context-name, receiver-name): takes as
arguments local sending and receiving message-context. It
generates the appropriate kind of copy of the object named in
the first entry of the sending message-context. It is invoked
when the receiver is local to the sending context, and achieves
for local copying what the combination of send and receive

- 61 =

achieve for distant copying A sample implementation of it is
preseated later. . '

7. name (message—context-name, index) retuxns (object—name)‘ takes
as.arguments. an index, and & measaganqqnggx; -name and returns
- the name associated with that index in. thavmeasage-cnntext. 1f
there is no. such name,. :he«cautgxc 48, “;ed to provide a
local name which later will have. asaociated with it an object.
This operation is used in receiwing

8. receive (nessage~aon&axt~nﬁne, aendem-nama) takes .a8. arguments
a receiving message~context snd an 1 antifier for the arriving
copy (sender-name). This. operaciqn 1s the;tavexse of send- it
receives images and manages the creatigm of the. .components of
the copy using the 1nases._ It appeaxg in an. example 1ater in
the chap&er. S ‘ \ , ,

9. receive- Egg (image-name, messagg—context—name) takes as
argumente. an -image of a sending msasage-context and. a receiving
- context and updates the receiving messsage-~context .and the
context with the coaotents.of the imge, This is used only in
the receiving conbext.. — ‘

10. mexb—raceive (message-cantext, sender-name) yields (image—name,.
typel, indexl): takes as arguments the name of .a receiving _
message-context and a sender, from whom & copy is coming. It is

an iterator that yields the .name. of. an image to be xreceived, and -

the type and index that have been: extracted .from the Anage
‘header. It pIOVides the reverse . Enagataa from n%x&~aend.

As long as message—contexta are. used only fnr sending and receiving

copies of objects. these oyeratians are. auﬁficient;‘

The other new type is imag . wé-have dincuéaéd té!aéﬁg ettgﬁt the
use and form of an image, but more musi‘bé said. An image has a‘header,
and 1s of vatiable;siié, it has twelve Sperétiéﬁs defiﬂgdﬁdévii'as'
follows: | | o

1. create (type). returns (image-name)' ‘takes. as. an argumeut the

type of the object for which an image is being created. The
operation creates the image, vhigh will grow.as 1oca1 names and

values are stored into the image. This operation returns the
local name of the image that has been created.

- 62 -

¢

2. gstore-name (image-name, index, next-name): takes as arguments
the name of an image, an index into the image, and a local name
for an object to be stored there. These names will be
transformed later. This operation returns nothing. It is used
only in the sending context.

3. store-value (image-name, index, value): takes as arguments the
name of an image, an index into the image, and a value to be
stored there. Such a value will not be transformed before
sending the image. This operation returns nothing. It is used
only in the sending context, but not in the examples presented
here.

4, store-index (image-name, message~context-index): takes as
arguments the name of an image and an index which the operation
will store in the header of the image. This operation returns

nothing. It is used only in the sending context.

5. translate~out-name (image-name, message-context-name): takes. as

" arguments an image and a sending message-context, and uses the
message-context and sending context to transform any names
stored in the image by the store-name operation into indices,
adding entries to the message-context when necessary. This
operation returns nothing. It is used only in the sending
context. ‘

6. send (image-name, receiver-name): takes as arguments the names
of an image and a receiver for the image and passes them to the
message handler. This has the effect of deleting the image from
the context. This operation returns nothing. It is used only in
the sending context. ' -

7. receive: is the reverse of send. It is not invoked in any of
the sample programs, but is included here for completeness. It
would be invoked by message-context$next-receive.

8. translate~in—name (image-name, message-context-name): takes as
arguments the names of an image and a receiving message~context
and translates all the indices put into the image by
translate-out—name into local names in the receiving context
using the message-context and receiving context. This operation
returns nothing. It is used only in the receiving context.

9. get-next-name (image-name) yields (next-name, index): takes as
an argument the name of an image in the receiving context, for
which translate-in-name has been invoked and returns one at a
time the local names in the image, each with its index in the
image. This operation is an iterator. It is used only in the
receiving context.

- 63 -

10. get-next-value (image-name) yields (value, index): takes as an
argument the name of an image and returns one at a time each

value in the image with its index in the image. This operation
is an iterator. It is used only in the recelving context, but

not in the examples given in this thesis,

11. transform-names (image-name, message-context-name,
receiver-name): takes as arguments the names of an image, a
sending message-context and a receiving message-context in the
same context. -This operation translates the local names in the
image into the appropriate local names for a local copy
operation. This operation returns nothing. It is used only for
local copying.

12. delete (image-name): takes as an argument the name of an image,
and deletes the image from the local context. The operatiom
returns nothing. It is used when receiving a copy.

These are the operations needed for sending and receiving images of

objects. 1Images are the only base type objects that have the send

operation defined for them.

4.2 Layering in a node

Now that we have a better idea of the two new basic types that are
the basis of the interface between contexts and the system, we can
explore the layering again in more depth. At the system level, we need

to clarify the function of two entities: the storage manager and the

message handler. In the kernel of a node, objects are named by their

storage names, Storage names are used by the storage manager to name
uniquely every object that the storage manager must handle. It is not
clear that storage names have to bé unique over all time, although they
obviously should be unique at any one time. A storage name must not
appear in more than one context at a time, becausé that would imply
direct sharing of the object; two contexts would have an alternative

form of communication to message passing. Depending on whether or not

- 64 -

storage names are to have other functioms such as providing some of the A
Srm ivoaed o e
aecurity wanted, they may be capabilicies, but they also may be just

phyaical addressea (if ohjects are not physically noved), or possibly J

names that hide the physical locationa of the objects, but provide no
security (in other uords thay are forgeable) ﬂuues that are local to a{

context have no meaning at ‘this level' they ate only strings or nu-bers:

or very simple entities that hopefhlly 1T not‘ﬁe nanipulatod in any

4».5".537 ROy i BRI LA

way that 1s damaging to the objects and contexts.

The storage manggex is the 1nter£ggg betmmugfmgsigal storage and. -
all the Fest. of the ByRtem. There 18 no. ;quq%nﬁj\p all the nodes. in a -
distributed system nned to. have»:hn agqq.tgp@anangpt;ag,gf the storage..

mapager. The storage m s will be protectsd frgm each other by the .

e

.', message handlers and type managers. on. the; various.apdes. It 1s these
tﬁatvmusc agree.;nd;eodgpr4§g, noa;tkﬁ.gﬁg;q;!&;@gg;prg,,g$bg sbotagg;a'
manager may be quite cleyexly wtittnn,;n ;gkg,;dvgn;aas o; all. sorts of
optimizations, such as sharing 1mnutable objectc between contexts by

providing separate storase nanes ﬁhat u&p into the sane object.. It may

,%!‘f

use the typas of objecta to help in utilizing space to gteater advantage'

or reduce tiue require-enta for moving object: Eetveen different levela
1
* of memory. The’ inplenantation of the stotage manager, houever, 1s not

B R
7 ET

of concern in this thesis.

1. These optimizations, however, lead to a cyclic dependency that ie
undesirable from the point.of system.vetifficakion,:.8e the developes of .
such a storage manager would have to take extra precautions. See

Janson[9], Chaptex 3, ssction 3 faakgdgosaglggwdggsgaygaa of cyclic
dependencies and many of the problems related to them.

- 65 -

The other important entity is a message handler. ‘As mentioneo
above, the message handlezs must cooperate. The message handler will
take the storage name of an image, and the name of the recaiver, and see
that the message handler for the receiver recoives the image. Assuming

the receiver is at anothat node. the sending message handler will

prepare and send the inage through the network. Thus the message

handler will have to knov network addreaaes of all relevant contexts and '

the network protocols for sending,images. As far as the information
about locations of contexts 13 coﬁcerned, ‘this infotnation ‘can be kept
in a table that is internal to the neasage haaﬂlet* 1: is infotmation
about which nothing~elle-in:fh&”nvd& d&oul&*ﬁee&'cu'kndW'

Alternatively, a pratOcol such as ﬁﬁe one suggeiteﬂ by Reed [16) could be

used to find the reeeiver uane by 1ntetrogutin; directcries at different'

nodes. The network protoeoiﬁ*wtii be diséussed fio furtker'than to eay

that the various message handlers must agrée upon thei. =

If we wereAtowpeta;lel the‘aeodingiepdhrece;etng in the case in
which the two contexts ate'oo the ’?“939°d9',th3'3#99,?953§3é,P‘“dle?
would be,used for the two,abut It would-call o@ the imaée type oanaget
in the receiving context to create a new image in the receiyinn context.
The image object that was created in the aending context should be

deleted. The image should never appear to be in two places at once,

On top of‘the-ke:ne; containing the storage manaéer’and the wessage

handler are the coutextn@ A8 diaeasaed iﬁ Cﬁkpter 2, contexts are

namespaces, the ouly uauespaces available to the user of such a system.

Figure 4.1 depicts one view of this atrangement. When a context is

- 66 -

context 1 ’ | context 2
- user .| local-name storage-name _ , 7
environ-) 1 local-name full-name | =~ - e e
ment ' . .
‘ » ' .
kernel storage manager : méqsage handler cen

Figure 4.1 Layers in the system (on ope.node):

P et N & [N E
;o 3 T b

.creatéd it will héve a certait‘ﬁﬁnber of ltcal naues’prttssigned to
~Aimportant objecta, such as the type m&nagcts of all the base types
including the context type manager, and all othet resources that, in the
'findl'antlysiujxnust,be shared: among the coptexts.{for example the
kernel andﬁail%the>hirdunre tﬁat is to be5uséd<5yfneré-than one:
coﬁtext);v It 1s also possible that a”comtext will 'need te have a-local’
name assigned to itself, to do some forms of name translation, or

receive responses from type‘manggers,‘for example.

e b

4.3 The details of sample copy operations

In this aection we will present: the details~of the cOpy operations
for a type manager of a specific extended type.‘ We will demonstrate
this on an example of a hypotheticai tyﬁe, T} ‘we idaule that objects of

type T are mutable and can be created with’ 8 vaiue of ail] ““"There are

several other assamptions we need’tb“mqke*dbodt'eﬁjeeﬁa%of'typg'T.

- 67 -

First, we need to be able to creaﬁe ob}ecfs of type T. Secbnq, we will
also find a need to delete objecﬁs of tjﬁé Tzfn 6rﬂervto avoié side
effects in the sending context when copying under certain circumstances.‘
This is a special form of delete, as is discussed below in the
description of the Operation. Thitd we will need to be able to get the
names of the componeuts of an object of type T one at a time. Fourth, i
we will need to be able to create images based on objects of type T, and
receive images and translate them into ijects of type T. Fif;h, we
will need to be able to assisn coiéoncnts:ofwna object of type T ome at
a time. This means that it must be possible to create an object of. type
T with a value of nil and 1nsert into it conéoﬁe;t; one at a time. B

This 1mp11es a need for storing a conponent into an object of type T.Ak~

To achieve-the copy. cperaxians zhe=£oilawing snypnwtiag operationa
will be assunad ﬁor type T. (The pperations coga~aaa. &pr~full, F
copy-full-local, and receive-copy will. be éineg;sqd and axenplifiad ,-;,b
later.) |

1. create () returna'(object-namé): tﬁkes'no éfgnments,ibut‘créates

an object of type T and. returna a local name for 1it.

2. delete-copy (ohject—naae)' takas the uame of an ebject of type

T, calls on the context to delete that local name and all the

 local nsmes contsined in the.object ften the context, and .
returns nothing.

3. 3gt-next-name (object-nane) yields (next~nane, index)' takes as

© an argument the name of an object .of type. T and retuzns opne at a
time the names and indices within the objcet of each of its
conponents.” This, operagion 1! ag ‘ikerator, 4

4. create-image (abject-uana) returas - (inaaaonamq). akes as an

argument the name of an object of type T and returns an image of
that object containing local names that will be transla;ed

- 68 -

later. The image may also contain values that will not be
translated.

5. receive-image (image-name, object-name): takes as arguments an
image name and an empty object of the type any. There must be
only names local to the receiving context or values in the
image. The state of the image will be put into the object.
This operation returns nothing.

6. store-name (object-name, index, next-name): takes as an argument
the name of an object, an index to a component of the object and
the name of that component to be installed. This operation
returns nothing. '

This is a list of only those operation needed in type T in order to
achieve the copying. It says nothing about what other operations there

may be in type T.

A number of additional details must be specified. We will assume

only two operations on contexts:

1. request-copy (object-name, context-name) returns (new-name):
takes as arguments the two components of the full name of a
foreign object, obtains a copy (copy-one, to avoid any loss in
sharing) of the object, and returns the local name for the newly
created local object, which is a copy of the foreign object. Tt
guarantees that a new local name is assigned to each non-local
subcomponent name.

2. local (object-name) returns (boolean): is a test operations that
takes an object name as an argument and returns T if the object
named is local to the context, and F otherwise.

In order to implement the procedures described below, some modifications
are needed for the CLU type any. This work assumes two operations on

the type any: (1) type, which produces the actual type of the object in
the any object, and (2) force, which forces the any object to the object

inside the amy. CLU provides no operations for the type any, although

it does provide a force built-in function. Another type that is assumed

- 69 -

in this work is type. No operations are needed for it in the sample

implementations in thig work.

Now that ﬁe have a better understanding,df the relevant aspects of
contexté, and the full complement~of opénations available fortimages and
message~contexts, we can consider the details of & possible
implementation of the three forms of copying discussed in Chapter 3. We
will begin by noticing the similarities among the operations. In v
particular, the message—context appears to be a focal point. Since‘the
message~context contains the name of the copy operation being performed
(copy~one, copy-full; COpy-full—lncul) and‘the identity of the top level
object being copied, it contains,enoughfinﬁammatiaﬂ thbewat the core of
all three copy operation. The message-context$send operation provides
this central fumction on the ueaaage—context.. Tha,nuasage~context is
created conteining two pieccs of information, the name of the original
object being . copled and:the.type of thercopywoperat;og. (Later
message-contexts. will alsc bevcreated'with "receive" as tﬁé ncme’of.the
operation using them.) - Message-cantextSscnd invokec«the,Créété~imége
operation of the type manager for each component to be copied When all
components that should be sent have been sent, an 1mage of the part of
the message~context naming those components not sent is created and

sent. After some cleaning up the copying is complcte.

It is important to keep in mind that the tools provided for the
system users should be as simple as possible .and should not.ccntain~any
mechanism for which there is no apparent need on the particular level of

abstraction. Message-contexts‘may'well fall into this category, but

- 70 -

they can be hidden from the creator of an extended type manager or
cluster. A method of achieving this is to make available three generic

operations or procedures named proc-copy-one, proc-copy-full, and

proc-copy-full-local. These procedures will simply see that

message-contexts are properly created and sent. There is one other

- place at which the programmer might come into contact with
message-context; when the images are sent, they contain only names
generated by the meésage-context, yet the creation of the image of an
"object of extended type should be controlléd by the extended type
manager. The reason for image creation being in the type manager is
that what actually is sent should bé type specific. There may be
information which is node specific, that the receiving type manager will
have to acquire later. There may be components such as temporary
workspace that it would be a waste to send, and perhaps for security
reasons should never be sent. Whatever the reason, image creation
should be under the control of the type manager. For this purpose, the
programmer will be required to write a'create—image operation, which
will see that the image is created and write values and only names local
to the context into the image using fhe image$store-value and
image$store-name operations. The message-context$send operation will
later, unbeknownst to tﬁe programmer, invoke imageS$translate-out-names,
using the appropriate message-context. Thus the programﬁer never knows

of the existence of the message~context.

- 71 -

The only other pieces of code tire programmer must write are
*defini'tions of which copy oper&timtév are to be defined for the t.y_pg.
fhese operations will do nothing but invoke the appropriate genmeric copy
operation passing along the parawe-'teté. Figures 4.2 and 4.3 provide a
possible coding of the procedures described inm this section for objects
such as the top level object used in the examples in Chapter 3. They

are written in a subset of a language based on the"coweutioﬁs of CLU.

copy-one = proc (object-name: I, receiver-name: any);
proc—copy-one (object-name, receiver-name);
end copy-one;

copy-full = proc (object-name: T, rec;eiv_et-pm_: any);
'proc—copy-full (object-name, receiver-name);
end copy~full; : h v

copy-full-local = proc (object-name; T, receivg‘t-f-name: any) ;
proc—copy-full-local (object-nsme, receiver-name); o
end copy-full-local; o ' '

create-image = proc (object-name: T) returns (image);
for (next-name: sny, index: int) in get-next-name
(cbject-name) do .
image$store-name (image-name, index, next-name);
end; - | T
return (image-name);
end create-image;

Figure 4.2 Operations in the T type manager

Figure 4.4 presents an implementation of bmess_age—context$send; '
since message-contexts are base type objects, the meﬁsage—-context type
manager with all its operations is provided in every context.

Message-context$send is somevhat imvolved. It iterates over all the

- 72 -

~ proc~copy-one = proc (object-name: an any, receiver-name: any);

message—context-nm ne §84 e-ctext 3
" meéasage-contentéereate L4b3 lame 5 *Edpy-one
~ message-context§send (nauage-cqn;ext-—nane, receiveréme),'
' message-contextSdelete (nqsgdge-ﬁemﬁ %dnf) -
end proc-copy-dne; v

proc-cOpy-full = proc eah;ect-name - any, ‘rec‘i’wef-me. any);
message~con amd ! e sssge~dén FaRt i
message-context$create (ObTSct~nane, "copy-full');
message~contextisend” (ﬂeéﬂfwcén%iﬂ?f_ 8, receiver-name);
message-context$delete (unuge—cantex “Hane) ;
end proc-copyﬁfﬁll‘ RS T

proc-copy-iull—local - groc (v.ﬂ:;;]eu:t;-‘mll\'m‘f“I m; receiver-nm any) ;

messagedébntat&cra L
neaaage-concextssend (mass
message-contéxt$delete ‘(masisy
end proc-cnpy—!ullwlncal

2 &p'y—full-local")
ik, recaiver-name),

h‘ 'feﬁw

Figure 4.3 The ‘generie copy ofneutim or pmedures ptovided to each

tmin—

context by the Mml , , _ ¢

names in the message—concext. While this is happening, additional
entries are made int;o the meesage-context by the
imageStransléte—out-nsﬁbﬁ -opefat‘tun gFm: eaeh aijact, the

message-context$send operation requests a.copy.of the object. if that

object is not ‘local to the sending context. Once there is a local copy

of the object (if the obfect was local no additfondl dopy will have beén

created), the type of the object can be determined and the appropriate

create~image operation can be ‘invoked. This Opemidavill create an

 image containing possibly a subset (this will’te'discussed liter) of the -

same local names that were fn the object itself. Therefore, ‘the
programmer’ does not need to know about ‘Heéadage-contexts in order to

write the create-image operatifon. Once the‘fmége has béen created, ‘the

send = gro (mesaage-context—name
any.
for (object—namg. 5g1 context-nqng 5
T object-local: boolean) in next—sead
do
1f (object—local aqual F)vn~"n‘%h
new-names ggzmg‘ context. "uéstrcqpy (object—name,
canccxt—nané),,, e e
objectrnana ;= _new-name;
end; .
typel: type := anystype tobjec&~aa@a). v
‘image-name: image := typelscreate—image (any$force
. (Dbjﬁcvt—"m))r IR
1mage$stcre-index (1aagamna-a, index},

2xt, recelver-name:

ext, index: int,
”mzesage-context-name)

inasshead (iaasae RAMA., T
if (object-local equal F}.g%gg '
typel$delete~copy (any xce cobject-name)),
end; ;
end;
if (op-code (ngssage—connexc-nane) not equal “copy—full") then
image-message-context: imege = crennnrinase b
(message-context-name); :
image$send (innge—ueasage—context, receiver-nana),
end;
end send;

Figure 4.4 The send operation of the negs;gQgconhgxt-;ype.manggs:.

e st

index in the’ measage—context of thé object from which it was created. can
be placed in the header of the 1mase. Also, che,names in the image must
be translated fran local names to 1ndicea in the. ncssage-context. This
may involve creating new entries in‘thg.mesaagevconggx;,-gnd therefore
also may involve the context. After ﬁhiSuttanalatibn.has~Been.coméleped
the image can be sent. If a copy of the objact.uas acquired from a
foreign context, the copy will now be deleted, and the. vhole procedure .
can begin for the dext component. ﬂhen ingggswhavauhgenksent_fo:tall

the components to be cOpied,fif the operation‘wasvnot a copy-full, an

-4 -

image of the message-context must be sent. This completes the

message~context$send operation.:

4.4 Preservation of sharing

An interestingv'situatien now exists sith ‘respect: to the copying of -
foreign .c\mnp'onents. At the context lx.mé]';",': we ¢an control how much i
sharing within an object we wish. to worry -about: enroaxyeo‘tzkext
boundaries. If we wish to maintain albmingfrms ?of»:c"ohtex’tf’
boundariee, the context wili_.-reqmt aeupy-tmeof ?the,tnreign .

component. We will use Figure 4.5 as the -bagis of further discussion. -

. Figure 4.5 An example of sharing across context baundaries. The 'm‘mbers
in the boxes represent values of objects. _ ST '

When a context requests only copy-one for each foreign cmiponenc‘,
' exactly one object image and a message-context 1mage will be acquired

for each foreign conponent. Thus the nemae-cmbem: for the whole copy_

-75 -

e ey vt e s o e

operation will keep track of all possible sharing even across context k
boundaries (because for every component the globallf unique name is
found) . ‘The result is thaﬁ the structure in the rééeiving context will
he exactly that in Figure 4.5 except that it all will be in.one,cuﬁtext.
The proqun'witﬁ this is that a request must be sent‘out for a copy of

every foreign subcomponent of the original foreign component named in

the objeét being copied. If instead it is decided that we care about

most sharing but are willing to trade losing some in return for the
saving in time and messages, a~copy—f§11-local caﬁ-Be used instead. ixn
this case, we will lose the identity of subcomponents of a foreign
component that are local to that foreign context. Tﬁﬁs.geqﬁeS;ingva
copy-full-local of the foreign components would lead to a final

structure of the form depicted in Figure 4.6. 1In this cesé, many fewer

Figure 4.6 The resulting structure of a copy of the object shown in ,
Figure 4.5 when copy-full-local fs used across contéxt boundaries. The
numbers in the boxes represent values. Thus we caa see clearly where
extra copying has taken place.

- 76 -

1)
Yk

éesaagea will be required if the foreign c°mponente are large (thaf is,
“have menY'sebcemﬁeﬂenhs) but ‘1f fherefia'ﬁﬁcﬁﬁESHrfegdeetbssfcﬁnteit"”
| boundaties, there will be a greater expense "in terms of space needed for
‘the additiﬁﬁal copies of ‘the subcéﬂyoueats. If there is no {nterest in
maintaining sharing across contextbuundarfes , ‘the copy-full cpefat'ieﬁ
. can Be iﬁvoké&x In thia case, onIy shariﬁﬁ“that is Iocal to a context
or in uhich two local conpenents ﬁine ‘the same fbreign comiponent will be
preserved. Figure 4.7 ptavides an example of the structure in the

receiving context for the case in shich copy--full is, used to xeqqeet

copies af £oreign conponents in order to _prepare inggeg.x Bsing the

“copy-full may have serioua drawbacka althouap iq»quy @ases 1t may save

g

Figure 4.7 The resulting structure of‘a coPy of the object shown n
Figure 4.5 5 when copy-full is used across centext. boundaries. The .
pumbers in the boxes F¥epresent values. Thus we can ‘see clearly where
extra copying has taken place.

-77 -

much in time and many messages. The problem is that the foreign
component may contain foreign components, which may contain foreign
cﬁﬂponengs} 1f such a structure has loops pbt!pniy across context
boundaries, but across node bounda;ies, thg infini;g_gggutsionimigﬁ; be
very diffiClilt to discover, and even more difficult to handle. ’i’hus, ‘
although this may be a very tempting apptaach because of its simplicity,

it is probably something that ought to be avoided.

-There is an is;ue that has not yét'beeﬁ hﬂdtéss&&? although it §§h~
considered in determining the operationms éarliér"i&”this‘cﬁépter, Wheo
a local c0py is made of a foreign couponent, in arder to cteate an inage
that will be part of a copy-full operation, tuch a local copy must not
have any side-effects on the local cantext. In other words, smot only
must the copy itself be deleted, butialku the local ﬂhﬁns ﬁséd to

identify any foreign components of the nopy must be dcleted. Ic is for

this reason that the delete=copy operation Eor the type T was defined ta. -

delete not only the object itself, but aleo all the fo:eign'componentsf
of the copy, from the local context. Using;the oiher tipeq.of bdpying‘, ’
when requesting copies of foreign componeuts,sblvea-these;prqbleﬁé, the
copy-full-local to some extent, énd_the‘copy—full conplétély; The |
reason for this is that by usiﬁg these, fewar or no local names wili-bé
associated with full names of foreign subcauponents before copies of .
them are acquired. As we have seen there are other tradeoffa. Perhaps ;
the decision as to which form of copying is used in tequesting copies ofv
fareign components should be left to the peraon on ﬂhqse behalf the |

context is created.

- 78 -

4,5 The receiving end

The operations needed to receive ‘an vhject of type T are similar to
those for sending except that rather than;fﬁ§ﬁérkiﬁ3§“&f-opd?htions
there 1is just one. Hhen the bits tepresenting the sent images arrive

over the netvork, the message handlet fécefvei then and places them in

’somethiug called a pseudo—image. The messagdxhznilﬁr“must extract from
incoming measages identifiers to be used in assenbling the images
_belonging to the same pbject. when the receive request has been issued
by the‘approp:iate typghqanageg,r}p_ogrwcgse ty?e t?s:hi prqc;ss of
creatiﬁg the copy in thg-#ppr;priate context can begin. The
iibleusntatioamof»ieeoiving»is.sinilar~to ssadiag; again, a generic

. ngtation is provided to ﬁé iﬁ#bﬁadfﬁy'ﬁﬁé g&%ﬁiﬁé4§0§y‘ngtntions”of
lﬁarqigqlét fypeg.:Jégaigéﬁbégiofi:ﬁéMﬁbgtfq1 i§;§ﬁ*ﬁﬁé*meségggecontext,
~ in this case in uetsigeJédﬁté*t$récdtfﬁ. Noﬂ, the 1ttrator used to
drive the whole operation of receiving 18 next-receive which yields
images acquired fran the message handlerf The uperationa of 1ntereec
for this thesis are receive—image an;(r;éeive-copy for type T, the
genaric tgge;yqrpgqqf:qceivg, and gesggge—gqa;g;gﬁ;gceivg. For an

ianemen;aiion of these see figures 4.8, 4.9, and 4.10.

It 18 in the ¢create-image and receivé-image operations of type T

that ‘the décision as to what 1is copiéd ‘and how it ‘is made. These two

1. As a check that the copy was performed corréctly, perhaps type
checking oyght to be done on the complete structure. The
message-context can ‘be used for this to’ avoi& ‘anly Yoops.~ This is simply

a matter of checking that all the conponents of each component are of
the c¢orrect types.

- 79 -

receive-copy = proc (semder-name: any) returns (I);
- object-name: 2_'- create(); : R
proc-receive (object-name, sender-nm).
return (object-name);
end receive;

receive-imge -2 ¢ (image-name: Mg._, object.—nm T),
object-name := create ((); . -: .
for (next-name: any, index: __n_t_) tn inasasget—nent-nme
(inage—m) do. .
store-name . (object-nm, iudmx, naxt-m),
end; : TR .
end receive—iuage°

Figur e 4 8 The receive-copy and receive—inage eperﬂ:ions of the T type
manager. ‘ o . o

proc-receive = proc (objactg any, mdu-nmz .5...99:
message-context-nm :
_ mespage-contextfcreate (g f; ,‘tqceive").
message-context$receive (message-~ -«m, sender-nm),
nessage-context$delete mmm L3 :
end proc-receive;

Figure 4.9 The generic receive r’z;k;e‘krla't"‘isbu*j or procedure

operations together provide the type specific qual:lt:i.u of copying. It
18 here that we can decide not to copy sm conpontnts wit.hout causing
the whole copy operation to fail.. Fer :Lnstm;sca, if snne conpoman: of an
object is context specific, the cteate-imn .epsraticm nisht. mnetace a
special signal or value to the receive rather t;han the name of a =
component even in a copy-full. The sisnal- mmt be intat,pteted bj the
receive-inage, so that it will be able to. fnl ia :he gppmp-.:nte ':, o

component. This is just an example of the reaaoning that misht accut.

receive = proc¢ (message-context-name: messqgg:cgggext, sender-name:
any) ; - | |
for (image-name: image, typel:r type, indexl: int) in
next-receive (message-context-name, sender—name) do
1f ‘(typel wot equal "depsage~context') ithen .
image$translate~in-name. (1mage-name,
‘message—context«nane); P
object-name: any = nane(measage-context—name,
‘4ndexl)s - ~
typelsteceive-image (image—name, anysforce
(ocbject-+name)); - - :
else receive-image (image-nane,
T message-context-nsme);

end; ,
imageSdelete (image-name);
end;

end receive;

| Fi ure &. 10 The receive operation of the message-context type manager.
It is similar to the nessage-context$sand Operation.

This completes the discussion of copyiag across context boundaries.

o]
R

but there is still one more form of copying that must be discussed

4.6 The local copying operations -

: Thevl#st situation ihat must;be;cogﬁidefedzis wvhen the copying is
done within a single centext, For thngﬂB Mi11~u8e1lH$h.0f the
_mechaniem -already in place, modifying it where necessary. The semantics
- of tﬁg éoPy—qne, copy~-full, and copyafullelneal;fgi the local situatian.
should be the same. As a matter of fact’ the operations. can be invoked -
by using the same operiation names. Thé*onlyfchgngas:heeded are changes
to pieces of code that the programmer ‘never sees, in:particular the
generic operations and message-context$send. To méke these operations

work for a copy within a single context, it is necessary to simulate the

- 81 -

important parts ef both the send and the receive sides of a 'copy
operation, handled in a aingle opernkion, neﬂaage~cancext$local—send
Fot this we will ugse two message-cen;exte, although we will see later
that this is not always necessary. When the egpy operation is invoked,
~ the receiver—name will be the 1ocal name of ﬁhe cOpy that is to be
“created. The first message-couﬁext vill r&un&n ehe same as previously,
associating with the index used for a compotnient the fukl npame of the
component. The second message-context will be ueed 253 gaseciate, for
each component, the index that it had in the firstAnessage-context with
the local name for the copy, if: thec is epprqptiete, Thus the: fi:st
entry will be the name peseed as the receiver-name A At ‘this point, the\
receiver—name will be reassigned ‘to contain the nane of the second
message—context. For any conponent that will not be ccpied (as with
some components in copy-one and copy-fullulocal), the 1ocal name of the'

original will appear in the second measegt&cpuzt;tw;.

Since, as we said before, the 8eﬂd1n3‘neuetgewebﬁheet;eanube
thought of as representing sending:ofathe'copy,fthgaeeeedying
message-context, or in this case the secoud4neqsa§h?emhtaxt;‘ean-heu'
thought of as representing the reception Gf@theyeapya.~fhe;e£e:§,”mak165~
the second message-context the receivexrnameyepd;pLeeingn;n it the-leealv
name of the new object are reesoneble.;Lf@e,ptpcadmgggethg; mgsﬁ be

changed to achieve this are the genexric. copy oparations and

- 82 -

proc-copy-full = proc (object-name: any, receiver-name: any);
message-context-name: message-context :=
' message-context$create (object=fame, "copy-full™);
receive-local: boolean 1= contextslacal (receiver—name),
if receive-local then :
second~message-context: neasq&e—context 1=
message-context$create (fefdiveér-same, "copy-full');
receiver-name ;= second-message—context;
message—contextslocal—send (message~context-name,
receiver~name); - e T
else message-contextSsend (message-context-name,
, receiver—nane), . :
end; :
message-contextSdelete €mesaage~context-dame),
if receive-local then
g message—contextsdeleCe {zEceiverﬂname),
. end;
end proc—eopy—full

ok

message-context$local-gend = proc (message-contéxt-name:
messgggwcontext, receiver: any);
“for (object-name: any; ‘context-fiaset icontext, indexl: int,
object-local boolean) next (mesaage—context-name) do
1f (object~local equa F) thea™ 7
new-name: any := contextsrequest-copy (object-name,
' ‘context-name) ; ' s
object-name := neﬁ-name,
end; : (o ;
typel: type := any$type (object—name),
image-name: image := typelscrtate-image (any§force
(object—name)) ;
image$transform-names (1mage—name, message—context-name,
receiver-name);
new-object: typel := any$force(name (receiver-name,
1[1&331) I
typel$receive-image (image—name, new—object),
image$delete (image-name)}
end;
~ end local-send;

Figur e 4,11 The proc-copy-full modified ‘to take into account local
copying and the message-contexts1ocal—send procedure. Proc-copy-one and
proc-copy-full-local dre identical to the proc<topy-full except for the
creation of the message—contexts where the appropriate operation name
must be used. : ‘

- 83 -

message—context$loca1-send~muat he created. .. ffh{ﬁ,qoqld ué"inéluded in
message-contextssend but for ease. in undensbqnding ;he programs has

not.) Figu&e 4.11. depicts these znvisi@ns.,;ifﬁ'1

There is a great deal of mechanian huzg‘gn ach&exa something

appatently sinple. There are several rcatons fa;f‘_ls,. Eirut of all,

one of the prinarr goals of &hia,uoxk,uga#;q gggagg{qny sbgriag in the

structure; message-contexts are ;ﬁ”dﬁﬂﬁ“@fgéﬂ m;, 'Sgcogd, using the
mechanisms already in place to. perform diitﬁﬁtxqqg;*ggggqqgoggggg‘on
mechanism. Third, as mentiouned previnualy,\qaaa;ae~' gggzts can and

RIS

should be hidden from the pmsxmt in,creatisg. oou

vgtations. We

use 1magea again and have only noétfieé E;uill ‘be provided

bv the system for the programnst. e oﬁig aceda to think about copying.

PRz 2

‘Thus, although the nechanisn appenra coiflex‘izam T,gysten point of

view, the progranmer’s. job m bm mlixud

3

'As mentioned éérliet;ﬁfﬂéziuife Eg;§ipgppi$h pg;inizationa. One

has already been included in fiéh;éxk;ils“hiéaﬁéfﬁ 'téfauﬁlicate .
R - L L B e e T Y
stricrly what is done at a distance, wa~wmgid hav; ! J,images, one for

sending and oﬁe for receiving. We have elidad thgge‘tﬂbginto one, A

second is that it should be apparent that for the copy-one operation ‘the

two m°ssase-contexts will be 1dencica1;except for the. nrisinal entry.

1) 1L

Hence, only one masaasg—con&axt 18 nacanaa;y_:;

" could get away with none, and simply petforn a Bit’by"bit copy from the N

original to the copy of the object.

© - B4 -

:bAntwjlly, for copy—one we

T

4{7‘,Additiona1 issues

"This section addresses several additioual 1ssues that arise in the

‘ implementation of the contexts and communication between contexts.
1. Global naming fcr contextseand'types of cbjects.

A problem with globally uniqﬂe names ‘of : aay sort.is that they imply
‘at least cooperatien amang che ent&ties neading to make use of name
| generation and possibly a3 loss of autonomy for- 5hoae entities. One
approach to generating glohally nnique names isfto provide a single name
.setver.vthis-cettainly canwharnaeettcgguavantee unique4neges_

Unfortunately, no»new“nanesfcan~bezaequ&nedabywagneme client«wheﬁ:he is

: "Hdetached Feon the name seEVer.,1&‘30&&&1&&*&6*thts‘£arto,dtetribﬁtezthe?‘

tname server, by partitioning the namespace and providing each potential
client with a piece or subset of the whole namespece | This is what has;
been. done for objects 1n the model: uned A tbts zﬂsearch. Each context
has a part of the nsmespace of the whole distributed system. By »
combining the 10caily‘unique%nane-eftan;ubjnct.with‘tho»globally-unique
context name, objects can be assigned: globally unique names. But this
is based on the assumption that contexts -bave globally unique names. .
'The’same~procedure5offpartitioning tke;context:namegpace,by‘nadesvoi the
distributed system could be used, so that a-mode-.could be detached from.
thevsystem'and‘stiil be‘able;to>creaxe»ncw contexts. Auow; the‘nedee~-
need tc be globally uniquely named. At'aeaEupoint:thejprocess of
d‘viding the namespace must stop and- there nust. - be: d@pendence on.a -

central name server; 1t is quite reasonable to- qkpect this at the levegl

- 85 -

of naming the nodes, because this may very will be encoded into the
hardware interface to the communication network sdﬁpypo’rti'ng ‘the

distributed system.

The assumption of giobal tiames ‘has a'lso 'b'e‘e;n ;lacilevfovzj"“ﬁ;ﬁes. | 'fhe -
situation here is a little differeat though. zzhm_;;u»:aaicu.-tzmﬁanotnk
of negotiation that -sust oceur m:—:otdn—(::iton:fﬁw;-.m‘twka»mf‘ agree that -
they both have correct versions of the type managex ; There. 18 no reason
that part of this agreement caanot be to agree on gtfelﬁernalm ,\,fam:-‘\
the type. Neither context nmeeds to use .me»;éemern(l .:mdniernally;
but both must know it vin»;orden:.gto :'ﬁmnsian~.31::;-§nﬁor;:bhe@koc;gl names. It
is still p ssible that a centralizsd name mrwhe -AACOB8aTY.

2. ‘L:Inifon/nity amoug mchinesdinéd;a»fini;g typucopiedbetveen émiéhiﬁes N
- We have assumed- thnt when nns‘ohdectiiq Mpiﬁd ﬁmuane anta:gﬁ w
another, not only will there be zhé':ri.ght nt,-;-ufg;,ﬁm{:,_WSQES or - |
clusters at the receiviang coatext to receaive: !:h;s;amin:of‘ the object .
and its components, but: also that: the type m≫i,;mulﬂhe‘, defined in .
terms of the same component types: -In otinrfwntd_‘ggdmi.repzeuntaf;ion ovf»
any type that is to be copiled will be thef'sntfimt&u‘ of “its component
types lin the contexts between: which it uﬂ.llbemmd.ltmnot have -
been completely appareat- that this amm;ioﬂ uﬁ;.uﬂe‘i~;but»_.as.;a l.oxig,as.
we permit the partially copying operatiouns, copm and ;
copy-full-local, component t;pes\aust:-he;;th,qe mmu regonsider .
the object L-N 18 of Figure 3.2, Let L-N 18 be of tm Tl. In context

1, let its third component be of type T2, If in context 5 (the

- 86 -

- receiving context) an object of type Tl is implemented as having the
third component bf‘tyﬁe T3, wé’ﬁaQe'aﬁ}tbbiéﬁi'\?Bf:éﬁé ébpy=6he'an&'
copi—full—loc#l'oﬁerétibns the cépy‘shduiﬁthVE'fhé'fﬁfra component

_‘poiﬁting‘fo‘anmobjecf‘of type T3, but has a Compohent of type T2. A

moiéléifficuit occurs 1in ‘cases 1niﬁhléh'fﬁ3%féb%%séﬁidtldﬁ“ofJa'type-has»Q

differéhf‘nuﬁbers of cbﬂp&ﬁénta‘in~diff§f€§t'c&ﬁfeitb;i’Thuﬁ‘wﬁe;ﬁer or i’
not a':é.dnipqt{enft (or several honipdne"tité) ‘wéed to ﬁé"i‘édﬁvéﬁéuf into a |
different typé éaﬁ'be detetmiﬁed'6n;y“byiéxaiiﬁg‘dfﬁé¥?ébmponents. To"
svaé fhié a different gpproaéﬁ:tOVCOpyiﬁi Géhfd‘EEV!”tO"used,'6neéwifﬁ‘f

RS SRS B S R AR

much less overlap.

.Tﬁgggv;g,g}so a more sgbtlg?gggbngqgggg>gtgiﬁéég ;ﬂé copy ag the‘

recéiver (in the.eases<vhg:e{agye:g;’igﬁggngrqQgggﬁe;,’qégy-f;ll an~ T
: copy-full-local) if the Y4r19“§vr¢Pf=§9?§gg;oq§;o§_a,FYR% are diffg{eﬁt
in terms of type of components iﬁ 41££eggq§%qgn;ex§§:’ Sometimes ﬁhgn a
" cdmponent of a specific type e.g. T2 above, is receifed it will be |
transformed into an object of another type e.g. T3 as above and other
times not, Whether or not thisAghqq£g ggﬁdqnefmaywan‘be,?ngwnuuptil
all the images have been received and processed, Much reprocessing may
need to be done. _As with the‘previoqgipo;gt ggdgdgboye; some degreé of "

autonomy is at stake if type ;gypesén;ggions‘mus;.gonfprmvto each other.
3. Sharing code between contexts on the Baie node °
This ptoblemican be broken into two problems depending on whether

or not the code in question is pure code or not. If the codg can be

e

impure, each context must have its own copy of every piece of code, in

- 87 -

particular type managers. If tbis were not the case, thgre would be
anotherrmeanayéf communicarion bqryggn gqntexts besiées mesaage passing,
and that has been excluded from our model. If, on tha other hand, code
can be guaranteed to be pure, even though two contexts may 1n fact have
different storage names for a plece of cade the storage manager may
actually map these different names into the same object representing the
piece of code., In particular, at ;he.botgggggf{ryg ggtwprk;Pf_txpg~
managers, the type managers oﬁ;thQase}rypg%fﬂeggrﬁ;pgqgwgharr@;ywbé
implemented in hardware) will bé pure, and‘theréfore can re Shated' Aé
a matter of fact, those in hardware must be shared, unless there is a
separate processor for each context, which aeets Iiﬁh ‘an unredsonably
severe 11mitation. Looking at this problen slightly differently,

mu;t consider whether or not imﬂutable‘objécts'can ‘be shared. We tan

conclude that this form of sharing is invisible. -’ :
4. Syachronization

Cbnceprhélly the siﬁbléét:ané ﬁBét‘éttaighffbrﬁira*ﬁéhﬁ%niSmfto
guarantee consistency is 1ock1ng. xTﬁéiex%ESAéeVéialip?%ﬁiéﬁéﬁﬁlihréhirr
First, it requires an additional pass over the objﬁtt in ordér to -
discover and lock all the components. Second tﬁeré'is'a more serious
problem when components are f6;¢i3p4> In this case many complications s
arise. There is a problem of résponsibility for foraign locks if they
can be“heidvbyvforeiéﬁéré. ~VVIf-Vt:h;l’.u;:I‘.‘:s?;A’E:‘LVI-.I&‘:‘fv?;;ef"d’:{ £ﬂéﬁ‘8ﬁc&i&é'foféés‘may
impinge‘dn fﬁéAﬁdibhoiy of\é cshiéit;"%ﬁié:’fat£$¥§ﬁiféai“aa“w511.53
security reaéoﬁs, locking may ﬁoflbe-tﬁéhééﬁréétvésiﬁfibﬁ; jﬁh'gpprQACH'

deveioped by Reed[17] appears to provide a bettér solution to this

_88-

AN T AT ST L

o A e 2

probleém, Reed proposes that when mutable objects are modified new

. versions of them are created and time-stamped. Thus. a8 long as the

older versions are aaved, it is possible to refer to and use a

~consistent version of the object. This also solves the problem of

lockingiforeign components.
5. The:Size of message-contexts

The size of message-context is a potential prohlem. One.of the
requirements that Fisher[S] and Clark[3] put on their copying algorithms

was bounded buffer _Bpace to achieve the copy. We have traded that for a

smaller number of meseages and the ability to procese in parallel.

‘-:‘

'although we have considered the problem of the size of nessage—context

’?

in deve10ping the algorithms presented here. First of all we have

eliminated, as much as possible, actually copying the message-context.

Second we expect that the system will support a larger quantity of and

more useful base types than CLU[11], some of which will be larger in

order to avoid having to break every object into the immutsble base
types of CLU. For instance, it may be useful to consider arraye and
records of baee types to be base types. As wentioned in earlier
chapters, we consider contexts and)neesage-contexte to be base typee.
This means that when a meesage-context is sent as part of a cOpy—one or
copy-full-local it need not be broken epart into smaller pieces. More

research needs to be done to determine additional base types._

- 89 -

6. Types of component objects that should not be copied

An object of a particular type may include components that should
not'be.copied, élthough the object itself may havéjaZCOpy‘Operation:‘
defined on it. The reasons for this may be nuﬁé;6;§;7wFor‘example, one
of the components of a procedure may be its workspace. This certainly
should not be copied. Or, a table that is to be éuatoaized-for thek‘
local context is to be copied. Some of'tﬂeieohpoﬁents.éhould b§ co§ied,
but in place of others flags should be éént,‘soréhatﬁﬁhg type:ménagef in
the receiver will insert the correct compongntrin tﬁese‘spoﬁé. Ve havé
provided the hooks for handling this problem, in the form of the
create-image operation that the 1mplenenter of the type manager must
provide. This means that type apecific inage craation is performed, and |

therefore can be written to provide the desired flexibility.

4.8 Summagi

This chapter has préaehted,in greﬁtét Aetaillﬁhé sending and -
receiving operations needed to copy an.dbjeét3 fdlﬁhisvéﬁd‘ﬁé defined
two types of objects, the‘imgge and ihé\méssigé;cdntéiﬁ."fﬁé image is
the vehicle by which we pass the Value‘or st;ie dftthé object froﬁ the
sender to ﬁhe receiver. Other work[ll]'hsééAthé terﬁs encode and decode
to describe the operations of creating ftom the otiginal an image in f
order to create a copy. The measage-context 18 the ueans by which we’
retain any sharing in the origingl atructure in the copy. In addition,
it is the means by which we avoid looping 1nf1nit¢1§ wﬁeﬁ copYing cydlic

structures,

- 90 -

The remainder of the chapter detailed how one might implement the
copying making allowances for foreign components and for local copying.
In order to do this, a number of operations were assumed to exist for
both the context and the hypothetical extended type for which copy-one,
copy-full, and copy-full-local were then defined. An important result
of this chapter is that what needs to be written by the implementer of
an extended type, in order to provide these copying facilities, is

minimal.

-yl -

- 92 -

Sy P R IR et o T T R R g SR e,

Chapter Five

Summary and Conclusions

5.1 Summary

We are now et~n.point*to.reviewruhet,haeubeen accomplighed in this

thesis. We began with a model of a distributed system. It has as a

" hardware base a network of computers. :Each-nede-in this network -

supports’a kernel, the local system software. .On.tap of this we

postulate 'one or more contexts at each node. A centext caa be viewed in

several ways: as a naneopnce=inrwhioh‘procao:eoacnmuexecute, a8 a node
in an abstract network (with communication nnong such abstract nodes
only by message paosing), and finally as objects in a world of typed

objects. ‘We also asaune that the typed objects contained in contexts

- may not migrate among contexts. Given this nodel of the syatem, we

investigated sharing. Since we do allow naming across context
boundaries, sharing 1is possible. However, sharing of foreign components
is limited to the following two waye. pasoing messages requesting
operations to be done on the object in the foreign context, or by
acquiring a local copy and performing operations locally on the copy.

In the first case, the physical object is shared and any mutations of
the object caused by one of the sharers will be visible to the other.

In the second case, since a c0py of the object is passed although the
information content of . the object at the tine a copy is made is shared,

the physical object is not and therefore any changes made by one of the

-~ 93 -

sharers will not be visible to the other. 1In spite of this, since all
communication must be done by‘meeeage‘peesing; enaring by copying may be
the more desirable approach for a number of reesons. First, message
passing is likely to be expensive in terms of both time and space.
Second, if thektwo contexts between which meseages are passing are on
different computers, since we have assumed as much autonomy as possible

for the nodes and cannot predict failure:of either the nodes.or the

‘communication network, we have no:guarentee that the node containing the.

object will be available at any particular tiﬁea,fThna,,shering by :

making a copy may be: the only reasonable alternative. .In any case, it

certainly 1s an alternative:thnt~shou1&-beaprevidedtax;

In order to achieve this sharing by copying, we have defined three
copying operations that we think ought to be considered The first is |
the copy=-one, copying just the top 1eve1 of the objent 8 structure. |
Second, we considered the copz-full, which copies the complete structure-‘
of the object including any components that reaide in enother context. |
Finally, we have looked at a novel approach to copying, the

copy-full-local which copies a complex data object to the boundary of

the context containing that object but no further.' In devising a'
mechanism for achieving these copy Operations, eeverel goals were eet.
First and most importantly, we want to naintain any sharing that exists
in the original structute, because we believe this to be an important
part of the information contained by the object. Second we want to
economize on mechanism by using a single approach in all three

operations. Third, since all communication between contexts is by

- 94 -

'nesaage paseing, we want to limit the amount of message passing
._neeeaearyg“that is, copying ehonld reQuite*&s little communication back
and forth between the two contexts asﬁposaible.?fFinally,fwe vnnt»tn
allow for parallel processing at the sending and reéceiving ends of these
copy operations. The mechanism JisensﬁedAintChaptemS“s and 4 achieves
these goals. In order to‘db’this;~ue«ﬁavlepnstu%pxedrtun.newgtypee of
objecta, ‘the iggg_ and the mesgage~context. Now .copying simply requires
creating a message—context to be used to reconsﬁrunt the sharing within
the structure~and determine which objects ere to be copied as
'conponents. Ihe type image is the type of object that actually can be -
sent in a nessage.‘ Thus for each object that the message—context
detetmines must be copied, an. image is created and sent.! At the
»receiver, the reverse is done. The meaeage-context agpin is the means
of handling sharing within the structure and images are the objects that
ere‘received'and that bear the information that is used to create the

copy.

vThe-proeedureB that hevenbeenvdevelopee‘iupahnpter 4 indicate that
eopy operations~canAbeMimplementeéninweuch3nuwey'that the creator of a
new extended type must do very little in order to provide these three
onerations for his type. First, he must define:the operatiaudnsinply‘as
invocations of generic pzoceduressof similar names. These procedures
are to be provided in eadh context by the kernel. . The other chore leﬁt
‘ for the programmer is to define how an image is created from an object
of his type, by implementing the create—igsg operation for his type.

Thus the actual contents of the image can be type Specific, yet the

- 95 -

implementer need never know about message-contexts and other details of
the éopy operations at all. In order to receive copies, similar
operations must be written by the programmer; receive, which invokes the
generic receive operation, and receive-image, which transforms an image
into an object of the type being implemented by the programmer. We have
also shown how the mechanism can be extended to provide the three copy
operations within a single context (in addition to copying across
context boundaries) without requiring the implementer to distinguish

between these calls.

Thus, assuming our particular model of a distributed system, this
thesis developed a solution to the problem of copying. The following
section will assess the relative utility of the three operations and

mechanism developed.

5.2 Conclusion about the research

Now that we have developed a mechanism to solve the problem
presented in Chapter 1, we must examine.what has Beén achieved. This
discussion will be divided into two parts. First we will consider the
relative usefulness of the‘three copy operations. Second, we will
consider in what ways the mechanism might be simplified if we were to

relax our goals as initially stated in Chapter 1.

As stated earlier in the thesis, the copy-one may be considered the
most basic of the three copy operations we havé presented. In theory
the other two operations ought to be achievable By a repeated

application of copy-one. In practice, in order to maintain the sharing,

- 96 -

the programmer uould have to take on the function of‘discovering most of
‘the sharing fron the message~context. Thesnenaigeveontext'willfonly y

~ discover sharing among coupenents.ofve;stngle ohﬂect;:'Sinulatin3’ther~
_copy—full and capyefﬂll-lOcal using tkn%cmpyhonaﬁubuid‘al:oAinvolyeswuﬁh;
more message passing than we have found necessary. It is not clear how
'useful the copy—one Operation is; ‘if the objeet. to>be‘copied is’ of an .

'~ extended type, then copying'only'the-qepfkevel.dges.not appear to. be
very useful, as the-actual state of. .vthe-ohjeect im still. only accegsible.
by passing more messages across context boundariesux,cﬁf course, there
"may well be situations in which it 1is desirable to allow the names of

components to be passed around without actually copying the components)

. On the other hand, if the object is a base type object, there is no

difference among the various copy operdtions' all three should have the
same effect. The only difference in this case is whether or not
extended types using the base types as coaponents can have defined on
them one or another of the copy operations. As uill be discussed
further later, in order to define the copy-full and copy—full-local
operations for an extended type, it must be clear that the relevant
operation is defined fot each component type. This will be coneidered

further in the discussions of verificstion and exception handling.

‘Now, when considering the copy—full-operetion, we find this to be .
what is most frequently considered to-be the standerdécapy Opetetien.
In our’model, severe‘couplicetione,neyaerise:becauee contexts may |
support arbitrary authoriiation cenetraints; nedelaney.dtsessociate

themselves at any time from the system,:and the ecmmunication netvork as

- 97 -

well as the 1ndividuai nodes may not be reliable. (We are not
considering the reliability issue related to whethber or not an
individual message is lost ordscrenbied;‘but:rnthetuhQqueeful the
copy~full operation is if the network has a high prebability of being
unavailable at any given time.) Ihe~copyf£u;1=eilnﬂreqairepfthe extra
commitment in time and space to acquine.capieehof~pil foreign compouents.
in order to create inagest Thus we are led to comglude that perhaps the

copy-~full is too.general. -

The copy—full—local is a new Operation developed in this thesis
that appears to strike a middle ground l Itmepproeches a solution to the
above criticisms of the other two operations. Assuning ‘some or moat of
" the components of an object are in the same conteht; most of the state
of the object can be copied. In addition, if the full state of the
object is the objective, there is a eavings in number of messngee (copy
requests) and message~contexte (one returned for each copy requeat) over
those needed if only copy-one operetione are executed. At the same time
if the foreign components are unavailable for whatever reason the
copy-full-local operation does not feil where the cOpy-full would.»>0f"
course, if instead we have the situation 1n which most or all the‘.k 5
component objects are in other contexta, perhape an.other nodes then
the copy-full-local ‘may not represent much Qﬁ}A;aeyingwtofthe-receive: -
of the copy. Since the other co-ponente=munt;elee-be;tequested in thiei
case, it will be necesnery'to»aeceaecthe’ﬁereisgﬁeegpoponta,enyway. t;t

also means that some sharing 1nwthe»structcre;aey be lost, because once

images have been created, the globally unique identities of‘their

- 98 -

originals are no longer attached to them. On the other side, in this

case of widely dispersed component objects, the ‘copy-full may be more
expensivebin terms of use\of‘resonrcesi&dd”time; gince -each of the
foreign components reailj witl be coplied Ttwice. ;ﬂersuspect this is an -
unusual situstion;‘butythe‘only*truefteet'is experience. Thus we

| recommend that all three operations should be’ixeileole*in‘s~system~“'
similar;to‘the one we have\nodslle&,*elﬁhoush‘ue.suspect‘thet-the

copy-full-local will be the most useful,

‘The mechanism presented appears to be fsirly complicated. It is

"_ worth considering whether it could be simplified if we relaxed some of

our goals for the copy operations. Our gosls or constraints on the cOpy
operations were listed in Chapter 3 and sgain earlier in this chapter.
The most important one was to maintein sharing smong components. We
have already discussed relaxing this in acquiring foreign components to
create the sppropriste images for a copy-full. If we were to eliminate‘
consideration of any shsring, we must consider whether we could
eliminate message-contexts. The answer is thst we could not entirely.
It would still be necesssry to pass to:the'receiver the names of
'components not copied in the copy-one and copy—full—locsl 0perations and
these uould have to be collected soneuhere. The problem is that objects
only contain names local to their contsining context for a number of
_reasons discussed in Chspters 3 and 4. If only names local to the |
sending context are seat in images, the nsming network would become much

more complex. Foreign components of an object might become inaccessible

because one of the intermediate contexts was unsvailsble, when, in faut,

- 99 -

the context containing the component was available. On the other hand,
using only the globally unique names would solve this.prohem. Inatead
this would cause a waste of space. Using eitneruqunl,panesggr,glnbelly' ’
unique names causes another prdblem;‘itfalloss_tne,lgcal,nagegjfpn the
components within the seading context ontnide.the;ngands of-thati
context. - For security reasons, this may be undesirable, There is also
the problem of circular lists or recuraive contaimment. If that vere
not to be handled by message~contexts, there wculd have to be some other
mechanism. It is poesible that if locking were ueed as the o |
synchronizing mechanism, it could also be ueed to detect circularity.
Unfortunately, as we hnve mentioned, there are other problems with
locking. Thus it is quite 1ikely thet, even: if we were not to consider
sharing, meesage-contexta would provide the sinplest approach to solving
these other problems. A relaxation of the necond end third goals of o
economizing on mechenisn and limiting the nunber of messages needed to
copy a component would only lead to 2 more complex nechanism because of
the nature of the model with which we are working. The final goal of |
allowing images of components to be sent, received, and procesaed
separately, if relaxed, might allow for some simplifieation, although
not at the sending context. A simplification wnuld occur in type
checking the structure as 1t is created rather than needing to wait

until all the components have been created. (This type checking was not
included in the procedures presented in Ghanter 4, since 1t 1s necessary
only for reliability, an issue not addreesed in this thesis) The
mechanism we have presented would still need images and |

message-contexts. At the receiver, the components could be processed in

- 100 -

the most convenient order, which is probably the order in which they
were sent. This would sinplify”thoee'functiOns,prcyided’by the'eycten;
dn the other hand;‘the*meseege‘ﬁindler nfﬁbt“hsve~to be more complex and:
_ certainly would need more buffer apace,‘since it would have to collect
and order ell the appropriate pseudo—innses before the execution of the
receive command could start. This approach upuld simplify receiving a |
complete copy (cOpy-full) in those cases in uhich the representations of

T

the type are different in the eending and receiving contexts. It would

et be of much help in the case in uhich tbe representations are

different but only a partial copy is occurring. The tradeoffs are such
that it is not clear there 1is any benefit to be hed from relaxing thie
goal. Thus we are led to conclude that the copy operations as defined
in this thests solve the probles presented.within the realm of the model

postulated.

5.3 Suggestions for further research

Since we have used CLU as a basis-for much :of our work, it is
-reasonable to coneider'the~poesibilityfofbiﬁéluding»the?propoaed
operations in CLU. As CLU stands currently, it is based on a different
‘model from ours. It assumes 2 user environment 1n which there is a
single process and a single nanespace (addresa apace) However, WOrk is
'currently progressing in the direction of extending CLU for a

1
distributed_enyironnent. Operations sinilar to the proposed copy

oy :
1. This work is taking place at the Laboratory for Computer Science,

M.I.T., Cambridge, Mass. under the direction of 3. ‘Liskov and D. Reed,
however, there is as yet no published work.

- 101 -

operations of this thesis need to be comsidered to facilitate sending

values of abstract objects between prpgegaed“inweuCh;envirouments,

This thesis has dealt with some parts of ﬁhe copying problem ina
dietributed system. There are related areas that need research
3eneralizations of the work preeented here are also possible. “In
accordance with this, we have a number of suggeations. They fall into
three categorieS' 1items 1, 2, and 3 address additional details that have
to be solved vhen implementing the acheﬂe preaented in this thesis, B

items 4, 5, and 6 are extensions to the wnrk, end iten 7 is a

generalization.

1. This research haeraddressed ouly -the prabmen of: sending typed piecea,
of information. It is clear that there are other entities that cen he ;
in messages names, commands or requeets, additional control information,i
type information, to name a few.’ Further resoardh into what Rinds of ‘
messages, other than images, is needed, Thieanmotﬁhe,done io the Q

context of a more .detailed -odeigofvtkegﬂigtgikgtﬂéﬁggggﬂna

2. We have nentioned very‘little‘dboot-;erificetiodi Much éerifiégéiaa
should take place at conpilation ciue of type managers. fhe receivi5§9?
context should be able to verify that all teceived components are of

appropriate type, possibly even check value renges. In the eﬂvitonnent
of autonomous nodes, it is inportant to do aone run-time checking. EKQ;“

mentioned. if a copy-full or eopy-full—local is defined for a’ type, it

had also better be defined for 1ts cwmj" 'mz.- can be ehecked at

compilation time for the 1oca1 type nanggeta.‘ Now, there are two"

- 102 -

possible interpretations of a type being the same in two different

vco‘ntexts.- In the first case, in additiom -to the type -being composed of
the same component typ‘es, all the same operations sre defined. In this
casey e§en for a copy-i-ulylﬁvhich allows foreign components, type

~ che¢king can all be done at eompdleetine;¢;xn;thefoeqqedoGQSQ. two -types
beiﬁg-coasidefed the same naane:that,theyﬁhcxeathegeeme representation. .
in terms of'coﬁpenent types, and the oparatieas of one are a subsef.. of
the opetetions of the other. In othezfuordsa-ﬁoréshgseéope:at;one,thet
are defined on both, the operations have the same effect, but not all .
operations need be supported in every context. The effect of this is
that during a copy-full operation, run—time type checking for the
availability of operations must be done 1n the Eifor:eil.gn contexts.
Although as previoualy discussed, a type ahould be composed of the same
‘component types at each site between uhicl:copying is to occur, this o
does not guarantee that cOpying is defined for a specific type at each
node on which on the type occurs. Regardleas of the definition of two
versions of a type manager ‘:being the same, pemissioh to 'copy' a
patticular object must be checked. - This can- only be checked at.
run-time. Work must also be done on guaranteeing .that two type managers.
at different nodes really are implementing the same type if they claim
to be, regardless of which definitieh of heing equivalent is used. This
is easy 1if type»ﬁ;anagers ”are:%iritten 4n »_&vh-:l.ish -}ewel language and are .
simply distributed to ‘and imstalled (compiled) at individual nodes. .
This is a ‘great imposition on nodes and directly threatens their
autonomy and ability to operate while dissssociated from the distributed

system. It is clear that work must be done jin this area.

- 103 -

74

' 3. We have not addressed any issues of exception handling, except

obliquely. We have pointed out several places at which exceptions might
occur: the context boundary (insufficient authorization), unavailable
operations (discovery that‘a‘particular»Qpenationfis not defined for a
component type in a foreign context), an unavailable node (the node has
been detached from the system), an unreliable network. Itvmay~be
difficult to distinguish some of these, but thought must be put iato

what to do when exceptions occur.

4. It might be quite useful to be able to pass images to a context
without requiring that the context use tham to create cOpies, but rather
be able simply to assemble a collection of inages for storage or passing
o to a third context. In this case what may be needed in addition to
the receive command at the receiving gite- 18 a command that would imply
just collecting images. Possible uses for such_a facility might be to

support a file server or back up storage.

5. This thesis has explicitly excluded the issue of moving objects. ‘We.
have assumed that an object resides permanently within one context. If
it is necessary to create the appearance that an obécct»haS‘mofed, this
should be handled at a higher level by creating a copy of the pbject,at
the new location, deleting the original, aund #aing axhigher.hevel name
to point, first, to the original object amd then, afnet.the_"move" to
thé new object. There are problems assoeiated with moving objects. One
is the question of resolving names of'ohjecis. -Since in our model the
name contains the name of the context, theve,waId:have to be some

policy and mechanism for how to resolve outstanding references to the

- 104 -

moved object. Further questions relate to éecurity policies, such asiif
there is an outstanding reference to ‘the object before it moved, should
tha;-teference‘be'updﬁtgd,?who has the right to: update it, when should
this occur, and the list goes'bn;"This;1sgaa~axna for much more

research.

6. It mighc be intérestiug to extend ﬁhe ;Qﬁrbéégyuéed in this theéis as
f0110ws. Each time a new entry is made in the seﬁding:message-cdhieit‘a
new proceaé:is~creacad to copy that new component. The processes all
would use the same message~context, 80 no shardng would be lost. There
would be a master process associated with the message-context, and one .
for‘e!ac-h -eon’p’oﬁeét to be copied. In 'this way, much more parallelism
mightfbe«achieved:ifrnhe hardwgne could support it. -If‘proceases'a:g._~
not expensive, not much has been lost in overhead, while allowiag for as
much parallel processing as possible..-Of course, activities involving .
vthe message-context would have to be synchronized, buf that could be
‘‘managed by the process associated with the-message—conteit. This
approach 18 an extension in‘the direction puraued‘by Atkinson, Hewitt,

and Baker [7,8].

7. The approach we have taken in this ;hesis to copying is to translate
every object into an image. Images are'ﬁhe only objects that can be
gent in messages. This ajproach can be generalized so that we have,
instead of images, message-images, display—imaggs, p:inter—images; eta.
In other words, for each ph&sical devicerthéré is a form in which 1t
expects information. This can be used to create the appfopriate

abstractions as we have done for the network by creating our images.

- 105 -

This should simplify the task of transferring objécts‘to other devices.
The programmer must specify which operatioﬁs are to be defined for his
type and write the operation to transformyone of his objects 1nn0~thé
image appropriate for the device. At this point the'programmérfé
responsibilities should halt and the system should take over. This puts

respongibilities where they belong.

One of the most important consideratioms in looking to the future
will be to learn more about how this kiad nfﬁhﬁdﬁiiﬂUuldfﬁe used- (how it
relates to the characteristics of real dis&mihut&dragpltgaﬁions),and co¢
assess the costs (performances) of the cptmatinﬁéﬂptopogedwin~chis,az‘
thesis. It is possible that experisﬁée'ﬁtlﬂﬂfaat&&t¢~that‘&iiferent
operations or even a different model 1is uee&ed: The research gtgaented;:
in this thesis must be tested by»expetiﬁacawaﬁé'Ghﬁxpicgosal,cf

31Cefnatives.

- 106 ~

{11

(2]

{31

(4]

[5]

6]

(71

(8]

~ Co., Rew York, Auﬂust 19‘_'7,

References

'Baker, H.G., Jr.,Actor Systems for Real-time Comgutation,

M.I.T Laboratory for Computer Science Techrical Report TR-197,
Cambridge, Mass., March 1978. (Also Ph.D. Thesis for the
Dept. of Electrical Engineering and Computer Science, M.I1.T.
Cambridge, Mass. Match, 1978.)

Bishop, P. B., Computer Systems with a Very Large Address Space
’ ‘ cGL’aetion, M.I 3. Laboratory for Computer Science
Teport TB-178, Ci . Maes., May ‘19%7. - (Also Ph.D. Thesis
for the Dept. of Electrical Engineering and Computer Science,
M.1.T., Cambridge, Mass., May 1977.)

Clark, D.W., List Structure: Heasutenento, Algorithmqi_and
Encodings, Ph.D. "Thesis, Dept. of Computer ‘Stilence,

fCatnegie—uellon University, Pittsburg, Pa., August 1976.

Dennis, J B. and Van Hvrn. . Gy "?rogrqaakng aenantics for

. multiprogrammed computations," Comm. of ACM 9, 3 (March 1966).

PP 143—155.>‘

Fisher, D.A., "Copying Cyclic List Structures in Linear Time
Using Bounded Workspace," Comm. of ACM, 18, 5 (May 1975),
pp. 251-252.

Halstead, R.H., Multigle Processor g;enentations of
Messase—?qasiqs.Systems, M.1.T. Laboratory for Computer

" Sclence Technical REport THEI98, Wﬂ:&gs; ‘Mass. Jsauary
1978, " (AlSo ‘'S.M: Thesis for ‘the Department of’ ‘Electrical

Engineering and Computer: ‘Seienée, M.I.T., Ghnbridge, Mass.
January, 1978.)

Hewitt, C. and Baker, H., “Laws for cnunmnicating Parallel

Processes," gtoc. IPIP Cor ress ﬁorah-uolland Publishing
pp 9 -992.' ‘

Hewitt, C. and Atkinson,,R., "Specification and Proof
Techniques for Serializera, Ezs Transggtions on Software

- Esginesring SE-3, 1 (Januay 1978).pp:, ?0‘23

- 107 -

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16)

[17]

(18]

Janson, P.A., Using Type Extension to Organize Virtual Memory

Mechanisms, M.I.T. Laboratory for Computer Science Technical
Report TR-167, Cambridge, Mass. Setpember 1976. (Also Ph.D.
Thesis for the Dept. of Electrical Engineering and Computer

“Science, M.I1.T., Cambtidge, Kass., August 1976.).

Liskov, B.H., et al., "Abst;racciou Mechanisms in CLUR," Comm.
of ACM 20, 8 (August 1977), pp. 564-576.

Liskov, B.H., et al., The CLU Rgig;gggg_ggggQ;, CSG Memo #
161, M.I.T. Laboratory. fm: Ccupmr Sctence, Cambridge, Mass.,
July 1978, .

McCarthy, J., "Recursive Functions of Symbolic Expressions and
Their Computation by Machine" Coum uf égg 3 4 (Agril 1960) ,.
pp-184-195. i , A

McCarthy, J., et al., LISP 1.5 Programmer’s Manual, 2nd
edition, The MIT Press, Cambridge, Mass. 1965.

Moon, D.A., MACLISP Reference Manual, Project MAC.
Massachusetts Institute of Technology, Cambridge, Mass.,
December, 1975.

Organick, E.I., The Multics System: An Examination of Its
Structure, The MIT Press, Cambridge, Mass., 1972.

Reed, D.P., "A Serxvice Addressing Protocol for the Local
Network," M.I.T. Laboratory for Computer &cience Local Network
Note #5, Cambridge, Mass., December 1976. i

Reed, D.P. Naming and Synchronization in & Decentralized
Computer System, M.I.T. Laboratory tar C.mp\gte: Science
Technical Report TR-205, Cambridge, Mass., September 1978,
(Also Ph.D. Thesis for the Department of Electrical.
Engineering and Computer Science, JI.T., Camhridge, Mass.,
September 1978.)

Saltzer, J.H., "Naming and Binding of Ohjects," Lecture Notes
in Computer Science 60 (Ch. 3), Springer Verlag, Rew York,
1978, pp. 99-208.

- 108 -

[19] Svobodova, L., Liskov, B., Clark, D., Distributed Computer
Systems: Structure and Semantics, M,I.T. Laboratory for
Computer Science Technical Report TR-215, Cambridge, Mass.,
March 1979.

- 109 -

