MIT/ICS/TR-220

DENOTATIONAL SEMANTICS OF DETERMINATE AND

NON-DETERMINATE DATA FLOW PROGRAMS

Paul Roman Kosinski

Tius blank page was inserted to preserve pagination.

DENOTATIONAL SEMANTICS OF DETERMINATE AND
NON-DETERMINATE DATA FLOW PROGRAMS

by

Paul Roman Kosinski

May 1979

© Paul R. Kosinski 1979

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

This empty page was substituted for a
blank page in the original document.

Denotational Semantics of
I?Qterm;nate and Non-determinate

Data Flow vPrograms
by
Paul Roman Kosinski

Submitted to the Department of Electrical Engineering md Computer Scxence
-on 21'May 1979, in partid AHiRinéit ol the req
for the mumawy

T SR TR R I

Abstract
-+ Among its other characteristics;;a programming lssguage lhﬁﬁld’bc"eohducjve to -
writing modular programs, be able to express Wmm mvior.
 and it should have » chuly formalizable wmm; Dsta flow programming languages
R to ; mﬁzauorgofthcn' |

o semauncs in the denotational style of Scott and Su';%chey Mmz real vgorld programpping
problems, such as operating systems and data base inquiry systems, ﬁqun'e ‘2 program-
ming language capable of non-determinacy because of the non-determinate behavior of
their phyncal environment. To date, there has been no utistuctory denotational
semantics of pro;rlmmmg languages with noa-demnmnacy This dissertation presents a

straightforward denotational treatment of nou~deternnnate data flow programs as

functions from sets of tagged sequences to sets of tagged uquenccs. A simple complets
partial order on such sets exists, in which the data flow primitives are continuous
functions, so that any data flow program compum a well defined function. Also
presented are suggestions for extensions of this semantics, discussions of ‘“fair” non-
determinacy and other questions, and the relation of this approach to other approaches.
In particular, it is unnecessary to use the “power domain” construction in order to
‘handle simple non-determinacy in data flow languages.

Key Words and Phrases

Programming language semantics, data flow programming, denotational semantics,
non-determinate programs, fair arbiters, perallel computation, applicative programming,

Thesis Supervisor: Professor Jack B. Dennis

To Mary, Isabel and Roman

Acknowledgements

I wish to thank the members of my them committee, Professors Jack Dennis, Carl
Hewitt and Vaughan Pratt, for their patience and suggestions during the preparation of
this thesis. I am also grateful to my colleagues Allen Brown, Vincent Kruskal and
George Markowsky for their helpful ducusaons PR

I wish to thank the IBM Fellowship Program and emettlly the IBM Research
Dwmon for their mvduablc support.

Finally, I wish to thank my parents for thexr pancnce, a.nd omaully my w1fe, Mary,
for her continued understandmg and encouragemm, withont wh!ch this thcsls never
>would have been pomble *

Table of Contents

. Introduction and Problem Statementccccooetiriermnmrsiiiiisinctinmmameiinienisanne. 6
1. Need for Formal Semantics 6
2. Need for Modularitycoceeeerecriciesisissisiessesssessssssssssssusansenssssssemonnisasesasssesaeesenns 7
3. Need for ParalleliSIccevreerereermmsnsisisenseersroresssrermennsssisrsssssismenssssissaenssssssssns 8
4. Need for Non-determinate Behaviorcceemeuuiiriimenciiniiiniinimiuneennenneeciceienen 10
5. Overview Of DiSSErtation...c....cerreeeecsirsiismsiirmesnneraertnnasssetsessisetesasesssanaannssassises 12
. Data Flow Programming Languages eeesersennersaeneettonsstrasnssasansaneneasseee 13
1. Backgroundccccceiemiemieieinecinininioninne tevsssersseeseemeraseenatetittesasnessratinananssans 13
2. Informal Semantics of DFPL, a Data Flow Programming Language 13
3. Classes Of OPETALOTScccceririresrerrrereirisissnnarersasissssssisantssrassssorasnnsnesssaassssssasaans 15
4. Primitive OPeratorscoeeecrsncsaeananne reseresrsensarssseanaetattreassunirsesererenaennnne .. 16
5. Some Compound OPEratorscceccoireeecsscsssasssssserissssanssssassnnassssssssaess eesesnes 17
6. The Primitive Non-determinate Operator LT 18
7. EXAMPLIES...cecvrerreerenersissessensseissnmsssesansssronssosanessesssssssssnssssessssnnasssssnsassesasssasasas 19
8. Other Data Flow LangUagesccoovevererrerinnionisnsnntisenissssisnnnsnssssnenasssessnsnnececs 19
. Background on Mathematical Semanticscccovimiminninicnnnniiieie. 22
1. Kinds of Mathematical SEMANLICScevveeriiiiiiremreiremmnississiissstsasnssssessansarnans 22
2. Mathematical CONCEPLSooocrervenererreessensisnseerrninossssssinsensssssssssnnnnanesssssssosoes 24
3. Denotational SEMANLICSceeerrercnrerecsisserrirersansnsissessssanneresstesssssssssenasammassssssss 26
4. INOLALION ..ooueveerevenrereenrsnsrecersrassasasssssesssssesesessessrsssssensonsssssastesssssasnasssnsssesussscsnes 27
. Semantics of Determinate DFPL Programscccceveeeimmimnseessecsstsssenscssans 30
1. OVBIVIEW..oeeeeeeenereireeerererensssranssasssnssesssessresssssssssnsasesrassnsssssssosasssssasansssansassssssss 30
2. A Complete Partial Order on Str€amscccosriiiiinnsnsiniessenesssssissnsssansinns 30 -
3. DFPL Operators as Isotone Functions on Finite Streams........cccoceeereeveescicnnns 32
4. DFPL Operators as Continuous Functions on Cpo-Streams ccceeeiseesacranes 35
5. Solvability of First Order Fixed-point EQUAtiOnscccceiuiniiimiciisnininnissenanas 36
6. Examples of First Order FIXed-DOIMLSovvvvsrereseseesesessessesesssssnsonessassssssssseees 37

5. A Partial Order for Non-determinacy revvivereeesenssssessnasesessssnsrseneasassesarnsenss 40

1. INTOQUEHON .ciieerireeciiiiniescinmssenssssasaniiosivnarinsionsinasesasans S uieibeaveusisasornsssestrnnnesens 40
2. Counterexamples to “Posets” on Simple Sets of Stream’s..:. 41
3. Another Problem with SimieSctsei BIPERAMIS ..icviiidiivinisiacssssasssnessanssraesinnens 43
4. Sets of Tagged Streams of Datacvovineiiiviiininianennn. seidiinetiinsasnnsassrrnasnns 44
5. Proof of Partial Orderc...cciimniininimuiisiiiisimmisiiisiiinmminenmmsossiises 46
6. Proof of Completenesscccverenen. T I S Soer R imsmaiesses 47
7. Satisfaction of Previous Counterexamples S 48
6. Semantics of Non—dctenﬁnte DFPL Promn: evensebbisnberianedesansnsnasnene vaes 51
1. Overview............. fesnseesisuieiv voiediTireveensiniesisssunnce o ieidivi i ebbvereersrisiesnerssasasnassense 51
2. NOAtONcoceveccnnenriisiasssvssrseesisesess cissseenaraariiasiveseibe dervibnesiivainesicsessnansransesiane 51
3. Tag-set Functions and their Properties ivisiasase everensi rieesssamettareses COP 52
4. Extension of Determinate Operators ..;..-.;;‘.-.‘.a.‘...-l..";f.«;f.'-..’...;.‘ ievitsienvrinarsasssesseen 56
5. Continuity of Determinate Operatorscouuiviiiini. iesaeabeererersassses 59
6. Definition of Non-determinate Primitive: Arbtter iliesisisisiraiadiveinivesasssvivorneniannnas 66
7. Continuity of Non-determinate Arbitef ..ol i it 68
8. First Order Fixed-points of Non-determinate DFPL_Programs e 711
7. Conclusion rsesveesiniseasanvasnitonsnsnsnsbdsiiain e Fends S N S e e s b Seva i nasavarasysasienes 73
1. OVEIrVIEW.....ccccvniermsvmnnnnncnncnniis Goversinisnsannaie BRI C UK FHUPRT Ut eeeerireenenes 73
2. Explanation of the Anomalyaf Brock and: Mn ivensverieisesssannavsrenissesssnee 73
3. FRirness and the AIBILETcoociiveirsicrsstsneserassssstsssssssssisiresssisssmaesasssssaarsssions 13
4. Second Oraer TREOTY ..iiiiuwiisrimmssesmisintossrissssssesibomssiusasssassinssscs O w16
5. Second Order Flmdaponu ot nmnmm ngtams cereetesaresaspersaasares w17
6. Bottom, Strictness and TEOMHRERR 1..cimeivrsstersierpsesessssssssmessssessssrsssnserss 18
7. Program Correctasss.apd Eggm .J....,. 79
8. ,Op«m,vummmmm,,_ ins
9. Relation totheLgtt;;gﬂ rmyls i
10. Rehtmn to Power Dom’tn’w SEEHTERE T AR B e e
8. RELEIEICESovcoiiincerecnssivisivesuoinensibasiesnssbionssnsresnssssensinnmtsstatsssemnsnesessessasssnsien
9. FIQUIES ...coccorercermiiriisnrsannisnrsssnsnsstasiessassnastsstsinsssestossnsotsasnartastantassenssistssstsssastonss 87
10. Biographical Note Sebonsesananesassy O U TR A RO eeraass 104

-1-
Introduction

Need for Formal Semantics

The success of syntax theory in making precise the syntax of programs led investiga-
tors to attempt to describe the semantic behavior of programs with equal precision. In
particular, in order to prove theorems about the behavior of programs, it iS necessary to
have a mathematically precise set of axioms which define how programs behave. These
axioms define the way in which the elementary semantic units behave (where elementa-
ry units are the basic data, operators, statements, etc.) and how the behavior of com-
pound semantic constructs (such as expressions, statement lists, etc.) behave in terms of

their components, elementary or compound.

The major truth one wishes to be able to prove about a program is that it does what
it is supposed to do. There are two ways of expressing this: that it meets some specifica-
tion, or that it does what another program does (which is known correct). Proving that
one program does what another does is usually called proving program equivalence, and
is not decidable in general. Proving that a program meets some specification requires
having a formal statement of that specification (which aiso must be known correct, a
point sometimes overlooked) and then proving that the behavior of the program is
consistent with the specification. Such specifications (usually expressed in predicate
calculus, the “‘assembly language’* of the specification world) are often more compact
than an equivalent program known to work, but they are not necessarily more perspicu-
ous, since they may contain much that is “‘non-constructive’” which programs by defini-
tion cannot. That a program meets its (formal) specifications is also undecidable in

general.

There are other things that one might want to prove about a program. The most
common is that the program terminates for all of its “legal” input, that is; one wants to
prove that its domain of definition is what one thought. A second property worthy of
proof is that the program consumes (no more than) a certain amount of time or space;

the efficiency of a program is almost as important as its correctness. Obviously, a

-6-

mathematically precise semantics for programs is needed in order to construct mathe-

matical proofs such as these.

There are three main approaches to precise semantics: the operational, the axiomat-
ic, and the denotational or functional semantics. The operational approach, based on
the notion of an abstract interpreter, is the most intuitive of the three, but it is rather far
from the mainstream of mathematics, so that it is difficult to invoke many useful
theorems or other tools. The axiomatic approach of Floyd [Flo-67] and Hoare [Hoa-69],
which views a program as relating (in the mathematical sense) the ‘“‘before” state of the
abstract machine to its ‘“after” state, has the disadvantages that it needs something that
has a state, and that relations are less convenient than functions. The functional
approach of Scott and Strachey [S&S-71] treats the semantic behavior of a program as a

function from inputs to outputs, a well known kind of mathematical object.

The tractability of the formal semantics of a programming language depends more
on the elegance of that language than on the class of semantic model chosen, however.
We will present a programming language whose semantics we trust is quite tractable,

considering its scope.

Need for Modularity

If a program is large, it is important that it be decomposable into parts, called
modules, each of which performs a well defined function (at least in the informal, if not
the formal, sense). Furthermore, it is important that the interactions of the modules
with each other be held down to a reasonable amount. That is, the functions performed
should be as independent as possible besides being well defined. The purpose of
modularization, of course, is to keep the program understandable, since it is the rare
person who can comprehend a large system with many interdependencies. In fact, since
the number of interdependencies can grow exponentially in the number of components
(consider all K way interactions, for K S N), one might consider the point of modulari-
zation to reduce such exponential growth to a more tractable polynomial or even linear
growth. If the program is quite large, a hierarchy of modules is more appropriate. Then
each module at the top level is composed of modules, each of which is in turn composed

of modules etc., until the modules are simple enough to be understood without further

.7-

decomposition [Sim-69]. This hierarchical decomposition need not be a tree, a submo-
dules may be shared (e.g. both the carburetor and the automobile as a whole contain

screws).

A program which is well partitioned into modules also is more likely to be proved
correct (assuming that specifications for it can be formulated). The approach to proving
such a program, as one might expect, is to prove that each module properly implements
its well defined function, and that the modules are interconnected so as to meet the
overall specification. If the program is a hierarchy of modules, this process is repeated

for each level of the hierarchy.

Modules are often realized as subroutines, or more likely, in large programs, as
collections of subroutines sharing data. An extreme case of modularization may be
found in data abstractions as exemplified by the CLU language. Roughly speaking, data
abstractions are collections of subroutines which provide and enforce access functions
for an extended (e.g. user defined) data type. The way in which data abstractions differ
from the ordinary way of providing access functions is that the only way to access
objects of that type is through the subroutines of the data abstraction. Thus data
abstractions assure that the program is modularized as claimed and that no one is

‘“‘cheating” by violating the module boundaries.

This thesis presents a language which is uniquely disposed towards modularization,
both in its syntax and its semantics. Since its semantics is based on the mathematical
notion of function, it is possible for modules to perform one function in the formal sense.
Thus this language and its semantics may provide a basis for proving properties of large

programs expressed in it.

Need for Parallelism

There are several situations in which parallelism is desirable or necessary in a
programming language. The first situation is when the problem to be solved is inherent-
ly parallel. The classic example of this is a multi-user computer system. Each user sits
at a terminal making independent requests to the computer. Since the users are inde-

pendent, and since persons live their lives in parallel with one another, it follows that the

-8-

computer system must be able to serve these requests in parallel (i.e. simultaneously
with respect to an appropriate time granularity). In order to serve the requests in
| parallel, some part of the computer’s program must be capable of parallei o‘peration In
the case of a regular time sharing system such as VM/370 (the purest case) it is only the
superwnsory program which opcrates in parallel each user appears to have a virtual 370
on which she runs her programs sequexmally In fact, operatmg systexns in general need
parallelism [Kos-73b].

The next case in which parallelism is desirable is when there is some hardware
(especially CPU) with actual parallel processmg capactty and the user wishes his
program to take advantage of it m order to run faster in total elapsed time. A typical
| exaxnple of this is perfonmng weather (hydrodynamxc) calculatxons on 2 hnghly parallel

' ,computer such as ILLIAC IV. Here, the extra speed gamed by petformmg calculatxons
simultaneously on many grid points makes thgi‘dgfgggnce‘ Qgtvggcn useful answers and
not (nobody waats to predicty,estegg;ay’s\:wgaﬁcg). " o |

These two cases of parallehsm in program operanon are rather different. In the
first case, the sxmultaneous operanons tend to be doing dxﬁ’erent tasks while in the
second case, they all are performing nearly the same computation, but on different data.

_ Different programming language approaches .hwe;,; been - adeopted to. cope with these
different cases. To handle the first case, multi-tasking facilities ;\of‘tsnd have been added
to an otherwise conventional programming language. For example, PL/I. has the TASK
option on the CALL statement, which causes the invoked procedure. to be run as an
independent, parallel task or process. In ALGOL style languages, the parallel statement
approach is favored; this is a compound sthtement whose component statements are to
be executed in parallel with one another, rather than senally in the order they are
written. In both these language classes, some synchromzanon operauons are provided
also because the parallel paths are never rotaily mdapendaar of one another.

The second kind of parallehsm is often handled thhout any specxahzed features in
the language, but is rather accommodated enm'ely by the comptler For example, APL is
a sequential programming language kwnh array d&ta a’,nd‘ an e.xjge,ns:ve collection of array

operators, but with no emphasis on parallelism. However, it is easy to imagine an

-9.

interpreter or compiler for APL programs which compiles in a fashion to take full

advantage of the array processing parallelism of the ILLIAC IV.

There is a third kind of parallelism that is desirable in programmingthat is not truly
supported by any common programming language. That is parallelism for the sake of
omitting unnecessary detail. The course of programming language development has
been to create languages of ever “higher level”, where by higher level is meant a
language in which less implementation detail need be specified. For example, FORTRAN
introduced the notion of arithmetic expression, LISP the notion of automatic storage
management, and most recently, CLU and others have introduced the notion of abstract
data type, an advanced form of data representation independence. All of these lan-
guages, however, still demand that the programmer specify that operations take place in
some serial order, even though problem only demands that the operations take place in
some partial order. The only case in which the exact order need not be specified is
when the language has operations which operate on structured data as a whole; then the

- order of operation on the components need not be specified. But if one is defining an
operation on structured data, the irrelevant total ordering of component operations may
again creep in. For example, in defining a complex add operation, it doesn’t matter

whether the real parts are added first or the imaginary parts are added first.

What is needed, then, is a programming language which supports all three kinds of
parallelism, parallelism demanded by the nature of the problem, parallelism demanded
by the need for execution speed, and parallelism needed to suppress unnecessary

implementation detail.

Need for Non-determinate Behavior

Although it is generally considered desirable for programs to be determinate (to
always give the same output when presented with the same input) there are certain cases
in which determinate behavior would be crippling. Consider the classic example of an
airline reservation system: it consists of a central computer(s) and data-base connected
to a number of agents’ terminals. Each agent works independently, requesting ipforma-
tion and booking reservations. Thus the behavior of the system must include some

dependency on the arrival time of the transactions — the last seat on a flight must be

-10-

given to the person who requests it first (where “first” means at least € earlier). But
such timing dependency is contrary to the notion of determinate behavior. If the system
were to operate completely determinately, there would be no way for the system to
transact with the agents at their convenience, but only according to a rigorous schedule.

If one agent were out to lunch unexpectedly, for example, all the other agents would be
delayed while the system waited for that agent’s response. The way out of this difficul-
ty, of course, is to include the arrival time as part of the input data, then the time
dependency reduces to a data dependency, which is determinate. However, the part of
the system which performs this operation is itself nondeterminate, but it is an isolated

singularity.

The part of the system mentioned above which merges multiple sources of inputs
into one ouiput and perhaps tacks on the arrival time of each inputis often called an
arbiter. (The very act of merging several input streams into one output stream attaches
an ordering to the arrivals of the separate inputs, so often an explicit arrival time may be
dispensed with.) Given such an arbiter, which merges several streams of inputs into one
output stream, a question which is of much concern is the question of fairness, that is,
whether the input streams get equal treatment by the arbiter. In particular, might inputs
one some ports get accepted preferentially to inputs one some other ports, or worse yet,
is it possible that the inputs presented at some input port be held up indefinitely while
inputs from other ports are accepted freely. Both of these behaviors are conceivable for
arbiters (since, by their very name, their merging is arbitrary) but, although the priority
treatment of certain inputs might be desirable, the indefinite delay of some inputs when

there are no other inputs is almost certainly undesirable.

We may conclude from this discussion that a programming language must allow
nondeterminacy but that it is rarely necessary to use it, and when it is, t_he arbiter seems
to be an appropriate construct. The question then arises as to whether the nondetermi-
nate arbiter operation which is provided is fair or not (and which meaning of fair
applies). Therefore, any semantics of such a programming language surely must be able

to cope with nondeterminacy and with the question of fairness.

-11-

Overview of Dissertation

In an attempt to meet the four needs outlined above, this dissertation sets forth and
analyzes an unconventional kind of programming language, called a data flow program-
ming language [Den-73, Kos-73]. This semantics of this language is defined in terms of
mathematical functions, yet the functions transform the data of interest rather than the
state of the machine, so modularity is achieved easily by means of function composition.
The two dimensional syntax of the language provides parallelism in a natural manner,
both in terms of the elimination of detail and the specification on independent tasks.
The ability of the language to operate on structured data means that parallelism of such
operations is also possible. Finally, the language allows non-determinate programs, and
has a relatively straightforward semantics for non-determinacy, but the language

construct for non-determinism allows the programmer to isolate the non-determinate

behavior in small sections of the program, thus allowing the analysis of most of the

program in the simpler determinate semantics.

The major part of the dissertation deals with the denotational semantics of non-
determinate data flow programs. The necessary domain for the functions is defined and
its properties proved; then the primitive operators in the language are functionally
defined and they are proved to have the necessary mathematical properties. In particu-
lar, chapter 2 discusses and informally defines data flow programming languages,
chapter 3 gives background on mathematical semantics, chapters 4 through 6 contain the

formal definitions and proofs, and chapter 7 concludes with discussion of several points.

-12-

-2- |
Data Flow Programming Languages

Background

In recent years a new class of programming languages, called data flow languages,
has evolved [Den-73, Kos-73].. Unlike ,moxrmsrmy ‘thhe - execution of data flow
programs is governed solely by the availability of data, beth input and computed, rather -
than by the movement of one or :more abs_tr&?zt locuses of control. A data flow program
may be represented by a flowchart:like metwork of operators connected by data paths.
Each operator executes when the data it needs is “present. on “its input paths yielding
transformed data on appropriste output paths. Operators are strictly local in effect, that
is they can influence one another only by:meaas of data sent 'via the paths. New
operators may be defined as networks of other operators; analogous 1o -sgbréutmgs, and
recursive definitions are permitted. ' | |

One of the virtues of data flow programming is that it allows parallelism to be

expressed in a natural fashion. Funhme,thcwﬂmm .can:be guaranteed determi-

nate, if desired. The expression of parailelism is: one ‘of the early reasons researchers
were attracted to data flow. However, data flow is-aow known to have: other advantages
as well. The two most important are locality of - effact. and - applicative behavior.
Applicative behavior means that data flow. operators dan be. characterized as mathemati-
cal functions. Locality of effect means that the mathematical equations for a data flow
program can be derived simply by conjoining the equations for the various parts of the

rogram in an ‘‘additive’”’ manner. In spite of its applicative behavior, an operator ma
progr. P p 1y

‘be a function from input sequences to output se}quences'andi thus exhibit an (internal)

state with regard to Single inputs and outputs. Therefore, data flow languages can be
analyzed mathematically almost as easily as “toy" applicative languages (e.g. pure LISP)
but are more powerful in that they provide parallelism and “state”.

Informal Semantics of DFPL, a Data Flow Programming Language

The data flow language which will be considered ih depth in this paper is a develop-
ment of the author [Kos-73], and is called DFPL for brevity.

-13.

A DFPL program is a directed graph whose nodes are operators and whose arcs are
data paths. Operators in DFPL functionally transform their inputs to their outputs
without ever affecting the state of the rest of the program. Since there is no control
flow, there is no GOTO; in spite of this, loops may be programmed as well as recursion.
Most significant though, is the fact that unlike ordinary applicative languages, programs
may exhibit memory behavior: that is, the current output may depend on past as well as
current inputs. The effects of memory are local like those of other operators and it does

not permeate the semantics of programs.

Data in DFPL are pure values, either simple like numbers or compound like arrays
and records. There are no addresses as primitive data in DFPL, although compound
operators may be defined to interpret data values in a manner reminiscent of addréSses.
An operator “fires” when its required inputs are available on its incoming paths. After
an unspecified interval, its senvds its outputs on its outgoing paths. It is not necessary
that all inputs be present before an operator fires; it depehds on the particular operator.
Similarly, not all outputs may be produced by a given firing. A synchronous operator is
one which fires only when all its inputs are present and it produces all its outputs at
once. The outputs may depend on past inputs as well as current inputs. If the outputs

of a synchronous operator depends only on current inputs, the operator is said to be

simple. Synchronous operators are analogous to subroutines (with ‘“‘own” or ‘static”

variables if the operator is not simple). Some operators produce a time sequence of
output values from one input value or conversely; they are analogous to coroutines. ‘The
operators in a DFPL program thus operate in parallel with one another subject only to

the availability of data on the paths.

An operator may either be primitive or defined. An operator is defined as a
network of other operators connected by data paths such that some paths are connected
at one end only. These paths are the parameters of the defined operator. An instance
of a defined operator operates as if its node were replaced by a copy of the network
which defines it and the parameter paths spliced to the paths which were connected to

that node. This ““copy rule” allows recursive operators to be defined.

Sufficient synchronization signals are passed with the data on the paths so that

operators do not fire prematurely, and so that operation of the program as a whole is

-14-

independent of the timings of the component operators (at least in basic DFPL, full DFPL
allows timing dependent programsin order to cope with the real world).

Classes of Operators

There are three classes of operators in DFPL: simple. operators, including the usual
' arithmetic, logical and aggregate operators stream operators, including the primitive
Switch operators (for condinonals and other data routmg) and prxmmve Hold operator (for
memory and iteration); and non-determmatc operators, mciudmg the pnmmve Arbiter.
(for coping with the non-determmate physrcul world) Sunple operators all have the
property that they demmd all their mputs to ftre, whoreupon they produce “all their
outputs Furthermore, each ﬁrmg is tndependent of any past hxstory, that is, the
operator is a funcnoo from current mput t0 current output

Stream operators so’mctimes do- ‘not aooep;t/ p@fodnoe all.tthcir inputs/outputs, or their
current output may depend on past inputs. Thus we can’ aot -describe their functional
behavior as simply as before (aot producmg an output is not- the same as producing a
aull output). But we can describe their behaviorif we view them as functions from
streams (sequences over time) of inputs to streams of voutprut:s, - Not. all computable
functiorxs from streams to streams describe stream operators however; the function must
be causal, that is, the operator may never retract some. output upon receiving further

input.

Non-determinate operators produce any one of a set of output values (according to
whim, or in a real implementation, timing considerations) when presented with specified
input values. The primitive Arbiter operator, aoon ~which other non-determinate
operators may be based, takes as input two or more streams. and produces as ootput a
stream which is the result of merging the input streams in some arbitrary way. Non-
determinate operators may be viewed as rela'tiong from streams to streams, or more

profitably, as we shall soon see, as functions from sets of streams to sets of streams.

Synchronous operators allows us to avoid the tedium of using a separate index for
the stream of values on each data path. All paths in a subnetwork of synchronous

opérators may share the same stream index since that 'subnetwork behaves as a single

-15-

synchronous operator. Note that all simple operators are synchronous and stream
operators may or may not be synchronous. Also, any defined operator constructed

entirely out of synchronous operators is itseif synchronous.

Primitive Operators

There are five primitive operators in basic DFPL (shown in Figure 2.1). Of these,
two are simple in their behavior: the Fork and the primitive computational function or
Pcf. The Fork is a multi-output identity function, that is, a copy of its input is sent to
each of its outputs. The Pcf is really a whole set of operators including the usual
arithmetic, logical and aggregate operators (e.g. Construct and Select). The Modify
operator is an example of a Pcf which typifies DFPL in that it generates new data rather
than updating existing data. Modify takes three inputs, an array 4, an index I and a
value V, and produces one output, a new array Anew, which is a copy of 4 except that
Anew,= V. Note that the Fork and all Pcf operators are synchronous. Since Forks
have such simple functional properties we do not treat them as explicit operators on

proofs, but rather just label all their paths the same.

The most complicated of the primitive operators are the Switch operators, also
shown in Figure 2.1. These two operators have the property that each firing is inde-
pendent of previous firings, but not all inputs/outputs are demanded/produced upon
each firing. The outbound Switch or Oswitch, for example, demands C and U as inputs
for each firing, but only one of X, ¥ and Z receives output in any firing. Which one
receives the output, which is just the input value U, is determined by the value of the
input C. The inbound Switch or Iswitch operates conversely, only one of the inputs X,
Y, Z is accepted upon firing (C is always demanded), and its value is always sent out on
U.

Informally speaking, an Iswitch merges two or more data streams into one data
stream of the same length as the control stream, selecting which input data stream to use
next according to the current value on the control stream. Conversely, an Oswitch splits
a data stream into two or more data streams dependent on the values of the coatrol
stream. Figure 2.2 exemplifies the behavior of both [switch and Oswitch according to

which paths are input and which are output. In both cases, the ordering(s) of the output

-16-

stream(s) is consistent with the ordering(s) of the input stream(s). Although the value
of an output from a Switch is dependent only on.the current input values for this firing,
the position of that output value in its stream is dependent on previous firings, hence

neither Switch is a simple operator.

Since these operators someumes do not demand/ produce mputs/ outputs, we can
not descnbe their functxonal behavmr as sxmpiy as before (net ptoducmg an output is not
the same as producmg a null ou:put) But we m descrihe the:t behavmr if we view
~ them as funcuons from streams of mputs to streams o! omputs

The most interesting primitive operator in basic DRPL i thdt which behaves like a
kind of memory cell. It is just a holding station’ that is, ‘thedntput is what the input was
on the previous firing and the initial outbutiht! emmnf parsmster. That is, Out’*! =
In’ and Out' = Q. The Hold operaznr is mteremns ’Eecam it xs suﬂxcxent to cmm«

i ;z ey

output stream) It can also be md to constmct muon AT S

any kind of memory desired, yet itself is purely

All of the above pnmmve operators are causal in the sense that an output -cannot be
affected by future mpu:s that is, once an ompu: xs pmduced, lt cannot be changed

_ Some Compound Operators

Switch operators are most often used mmsched pam. wnh -the -countrol. input of
each connected, via a Fork, to the same sonrce of a.control. mm ‘When connected i in
this way, the DFPL version of a conditional expression results, as. shown in Figure 2.3.
The equivalent expression is If P(X) Then F(X) Otherwise G(X). |

Figure 2.4 shows a definition of a. mpcnm mnant operator. This operator takes
no inputs but produces an (infinite) stream of mpat valuss, alithe same Q). |

A fancier memory cell is shown in an'e 2 5 When a, 0 value is. presented on the
control path C, the current contents is read gagfg_n_’tq .pg;hk Y When al valug is present-

ed on.C, and a data value presented on input path X, the cell is gpdg_;e’d to centain that

new data value. The cell has an initial contents of Q.

-17-

The Primitive Non-determinate Operator

To allow the construction of programs with indeterminate behavior, we define an
operator which merges its input streams in an arbitrary manner. This operator, called
the Arbiter, is shown in Figure 2.6. Speaking informally, the Arbiter operator merges
two or more input streams into an output stream whose order of items is consistent with
the separate orders of items in the input streams. This merging is done randomly (or
arbitrarily) analogous to shuffling together two decks of cards. The Arbiter also
(optionally) generates a stream of control values which tells exactly how the merge was
performed. This control stream is of a form such that if it is fed to an Oswitch, the
merged stream can be unscrambled into its component input streams. The optional form
of Arbiter can be programmed from the more primitive form, which does not generate

the control stream output, together with a Fork and an [switch.

Since the Arbiter produces an output stream chosen randomly from a set of possible
output streams, we might characterize the Arbiter as a relation from input streams to
output streams. However, since the the fixed-point theory of functions is better under-
stood, we will treat the Arbiter as a function from (sets of) input streams to sets of
output streams. We consider sets of input streams even though intuitively the Arbiter
works on individual input streams because we wish the domains and codomains to be

compatible.

In extending the semantics of DFPL to accommodate the Arbiter, the semantics of
the determinate operators must be upgraded aiso. This upgrading is the obvious one of
saying that the determinate operators map sets of input streams into sets of output
streams pointwise, that is, each stream in the input set gets mapped to a single stream in
the output set by applying the old stream-to-stream function of the operator. Multiple
input operators are more complicated. If the input sets originate at the same Arbiter,
then the operator is applied to corresponding streams from the input sets in a manner
similar to an inner product of vectors. If the sets originate at different Arbiters, then
the operator is applied to the Cartesian product of the sets. If the sets have mixed
origins, that is have some Arbiter in common which affected their computation, as well
as independent Arbiters, then a mixture of inner and outer (Cartesian) products must be
taken. Thus, the determinate operators produce output sets whose cardinalities are no

bigger than the product of the cardinalities of the input sets. The indeterminate Arbiter,

-18-

unfortunately, tends to cause cardinalities to get out of hand, since the output set
cardinalities depend on the input set elements (i.e. the number of ways they can be
merged) as well as the input sets cardinalities. '

Examples

The DFPL program shown in Flgure 2.7 isan exa.mple of a procedure definition.
The procedure performs the multlphcanon of two complex numbers with a hxgh degree
of parallelism. Figure 2.8 shows a DFPL procedure for. computmg the mythxc recursive
factorial function. Figure 2.9 shows a DFPL procedure which 1mplements a random
access memory of 1000 cells, each mmahzad to 0.

The program illustrated in Figure 2.10 takes advantage of the fact that the optlonal
control output of an Arbiter may be used to control an Osmtch to unscramble the
merging performed by that Arbiter. If the operator F is s‘imple,ﬁthat is, it is a function
from its current input to its current output (thus independeht of previous inputs), then
the defined operator Triple-f behaves exactly as three copm of F apphed separately to
U, V, and W producing X, Y, and Z respectively (see Fxgure 2.11). However, the
operator F is shared among the three input and output paths and therefore saves
resources as compared to three copies of F. Of course, this is at the cost of running at
least three times siower. Most important, even though the. internals of Triple-f are
indeterininate, the behavior of Triple-f as a whele is functional and thus determinate.
Therefore, it is possible to construct determinate programs using indeterminate compo-
nents, and furthermore, proving one has done so is uoir neeessarily difficult.

Other Data Flow Languages

One of the earliest pure data flow models of programming was developed by
Rodriguez [Rod-67] This provided most of the capabilities of DFPL except for operator
definition, and, thus, recursion. Programs in this language were guaranteed determinate

in operation.

Luconi developed a model of parallel computation [Luc-68] which was more general

in some ways than Rodriguez’s. However, because a relatively conventional sort of

-19-

memory cell was necessary to hold data for the operators (approximately one such cell
per operator), determinate behavior could not be guaranteed, except by following strict

conventions in programming,.

Adams developed a pure data flow programming language [Ada-68] similar to
Rodriguez’s and DFPL except that data paths were FIFO queues of unbounded length.
This makes direct hardware implementation impossible; it is possible for DFPL without
recursion if data types are of bounded size (e.g. FORTRAN numbers and arrays). It is

presumably possible to directly implement Rodriguez’s language in hardware also.

At the same time as DFPL was developed, Dennis independently developed a Data
Flow Procedure Language [Den-73] which is almost identical in terms of its primitive
concepts. In its original form, it lacked an indeterminate primitive operator (present in
DFPL) so that indeterminate programs could not be constructed. Further restrictions on
the construction of programs in Dennis’ language were imposed to ease the mathemati-
zation of the semantics. These restrictions also simplify direct execution by a data flow
processor (hardware). Thus, certain semantic behaviors, permissible in our DFPL, were

not allowed in Dennis’ original language.

Of the four languages mentioned here (other than DFPL), only Dennis’ is having a
denotational semantics developed for it. Stoy [Sto-74] and Ciccarelli [Cic-76] have

mathematized the semantics of this language.

A related class of programming languages is those conventional languages which
include interprocess communication mechanisms. Examples of these are suggested by
Hoare’s ‘“‘communicating sequential processes” [Hoa-78] and Kahn and MacQueen’s
“coroutines and networks of parailel processes” [K&M-78). Yet another kind of lan-
guage related to data flow languages is LUCID of Ashcroft and Wadge [A&W-77]. This is

a language which is applicative yet works on streams of data.

-20-

21-

-3-
Background on Mathematical Semantics

Kinds of Mathematical Semantics

The two approaches to mathematical semantics are, as stated earlier, the axiomatic
and the denotational or functional. In the axiomatic approach, each primitive operation
in the programming language has associated with it one or more axioms which formally
specify the effect the operation has on the state of the abstract machine when that
operation is executed. That is, the axioms describe the mathematical relationship
between the “before” state and the ‘“‘after” state. This relationship may or may not be
functional. A sequence of operations have an effect which is the composition of the
individual relations for the component operations. A loop in the program requires an
inductive proof based on the relationship implied by the Ioop body and loop predicate.
The inductive assumption (often called the loop invariant) may either be given or
deduced from the initial and final conditions. A recursive program requires an inductive

argument also.

Programs which modify data structures as side effects are hard to deal with in any
semantics. The usual axioms for assignment are not directly applicable when the
assignment is to some computed variable. This situation arises with assignment to array
components, with assignments indirectly via pointers, and with_ “aliasing” of any data
objects via procedure parameters. This remains one of the open problems in axiomatic

semantics [C&O-78].

As is well known, programs which loop or recur sometimes do not terminate.
Unfortunately, the inductive proof of a loop’s behavior mentioned above often does not
prove termination, but only the behavior of the loop if it terminates. The termination
property (often) must be proved as a separate result. A new axiomatic semantics called
d ynamic logic, which is based on modal logic [H&P-78], allows one to treat termination
simultaneously with “partial correctness”, (as the behavior assuming termination is
frequently called). An extension to dynamic logic allows one to treat non-determinacy

as well [H&P-78].

.29

" by associating with it & “semantie function” whick'it - colnp

~ Thus, given a program together withi a.set of assertions about its behavior, one might
determine by theorem proving (manual or automatic) whether the program satisfies its
assertions. Alternatively, one might derive an assamon which descnbes the program s

behavior.

In the denotational approach; each primitive operstion’in the language is described
, ;- Thas, - & ‘sequence of
- operations commputes the fusiction which s the sompesision:of the:component operations’
functions. If the operations are performsd repedtadly, as:in s WHILE loop, the compos-
" ite function is ‘ot so easily W(&%wmm:mw proof is
needed) Setting up the functionsl Squation cotvespoading to the loop; one: ws

F(X)-If rm(x)r:....r(zody(x))mwmx

where Tut is the predlcate of the WHILB, Body is the_funcuon wluch descnbes the body
of the loop, and F is the functxon which demﬂns the"‘loc
' sive definition, but it is hard to solve becam tke tmknown,ﬁi’ isa f uncnon 1

a "whole Thxs 1s a recur-

Thxs approach can be md on appbcmve lanmes thh relatxve ease since mch
their ~composition.” Unfonuweiy,

| operators such as Go, SETQ and RPLACD
' functional charactermtion of the program &cp‘ﬁ c"‘“"‘”""rabfy from the symacnc
“structure of the program Thxs occurs for two reasons. ‘Fﬁi’t sfnce sonie Operat’ors such
as assignment (e.g. SETQ or worse, RPLACD) change the sutc of the whole abstract

' machine, the function corrupondml to. sn;;h 30 _operator must u;ansform states into
i ‘Jnjm? ,ggnnsfo;m states,, whereas
..,t.he program is, wntm as rf most opgraora rangfe ; vanyagg}ea ‘Second control ﬂew
_operators (of which LISP’s GO is a mild en:aple) can cause both the. condmonal and the

,_ loop structure of the program t to become mplicated. Strucmred ngram-

mmg. with its msxstence ona hmued dumpliaod :set ot contml operators (e 8. IF- THEN
ELSE and DO-WHILE) prevents the sccond problem, from occumng that is, one recursive

gy ey

equation corresponds to one !oop The first problcm remams however, smce most
.existing languages have state transformmg amzmnent operators

-23.

Mathematical ancepts

" A partially ordered set, or poset, is a set of objects together with a relation which is
reflexive, transitive and antisymmetric. Thatis, VX: X< X,VX,Y,Z:X<SYAY<SZ» X
<Z,and VX,Y:X<YAY S X X=Y. If, in addition, the relation holds in one direction
or the other for every pair of elements in the set, the set is said to be forally ordered.
The integers are totally ordered under the usual ordering, while the set of all subsets of a
given set are partially ordered under the inclusion relation. A chain is a totally 01_'dered
(subset of a) poset. A set is said to be pre-ordered or quasi-ordered under a relation if
the relation is reflexive and transitive (but not antisymmetric). The set of equivalence
classes under the quasi-order form a partially ordered set, where X and Y are in the

same equivalence class iff X SYAY < X.

A Cartesian product of posets is itself a poset under the pointwise partial order; that
is, (Xa, Ya,Za) S (Xb, ¥b,2b) iff Xa S XbAYa S YbAZa S Zb. Since a function can be
treated as an element of a large cartesian product (the product of identical copies of the
codomain indexed by the domain), functions can be partially ordered also. The order is
defined by: F £ G iff VX: F(X) S G(X)

An up per bound of a subset S of a poset P is an element U € P such that VXeS: X
S U. A supremum or least u pper bound (often abbreviated l.u.b.) of a subset S is an
element L € P such that YU € P:L < U where the U’s are upper bounds of S. An
in fimum or greatest lower bound (often abbreviated g.1.b.) is the order duals of the
above (which is obtained by replacing *“<S” by its converse relation *“2"). Many posets
of interest have_ a least element, called bortom (*‘1’*), which forms a lower bound for all
subsets. A lattice is a poset in which every two elements have both an infimum or meet
and a supremum or join [M&B-67]. Note that M is the meet of X and Y iff M <X and
M<Yand VB:BS XAB<Y»BSM, and the join is the order dual. Many lattices of

interest have both a least and a greatest element.

A function from a poset to a poset is said to be isotone iff VX, :X<Y»F(X)<
F(Y). (The term monotone is often used instead of isotone, but it is less precise since

isotone corresponds to monotone increasing only {Ros-77].)

A poset is said to be chain-complete iff every chain has a supremum (not necessari-

ly in the chain itself). The integers are not chain complete, for example, but the real

.24

R D). ueempwmumeisthemmt&

~ numbers on a closed interval are. Any chain complete poset .gecessarily. has a bottom
‘element —it is the supremum of the empty chain. A more. mt.eresnng example of a
. chain complete poset is the set of all finite and infinite sequemces. of elements of some
set partially ordered by. the prefix or initial. sybueqvme telation. . (For.example, 48 £ '
ABC SABCD and ABSABD.).Inthis poset, the suproma. ase the infinite sequences (length
e sutire. poset, but zhete is no_greatest
.. element. The poset may be pictused as a tree. ofmﬁme depth, whege each (finite) node
- corresponds to.a (finite) sequence, and at each.node,: ewh arc laudmg away . from the
node is labeled mtbediffpfeatelmfmthe,_ ; ‘m of objects. We restrict
our attention to chains which are countable, wh:ohgeet mmm:e the underlying set to
be countable. For example, the set of subsets of the mtesers is uncountable, but the
ble tmﬁ%’er ‘of elentents. Although
there are other varieties of completeness, such as dfrcc"":"'

chains under the mclusxon order each have a eéu

et comi piétenm in which any

finite subset which has an upper bound has a mprenmm from now on ‘We w’iﬂ mean
“countable chain’ eomplete” ‘Whenever we say “oomplete o R

A function from one complete poset to another is said to be continuous iff it is
isotone and preserves suprema, thet u, tff the value of the funct:on on the supremum of
a chain i in its domain is the supremum of the set of vafuec which is the tmage of that
chain. Note that sirice the funcnon is uotone. it mapl cheﬁs mto chains. ‘Also, note
that the 1sotomc1ty of the funcuon can be deduced “from its cc

conunmty (supreme preser- ,

’ vauon) merely by consxdermg flmte chams, Whoee .mpfema :are theu' greatest elements
Ttis an easﬂy proved and useful fact that a funcuon ‘which ‘ maps a cartesian product of
(complete) posets into’ a pout and is xsotone (connnuous) on each argument is also
isotone (continuous) on the tuple Sumlarly, V the composxtion of ° wo isotone
4 (contmuous) functions is in turn uotone (conﬁnuouss It is also straxghtforward to prove
that the set of continuous functions from one complete pmet to another itself ‘forms a
complete poset under the natural partial order.on fugcti deﬁned above. -

Now we come to the pomt of mtroducms posets, completeness, motommty and
continuity — the Tarski hxpomt theorem {Msr-?é} if F P-— P is ‘an isotone function -
mapping a complete poset into: itself, then F.hee»& loast fixpoint X.- That is IX: F(X) = X
‘and VY: F(Y) = Y » X S ¥, Furthermore, if F is-continuous as well as-isotone, we can
“compute” its least fixpoint by a straightforward _feclmiqhe (actually the | teehnique

25.

»

involves taking a limit, so it is not computable in the ordinary sense) [Sto-77]. Consider
the sequence £, F(1), FX(1),F¥ (1), F4(1), etc. Thissequence forms: a chain because L

‘< (1) by definition of 1 and FH{(1) $ F'*'(1) becaiise * F:uis "isotone. . Therefore the

sequence forms a chain which-has a limit or "Suprémum bécause - “the:. ‘poset :is chain
complete. If we form U}"(A.) (where I € w), and call it X we see that X equais
U ,F(F’ (1)) which by continuity eq;,mk F(Uf’(*)tl) wtnch equals F(X) a ﬁxpomt of F.

- To show X is the least fixpoint, assyme Yis a flxpomt Then L S Y and thus I"(.L) <

TiINEY,

F(Y)=Y. So by induction, F’(.L) sy and so X s Y.

Denotational Semantics

In the standard treatments of denotational semantics one data element or function is

v s2idto be less than another iff it is less well defined than the other, so that the partial
order is an ordering by approximation or information content [S&S-71]. !«Wﬁe in

~ the. caseﬁg partial functions one. may | bz said to be grcager than another it 1t extendx the
. other, that is, it is defined on a larger dom;un and they agee m value on the smaller
~ domain [Map-74], In the case of sunplc data, a “ﬂat" pnmal order is oftcn used it
consists of a set of data wh;ch are not or@;r related to each‘ other and a bottam element
which is less than any. true damm Sucb flut pouts 'are not 4;:>f mterest m themse!ves. but

~ are used to construct more ;_mq;esg_qg posets as ouglmed bclow

Earlier we indicated that it was difficult to assign an"é*veﬁll functional ‘behavior to
programs with lpopl bmauae 2 rgcumve eqpatxon xesul:.g gvhxch has a funcuon as the
unknown. Such equations. can be solqu ig cemm clrcumst&nces by meaps of the Y, or
~ fixed point, operator. Thwwmphcmg ba: the tng:t that in tnany program:mns

languages, such as LISP, BCPL and even PL/I, we wxsh to be able to treat funcnom as

data objects. In order to mathematize this, we require that the domam of fun&ons

 inélude functions frony that donaitt 1d that domuin; This Atssas that the domain must be |

recumvely defined. If we let¥ be the dommin of quﬂdoml data ‘(such :as num-
Bers), theﬁ the dornsis D' :nust be tsomrphic t6 N @BeD); thve dujomt union of N
"and the set of (counnuous) fanctions from’ B t6' D Sfcow‘s ‘cotitribution ‘ has bgen to
~ show that there exist lattices called reflexive domaifis WhiEh satisty ‘this isdomorphism and

in which the ¥ operator can always apply to give the tntiqeé minimal fixed point solution

26-

of the functional equations alluded to earlier. Furthermore, such domains adequately
sharacterize programming languages. Thorough treatments of this approach to program-
. ming languagesemnnumay be found-in [M&S-76, S8to-77]. '

A slightly more recent approach to denotatmnnl seinantics uses complete posets
rather than complete lamces [AD3-77 Mar-78 kou-‘l‘l] Snch peaets accurately model
the basic notion of approxnmatxon, and a}thongh the ‘bottom element corresponds to

“undefinedness”, the “‘top” element of the lattice (tnd other ;éms ‘hecessary for the -

lattice to exist) do not seem to correspond to any computationally meaningful object.
We do not use reflexive domains in this thesis, as we do not. allow function valued data,
but we do use posets rather than lattices, for the reasons stated. '

Notation

Names of variables and funcuons are denoted by capitahzed cursive italic words
such as Var and Fun. This is more like prognmmmg notation than conventmnal
’mathemaucal notation, wluch tends to use single cliaracter symbols for all vanabies and
funcnons, but it is more mnemomc and thus more tesdable when many ‘pames exist.
Literal data symbols are represented by austers itilic fetters such as 4 and by austere

numbers such as 999. Literal data symbols may be fagge?l by aﬁpendmg strings of
mmmtute digits to she symbols, for example, {40, Aoo, Aooz)

The angle brackets “(" and “)"’ are used t6 enclosé explicit sequences of data, for |

example (4, B, C). Braces (ie. “f{*"and “}"*) denote sets in ‘the usual way: {X, Y}

~ denotes the set consxsung of X and ¥, while {X| P(X?} denores ‘the set of all X

' satisfying P(X).

~ Subscripts on names denots selsction of a particular item from a set of similar items,
for example Var,, Fun, Superscriptson vmahles which. are streams (sequences)
~ denote selection of an element from that.sequence, for example, S, denotes the I-th
element of the stream 8,,, which in turn is the N-th stream of a set’ of related streams.
Superscripts on data symbols mean repetition of that symbol for example {4 ") denotes a
~ sequence of K A’s. Superscripts on function names. m;l;er denote repeated composmon,

if the superscripts are numeric constants or vambles, or they denote a new function

27

related to that function denoted by the un-superscripted name, if the superscript is a
greek letter. For example, F¥(X) denotes the M fold application of F to X, whereas F*
denotes the ‘‘extension’ of F' by some rule, and F* denotes the ‘‘completion” of F by

some other rule.

Finally, conventional mathematical notation is used for everything else: infix
operators, prefix operators, quantifiers (with *:”’ separating the quantification from the
body), function application and argument lists, and conditional expressions, including
“If”,“Then’ and *‘Otherwise”.

28-

-29.

-4
Semantics of Determinate DFPL Programs

Overview

In this chapter we develop the fixed-point semantics of the determinate subset
(really a sub-élgebra) of DFPL. To do this we first show that the domain of Streams is
suitable for fixed-point solutions of programs, then we show that the determinate
operators are continuous on this domain. We therefore deduce that (recursion free)
determinate DFPL programs have a well defined behavior no matter what inputs they
receive. We conclude with an example of a simple fixed-point computation of a pro-

gram containing a loop.

A Complete Partial Order on Stfeams

A Datum is an‘element of some set of data, for example, integers, characters,
Booleans, arrays of floating point numbers, payroll records, directed graphs etc. The
data sets available depend on the kind of DFPL programs being analyzed. We will not
consider what types of data are available except that we shall assume that the integers
are since they are needed to control the Switch operators. All data are assumed to be
incomparable from the denotational point of view. That is, any ordering of data in a
data set (e.g. the integers) is not of interest to us since it does not represent approxima-

tion.

A stream is a finite, empty or infinite sequence of data items, often denoted by
enclosing their elements in angle brackets, for example, () for the empty stream, (4, B,
c, D)for a finite stream of length 4,and {4, B, ..., Z, ...) for an infinite stream. More
precisely, a stream is a function from the positive integers .or some initial segment
thereof (including the empty set), to the set of Data. That is, S: Nseg - Data; where
Nseg=1{} (S the empty stream), or Nseg={I | 1 SIS N} (S a finite stream), or Nseg = {I
| 121} (S an infinite stream). Put another way, streams are functions whose domains
are ordinals no bigger than w and whose codomains are some set Data. We denote the
value of a stream at some integer I by S, using superscripting for emphasis. A stream
S, is said to be a “‘prefix” of a stream 8, (denoted S, €8,) iff Dom(S,) € Dom(S,) and S,

-30-

restricted to Dom(S,) (denoted S, {Dom(S)) is equal o' S,. .That is, ’Sx.l -.82’ for all I €
Dom(S,). -

Theorem 4.1: The prefix relation is a partial order on streams.

Reflexivity and transitivity follow from the reflexivity -and transitivity of s’ and
- especially “=". The antisymmetry of “«" follows frony the: Mymtxy of *&”
Herice the set of streams form a dis¢rete poset which we call’ e;pmtmma

~ Note that the bottom elementof this poset is me empty mam (denoted L or ()) and
~ the mfimte streams are maximal elements of the pout. v

Lemmad4.1: An indispensable propeny of Cpo-streams is the fonmvmr if S, S and
8, are streams such that S, €S, and § gs,.thenenher 8, ss or S, «3,. This essen-
tially says that the graph of the pamnl order is a tree, ymh the empty stream as the root

and the infinite streams as the leaves

This follows easily from the fact that Dom(S,) and Dom(S) are ordinals so Do-m(S)

% Domd(S,) or Dom(S,)GDom(S). We apply the defimﬁon of “g” to get s, 1Dmu(S,)-Sz,

and S,{Dom(S))=S,, Now, assuming Dm(ﬁ)cbom(s), we getS 1Dom(S)-S {

 Dom(8,) { Dom(S,) which implies S, jDom(S)-Sl. winch mems S sS Assummg
~ Dom(S,) sDom(S) gives us S, £3,, which proves the property m

Lemmad.2: If S, and S, are infinite, S, €8, iff S, =3,.
Theorenul 2: The poset Cpo-streams is countable chain complete

To show that this poset is chain comp&ete, we must prove that any cham of streams
has a supremum in the poset. The chains are j\m sets of streams, {S,,Sz, } such that
S, €S,€...; we need not worry that S,=3, smce a cham 1s a set There -are four cases
to be considered: if the chain is empty, then its snpmnmm uz L. If the cham 1s fnnte‘
then its supremum is just its maximal element If tke cham xs mﬁmte and conmms an
infinite stream S, then S is the. supremum of tbe chm smce Sf.s and for all f:mte S, 8,
€S, and for no finite S, is Sy 25, fnrailfmnespmdnoother mfmxte stream can be in
the chain. 1f the chain is infinite but contains only funte strenms. ;hen its supremum Sis
not in the chain but does exist in the poset. We merely define S to be the stream such
that S = S,/ for all I € Dom(S,,) for any S, in- the chain. S is well defined because the

.31-

S are elements of a chain. S is infinite because the chain is infinite and the domains
Dom(S,,) are unbounded. No element of the chain is an upper bound (given any stream

in the chain, we can find a longer one) so S is the supremum. =

Therefore Cpo-streams lives up to its name: itis a chain complete partially ordered
set. Note that the finite streams in this poset constitute a basis in the sense of [M&R- -76].
‘Strictly speaking, we should define Cpo-streams(Data-type) and therefore have different
posets for each kind of data. We will not do this in this dissertation, as the generaliza-

tion is clear. Instead we will treat DFPL as an untyped language (like LISP).

DFPL Operators as Isotone Functions on Finite Streams

In this section, we restrict our attention to DFPL operators ol finite streams because

we wish to prove isotonicity — continuity is treated later.

The simple operaters, since they operate on streams element by element, are clearly
isotone. ‘Let Sop, be a simple N-ary operator on streams which applies F to each
N-tuple of corresponding input data. We denote this by Sopp(S,, ...sSy): each function

F gives a different simple operator. That is:

Sopp(8,,...s8y)=8

Where S'=F(S/,...,S,)
VIieL=N, y Dom(S,)

Now let S, € Sz, then Sz, = () implies S, = () (because Dom(Sy) s Dom(Sz,)). But Sz
= S0P (S s ...s STy .., Sy) iff for all T € La = Dom(Sz ., N ; , fDom(S,)) Szf = F(S /, Szl

Sy"). Now since L s Lz, it is also the case that for all Ie€L: Saf=F(S/,. SzK ,-
SN’). But since L s Dom(S,) and S, € Sz, we have Sef = F(S/, S,D for all IelL.
Thus Sz = S’ for all I € L so S € Sz. Therefore Sop is isotone in each argument. ¥l

The operator Hold takes a constant datum C and attaches it to the front of the stream

S. We denote this by Hold(S): each value of C gives rise to a different Hold function.

-32-

We define Hold (S) =C @ S where “®" is defined as follows (with “‘+” representing
ordiftal addition):

S®A=Sa

Where Dom(Sa)=1 + Dom (S)
And Sal=IfI=1 Thcn A Otlurunu Si-t

Thus “®" is isotone since if S, €S, then A® S, €A @S;. Therefore Hold (S) is

isotone in S. &

We define another mm isotone ngraﬁon “rt ag fOuOWS (Wlth | ITIR repres enm
ordinal subtraction): ‘ :

T S=8d

Where Dom(Sd)=Dom(S) —1
And Sdf = §'+!

Obvmusly, “1'” is isotone since if 8, sS then 'rS s*rS The "@" and “1"’ operatmns
are eqmvalent to CONS and CDR in LISP. ’ ’ .

The Switch operators are the most complicated functions from streams to streams.
First we define the Outbound Switch operator Oswitch p(C, D): ' ' '

Oswitch,(C,D)=
If C=()vD=() Then ()
If C'=P Then D' ® Oswitch,(7 C,7 D)
Otherwise Oswitch, (7 C,7 D)

Here P is the port number, C is the control stream dnd D is' the data stream being
switched. Thus an Outbound Switch with three ports {0, 1 and 2) would. require the
three functions Oswitch,(C, D), Oswiteh (C, D) and Mtcb,((l, D) for its complete
description. ‘ ‘

We prove that Oswitch is isotone in the argument C by showing thatif C€ Cr thén_
Oswitch ,(C, D) € Oswitch (Cz, D). The proof proceeds by indugtion on the finite ordinal
Dom(Cz). Note that Cz={) iff Dom(Cz)={ } and that Oswitch,({), D) = Oswitch ,(C, ()

-33-

= () Substituting Cz in the definition of Oswitch, we get:

Oswitch,(Cz,D) =
If Cx=()vD=() Then ()
If Cz' =P Then D' ® Oswitch,(t Cz,7 D)
Otherwise Oswitch, (T Cz,t D)

We assume in the steps that follow that D is not {),since for any C and Cz, Oswitech (C,
() = ()= Oswitch ,(Cz, (). The base step is as follows: Cx=() implies C= ()} so that
Oswitch ,(C, D) = Oswitch ,({), D) = Oswitch(Cz, D). The induction step is: let Dom(Cxz)
=N +1; if C=(), then Oswitch,(C, D) = () which is a prefix of any stream. If C# () then
7C €7Cz and C' = Cz!. Now if C! = P then:

Oswitch,(C,D)=C' ® Oswitch,(C,7 D)

Oswitch,(Cxz,D) = Cz' ® Oswitch, (7 Cx,T D)
So Oswitch,(Cz,D) = C' ® Oswitch, (1 Cz,7 D)

By the isotonicity of “®”, Oswitch,(C, D) € Oswitch(Cz, D) if Oswitch,(1C, D) €
Oswitch ,(1Cz, D) But 7C € 7Cz and Dom(rCz) = N, so we may assume, as the inductive

hypothesis, that Oswitch (rC, 7D) € Oswitch(1Cz, 7D). Now if C'! # P then:

OswitchP(C,D) = Oswitchp(rC,7D)

Oswitch ,(Cz,D) = Oswitch, (7 Cz,7 D)

But 7C € 7Cz and Dom(7Cz) = N, so again we apply the inductive hypothesis, that
Oswitch ,(TC, 7D) € Oswitch (7Cx, D). ®

The proof that Oswitch,(C, D) is isotone in D is essentially identical.

The Inbound Switch operator has N + 1 data ports D, through D, where we start at

-34.-

0 because the simple case of D and D, corresponds naturally to a True/False Switch.

Iswitch is defined as follows:

Iswitch(C,D,...,Dy)=
If C=() Then ()
If C' =0AD,#() Then
D,' ® Iswitch(t C,7 D, ...,Dy)
If C'=NAD,#() Then
D! ® Iswitch (1 C,D,,..., 7 D))
Otherwise ()

One can prove that Iswitch is isotone in each of its argumentsin a manner similar to that
Oswitch by which was proved isotone, except that the induction must be on the (ordinal)

sum of the domains of the D, since only one is reduced by each recursion.

DFPL Operators as Continuous Functions on Cpo-streams

Having .defined all the primitive determinate DFPL operators as functions on finite
streams, we wish to complete them to be continuous functions on Cpo-streams. That is,
we wish LJOp(C) = Op(LIC) for any chain C (where LIS denotes the supremum of §).
This is straightforward since we have yet to say how a primitive operator transforms an
infinite stream. Let Maz-chain(S) = {S, | S, €S} for any S, so that for infinite S,
Maz-chain(S) is the (infinite) maximal chain containing S. To make an operator
continuous, we define Op“(S) = Op(S) when S is a finite stream, and O0p“(S)=
LOp(Maz-chain(S) — {S}) when S is an infinite stream (recall that if X is a set, F(X) =
{F(Xelt) | Xelt € X}).

Theorem 4.3: The completion Op“ of Op as defined above is continuous.

Since Cpo-streams is chain complete, the supremum exists. Since S§S=
LiMaz-chain(S) we have continuity on maximal chains automatically. Now consider
LIOp(C) where C is an arbitrary chain. There are two possibilities for C: it may contain
a greatest element (if a finite stream then C is finite, if an infinite stream then C may be

either finite or infinite); or C may contain no greatest element, (in which case it is an

-35-

infinite chain of finite streams). If C contains a greatest element S, then 0p“(S)) <
0p“(S) for all S, € C (by 1sotomcity of Op” if S is fimite, by definition of Op“(8): for
infinite S). Thus Op”(8) is the greatest element of Op*(C) and hence its- supremum.

If C contams no greatest element. c wxll be an mfmxte subcham of Maz-cham(S) for -

some mfmlte S Smce Cpo-streama is dxscrete and smce C’ is mﬁmte, no ﬁmte element 1s
an upper bound for C, thus S=LIC. By defuuuon of Op”(S) for mfxmte S, Op* (S)g
~ 0p“(S) for all S, € C. Now the set 0p*(C) must be a chain because Cisa chain and Op*
is isotone: If Op¥(C) is an infinite chain then it hag no finite, ypper. bound so it has the
(unigue) infinite upper bound Op“(S). But thare are.no other upper bounds so Op“(S) =

LI0p“(C). If Op*(C) is a finite chain then it has a.greatest clement Sg=LI0p“(C). By
1sotoxuc1ty of Op“, there must exist S,, € C such that Op“(S,) = S for all 5,25, (obvious
for S, € C, also true for S, € Maz-chain(S)). Thus, S ™ IJOp"'(Maz-cham(S)) Op“(S) -
Lop“(0). ® R

Therefore, we have proved that for any chain C, Op*LIC) = Lop¥(C), so that- Op* is
continuous. - This appliss in the obvieus manner to muiti-argument operators. -Note: that
in the case of mum-ummﬁt operators the order of . taking suprems does not matter
because theop.;euﬁbm:o& completing & poset.and-extending an isotone function [Mar-76

. Mar-77} give results unique up to isomorphism. . .

Solvability of First Order Fixed-point Equations

_ We have now shown that the DFPL pmmﬁve operators are isotone on streams, and
that we can extend any uotone function on streams to & continuous function on streams
by defining its behavior on infinite streams a: above. “Thus DFPL prumuve operators
may all be extended to be continuotis tunctions fromi Streamis’ to streams, or ‘more
~ generally, from Cartesian’ groduets of streams to" (Cartesian” products of) streams. Now
it is known that any system of equations involving ' en}y ‘continuous functions over
complete posets have a mmima.l fixed point solution [Marﬂﬁ Muir- 77]

Now any DFPL program graph that mcludes only pnmmve operators and no reeur-
sion can be converted to an equivalent systém of-équations. ' Recall that a program graph
corresponds to a set of equations in which-¢achdata path corresponds to an equation

-36-

variable and each operator instance to a function instance. By uée of the copy rule, a
program graph containing usages of defined operators can be expaaded. into a graph
containing only primitives and thence into a (large) system of aquanons Therefore, any
such DFPL program has a minimal fixed point soluuon, that is, an asngnment of streams
to the data paths which are the overall result of “mnmng" that program (perhaps
forever) starting wuh empty data paths '

Note that the solution obtained is a configuration of data streams and thus repre-
sents a particular result of applying the function represented by the program, rather than
the function itself. For this reason, we call this a fifst order fixed-point.

Examples of First Order Fixed-points

Flgure 4.1 shows a simple DFPL program with a loop, for: \Vhich we will cmnpute a
first order fixpoint. The Hotd operator is as- discussed earlier. .Therery-other operator
delivers as output every other element of its input stream. ‘For anmple Enryuothcr((A
B,C,D,E,..D={4,C,E,..N Wemllnotexploze.mmardi of this operator, they are
not germane to the fix-point computation. ‘To solve this- !dop,:.m"~fcut it at the. poiat
labeled X, then we solve the equation X = Every-other(Hold ;(Hold ((X))). We do this
by applying the standard fix-point rule, computi'ng_‘u‘{l‘.l..i'(4.), F(F(1)), ..}

Proceeding by this rule we start with Hold (())-(A) Hold ((A))-(B A)and X =
Every-other((B , 4)) =(B). Note that this is the first approxxmanon to X, not the flrst
element of X which would be denoted X". 1 The second approxxmauon is X, =
Every-other(Hold ,(Hold (X))) = Evcry-othcr(ﬂold (Hold (BN)) = Every-other((B A,
B)=(8, B). The third appronmauon s X, -Evm—ether(ﬂold (Hold A(X)))-
Every-other(Hold ;(Hold ,((B , BN)) =. Evcrymthef((B ,A,B,B)=(B,B). Thus we
have converged after three iterations (X=X, =X,). We can also derive the fix-point
values of ¥ and Z. To wit, ¥ = Hold ,(X)= (4, B, B) and Z = Holdy(Y) = {8, 4, B , B).

We could equally well have cut the loop at Y or Z. Then we would have solved Y =
Hold (Every-other(Hold /(Y))) or Z = Holdy(Hold ((Buery-other(2))) ~ respectively.
Either of these approaches would have given the same results for X, ¥ and Z.

-37-

It is very important to remember that the iterations involved in computing a (first
vorder) fix-point are not the same as'the iterations implied by executing a DFPL program
loop. In computing the fix-point, we are “standing outside of time” and considering the
data streams as wholes, whereas in executing the program loop, we are observing the
data streams develop within time, This is analogous to the solution of equations in
physics: the iterations necessary to solve a dynamical §quation do not take place within
the time expressed by that equation. .

-38-

-39.

-5-
"A Partial Order for Non-Determinacy

Introduction

We have seen that streams of data, partially ordered by the prefix relation, form a
domain upon which determinate DFPL operators are continuous functions, so that the
function computed by a DFPL program may be determined by means of function com-
position and computation of fixed-points. Our task now is to find a domain suitable to
both determinate and non-determinate operators, that is, a domain in which both kinds
of operators may be cast as continuous functions. Part of our task however, is to
formulate the domain and functions in such a way as to be compatible with the determi-
nate formulation. That is, there must be a morphism from the general system to the
determinate one, mapping the determinate functions in ‘the general system to corre-
sponding functions in the determinate system, and mapping ‘‘determinate” elements of
the general domain onto corresponding streams in the determinate domain

(Cpo-streams).

Just as determinate DFPL programs may be viewed as functions on input streams and
output streams, it is reasonable to view non-determinate programs as relations from
input streams to output streams. Unfortunately, if we take this point of view, we lose
the fixed-point theory which is based on continuous functions (although we still have a
useful notion of composition for relatidns). The way out of this problem is to apply the
well known “‘functor’” which transforms relations on sets of objects into ‘“‘equivalent”
functions on sets of sets of those objects. Therefore, for the rest of this dissertation we
shall characterize non-determinate programs as functions from sets of input streams to
sets of output streams. Each stream in the set corresponds to ‘one possible execution
Each possible execution of a non-determinate program causes a particular stream,
chosen from the set of streams, to appear on a particular data path. If the program is
determinate, then only one stream can appear, so the set is a singleton. Thus the natural
map between the determinate and non-determinate semantics involves mapping a stream

to the singleton set containing that stream.

-40-

Counterexamples to “Posets” on Slmple Sets of Stteams :

The exact choice of what kind of set of streams, as we shall see, is crucial to the
formulation of a reasonable denotational semantics of DFPL. The obvious choice of a set
of streams is just that, a set of streams. If we use this as our domain, - the ‘question is
what pamal order is smtable The obvmus choice for a pertml order on sets is the
inclusion relation, whxch is even chatn complete A moments thought, “however, shows'
| us that this is unsmtable in that it does not reduce, when apahed to smﬁeton sets, to ther '
preﬁx order on streams. For example, the stream Ull 1: a preﬁx ‘of the stream (A B), |
but the smgleton set {(A)} isnota subset of the smtlemn et f(‘A B)} Thus the subset
relation is not a compattble pamal order. i ‘ :

To have a compatible partial order, the relgtien between two. sinzleton sets of
streams must reduce to the preﬁx relation on those m atrea.ms The obvxous extensmn
of this to non-singleton sets is to say. that streams in. .the ftrst set are matehell wtth -
streams in the second andthe first set is less than the. eecond iff the prefix relation holds
on all the matehed streams. Furthermore, out intyition tells us thlt one set of streams
can be ‘<" than another in two ways: flrst, as mdxceted above. the streams m one may
be prefixes of the streams in the otbe:, second, the btuer set ‘may sunply contam more

streams.

~ This suggests the followmg attempt at a patttal order, a set of streams Ss, is is “g” |
than a set Ss, iff for all streams 8, in Ss,, there emts a stream S in Sa2 such that S, isa
prefix of S,. Unfortunately, this is not a pamal order but only a quam-order, since it
does not obey the annsymmetry rule Consxder .Ssl - {{A) . A)} and Ss2 - {(A 4%
Here we have both Ss, S Ss2 and 832 < Sa but cleatly Ss - .Sa2 One way around . this
dlfflculty is to form the eqmvalence classes of sets of streams which are both “<” and
“2" to one another. Tlus constructs a “quot:ent" system in Which “<*'i§ guaranteed to
be a true partxal order. However, in tlns quottent ‘dotiain the semantic equations can
fént"* sets of streams)

only be solved to yield equivalence classes, (i.e. sets of “equiv
which might not be enough detail for our’ needs SR

We now observe that the trouble thh the previous alleged pamal order was that it
allowed us to match two different streams in Ss, with a single stream in Ss . Also, our

intuition tells us that each element in a set of streams corresponds to a different execu-

-41-

tion of the program, and since programs should be isotone functions, feeding a program
a “‘bigger” inputshould not reduce the possible executions. That is, it should not be the
case that {(4}, {4, 4)} < {(4)}. In response to these points, we make another attempt at
a partial order: Ss, < Ss, iff there is an injective map from Ss; to Ss, such that each
stream in Ss, is a prefix of its image in Ss,. Unfortunately, this too turns out to be only
a quasi-order: consider the infinite sets Ss, = {{4),(4,4,4),(4,4,4,4,4), ..} and
Ss,={(4,4),{4,4,4,4),{4,4,4,4,4,4),..}. We can match (4) with (4,4),
(4,4, A)with {4, 4, 4, A) etc., discovering that Ss, < Ss,, or we can match (4, 4, 4)
with (4,4),(4,4,4,4,4)with (4, 4, 4, A) etc. (omitting (4)) and find that Ss 2
Ss,. But this would imply that Ss, is equivalent to Ss,, which is unreasonable, since they
have no elements in common. It does not help to demand that the map from one set of
streams to another be bijective, since then sets of unequal (finite) size would be incom-

parable.

The following scenario suggests that we wish Ss, to be strictly less than Ss,.
Consider a non-determinate program that operates as follows: it produces an indetermi-
nate, but even (including zero), number of A’s on its output port, then copies its input
symbols to that output port. Therefore, when presented with the input stream B, its
outputis (B)or{4,4,B)or{4,4,4, A, B) etc.; when presented with the input
stream {4), its outputis (4) or 4,4,4)or (4,4,4, 4, 4) etc.; and when presented
with (4, 4), its outputis (4, d)or (4,4,4,4) or U,A,4A,4,4,4) etc. More
precisely, when applied to the input set {{4)}, it produces Ss, above, and when applied
to the input set {{4, 4)}, it produces.Ss,. Since our intuition tells us that the set {{4)} is
strictly less than {(4, 4)}, and since we wish all DFPL programs to be isotone, we must

say that the output set Ss, is strictly less than Ss., for they are clearly not equal.
1 2

. There are a number of other possible contenders for a partial order on sets of
streams. One which actually is a partial order, and not merely a quasi-order, defines Ss,
< Ss, iff there exists an injective map from Ss, to Ss, such that each element of Ss, is less
than its image in Ss,, such that the image of the map is a closed below subset of Ss, (i.e.
whenever X is in the subset, so are all Y € X), and such that the map is co-isotone (i.e.
F(X) < F(Y) implies X < Y). Unfortunately, not all DFPL operators are isotone in this
partial order, so it too is unsuitable for our purposes. In fact, we conjecture that there is

no suitable partial order (if we restrict ourselves to plain sets of streams) which does not

-42-

require using equivalence classes of sets of streams, which reduces toﬂthe prefix order on

‘singleton sets, and in which all primitive operators are isotone functions.

Another Problem with Simple Sets of Streams

Consider the DFPL program in Figure 5.1. It consists of two. two-input Arbz‘tei"s' '
‘whose outputs are connected to the inputs of a simple primitive 4dd operator. If the
ihput streams to the Arbiter’s are, as illustrated, the singletons (2),.(3), (%) and {5), then
the Arbiter's outputs are the sets {(2, 3), (3, 2)} and {{4- 5), (5, 4)}, which are also ‘
the inputs to the sides of the adder as shown. Now, since .any determinate operator
- must, if confronted with sets of input streams, combine each stream element of each set
- with every element of every other (i.e. it must operate on the Cartesnan product of its.
input sets) the output of the adder must be the set {(8 8}, (7 7) s, 6)} 'Note that
the stream (7, 7) would be generated twice but would only agpear once, because the
‘output is a set. ' '

Now consider the DFPL program in Figure 5.2. It consists of a smgie two input
Arbiter whose output is connectsd to batk inputs of the mpie ptmﬁtwe Add operator If
the input streams to the Arbiter are, as ﬂ}uxetated the’ tmgleﬁons {2) and (3), then the
Arbiter’s output is the set {(2, 3), (3, 2)}, which is aha the' input to both sides of the
adder as shown. Now, by the Cartesian product nﬂe we used above, the output of the

-adder would be {(4, 6), (5, 5), (6, 4)}. This, unfortunately, is a result whxch the
. operational semantics of DFPL contradicts — the stream (5, 5) can never be a result of
this program. The Arbiter either outputs (2, 3) or (3, 2), it can never output both

together nor can it output their average!

This example demonstrates that simple sets of streams m ﬂot an adequate basis for
the denotational semantics of even very simple programs not mvolvmg f1x-pomts Such
simple sets just do not contain enough mformatmn to allow such programs as Figure 5.1
* to be distinguished from programs hke Figure 5. 2 In partwular, the adder operator has

no way of knowing whether its inputs came from the same or dxfferent Arbiter’s. Thus
“we feel justified in searching for a somewhat more comphcated basxs We must incorpo-

rate in each stream an mdlcatxon of how it may have been arbxtrated

-43-

Sets of Tagged Streams of Data

- Tt is possible to obtain a'straightforward partial order by considering sets of tagged:
streams of data. Each datum in each stream in the set has associated with it zero or
more tags, each of which identifies the sequence of arbitrary choices made by a non-
determinate operator which contributed to the existence of that datum in that stream.
Sets of tagged streams are constrained in the following two ways. A later datum may
never be the result of fewer non-dpterminate choices than an earlier datum, and no

stream is merely an approximation to another.

Two sets are compared by matching each stream in the first set with a stream in the
second set such that the first stream is a prefix of the second stream. The prefix relation
used here is the same as that used in Cpo-streams, except that the items in tagged-stréam
are pairs of Data and Tag-set, rather than merely Data. However, all the relevant
properties apply to tagged-streams. This relation may be shown to be a true "partial
ordering of sets of tagged streams, and the resultihg poset is chain complete if infinite

streams and sets are admitted.

Each instance of an Arbiter in a DFPL program is uniquely identified by its
Arbiter-name, an element of set with equality. Remember that each recursion level
generates new instances of its operators. A Choice-sequence of an Arbiter is an empty,
finite or infinite sequence of integers, chosen from range 0 through Number-of-input-
ports — 1. A Choice-sequence represents, in order, the non-determinate choices made by an
Arbiter. A Tag is a pair (Arbiter-name, Choice-sequence), and represents the choices made
by a particular Arbiter. A Tag-set is an empty or finite set of Tags such that no two
elements have the same Arbiter-name component. A tag-set represents the non-'
determinate choices made by a set of Arbiters. The restriction that no two elements
have the same Arbiter-name insures that no tag-set represents that an Arbiter has made\
self-contradictory choices. A tag-set Ts, is said to be an Extension of a tag-set Ts iff
there is an injective map from T's, to T's, such that for each element of T's,, the Arbiter-

name of that element is the same as the Arbiter-name of its image, and the Choice-sequence

-44-

of the element is a prefix of the Choice-sequence of its image. More precisely, we say

that:

Tgs G Tgsz =
AMap:Tgs - Tgsz:
Injective(Map) A
V Tg € Tgs:
Arbditer-name(Tg) = Arbotor-mm (Map(Tg) A
Choice-sequence(Tg) <€ Chmcc-uqsum (Map(Tg))

A Datum is an element of some set of data Ail data are mumed to be mcomparable‘
from the denotatxonal pomt of view. A Taggnd-atmm is an empty, fimte or infinite
| sequence of pairs of the form (Datmu, Tag-ut) wlnch obeys the tag-set extensmn rule. -
This rule demands that the tag»set component of any ‘element i in the ugxed “stream is an
extension of the tag-set component of all eiements ﬁrecedinx 1t in that taggeﬁ-stream

This insures that rio datum is the result of fewef ﬁ‘&n-detefminste choices than a datnm o

which occurred earlier in that tagged-stream. A Ttx&ci-et‘rwm-aet is a non-empty set of

. tagged-streams which is Prcfzz-ndmd T!ns ‘means that no tagsed-stream is a strict |
_ prefix of any other tagged-stream m the tagged streini-eet 'f'hxs msures that no tagged- :

stream is merely an approxlmanon to another m the same taxsed szream-set / '

" For example, the result of supplying a two port (nmdﬁema&e) Arbstcr wnh the
(determinate) imputs §{4)} and {(B)} yields as- output -the (mon-determinate) tagged-
stream-set {4, Boi), {B1, A10)}. The result of passing . that- set through a

(determinate) operator which throws w&ympuldaa until an 4 appears, whereupon it
copies the rest of the stream to its output port,. is: {(Aa v Bos), (41s)}.

The partial order on tagsed-stream—sets ‘may nuw “Be défined A tagged-meam-set
rsa is€a tagged-stream-set Tsa, itf theére' eﬁm m m}ecnvé map from Tés, to Tas,
such that each élement of Tss is a prefix. of its iﬁnge in T‘ssz “'Note that this nnphes
that the cardinality of T#s; is no ‘bigger thah that _of"ﬁ%z,.' ‘Also note that this is equiva-
lent to saying that T'ss, € T'ss, iff for all eleivents bf?ﬁ,,meféexim an element of Tss,
of which it is a prefix. This may be shown as follows. If Sa, Sb and Sc are streams such_
that Sa is a prefix of Se and Sb is a prefix of Se, then either Sa is a prefix of Sb or Sbis a
prefix of Sa. This implies that if there exists an elemen.:t_s2 of Tss, of which an elemeﬁt

-45-

Sa, of Tss isa prefix, then there is no other element Sb, of Tss, which is also a prefix
of S,,otherwise, either Sb, would be a prefix of Sa, or vice versa, and we disallow this in

the definition of tagged-stream-set.

The map which takes a stream S into a tagged-stream-set T'ss = {St} such that St/ =
(S!,{ 1) for all I € Dom(S), is an monomorphism of posets. This will become clear in the
next two sections, justifying our implied claim of a non-determinate domain which is
compatible with the domain Cpo-streams. We shall see later that the Tags have another

use besides allowing the definition of a compatible partial order.

The way that the tags force the tagged-streams of one tagged-stream-set to be
compared with particular tagged-streams of the other tagged-stream-set is reminiscent of
the “arrows” in Lehman’s categories which he uses to model domains for non-

deterministic fixed-point semantics [Leh-76].

Proof of Partial Order
Theorem 5.1: The relation ‘€’ is a partial order.

To prove that ‘‘€”" is a partial order on tagged-stream-sets, we must prove that it is
reflexive, transitive and antisymmetric. Reflexivity is obvious: take the identity map as
the injection of Tss, to T'ss,. Since any tagged-stream is a préfix of itself, we have Tss,
€Tss,.

Transitivity is almost as simple. Given an injective map M, from Tss to Tss,, and -
an injective map M, from Tss, to Tss,, we know that the‘ composition M, M is an
injection from Tss, to Tss,. Then, since the prefix relation is transitive, we know that
every element in Tss, is a prefix of its image (under M, > M) in Tss;. Thus “g” is

transitive.

Antisymmetry is the most difficult property to prove; it is the property which the
alleged partial orders discussed earlier lack. Let M| be an injection from Tss, to Tss,
and M, be an injection from T'ss, to Tss,. We can immediately conclude that Tss, and
Tss, have the same cardinality and that M, M, is a bijection from Tss, to itself. Each

element of T'ss, must be a prefix of its image in Tss, under M, M, but due to the

-46-

constraint on tagged-stream—sets. no element can be a prefix of another Henoe the
image must be the element itself so M M must be the tdenuty Now we observe that
each element of Tss, is a prefix of its image in Tuz under M, (* . and that element in Tss,
isa pref:x of its image in Tss, under M,. But the image under M, is the original element
in.Tss,, so the element in Tes, is equal to the clement iz “Tss; by antisymmetry of the
- prefix relation. Therefore, Tss, is-equai to T'ss;, and ‘%"’ rsmxymmemc 8 '

Proof of Completeness
Theorem 5.2: The pamal order “o”is (countable) cham complete

. To prove this, we must show that any countabie chain hasa supremum.- Let {Tss <
Tss, < Tss, § ...} be such a countable chain, and ‘et {M . M,,...} be the aseociated
sequence of injective maps which specify the relations (i.e. M,: Tss, = T'ss,, M, va2 |
Tss, etc.). Let Sbe an element of Tssy, then the set 18, M (S), My M, +;(S)’ .4
forms a chain under the prefix order. Since Cpo-atrwma is cham complete, tlus set has
a supremum which we call S-sup. Call the set of all such snprema Tss-sup. Since all
the M’s are injective, and each Tas is preﬁx-reduced we apply Lemma 4.1 to deduce
that each element S of a Tss belongs to éxactly one such chain. For each Tssy, define
Msup,, ‘to map each element S into S-sup, the suwetnnm of its chiin. The suprema of
all distinct chains are themselves distifict (by Lemma 5.1 and the - assumiption that Tss’s
are prefxx-reduced-) because each chain has at least one non-supremal element not the
other chain. Then we have that Msup,: Tssy - Tss-sup is an injective map which
establishes that Tss, <€ Tss-sup. But N was arbitrerj; so Te%mg)Vis; an up'per; bound for

the chain of T'ss’s.

If there were another upper bound, call it Tss-tcb for the chain of Tss’s wluch was.
strictly less than T'ss-sup, then there would be an element S-ub in Tss-ud which was a
strict preftx of an element S-sup of Tss-sup, or there would be an element in Tss-sup

| which had no prefix i in Tss-ub. In the first case, S-ub would be an upper bound of some
cham, but S-ub<S-sup, contradicting the fact tha: S-sup was the supremum of that
chain. ln the second case, there would be a chain of elements from the Tss s wmch had
no supremum in T'ss-ub, hence Tss-ub could not even be an upper bound Therefore, we

may conclude that T'ss-sup is indeed the supremum of the Tss's.

47

It remains to be shown that T'ss-sup satisfies the extra conditions on tagged-stream-
sets: namely, that no tagged-stream is a strict prefix of another, and that within an
tagged-stream, the Tag-set on a later item in the tagged-stream must extend the Tag-set

on an earlier item. .We prove these additional properties by contradiction.

If one tagged-stream, Ts,, were a strict prefix of another, T's,, then all the elements
of the chain of which Ts, was the supremum would be in the chain of Ts,, hence Ts,

could not be their supremum.

If the tag-set exte;nsion property were not obeyed, then there would exist a tagged-
stream Ts-sup in Tss-sup such that Tag-set(Ts-supX) did not extend Tag-set{Ts-sup”)
(where J < K). But, since Tss-sup is the supremum of its chain of Tss’s, there would
exist some T'ss,, which contained a tagged-stream T's € T's-sup such that Ts’ = Ts-sup”’

and T/ = Ts-sup’ contradicting the tag-set extension property assumed for the T'ss’s.

Therefore the T'ss-sup is a proper tagged-stream-set and is the supremum of the

T'ss’s, which means that the set of tagged-stream-sets is a complete poset.

Satisfaction of Previous Counterexamples

As we-have just proved, the set of tagged-stream-sets form a chain complete
partially ordered set (not merely a quasi-ordered set). Also, we have shown how the set
of tagged-stream-sets is compatible with streams under the map which takes a stream S
into the singleton set consisting of the tagged-stream whose Data are the same as S, and

whose tag-sets are empty. Therefore we have satisfied the two generic counterexamples.

The specific counterexample involved a non-determinate program which had two
states: produce A4’s (state 0) and copy input (state 1). Using the history of these states
as the Choice-sequence attached to each output datum (and since there only need be one
Arbiter, omitting the Arbiter-name and set brackets from the tag-set), we get the

following specification of the program: an input of {(4)} gives rise to the output:
{(A41),(A0,A00,A4001), (Ao, Ad0co, Acoc, Aoooo, Acooo1) }
whereas an input of {(4, 4)} gives rise to the output:

f(41,A411),(40,A00,A001,A0011), (A0, Avcc, Acoo, Aoooo, Aoocor , Aoooo11 '}

-48-

The rules for match tagged-stteams in one tagged-stream—_@gt with thoge in another make

it quite clear that the first output is « the sccond

Referring- back to Figure 5.2 now, we sce that the' Arbiter's output streams would
be tagged as follows: {(20 , 301}, (31, 210)}. Let us adopt a modlfxed Cartesian prodygt
rule, to be denuled in the next chapter, that tnmes of mpn; streums are combmed by an
operator only if their Tags are Consistent. Then the output of the adder would be the
tagged-stream-set {{uo, Go1), (61, 410)}. The stream (5 , 5) cannot appear at all in.the
" output set because its first element. would have to be Wbbth 0 and ‘1. This is
1mposnble since it would- meedn that the Arbiter': nﬁ& te: mnuly exclusive: dcmsxons

at once. -7

In summauon, we have constructed a domam for nonodetermmnte semanucs that
‘ sansfxes ail the ob)ectxons we discovered to the earlier apptmhu '

-49-

-50-

-6- . :
Semantics of Non-Determinate DFPL Programs

Overview

In this chapter we develop the fixed-point semantics of full DFPL with both the
determinate and non-determinate primitives. We'have shown, in Chapter 5, that the
domain of Tagged-stream-ssts is suitable for fixed-point solutions of programs. ‘We must’
now show that the DFPL operators are continuous on this domain. To do this, we first
develop some helper functions on tag-sets, then we show how the determinate operators
are extended to tagged-stream-sets, then we can show that the determinate operators are
continuous. Next we precisely define the non-determinate Arbiter and prove that’ it is
continuous also. We can therefore deduce that ail (recursion free) DFPL programs have
a well defined behavior no matter what inputs they receive. = We cb‘xiclude- with an
example of a simple fixed—pdint coniputatio‘n of a _non-determinate program contai'ning' av _

loop.

Notation

The notation used in this chapter is somewhat complicated and thus is outlined here.
Variables are written out programming style (i.e. multi-letter abbreviations) as in véarlier
chapters, but there are more possibilities. Variables consist of a head (usually an
abbreviation), which connotes their domain, an optional body followed by an optional
tail; which identify the particular variable, and an optional sa_;bécript, which identifies
one of a group of similar variables. Commonly appearing. heads are: Ts for a tagged-
stream, T'ss for a tagged-stream-set, Ty for a tag and Tgs for a tag-set. The common
optional bodies are: -a-, -b-, -¢- and -d-, where -a- and -b- connote ~arbitrary distinct
variables, -c- and -d- usually connote control and data inputs r;éspectively, and lack of a
body usually connotes an output variable. An tail -z usually connotes extension of a
stream or set, that is T's € Tsz, Tgs & Tgsz etc. Some exampfes are: Tss for an output
tagged-stream-set, T'sdz, for the Ith extended data input tagged-stream, Tgsx for an
extended tag-set, and Tga for an arbitrary tag. |

-51-

In the interest of brevity, we often apply a function to a set of arguments without
writing it out explicitly. For example, if F: X X Y - Z, we write F(Xs, Ys) (where Xss
X and Ys s Y) instead of { F(Xa, Ya) | (Xa,Ya) € X3 X Ys}. Ingeneral, if a function takes
an element of some domain as an argument, we may apply that function to a set of such
arguments implying that the appropriate set of results is denoted. Note that the original
domain may have sets as elements, in which case we would apply the function to a set of

such sets.

Tag-set Functions and their Properties

In order to define the extensions of the determinate operators (Holdf, Sopf,
Oswitch® and Iswitcht), we define some helpful auxiliary functions. First of all, we
define some access functions which allow us to take components of Tagged-streams and

Tags in a clear manner:

Datum (Ts)=Ts'
Tag-set (T's) = Ts?
Arbiter-name = Tag'

Choice-sequence = Tag?

The next function, Consistent-tags, is a predicate which is true of unions of tag-sets
which are consistent, that is, tag-sets which do not contain Tags with the same Arbiter-
name but Choice-sequences which are not prefixes of each other (i.e. Choice-sequences

which do not form a chain):

Consistent-tags (Tgs,,...,Tgs,) =
VTga,Tgbe U,y Tys;:
Arbiter-name(Tga) = Arbiter-name (Tgb)»
Choice-sequence (Tga) € Choice-sequence(Tgb)V
Choice-sequence (Tga) 2 Choice-sequence (Tgb)

-52-

The last heipful auxiliary function is related to the previous. It is. the Merge-tags
function, which merges the Tagsin a consi‘stent-ﬁtas-sét"-’%ﬁ:ﬂogm yield a tag-set which
contains, for each Arbiter-name, the maximal ‘Choige-sequence from the input Tags:

Herge-tagc (Tgs,,...,Tgsy)=
{TgeU, y Tys; |
YTga € Uy Tys;:
Arbiter-name (Tg) = Arbiter-name (Tga)
Choice-sequence (Tg) € Choice-sequence (Tga) } .

The Merge-tags function is used to generate the tag-sets for the outputs of ‘opera-
tors given their input tag-sets. The Coumtmt-tays functzon 1s used to - assure that:'-
operators do not process any input streams which are mconmtent vmh each other (ef.
Chapter 5, especially Figure 5.2 and related text). . . '

Lemma 6.1: Both Conststent-tags and Mcrge-tags are cammutatxve and assoclatlve’
functions. @ That is, F-tags(Tgea, F—taw(Tycb, Tgac)) = F-tags(Tgaa, Tgab Tgsc)=
F-tags(Tgsc, F-tags(Tgsa, Tgab)) = (where F-togs is C'mwtut—taya or Mergc-tags)

This follows directly from the definitions.

Lemma 6.2: If Tgs & Tysz then Comutcnt-taga(l‘gs, Tgw) is Truc This too follows
"du’ectly from the definitions of “G” and Cmutntt-tags S . .

Lemma6.3: If Comiatmt-tags(Tgs»l, »T9s, ... Tgt,) is Fabi then for any I and
any Tgsz, such that T'gs, & Tgsz,, Comtmt-tag:(!‘ga,, . Tgw,, TgaN) is also False.
Expanding the definition of Coﬂnatmt-tags(Tysl, . Tga,, . TgsN) we find that it is
False iff: .

3Tga,Tgb e U,y Tygs,;: :
Arbiter-name (Tga) = Arbiter-name (Tgh)A -
Choice-sequence (Tga) € Choice-sequence (Tgb) A
Choice-sequence (Tga) # Choice-sequence(Tgb)

-53-

Now recall the definition of “L’’:

Tgs,C Tgsz, =
IMap:Tgs, - Tgsz,:
Injective (Map) A
VTyg € Tgs,:
Arbiter-name (Tg) = Arbiter-name (Map (Tg)IN
Choice-sequence (Tg) € Choice-seqdmce (Map(Tyg))

Now if neither the Tga or the Tgb which falsified Consistent-tags(Tgs,,...,Tgs, ...,
Tgs,)is afx element 6f Tgs,, then Consistent-tags(Tgs,, ..., Tgsz, ..., Tgs,) is trivially
False also. If, however, either Tga or Tgb is an element of Tgs, then its image in Tgsz,
under Map serves as a counterexample to Consistent-tags(Tys,, ..., Tgsz,, ..., Tgs,) (due

to the properties of ““€”).

Lemma 6.3 assures that the tagged-streams which result from the operators defined
recursively in the next section are well behaved in the sense that if the recursion is
terminated by Consistent-tags(...) becoming False, there are no elements farther down
some input stream which might contribute to the output, if only they could be reached.

That is, the recursive definitions do not disallow any realizable behavior.

Lemma6.4: If Tgsz & Tgs, then Merge-tags(Tygs,...,Tgsy, ..., Tgs,) C
Merge-tags(Tgs , ..., Tgsz, ..., Tgs,). Recalling that:

Merge-tags (Tgs,,...,Tgs;, ..., Tgsy) =
{TgeU, y Tys, |
VTgae U,y T98;:
Arbiter-name (Tg) = Arbiter-name (Tga) »
Choice-sequence (Tg) ¥ Choice-sequence (Tga) }.

We immediately derive that:

Merge-tags(Tgs,, ..., Tgsz,,..., Tgsy) =
{Tgz € Tgs, WU, , Tys, |
YV Tga € Tgs,UU,,, Tys,:
Arbiter-name(Tgz) = Arbiter-name(Tga) »

Choice-sequence (Tgz) € Choice-sequence (Tga) }

-54-

Let Mtg = Merge-tags(Tgs , ..., Tgsy ... ,Tgs,) and Mtgz =-Merge-tags(Tgs‘, Tgkx,,
Tgs N) To show that Mtg & Mtgz we must construct a map thap M tg - Mtgz which
satisfies the definition of “G”" above. Let Ty € Mty, Tygz € M tyz and Tga: -M tmap(Tg).

Now define Mtmap as follows, if T'g € Tgs, where J 1, then ng- Tg, but if Tg € Tys,

then Tgz = Map(Tg) where Magp is the map which makes Tga I c Tgsz , as above.
Obviously Mtmap satisfies the second (quantxfxed) gan of the definmon of “£” s
both Map and the identity do, so we only need show that Ittmap is injective. Let Tga %

" Tygb be arbitrary elements of Mig and let Tmand Tgbe be their images \mder Mt‘map
" Note that neither Tga € Tgb nor Tgb € Tga can be’ true‘because of the definition of Mig.
If neither Tga nor Tgb aré in Tgs, then Tydz = T@a and Tode = Tybd so Tm # Tigby since.

Mimap is the identity except. on Tga, Similarly, if both Tha and Tgb are in ‘Typsz,, then
Tgax # Tgbs because Mimap = Map when restricted to Pyn, #nd Iilap is assumed injective.
‘The interesting cases age when Tga € Tgs, and, Tgbg T,gc, ar yice-versa. In. the fzrst
case, Tgbx= Tgb-and Tgaz = Map(Tga). But by the assumption that Map shows fiow
‘Tgs, C Tgsz;, we know that wargdgmmumc(hax) By the
properties of “ €’ and sequences, and by the. fact that Tge 4 Tgb and Tgb#¥ Tga, we see
that Tgb % Tgaz and hence that Tgbx » Tgax. - Thersfors Mimap is injective and Mty :

Migz.

Lemma6.5: If TgsG Tgsz then Merge-tags(Tgs, Tgsx)= Tgsx. Substituting in the
definition of Merge-tags, we get:

Merge-tags(Tgs, Tgsz) =
{Tg € TgsUTgsx |
Y Tga € TgsU Tgsz:
Arbiter-name(Tg) = Arbiter-name (Tga _)-i
Choice-sequence (Tg) € Choice-sequence (Tga) }

H Tg € Tgs then 3Tgx € Tgsx: Tg € Tgx (because Tgs : Tgsz) 5o no elements of Tgs
contribute themselves to Merge-tags(Tgs, Tgsz) uniess they also are in T’gsx Therefore
Merge-tags(Tgs, Tgsz) = Tgsz. @

_ Lemma6.6: If Canszatent-tags(Tgw, Tgsb) then Tgso: Merge-tags(Tgsa, Tgsb) and
symmetrically, Tgsb C Merge-tags(Tgsa, Tgab).

-55.

b
i

-Arbiter-name, we can stop after considering each pair,

Consider all pairs (Tga, Tgd) € Tysd X Tgsb. If Arbiter-name(Tga) #
Arbiter-name(Tgb) then both get included in Merge:tags(Tysa, Tysb). I
Arbiter-name(Tga) = Arbiter-name(Tgd) then thie’ one t!ltt s the prefix of the other (and
one is since the sets are consistent) gets discarded-" in- ‘the’ - comstruction of
Merge-tags(Tgsa, Tgsb). Since both Tgsa and Tygsb have only one occurrence of each
B0 further preﬁxmg cugbwn

ey et

Tgsd) or a Tgb of whlch itis a

[T I

Hence each Tyga either lt;qug?pggrswumc-tsgc(

.prefix‘appears. Therefore, by the definition of B :‘”:", we uee that Tgsa G
' Merge-tag(Tgea; Tgsb) and symmotvically. & - o o |

Extension of Determinate Operatou

TN b B
Code

" The Hold operator u; the’ simpiut opertw’t m emud Yo uuedamem-ws It is
b deﬁnédasfoﬁbwﬁ TR e s

. Hold f(Tss)-{TsaeHouz “(Tss) lv'nuaaw "‘(Tu) Tsa¢m}

thrcHold o (Ts)= "
zfpm(r.kurm Hold' (Ts)&h&iafuﬁnf(,, Hotd (Taf)

'ﬁ\k

Whmﬂold (1"3)- (C,i l)@ Ts.

 Thatis; Hotd H(T'si) i the set of 21l tigged-streamy ‘froai T'ss with. the add:ﬁenl item

“empty-taued C” attached to the front, and:. mcem ‘set s reduced to:eliminate

 strict prefixes. ‘But sifice Pesis already: MW«{,MW the extension of “@"

is trivial, wecmmplify the definition to: Ay ap

Hold G(Tss)-{(c {})@Ts I TsETu}

‘Note that since any tag-set extends the empty ta;—sat, the tagsed-streams in Hold ‘(Tss)

obey the tag-set extension rule. Note aiso thtt the unen’éadcd Hold funcnon here is
verysnmﬂartothelioldﬂmcnonmChapter4 <L —

To simplify the definitions of the rcmmm: DFPL operatom, we define once and for
all the completion Op“ of an operator Op. Namely:

0p“(...,Ts,,...,Tsy)= L1 Op(Cs(Ts),...,Ce(Tsy))

-56-

e

Where Cs(Ts)=
If Dom(Ts)<w Then {Ts}
Otherwise { Tsa | Tsa€Ts}

* This definition is the obvious generahzauon of the one mdabove in“the defimition of
H old “ and is equlvalent to the definition used in Ciiapter 4.

LemmaG 7: The completion Op* of an isotone operam Qp, as defmed above, is

continuous on its Tagged-stream arguments.
v

~ The single “U”is well defined because the codomain - of Gp is the set Tagged-
streams.which is w-chain complete and the set Op(Cs(T3), ..., Ca(Tsy)) is directed and of
cardinality no bigger than @ [Mar-76, Mar-77]. The proof is thus the obvious ,generaliza
tion of the proof of Theorem 4. 3, subsntunng directed sets for chams and the domain
Taggsd-otnams for Cpo-atnama ' '

Now we can define the extended Sunple Ogerators T’he extcnded Smple Operator
Sop,¢ of N arguments and one parameter F (the function to be apphed), esscntia}ly
takes the Cartesian product of its input tagged-stream-sets and afpplm ‘the stream
operator Sop, to each element thereof to get -an output tagged-stream-set, from which
strict prefixes are eliminated (Prefiz-reduction). However, .whenever Sopy finds ‘
tag-sets which are mutually inconsistent, it ceases .processing that pamc.ular N-tuple of
input streams, truncating the output stream: aceordingly. Thig -insures that F is ‘aot
applied to any data which could not. coexist under a . particular sequence of non-

_determmate choices. The precise definitions of Sc:op,,,£ and Sop,., are:

Sop,‘(Tss», sy T88y) =
{ Tsa € Sop,*(Tss,, ..., Tesy) |
Y Tsb eSop,.‘”(.Tas‘, ,Tssy): Tsaist}

-57-

Where Sopo(Ts,,...,Tsy)=
If 3ISN: TsI-()Then ()
If Consistent-tags (Tag-set(Ts,'),..., Tag-set(Tsy')) Then
(F(Datum(Ts,'),...,Datum (Ts,')),
Merge-tags(Tag-set(Ts'),..., Tag-set(Ts,'))) ®
Sopp(7 T3 ,...,7 Tsy)
Otherwise ()

Next we define the extended Outbound Switch operator. The Oswitchpf operator
takes two arguments: the control tagged-stream-set, Tssc, the data tagged-stream-set,
Tssd, and one parameter, the port number P. This parameter is necessary since the
Outbound Switch is an N output operator, and mathematical notation does not directly
allow such functions. Osw-itch,f essentially applies Oswitch, to each pair of input
tagged-streams in the input tagged-stream-sets, and then Prefiz-reduces the resulting
set. Again, Oswitch, stops processing its input streams whenever it finds two tag-sets

which are inconsistent. The precise definitions of Oswitch, ¢ and Oswztch are:

Oswitch £(Tssc,Tssd) =
{ Tsa € Oswitch,” (Tssc, Tssd) | V Tsb € Oswitch,”(Tssc, Tssd): Tsa€£Tsb}

Where Oswitch ,(Tsc,Tsd) =

If Tsc=()VTsd=()Then()

If Datum (Tsc')= P A Consistent-tags (Tag-set (Tsc'), Tag-set (Tsd')) Then
(Datum (Tsd'),Merge-tags (Tag-set (Tsc'), Tag-set (Tsd'))) ®
Oswitch, (T Tsc,T Tsd)

If Datum (Tsc') # P A Consistent-tags (Tag-set (Tsc'), Tag-set(Tsd')) Then
Oswitch, (1 Tse, T Tsd)

Otherwise ()

Last we define the extended Inbound Switch operator. The Iswitch® operator takes
N + 2 arguments: the control tagged-stream-set, Tssc,. and N +1 data tagged-stream-sets,
Tss,. [switché applies Iswitch to each N + 2-tuple from the Cartesian product of its inputs
sets. Iswitch stops when it finds tag-sets which are not consistent, as usual, but note that

Iswitch recurs differently than the previous operators; although it always takes “7" of Tsc

.58-

(the control tagged-stream), it only takes ‘7" of the selected data tagged-stream, Ts,.
The precise definitions of Iswitché and Iswitch are: O

Iswitché(Tssc, Tss,,...,Tss,)=
{ Tsa € Iswitch® (No-tags, Tssc,Tss, ..., Tssy) |
V Tsb € Iswitch® (No-tags, T'ssc,Tss,,..., Tss,): Tsa£Tsb}

Where No-tags= { } _

And Iswitch (Tgs, Tsc,Ts,,..., Tsy)=
If Tsc={) Then() -
If Datum(Tsc,)=O0ATs = () Then O
If Datum(Tsc) =NATs,=() Then()
If Datum (Tsc,) =0 A Consistent-tags (Tys, Tag-set (Tsc'), Tag-set (Tsoi)) Then .
{ Datum(Ts,') , Merge-tags (ng s Tag-set (Tse!)y Tag-set(Ts,'))) ®
Iswitch (Merge-tags (Tgs, Tag-set (Tsc'), Tag-set(Ts,'), |
7 Tsc, 7 Tsy,...,Tsy)
If Datum (Tsc,) = N A Consistent-tags (Tgs, Tag-set (Tsc') s Tag-set (Tsy')) Then
(Datum (Ts,'),Merge-tags (Tgs, Tag-set (Tsc'), Tag-set(Ts,'))) ®
Iswitch (Merge-tags(Tgs, Tag-set (Tsc'), Tag-set (Ts,,' », |
T Toc,Tsy,...,7 Tsy) ' '
Otherwise () |

Continuity of the Determinate Operators

Theorem 6.1: The extensions of determinate operators, as - defined above, are
continuous functions in all of their tagged-stream-set arguments.

Let F* be a function on tagged-streams which is continuous and thus isotone, and
let {Tss,, Tss,, ..., Tss} be a chain whose supremum is Tss. (Although F may be a
function of several arguments, we are considering continuity in one argument at a time
so for brevity we elide the others and write oaly F(X).) Consider the sequence of image
sets: {F“(T'ss), F*(T'ss,), ...s F“(Ts2)}; note that this is not the extension of F“ as above,
just the normal application of a function to a set of arguments. If '{‘Ts k, T3y, T8},

where T's, € Tss,, is a chain whose supremum is Ts, then {F“’(Tsx), F“’(TsKH), cens
F°(Ts)}is a chain whose supremum is F“(T's). (We start the chain with K instead of 1
because the cardinality | TssII is isotone in I and hence not all possible chains start in
' Tss,.) But, although F(Ts,) € F“(Tss)), it is not necessarily the case that F“(Ts,) €
F%(Tss,) because F¥(Tss,) is the Prefiz-reduction of F“(Tss;). However, if F“(Ts)) €
F4(Tss,). then F*(Ts,)€ F&(Tss;). because F*(Ts)) € F&(Tss,) means that for all
F“(Tsa,) € F¥Tss,): F“(Ts,) € F*(Tsa;) and F*(Tsa,) £F“(Ts,). Butthen Ts,€Ts, , .
and Tsa, € Tsa, , taken together imply that F(Ts,)<€F“(Ts,,) and that F“(Tsa,) <€
F(Tsa,,). Thus F*(Ts,) €F“(Tsa,,) and F*(Tsa,) « F“(Ts,) by Lemma 4.1.

Therefore, every chain of F*(Ts,) (an element of F“(T'ss;)) has a closed-above subchain
F(Ts I>) (an element of F&(Tss 7>)) which is disjoint from all other such chains and
thereby establishes the necessary w + 1 sequence of injections from F‘(Tssx) to
F(Tssy,) and on to F¥(Tss). This proves that {F&(Tss,), F¥(Tss,), ..., F&(Tss)} is a

chain and F¥(Tss) is its supremum. [

\

Theorem 6.2: The extended operator Hold* is continuous.

The continuity of Holde follows easily from Theorem 6.1; we merely observe that
“®” is isotone on streams. Note that our results in Chapter 4 concerning streams carry
over to tagged-streams, since the pairs (Datum, Tag-set) make perfectly good stream
elements, that is, the codomain of a stream function may be any set with an equality
relation. The only care we must take is to show that our resultant tagged-streams obey
the tag-set extension rule. It is clear that a tagged-stream whose first element has an
empty tag-set obeys the tag-set extension rule if the remainder of the tagged-stream

obeys the rule, which it does by assumption, being the input.]
Theorem 6.3: The extended operator Sop¢ is continuous in all of its arguments.

To show that Sopf is continuous on tagged-stream-sets, we first note that Sop‘ is an
extension of Sop“, which obeys the precondition of Theorem 6.1, because Sop“ is the
continuous completion of Sop (by Lemma 6.7) if Sop is isotone. So we need only prove
that Sop is isotone on tagged-streams. We prove that Sop is isotone in its I-th (Data-
path) argument by showing that if Ts, € T'sz, then Sopr(rsl, s T8y ey TsN) €
Sopi,(Tsl,...,Tsxl,...,TsN). The proof proceeds by induction on the finite ordinal
Dom(Tsa:l) = N; note that Tsz ={ Y iff Dom(Tsxl) ={}, and that Sop,(Ts,, P O FU

-60-

Ts,) = () for any 1 SI < N. Substituting T'sz, in the definition of Sop(Ts,,...,Ts, ...,

Ts,), we get:

Sopp(Ts,,Tsx,,Tsy)=

If Toz,=() Then ()

If 3T A1 Ts, ={) Then ()

If Consistent-tags (Tag-set (Ts,'), Tag-set(Tszt) Ta.g-set(Tsy')) Then
(F (Datum(Ts,'), Datum (Tsz,),Datugu(Ts,')),

Merge-tags (Tag-set(Ts,'), Tag-set(Tsx,'), Tag-set(Ts,'))) ®

Sopy (1 Ts,,7 Tez,,7 Tsy)

Otherwise ()

We assume in the steps that follow that V1 <7< N:Ts, %),.sinqe otherwise Soﬁ,(Tsl,...,
Ts,...,Tsy) = (). The base step is: Tsx,={) implies Ts, =) so that Sopp(Ts,, ..., Ts,,

+T8y) = () = Sop,(Ts,,..., T8z}, ..., Tsy) The induction step is: lathom(Tsz,)-N +
1. I Ts,i(), then Sop,(Ts,, ..., T8y, ... TsN)-(), which is the prefix of any tagged-
- stream. If Ts, % (), then Ts,' = T'sz,' and 7T3,€ *rTsz, Now if - Tag-sct(Ts) is not
consistent with some Tag-set(Ts,'), then Sop,.(Ts s T8p. T’N) = (), which is the
preﬁx of any tagged-stream. Now if Tag-ut(Ts,’) is consistent with all Tag-set(Ts,'):

Sopp(Ts;,...,T8;,...,T8y)=
(F(Datum(Ts,'),... ,Datum(Ts,'),...,Datum(Ts,')),
Merge-tags (Tag-set(Ts,'),..., Tag-set(Ts,'),..., Tag-set(Ts,'))) ®
Sopp(T Tsl,...b,‘r Ts;,..., 7 Tay)

Sop,(Ts,,...,Tsz,,...,Tsy)= o
(F(Datum(Ts,'),...,Datum(Ts,'), .. ,Datum(TsN')),
Mcrge-tqya(Tag-ut‘(Ts,'),...,Tag-ut(Ts,),... Tay-sct(TsN‘)))(D
Sop (T Ts,,...,7 Tsz,,...,7 T3y)

Sopp(Ts,,...,Tsz,,...,Tsy) =
(F(Datum(Ts,'),...,Datum(Ts,'),...,Datum(Ts,')),
Merge-tags (Tag-set(Ts,'),..., Tag-set (Ts,'),..., Tag-set(Tsy'))) ®
Sop,.('r Tsy...,7Tsz,,...,T TsN) ' '

61-

Hence, by the isotonicity of “®" we deduce that Sop(Ts,, ..., TéI, s T8y) € Sopo(Ts,
coos T8, ..., T8y) given the inductive hypothesis, that Sop,(7Ts,...,7Ts, s TT8y) €
SopF.(TTsl,...,'rTsa:I,...,'rTsN). This is the inductive hypothesis because 7Tsz, €773,
and Dom{(7Tsz;) = N. '

Next we must show that the tagged-stream which results is indeed a proper one
which obeys the tag-set extension rule. To do this we apply Lemma 6.4. Assume J<K,
and let Ts’ and T'sX be the J-th and K-th elements in the tagged-stream output of
Sopp(Ts,s..., T8y ...y Ts,). Also assume that all its inputs Ts, obey the tag-set exteﬁsion
rule. By unwinding the recursive definition of Sop, we see that Tag-set(Ts’) =
Merge-tags(Tag-set(Ts), ..., Tag-set(Ts,”)) and the same for K. Thus we can easily
see that T's obeys the tag-set extension rule — refer to the above equations for
Tag-set(Ts’) and Tag-set(Ts¥) and note that the inputs T's, obey the tag-set extension
rule (Tag-set(Ts,”) & Tag-set(Ts,X) for all I). Therefore since each application of Sop
obeys the rule we conclude that Sop® obeys the tag-set extension rule as well as being

isotone.
Theorem 6.4: The extended operator Oswitché is continuous in both of its arguments.

~ Again we prove this by first proving that Oswitch is isotone on tagged-streams, then
appealing to Lemma 6.7 and Theorem 6.1. We prove that Oswitch, is isotone in its first
argument by showing that if T'sc € Tscz then Oswitch ,(Tsc, Tad) € Oswitch (Tscz, Tsd).
The proof again proceeds by induction on the finite ordinal Dom(Tscz) = N; note that
Tscz=() iff Dom(Tscz)={ } and that Oswitch,((), Tsd) =()= Oswitchp(Tsc,(). Substi-

tuting T'scx in the definition of Oswitch,, we get:

Oswitch, (Tscz, Tsd) =

If Tscx=()VTsd=() Then()

If Datum (Tscz') = P A Consistent-tags (Tag-set (Tscz'), Tag-set (Tsd')) Then
(Datum (Tsd') , Merge-tags (Tag-set(Tscx'), Tag-set (Tsd'))) ®
Oswitchp, (7 Tscz, T Tsd)

If Datum (Tscz') % P A Consistent-tags (Tag-set (Tscz'), Tag-set (Tsd')) Then
Oswitch, (T Tscz, 7 Tsd)

Otherwise ()

-62-

We assume in the steps that follow that Tsd % (), since foi any Tsc and Tscz,

| vOawztch (Tsc,() =()-Oswttch,(Twz,(. The base step is: Tscx-() unphes Tsc=()
go that Oswitch,(Tsc, Tsd) = Oswitch,((), Tsd) = Oswitch p(Tscz, Tsd) The inductioh
step is: let Dom(Tscz) = N +1. If Tac =(), then Oswitch (Tsc, Tsd) lIl-(), whxch is tha
prefix of any tagged-stream. If Tsc 9 (), then. Tsé' = Tacz' aitd v Tsé € TTscz. Now if
Tag-set(T'sc') is not consistent with Tag-sst(Tad'); thew: ﬁbmtck;(!’w, T'sd) = (), which is
the prefix of any tagged-stream. But if Taf«nt'(!'n‘) is' consistent ‘with ng-ut(Tsd‘) :
and Datum(Tsc') % P then: '

Oswitch,,(Tsc, Ted) = Oswitch, (7 Tsc, T Tsd)
Oswitch, (Tscz, Ted) = Oswitoh , (7 Tscz,r Ted)

Hence, since Dom(fTscz) = N and 1Tsc € fTacz. we may assume the mductxon hypothc- |
sis, that Oswitch (fTac,fTsd)SOmtch ('rTscw,fTsd) If howv:ver Tag-act(’."cc') is .
~ consistent with Tag-set(Tsd"), and Datum(Tsc’) =Pthen: B

Oswitch, (Tsc, Tad) =
(Datum (Tsd'), Mergé-tags (Tag-set (Tec'), Tdg-set (Tié‘i))@
Oawitch (r Tac »7 Tsd)

Osmtch (Tscz,Tsd)=
(Datum(Tsd'), Merge-tags (Tag-set (Tacz‘), Tag-ut (Tsd t))) ®
Osivitch,, (T Tscz,r Tsd) ‘ '

So Oswitch,(Tscz,Tod) = . L
(Datum (Tsd'), Merge-tags (Tag-set (Tsc!) Tag-ut (Tsd'))) ®
Oswitch, (7 Tscz, T Tsd)

Hence, by isotonicity of “®" we deduce that -Oswitch ,(Tsc, T2d) € Oswitch (T'scz, Tsd)
given the mducﬁoa'hypomesix, that Oswiteh ;(1Tsc, TTsd) s:omm,(zrm, TTsd).

Now we must show that Oswitch obeys the tag-set extensxon rule Agaxn we apply
Lemma 6.4, t!ns time to the tagged-stream output of Osmtch Assume Jout < Kout,
and let Ts/°% and _Ta"“‘ be the Jout-th and Kout-th elements‘ of y‘_OéwitchP(Tsc,‘ Tsd).
Note however that T'sX** does not necessarily derive from TscX* and Tsd%*“* because

the recursion schema skips elements of the input tagged-stream (i.e. whenewer

-63-

Datum(Tsck) » P). But Tag-set(TsEo%) = Merge-tags(Tag-set(TscE™), Tag-sethZ ﬂ&‘))
for some Kin 2 Kout and similarly for Jout siid*Jin. "Pheén the same argument we used

* to show tHat the output of Sop;. obeys the tagiset extension rife shows that 'tﬁé'output of

Oswitch , does. Therefore we conciude that Oswﬂck G obéys*the tag-set exte:mon rule

© as well as bemgmowne E!

Theoren 6.5 The extended operator Imt,qlt‘ i8 CORLNUOUS. in: all of its arguments (by

VLemma 6. 7 and Theorem 6. 1)

3

The proof that Imm is isotone is more dtﬁma&& Fmt we - show that Tswitch is

- isotone on tagged-streams, thea the isotonicity of; Lewitoh': fullows directly. from Theo-

rem 6.1. We prove thatJewitch is isotone in il itx Ts; arguments by showing that if for
all 0 SIS N, Ts, € Taz,, then Iswitch(Tgs, Tsc, sy, .. 'iﬂéﬁ'ﬁiﬂi%(ﬂiam Tez,, ...
Tsz,) for any Tgs € Tag-set. This tune t.he proof e;oceods by szmultaneous mducnon on

the finite ordinals Dom(ng,)-N,, note t.hat M(Tnz -{} 1# Tnl-() ‘and that -

Iswitch(Tygs, (), T‘o' s Ts)- L) but that 1t 1s oot ngceuanly ;rue that Icmtch(Tga, Ts,,
N A T’N) - {). Subsutuung Taa: (for all I) mto the deﬁ;mt:on of Iswitch we get:

.Iswitch(Tgs,Tsc,Tsz,..., Tsa:N) -
If Tsc-() Thcn()
If Datum(Tscl)-OA Ta:c -() Then()
If Datum(Tsc,)=NATsz, =) Then()
If Datum(Tsc,)=0A Consistent-tags(Tgs, T'ag-set{ Tact) Tag-séi Tuo')) Tluu
{ Datum (Tuo*)ﬂwe-ma(é'w, Taprbet (Poc'); m«cﬂ(T&w Me
Iswitch (AMferge-tags(Tge, Tag-set (Pae' 9; Tag-&d(%“ »,
7 Tac, 7 Tszy,..., Tozy) | '

If Datum(Tsc)= N A Comutmt-tags (Tgs R Tag-ut (Tsc'), Ta,g-ut(Tcé,,’)) Then
_ (Datum(TazN') Moﬁe-cags(Tas Tag-set (Tsc), Tag-sat(TszN‘ e
,_ Iswitch (Mﬂrgq-taqs (Tgs, Tag-m (Tac'), Tag-ut(Tn,‘)),
'r Too,Tsz T Tszy)

Otherwise ()

-64-

We.assume in the steps that follow that Tsc# (), since for any Ts,, Iswitch(Tgs, (), Ts,,
...y T8,) = (). The base step is: for all 0 S I S N, Tsz, = () which implies for all 0SI S N,
Ts, =) so thatl switch(Tgs, Tsc, Ts, ..., T8 N) = Iswitch(Tgs, Tac,{),....(}) =
Iswitch(Tgs, Tac, Tsz, ... Tsz,). The induction step is; let ZQQSNDOM(TM J=N+1.

There are several cases to consider depending on whether Datum(Tsc')=1 or not,

~ whether Ts,={) or not, and whether the tag-sets aré consistent or not. -

If Datum(Tsc')=1 and Ts,= (), then [/ switah(Tg‘s; Tsc, Ts, ... Ts,) = () which is_
the prefix of any tagged-stréam. If Dotum(Tsc')=I and Ts;»¢), then Ts)' = Taz,' and

" tTs,€1Tsz,. Now if Tgs, Tag-set(Tsc') anid Tag-eet(Ts;') are not mutually consistent,
I I T

then Iswitch(Tgs, Tsc, Ts,, ..., Tsy) =), which is the preftx of any. mgsedmeam But if
they are mutually consistent, then: - : ‘

. Iswitch(Tgs,Tac,Ts,, ..., Ta;s.. Toy)=
(Datum (Ts,'), Merge-tags (Tgs, Tayout(Tac), Taq-aot(Ts,')))@)
Iswztch(Mcrgc-tags(Tgs Tag’ast(Tac), Tag—nt(Tsi)),
7 Tsc,Tay,..., T TsI, ,TaN) '

Iswitch(Tgs, Tsc, Tss,, .. Tsz,, .., Tszy) =
(Datum(Tsz,'), Merge-tags (Tgs, Tag-set (Tsc'), Tag-ut(Tsz,'))) ®
Iswitch (Merge-tags(Tgs, Tag-set (Tse'), Tag-ut(Tsz,)) ,
T Tsc,T8y,..., 7 Toxz,,..., Tsy)

Iswitch(Tgs,Tsc,Tex,,..., Ts2;y ..., Tozy)= , B
(Datum (Ts,'), Merge-tags (Tgs, Tag-set(Tac'), Tag-set(Ts,‘)) '®
Iswitch (Merge-tags(Tgs, Tag-set{Tsc'), Tag-set (Ts,')),
T Tsc,Tsy,...,T Tsz;, ..., T8y)

L e

Hence, by isotonicity of ‘.‘®” we conclude that Iscqitch(Tgs, T§c, T8y, ... Ty Ts,) €
Iswitch(Tgs, Tsc, Tszy, ..., Tsz,, ..., Tszy) given the induction hypothesis, that
Iswitch(Tgem,7Tsc, T8y, ..., TT8y, ..., Ts)) € Iawitﬁh(Tym,*rTsc; Ts; ..., T8z, ..., Ts N
where Tgsm = Merge-tags(...). In any case, we are reducing 20 <sexDom(Tsz)), so the

induction is well founded.

Proving that Iswitch is isotone in its first argument (T'sc) is a relatively straightfor-

ward induction (similar to that of Sop) and is therefore omitted.

-65-

The proof that Iswitch obeys the tag-set extension rule is more complicated than
any of the previous such proofs. The reason for this is that the recursion schema
includes an extra variable Tgs, which accumulates the tag-sets generated by the previous

recursion levels.

Now let Ts = Iswitch({ },Ts, ..., Tsy) and consider Ts’/. Upon unwinding the
recursion, we see that Tag-set(Ts,) = Merge-tags(Merge-tags(..., Tag-set(Tsc’ '),
Tag-set(Ts, %), Tag-set(Tsc”’), Tag-set(Ts,, %) (assuming Ts’ even exists). Now by
associativity and commutativity of Merge-tags, we see that Tag-set(Ts,) =
Merge-tags(Tag-set(Tsc’), Tag-set(Tsc’ '), ..., Tag-set(Ts, %), Tag-set(Ts,, %), ...) =
Merge-tags(Merge-tags(Tag-set(Tsc”), Tag-set(Tsc’ ™), ...), Tag-set(Ts, %),
Tag-set(T's,,), ...) But by since Tsc obeys the tag-set extension rule, Tag-set(Tsc’ ") &
Tag-set(Tsc’) etc., thus by Lemma 6.5 we get Tag-set(Ts”) =-Merge-tags(Tag~s¢t(Tsc"),
Tag-set(Ts, %), Tag-set(Ts,, %), ...). Now we apply associativity and commutativity of
Merge-tags again in order to group together the T'ss with the same subscript (i.e. to group
together the data inputs)-to get Merge-tags(Tag-set(Tsc”’), Merge-tags(Tag-set(Ts,'), ...),
...s Merge-tags(Tag-set(Ts,'), ...)). (Although we show Ts,' for all I, it must be
understood that the whole M-tags subexpression is present iff M < J:I € Datum(Tsc¥)).
Now by N applications of Lemma 6.5, we derive that Tag-set(T's,) =
Merge-tags(Tag-set(Tsc?), Tag-set(Ts Covnt(Tee0) Tag-set(Ts, Coxnt(TeeN0))) where
Count(Tse,I,J) is the number of times the value I appears in the set {Datum(Tsc™) | M
$J}. Bythe same argument, we also derive that Tag-set(TsK) -
Merge-tags(Tag-set(TscX), Tag-set(TéOC°“"‘(T“'°-K), ..., Tag-set(Ts, Count(T1e.N.K))) (again
assuming that TsX even exists). Since Tsc and all Ts ; obey the tag-set extension rule, we
see that if K2J then Tag-set(Tsc’) G Tag-set(TscX) and Tag-set(Ts,Coumt(TeelD) g
Tag-éet(TsIC"“"(T“" &)Y for all I S N (since Count(Tsc,I,J) £ Count(Tse,I,K) for all I £
N). Thus by N + 1 applications of Lemma 6.4, we conclude that Tag-set(Ts’,
Tag-set(Ts,)) so that T§ obeys the tag-set extension rule too. Therefore we-have proved

that Iswitch® obeys the tag-set extension rule as well as being isotone.

Definition of Non-determinate Primitive Arbiter

In order to define the Arbiter operator, we first define an auxiliary function

Eztend-tags which takes two arguments Choice and Tgs, and a parameter 4. Eztend-tags

-66-

appends the number Chotce on to the tall end of the Chowc-ccqucuce m the Tag, Ty (in

‘Tgs), whose Arbiter-name is 4. Tts precise definition is:

Eztand-tays (Chotce,Tgs) =
{TgeTygs | Arbtta‘r-mm(Ty) w4}y
f(a Clmwc-uqucm(Ty)@ Cllowe) | Ty € TgsAArbster-mm(Tg)-A }

WhereS® X =3Sx
And Dom(Sz)=Dom(8) + 1
And Sei=1f I ¢ Dom (3) Then S, Otherwise X

The Arbmr operator takes N + 1 argumcnu wluch are tagged-stream—sets, Tn,, and
one panmeter A which is the Arbstcr-uamc (we omt ftmhcr rgferences to 'A in the o
explananon) The Arbctcr apphes Arbmcrgc to each N + l-mple from the Cartesxan

‘ product of the Tss’s and Profzz-nducu thev re:plt Arbnurgc A takes N + 1 tagged-’

streams and merges them ali pomble ways, producing a Prcfzz-raduccd set of taued-
streams as us result. It does this by usmg Arbmcm Ad for each I s N and takmg the

. union of. thexr results. Each Armrgc 47 USes Arbaurpo 4 tccurstvely to merze the tail of

the Ith tagged-stream with all the rest, and ctuchcs the head of the Ith tggged-stgeam to-
each tagzed-stream in the recuiung set. The N sets wb.ich recuit at each :ecumon level

are umted to form a smgle set wlnch is the overall result of that level Arb'um‘gc 4 and

Arbmerge, ; both take an. addmoml argument, Tgs (mmglly the sez ‘with one Tag whose
Arbiter-name is A and whose Chmcc-sequms is empty). whxch tecords the arbitrary

' choxces made so far in the. recurslon 'I'he precue deﬁmtwna of Arbiter o Arbmorgc 4 -

~ and Arbmerge 4 are:

Arbiter ,(Tss,,..., Tssy)= ‘
{Tsa € U Arbmergs “(Tgs,,Tss,,...,Tosy) |
V Tsb € U Arbmerge “(Tgs, ,Tss,...,Tesy):Tsad Teb}
Where TysA-'{(A,(N}

AndArbmergeA(Tys,Tao,...,Ta&)-
{Tsa € U, Arbmerge, (Tgs,Ts,,...,Ts,) |
Vste Upcy Arbmerge, (Tys,Ts,...,Te;;}: Toa £Tsb}

-67-

AndArbme'rgeu(Tgs,Tsy,...,Tay) =
If Ts,=()Then {()} -
If Consistent-tags (Extend-tags (1, Tgs), Tag-set(T’i‘)) Then
{(Daium(Ts,’),Tgsz)@ Ts | ' '
Ts € Arbmerge, (Tgsz,Tsy,..., T Tofs...,Tog)A -
Tgsz = Merge-tags (Extend-tags , (I,Tgs), Tag-set(Ts,'}) }
Otherwise {{)}

The fact that Arbmeryc s contmuous on its tagsed-stream arguments, even though its
result is a tagged-stream-set, will be made clear by Lemma 6 10 ‘Note that the uses of .
Arbmerge “ in the definition of Arbiter, make use of our funcnon-of—argument—seu
convention only with respect to the Tss, although Tgs 2y ;s a set, Arbmergc a wmts a
~such a set as its fn'st argument.

‘Continuity of the Non-determinafe Arb:ter

To prove that Arbiter, is isotone, we first prove ' that ‘Arbmerge, is -isotone in its
tagged-stream arguments. Note that the output domain is. the demain of Tagped-stream-
setd while the input domain is that of Tagged-streams. Siice they are‘botlf posets lowever,
isotonicity is well defined. First, however, we prove ‘anothér’ handy lemma about

 tag-sets.

Lemma6.8: For any legitimate tag-set Tga, Tgat: Exteml-tags A(C Tga)

From the definition of En:tmd-tags we see that an element Tgz of Extend-tags (Cs
Tgs) is either already an element of - Tgs (it Arbztcr-namc(Tga:) # A)or it denves from
‘the element Tgs in Tga such that Arbztcr-nam(Tga) - Arbzter-nama(ng) and
Chotce~lequmce(Tg) € Chozcs-uquence(Tyz) (1f Arbcter-name(ng) =4). ®

Lemma6.9: If VI < N:Ts, € T'sz, then Arbmerge A(Tga, T:o, » Ts,) 4 Arbmerge (Tgs,

T3z, ..., Ts3,).

To show that this is true, we need an injection from Arbmerge A(Tgs, Tso, wTs M) to
~ Arbmerge (Tgs, Tz, ... TszN) such that each element of the first is a prefix (“<€") of

an element of the second. Since TslgTsx for all I SN we see that Tsz, -TsI

-68-

(assuming the non-trivial case Dom(Ts;)#{ }). Upon subititgﬁng Tsz, for Ts,in the
definitions of Arbmerge , and Arbmerge, 1 Ve get:

Arbmerge, (Tgs, Tsz,, ..., Tsz,) =
{Tsae U,y Arbmerge, (Tgs,Tsz,...,Tozy) |
VTsbe U, Arbmergs, (Tgs,Tex;,...,Tozy):Foa o Tob}

And Arbmerge, (Tgs,Tsz,...,Tsz,) =
IfTazI-()Theu fO}

Ir Canmtmt-taga(EmM -tags, (I, Tgs) Tag-m(Ts,‘)) Tlnn‘
{(Datum(Ts'), Tgsz) ® Tez | | o
TszeArbmch(Tgaz,Tseo, oo 7 Toz,.. ,Tsxx)/\

Tgaz-Mcryc-taga(Eztmd-teys (I,Tgs), Taa-ut(Ts,‘))}
bthcrwuc f0)}

Now cons:der a stream T'sa in Ardmerge A(Tys, Tsp, ... TaN) and consnder 1ts first
element Tsa'. Clearly, Tsa € Arbmcrya " J(Tyc, Tao, . TsN) for some I Tsa -
Datum(Ts,'), Tgaz), aad 7Tsa € Arbucrye‘(Tm Togy...oTTaps s Tcy) where Tgcz -

- Merge-tags(Extend-tags (I, Tgs), Tag-set(Ts,')).- From this. -we. conclude that Tsa may
be charectenzed by its decision sequense- or “ouele” &y whiere; K € Dmt(Tu) The
same aracle may be applied to :he elaboration of: =

Arbmcrge 1 (Tgs,Tsz,,...,Tox,)=

{Tsa e UISNArbmcrgo“(Tga Tsz,, .. ,TazN) | .
VTabeU,sNArbmergcAJ(Tga Tsz,, TszN) Taa(st}

This will give nse toa set of one or more streams smce the recurslon can proceed ‘at
least as far as before (because T's 1S T8z, tor all I). If we pxck an arbxtrary stream T'saz
from this set, we easily see that T'sa £ Tsaz smce the oracle Iy that generates Tsa
generates a prefxx of T'saz, and the elements of that pfefix are equal to the correspond-
ing elements of Tsa since those cloments detive from: the. Tc,v ‘prefikes of the Tsx,.
Furthermore, if T'sb# T'sa is in Arbmerge (Tgs, Ts,, ..., ..s Ts,,) the Tsbz in Arbmerge (Tygs,
Tsx, ..., Tez,,) of which it is a prefix must not equnl Tsaz by Lemma 4.1. Thus we have
established an injection from Arbmerge, (Tgs, Tso, T'N) to Arbmerge A(Tgs, Tsz,,
' Tsz,) such that each element of the domain i is a pref:x of 1ts unage. Therefore,
Arbmerge A(Tga, T3y, ..., Toy) % Arbmerye (Tgs, Taz TwN) ‘ "

-69-

Each stream in Arbmerge (Tgs, Ts, ..., Ts,) obeys the tag-set extension rule. This

follows easily from Lemmas 6.6 and 6.8.

The result of all this is that Arbmerge, is indeed isotone in its tagged-stream
arguments and each element of its output prefix-reduced tagged-stream-set is a proper

tagged-stream. @

Lemma 6.10: The completion Arbmerge ,“ of Arbmerge, is continuous in its tagged-

stream arguments T's,.

The fact that the output of Arbmerge, is a tagged-stream-set does not upset the
continuity result of Lemma 6.7. All that is required is that the codomain is w directed

set complete, which it is since it is w chain complete.

Now we can state and prove the key result of this chapter: the theorem that
completes the basis for a denotational semantics of non-determinate data flow programs.
It is. principally for this theorem that the chain complete poset of Tagged-stream-sets was

developed in the last chapter.

Theorem 6.6: The non-determinate Arbiter operator is continuous in each of its

(tagged-stream-set) arguments.

The proof of this is similar to the proof of Theorem 6.1. First, to shorten the text of
the proof, we abbreviate Arbmerge A(Tso, s T8p, ..., T8y) as Amp(Ts P) and
Arbiter (T'ssy, ..., Tssp, ..., Tss,) as Ap(TssP), where the P-th argument is the one of
interest. (During the rest of the proof, T's, and Tss, will refer to an element of the
respective chain, not to the I-th argument of Arbmerge, or Arbiter,, unless otherwise
stated or implied by appearance as an explicit argument.) Now, by Lemma 6.10 we
know that Amp*“ is continuous and thus isotone. Let {Tss], Tss,, ... Tss} be a chain
whose supremum is Tss, and consider the sequence of image sets {Amp“(Tss,),
Amp“(T'ss,), .'..,A'rr.r.p“’(Tss)}. Note that this is not the extension of Amp“, just the
8gp12-+» T8} (where Ts,

€ Tss,) is a chain whose supremum is Ts, then {Amp“’(Tsx),Amp”(Tst),...,

application of a function to a set of arguments. Now if {Ts T
Amp“(Ts)} is a chain whose supremum is Amp“(Ts), by Lemma 6.10. We wish to

establish an w + 1 sequence of injections from Ap(Tss,) to Ap(Tss,,) and on to

Ap(Tss) which demonstrates that they form a chain. Here we must depart from the

-70-

proof of Theorem 6.1 since the result of Amp(Ts) is a tagged-stream-set rather than a
tagged-stream. Noting that Arbiter, ({Tsy}, ... {TaN}) -vArb'merge A(Tgs, Tsgs...s Tay)s
and that Ap(Tssa) s Amp“(Tssa), suggests that we forim the umion: of ‘the maps which
* show that Amp®(Ts.) € Amp“(Ts,), uniting over all -T's, € Tés,. Wé do this and then
restrict the domain of this relation to the set Ap(Tss,) to get a fonction Fj, since we
_ thereby discard any first elements of the relation pair which were eqpal That this
function is injective follows easily from Lemma 4.1. Suppose F‘(Taa) =-F l.(.'l'sb) where
Tsa,Tsb € Ap(Tss,). Then either T'sa € Tsb or sts Tsa by Lemma 4.1. But Ap(Tas,) is
prefix-reduced, so this is mpomble Herice F s aﬁ injection ‘from 'Ap(Tes x) to
~ Ap(Tssy 1) such that each element is a prefix of m uﬁaﬁe, ‘which' establishes that
Ap(Tasy) 4 Ap(Taay,). By repeating this construction sufficiently often (@ + 1 ‘times!)

we establish that {Tss,, Tes,, ..., Tss} is indeod a chain-.of; Jagged-sirearn-sets whose

'“*mprmumi:Tuv:meeeteheiementof!’uhmm of s _chaip - of tagged-

streams. Therefore we have provedthet&pm ﬁemm P Wes arbitmry s0
Arbiter , is continuous in each argument. @

First Order Fix-Points of Non-determimteﬁ?’l’ﬁ?rog’mﬁar’ #

Having estabhshed that all the DFPL prumtxve operators are contmuous in thexr
tagged-stream-set a.rguments, we conctude that any recumon-free DFPL program can be
solved for its first order frxed-pomt behavwr as mdxcated m Chapter 4 “The details of
the data domam do not matter, as long as it 1s w-cham complete Smnlarly, the details
of the operators do not matter, as long as they are conunuoue functxons on the domams
iWe will therefore undertake a simple ﬁxed-pomt computauon

Figure 6.1 shows a non-determinate DFPL prografn with a loop, for which we wrll
compute a first order fxxed-pomt ‘Note that this tune we introdice mput from outside
the loop We do thxs to get a non-tnvnl answer smee none of the operators ‘in’ the loop
generate any data. The Every-otlur operator is aa defxneci m Chapter 4 and mll again
ensure finiteness of the result. The Arbiter operator is as defined earher m th1s chapter
except that we drop the parameter A whxch dlstmgtushes among Arlnter s smce we only ’

have one of them

71-

To solve this loop, we cut it at the point labeled X, then we solve the .equation X=
Arbiter(§{4 , B)}, Every-other(X)). To make the solution process more illuminating, we
introduce the auxiliary variable Y, and generate approximate solutions to the above
™ Arbiter({(4, B)}, Y). Naturally

we start the approximation with X = 1 = {()}. The first approximation is:

equation in two steps: ¥, = Every-other(X,) and X

X, =Arbiter ({(4,8)},{()})={(40,Bo0)}
YlﬂEvery-other(Xl)-{(Ao)}

The second approximation is:
X, = Arbiter ({(4,B)},Y)= {(Ac,Boo,4001),{40,401,Bo10)}
Yz-Every-other(Xz)-{(Ao,Aom),(Ao,Bom)}

Note that the fact that the second input to Arbiter is already tagged (by this selfsame
Arbiter) constrains the way that Arbmerge can do its merging — the tag generated by
Ezxtend-tags must be consistent with the input tag. The third approximation is:

X, = Arbiter({(4 ,B)}, Yz)’- {(Ao,Boo,A001,A0011),{40,A01,Bo10,Bo101)}
Y, 5Every-other(X3)- §(40,4001),{40,Bo10)}

Note that the tags as well as the data is dropped by Every-other from the output tagged-
streams — the output therefore indicates only those arbitrary decisions that actually
entered into the particular output. Note also that the generation of X, “involves
Prefiz-reduction. Part of the compﬁtation of X, involves evaluating Arbmerge({4, B),
(40,4001)). This generates the empty tagged-stream and the tagged-stream (4o, A4os,
Bo1o), both of which are discarded by the Prefiz-reduction which occurs when Arbiter

generates its result tagged-stream-set.

Since Y, = Y, the fixed-point computation has converged and the solution is X =
{(Ao,Boo,Aou,Aoon),(Ao,Aoz,3010,30101)}. If we were cut the graph at Y instead of X,
the first approximation would start with ¥ = {()}, so that X = Every-other(Y)= §()}.
This would delay the convergence by 1 step, but the fixed-point would obviously be the

same. N

-72-

7
Conclusion

Overview

This chapter ties up loose ends and suggests directions for future work in the |
semantics of Data Flow Languages. Some of the loose ends considered are: ‘‘fairness”

- of non-determinate DFPL programs, functional behavior . of DFPL programs with ' loops

and recursion, and the meaning of ‘‘bottom” (or L) in DFPL s semantacs Du'eetions for
future work are suggested in the areas of: our semeuncs as a meins to provmg ‘equiva- .
lence of DFPL programs, operators as valid DFPL data and the - relation ‘to reflexive

domains.

Explanatxon of the Anomaly of Brock and- Ackermn

In [B&A—77]. Brock and Ackerman present two small non—detetmxnate data flow

| programs which exhibit anomalous behavior. The. anomaly is that their operational

behavior is chffcrent from the belmvxor predlcted by a sxmple denotauonal Semanncs
based on sets of streams. From this, they correctly conclude that a Semanncs based only
on sets of streams (which they call hxstorie:) is madequate to characterize non-
determinate systems In our model, based on set of tagged streams, their two programs
correspond to di fferent functions, and thus the:r dxﬁerent behavaor is not anomalous In
partxcular, the first stream element output by the second program 1s tagged, while the
first stream element output by the first program is not tagged The detarls of tlus may
easily be filled in by examining their note, and wxll not be elaborated here.

“Fairness’’ and the Arbiter

As mentioned in’ Chapter 1, a non-determinateé-service program may Oor may not
treat its users “fau'ly” The usual definmon of a “fau'" program .is .that the program
never keeps the user who requests service wamng for more than a spectfled or reasona-
ble period of time. This can be refined by specxfymg what period of time is permtss'tble
Two possibilities are: no user need wait an infinite amount of time for a request to be

-713-

serviced; no user need wait more than a bounded amount of time for a request to be

: ‘serviced after it is presented to the system

Nexther of these definitions of “fmmeu” a{e dxreetly apphcable to DFPL since its
semantics has no notion of time in the usual sense. The semantics of DFPL does,
however, have the notion of relative order of appearance of data items. (This ordenng
is induced by the ordefing of the positive iitégers which is the domain of the function
whxch defines a Tagged-stream.) Thus the ahove deﬁmtions of “fairness™ can be recast
" as follows: any user’s request wxll be serv:ced after a fimte number of othet" users’
requests are serviced any user s request will’ be semced after a bounded number of
| other users’ requests are semced Let us now mvesngete whether etther of these
definitions of “fatrneu" ean be samfxed mthm the semanucs of DFPL

Since the source of ail non-determinate: behavior in. DFPL is the Arbiter, the ques-
tion boils down to the “‘fairness” of the Arbiter.: That is, if several sources. of -requests

are to be merged into one for consideration by some processing program, even if the
program-has 'uitetnei queues for unsatisfied : requests;, the - Arbiter makes the initial
decasmn as to which requeet gets served or even: qmed !or service.

Recall that nexther in the detenmnate semanucs of streams (cf Chapter 4) nor in

the non-determmete semanuc: of tagged-streem-sets (cf Chapter 6) .do we have the
notion of a datum in one stream precedmg or follqwmg a datum m another streem

Therefore, we cannot even express the concept of a datum not bemg delayed at an
Arbiter while more than a bounded number of othér ‘inputs - are processed. There is

another related concept which is expressible however. ‘That is the idea any stream which -

is the output of an Arbiter will never have more than a ‘bourded number of contiguous
data items which are passed thtough from ai;y single input stream. This could ‘easily be
realized by changing the definition of the Arbmerge, subfunction (_cf. Chapter 6) to
have extra arguments which counted how many data items from each input have been
accepted so far and constraining thereby which Arbme»rgek{ subfunction was to be called
at each recursion. Unfortunately, this approach has a crippling flaw. Suppose the
" bound on the number of co’"ntiguous' acceptaﬁees’is N and suppose that one inpug to the
Arbiter is presented with a stream of length N # Mand the other inputs with ~empty
streams. Then the output can only consist of the first - N data items of the non-empty

-74-

input stream, the remaining M items will never be accepted. . Thus in the name of -
bounded delay ‘‘fairness’, we impose in f inite delay in certain circumstances! Therefore
we can reject bounded delay “fairness” as incompa‘ ible with our fairly sxmpie semantics
‘of DFPL. -

said to have fmne delay lf any lnput damm evantually shows up in the output stream no

_ matter what sequence of arbitrary (but allowabic) docmom wcre made by the Arbiter. -~

More precisely, we would say that for any mput stream Tal aod for any Ji m 1ts domam.
then for any output stream T's in the output taqzd “ ‘eam—set Tas there ex:sts 2 finite X
such that Ts% = Ts," Now imagme a two input rhiter h that its left mput is
. presented with the singleton stream (A) (for smphonyy.r we ignote the fact that the mputs o
are really sets), and its right input is' presented . with: ﬁm mm (8,8,..,B). The
output of this Arbiter, accordiiig to its definition in . Chépter s 6, must- be the . tagged .
. stream-set {{4, B, ..., B}, (B, 4, ...; B), ...;{B, .. .Eaﬁ} (Hmwdmpthetags
in the. interest of brevity, they are:deducible from:the data which -are. distinct,) The last
stream in this tmed—meam-m has the 4 all the.way as: manﬂ, ‘No matter how long a
finite stream of B’ s we fead it, thc Arbiter will always produce such a stream as. an
element of its output taued-meam-set Since the Afb%tﬂ‘ ts contmuous, ‘its output when
“confronted with an mﬁmte mput stream is the supremum of its outputs generated from
‘the fimte mput streams wﬁxch have that mf‘mi‘te stream”ai méir mpremum o ‘

To compute this supremum, let us adopt 3 bn of notation. wh:ch departs somewhat I

from our previous notation. Let (4¥) stand for. a stream of N occurronccst,of 4, rather
than the N-th element of a stream 4, (We can distinguish this usage by the precise
lo may be written as: |

typography of the letters 4, B etc.) Then our exam

© Arbiter({4),(B¥)) =
{(BX,4,B%X) | 0SK<N}=
f(B~, ,4)}u{ua‘r A BN-K) IOSK<N}

Now these tagged-stteam-sets clearly comprise a oham for mcreasmg N (they must

because Arbiter is isotone), and that ch&m has a supromnm By our construction- of
~sucha supremum (cf. Chapter 5), each tagzed-stream in gaph tlxsed-stream-set must be
in a chain of tagged-streams which has a tagged-stream supremum The quesuon now m,

.75-

‘ﬁ'@‘“?‘v,

v, .
L7

" theory of fixed-points in the function domain the ‘séco

~ sets where Y mcludes ell feedback and output

does the infinite stream (B“) appear in the supremal output set? The answer .is uo, ex»

because there is no chain of sequences in 'the chain of seh which has that infinite. strem

as its supremum. A set does exist which is an upper bound of the chain. of sets and

which contains that stream, but it would not be the /easr upper bound.

Therefore, although the continuity of the Arbiter preclutles: its 'being fair in the

bounded delay sense, it is fair in the sense of having &ﬁiyﬁmtv deiay.

| Second Order Theory

‘The set of continuous functions from a chain compléte ‘poset to a chnn complete

~ poset themselves form a chain complete posivrﬂhuer the bointmse order'“[Mar-77,
© Ros-77]. Thatis, FRG 1 VE:F(X) 9 GLX)." Thus, “squik
’have fxxed-pomts whzch can, m princxpie, be comlauted by the same ﬂiethod “We call the

jons in “such Tunctions also

d"order theory to distinguish it
from the first order theory of fixed-points in the domain of streams. THere ‘are two basic

-~ classes of DFPL programs whose.funstional fixedepoints are, of interest: the iterative and

the recursive.. We shall first considar.thess sepazately.in. ordac.to see how programs
which have both iterative and recursive parts may be dealt with. ‘

Figure 7.1 shows & prototypical DFPL difined eperstor with an: iterative body. We

~ wish to determine what F is pven G. Thatis, we have the equenon Y = G(Y, X) but we

des:re an F such that Y -F(X) Thu schem u sufﬁcxently general 0 encompus all

'\’.‘,-" Hoids ui’?if‘ ;A S35

xterauve procedures The variables x and Y may m generel be tuples of taued-stream-

4 eyt

mcludes the enure body of

the procedure If not all feedback paths are desxred as outputs, an appropnete projec-

,,,,, AT RBTR R

tion funcuon cnn be apphed to Y to y;eld the output}s,\ b}iu thts changes the solutxon in a

tnvml way. only

T
Let us assume that G’jis continucus and that'G: D% P> D where D is our chain
complete domain. Let G, =A'Y.G(X;Y). Then &} it cortihuous in its single argument.
To solve ¥ = G(X, ¥) for a given X is equivalent t6 sofvitly “;*’!"%-""G;t(Y){fwhi'*cii'is"”done by

" finding ufL, G(1), G (G,)18 To'solvé for the I aBove iowever, we ‘must dllow X to

-76-

be an actual argument. Therefore consider the sequence:

FO-AX.J.

F = }_\X.G(X,L)
F,=\AX.G(X,G(X,1))
FS-AX.G(XyG(XoG(Xpl))) ‘

Clearly each F', is a continuous function, because G is connnuous in each ‘argument, and
both partial application and composition preserve cgngnmty Also, the set {F, | 120}
is a-chain in the functmn domam, :hst is, reg £i. 51',5 . 4T!m followx by u;ductxon
from the facts that G is mtone in jts mond 8§ G(x 4.) Therefore.
wcw‘med. v) et 8 e . b ia

- We concludefromthaarnment thatuybﬁ!tp ocedure which has a loop for a
'bodyhuaweudeﬁnednmaﬁﬁemc&mwﬁe&miu&ﬁnmr

Second Order Fixed Pmu«mmms

T f‘gm

Flgure 7.2 shows a prototyplcal DFPL def'med operator w:th an recurswe body
Agam, by smtable bundling of dau paths and repackagmg of operators, any recumvely
defined operator can be made to look hka F. The equation to be solved is thus Y=

F(X)= H(Gt(X), F(Gr(X))) where Glis the pnn of @ that generates the left output and'

Gruthepartthat gcneratesthenghtnmput Sincath:sequanon ‘must hold for all X, we

abstract to get F=A X. H(GID, F(Gr(x))) "Abstracting once agam we convert this to
the second order (or functional) equation F=AE.AX. H(GI(X), E’(Gr(X)))(F) Thus

we wish to find the (second order) fixed-point of the functional AE.AX. H(GUX),

E(Gr(X))). But we know that any such functional, consuting of compositions of (fu-st
order) continuous funcnons and funct;on vambles, xs (second order) contmuous
Therefore, it has a least ﬁx,ed-pomt, and that fixgd-pomt is the recumveiy defined

function F.

=T7-

We deduce from this argument that any DFPL procedure which has a recursive body
corresponds to a well defined semantic function which describes its behavior. Further-
more, DFPL procedures which involve both loops and recursion can be solved in a similar
manner to yield their overall semantic function. The proper way of determining the
semantic function of a large program, consisting of many procedure definitions and uses,
is of course to solve for the semantic function of as small units as possible, then to build

up the function for the whole program out of these units.

“Bottom’’, Strictness and Termination

In most treatments of denotational semantics [Man-74, S&S-71, Sto-76] the bottom
element of the data domain represents the totally undefined datum, while the bottom
element of a function domain represents the totally undefined function. The bottom
datum, L, is then (reasonably enough) taken to represent the “result” of a non-
terminating computation. That is, the partial function which the program computes is
extended to a total function by defining it to yield L where it was otherwise undefined.
Given this interpretation of L, it is also reasonable to demand that most functions be
“strict”, that is, that they yield . as their result if any of their arguments are L. This
follows from the operationally reasonable notion that it is impossible to invoke a subrout-
ine until the computations of all of its arguments are finished. Strictness is not demand-
ed of all functions however, the I f-then-else function is usually only strict in its predi-

cate so that it can be used to terminate recursions and iterations.

In the semantics of DFPL, the bottom element of the function domain indeed
represents the totally undefined element, but the interpretation of 1 in the data domain
must be different. The data domain of DFPL, recall, is based on the notion of Streams,
therefore its bottom element is the (set consisting of) the empty stream. The empty
stream, however, is definitely not the “result” of a non-terminating computation, but
rather is the definite result of a computation which has not yet received enough input to
generate output on that port. (Note that much output may have appeared on another
port, a luxury not permitted in most programming languages.) Furthermore, DFPL
functions need not be strict at all. In fact, of the primitives, only the Oswitch and the

Pef’s are strict; the Iswitch, Arbiter and especially the Hold (which has only one input)

.78-

are not strict. Therefore, 1 in the data domams of DFPL is not axi “undefmed” element
which is added out of mathematical necesslty (ie. to totahze partxal functions and to
¢lean up the partial order) but is a rather natural object whmh is as much a part of the

nonon of streams as zero 1s of the mtegers

Program Correctness and Equivalence

As we stated in the introduction to this thesis, it is necessary to have a precise
semantics for a programming language in order to. be tble to prove thmgs about pro-
grams. Given a denotational semantics for a proir&m&mg hnmge, as we have for
DFPL, it may be possible to determine the overall: function: computed. by ‘a -program in
that language. Having done so, it may then be possible to show: that this, function. meets
a spemflcatmn (program correctness), or that it is.the sante .overall . funenen as that
computed by another program (program equivalence). Oug .semaantics gives a basis for
doing such proofs, but it does not make them. universally tmriul, no-interesting and useful
semantics can do that. However, our semantics ineorparates 3 model of noh-dg;erminate
behavior, whxch many other semantics have trouble duhn&mth-

Referring back to thures 2.10 and 2. II we can now see that these two miniature

| programs are indeed equivalent in their overall funcuonaﬁty up to homomurpmsm

(assuming that F is determinate and lnstory mdependent. i# XU&F(UD). That is, the

X, Y and Z outputs of program 2.10 are (smgleton)‘ sets of tagged streams, Whereas the
outputs of program 2.11 are just streams, so We must map esch singleton set to its.
element and remove all tags. This result follows directly frcm the denotati‘onal defini-
tions of the various operators, we will not give the details as t.hey consist merely of

substitution into the defining equations, and then applymg the homomorphxsm Note
that the Arbster in Figure 2.10 is an augmcn!ed operator: ns honzontal output is a (sct

of) stream(s) of index numbers, appearmgm synchmnizauon thh the regular (vemcal)

- output, such that each number merely says whxch input port. is currently selected

Operator Valued Data and Reflexive Damtins

As mentioned in chapter 3, our current denotatlonal semantxes for DFPL does not

include operators (functions) as data, and thus has no ‘need for reflexive domams To

-79-

meaningfuily add operators-to- DFPL as data vdlues; we -would'‘need an Apply operator
whi¢h would take such data as input. ‘iﬁ‘htforwﬁat&y; it is-not clear how: to -define an
~ Apply operstor in an iaformal operation sease, much less:in aprecise denotational sense.

- Itis reasonabie to assunie that the Andvmm ~wotld accept a- directed .graph or

- equivalent represontation-of the fumqunmf -apply,:and that it would *‘connect”
that function to the othier iopuss and outputs of the Appiy,sad then “‘start up”. the new
subnetwork.: The problem with this.model is: when.dees - the . application - terminate?
There is, of course, no problem with an operitor which dt;cs not terminate, the peculiar-
ity of Apply is that it seéms inkerently to' aévéi’accefit' ‘tioré” 'than ‘one 'fumction datum
from it ostensible stredm of fanction data. “Fhis is-thié to'thé fadt that it is im-general -
undecidable whether a mbnewm has terminatedornot. - One ‘might ‘get eround this
difficulty by defining a more subtle: ﬁpmabpcum

One possibilityvis the following: the Apply operator receives as input a representa-
tion of a running subnetwork rather than just its. function. That is, it .receives the
network representmg the operator together with any streams in progress. It also has an
input, betides the inputs #nd outputs which &#e CoAriscted 1o the application, ‘which must
be “puléed” in order to make the applied ‘subiietwork *¢uscute: one transition (we are
takig in operational terms agaift). ‘The Apply operator continues running the ‘subnet-
- 'work being applied as long as this imput iy puised-with-True. -When 2 Folse is: supplied
instead, the current “state” of the:subnetwock is dumped-aut -on an auxiliary eutput port

- of the Apply. This output value may be fed-in:to the Apgly later to resume execution.

By this means we finesse the undecidability of \armination: of the applisd subagtwork,

we leave it to the user-of the Apply to detesmine when to. stop: This makes meaningful |

~the notion of a stream-of things to. be appliegh:it is similas {0 3 stceam of jobs to a batch
- operating system. .

Although from the operat:ona.l point of v1ew, tﬁé“:applicable object is a function
network plus its internal state, it'is just’ iﬂéﬂi&f ﬁﬁdﬁoﬂ Gf‘siretms to strem from the
~ denotational pomt of view, since such functions tlretdy exhibit the behavior: of having
an internal state. ‘The extension to nondetemﬁnmmﬁ‘cnons “should - fit intp this
framework as it did before the Apply operator. "This suggests “thut we might ‘want a
re f lexive domain [Sto-T7] as our undérlying dossin, that is, & domuain whieh - -aet only

-80-

contains ordinary data but also the continuous functions from that domain to itself. This
domain D would have to satisfy the equation.D® &MjWatmmwﬂQ@ [D-i-
D)), where Q is the domain of simple data (numbers, . strifigs, - records. etc.), and “&”
* denotes isomorphism, @ denotes disjoint: union, and w\mﬂl denotes: the continuous
- functions from D to D. This is:neither the usual: wﬂﬁxive‘wm -equation, due:.to the o
- presence of the set comstructor, nor is it quite the power domain eqm dus to ‘the
factthatthesmofmggd:mmmnotphium e '

- This needs further research, both to inves :hc unlity a,nd clcanhness of this |
solution and to formulate it precisely in thc,“ notational model. (Noto tlnt thz Apply
operator is not necessary in.order to have thn mox mumes, it. more.is like the

‘‘program loader" of conventional opeumm 9

Relation to the Lattice Fomuhtion of B&h Types

Dana Scott. has dovelopcd a rat.her complaw thequ of computaan based on
. complete hmccs and manuou functions [Sco-76). . His nndnlm a.gpxoach is. ‘to
model everything in terms of one universal domain, sbe domain P .of all subsets of the
non-negative integers, which is an algtbram and masm lltuzce 8% vuell as ‘being a
topological space. In this domain, contxnuem fuactions on the domain m;y be repre-
sented by encodings of their graphs: £sets of xrsumcmvmiuz ‘pairs), as can data values
themselves. Reminiscent of Gtdel numbering, encodings: are. sets -of .integess, - that is,
clements of Po. A single number is encoded as “the- singleton set containing that
aumber. The finite subsets £, of P may be enuicsted (as £y = {Ky..o Ky}
where N =2, _,25%) and the result of applying a (continuous) furction Ft¢ an arbltrary
element of the domain is defined by F(X)= {FQE’”) l E’ S X } Since functxons map
elements of Pw to elements of Pw, funcuona may. have; argum
sets, ¢.g. 6U10+1=7U11, In fact, Scott is able to. exproag :hg bo;h thg lambda calcnlus ‘
and a good amount of recursive function theory - in this domm, mcludmg proofs of

ents and valnes ‘which are

 validity of lambda conversion rules, the coatinuity of laml:da defmable f,uncnons. the
first and second recursion theorems, and the recursive 1mc§gmexapmxx,.of equauons in

the lambda calculus.

.81-

The fact that functions take sets as arguments and deliver results which are sets
suggests that the domain P w might be useful for expressing non-determinacy. However,
the main purpose to which Scott puts this capabilityis the definition of data types as
virtually arbitrary subsets of Pw. He does this by introducing a class of functions called
retracts which are idempotent functions on $w that map the data type to identically to
itself, and other elements onto the data type. Then, by defining operators which allow
" combination of retracts, he is able to show that certain recursively defined data types are
the minimal fixed-point solutions to equations involving retracts. For example, the data
type of trees, both finite and infinite, is the solution to the equation Tree = Nil + (Tree x
Tree) where “+” and *‘x’’ are operators on retracts analogous to union and cartesian

product.

The generality of the domain Pw, in pérticular its ability to express sets of data,
.w_ould make it a possibility as an underlying model of the semantics of non-determinate
DFPL. Certainly the tagged-streams needed could be enct;de'd as sets of integers as easily
as functions can be. However, whether this would clarify the semantics is doubtful:
encodings of this sort are rarely noted for their transparency. Nor is the explicit
machinery for dealing with non-determinacy already developed in this model. The
existence, couipletencss and continuity of the relevant domains and functions has already
been éstablished for non-determinate DFPL. The treatment of operators as data is

- probably better examined in the framework of power domains as noted below.

Relation to Power Domains

The powerdomain construction of Plotkin [Plo-76], as clarified by Smyth [Smy-78],
bears some similarity to our poset of tagged-stream-sets, there are some important
differences however. The most important is that Smyth assumes different domains, a
domain S of states, and a domain R of resumptions (similar to continuations). The
states are the states of the abstract machine, while the resumptions are mappings from
states into sers of states (disjointly united with state, resumption pairs). The reflexive
domain equation is thus R[S - #(S ® S x R)], where the powerset constructor, &, is
needed in order to express possible non-determinacy. The problem then is, how does

one solve such equations?

-82-

To do this, Smyth introduces quasi-ordered predamam: whxch are sets of outcomes
of (non-determinate) computations. These are ordered by the “Mxlner ordenng” which
is only a quasi-order:

SCT=
VXeS:3YeT:YSXA
VYeT:3Xe€S:Y<X

The elements of this domam may be wmed as cross sections of a tree which rcptesentsi '
the non-determinate computauon, egch path from the roet to 4 leaf’ corresponds to a
particular sequence of arbitrary choices made: by an mstnee ‘of the compuutinn Smyth
observes that this model and this (quasi) ordering forces one to make unw!elcome
identifications’’ of outcomes in forming, the equ aimcs -mecessary for a true

poeet. Hemgmthanhineou&dbcmmadudby ki qf thz treesrazher than

Fcantiam

_just their cross.sections. This is eaunnaﬂy aqmulﬁnx :o ow use of t;ued stregm«sem
. -excopt’ that we bave streams of dam rather than mcwq outaomqs ebtxmed by letting

the computation run ever longer. Furthermare,, although Smyth gmﬂts category theory
as.a hasis. for the mpmved ma.lym. we make ée with the mm convennonsl mathemat— o
“ics of sets and seqmces.

Since our underlying domain, tagged -stream-sety, is a wrue: pam md has & snnple'
su'ucture, it seems likely that our recursive domain equation ‘stated: above can-be solved
ina straxghtforward manner using the techmques of Smyth and Piotkm This is an

especially promising area for future research.

-83-

-8-

References.. ,
A & W-77 E.A. Asheroft and W.W. Wadge, LU C'ID,I @ Non procedural Language with

oy

Iteratwn, Communications of the ACM Vol. 20 No. 7, July 1977.

ADJ-77 J. A. Goguen. J W Thatchet, E G Wagner and J B anht, Inmal Algebra
Semantics and Continuous Algebras. Journal of the ACM Vol. 24, No. 1,
January 1977. :

' Ada-68 D A Adams, 4 Com putatwnal Model mth Data Sequcnced Control,
Compuunon Group Tech. Memo 45, ‘Stanford” Umverstty, May 1968.

B&A-77 1.D. Brock and WB Ackerman, An Anomaly ¥ in the Spcci f ications of |
Nondeterminate Packet S ystem, MIT Labdratory for Computer Science, -

Computation Structures Group Note 33, 1977."

Bir-67 ' G. Birkhoff, Lattice Theory, Americin ‘Mathiematical Society ‘Cofloquium
‘ " Publications; Vol. XXV ‘Ater. Math: Sbe Pwﬁdmcekl 1967.

C & 0-78 R. Cartwright and D. Oppen, U nrestricted Procedure Calls in Hoare’s Logtc,'

Fifth Annual ACM Symposium on- Pﬁncxpl’es ‘of ?rommmmg meses.
"TucsonAﬁzanu,knuary 19?8 R R R A S

Cic-76 E. Cxccarelh Smcz Semantic Equatwn: f or ‘Data Flow Program, MIT

Laboratory wﬁeompumrsﬁme,wmm Group Note 26,
1976. ‘ z - .

LT

" Dess73 I Dennis, First Version of a Data Elow.Bracedure £2¥guage, MIT Project

MAC Computation Structures Group TM-93, May 1973;

Flo-67 ~R.W. Floyd, 4ssigning Meanings to. Programs, Proc. American Mathematical
Soclety Sympona in Apphed Mathemaucs Vol 19 1967 (pp. 19-31).

H & P-78 D. Harel- xad V. Pratt,. Nandercrmwsm mLogu;s 0 f Programs, Fﬂth Annual
ACM Symposmm on Prmclples of Programmmg Languages, Tucson Anzona,
January 1978,

Hoa-69 C.A.R. Hoare, An Axiomatic Basis f or Com puter Programmiug, Communi-
" cations of thé ACM, Vol 1Z,'No. 12;0éteber 1969.

Hoa-78 C.A.R.Hoate, Communicating Sequential Processes; Lecture at MIT; 1978.

-84-

K & M-78 G. Kahn and D. MacQueen, Corom‘inex and Ne:works o f Parallel Procesus,

Kah-74

Kos-73

, Kos-73b
. Kos-76
Kos-78

Leh-76

Luc-68

unpublished memorandurm, l§’78

Gilles Kahn, The semantics of a simple Ianguagg f or parallel procmmg,
Proc. IFIP Congress 1974, Stockhnlm Sndén M—ﬁaﬂmﬂ Amitadqm, ‘
1974.

~ P.R. Kosinski, 4 Data Flow Progmnmng Laaguagc, IBM Rescarch Cemaer :
'Report RC4264, March 1973.

P.R. Kosinski, 4 Data Flow Langsagc f or Operating) ystems
Programming, ACM SIGPLAN,/ SIGQ?S lnmface Maetmg, . Savannah'
Georgia, April 1976. :

P.R. Kosinski, Mathematical Semantics aqd M Elow. ngrammg, Third
Annual ACMSympom on Principles. of Pr ing Languages, Athnn ‘

Georgxa, January 1976.

- P.R. Kosinski, 4 Strazgktforwd Dcwiamtl Smaancs for Nan~

determinate Data Flow Progrm, Fifth. m AEM Symposium on Pn}nc»]-‘
ples of Programmmg Langnages, Tuemn Anzona, Imuary 1978 -

D.J. Lehmann, Caregories f or Fimyolm@ms Ph D~ Thesls, Hebrew
University of Jerusalem.

F.L. Luconi, Asymhronm Compumﬁaml Stractures, Ph.D. Thcas, MAC~
TR49, MIT, Feb. 1968. TR o

M& B-67 S. Maclane and G. Birkhoff, Algebra, The- ‘Maucmillan Company, 1967.

M&R-76 G. Markowsky and BK. Roaen. Bases for Ckain‘complete Posets, IBM

Jaurnal of Rm&rch and‘Developmem ﬁéafch !9’76

M & S-76 R. Milne and C Strachey, A Theory af Proﬂmmg Langnage Semanﬁes

Man—74

Mar-76

Chapman and/Hnll Halstead Press, 1976
Zohar Manna, Ma&mancal Theory cf w»n, McGraw Hill, 1974.

G. Markowsky, Chain-complete posets. and du’gmd sets with apphcatmns,
Algebra Universalis, 1976 (pp. 53-68). :

-85-

Mar-77

Plo-76

Rod-67

Ros-77

S&S-71

Sco-76

Sim-69

Smy-78

Sto-74

Sto-77

G. Markowsky, Posets, Categories, Combinatorics and. Computation, Unpubl-
ished course notes, IBM Research Center, 1977. '

G. Plotkin, A Powerdomain Construction, SIAM Journal of Computing, Vol.
5 No. 3, September 1976 (pp. 452-287).

J.E. Rodriguez, A Graph Model for Parallel Computations, Ph.D. Thesis,
Dept. of Electrical Engineering, MIT, 1967.

Barry K. Rosen, Poset Theory of Computation, Unpublished notes, IBM
Research Center, 1977.

D. Scott and C. Strachey, Toward a Mathematical Semantics for Computer
Languages, Proc. Symposium on Computers & Automata Polytechmc Insti-
tute of Brooklyn, Vol. 21, 1971 (pp. 19-46). ‘

D. Scott, Data T ypes as Lattices, SIAM J‘ournai of Computing, Vol. § No. 3,
September 1976 (pp. 522-587).

H.A. Simon, The Sclences of the Aniﬂcial MIT Press, Cambndge Mass.,
1969. ' e

M.B. Smyth, Power Domains, Journd of Computer and System Sciences, Vol
16, 1978 (pp. 23-26). |

J.E. Stoy, A Textual Language for Dataflow Programs, Unpublished
Memo, MIT Project MAC, Computation Structures Group, 1974,

J.E. Stoy, Denotational Semantics: The Scott-Strachey Approach to
Programming Language Semantics, MIT Press, Cambridge Mass., 1977.

-86-

Fieure .1

Fork Y Pef

T Switer bu

-7~

FIGURE &.Q

ADF BcE

011010 O

ABCDEF

...88..

FiGURE v&-3

8q

Fileure .4

___,{> O >

-qO-

Mem o

= l'euas Q.5

- qt-

FlguRE X.6

AB cD

<IN
=
{001

{010
{4100

ARBCD
ACBD
ACDB
CABD
CADB
CDAB

qa

Figure &»7

| RE-IM o

RE-IM

Commax
\ MULTIPLY

-qs-

EAcTORIAL

-Qy -

AccEss
MEMORY

Fieure .9

- SIENAL

-95-

Fieure .10

-qe..

Figore .11

U —
4 —
W —

-q7-

Fieure H.1

EVERY -
OTHER

-qg8-

Fieore 5.1

(a7 <3 > (87

<6 82
o
(86>

_Qq-

Figure 5.

ay 3>

(&%)
<3 a2

+
{4 &>
{55
{6 4>

-{00-

Figure 6.1

§<A,B>}

<>
&=

X

EVERY -
OTHER

~{0{ -

Fieure 7.1

-102a-

FiGuRE

T.

-103-

3
Y

s

M, AT O e

Biographical Note

Paul Kosinski was born in Chicago on 13 October 1942. He attended Normaa
Bridge public elementary school and The University of Chicago High School.

He attended the University of Chicago from 1959 to 1968, receiving the Bachelor
of Science in Mathematics in 1963 and the Master of Science in Information Science in
1968; During thevpetiod 1962 to 1969 he was omployed in research and advanced
development at the Institute for Computer Research and Computation Center of the
University. From 1964 to 1969 he also taught Computer Science at the Illinois Institute
of Technology. “

He spent 1969 to 1970 in the advanced operating systems group at NCR in Los
Angeles. In 1970 he became a research staff member at the IBM T.J. Watson Research

Center and becanm engaged in programnnng system research. In 1973 he took an
educational leave to attend M.IL. T. He returned to the IBM Research Center in 1976

where he continues investigating programming s-ystams and tools.

-104-

