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- Abstract

A data abstraction-intredisces 2 data type-with o hidderi represeniation. Specifications
of data abstractions are required to allow the data to be described and used without reference to
the underlying representation. There are two main approaches to specifying data abstractions,
the abstract model approach and the axiomatic approach. '

This thesis is concerned with the problems of formalizing and extending the abstract
model approach. A formally defined language for writing abstract mode! specifications is
presented. The correctness of an implementation with respect to an abstract model specification
is defined, and a method for proving the correctness of implementations is proposed.

Our formulation treats data abstractions with operations that can dynamically create
new data objects, modify the properties of éxisting data objects, and raise exception conditions
when presented with unusual input values.
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1. Introduction

Specifications play an important part in the programming process, especially in the
design and construction of large programs. It is generally accepted that {arge programs should
be designed as systems of loosely coupled independent modules, so that each module can be
designed and understood without reference to the other modules. A precise specification of the
behavior of a module decouples the programs that use a module from the programs that
implement the module, since programs that use the module depend on the specification of the
module rather than on the implementation. The hope is that the specifications of a module will
usually be simpler and more stable than the implementation of the module, so that the use of
the specifications will make it easier to design, implement, and maintain the modules that make
up a program. Specifications are also needed for program verification.

The research reported here is primarily concerned with specifications for data
abstractions. A data abstraction consists of a set of data objects and a set of primitive
operations on those objects. The objects of a data abstraction are treated as abstract indivisible
entitiesi which do not have any directly accessible substructure. The objects of a data
abstraction can be manipulated only by means of the primitive operations provided by the data
abstraction! The behavior of a data abstraction is completely characterized by the behavior of

its primitive operations, and the observable properties of the abstraction are precisely those

computable in terms of the primitive operations. Since the behavior of a data abstraction is

l. The only exception to this rule is the boolean abstraction. The host programming language
may provide statements, such as the conditional, which make the flow of control depend directly
on a boolean value. These statements are not primitive operations of the boolean abstraction,
and they cannot be defined using only the primitive operations.
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independent of the way in which the associated data objects are represented in any particular
implementation, imroduclng data abstractions is one way of decomposing a progtam into
independent modules D39, 10, l9 4, 291 The  concept of representat,ton independence is made
more precise by the deltmtion of behavmral equivalence of data models developed in Chapter 3,
and it is the basls for the usual data type. inductton rule {53}

To speclfy the behavior of a data abstnctlon itis sufﬁclent to specify the behaviar.of
each operation, since the only way to interact mth the objects ol‘ a data abstraction is by means.
of the primitive operations. The problem of specifying the operations of a data abstraction
differs lrom the problem of specll‘ying,proeedures‘bec/_auset_pe specification of 3 data. ab:uractlon
must be lndopendent of the way the associated data objects are represented in any particular
implementation of the abstraction.  There are two main approaches to ;pedfyittg data
abstractions, the abstract model approach and the axiomatic ;pproachl

_ In the abstract model approach, an 3"“”3_#-'99!‘9%"13“0'!5’_0" the data objects is | .
defined, and the operations are specified in terms ol' the abstract reoresentallon. . The b-
representation is al)stract because it is constructed from meth’emallcally .deﬂned domains, rather
than the built in data types of some programming language. The abstract representation
should be chosen so that the operations ean be defined as simply as possible. The
representation used in the implementation of a data a_bstnctionl must often be clms'en to
optimize space or time efficiency, and may be quite different from t.he abstract representation.
To prove the cortectness of an implementation with respect to an abstract model specification, it
is necessary to define the correspondence between the representation used in the implementation
and the abstract representation. |

In the axiomatic approach, the set of data objects is defined implicitly, by giving a set



-9-

of axioms relating the primitive operations. The axioms specify the relationships that must
hold between the operations of a data abstraction, and any structure satisfying the axioms is
taken to be an acceptable model for the abstraction. If the axioms are consistent, then there will
be at least one structure satisfying the axioms. It is possible for many different structures to
satisfy the same set of axioms. To establish the correctness of an implementation with respect to
an axiomatic specification, it is necessary to show that the operations .of the impleméntation
satisfy the axioms. An excellent treatment of correctness proofs based on axiomatic
specifications can be found in [37].

The work reported here is concerned mainly with formalizing and extending the
abstract model specification technique. We present a formally defined language for writing
abstract model specifications. A criterion for judging the correctness of an implementation of a
data abstraction with respect to an abstract model specification is developed, along with a
method for proving that particular implementations are correct with respect to specifications in
our spécification language. Both the specification language and the ﬁroof technique 'apply to
situations where mutable data can be shared. Previous work on specifications has largely
avoided the issues associated with shared mutable data. Our formulation provides an
integrated treatment of data abstractions with operations that can dynamically create new data
objects, modify existing data objects, or raise exception conditions when presented with unusual

input values.



‘1.1 Previous: Work B

, Most'high 1evg! programmmg languages have a ;set of huik in. data abstractions.
: .. Languagés_'t_l;a( support user defmed data_abstractions - have -been developed, including
| S‘W;ULAT 67 (8], CLU ‘[;2_9}-.: and ALPHARD [54] . In. these anguages a program using a data
: abs;l;action‘dqﬂe;sAnot have to mentlon the representation of .that. abstraction, 3o that the
impl;.-mntatioﬁ structure can be changed without affecting. any of-the applications programs
usi;g the abstraction. | |
- Surveys of spe;iﬁcation techniques for data abstractions can. be found.in [31) and in
e8] |
7» The abstract t.nodq approach is dirg:t in the sense that .the set of data objects
as;oclated with a data abgractign_ is explicitly constructed. References ta early work.on abstract
‘model vsypgcifiéat‘ions cﬁn be found in [31). The problem of praving: the. correctness -of -an
implementation of a data .abgtract_iop with re;pe_ci to an_abstract model specification has been
tr;satgd by Hoare in (18, and the problem of proving. the correctness of programs . using the
obje;:ts and operations of a c_iata abstractquhas been treated by Shaw. in [47] In both-cases,
the specification language has been introduced informally, and shated data has been excluded.
‘The problem of specifying the behavior of data shared by concurrent processes_has been treated
in the context of the actor formalism by Yonezawa in [55]
The abstract model approach is related to the. denotational definition method for
programming Iangualges developed at Oxford by Scott and Strachey [49, 46}, in which a
mathematical model is defined for each of the constructs of a programming language, including

the data domains. The major emphasis of the work at Oxford has been directed at issues other
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than data abstractions. A formal treatment of a language with the potential for sharing
mutable data can bé found in [50], although the model makes little attempt to abstract from the
storage representation of the data. A denotational definition of CLU, a language with facilities
for constructing user defined data abstractions, can be found in [45).

The axiomatic approach is indirect in the sense that the set of data objects associated
with a .data abstraction is defined implicitly. There are several different axiomatic specification
techniques, which are distinguished by the kind of logic in which the axioms are embedded.

Axiomatizations of data abstractions in firs; order logic can be fouhd in 19 A first
order logical approach has also been used in the iota system [37] for constructing and verifying
programs that use data abstractions.

A restricted form of axiomatic specification using only conditionals and equations has
come to be known as the algebraic approach (56, 10, 7,13, 9). The name stems from a uniform
method for constructing a canonical model for axiomatizations expressed in this form. The
canonical model is a many sorted algebra which is unique up to isomorphism, and which is
called the initial algebra. A system for verifying programs using data abstractions specified by
algebraic specifications has been developed at 1S1 (35, 11, 36). |

The problem of proving properties of programs that manipulate potentially shared
mutable list structures has been treated by Burstall in [2). Burstall follows a hybrid approach,
by explicitly introducing a model and defining its behavior axiomatically. Proofs about
programs that manipulate pointers have been treated by Suzuki and Luckham [51, 32}.

An approach to defining programming languages combining aspects of the direct and
indirect approaches is being developed by Schaffert [44] Schaffert treats shared mutable data

abstractly, and considers the problem of proving properties of programs using mutable data



abstractions.
1.2 Motiviations for this Work

The original aim of this researchwas todeveloptoolsand technlques lforflncreasing
the level of confidence that a formal spedﬁcanonl‘or adataal;stradlon does indeed ‘;ciapture the
behavior intended by the’ designer We staried with tlse akebmc specmation technique, as
described by the work of Zilles (5] and Cottag 0] T

After some prellmmary lnvesuganon. 3 became elear that there were a number of
phenomena associated with the data types actually used by programmers that could not be
adequately described by this specllrcauon technique as it stood notably the dynamk creatlon of
data objects, changes of state of potentially shared data, and ex exception handllng |

It akso appeared to be dlmcult to produce 2 wefl formed algebralc speclﬁcation for a
new data abstraction, especrally if the exact behavior required was not yet completely designed
In our expenence. a typical attempt to des:gn a data abstractron uslng axlomatic specrl‘lcatlons
runs as foflows. After analyzing the problem ‘the operatlons of the data abstraction are
determined, and the inputs and outputs of | each operatl‘on are ldennﬁed. When the_ lntended
behavior of each operation on a typicalsetof "i’nput values |sl‘airlywellunderslood. a
prelhnlnary “axiomatization is corlstructed. " The process of produclng the '»p‘reliminary
axlomatization helps to pinpoint special cases 'andlzbo:iunda\ry values for thelnput domain, _anid
the problem is analyzed further to determine approprla'tve;l)els;ahvlfofr for the operauon on unusual
or ill formed input vahses. The axioms are examined llr’ligltfdf the new design decisions and |
are adjusted to conform. After a few iteratlons each of the axlorns:looks 'plausible when

considered in isolation. At this point the axiomatization is examined for consistency and
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completeness. often at the cost of considerable effort. Fairly often we have found such an
axiomatization to be inconsistent, and less often to be incomplete. It was disturbing to find that
plausible axiomatizations could be ill formed, and that the effort of producing a precise
description of a seeming simple design decision could be quite large.

We also designed some data abstractions using abstract model specifications, and
found that the process was much easier. One point was that inconsistencies in the design would
usually surface immediately, because it would not be possible to define some operation so that it
satisfied all of the informal constraints, while the usual result of trying to axiomatize an
inconsistent set of design decisions was.a inconsistent axiomatization, which was often difficult
to recognize as inconsistent. Another point was that minor perturbations in the behavior of an
operation were easier to-describe for an abstract model specification than for an axiomatic
specification.  As long as the meaning of the abstract representation is not changed, a
modification in the definition of one operation cannot affect the other operations, since in an
abstract model each operation is defined in terms of its effect on the abstract representation. In
an axiomatic specification the meanings of the operations are defined in terms of the relations
between them, so that a change in an axiom can affect many operations.

While the above is a very subjective judgment, based on our personal experience with
a fairly small set of examples, we found that other people trying to use axiomatic specifications
in the design process had similar complaints. This motivated a more extensive investigation of
abstract model specifications.

We found that previous work on abstract model specifications was largely Informal,
and that abstract model specifications were used without saying what the specification language

was or what the specifications meant. Since abstract model specifications appeared to have
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advantages from the point of view of design, establishltig a precise mathematical formulation of
the specification techmique arose as a natural'sibgdal. “Ihthe process of pursuing this goal it
became apparent that dynaniic éreation of Gata objects’ stife chiges. and excepiion conditions

K"Kt ‘tHalt tire, existig work oh axiomatic

_could be readily incorporated into the f caie

=1 B

‘specifications did not sddress these Issoes: Which ket croppifig up it the design of programs.

" As a tesuk, the direction of this research’shiféd o developing and extending the absiract
model specification techriique, and The oviginal problem’ was'set akide as a subject for future

invwfgatkm” tion.
1.3 Assumptions and Restriotions

I the interests of deﬁnlngaproblemthatcanbe&eated in depth in a reasonable

Certmort s
.

amount of time, we have miade softe restrictions oh the scope oé of oﬁ;investigation

s i opupit

restrictions are explicitly stated below” A more detailéd dis

of the resrictions and the
reasons Tor introducing them cih be found in Appendix 1.
© We have riot’ considéred cases where mutablé data is shared by concurrent processes,
so that a model of a compulaﬁonasa linarsequcnccdeptf;ationsls ihffiéie;lt for our
purposes. We have assumed that each operation is deterministic, o that every ;dnputation‘
produces ‘a unique result. These assumptions lead to a ‘simplet Eﬁaucteriiatiop of the
observable Béhavior of a data abstraction thais would otherwise be possible, |
We have adopted a model of exception handling in which uperations are terminated
if they raise an exception condition. This restriction allows the behavior of an operation to be
described independently of the behavior of eicepiion handléers and exception handling

mechanisms, and leads to a clean model of data behavior.
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We have assumed that each operation depends only on the properttes of the data

objects passed to the operation as arguments Operattons that depend on global data or on own

£
"'ih'

data {i.e, operations with internal state) are excluded by this assumpuon thhout such a

2 'Zi’é‘%,ur 4R ""’?i*:'zc- w2

restrnctton on the operattons systems must be treated where the behavror of a data object may
. et esp

‘be affected wrthout applymg any of the prtmttwe operattons assoctated with the data

abstractton and the concept of behavroral equtvalence (see Chapter 3) must be reformulated

£y N ,‘;:;f,gw:-:

Stnce the behavior of such structures is not completely characterlzed by the behavror of the

primitive operations, we do not accept them as well formed data abstracttons
1.4 Results of this Work

We have mvesttgated the structure of mathematrcal models of data abstracttons,

developed a general framework lor provmg the correctness ol‘ implementatlons and proposed a

ity

prototype spectf |cat|on language based on these results

B

1.4.1 Mathematical Models. ...

A specification can be viewed as a method for singling out the structures (or models)
that exhibit the desired behavior from those that do-not, and the meaning-of iésﬂséi&atiﬂi n

be identified with the class of models consistent with the specification. Thls gtves us a basis for

ol BB TN

judgmg whether or not two speuftcatlons in two dtfferent .l'ormallsms have the same meanlng

The set of structures consistent wrth a gtven axiomattc speclﬂcatton contatns preclsely those

structures in which all ol‘ the axioms are true An abstract model specmcatlon del’lnes

particular model exhtbmng the deslred behavlor. and the class of all models conslstent wlth the

BV

' speclflcatton contains just those structures with the same externally observable behavlor as the
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standard model. In this work we have foﬂnally characterized the aspects of the behavror of a
data abstraction that are detectable by an external observer o | |

| We have descrrbed two classes ol‘ algebmc stmctures, exception algebras and state
machines whlch can be used as models l‘or data abstractsons vtth exception condttlons and with
state changes This work will be of lnterest to people wishlng to extend the axiomanc technlque |
to lnclude exceptlons and state changes. since lt explores the klnds ol' stmctures that wlll have to

be deﬁned axlomatlcally
1.4.2 Proof Techniques

ln treating a range of behavlor lncludlng object creation mutation of data, and
exceptrons we. have found it necessary to reformuhte the crtteria for the correctness of a
Ol IR

proposed lmplementatron ol a data abstraction and to develop new mchmques l’or provlng the

correctness of an implementation with respect to the new criterta These technlques are of

interest also to people who wish to verify mutable M pefevititidns of dita” bhtract

respect to axiomatic specifications.

1.4.3 - Spevification Languaage

5 -

We have developed a specifrcatton language l'or deﬁmng data abstractrons based on
abstract models Thls langnage has been given a mathematlcal de_frnitlon that is sul‘flciently
formal to support mathematrcal proofs of propertres ol‘ the specifrcatlon and of the correctness
of rmplementatrons We have made an eﬁort to lncorponte all ot the l‘utures necessary for a
practlcal speclfrcation language rather than to deflne a language desrgned to facrlltate proofs ol‘

meta- theorems about the specrflcatlon language We have intended this language to serve as a
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prototype, which can be used as a guide for people designing practical specification languages.
The language presented here has been designed primarily to be read and written by humans,
rather than to be mechanically processed (eg., by a program verification system). In some
applications it may be desirable to use a more restricted language, in order to facilitate

automatic theorem proving at the expense of making the specifications harder to construct.
1.5 Overview of Remaining Chapters

In Chaptér 2 we explain the novel aspects of data behavior associated with exception
conditions, dynamic allocation, and mutation of potentially shared data, and describe algebraic
structures suitable for modeling that behavior.

In Chapter 3 we formally define the externally observable behavior of a data
abstraction. The meaning of a data abstraction is associated with the class of all structures
exhibiting the same externallly observable behavior. The concept of a reduced model for a data
abstraction is developed and explored. )

In Chapter 4 we present a specification language for constructing models, along with a
mathematical definition for the semantics of the language. Each well formed expression of the
language denotes an algebraic model. The construction of the model is explained, and the
requirements an expression must satisfy in order to be a well formed specification are
established.

In Chapter 5 we state our basic definition of the correctness of an implementation, and
develop a methodology for proving the correctness of an iﬁplememation with respect to a

standard model for the data abstraction to be implemented. The methodology is illustrated by

examples of correctness proofs. The basic definition depends on the material in Chapter 3,



-18 -
while the examples use the language developed in Chapter 4.

Chapter 6 contains our conclusions, a comparison of the abstract model specification

technique to the algebraic technique, and indications of directions for future research.
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2. Modeling Data Behavior

" We will define the behavior of a data abstractton by constructmg a nandard model
‘exhibiting that behavior- " A model is a | mathematical structure contalmng tnterpmatlom for
the objects and operations of the data abstractron. “The externally observable behavlor of a
data abstraction consists of the results of all finite computatrons composed from the prrmltive
_ operations of the data abstraction and yreidmg oﬁjects of other typo.-sl An abstract model is
used to specrt‘y ‘the externafly observable behavior of a data abstraction All propertres of a
model that are not externally observable are irrelevant. in the sense that they do not lnnuence
whether or not a proposed implementation of a data_ahstraction Is. carrect with.sespect to:the
standard model. We will say that two models are bckamrally cqmvalmt if and only if they
have the same externally observable behavior. lf two stmctures are behavtorally equrvaient
then' they are models of the same data abstractron Behavtoral equivalence is treated in depth
in Chapter 3. o T | |

* The standard model is intended to be a uomorphic irnage of the data abstraction as
conceived by the deslgner every ob;ect of the data abstractron imagined by the desrgner ahould
correspond to a unique object in the standard model and the correspondence should preserve
the operations. The ‘standard model of an abstractron can be tdentrﬂed wtth the structure

conceived by the designer.' thus 'bridging the gap betweén the inaccessible pattern in the

I. Except for the boolean abstraction, the only way to interact with the objects of a data
abstraction is by means of the primitive operatiehs, so that the only way to export any
-information from an abstract type is by means of the primitive operations yielding results of
some other type. The interested: reader may Wish to compare this idea with the treatment of
sufficient completeness in [10).



.
designer's head and a publicly accessible mathemahcalstructureA welf'designed standard

model should be reduced: it should not be possible to delete an ghject from, the, fodel.or to

.....

coalesce two distmct objects wnhout affectlng the extemall! obsegyablg behavior of the. model).

s R

Thc concept of a reduced model Is discussed further in Chapter 3.
and show how they can be modeled usmg a!gebmc structures, but first, we_have to, briefly
examine the internal structure of a  data abstnction and the ways in which a_set of data

abstractions can be related to each other
2.1 Types and SBubordinate Abstractions

We will call a set of data objects subject to the same operations a fype. The deﬁmtion
of a new data abstractmn mtroduces a new type, tneépduqfal type of the abstraction, . Each
operation of the abstracnon involves objects of the principal type, and often also objects of
other types, which we will call the mbordmale tyfn: of the data abstracqon For example the
set of imegers is the prmcnpal type of !he imeger dm abstracuon and the set of booleans is a
subordinate type, because the integer abstracnon has the  operations = and < whk:h map pairs of
integers into booleans. Every type is the Pﬂ,"“!’f' typeof some unique data abstraction, known
as the deji(ning abstraction of the tyne. The primitive operations on the objects of a type are
Jjust the operations of its deﬁning abstraction. |

A model for a data abstraction must contain interpretations for the pnncnpal type and
operations, and ako for the subordinate types. mﬂﬂ “!9 openthns ilwolve ohjects of the
subordinate types as well as of the principal type - Each, of thewbuﬂmte types of a data’

abstraction d is the principal type of its defining abstraction d'. Thus we are usually dealmg



-9 -
with a set of related data abstractions, and with a set of related models for those abstractions.
We will assume that systems of data abstractions are defined incrementally, where the definition
of a model for a new data abstracti;Jn explicitly introduces an interpretation for its principal
type, and where the interpretations for the subordinate types are taken from the models for thg
defining abstractions for those types. This construction guarantees that a type is not éiven two
different interpretations in a single system of models. However, a bit of caution is required,
because it may not always be possible to define the data abstractions in a system in an order
such that the defining abstractions of the subordinate types of each data abstraction are defined
before the data abstraction itself. For example, suppose that the fixed point number abstraction
has an operation for converting fixed point numbers to floating point, and that the floating
point abstraction has an operation for converting floating point numbers to fixed point, say by
rounding. In such a case, floating point numbers are a subordinate type for the fixed point
number abstraction, and vice versa, so that it is not possible to define both types in an order
such that their subordinate types have been previously defined.

In order to make the idea of a hierarchically ordered set of type definitions more
precise, we define the direct subordinate and subordinate relations as follows.

Definition 1 Direct subordinate relation,
If d; and d2 are data abstractions, then dl is a direct subordinate of d2 if and

only if the principal type of d is a subordinate type of d,.

Definition 2 Subordinate relation
The subordinate relation is the transitive closure of the direct subordinate
relation.

We would like the subordinate relation to be a well founded partial order, but this need not

always be the case, because two data abstractions can be subordinate to each other, as in the
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above example However, if we group together ali of the data abstractions that are mutualiy
subordinate (ie take the quotient with respect to the hrém equivaience relation contatned in
snbordinate) then the subordinate relation does in fact induoe a partial order on the groups
(equivalence classes). o

We will treat each group of mutual!y suhordinate data abstractions as a singie
module. A model for such a module wnii have several principal types. one for each data
abstraction. Modules correspond to the equivalence chsses introduced in the previousq
paragraph The subordinate relation for moduies is aiways a partsal ordersng This ordering
is also well founded, because the set of data abstractions in any real system is finite Since the:
ordering is well founded, we can use structural induction with resp;ct to the subordhml
relation on modules when proving properties of systems of data abstractrons (i e, to estabiish a;
property i‘or the data abstractions in the moduie n, we can assume the property hoids for all
abstractions subbrdinate to m) c \ '

It wili usually be the case that each moduie deﬁnes a single data abstraction. with a.
single principal type. In the folkrwing discussion we ws!l oﬂen tacitiy assume that each model

has only a smgle pnncrpai type. although the formal definttions wm be formulated to deal with

any number of principal types per model.
2.2 Simple Abstractions

The purpose of a standard model specification isto grovidean iniespretation for:each
type and for each operation of the data abstraction it speciftes A well chosen standard model
should provide interpretations that are clean and simple The most suitable modeimg structures

dépend on the kinds of behavior that must be described. The slmplest case Is a data
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abstraction without any exception conditions or any time dependent behavibr, because in such a
case the types can be interpreted as fixed sets of constant values, and the operations can be
interpreted as functions on those sets. We will refer to this kind of abstraction as a simple data
abstraction. The early work on algebraic specifications for data abstractions [56, 10, 7] dealt
primariiy with simple abstraction;. Following their lead, we will model simple abstractions as
heterogeneous algebras [1].
A heterogeneous algebra, also known as a many sorted algebra, is a pair (P, F), where
P ={ Pyla€ A} is an indexed set of phyla (also ;alled carriers), and where
F={ Fﬁ I8 ¢ B}is an indexed set of operations. The index sets A and B contain the names
of the types and operation;, respectively. Each phylum in P is a set of data objects. Each
operation in F i$ a function Fg:Pyg )X~ XPuB nB) > PrBy where n: B —> N,
a:B xN—>A and r: B—> 4 are functions such that n{B) 20 is the number of arguments
for Fg. a(B, k) is the type index for the k-th argument of Fg. and ;(ﬂ) is the type index for the
return value of Fg, and where N is the set of all natural numbers. The principal and
subordinate types of a constant data abstraction are interpreted as the phyla of the algebra, and
the operations of the data abstraction are interpreted as the operations of the algebra. |
Simple data abstractions are easy to describe, but they represent a very restricted class
of abstractions, which almost never occur in practice. For example, the fixed point number
abstraction, a common and relatively simple data abstraction, fails to qualify as a constant data
abstraction on two counts, First, an attempt to divide by zero resuits in an exception condition.
Second, fixed point numbers have a print operation, which modifies the state of an output

stream. Exception conditions and state changes are discussed in detail beiow.
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2.3 Exception Conditions

Many-programming tanguages have data abstractions with operations that may signal
errors or raise exception conditions (we prefer the latter term). A common example is the integer
data abstraction, where an attempt to- ividé by rero résuks m aif ‘excéption. fngeneral an
operation should raise an exception whenever it is called with an argament owtside its natural
domain of definition. - Sikwatigns fike this-are-qaitecohmon, so'that it is important to include

exceptions. in our model of data abstractions.
2.3.1 Termination vs. ‘_Beéumption

~An exception causes a departure from the pormal flaw of contro, to execute a program
fragment intended to hamtile ithe’ exceptional tondition. ‘I ases where the éXception handler
can recover from the exceptiom,-the compwtation may eontmob.and“ ‘othetwise it must be
i aboned., There is no universally accepted model for this process. -

One viewpoint, which we shall adopt, is that an operation may have a number of |
return points, one for the normat case, and one for each exception. We shall refer to this '
viewpoint as the termination model of exception handling. According to the términation model,
raising an exception is .just a special way of terminating an operation.

An alternative - viewpoint, which is cominonly held, is' that an’ exception causes the
exception handler to be invoked as a procedure, with-the tmplication that the operatibh that
raised the exception will continue after the handler returns. We will refer to this viewpoint as
the resumption model of exception handling.

Both alternatives have been implemented. For example, in CLU an exception
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conditions always terminates the operation that raised it, while in PLIl the operation is resumed
(for one class of exception conditions). A detailed analysis and comparison of the termination
and resumption models can be found in [30), where it is argued that the termination mode! has

a much simpler behavior than the resumption model.
2.3.2 Termination Conditions

We will assume that an operation of a data abstraction may terminate in any of a
number of termination conditions [cf. 43], one of which (the normal condition) corresponds to
the normal behavior of the operation, while the o;hers correspond to the exception cond.itions
that may be raised by the operation. The effects of an operation and the number and types of
return values will usually depend on the termination condition. For motivational purposes, we
will assume that when an exception occurs, the data objects produced by the operation, if any,
are passed to the appropriate exception handler as arguments.2

A specification for a data abstraction with exceptions must therefore specify when each
exception occurs, and what the results of the operation are for each termination conditi‘on. The
definition of the host language must specify which error handler is associated with each
occurrence of an exception, and what happens after the handler terminates. The only constraint

we impose on the host language is that whenever an operation raises an exception, the

operation is terminated before the handler is invoked, arid may not be resta(ted.?’

2. This corresponds closely to the exception mechanism in CLU. In other languages, more
roundabout methods may have to be used for passing information to an exception handler,
such as assigning values to global variables.
3. This constraint is implicit in [10} and [8].



2.3.3 Exception Algebras

ln order to get a olass of stmetures smtable for npdeﬁng data abstractlons with
exceptlons we have to extend the notton of a hettrogtneons algebra In a heterogeneous
algebra as described in [l], each operation is a function whose range is some phylum of the
algebra, but a typical operation of a data abstractlon‘thay rettﬂ‘n ﬁoﬁ’é{iﬁan one data object and
it ~may return objects of different types in dm'erent termination oondmons. , Rather than
lntroducmg phyla wnth a comphcated substructure, we prefer to re!ax the constralnt on the
allowabte rangcs of the operations. stnce we would like to maintatn a slmple correspondence
between the types of a data abstractton and the phy!a of the modeltng stmcture In an
exception algebra the range of a typkal operanon Is the dispmt union of a farptly of sets, each
of Whlch is a cartesian product of some number of pl\yla (possibly zero
| We will also include me index sets and. the functions descrlblng the types of the
operanons as explicit components of the exceptton agebra to prevent conrusion tn situations
where we are dealing with several algebras in the same context
Befinition 3 Exception afgebra =~ O

An exception algebra is a tuple < phyla P opetattons F arglength n, argtype : a,

to: ¢, rlength : m, rtype: v, typenaines’: 4 : PUpt: DY, where
={Pala(A}|santndexedsetofphyla andwhereF {Falﬁ(B}isan

indexed “set ' of ‘operations, such that’ “each operatt&n in F is a function
F@: Pa(p, 1) % - X Poif, nif) —> UL Ry 17 € #f) }, where Ll denotes the disjoint.
union operation. and where Ry = Pyg T )X-%XPiB x mif, 1)y N:B >N
a:BxN—>A t:B—>PT), m:BxT >N, r:BxT xN~—> A are functions
such that n(f) is the number of arguments for F B otff; &) is the type index for the =
k-th argument of Fg, #(B) is the set of ali termination conditions.that.may result from

4. The empty cartesian product is a singleton set containing the entpty"SeqUence.
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F B m(B, T) is the number of objects returned by F "g.in the termination condition 7,
and r(B, T, k) is the type index for the k-th return value of F ﬂ in the termination

condition T. 4 is the set of type names, B-is thesses.of operation wames, T is the set’
of termination condition names, and D ¢ A contains the names of the dminguished
principal types. N is the set of natural numbers

ds g

The details of this formal definition of an excepuon algebra will be used primanly in Chapter
3, and in the proofs of the_ theorems.in Appendix. 11, .The:following example may -help to
_clarify the meaning of the va;wuswmemm&sdmmpﬂﬁa algebra. “Let. 4-be an exception

.algebra model for the integer data abstraction. - Then we have: .

A. typenames = { "int", "boolean” }

A. opnagmes = { "plus”, umes, “difference’, "quatient”, ... }:
A. tcnames = { "normal”, "zero_divide" }

Aopt ={"int" }. :

A.phylamt={01 1,2,-2,. }

A-phylapoopezn = | T. F

A operationsp"us‘ ={G,pD]|z=x0y }»

Quotes have been used to emphasize that the first four sets containg. names (strings) rather than
the sets they denote. Note that an algebra is a labeled tuple, and that we are using a dot
notation similar to that used for the components of records in PASCAL to refer to the
components of the tuple. If A.arglength = n, A.argtype = a, A.tc = t, A.rlength = m, and
A« rtype = 7, then:

n{quotient) = 2,

a(quotient, 1) = a(quotient, 2) = "int",

t{quotient) = { normal, zero_divide },

m(quotient, normal) = 1,

m(quotient, zero_divide) = 0, and
r{quotient, normal, 1) = "int".
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In the specﬂ‘lcanon hnguage dcscnbed in Chapter 1 wr. wm descﬂbe the txpe lnfortmuon for

an opermon ina oempaa syatau mm mmmm anmdn
quotient: int x int —> ( normal : int ) + ( zeré_divide: )

The range of an operation, which is a disjoint union, is written as the sum of the components
- for each termination condition. ‘The component:corresponding to°the termination hinatioh condition 7 is
written as (T : R, ), where the mormat comsponeirt!may B¢ bbreviated by dropping ‘thehﬁg’le

brackets, the colon, and the condition name.

;—v

The reader should note that termination m an& duta obpcts are’ mwd in

viiils yiRg . §gr’a" By} v TS

different ways, and that the inputs to an operation are ahvays ordimry data ob)eas which :re

never used to represent excepuons. In previous work on specifymg dan ‘ jons: wﬂh

exceptions, exceptions were modeled as di;tinguiﬂwd‘ cxccm obpcts, whl&: rwefe euthe_r
elements of extra phyla [10} or distinguished subsets of the ordinary phyla (8) We have
foltowed 43] in introducing explicit named termination conditions, maintaining a distinction
between termination conditions and data objects,s]me we Teel that this ippﬁiaih ‘provlvde:a

more coherent and disciplined view of the exceptions assoclated with a data abstraction.
2.4 Time Dependent Behavior

Many programming languages have data abstnaims with data objects whose
properties may be changed. Two common examples are reoofds mPASCALand gfr’a‘ysi in
~extended LISP. Since data abstractions with time dependent properties are vigil_if'ad widely ui_e_d.
it is important to develop a formalism suitable for specifying their bé;iavi.i)r.

An operation is non-functional if it is possible to invoke the operation with the same
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arguments at two different times and get two distinguishable results. A data abstraction
exhibits time dependent behavior if it has at least one non-functional operation. Data
abstractions with time dependent behavior will be modeled as state machines. A state machine
is a special kind of exception algebra containing a distinguished phylum of system state
Sfunctions. The progression of time in a computation is represented by the sequence of system
states of the state machine.?

We distinguish two kinds of time dependent behavior. If an operation changes the
properties of an existing data object, we will say that the operation mutates the data object. If a
data abstraction has no operations that mutate any data objects, then the abstraction is
immutable, and otherwise it is mumble.. If every invocation of an operation.returns a data object
that is distinguishable from all data objects that have been computed previou-sly, we say that
the operation creates a new data object. If a data abstraction has no operations that create new
data objects, then the abstraction is static, and otherwise it is dynamic. It is possible for a
dynamic data abstraction to be immutable, as illustrated by the unique id abstraction described
in Chapter 4.

Mutable data abstractions are usually dynamic, since the possibility of sharing data
objects goes hand in hand with the need to create new data objects. A change in the state of a
mutable data object is visible in all contexts in which the data object appears. If ali of the
contexts in which a given data object is used are not known, as is often the case in a program,

then the data object cannot be mutated without risk of violating the assumptions made about

5. We are relying on our assumption that a computation is a single sequential process. The
history of a parallel computation has been described  as a partially ordered set of local states in
[55).
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the data ob]ect in some of the other contexts in whrch it may appear A newly created data

object is known to occur only in the context m which it was created and can therefore be
mutated wnthout risk of mterfermg with other parts of the program

Data abstractions that are mutable or dynamic wsll be modeled as state machmes since

B e gHed

they exhibrt time dependent behavior Data abstractions that are, both static and tmmutable

"\fi

can be modeled as exception atgebras mthout introducing states The rest of thls section is

it E

concerned wrth state machine mode!s

2.4.1 Data Objests vs.. Variables

R A

| ln the early work on abstract data types, abstract data objects were treated as
immutable values and all changes or state were identtfied with asslgnments of new abstract
' ‘Vvaiues. to programnganables Thts pomt of view is now mdeiy held and is oﬂen taken for
granted in work on speciﬁcations t‘or data abstractlons However. as clearly stated in Hoares
pioneermg paper [18]. thrs approach is not suited for describmg programs‘that manlpulate
pointers, or more abstractly. for descnbing mutable data abstractions that aiiow sharmg of
mutabie data objects | | -

The drstmction between the assngnment of new values to variabies ‘and mutation of
data becomes tmportant in cases where mutabie data Is .thcnd (several varrables denote the
same data object). Consider the example from LISP mustrated in Frgure I Suppose that
initially the value of the variable x is the iist )] and the value of the vanable yis the Iist (4 5).
The assignment (serq x 9) will change the value of x to be the’hst ({ b) which is identically the
same Hist a; the imt—tat valne of 3. This assighment has not inmw:che properties of the tists

(3) or (4 5), and therefore has not affected any other variables whose values happen to be the
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Figure 1. Shared Mutable Lists

Initial state

- — - - - A -~ - - - - - - - -

x -+
. 1 .
After (setq x y) |
] ..........................
Yy —+-> | 4 ' *==l====> l S I nil i
X -+
|
After (rplaca x 7) |

—— o — - - - - - e g - - ——— o -

same lists as the original values of x or 7; If we now modify the list x by executing the
operation (rplaca x 7), we will have changed the first element of the list x to be 7. Both x and y
continue to denote the same list (the original value of ), but the first element of this list has
changgd, so that the value of either x or y would print out as (7 5). Whenever a data object is
modified, that change is visible in all variabﬁes that denote the data object, and in all other
data objects that refer to (or “contain”) the modified object.

The classical approach of associating all changes with the variables does not work

very well in cases where mutable data is shared. If we were to insist that list values be modeled
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as immutable sequences, and that all changes be describet;lbyy assigmng new vahes Mto ;he
variables, then we would have a-situstion- whcret rplaca operation could change the values of
arbitrarily many variables, dependmgaﬁmthrdau -wasnshared. By associg;igg 51‘?,“-’{ W?tb
the dam ebjects-themelves ratherthanwith the mlabm. we can overcome this difficulty, since
»changes can- be focatized in an obpct cememd description An example of a description of a
“mutable data structure with shared subcompomms can be foimd in Section 2.4.4.

The treatment of potentially shared mutable data has been one. of the majot goals of
this work Our appmch |s mast tlosdy matchcd to objwt oriented hnguages such as CLU
and LlSP and~ our wk is more-or tess appﬁcabk to hnguages with pointers and heap

_allocation, such as Euclid, Algol 68, and PL/I. We treat aperations as functions that take a
system state and some data objects. and produce a new s;istem state and Some ‘ddfa- objects "The
variables of me host progﬂmnﬂng hhgu;ge &o nu expiititly enter into our treatment, and we

“leave a dxscussion of the assignment of data objects to variables to the definition of the: host

programming langﬁage. Our treatment is directly applicable tquheprogramming fanguage

CLU, in which the invecation of an operation or pfocediire may charigé the properties'cf sofme

data obje.cts.,but is graranteed not to disturb the association betwéeh vaifables and data objects.

For host programming fanguages where the invocation:of a procedure may alter the assoctition

between variables and data objects, -3s-in (impure) LISP; Euchd, Algol 68, arid PL/I, a

correspondence has to ‘be-made between the operations of ‘the ifiguage and the npbrafiﬁns of
the abstract model for each data abstraction.

There are two ways of incorporating abstractions with operations that assign to their
input parameters in our framework. - One way is to consider the abstractions to be immutable,

with operations that return vectors of values to be assigned to the output variables of the
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procedure. Another way to model such operations is to rc’ov_tsk‘lerﬁthe L—valqes [cf. 50] of the

variables to be part of the data object rather than the variable, and to treat the data abstraction

as mutable. o | A
The first approach is well suited in cases where there is no sharmg of mutable data.

“Aliasing can in fact introduce sharing betwten the formal: pzmetcrs of a ‘call-by-reference

procedure, so that speéial care is required in cases vfhgré thg Vsérme‘!ér’ia‘l?le‘__ is pés;gq in more

ent position (17

In order to describe data (ﬂ)je_t:ts~ whosé properties are subject Ato. change, we will
introduce a system' state function, which maps each data” object into .igs properties in the current
state. Only the permanent properties of a data object aré represented by the ihtérbretaﬁon ofa
data object im a state machine model, while the properties of a data object that are subject to
‘chanige are represented by the image of tﬁe'ébje& uider tﬁ;’é?‘i’y'st:énf'state function. For mbst
mutable data abstractions, the only ptrmanent propertyof data object is its identity.

Y

2.4.2 State Mag;hines

Mutable data abstractions are modeled as state machines, which are defined formally

below. A state machine is an exception algebra with a distinguished phylum of system states.

Definition 4 State, Machine :
A state machine is a tuple ¢ phyla : P, operauons F, statcfuncnons Z, states : A,
arglength : n, argtype:q, tc:¢, rlength:m, rtype:r, typenames: A, opnames: B,
tcnames : T, statenames : S, ss: 5, pt ), where P = {P a € A}is ah indexed set
of phyla, and where F = ngal‘B ¢ B} is an indexed set of operations, such that
each operation in F is a function
Fg:Ps—> (Pyp 1y X% PoB nif)) = Fs x UL Ry LT B) }),
where U  denotes the disjoint  union  operation, and where
RT = Pr(ﬁ' T )X X Pr(ﬁ' T, m(B, T)) 2= Ea laec S} and
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A-{A lacS] are indexed sets such that each ’d‘; < ia is a state function
Ou Pa > By 11 :0.CPy then: & =l{0y oo S ) for: some 0, ¢ By v
N:B—>Na:BXN>AL:B>KT),m:BxT—>Nr:BxT xN—> A are ,
functions such that n(fl) is the number of arguments for Fg(c) for any system A
o, a(ﬁ k) is the type index for the k-th argument of, Falo), ((d),js the .set. of all

termination conditions that may result from Fﬂ(O’) m(B. T) is the number of data
- ohjects returned by Fg(or) - thie termination chdaition s, and-7d8; 7, %) i¢ the type
index for the k-th return. value of Fﬂ(a) in the termination md!tim T 4 is the et

RN TRy 25 ob

* of type names, B is'the set of operation names, F is the set of termination condition

names, D C A contains the names of the principal types, S G W&N T
the types that have a corresponding set of state functions, and 5 ¢ (4 - S - D) is the

distinguished phylum of system states, ¥ is.the st of natural pumbers.
s all_possihle. system state, {unctions, one of .which

The phylum of system states P,

represents the current global state, A system siate function is the disjoint ynion of all.the

lndmdual state funcnpns each of whu:h 13 resents. the cyrrent.

dependent behavior. The disjpint. union of a.family. of functioas fml4{f; 1L < L} where
fi g1, is a fundion. f: uid [i,( _l },‘—.’:.U,(.ri bis B} auch . that  whenever
xcUfd;licX}and x = (z.y)ﬂx)-f‘(y) Informally, the elements of the domain of the
system state function are tagged with the name of the phylum thcy came rrom. s0 that the same
set can be used to represent many different phyla without causing-any, interference among the
various components of the system state function. 'l;he sets 'q ANd A are the dom;ms and
ranges of the individual state functions, and hence are used in the construction of the phylum

of system states _P,. but they are not themscr_”” lvcg yhyh of ;he n;f: imchgi'ne: reﬂecung thefact

that none of the operations of ’the' stzté"i‘mchihe 'ﬁigm&vduﬂ ‘state Nnct)omor 'ihcfiyidual
data states as-arguments. The set of statenames § spectf&s chh phyh repmmt mmable
types. Individual state functions -are: associsted m)y \mh th& mhh types of a data

abstraction.
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The operations of the state machine are curried® so that formally an operation of a
state machine is viewed as a family of operations parameterized by the current system state.
This structure is introduced because the system state is qualitatively different from the other
arguments of a typical operation, and because this structure makes corresponding notations for
state. machines and exception algebras more uniform. The operations of any immutable
subordinate types are extended to take the system state as an extra argument, and to return the
unchanged system state as an additional return value (the first component of the tuple of return
values).

Each operaﬁon of a state ma;hine takes the current system state as its first argument,
and when supplied with the rest of its arguments the operation produces the new system state as
its .first return value. The reason for making the global state an argument to each operation of
a data abstraction, rather than just the state function of the principal type, is that the operation
may depend on or modify the state of some subordinate type. A common example of this kind
of behavior is the print operation of a data abstraction, which modifies an output stream, but
which usually does not affect-the state of any data object belonging to the principal type. |

If none of the princkpal types of a data abstraction has an associated phylum of state
functions, then we will say that the abstraction introduces no mutability. An abstraction that
introduces no mutability may still exhibit time dependent behavior, and hence require a state
machine model, if it has some operations that depend on or modify the state of some

subordinate type, or if it has some operations that take or return mutable data objects.

6. The process of abstracting from a function with n arguments to a higher order function
which takes one argument and returns a function of n-1 arguments is named after Haskell B.
Curry [3].
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2.4.3 Mutatiori of Data Objects

In a state machine, the properties of a data object may depend on, the cursent.systom
state. Typically the objects of a mutable type are modeled. as tokens, without amy atributes

except for their identity. The purpose of the state function. is to assaciaje the current:data state

of each data object with that object, so that the same object can lave, different properties. in
different. states. The set of data states O, far the. type a is the.range. of any individuai state
f;znction 0 ¢ Z, for that type. The data state of a mutable object is roughly analogous te the
representation of an immmabk object in_an exception algebra. _In ,:ag{gw@;a,lgebn model,
the properties of a data objert are computed in terms of some-representation structure. while:in
a state machine modgl. the properties of a data object are computed. in -terms of the:
represetation and s imagesunder the s oncon,

A very simple example of 2 mutable data, absiraction is the integer cell,. An. imteger
cell is a_unit of memory that can store an integer. value.. A model for integer cells.can be-
constructed by ;ging the natural numbers for f’w celt. And the, integers f"Aimegefeé#-
since the only obs?tvab!:g_ property of a cell that is subject to change s the identity of the integer
cu_rlfrcmly_c;mta_ined in the ce!l:, The system state function 0 maps .every .natural number -
répresentjng a ce_llvinto’ the integer that is the current contents of that cell: There ase. three
operations on integer cel!_s:'crmtg. JSetch, and store. The creale operation creates a new cell with a
specified integer as its initial contents. (The creation of dita objects is discussed in Section
245) The Jetch operation applies the state function to the-cell to get its current contents, and-
the store operatim ptoduces 2 new syacm state th:t dm‘ers from me o!d one m!y in mappmg

the updated cell into its new contents. A language for spedfying models is defined in Chapter
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4, and a number of complete examples of models for mutable data abstractions can be found

there.
2.4.4 Sharing of Mutable Data

From the point of view of this work, the existence of sharing relationships among
immutable data objects is not externally observable, since we are concerned only with the results'
of a computation, and not with the time and space requirements for performing the
computation. A specification of an immutable data abstraction can therefore be constructed
without considering potential sharing relationships. Sharing relationships among mutable data
objects are often externally observable, so that they must be described in a state machine model,
at least to the extent that they influence the externally observable behavior of the abstraction.

To reflect possible sharing relationships, the set of data states is allowed to overlap
with the phyla of a state machine, so that the data state of an object x may be or may contain
another object y that lies in the domain of the system state function, and therefore has a data
state of its own. This kind of modeling structure is indicated whenever the object x has a
potentially shared subcomponent y, such that the state of y is subject to change and such that
the externally observable behavior of x depends on the state of .

In the general case, the behavior of a data object x may depend on an indefinitely
large set of data states, which are reachable from x by repeatedly applying the current system
sfate to x and to components of other data states already in fhe set. We will call this set the
reachability closure of the object x. For data abstractions where there are no externally
observable sharing relations, as in the integer cell example, the set of data states should be

chosen to be disjoint from the domain of the system state function, so that all of the state
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information is reachable by means of 2 single apphcation of the system state function

Mutable binary graphs are a classic example of a data abstraction where sharing |

relationships are important. This abstraction has operatiens. for ¢

ging the null graph, for -
creating a composite graph with given left and right subgraphs, for extracting the feft and
 right subgraphs of a composite graph, for modifying the left and right subgraphs of a
compogite graph, and predic'ates for testing if 2 gra;ih is en\pty and if twographsare identieel.
One way to construct a state machine model for brnary graphs is to take Pbinary graph to be
the set of natural numbers N, and Abmary graph to be the drspint union null U (N x N). The
data state of a graph is ‘either nuii rndlcating that the graph s empty or it is a pair of natural J
numbers representing the left and nght subgraph& “An iliustratron of a system state 0'5
contaming a number of overhpping binary graphs is shown in thure 2. Note that the graph”
represented by the number 4 is a subcomponent of the graphs 1 and 2, and is therefore shared.
Binary graphs can also contain cycles, as s shown by graph 5 which is its own et subgraph

The mutation of shared data is a phenomenon that has been avoided in most existing

work on’ specifications for data abstractions. As the eimnpie in thure P indicates. it is not

difficult to describe shared mutable data once we adopt a point of view centered on data objects |

Figure 2, Shared Binary Graphs
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rather than on variables, Some of the issues involved ‘in teasoning about shared mutable data

ugi_!l be discnssgd»in Chapter 5. .. R
2.4.5 Creation of Data Objects

The principal type of a data abstraction is a fixed:set for both static and dynamic data
abstractions. For a dynamic data abstraction, the principat type is:the set‘of all dista obsjects -of
the given type that can be created by :anvaezth~. in-terms of the. primitive
operations of the data abstraction. .

... The population of a.dynamic data abstraction d in & system state 0" is the set of all
objects'of the principal type of d that exist in the state 0. The concept of a population is
meaningless for static. data abstractions. - Singe -we -find': it -convenient 10 work with totil
fyngfion;. we adopt the convention thﬂt,thg;dat@ state: of :any object-that- has:not ‘been created
yet is the special object undefined, which is a.member.of every phylum of the state machine.
Al qu(gtipns of the state machine are implicitly. extended te applyito this extra object by the

following strictness requirement:
Vi [I <is<nk Xy = undeﬂned = flx, xp) = dndeﬂned]

for any operation f taking n arguments, for any n 2.k ~We also adopt the convention that
0 (undefined) = undefined for every system state.0r ¢-2. -
-Definition § | Population of a data abstrietlon. : ‘

The population: of the data abstraction d in the system: state 0" is defined to be the

set { x € Py |0(x) # undefined }.

We will. assume that in the initial system state every mutable type has an empty
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populaion, and that objects are added to the populatioi as 'tl.vey'are“ created. We will also
assume that every data object must be computed (ice., returned as'the vahse of some operation)
before it can be used as an argument to a wb;equept operation.

We would like any program we can wﬂte in t@ of the primitive operations of a
data abstmﬁtion to be guaranteed to return uﬁfﬁm objects with' a- well defined state, and we
will call a data abstraction secure if it has this property.

Data abstractions with: operations ‘that expicifly destroy data objects can be modeled
readily in our framework, by having the operation change thé state 6f the data object it is to
destroy back to the original value undefined, thus removing it from the current popuilation.
Data abstractions with operations that explicitly destroy data objects cannot: be seture, Whu a
computation that creates an object, destroys-it, and then apphies any’ i’imhér 'i’péﬁ;tidﬁ: to it ‘will
produce undefined as a-vatue: The problem of dectding Wwhen it Is Safe to. explicitly destroy a
given data object must thus be addressed anew for each prograffi’that uses Gbjects of an
insecure :data abstraction.. This is known ;s the dangling referénce problem, and it is genéiall;
acknowledged to be difficutt.

We will concern ourselves mostly mth secure data abstractlons The population of a
secure data abstraction grows monotoﬁ:cally, and the reachabihty closure of any object in the
population of a secure data abstraction will never contain the data object undefined.

| Informally, we will say that a model is reduced if it does not contain ﬂanyuﬂnéécssary
data objects. (A more careful definition of a reduced model can be found in Section 33) The
standard model of a data abstraction should be redwud sime this gencrally feads to a cleaner
_specification. In the context of a state machine model, this means that an operation should

extend the population only when it creates a “new” abstract object. An abstract object is "new”
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if it is distinguishable from every object in the old population by means of some finite sequence
of operations. In practice the required sequence of operations is often very easy to find, since
many dynamic data abstractions provide an equal operation which can be used to test if two
abstract objects are identical.

A very simple example of a dynamic data abstraction is the unique id abstraction,
which has only two operations, create and equal. The create opgrati.on creates new uniqﬁe ids; a
newly created unique id is unique because it is guaranteed to be distinct from all previously
created unique ids. The only way to create a unique id is by means of the create operation.
The equal operation is provided as a means of corﬁparing unique ids, and it is guaranteed to
distingu-ish a newly created unique id from any previously existing unique id. Unique ids are
immutable (so that they cannot be forged or tampered with - one application for unique ids is
in implementing capability based data protection schemes).

This example illustrates that there is a state change associated with the creation of a
new data object, as reflected by the increased size of the population, even though the properties
of all previously existing objects may be unchanged. Note that the create operation is not a
function of its arguments unless the state is explicitly included as an argument to the operation,
because it will return different unique ids in different states, and it will never return the same
one twice.

Another example of a dynamic data abstraction is the impure list abstraction (as found
in LISP), with the operations cons, car, cdr, atom, equal, eq, rplaca, and rplacd. Each time.it is
called, the cons operation constructs a new list, which is distinguishable from any previously

| existing list by means of the eq operation. The impure list abstraction is also mutable, because

the rplaca and rplacd operations can be used to modify the contents of existing lists. These
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operations can also be used to distingutsh a ne\trly created Iist from a previously existmg Iist
with the same contems by modifymg one of tbe lists and Iooking to see if the oiher Is changed
also. If the lists are distinct then one will be changed and the other will not be. Thus the
impure list abstraction would be dynamic even without the eq operation In the general case,
two abstract objects are identical only if they have the same observable propertles in the current
state, and if they are guaranteed to have the same properties in alf subsequent states.

Consider a restricted kind of Iist which has the same operations as the impure lists of
the previous example, except for eq, rplaca, and rplacd This Iist abstraction is immutable, and
also static, because there is no way to dtstinguish the ltst retumed by one mvocation of cons
from that returned by a later invocatlon with the same arguments This exampie demonstrates
that whether or not a given operation retums a new abstnct data object depends on the other

-
operations of the abstraction. It may require a bit of thought to decide ii‘ a given data

abstraction is in fact dynamic and hence requires a state machine modei. or if it is static and

immutable and hence should be spectfied by an excepuon algebra model.
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3. Denotations for Data Abstractions

The mean‘ing (or denotation) of a data abstraction is the class of all models of the data
abstraction. In the axiomatic approach to specifying data abstractions, this class is taken to be
the class of all models satisfying a given set of axioms. In the abstract model approach, the
class of all models of a data abstraction is taken to be the set of all models with the same
observable behavior as a given model, which is explicitly constructed.

In this work, we will assume that a model for a data abstraction is an exception
algebra. We will say that a model is dynamic if it has a distinguished phylum of system states,

and that it is static if it does not.
3.1 Complete and Partial Models

A model for a data abstraction d is complete if and only if d Bas interpretations for the
types and operations of d and of every data abstraction subordinate to d. The externally
observable behavior of d is characterized by the finite computations in terms of the operations
of d and the abstractions subordinate to d, and any such computation can be interpreted in a
complete model for d. A partial model for d may leave some of the abstractions subordinate
to d uninterpreted.

Since the identities of the objects in a model are not a priori observable, there may be
no way to compare the results of a closed computation in two different models. This problem is
resolved by insisting .on a unique standard model for the booleans, containing exactly two
boolean values, so that the results of any computation producing a boolean value can be

compared for any set of models. To reduce all comparisons of results to the problem of
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comparing boolean values, it is necessary to incllide the operatic:ns of the subordlnah
abstractions in the computattons Thus complete models are required to make sure that every
computatton of mterest can be tnterpreted
‘ In practice a system of data abstracttons IS described incrementally. by giving a partial
description for each abstraction (or set of mutually aubordinato abgjractions) d in the system.
The parttal descriptlons give a prescriptton l‘or constructing interpretations for .the principal |
type and operattons ot’ d, assuming that complete models for tlse abstractians subordinate to d
are already defmed ln particular, the mterpretations of tlie subordinate types of d are to be.
taken from the models for the deftning abstractions of those types . The construction .of a
complete model for d is described more precisely below.! |

 Let d be a data abstraction, ket d; , . d, ﬁfihf‘:&&i‘ﬁt"s&bdidtndg to d, and
let m; be a complete model for d; for each i in the Tange | I fi<n Suppose we have a partial
. descrtption D i’or d, which gives the signature of d, the ‘name of the principal type of d, and
interpretations for the principal type and operations of d. If D describes an exception aigebra,
then a complete model m for d is constructed as follows.

7\ntf-. phyla: = D.phylapy pt'i'.i( isliJSn m. phyli;ni, pt )

m.ops = D.ops U( l<‘iJ<n m;. ops )
m. arglength = D.arglength LI (, U,, my. arglength )

m. argtype, m. tc, m. rlength, and m. rtype are similarly defined as dls]oint unions.
m. typenames = D. typenamesﬁ( l! mi.typentmes)

m. opnames = D. opnames U('< o mt.opmmes)

m. tcnames D. tcnames U ( <t U "'i' tcnames )

_...

. The details of this construction are not essential for an understanding of the rest of this
work, and may be skipped on a first reading.
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m.pt = D.pt

where U denotes disjoint union and where U denotes ordinary set theoretic union. If D

describes a state machine, then the above relations still apply, and we have to add the following:

m. statefunctions = { D, statefunctionsy, pt J U { m;. statefunctions is a state machine }
[ ] .

m.
mi. pt ' (]
m. states = { D. statesp, pt tU { m;. statesmi' pt | m; is a state machine }

m. statenames = D. statenames U (U { m;. statenames | m, is a state machine } )
m.ss = D, ss
mephyla, ={U{oslacS}|o, T, foreacha ¢ §}

where S = m. statenames and E = m. statefunctions.

In the rest of this Chapter, we will limit our discussion to complete models, and we will

frequently leave out the qualifier “complete”.
3.2 Behavioral Equivalence

Informally, two models are behaviorally equivalent if they have the same externally
observable behavior. In this section we develop a precise matﬁematical definition of an
equivalence relation that captures this informal notion. We define closed computations, and the
interpretation of a closed computation in a model. Two models are behaviorally equivalent if
they contain interpretations for the same types and operations, and if the value of any finite
closed computation in one model is indistinguishable from the value of that computation in the
other model.

Behavioral equivalence is an important notion, because it is the basis for defining the
correctness of an implementation of a data abstraction. An implementation defines a model /for

the abstraction it implements, and the implementation is correct if the model it defines is
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behaviorally equivalent to the model that specifies the abstraction.‘
We can meaningfuliy compare two modeis only if thej have interpretatmm for the
same types and operatlons Two modeis can be behavmiiy equivalent oniy if they have the

same signature.

Definition 8  Signature

The signature of an exception algebra ¢ is the tuple

(arglength : a. arglength, argtype : a. argtype,
tc : a. tc, rlength : a. rlength, Rype: a.rtype, . -

typenames : a. typenames, opnames : a. opRames, t;namesic.unames)
If two exception algebras have the same signature, then they have the same names for the
phyia operations and termination conditions, and corresponding operations have the same
numbers and types of arguments, the same set of posssbie termination conditions and the same
numbers and types of return values in each termination-doadition. :As a mitter. 9f- hotationdl
convenience, we require comparable models to be indexed by the same sets, so that
corresponding types and operations have the same names. and we can taik about the
interpretations of the same operation name in severai d:i;erent n\odels |

In order to characterize the kinds of behavior a data abstraction may exhibit, we

define the set of closed compntations.

Definition 7. Closed computation

A closed computation with respect to a sighature S is a finite sequence of pairs C
such that

Cli} » Cop : £, args : s ) for each i in the range | £ i < length{C);

where f ¢ 5. opnames, and s is a sequence of argument speciﬁcmons such that
length(s) = S. arglenth{/),

s(j) = (step : m, tc: T, result : & ), (the source of the fth argument to f)

1< n<i, - (nisthe index.of a previous step of the computation)

T ¢ Sotc(Clnloop), (T is the required termination condition for step n)
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1< k< S.rlength(Clnl.op, T),  (the k-th object returned by step n must exist)

and S. rtype(Cln). op, T, k) = S.argtype(f, ) (and it must have the right type)

for each j in the range | < J < length(s). :
A closed computation is a sequence of steps, where each step is the application of some
operation of a data abstraction to data objects resulting from previous steps. Every
Computation starts from nothing, and computes data objects as it proceeds. A closed
computation is analogous to an uninterpreted flowchart, since the sequence of the operations is
given, but the operation names are left uninterpreted. A step is a pair consisting of an
operation name and a sequence of argument specifications. An érgumént specification is a
triple, which specifies a previous step, a required termination condition for that step, and the
index of the desired result. The index is necessary because an operation will in general return
more than one object, and we have to say which of the returned objects to use. Since the
number and types of objects resulting from an operation can be different for' different
termination conditions, an argument specification requires the step producing the argument
object to terminate in a particular termination condition, so that we can be sure that vthe
specified data object is of the proper type. A closed computation can fail to have an
interpretation in a given model, if the termination conditions actually computed do not match
the required termination conditions in the argument specifications of the closed computation.

An example of a closed computation CI ov.er the list abstraction of pure LISP is shown

below.
Cill] = Cop : nil , args: ())

Cl[2] = Cop : cons , args : { (step : 1, tc : normal, result : 1 ), (step : I, tc : normal, result : | )
1)

>
CIB3] = Cop : cons , args : ( (step : I, tc : normal, result : 1 ), ¢ step : 2, tc : normal, result : 1) ) )

This computation computes the value of the LISP expression "(cons nil (cons nil nil))".
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A cbsed computation consists of a finite sequenceof oﬁ«atm&. with no condmonak
or other control structures, and can be thought of as a trace of the execution of some program
that uses the operations of the data abstractions of interest. The finite preﬁxes of the history of
any program can clearly be described by a set of closedcomputztions. and any finite closed
conmutatnon can be destribed by a program in fust about my pmgtammmg language Note
that a machine for executing closed computations requires an » unbounded amount of memory
because it is assumed that theiresults of each step are saved :nd may be used in any number of
succeeding steps'. | N -

We want to know whether or not there is some computation that yields observébly
different-results when infterpreted in each of the two mddels whose behavior we are comparmg
It s sufficient for this: purpose to consider only thé finite computations: given two infinite
sequences, if. we know that their prefixes of length n are the same for évéry natural "number n,
then the original infinite sequences must be the safme as well

The interpretation of a computation in a given model is the sequence of results
obtained by applying the interpretations of the specified sequeénce of operations in the model to
the specified arguments. Since the interpretation of an opentim is different for  static and
dynamic models, we will give separate definitions for the interpretation of a closed computation
in each kind of model. |
Definition 8 Interpretation of a Computation in a Static Model

Let M be an exception algebra model, let F = M. operations, let n = M. arglength, let
C be a closed computation with respect to the signature of M, and let X be a

sequence. ' K is the interpretation of the computation C it the model M if and only if
all of the foﬂmvmg conditions hold:
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1. length(Il) = length(C),

2. For each i in the range 1 £ i < length(C),
IL) = Fglxy, .. xp8))  where Clil = Cop:B,args: s),

“»

For each j in the range 1 < j < n(f§)
X = obj(Il{k]) [w),  where sl = (step : k, tc: T, resuit : w ), and

4. te(Ik) = 7.

A computation is a sequence of operation names and argument specifications, and the
interpretation of a computation in a model is the sequence of values obtained by applying the
interpretations of the specified operations in the model to data objects specified by the argument
specifications. The set of operations of a model is indexed by a set of operation names, and the
indexing function specifies the interpretation of each operation name in the model. Since an
operation may return more than one data object, the interpretation of a computation is a
sequence of tuples of data objects, injected into the component of the disjoint union
Eorresponding to the termination condition produced by the operation. Recall that the range of
each operation of an exception algebra is a disjoint union of a set indexed by termination
. conditions. Each element of a disjoint union is a pair, containing a tag and a data object. If y
is the result of some operation of an exception algebra, then obj(y) denotes the object without
the tag, and tc(y) denotes the tag, which is the name of a termination condition.

The interpretation of the computation Cl (shown above) in the usual model of pure
LISP is the following:

I (1] = ¢ normal, < nil > )

M1 [2) = ( normat, {{nil ) >
It (3] = ¢ normal, < ( nil nit ) )

The pairs stemming from the disjoint union are shown explicitly. The first component of the
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pair is the tag (termmauon condition), and the second componem is the sequencc of data objects
resulting from each operation. Since all of the ppenmbm in (,!us examph tetum a slngle
value, the resulting data objects are contained in sequm:d lmgﬂtme B

Note that the termmation condmon of each step must match the te;mlmtion condltlon
required by every argument specification that uses the resubts of tlm step A closed
computation may .or may not have an mterpretatm in a modcl Ifan imerpretatlon exists. itis
unique, because the operatlons of a excepnon algebra are functkms wh:ch necessanly have
unique values. A computation may fail to have an interpreutlon ina g:ven model because the
operanon specmed by some step of the computatlon may termimte ina dm‘erent condition than
the one required by some later step that uses the results of the given uep lf several steps of a |
computatlon make conﬂlcting reqmremems on the termmatlon condmm of a glven step then
that computauon wm ot have an intcrpretatlon in any modd of th? abstracnon lf a |
computation has an interpretation in a model, we wm say that the covmumnon is feasxbie in
that model. A feasible computatlon can involve steps with exceptional mmimtion condmons.
and it is posstble for the termination condition of the ﬁnal step to be norm-l even if the
termination conditions of s some intcrmedme step: are excemoml. |

The mterpretation of a closed compumm in a“d)‘v‘v»umk model is slmnlar, except that
there is an extra component contammg the system state. Reca!l that the ﬁrst argument and the
first return value of every operation of a state machine is a system state.
Definition 9 Interpretation of a Computation in a Dynamic Model: .

Let M be a state machine, let F = M. - Operations, let n = M. argiength, Jet € be a
closed computation with respect to the signature of M, and let I be a sequence. I is

the interpretation of the computation C in the model M if and only if all of the
fellowing conditions hold: : _ .
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1. length(X) = length(C),

2. For each i in the range |1 < i < length(C),
i) - Fﬁ(cri) (g, "'n(ﬁ))' where

Cli) = Cop : B, args : 5,
0; = A x . undefined ifi =1
o; =obj(Il -1MN0]  ifi>1

3. For each j in the range | < j < n(f)
x;=objH{k) [w+1),  where s[j] = (step: k, tc: T, result : w ), and

J
4 tc(Hr)) =17
The initial state for any computation sequence is the empty state, which maps every data object
into the initial data state undefined and thus has an empty population (i.e, no data objects
have been created in the initial state). Each step of a computation except for the first step starts
with the state produced by the previous step. The interpretation of a computation in a dynamic
model is a sequence of tuples, whose first component is a system state, and whose remaining
components are the tuples of data objects and the system states produced by the operations
specified by the closed computation. Since the first return value of an operation of a state
machine is always a system state, the w-th data object returned by an-operatidn of the abstract
type corresponds to the (w+l)-st component of the sequence of values returned by the
interpretation of the operation in the state machine.
If a computation has an interpretation in a given model, then the value of the
computation in that model is the result of the last step of the computation.
Definition 10 Value of a computation
If the computation C has the interpretation I in the model M, then the value of C in
M is obj(Illength(I))) if M is a static model, and the value of C in M s

(2[2), .., vllength(v)] > where v = obj(Il[length(I1)]) if M is a dynamic model.

Note that the value of a computation can be a tuple containing more than one data object. The
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final state of the interpretation of a computation in a state machine is not part of the value,
since it is not directly externally observable. g o
We are now ready to define behavioral equivalence. .,
Definition 11 Behavioral Equivalence of Models . ,
' Two models Ml and M2 are behavnofa!ly eqmvalent if ahd only if all of thé
following conditions hoid:
1. Ml and M2 have the same signature $.

2. For any finite closed compuntation C' with respect to' the signature S, C has an
interpretation in MI if and only if it has an interpretation in M2,

3. For any finite closed computation C with respect to the slﬁnamte S, C has an
" interpretation in M1 and the vatue of C’iti M1 1 the Bodleaht value't if and only if
C has an mterpretanon in M2 and the vahe of C in M2 is thc same boolcan ‘
valer. - o
Two models are behaviorally equivalent if they have the same signature, interpretations for the
same set of closed computations, and if every computation resukinig in a boolean value has the

same vatue in both modets.

Theorem 1 : Behavioral equivalence is an equivalence relation.

Proof : The theorem follows digectly from the definition.
End of Proof

We intend two models to be behaviorally equivalent if and 'tmﬁ if they have the same
externally observable behavior. In practice, what' we can’ really observe is the output of 2
program, which is usually manifested as characters printgd}qtt a piece of paper, or displaycd on
a terminal.  Although there is a wide variety of periphenl devita thax can be connected foa
computer, capable of producing a wide variety of observable effects, the'y‘ca;n all be modeled by.‘

a (mutable) output stream data abstraction sufficlently ‘wel‘for our purposes, since we are not
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concerned with the actual physical properties of the output, but only with whether or not two
outputs are distinguishable. We model the data states of an output stream as finite sequences of
integers (which can be interpreted as character codes in most cases). We assume output streams
have an operation that returns the current state of the stream, represented as an immutable
sequence of integers. This operation models the system user, who observes and compares the
actual outputs of the system, and it need not actually be implemented. It is included because
some data abstractions have properties which can affect the printed output, but which cannot
be tested by another program.

Integer sequences are defined to be a priori distinguishable because they are used to
model physically observable outputs of the system. Note that the states of mutable data
abstractions other than output streams are not a priori observable. We will further assume that
integer sequences have an equal operation which allows us to reduce the problem of comparing
sequences of integers, representing states of output streams, to the much simpler problem of
comparing truth values.

The domain of truth values is a priori distinguishable because of our assumption that
the host programming language provides some means of altering the flow of control depending
on a truth value. For example, a conditional statement that pr'ints a different message on each
arm can be used to physically distinguish between the truth values. Because of this property of
truth values, we insist that the boolean abstraction be given the standard interpretation in ali of
the models that will enter our di.scussion. In the standard interpretation, there are exactly two
truth values, T and F, with the operations and, or, not, implies, and equivalence (see Section 4.2.1
and Appendix I).

Different termination conditions are also externally observable, because we can



V.
associate handlers that print diﬂ'erent messages iwith each exception We do not ‘ha\.le to
introduce any extra machinery to treat this case, because it isﬁalready covered by our de[inmon
of the mterpretation of a computationr lf the ﬁnai step of a computation c resuits in two
dii’i’erent termination condmons in two different modeis then by adding one more step that uses
the results of the last step of C and that reqmres it to terminate in one of the two observed
termination conditions we will geta closed computation C that is i‘easible in one model but not
in the other. | | |

In our. definition of behavioral equivalence, we have assumed that all of the aspects of
the behavior of a data abstraction can be observed by means of the operatlons of the
abstraction and its subordinate abstractions. If every operation oi‘ every abstraction in the
system computes results that depend only on the data objects expiicitiy passed in as arguments
or on the data states in the reachabihty ciosure of the arguments (see Section I3) then this
assumption is justified. An example of a system that Violates this assumption is the foﬂowmg
Suppose that the abstraction NASTY has an operation count that returns a natural number :
representing the number of objects of type NASTY that have been created s0 far and that the
only operation that creates new objects oi‘ type NASTY is the nuliary create operation.. In order
to implement this behavior, the create and count operations must share some own data. If some
other abstraction A in the system is implemented using a repfesentauon containing a object of
type NASTY then the operations of A4 can have effects which are only observable by means ol‘
the count operation of NASTY, even though NASTY is not necessanly subordinate to 4 (i.e,
A need not have any operations that operate on or} return any objects of type NASTY).’ In
general, abstractions with state components that are associated with the type as a who'le. rathes |

than with any individual data object cannot be used to represent objects of other types without
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introducing hidden interactions of the sort descrlbed above.. Beuﬁse we want the behavioro? "
data abstraction to be mdependem of the representation - used inany. particular implemeéntation,
we ,excludg,;trucr;ires like NASTY from. our discussion. | The:specification langtiage presented
in Chapter 4 has been designed so that abstractions violating this locality assumption canmot be

defined.
3.3 Reduced Mééels

Data abstractions are identified with equivalence classes of models with respect to the
behavioral equwatence relation. In this section we will show how to construct a representative
element of such an equivalence class, known asya reduced model rarhich can be used to speclfy
the behavior common to all of the members of the chss &M modtls are shown to be
unique up to isomorphism, and they are mmlmal in: !he;amerthanhey cemastn no urmtcessary
elements. Models to be used as specifications for dm-abstracﬂens.‘shwld be reduced, since
irrelevant components serve no useful purpose and may lead to confusion

The concept of a reduced model has to be deﬁugd samewhat differemly for static and

for dynamic models. The two cases are dlscussed below.
3.3.1 Reduced Static Models

Before we can precisely define what we mean by a reduced model, we have to
introduce some auxiliary concepts. A reduced model should: be free-of “extra™ objects that

cannot influence the extéma"y observable behavior of the model.



Definition 12 Reachable Objects. Ce ' '
A data object x is reachable in a model M with a nguamre S if and only if there is
some finite cloyed computation € with respect ta S such that xR the valae of C in M.

Only. the reachable objects in the phyla of '»* model can Influénce ‘the extérmally observable
* behavior of a model. |

We would also like a reduced model/not to contain redundant copies of the same

object, if there is no observable property that can distinguish betm gheoopies;!'p ngive at

a definition for the external equivalence refation on data objects, we have to define open

computations.

Deﬂnmon 13 Open Compuhﬂon for a Shuc m

An open computatm with respect to a sngnatures and 2 typca ¢ S.typenames
i a finite sequence C such Bt - -

Cli)=Cop:f args:s )foreachlinthennge2<i<lmgm(6)
whmfrs.mmdﬁvsiwmmﬁ
length{s) = 5. arglenti{/),
- s{j}=  step =&, 8¢ : T, result s &), where.
1€n«i,
if n =1 then 5. argtypelf, /} = a; T« novmal and & = 1,
and if n > | then T ¢ S. tc(Cln). op)
1'S &k < S.rhengtiCink op, 7)
and S. rtype(Cln). op, 7, %) = S.atgtype({ j)
for each j in the range | < j < jength(s).

An open computation is just like a closed computation except that an minal data object is

s

specified, which can be used in any subsequent step of the computation in addition to the data
objects produced by the preceding steps. The initiat data’ objett is » pirameter to the open

computation, and the value of an open-computation is a function of this parameter.

Definition 14 interpretation of an Open Computation in a Static Model
Let M be an exception algebra model, let F = M. operations, let n = M. arglength, let
C be a closed computation with respect to the typename a and the signature of M, let
x € Pq, and let I be a sequence. I is the interpretation of the computation C
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applied to the object x in the model M if and only if all of the following conditions
hold:

1. length(Il) = tength(C)
2. Il = ( normat, (x )

3. For each i in the range 2 < i < length(C),
o) - Fglxp, .. xp(8) ) . where Clil = Cop : B, args : 5 ), and

4. For each j in the range 1 < j < n(f)
X = ob KILED {w],  where s[j] = (step : &, tc: 7, result : w ), and

5 tc(klk]) = 7.

The interpretation of an open computation is like the interpretation of a closed
computation, except that the interpretation of the first step of the computation is a sequence of
length 1, containing the specified initial data object x, and with a normal termination condition.
We have injected the initial data object x into the normal component of a disjoint union for
the sake of uniformity. The ( tag, object ) pair is shown explicitly in condition 2
befinition 156 Value of an Open Computation in a Static Model

If C is an open computation with respect to the type a and the signature S, M is a
model with signature S, x ¢ M. phyla,, and if I is the interpretation of C in M with

respect to a, then the value of C applied to x in M is C(x) = obj(I[length(IL)}).
The value of an open computation is the tuple of data objects resulting from the last step of the
computation when interpreted in the given model.

Definition 16 External Equivalence of Objects in a Static Model
Let M be a model, a ¢ M. typenames, and xI, x2 ¢ M. phyla,. The the data objects

xl and x2 are externally equivalent if and only if for every open computation C with
respect to a all of the following conditions hold:

. C has an interpretation in M with respect to the data object x1 if and only if C
has an interpretation in M with respect to the data object x2.
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2. C has an interpretation in M with respect to x"l‘a‘nd the value of C z;éplied to x}
in M is the boolean value 7 if and only if C has an interpretation in M with
respect to xI and the vakie of C applied to x2 in M is the same boolean ¥alue (.
Two objects of a given model are externally equivalent if and only if eyery apen.computation
applied to one of the objects yields a resukt that is indiu.ingulshable from: the result of applying
. the same open computatlon to the other object This means nm the two objects share all
externally observable properties, and therefore represens thc same abstratt objeq. even if they
are two distinct objects in the model. The point is that the identities of the objects:in a model
are not extemaﬂy observable unless the data abstraction. provides some operations. that make
tt_wm gbfservabk,
~ Now we are ready to define reduced static models. |
Definitioh 17 Reduced Static Model
A static model M is reduced if and only if all of the following conditions hold:
1. For each a ¢ M. typenames and for each x € M. phyla,, x is reachable.

2. For each a ¢ M. typenames and for each xl x2¢ M. phyha, if xl and x2 are.
extemally equwalent, then x|l = x2.

A reduced static model has no extra objects, since every. object is the resuk of some finite closed
computation, and hence externally observable, and every distinct pai'f of objects in the model
differs in some externally cbservable property.

Theorem 2 : Every equivalence class of modds with respect to the behavioral equivalence
relation comams a reduced model.

Proof : Take the reachable subset, and divide by the exteérnal equivalence refation. Details in

Appendix 11
End of Proof
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Theorem 3 : If two reduced models are behaviorally equivalent, then they.are isomorphic.
Proof : The isomorphism maps the value of _every closed computation in_one.model into the

value of the same computation in the other model. Details in Appendix .
End of Proof ; :

Thus every constant data abstraction has a reduced model that is upique up to isomorphism. -

Theorem 4 : If M is behaviorally equivalent to M’ and M is reduced, then there is a
homomorphism from a subset of M qmo_ M. o
Proof : The construction of theorem 2 yields a reduced model which is a hemomorphic image
of M. Compose that homomorphism with the isomorphism guaranteed by theorem 3. Details

in Appendix I
End of Proof

We can always find a homomorp'hisn.t from an arbitrary static model to a behaviorally
equivalent reduced model. This result is interesting becausé the classmal wa&f to pr;ﬁle‘tlgtey
correctness of an implementation of a data abstraction with respect to an abstract model
spedfic;tion is to construct such a homomorphism from the imfpieme:ﬁtationﬁio the defming
model. The theorem says that the required ho:nornorphism:'eiciﬁts~f0r any correct static
implementation model, provided that the defining model iIs reduced. While there is no
guarantee that the homdmprphism is compuﬁ?(l;zle' ‘o even ﬁhitely'wdescrll'):abk. the
homomorphisms corresponding to most implementations are quil?'eﬁt:rjac‘ta{ble. ‘As we shall see in

the next subsection, the ;t::orrespbnd:ifng theorem for dynamic models is false.
3.3.2 Reduced Dynamic Models

Informally, a model is reduced if it has no unnecegsafy objects. We have to take a
different approach to formalizing this concept for dynamic models, because the existence of a

data object and the properties of a data object-a}e not chtcly determined by the idenﬁty of
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the object, since they will in general depend on the system state. Theorem 4 fails for dynamic
models for this very reason. A homomorphism on 3 many sorted algebra is a family of
imappings, one for each phylum. In a‘ dynamic model, the velemre»ms of vain.y‘ phﬁhni
corresponding to the principal type of a dynamic data’ abstraction have no ‘distin:guishlbg
properties except for their identity. Al of the interesting. properties. of ap object belonging to
such a phylum come from the image of that object under fﬁé:sygiém“'sta’te function, and any
particular object does not have any interesting properties until it ;{,creat.ed'.(i.,e.?,_ until some
operation gives the object a data ;tate other than undefined). Depending on howanobjeg.
ggts created m each parti;ular computation, an object inthe model can come fo represent any '°£
5 number of differeq; abstract objects. Consequemly there may,}b-e no correspondence between
the objects of» one model aﬁd those of another which is both consistent with the operations and
independent of the cqnggﬁtatim history. T'heuca:sgs where the correspondence is independent of .
the computation h_.istory are rare. |

The rest of this section consists of a cﬁmctaiytm of a reduced dynamic ﬁloﬂek,.and- ‘
an example of two behaviorally equivq-lgqt models such that one is reduced but is not a
!;omomorphic image of the other. N

There are two requirements a dynamic modelmust meet i_f‘ it is to bc reduced: the
phyla must contain no unncce#sary objects, ;nd for every sﬁtc, the population must contain no
unnecessary objects. [f we insist that every element of every phy!um must be reachable, the first
requirement is met. Reachability can be’ defined for dyn:mii?c,models in a way entirely
analogous to the deﬁnition for static models, and presents no essential difficulty. For most
dynamic models a countable infinity of data objects are reachable, and each data object has no

directly observable properties except for its identity, so that the first requirement is not very
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mterestmg | The <econd requrrement requlres a fundamentaﬂy new approach, because there is
no way to meamngfully defme the behavior of an abstract object mdependently of the system
state.

We wrl! assume that an operauon of a data abstraaion an create at most. fimte!y

Y i R
i

many new data objects [cf I5] Smce we require all operauons to terminate in a finite amount of

time, and since all real machmes compute at a ﬁmte rate thrs assumftlon is J"Sllfled A‘

CEE B

consequence of thl! assumpuon is that the populauon of every reachable state is finite, where a
state is reachable if and only if there is some ﬁmte dosed computatron that produces that state.

We can defme reduced models for dynamlc models as follows.

Definition 18 Reduced Dynamic Model
A dynamic model M is reduced if and only if there is no other model M* such that
M’ 1S behavioraly- equivalent to ‘M, d’ f6f" iie ‘closed” computation C, the
cardinality-of the population of the final stité prodied By ¢ W ¥ is sirictly smaller
than the cardinality of the population of the final state produced by C in M.

An example of a case where we have a rediided dynamic: model Ml, and a
behaviorally equrvalent model M2 such that thcre ls no homanorphlsm from any subset of M2
onto Ml is described below. B

Consider a ;ersbn of mutable iss:;, which have m; es the only atom, and' for which
the rplaca and rplacd operations return the list that was modified rather than the tid value of
the component that was replaced, as is the case in LISB. . The'iodet M) has Py, = N, -and
Qpige = {nil JU (N x N). In Mi, the only operation that extends the ‘population of the #st
domain is cons. The eg operation serves to make the identity relation: on ;objeﬂs‘iw the model
externally observable, so that every newly created objert- is distinguishable from ‘any previously

existing object, and hence Mi is reduced.
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The model M2 has Py, = N and Ahst - ceil{{ nil } U(N x N)l In M2, rplaca and
rplacd as well as cons extend the popuhtion of Phst: We have mtroduced an extra Ievel of
PR 2
indirection, so that the identities of the abstract objects correspond to the Idenmies of the cells

that are the ‘data states of the ekments of Plist' rather tn;n toﬁsew keiements of Plist direct!y as
would be the case for any reduced model. m is behavionﬁy quivabnt to Ml but M2 is notrx '
reduced, becaise the rﬂaca and rplacd weranons create reclundant ust objects. |

“There can be no homomorphum from M2 to MI because the correspondence between

et ir

objects in M2 and objects in M1 depends on the system state. For example, the mputatlon

shown in Cl below

CHll} = Cop : ntl , args : (O
Cl2] = Cop : cons , ;rgs {(step : L1 nornm.rem 9 (wepml.,ﬁc‘m&kremk l)))”»rs‘
CH3} = op : cons , args ! {{step : I, &c; mm .D.(tlep l..tc;makmu& )

has the following interpretgtion in Ml:

Il -<0y.0) ' where b’o(O) = nil
T2l - (o, 1) where 0(0) = nil, and (1) = €0,0)
I3 - (oy.2) where 0{0) = ail, 0ofl) = (0,0 ), and 0g(2) = (0,0

Cl evaluates the expressmi"(cons,na uil) twice, resulting in two cnpler of the ﬁst(nil) Each
element of the interpretation Kil is a pair containing’ the resulty vaturned by the operation
specified by the corresponding step of the computation Ct. The first element of each pair is'a
system state function, and the second component of each pait is a mattiral number representing
a mutable list. Note thae»én system state: is considered to be resukt 0, and that result | Is the
first data object returned by the operation, corresponding to the second elément of each pair.

The computation Cl has the following interpretation in M2:
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m2nl = ¢ 0p.0) where 0'(0) = cell-0,

0 (cell-0) = nil
Mi2(2] = ¢ 0. 1) where 04(0) = cell-0, 07((1) = cell-,
0 (cell-0) = nil, 0 ylcell-) = (0,0
23] = ¢ 09,2) where 09(0) = cell-0, 0 of1) = cell-], 05(2) = cell-2

0 9fcell-0) = nil, 0 olcell-1) = (0,0, Oofcell-2) = (0,0

In model M2 we have an extra level of indirection. If the state o M1 of Ml corresponds to the
state 0"pq9 of M2, then we have the relation 0 pgy(n) = 0 pmo(0 ppo(n)) for any n ¢ N (a natural
number representing a mutable list). The correspondence between the elements of Pyis for the
final state produced by Cl in M2 and the elements of the population of P|j in the final state

produced by the interpretation of Cl in Ml is

M2 Ml
0 —> 0
I — 1
2 > 2

Now consider the computation C2 shown below.

€201 = Cop : nil , args: O)
C2(2) = Cop : cons , args : ({step : 1, tc : normal, result : 1), (step : 1, tc : normal, result : 1)))
C2[3) = op : rplaca , args : ((step : 2, tc : normal, result : 13, (step : 1, tc : normal, result : 1)))

C2 computes the expression "(rplaca (cons nil nil) nil)". The interpretation of C2 in M1 is

2101 = ¢ 0g.0) where 05(0) = nil.
][2'[2] L ( 0'] , I ) where 0'](0) = nil, and 0'1(') = ( 0, 0 )
_ I2103] = ¢ 0y.2) where 0°o(0) = nil, and 0o() = (0,0)..

The interpretation of C2 in M2 is
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X220} = (0, 0) where 0'{0) = cell-0, and

0 ¢(cell-0) = nil.
X22{2) = ¢ op. 1) where 0(0) = cell-0, a,ﬂ) - ceﬂ-l

0 {cell-0) = ntl, and cf,(cena) «€0,0).
23] = (09,2) where @0} i cell, 0'26? = celH, 62(2) cell-
- Ogleelt0) = nil, andvzfc’dl-ﬂ -(0,0). ©
Thus the conespondence between the elements of the popuhuon of P'm in M2 and the

e!mnatsoﬁai’,mlireqmndhthefmz{mpmducedbyC?ls

M=o

VT
cies

A homomorphism must be a function, and hence single valued. Since the computatiom Cl and
€2 introduce conflicting requirements for the image of the element 2 € Py, there can be no
homomorphism from M2 to Ml

’ cclwrecmess cannot be established by exhibiting a homomorphism from thc implcmen(ation&o
the defining model, even if the defining moécl is r&uced Therefore other methods of prnd‘
relying more dlrectly on the underlying concept of behavioral equivalence are needed. Proofs

of correctness of implementation are discussed in Chapter 5. ©
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4. Specification Language

In Chapter 3 we saw how a data abstraction co;lld be identified with an equivalence
class of models with respect to the behavioral equivalence relation. It is our thesis that an
effective and useful technique for specifying a data abstraction is to explicitly construct a
(reduced) model of the abstraction. The data abstraction denoted by such a specification is the
class of all models behaviorally equivalent to the model that was constructed, which will be
referred to as the standard model. In order to define a standard model for a data abstraction,
we must specify the signature of the data abstraction, and give intergretations for its phyla and
operations. In this chapter we present a number of methods for doing this, along with a
language for describing particular models defined using these methods. Chapter 5 is concerned
with proving that a proposed implementation is correct with fespect to a given standard model.

Since we are primarily interested in using our specification language for defining
particular models, rather than for proving meta-theorems about the specification language, we
have made no effort to keep the language minimal. Our intent was to make it easy for people
to read and write specifications in our language. Such a goal has no objective measure, and the
reader is urged to consider our examples and to construct additional ones in order to judge the
merits of the formalism. The syntax and abbreviations we have chosen are meant to ease the
task of the human reader. For applications where mechanical processing of the specifications is
to play a dominant role, a more restricted syntactic form may be appropriate.

As mentioned in Section 31, we will construct models for data abstractions
incrementally, assuming at each stage that models for all of the subordinate abstractions have

already been defined. We will explicitly construct the interpretation of the principal type, and



". .
implicitly specify that the interpretation of each subotdimtetype is the prin'cipaiityp‘e" of the
stnnd;{d modeH'or its defining abstr»action.;

In this Cﬁaptgr we will assume that a model for a static data abstraction is an
cxceptkﬁ a!geﬁra. apd tﬁat a model fof a daﬁ abstraqm,ﬁtb ttmedgpendmt behavior is a
state machine. (Re&aﬂ tﬁat a state_mchine is an exception ;gebu _with a distinguished

phylum of system states))
4.1 Components of a Speciﬁcaﬁon -

~ The important part of the specification. language is.its structure and semantics, which
are explained informatly heiow A precise definition of our somewhat arbitrarily chosen syntax. .
can be found in Appendix 1v.
The:kba'sic components of a model specification are illustrated by the example shown in
Fi’gurer 3. This example gives a definition of immutable g,ta\,ﬁcks,;(qrc stack sfates), modeled .in_
terms of sequences, where the top element of the stack is the last clemmt of the mnce
representing thé stack. This example has been treated. many times in the literature on
spevciﬁc»ations for data abstractions, and will probably be familiar to the reader. Later we will .
see a kspec.iﬁcation of mutable stacks. The fom of a speciﬁcatm and the meaning of the
components are explained briefly below with occasional reference to the stack example.
The name of thé abstraction, which is the same as the name of the principal type. is
introduced by the keyword type. An optional abybrev{htigp fpr the name of ;\ﬁle_prin'c,lpal type
is introduced by the kede as. The name of the type is followed b} an optional list of
parameters, enclosed in square brackets. If there is a parameter list, then the speciﬁétion is not

a single definition, but rather a definition schema, which can be instantiated by substituting a
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Figure 3. Stack

type stack[E] as S

requires E : type
with empty: —>S % the empty stack
push: ExS§—>S$
pop: S — 5 + (stack_underflow : )
top: S = E + (stack_underflow : ) ;
null: S — boolean % is s empty?

representation: sequence(F]

restrictions: none
identity: sequence[E)fequal
operations: empty() = séquence[E]Sempty()
pushle, s) = addlast(s, e)
pop(s) = if #s = 0 then ( stack_underflow : ) % » is length

else s[ 1 .. (ws)-1] %sla . b)is subrange
top(s) = sequence[Eliast(s)
null(s) = if #s=0 then true else false
end stack

suitable expression for the occurrences of each parameter in the body of the definition. If there
is a parameter list, there must also be a requires clause which specifies the restrictions on the
expressions that may be substituted for each parameter. In the stack éxample, the paraméter E
is restricted to range over the names of types (E is the name of the type of the elements on the
stack).

The keyword with introduces a specification of the signature, in the notation
intreduced in Section 23.3. The signature gives the name and type of each externally available
operation, including the number and types of arguments and the number and types of return
values for each possible termination condition. The set of subordinate types is also implicitly

specified, since it contains precisely those types, other than the principal type, that are used as a
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component of the domain or range of some operation in the signature. E ach operauon may
also have an akternate syntactic form, which is introduced by the keywom as. Wl&bm &he-
the operauon, and a“ of thc oﬂw; symbols (gp fo the encrof the line) ,arrg‘: separators (prefix,

' infix, postfix, etc.), whicrh are lo bctﬁkmm Thctmeof an operathi(te the name of its
defining abnraétit;r:) should be obvious from i{s”comext. In cases where it is not obyious, of
where we want to emphasize the type, we will use the standard funﬁ;tngmlrno(atlonvvhﬂe !bl

name of the operation is prefixed by the name of its defining abstraction followed. by a 8"

The parameters of the type will be included in caseswgu:e thaus help{ul to the (human)

reader. :

The interpretation of the principal typ’e'vi's spccmed b'yé thc ;th three COMPONents. ;
The underlying representation algebra is specified by an expression introduced by the keyword
repres’e;nﬁtwion-‘ The allowable expressmsgnd their meanings are discussed below in Section

43 below. The resmctions component speaﬂes a_subset of the principal type of-the -

representation algebra and the ldenmy sccnon sgeaﬁcs an eqmvam rehtgm on that subset.

The mtefpretaum of the principal type is the quatient of the specified subset of the principal
type of the representation algebra with respect to the specified equivalence relation. The.
identity relation in cffect determines the identity of the abstract pbjects of the principat type of
the abstractior; being defined, and serves as the logical equality rdanen for the pringipat type of -
the modei.’ Logical equa)ity is not externally avallabkuﬂlen one_of _the. operations of the
abstraction happens to coincide with it. In a reduced model, bgka‘vquahty should be .
extémaﬁy obscrvable in tcn;\s of the operations, a&hwg&h_wnqtzng;essarrjly in terms of the same.

finite computation for all objects in its domain.
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The operations are defined in a section introduced by the keyword operations. The
forms and meanings of the operation definitions are described in Secuon 42 below

Comments can appear at any point in a specrflcatlon They are lmroduced by the
symbol "% " and extend to the end of lhe line.

Aucxiliary functions orvabbreviations may be used in the deﬁnirion of the operations.
The types of any auxiliary functions must be glven in the lnlernal secruon and the defmmons
of any auxlhary functrons or abbrevnatlons must be given in the deflnltion section, in the same
form as the types and definitions of the operations. Auxﬁllrary functions are‘rntro‘duced solely
for clarity and expressive power, and they are not externally available (for use by programs) or
even part of the model, which contains only the functlons actlng as the mterpretatlons for the
externally available operauons Auxrlrary functrons may belased in assertlons and in prools of
properties of the data abstracuon | -

A specification is terminated by the keyword end, optronally follovred by the name of
the abstraction that was defmed In cases where several data abstracuons are subordlnate to
each other it rsi necessary to define a group of related abstraerrbns by aAsmgle model wrth
several pr incipal types. In the specmcatlon language. a module defining a model with several
principal types consists of the keyword module, followed by any number of type definilions.
followed by end module. The representation and the: internal: functiens of each type are

accessible throughout the module. Modules may not be nested.




4.2 Defining Operations

The prlnctpal type of a model is the quouent of the subset ol‘ the prindpal type of the
representation algebra sausl‘ymg the constraints speciﬁed in !he restrlctlons secnon mth
respect to the equivalence relatlon specrﬁed in the k;tntlly section lf there is o reslrlctlons
section, the entire pnncnpal type is used. lf there is no ldenmy secnon then the loglcal equality
of the prlnc:pal type of lhe represematnm algebn is used. and the quotlem structure ls trivlal,
since all of the equlvalence classes are smgletons in thls case.

. The deﬁnltions of the operations ln a type defmmon in our specnﬁcation language
expllcltly deﬁne l‘unctmns that operate on the elements of the prlncipal type of the
represemauon algebra These l‘uncuans are impllcltly extended to opente on the equivalence |
classes that make up the pﬂncnpal type of the quotient structure in tl;e umal way. descnbed in |
moredetaxl in Section 'H( |

The followlng subsections describe the means for deﬁnmg l‘unctlons prov;ded in the

speclfleatm language and then examine the constmnts a l'unctlon deﬁnltlon has 1o satlsfy in‘

order for it to denote a wel! l’ormed operation for the exceptlon algebra or state machme belng
4.2.1 Conditienal Expressions

We will use a language for defining functions similar to that introduced by McCarthy
in [33), extended by the iota expressions described in the next subsection.

A function definition consists of a function name, a list of variables, an equals sign,

and an expression. Valid expressions are variables, iota expressions, functions applied to



- -
expressions, and conditlioﬁals“app»lied to expressions. Conditionals are written with the usual
if-then-else synta;c. aﬁd the.;y i\;ve the gsual r‘rv:eaning:l“ o | |

b =% ((if b then x else 9) = x)

= b => ((if b then x else y) = y).

The variables that may appear consist of the variab)ef appearmg in thg list ofi:_yfq‘r}mql
arguments on the left side of the equals sign, and any local vz;r;a;k; de;ined immediately after
the function definition. A local variable is defined by writing its naine,'an equals sign, and an
expression. Circular definitions aré not allowed: -»iyt' must be possible to eliminate afl of the local
vatiables from the right hand side'of‘a function definition by a finite nurhber of substititions,
each of which replaces an occutrence of a‘local variable by’ the expréssion efining it. " Local
variables are a notational convenience, in the serise that éﬁy’déﬁniﬁm’hﬁﬁg‘ focal variables has
an ‘equivalent definition without local’ variables: ‘The abbreviationi ‘introduced by local
variables can be'a very important aid in ?maiing—mé%strﬁc‘tﬁréfoffi"'ﬁmctioﬁ‘dammon more
apparent to the human reader, and they can at'times dramatically shorten the text of a function
definition. S

The functions that may appear on the left hand side of an nper@atnon definition a“r_cttbe
primitive operations of the representation algebra and of its subordinafe abstractions; and“the
operations and auxiliary functions defined in thé: type spetification or- module in*which the
defining expfession appears: Recursive definitions are llowed. ‘Auxikary Tunctions must be
defined in thé definition sectiom Awiliary functions' can increase the expressive power of the
language, as proved for equational axiomatic definitiofs in- [52) " This result should  not be

surprising, since auxiliary functions may be defined recursively, so that the process of
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substituting the body of the funcnon definitions for each mvocauoﬁ (attempting to cltmlnate the
auxihary functions from the main definition) may fail to termmate o

Since the operations of a data abstraction are supposed to be lotal fuuctiqm. it is

EET TN N

necessary to show that all recursive definitions used are well founded
4.2.2 Iota Expressions

lota expressions are named. for the m operator in logic. - An iota expression has the

form x : p(x), where x is the only free variable in the predicate #(x). If x is of type.T, and if the
set { x € T | pix) ] is a singleton set, then. the value of the joia expression x : f{x) l:s'thg{;ml;pe
element of that set, and otherwise the iota expression is.undefined.

. lota expressions are useful in cases.uhere it is much gasier to specify 2 proper;ty the
result of a function must satisfy- and to-prove that the property uniquely determines the resukt
than it is to provide a recussive definifion of the function. lota expressions are the equivalent
of Hoare style input/output predicates for a language with functions apd without side_effects.

An examples of a definition where an iota expression definition is appropriate is
isqrt(n) = 9 : 72 <nc« (yol)z

which defines the integer square root function..
It is necessary to show that each iota expression used. in a specification is well defined,
given the context in which it appears. More precisely;.the foljowing iwo raquirements must be

satisfied for each iota expression x : p{x).
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L glx)=>3x1 p(x).]

2. Yxy [g(x) & plx) & gy & ply) => x =]

where = is the 'equivalenc’e relation defined in the identity section, or the 'lo'gic‘al equélity
relation if there is no identity section, ¥ ra;igés’o&f the principal type, and where gx) is the
path predicate describing the conditions under which the :ota ekp}éssioh Ea;1 get evaluated. Lét
a be an occurrence of an iota expression in the 'ékprégsiorrf:e‘., and let bath(a, P denote the péth"

b

predicate for a in e. Then path(a, ¢) is defin ed as f;""‘.”" R

path(a, a) = true N . G
if e is flx), .., x,)"and a occurs in x;  then path{a, ¢) = path{a, x,)

if e is "if b then x else " and g occws in b , ..then pathio#) = path(e, b). -
if e is "if b then x else 9" and a occurs in ¥ then path{a, ¢) = b & path(a, x)
ifeis"if bthen x else 3" and o occurs in 9 then. pathie, 0} =~ bk pathia,y) -

4.3 Constructing Algebras

S I N ST P T RN PR

Our approach will be to define-a standard model for, 3 daw abstraction: in. terms. of 2
given representation algebra. The principal type of the.standard madel gwil_.l,lhagMal-be the
quotient of a specified subset of the principal type of the representation aigebra with respect to
a specified equivalence felatjqn.: - The operations of the. standard model will be. defined jn terms
of the operations of the «reprg;‘gp‘itgtion algebra, 3s described in thgp;qumsmm The rest of
this section is devoted to defining a rich set.of representation. algebras that€an:be used as
b-p,ild’ingj blocksfor defining models.

Since it is not our aim.in the present mrk to .investigate .;hev,,fouadatims - of
mathematics, we will assume.that,__lqggc. truth values, sets, cartesian products; patural numbers

and integers are primitive. An excellent formalization of these structures can be found in [48).
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We will use the notations summarized below.

T and F denote the truth values true and false respeczivety These are the only truth
values, and they are disti‘qctb.‘ &V, I =>, 'gpd’t; dgno(ethemd,m,ugt. mg;,m, and equivalence
operations on the truth values, respegtilye‘lx,_and V and 3denote the universal and existential
quantifiers. ¢, U, N, and - ‘dm&tc set membership, union, intersection, and set difference. Finite
sets are written { x;, .., xp } and finite cartesian products or niupf!esare written (xp, .., X, ).
Th? i-th component of an niuple X is wnttcn X1t %0 fha;t: (_\_,:}:' " +Xp ) =%;. The set of
natural numbers is denoted by N. 0, 0, +, #, <, and = denote zero, successor, plus, times, less
than, and logical equality on N.respecmdy The set of integers is denoted l?v' z, and “ %
quotient, remmnder abs < and « destote’ phn, t{mes (mm‘y) mlm:s dr G&iﬂarﬁ subtraction, the
quotient and the. remmdei! of lmeger divmon the ‘dbsolute V:Né opénuhn ‘the less than
refation, and the equals relation, respectively. We re!y on ;he comext tg dm‘etentiate betwem
operations on the integers and operations on the natural numbers with the same name. The
usual qecimal metation will be uséd for integer-comstants, which ate tinsidered 1o e an iqﬁnite
class of.nam;'y"upemm~ from the forfial point of View. '

We will define a number of ways for deéfiing alebras, namely finite enuﬁératioﬂs.
finite cartestary products, finite disjolnt uiions, firiite jéwer sets, finite sequences, and recursive
definitions (fixpoint equations). ‘The set'of represemtation algebras is defined to be the set
generated by the standard model for the booleafy ag&n ‘defined below with respect to the
constructions listed above (ie, the smalest set of algebras ‘thist 15 closed with r!sped to the
constructions for ‘generating new algebras). Each of the constructions supplies a set of
operations as well as a set of data objects; so that we are genenﬂng a set of algebras rather

than merely a set of sets. '
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!
eth

We also define two special purpose algebras, token and state[D), for use in defining
the phylum of system states in a state machine model. Tokens and states have interdependent
meanings, and are defined by a single module with two principal types. These two abstractions

codify the ways in which the operations of a state machine can depend on the system state.

4.3.1 Booleans

[

We want to have an image of the domain of truth values as one of our representation
algebras. Since everything else depends on the boolean domain (predicate operations return
values of type boolean), we cannot use the methods described bebw to define it without

H

introducing a circularity. We will define bobleans i terms of the truth values in the

underlying mathematics. A necessarily informal’ deﬁ’mtion in andtatfon similar to our
specification fanguage is shown in Figure 4 Becat;ge.the meaniﬁg ’of a data abstraction is
defined in terms of booleans (cf. behavioral equivalence, Chapter 3), we-insist that the booleans
be given:their standard interpretation irvall models under discilssion;

Note that the rqual operatien on the booleans’is the satne as‘fogical equivatence on t.he
underlying domain of truth values, which in turn is the same as the logical equaiity on the
boolean domain. In keeping with our policy that the only externally observable properties of a
data: abstraction. are those. that ‘can be cakulated in térms of the operations, we will always
interpret "=" as the equal operation of the defining abstraction of the type of the data objects
being compared. Thus it is proper to'use =" in the definition of an-operation only if the

representation; type has an equal-operation. Care ihurst-be tikefi that the Zqual opetation of atf




Figure 4. Boolean Abstraction

type boolean as B

with true: —> B
false: .. —» B 4
not: 8—B as—~argl
and: BxB—>B as argl & arg 2
or: BxB—B asargivaerg?
implies: BxB—>B as argl = arg 2

equak: BxB—>B ~ ‘ sas argl -« arg 2
representation B - truth values

operations true) = T
false() = F :
not(x) = if x then F else T
~and(x, y) = if X then y else F.
or(x, y) = if x then T else y
implies(x, y) = (x) vy . =
equakx, y) = (x => y} & (y => x)
end boolean foee SR

the algebras defined is in fact an identity refation.! Logical equality is assumed to be defined
for the structures that have been imported. from thevaderlying mathematics, such as the
natural numbers.

The boolean type is isomorphic to the domain of truth values in-the underlying logic,
as indicated by the interpretations of the operations true and fals¢ in the s!aﬁdard model for-
‘t‘he booleans. The operations of the reﬁmsgnta_tig,n algabra axnapqld to- thoseﬂofr’the‘
propositional cakulus in the underlying logic. Quantifiess.are defined only in the ynderlying’

logk, and have no counterpart in the representation algebra. We will make heavy and imphicit

I. An identity relation equal must be reflexive, symmetric, transitive, and must satisfy the
substitution property equal(x, y) => P(x) = P(y), for any predicate P.
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use of the isomorphism between t.he booleans and the underlying domain of truth values; so
that the primitive predicates of any representation algebra, which return values of type boolean,
can be combined with quantifiers, and used in |f theme!se expressnons both of which are
defined in terms of the underlying logic. The booleans are the only type for whlch we will talk
about properties of the interpretations of the objects duectly For a!l a%her types, we mll talk
only about the results of applying the primitive operations. The only dlrect connection to tl:e

underlymg mathemattcs is by means of the booleans, which is why that type is given a

distinguished status.
4_73.2 Natural Numbers and. Integers

" We import the systems of mtegers and natural numbers directly from the underlying
mathematics. Deﬁmtnons of these types are glven in Appendix 1. These defmltions serve to

pin down the syntax, and have nothing surprising in them. ST N
-4.3.3 Enumerations . ..

 Ehumerations are usefﬁi for defining sfﬁdll ﬁhité se-ts, é&ch éé;ihafictcrg. Larger finife
sets, such as fixed length integers, are most conVéniéntly described in terms of the inﬁmtescts
‘they are intended to appi'm-cimatefas will be illustrated later in this thahter.

" An enumeration {x| o X } defines an aj‘lgt}eb‘ral whose pnncipaltype is a set with n
elements, ahd whose only subordinate type is boolean. The él‘gzeﬁ?:ha{s % nuilary operations, the
constants x; for 1 <i < n, and ohe binary operatlon,equalwhacha"ows the elements of the
principal type to be ‘distinguishedff‘rjoh’v each other. We want e‘q"u‘al(x,-.‘r;j) to be trite if and anly

if i = j The indices range over the set of natural numbers N. There are »many models that




-78 -

Figure 5. Enumeration Types

type{x....x,} asT
with x; T s eSS
equak T x T —> boolean

repfesentation: natural numbers
-rastrictions: isuchthavl Si<na
identity: =

operations: x,() =i forlcis<n
©©~ equaKa, b) =12 = b then true eise fale -
end

exhibit the behavior described above. Ourscandarﬂ‘ model shown' in Figure 5, uses natural
numbers to represent the elements of the enumcrauon The " opetation used in defining the

cqual operatlon of thc enumeranon type denotes the equahty opennon of thc n;tural numbers\
4.3.4 Tuples ' » o RN I PO R LS TR

Tuples are labeled finite cartesian products. We will wrﬁeiﬁp‘éﬁqs". , "'n f,;]
for the set of n-tuples such that the i-th component is a member of the set §; and bears the

hbel w; fnr each i inthe range 1 <i<n We "'"""He( Wiy oo Wy Xy ) for_the tpg!é

containing the elements x;,..,x, The projection, function mapping a tuple to its ith

component is denote by plw;). and if 1 is a tuple, then p[w,-ll) can be Za‘bbrevi:a,t‘gd‘gs te w,.; If

t-(wl-xl....,u PXp )thent.w=x foreachimtheranggl<i<n Twotup)es;ge

n- b

equal if and on|y if corresponding components are equal Equamy of tuples is dcﬁned for the

type tupla[w, Sy : Spl .r and only if the defining algebra of ' §; has an equal operation

for each i in the range | < i < n which is an ldenmy relation. If some of the component types



Figure 6. Tuple

type
requires

with

representation
restrictions
identity

operatlor)s

end tuple

tuple[wl P8 Wyt Sp)
S; : type ‘

construct: S, X .. X Sn —>T
equal: T x T = boolean
VT=S|x...xSn
‘ none
equal

construct(xl X ) = ( X| oy Xy )
plw,Xx) = x Li

asT

fori<i<n

as(uqix,,...,wn Xp )

‘asdrgliw, forl S [ < n

SIS

- equakx, y) = if Vi [1 S i € n =5 xi w; = 9. w; ) then true else false

do not have equality operations, then the tuple type does not have an equal operation either,

although the type and all of the other operations on it are well ‘de[i_ggd,z .

This description is summarized in Figure 6 in an informal notation... Retall that

cartesian products are primitive, and that if x is an an"éuptg, flhfe‘n- x 1 i” denotes the i-th

component of the n-tuple.

2. An equal operation will be defined for every representatlon algebra’ in our basic set. It is
also possible to construct tuples with components from user deﬁned types which need not have
an equal operation (e.g. stacks)..




4.3.6 Oneofs

Oneoﬁ are finite labeled dlspmt unions. A oneof is the dual o( a tuple, in the sense
that the projectton I‘um;tims g0 in the other direcuoa Aﬂe wm write mﬁﬂwl S - : S,,]
for the disjoint union of the sets Sl ' Sni Our standard model  for
>oneof[wl : S wy 2 Sy) shown in Figure 7, uses the se't 'Sl;ls,'{w‘]xsi to reggg;gm t,he
principal type, which coincides with the standard interpretation fm%aiijoini unions Uszei;;fikn
classical mathematics. Each element of a disjoint union s rcpresenteda; a pair comaining an
element of one of the component types, and a fabel indicating -whisté vamponent the ek'ment
came from. If an element occurs in more than one of the §,, it will occur in several distlnct

elernents of the disjoint union, distinguished by different values for the label component of thg

p'ilr.: : : o

lypeanenﬁq £Sp - 0y S s O .

requires S; : type ' o ferlsisga -

with inlw,} §;—>0 ssarglinw, fori<i<n
tolw,} O—>S5;+(wrong type:) asargltow; forl<i<n
islw;} 8; —> boolean asarglisw; forl<i<n
equal: O x O — boolean

representation O- U {w]}xS§;

1Si<n

restrictions none

identity =

operations infw;Xx) = Cw; .x )

tolw,Xo) = if ol I = w; then o | 2 else { wrong_type : )
islw; ](o) =ifoll= w; then true else false

equaKol 02)-|f(olll-o2ll&o|l2-o212)lhmtrueehefﬂsc
end oneof
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A oneof type has n injections from the component types into the disjeint. union,-n
predicates indicating whether or not an element of the disjoint union came from.a given
component, and 7 profections, which retuin the elemént” without the label if the label
corresponds to the component of the ,projecti.pni ‘an'd_ iéhich termmate in the wrongJ)?e

exception with no return value otherwise. The t;neof type ivas an eqﬁ&("ope:ration if and only if

B PR

each component type has an equal operation.
As we shall see below, one of the main uses for disjdiﬁt‘@kg-ipns is in constructing

recursively defined types, such as trees.

We will write set{E] for the dodif of finite ‘sibsets of tﬁetyge E. An inf;!rm%'
definition of set(E] is shown in Figure 8. This construction isvaﬁd only if the defining
abstraction of the type E has an equal operation that gomputgs ab edenmy relation, because

| equality is nece#sary for deciding set membership. Tbgrgéis‘pin mﬂaryopet:ation which n‘!mms

the empty set of the given type, and there ;ergnquf}at‘ié%s, ad&’ingaqdremving elements,

and for forming unions, intersectidri;tf;s;é} differgﬁbés.and restrictbng‘rhercarc also operations
for testiﬁg to seé if an !k'membelongs t6a glvenset,,ir one ;etls ; sub;et of another, if two sets
have the same members, and for finding the ;ilc of a set,’@lﬁchfs alWays defined because we
are dealing only with finite sets. Set ygst(igtiq? is"* Irca’teﬂaé 5[:. ih&eﬂmte!y large paratﬁ;tie{rized
family of operations, where theparaf?eters are t?!’bm;idg\‘énabh and the body of a lambda
| expression defining a predicate (i.e., a fﬁnctio,n fr‘om E to boolean). The size of a set is defined
to be an integer rather than a natural number, so that sizes-cam be subtracted -and divided.

The natural numbers and the integers-are defined in Appendix I1.




Figure 8, Set

tyve setiEl as S

requires E : type with Efequal: E x E —> boolean such that

with : nulk . >S5 o

: add: Ex5—S

remove: Ex§—>S§ e
union: SxS—>$§ asarglVU arg 2
intersection:.  SxS—*S . . asarglQapgl.
difference: SxS—S ' asargl-arg?2
restrict(x, p(x)} $s—>S§ . . ms {x:axgliplx)}
emptyy. S —> boolean
member: ExS—>boolean = apasrgliargl
subset: $ x § —> boolean as argl C arg 2
equalk: S x $ — boolean ' asargl - arg 2
size: S —> int as|argli. .

representation S = mathematical sets
restrlctlons s such. tbat s g E and cardinak;;(;) €N
Taefitity ‘equa?

operations m={}
add(e.s)-sU {el
removele, s =s - [ e}
~ umion(sl, s2) = sl U s2
" intersection(sl, 2) = difsg
difference(sl, s2) = sl - 52
restrictlx, p{x)Xs) = ['x ¢ slp(x)}
empty(s) = if Ix [x € s 1theo fabeelsete .
" member{e, s) = if € ¢ s then true eke false
subset(sl, s2) = if 3 x [x ¢ s} & —~ ( x € 52 )] then fake else true
equaKsl, s2)-nf(sl;s?&ﬂ;ﬂ)thentmebefake
size(s) = cardinality(s) et e e
definition ident op(f) = Vx [flx. ) 1& s eend i s
E Vxy [ fix, y)=>f(y.x)]& -
Vxya [fx ) & fy, 1) =2 fx, 2) }&
yp Vx.y[l’(x y)=*(P(x) P(y))]

etyd set

In Figure 8, a definition of finite subsets of a type E is given.in tesms of ordinary set
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theory. The notation in the figure is ambiguous, because we wish to use the standard notations
for the usual set operations as abbreviations for the operatlons of the representatton algebra as

well as for the set operations of the underlying mathematlcs The amblgmty is resol’ved as

follows: wuhm -the definitions of the operallons, the standard set ﬂotauons refer to the

e gy ,,;

operations of the underlying mathematics, while the as chu;es in the ﬂgnature section redefine
~ those notations as- abbreviations for the operatlom of ﬁw representmon algebra, for external
use (ie., when using representauon a!gebras from the ut fiinily to deﬂne standard models for

other data abstractlons)
4.3.7 BSequences

We will write sequencelE] for the domain of fm&e sequences. of- elements of type E.

An informal definition of sequences in terms of cartesian products is shown in Figure 9.

[T

Another definition, using a fixpoint construction, will be sketched intﬁenext section.

Sequences have an exceptional termination coad}tion ;bo?nds which is assoclated with
attempts to use elements of the sequence that do not exist Sb’quem‘:‘es Can be decomposed into
the first element and the sequence contaming :lt but the ﬁrsx element, and also into the last
element and the cequence -of all- b‘ut the last element so that nekher end of the sequence ‘is
preferred with respect to ease of access. Subfanges ’afe;speglﬁed byngmg the first and last
elements of the subrange in the original sequence. Tﬁ’e Iengthpfasubrange sta.b]is
1+b-a. Subranges with strictly -negative Iengtns are not defmed.and an attempt to construct

one will result in a bounds exception, with no return value.




Figure 9. Sequence

type sequo;éclﬁl

.requices E ; type - -
with

restrictions
Identity
~ operations

as Q

emptyseq: > Q as () A

addfirst QxE—Q . sserg 2+ argt

addlast: QxE—>Q asargll arg 2

buthst: Q—>Q

append:. . QxQ—>Q - asergllarg?
subrange:  Q xint xint —> Qs+ (bounds:) as argllarg2 . arg3]
 prefi: - Qxdat=—>Qs(bounds: ) - asargfl. erg2)
suffix: Q x int = Q + (bounds : ) ssargilarg2.]
element: Q xint —> E + { bounds : ) aswgilarg2} -
first: Q> E + (bounds : )

last: Q—> E + (bounds : ) _

length: Q —>int assargl 7

empty: 'Q —> boolean

equak QxQ—*boohn ' as argl - arg 2

Q- ¥ fe)xE o 981 15 thie length

_none o

‘sequencefequal

emptyseq) = (0 )

addfirstig, e} = “’(oq).e q{“i q{oq]) oo
: 'dd"“@lﬁl (M@qﬂlm'we)
butfirst{q) = g2 .. «q}

_butiast{q) -

qll . (oqtl]

append(g, 1) = if oq = O then r B

elge if or =Othengq
“else ( (sq)(sr), qlI], ... qlogl i}, . r{-r] )

;qbrapg:(g?l =iflicDV(> qg),qugiﬂlmgbmndsf)

end sequence

prefix(q, i) - q[l iJ

else if j = = i-l then (0)
ebe(lﬁ’i.dil " 1) D S

suffix(q, i} = qli . »q)
elementlq, i) = if (i < Dv > -q)lhcn (bounds )

. elseql (1+1)

first(q) = g1
last(q) = gleg]

length(q) =

qll

empty(q) = if sq = 0 then true else false ‘
equakq, r) = if oq = or & Yi [ 1 < i < aq => gfi] = t{i] ] then true else false




4.3.8 Fixpoints

It is convenient at times to introduce algebras whose principal types have a "recursive”
structure, such as the algebra of binary trees. While it is possible ta define isomorphlc images
of such algebras using just the machmery introduced so i‘ar by introducmg approprtate

encodtngs into the natural numbers such a strategy does not contnbute to the clarity of the

resulting specmcatlons. lmtead we wrll introduce expltcit recursive (circular) domain
defmtttons whtch are considered as flxpomt equations over the domain of all algebraic
structures.

The representatlon component ol‘ a spectﬁcation wrll always be a domaln equation '

TR

ln cases where the name of the algebra betng deftned does not appear on. both sides of the
equation there is always a umque solution since we are essentlally solving l‘or the l‘ixpomt of a

constant transformatton In cases where the representatton algebra is defined in terms. of itself

2

there may be many drfferent solutrons to the equatton Following Scott[46]. we will introduce an

z ¢ SRS 5 lvi
,,,,, ,»mq

ordering, and say that a ﬂxpomt equatlon denotes the mimmal solution wrth respect to that

[ R ooy el

ordering. We will use the pomtwise containment ordering on algebras denoted by c. and
R T

defined below.

Definition 19 Pointwise Containment
Let a and b be algebras. Then a C b |f and only if all of the followmg condmons
hold: v : .

a. typenames C b. typenames, -
Ya ¢ a.typenames [ a. phyla, G b. phyla ]

a.opnames C b opnames, ;

VB ¢ a.opnames ( a. operattonsﬁ < b. operattonsﬁ ].
a. tcnames C b. tcnames,

a. arglength ¢ b, arglength,

a. argtype G b. argtype,




ag.1C G b. tc,
a. rlength C b. rlength, and

- aestype.C b siype. -
aoP! gb.Pt

facC b we will say that ais contamed in b This means tbat for every‘phyium of a, b has a
phylum of the same name, ,and for every operation of s, b has an operatton wlth the same name
and type Every phylum of aisa subset of the corresponding phybrn of b, and every operatlon
ofaisa restrictlon of the corresponding operation of b. The larger algebra b may have types
and operations not present in a. The set of prtncipal types for a must be a subset of the set of
prlncrpal types of b. ‘ .

" Note that € is reﬂexrve transitive, and antisymmet:ic. and hence is a partial ordenng

LY

relatton Because Cis antisymmetrtc, if a minimal sohmon toa frxpotnt equatron exrsts it must

I

be unique If we restnct ourselves to express!ons buﬂt frorn contrnuons (with respect to G)

£
<<<<< i

transformanons on algebras. then tbe existenee of a mbtion is guaranteed by Kleenes ﬁrst
recursion theorem [23). which also gives us an exphdt fort:tula for the“ solutton

| Kleenes ﬁrst recursion theorem states that tf tbe transformation F is conttnuous with
respect to E then F(YF) YF and‘)"F €4 whenever F(A) A where YF gitu,ﬂ F‘(l) U'
denotes the least upper bound with respect to E, FOA) = A, Fi*lp) - F(F(A)) and where 1
" denotes the least element with respect toE In otherrmif uexawf? is the teast ’W
of the transformation F In order to show that YF exists titﬂis sumcrent to show that there is an
algebra 1 such that 1L € 4 for every algebra A, and that everrM !witlt respect to & has a
least upper bound in the the domain of ail exceptnon algebras lt umy to see that L exists it
is the algebra with all components equal to the empty set, contatnlng no phyh .and no

OPQ"SHODS
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Theorem 5 : Every chain with respect to C has a least upper bound.

Proof : Take pointwise unions, details in Appendix 111.
End of Proof

In order to use this result, we need a means of defining continuous transformations.
This is also easy, because all of the methods for constructing algebras introduced earlier in this
chapter are in fact continuous. The reasoning required to establish continuity is illustrated for

the tuple transformation.

Theorem 6 : The tuple transformation is continuous with respect to &,

Proof : tuple preserves pointwise unions for chains of algebras. Details in Appendix II1.
End of Proof

Since all constant transformations are continuous, and since the composition of two continuous
transformations is continuous, it follows by an easy induction on the depth of the nesting that
any expression combosed from the constructors for enﬁmerations. tuples, oneofs, sets and
sequences defines a continuous transformation. Thus a minimal solution is guaranteed to exist
for any domain equation expressible in our specification language.

In order to make sure that the transformations defined earlier in this section are
monotonic with respect to €, we have to be a bit more precise about what the transformations
are. (If a transformation is continuous with respect to £, then it must also be monotonic with
respect to C.)

We will add an implicit parameter to each of the transformations, which sp'ecifies the
name of the principal type of the algebra resulting from the transformation. The construction
of the principal type and of the operations on the principal type has been described above.

The subordinate types of each input algebra are included as subordinate types of the output
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algebra if and only if they have a distinct name from that giverl by the implicit pararneter. :
The names of the operations on the principalvt');r)e are taken from the deﬁmtﬁont ‘of the
transformations, and prefixed by .the name of the. principal type to make sure they are distinct
from the names of the operations on the suberdinate types.

For apy composition of tuple, oneof, set, and sequence constructions, the impticit
name parameters are to be chosen so that every occurrence of each constriictor in the expression
- is given a distinct name parameter, and so that the name parameters are distinct from any of
the names of any constant algebras occumng in the expression wim this proviso, any
expression that can be formed from the taple oneof, set, and sequence transformations and
any algebra.constants will be monotonic with respect to L. It is also easy to see that the new
phylum defined by a fixpoint construction will have the same name as its image under the
defining transformation, so that the principal type is buik up: by successive approximations, as
usual for a solution to a fixpoint equation.- Also.note that as defimed -above, each of our
transformations maps complete madels inte complete models.

An intuitive justification for choosing the minimal solution to.a domain equation is
that we would like aour;sran;dafd .model to be reduced (i, free of unnecessary: ‘data: objects). -
The explicit solution to the fixpoint equation can abio be used to argue that the minimal
solution is exactly the solution we would fike to obtain, because it contains all of the objects:tﬁt
are finitely coﬁstructible using the operations of the representation algebra, and :ronthers. To
see this.v note that any operation can produce a data object:in a domain F‘(.L) with an index § at
most one larger than the index of some. domain: containing. an argument of that. operation. {or
one if there are no arguments). Therefore the results dem,ftniteicompuntren in terms of the

primitive operations can produce elements of F{(1) for finite natural numbers , and all of those
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domains are contained in the principal type of YF Co'nversely, if our transformation F is such
that evely elemem of the pnncnpal type of F(A) is fumtely consgrucnble whenever all of the
clemems of the phyla of 4 are, then so are all of the elcments of the phyla of YF, since the
principal type of YF is just the union of the frincipal t;pes of all of the algebras in-the chalr_l
F"(Q. |

To mustrate the use of recursively defined representation _algebras, consider the
deﬁninon of lmmutable bmary trees shown in Fxgure 10. Binary_tree is a fapily of data
abstractnons. pa rameten;ed by the Eype qf the Iggf nodes of ;tglve?trgeﬁﬁ]'he;l,eaf operation creates
ai leaf contammg a glven element of type E where a leaf is a kind. of binary_tree.. The tree
6pe|atlon constructs a composlte tree wlth glven left and right sgbt(fe..,,r. he left and right

o erauons return the Ieﬂ and ri ht subtrees of ac site and termma!e lﬂ thc no..:ub"“,s
P E °“‘P° ‘!?'

Figure 10;

type binary_tree(E) asT
requires E :type R
with . leaf:. - R wT
tree: TxT—T
right: T =T+ (no_subtrée: Y f
left: - T =T+ (no_subtree : )
value: T —> E + (not_leaf : )
teaf?: T —> boolean k

,,,,,

representation T - oneof[ leaf : E tuple[ Ien T rxght T ]]. o \

operations Ieaf(e) =€ in leaf
tree(x,.y) =  feft: X, right: y°) in tree
right(x) = if is{leafXx) then ( no_subtree : ) else toftreeXx). right
Teft(x) « if: is{leafX kY thenv: ¢ no subireei: ¥ else toftreeXx). left
value(x) = if is[leafkx) then to[!anx) else ( not kaf )
: leaffx) = if-isftealkx) then t‘fut“e!se false’ Y
end binary_tree
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exception with no return values if applied tor a‘leaf The predicate leaf? tests a tree to
determine whether or not it is a leaf. The ualue operation extracts'the element contained in a
leaf node of the tree, and it results in a not..lcaj exception if apphed toa composlte node.

There is no qualitative difference between deﬁning the operations of a model whese
representation algebra is defined by a fixpoint construction and defining the operations’ of a
model whose representation algebra is defined by some finite composmon of tuples oneofs sets,
and sequences. The domain equation speciﬁes the structureof the represemanonaigebra and
implicitly akso the operations available on the represematlon algebra. since each of the
transformations mentioned above i'ntroduces some operanons " For ,‘ exampie,' since the
representation of a binary_tree is a oneof, the projecums injecnons,and domalntest predkratesv
of the given oneof type are available for use in defmmgtheoperatimsof | ’!’)‘ina;‘y}_tree. n"rhis
ueriformity is a consequence of the fact that the repre'sem‘auo;e‘!gebra is an e:'\t;ct solution to the
domain equation. |

The fixpoint construction can also be used to construct the natural r;umbers. mm
parameterized family sequencelE]l A convenient representation algebra for defining ‘the-

natural numbers is the solution to the equation
nat = oneoflzero : { 0 }, nonzero ; nat].

This equation is based on the fact that each natural number is either zero or it is the successorv
of some other natural number. Thus zera.is 1gpresented as theelement of the arbltranly chosen :
singleton enumeration type { 0 l and any. othez natunlnumm krepremm&%by its predecessor
injected into the nonzero componem of the dujoin& umon This works. becwse each mjectaon

adds a tag to keep the elements of a disjoint union dmmct Thus zero is represented by the
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pair (zero,0), one is represented by the pair (,nonzero. (zero,0) ), two by the pair
¢ nonzero, { nonzero, { zero, 0 ) ) ), and so on, where the natural number n has n tags equal to
nonzero and one tag equal to zero. A representation algebra suitable for defining sequencel(E]

is defined by the following equation.
seq = oneof{empty : { X }; nonempty : taplelfirst : E, rest Vseq) *

The reader is invited to ml in the details of the last two examples, to get some experiehce in

workmg with recurslvely defmed representatlon algebras

Another treatment of recurslvely defmed domains can be found in [26 25] We prefer

to avoud a category theoretic formulatton on the grounds that the subject can be treated

4. Pid

samfactonly in terms of a more w1dely known mathematical setting

[

4.3.9 .‘S,ys.tem States : S )

In a state machme model the current system state functmn is the dlspmt union of the
current mdmdual state funcuons for each mutable type When defming a state machine model

sohas

in our specnflcatlon Ianguage we wnll expllculy canstmct only the indmdual state function for

+ H i

the pnncupal type The mdmdual state functlons for thewbordinate types are taken from the

LT
2

standard models for the defmmg abstracttons of the subordmate typcs. and the dlsplnt unions

of the indwndual state functtons required to get a system state function are Ieft lmpllClt

RS

We prowde two abstractlons tokens and states for use m constructmg the pnncupal '
type and the mdmdual state functlons of a state machme model. The interpretatlon of the
prmcnpal type of a state machine will always be the pnncupal type of the token abstraction, and

the set of individual state functions for the principal type of the state machine will always be
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state[D), where D is the set of data states for the state machine.
The token and stlte{l)] abstractions are defined by the standard model shown in
Figure Il These abstractions have been defined so that the only property of a token that is
externally observable is its identity, by means of the tokoniequal operation The only way to
Create a token or to extend the population of the.principal type.is by means of the state
extension operation. |

: The only way to extract any information from an individual state function is to appiy
i ER ﬁf S T R AT R
it to a token to get the current data state of that token ll‘ all accesses to the state of a type are

limited to the operations provided by the stute abstraction then we can be assured that the
only state mformation in a state machme is that associated mth 1be individual data objects,
CupTy o RS 3 I :

thus enforcing the assumption discussed in Section 32 and in Appendix l
New states can be created by the init, extend, or updcm qmtztbeis. #The init operation

creates an empty state. This operatton has been included for completeness since it is requtred

% vx‘

to defme the mttial state of the state machme The shtdextend operation creates a new state

Dok ST aYE

in whtch the data states of ali previously extstmg data objects are unaffected and in whicb a

v:,

o TP

new data object has been created mth a gwen value as its mitiai data state This operation is
used to descnbe the dynamic creation of a data object The state&;pdate opention constructs'
a new state dlfrenng from the old one oniy ata single point in its domain and it is used to
model operations that change the properties of some extstmg data objects | |

| In addition, there is an tnternal function etoteN;ed which tests‘whether a given
token has ever been created in a gnven state. Thts funcuon may not be used ln deﬁmng the
operations of a standard model but it is useful in assertions and pfoofs about dynam:c datav

abstractions (see Section 5.4). Note that the used opention witi .say that an object that has been




Figure 11. Tokens and States

module
type token.

with -
representation
restrictions
identity
operations -

end token .

type state(D]
requires

with

representation

restrictions
identity. . ..

operations

internal
definition

end state
end madule

asT

equal: - T x T — boolean
int

x such that x 2 |

equal

equaki, j) = if inthequaki, j) then true else false - -~ -

.as S

D : type

init: | —>S

extend: S xD—>S x token

update: S x token x D —> 5 + ( undcfmed _object : )

apply: - Sxtoken =P o ot - Casiekgi{arg 2)
S =sequence{D]

none

sequencefequal .

init) = () vt e e

‘extend(s, d) = (s |+« d, 1 ‘(cs) )

update(s, t, d) = if 1 <t < osthen s[. (t-1)] o d o} s[(ts)) . ]
else { undefined ob,ect )
apply(s.4) = if 1 £ 'S us then sithebe undefined <

used:- token x S —> boolean -
used(t, 5) = if 1 £t £ os then true else false

created and then destroyed (by changing its dat state back to andefined using state$update)

has been used; so that in general the used operation does not say whether a given object exists
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in the current state. (For secure data abstractions, the two nmbl;s comcide)

The reason for defining tokens and states in the same module is-to limit aceessr‘:tuo‘l;le’
operatiens on tokens. Note that the definitions of the itate Dperations use-the representatiow of
tokens, which is available throughout the module, but net outside it. If tokens were defived in
a separate module, then the represenlanon woukl not be accessible andiawuonal operam on
tokens would have to be provided:sovﬁn%rthe:m(ze operations could beideﬂned. }mewe
do not want modules other than the definition of the state abstraction to have accessito #ny
operations on tokens other than equal. We freely admit that this is an ad chnc sohtloa and we
refer the reader to [21] for a description of a general access control mecharusm for data
abstractions. S e L o

. An mghm&i state function is resriced- to.1ake on the speml value undefined
except at a ﬁmte number of tokens. This restriction assumiwdm*mmmmf sym !meﬁ
i SR TTEE
is countable, even though it is a function space on an infinite:dpmisini: One tomequenceofm{
is that we have no need of limit constructions or transfinite inductioniy:in reasoning ' sbeout
system states. et

A state machine modelfh;the ueiiq;te;id:abstmuoa is shown i Figure 12. Siﬁce the
specification has a data states component rather than 3 upreuntat&oer eomponem w khtm
that a state machine is being defined rather than an exception Ael;;bra and that the
representation of the principal type is implicitly defined to be the token abstracuuf%ddm"in
Figure II. In this case the set of data states is a S&ﬂgk&%.e@mathﬂw& At least one proper
data :s;atezisﬂeeded to-distingtish she objects that have been maed froay those that have not
been (and have the data- state undefined). Unique.ids:are immutabie:(once a-unique_id has

been created, its properties are fixed forever), so that one proper data state is all that is needed.
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Figure 12, Standard Model for Unique«~id
type unique_id as U

with create: - U ' LA )
equal: - U x U — boolean

data states D={nult} a ' , : » S

operations create(sX) = extend(s, null) B ‘
equal(sXx, y) = (s, v) , gew
where - . v = if tokenlequakx, y) then true else false :

P T SR

end unique_id

This example serves to illustrate the stiici"c“hari‘g'ié"tiiiieéf %y“ﬁwécmﬁon of a new data object in
its purest form. The unique_id abstraction is secure, since there are no operations thaf’&ié’f%i
- unique_ids. B o

" A state machiné niodel for a memory cél contalhing a single ob}éa of type E is shown
in Figure 13. Cells’are among the simplest mutable Aath” abbirdeiios. Kﬁejc;tdteopm"atlon
returns a niew cell with a specified initial contents. "NUte that’ thé stateSextend’ operation
returns a pair of values, contalhmg the i’ stite "1 ‘a token tepresenting (he newly ¢reated
object. The new state is the first return valtie of Every ‘opetation 8'a state machiné model, and
the old state is the first argliment. In an lmpleﬂiéﬁtétioﬁ. the state ‘Is passed Téi?du::fa’imb‘licirtly.
while it i$ explicitly represented”in 3 state machifie ‘todel “THid 1§ Fefiécted in the sigriature,
iwhith has o mention of the State, and Bescribes Ghly the type itriicture Visible externally. The
update operation returfis G data objects, but it prodiices a new state ih which the given celi has
a riew value for its contents. The confenis operation returns the currefit contents of a cell, and

the equal operation tests to see if two cells are identical. Beth of these ope"l%"a‘tibns' do not modify



Figure 13,
type cci{E]} as C
requires E : type
with create: E—>C’
update: CxE—
contents: C—ELE ’
equal: C x C —> boolezn
data states D=E
operations create{sXe) = extend(s, )

update(s)c, e} = state[DMupdate(s, c, €)
contents(sXc) = (s, s(c) )
equaks)tt, c2) = (s, v)

Where - .V = If tokenfequal(c], c2) then true else false

gnd cgn

the system state. If v{e;vigv}gfgeils g;,;hg,Lquhggg‘o{ the variables of a programming language
[cf. 50], then the equal operation can be used to determine .whether or not there is aliasing
between two variables: an assignment.to one variable (a celifupdate gperation) will affect the

Note that there is-no suchthing as an uninitialized cell. If w: wanted .to.}detigielg
different cell abstraction, in which cells could be created without ipging dinitialized, then we
would have to introduce an additional data state to indicate thal a cell was uninitialized, since a
token with the data state undefined rgpres;gntsé cell that has not been created yet. Since we
require the operations of a data abstraction to be dqtgrgpqq}gic, aﬁ_ attempt to find thg contents
of an lln_initli.l:]_il’lgd cell ,’w‘o‘uld_cithevr have to result in an exception concmlon or in some

constant default value.
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4.4 Well Formed Specifications

A specification- is well formed if ‘it denioteés some exception “lgebra or state machine. -

This will be the case if the requirements déstribed in’the foowing* subections are met. in

addition, a, reasonably defined: data abstrattion shouldl satisty  the Tollowing ‘two censtraints
{cf. 41,10 el e o s e e

Every operation of the abstraction d should eltl_jer tilke at |east one argumgnt from the

principal type of d, or it should produce at"le‘ast’ on: return value kin the normal termination

condition) from the principattype of v or Trom SoRIE prindipATEpEF thele i¥ Thore than one).

The purpose pf-thiswcens:ram isto rule out functions that have tibthingfto do with the

behavior of the principal type. | 7

- There should ‘be at-least ‘one operation that produces'’a “Valie ‘belonging to the

_principal type which does not take any arguments from thprincipal type. “If this constraifit is

not met, then the:e is no way to compute any ‘va!ue‘s\of thc prsnc?)al type. and thus the
interpretation of the principal type in a reduced mo;I:I f;‘the empty set. ?

- Note that both of the above constraints ey ‘e ensity checked given just the "signature

of the data abstraction. They <an:be viewed as-consiraints a:stractare’ muast: satisfy: T order’ to

(ST

qualify as a meaningful data:abstraction.
4.41 Type Correctness

All of the expressions in the specification must satisfy the type constraints contained in
the signatures of the abstraction being defined, the signature of the representation algebra, and

the signatures of the algebras subordinate to either. This means that every operation must be.
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supplied with the correct number of arguments.;t;d t~h.a:t ;th; deﬁnmon of ea;h opcr#tion must
terminate in only those termination coaditions-apecified:in:the sigmature; #nd produce the right
number and types of return values. for each. This is-not a: purely syntactic check, because it

may require praving that the exprexsion defining. an dperation: terinimates: in 2 given

termination condition (usually the normal condition).
4.4.2 Béprers‘entatio_n Gﬁnsistehcy

The representation. algebra .defined .by-the representation section: must either be a
member. of the sct of algebras generated. by the consiructions given zuﬂicrii_r’t this chapter, of it
must have a previously defined standard model. If the represemtation algebra is defined in

‘terms of a parameterized definition, the constraints. specified in’ the réquires - section of the

parameterized geﬁnu,io;_t;nm:gbenges;.
4}4.3 Repre'isen"tati;m"Inv‘az"iant -

|If a restriction on the principal‘type of the representation algebra Is specified in the
restrictions section, then the range of each operation-defined:must:satisfy the restriction. This
condition can be established by an inductive argument: assuming tiat each argument from the

Principal type satisfies the restriction, show that each return value of each operation satisfies the

RS RN

restriction.




4.4.4 Congruence

If a nontrivial ‘equwa!ence relation is gwen in the }denmy sectton then itis necessary
. g Lrann

to show that each operation is consistent with the eqmva‘ence rehtion in the sense that it maps

SVUHES

‘equnvaknt arguments into equwalent outputs Thls requunrem‘em isa necessary condmon for thc
|mphc1t extension of the operatlons from the represemam;n al‘g(et':ra to the quoﬁent stfl;cture to
be well defined, as descnbed below e T

The operations are explicitly defined as functions that operate on:the elements of the

principal type of the representation.algebra. The model denoted by a specuflcatlon is in genera!

'mi; i ;h e A s D %

a quotient structure, and the interpretations of the operations of the data abstract@n in that
model operate on equivalence classes of elements from the principal.type of the repreientation
algebra. "The operations can be extended to operate on equivalence chsses in the usual fashlon
If the operation f takes a single argument from the pnnclpal type ‘and returns a slngle valu; in

the principal type, then the corresponding opemioq o equivalenceciasses f.(is defined by
f=(x]) = [fx)]

where [x] denotes the equivalence class containing the element x. For-the relatipn defined by
the above equation” to’ b ‘sifigle ¥ilued; Snd “hence a function ‘on equwalence classes, the

function f must satisfy the following requirement: o i d ek g - L

x - y => f(x_)v = f(y).

Note that' if = Is the same as the logical equality relation on the principal type of the

representation algebra, then this requirement is automatically satisfied. An equivalence relation
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that satisfies the above constraint is known as a congruence ‘nldi:‘éii “with-respect :;. f A
defiumon of f_ and of the congruence requirement for a general gp,eratm of an exception
algebra or a state machine is given below. | ) o

| Let f be an operatlon »of the abstractnon A j clx xan—> U R.r where
Ry - r| X .. X rm(.,). and let d be tbe pnnctpal typeof A Let = denote the rehuon defined by

the identlty section of the speciﬁcation Defme the equivalence rehtton “ by

g, P =(xCd&ycdikxzPpv(fx &y d) Ex=y)

FR 4
S

and define the ';equivalettce class” ec by
eclx) = if x € d the {x}. ekex.
HAxp ...xx) =<1,y Ymir) ’ ) then f_ is defined by

Selecky, . eclxy)) = €7, Ceclpph . eclppgn) )

and f must satisfy the requirement

-

Ve 1Si<n | eqlxy, y,) F=> G - |
te(fixy, ... xp)) = telfly, . 3l & Vj: 1<) [ eqlobfifxy. . x)) 4.4, 0OBKfoy, ~» 3l 4 DL

4.4.5 Termination

Every operation must be shown to terminate in one of the termination conditions
specified in the signature for any set of arguments of the proper type, given that any arguments
from the principal type satisfy the restriction given in the restrictions section of the

specification.
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5. Correctness of Implementation

Every well formed implementation of a data at{st@cti?pvdeﬁ\nf an implementation
model for the data abstraction. The construction of thé ;rnpleméntatim model is discussed in
Section 51 belew.. Our: basit definition of correctness s that the irﬁpk‘ﬁféﬁtatidh model must be
behavierally equivalent to the standard model of the abStraction to be implemented. This
definition corresponds to-the- intuition that there should be o obié;vabk’différéﬁce'bétwécn
the behavior of the implementation and the behavior of the standard model, cast into the
framework ‘of deterministic sequential computations. Co

" The classical way to prove the correctness of ‘af implementation with respect to an
abstract model-specification s o exhibit a horsomorphiim. “In Section 5.2, we show that the
classical appreach: is. sound ifi she’ ifandard model’ and" the: -implementation model are both
exception: algebras, by.shawing that the existerice 64 Womoworphiim fiom ‘the implementation
model to-the standard model imples that the two madels are béhaviorally equivatent. "1t was
shown in Section- 331 that the classical approsch is also ‘complete Tor the static case, 'in the
following sense: if the standard medet is redﬁcl-d thén there exiits s hormorﬁhism from any
behaviorally equivalent mplemtation modet to the standard model.

Section 5.3 discusses the case where the itanditd ‘model-is an excéption algebra and
the implementation 'model .is 2 state machine. It is shown that a correspondence fanction
apalogous to. a- homomorphism can be used to demwristrate: beha vloral equivalence. ‘

Section 5.4 discusses the case where the standard modet and  the implementation model
are both state machines. In this case there is no useful analog to thé homomorphism theorem

of Section 5.2, and proofs of correctness rest directly on the,definition of behavioral equivalence.
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The proof methodology is illustrated by exaniple& |

5.1 Implementation ‘Models

A

An implementation of a data abstraction 4 supplies 2 represémtation for the principal
type, and an algorjthm for computing each of the operations.. It is uhﬁniyeay to: construct a
model of the abstraction from an implementation; if: the representation: abstraction and all of ‘the
subordinate abstractions have been defined:by abstrast medel specifications.

The principal type of the implementation .vadel . is the reachable  subset -of - the
principal type of the standard model for the repreventation abstsaction. ' The reachible subset
contains fust the elements of the principal iype. that ate eomputable by some' fte {losed)
computation in terms of the operations of d and.the absiractions: subordinate to d. - The
}gge,r_gfgtatligz.;pf .an operation of the prmnkapitm function -comiputed: by'the: pﬁoeﬁdm
implementing :;t:tgat operation. | The. pmwlmmm -of - emely- abstraction
subordinate to d are taken from the ssandard-model of the subordinate alistraction.

- The implementation model is complete by consiraction, sinoe it contains interprevations
for all subordinate abstractions. The. implementation, model m»ﬁ;my:swbe reduced. The
construction guarantees that every objec. of the. principal type-of the impileinentation’ model is
reachable. There is no explicit-equivalence class struciure in:the implementation moded, so-that
several distinct . implemenmimobj&ts ~may represemt -the same abma “object. - The
| implementation medel is reduced.if and only if mhmiohgmehamunmewmioﬁ

in the implementation model.
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6.2 Static Specification, Static Implementation

- The classical method for demonstrating: the cofrettness of an implementation -with
respect to a standard model specification is to establish a homomorphism  from  the
implementation ,model to the standard model. - Jn'this Section: wé present ‘a tﬁeoremv that
demonstrates that the classlcal method is <ound for cases whcrc both the standard model and

the mplemamﬁon m are exmpﬁoh*algwng g . TR
5.2.1 Homomorphism Theorem

Since an'exception ‘algebra ‘has a disjoint ‘ufiton structure not present in the
heterogeneous algebras of fi], we have to extend the definition of a homomrphmn ‘stightly. A
homomorphism between two exception algebras ‘milst preservé each’ operation, which means
that tie termimation conditions of corresponding operation invocations must ‘be thie same, and
that torresponding retwrn valués mast be' hofomorphic images, whenéver corresponding
arguments are Womomorphic images: More: préc&%y; i A #nd B ave two exception algebras
with the same signature, then a-homBmorphlsin: & from A Yo' "3.is' a family of functions
k : Asphyla, —> B.phyla,, where a ¢ A. typenames; with' the:following: property.

Let P = A. phyla F = A.operations, § ¢ A.opnames, n = A.arglength(ﬁ)
let a; = A. argtype(B; f) and x; ¢ P, foreachtintherangﬂ‘l‘n

Iet(‘r (’l, ..ym}) Fﬂ(xl, )
where T ¢ A.tc(B), m = A. rlength(T, 8),
and where 7 ;.= 4. rtype(T, 8. §) and. 9j¢ Py jbr eachijin the rangcl £ fSm.

Let G B. operauons

_ Then Gﬁ(h_al(xl)' - h (x )) (1, (A (71) I'\,,f(yﬂl?;) )j
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The "=" in the conclusion refers to the equallty relatlon*on al;;tra;et objects I;'or nnodels def;ned
using the specifieation language introduced in Chaptes. 4. this- relation is given in the identity
section of the specification. |
| Now we can.state the homomerphism theorem.
Theorem 7 : Let :Ml’arrtd; M2 be complete exceptlon a&ebra modelsw:tha common signatere.

If there is a homomorphism from Ml to M2 which: redines, io. the identity - mapping -on: the
subordinate types, then M1l and M2 are behaviorally equivalent.

Proof : By induction on the length of the computation.. Details in-Appendix Al .
End of Proof

The existence of a homomorphism -indicates that the intespretation of any closed
computation C in Ml is a step by ﬂepumhthaafmwm of C in M2.
Corresponding resuhs (dau objects) may have different representations in-the two. modehbut
. phismn .is-required to e the identity

they must have the same properties. Smcenn

ity

) property. will. guarantes that any. primitive

mapping on the booleans, the | ;_
predicate \A!ill,_g’jve the same truth valuefor:ormmdjgg daga. objects.in Ml and M2. -

. Note that we are dealing with-complete foodels, which contain the operations of every
type subordl;lqta to the principal type. in addition to the operations of the princigalktype. A
homomorphism must preserve all of the operatms of an excepnon algebra, mcluding those
associated with the subordinate types.. It is swnsnent zaexplmny comkhr nnty theopennens of
. the prmcnpa! type when proving the correctness of a mnc implementation ba:ause the
component of the homomorphism for each of the subordmte mm is the- i&emny ‘fahction,
which trivially preserves all of the operations of the defining abstraction of each subordinateg
type. The requirement that the homomorphism must reduce to theldengny ma’pping onthe

subordinate types is no restriction in practice, because of the way in which the standard model
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and the implementation model are constructed. In both cases the interpretations of the objects
and operations of the subordinate types are taken from the standard models of the defining
abstractions of the subordinate types. Consequently, the subordinate types have identical

interpretations in both models, and the natural correspondence between the two is the identity

mapping.
6.3 Static Specification, Dynamic Implementation

In the case where the implementation algebra is a state machine and the standard
model is an exception algebra, a correspondence function can be used to establish the
behavioral equivalence of the two quels in a way entirely analogous to the homomorphisms
used in the case where both models are exception algebras. In the rest of this section we present
a theorem justifying the use of correspondence functions, and an ‘example to illustrate the
procedure for establishing the correctness of a dynamic implementation for a static data
abstraction.

The correspondence function that is used to demonstrate the behavioral equivalence of
a dynamic model and a static model is not a homomorph;sm on algebras, even though it must
have similar properties. Some of the differences between homomorphisms and correspondence
functions are outlined below.

Recall that a homomorphism is a family of mappings, one for each phylum. Each
mapping is a function from a phylum of one algebra to the corresponding phylum of the other
algebra. The abstract object represented by some implementation object must be completely

determined by the identity of the implementation object, since the mapping takes no other

arguments. This works well in the static case. In a state machine model, the properties of a
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data object will depend not only on the identrty of the object. but also on the current system
state. Consequently a correspondence function must differ from a homomorphism by takmg the
system state as'an extra argument. | | | |

Recall that the principaf type of a state machine' contains tokens represenfing all of ihe
data objects that can ever be created. In each system state the population of objects tfiail have
been created so far is the subset of the principal type. with a proper data state, while the objects
that have not been created yet are all mapped into the (improper) data state undefined by the
system state function. In system states where a glven token has the data state undeﬂned the
token does not represent any abstract data ob;ect and after an operation is performed that
assigns a proper data state to the token, the token represents the newly created data object To
make the correspondence a total function we adopt the followmg convention A correspondencc
function must map a token into the special object undefined for any system state for which the
token les outside the current popuhtlon. \ - | A

The properties of the newly created object are determined at the time the object is
created, and have no particular’ relation to the idenuty of the token representmg thc object
.Drfferent computations can lead to states in which a grven token has different properties and in
such a case the correspondence functlon must map the token into different abstract obpcts in
the two states. |

| The correspondence between the tokens of the impkmen‘tafion model and the abstract

objects of the standard model is established byv a series of approximoiions, correspondinglltol ihe;
steps in the computation:that create nen objects of the principil type. lnitiaily, the population
of the implementation model is empty, ond- the inft_iaf coirrespondence,is empty (i..e.. in the initial

state the correspondence maps every token into the lmproper object ondeﬂn.ed). As new
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objects are created, ;hg image of the token representlngthenewlz createfiloblect changgs from
undefined in the state just before the object was cr;ated. to the abstract ;)bject represented by
the newly created implementation object in the state just after it was created. For abstractions
that do not atlow the explicit' destruction of data objects, the cofresponidence functions for the
‘sequerice of system states produced by a closed ‘iompmaiiibhf ate a Series’of pure extensions. 1f
0; represents the state produced- by. the i-th “stepof some “closed tomputation, ¢ is a

correspondence function, and § < f, then it must be the case that -
(x, 0;) # undefined => (x0;) = x, 0 j)'

We will refer to this as-'th’é mbﬁn’tfi(y’n‘vpropg;‘ti*‘fdi‘ correspondmcr functions. Once an
implementa'tion object has been creatéd, and it has. come to repregent. a proper absttar.tobjcct.
the monotonicity property says that the implementitioni-object must continue to represent the
same abstract object in all su;seduent states_; 'i'his is just whatwe would gxpec(. if .wé crle_aje; an
implementation object and assigri ittoa v;ri,ablg, we would Jike to assert that the variable will
céminue to denote the same (1mmu®k}~abstraa?om.ubng as wedonot amgn a new value
to the variable. Spontaneous changes in the abstraclt‘ id:mtlty of thc valué are not accept‘al;leilr |

A correspondence function must Ar;e_dyce,to the identity roapping on the subordinate
types, just as for a homomorphism. Note that for the subordinate.types thefmrewm
function is independent of the system state. The abs;réctinns we are considering in this section
‘have static standard models, so that all of the subordinate types must be static, and all of the
objects of the subordinate types must therefore exist in all, pogsible system states, in. the

implementation model as well as in the standard model
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6.3.1 Gorrespondehu Theorem

- In this subsection we define correspondence funciions. precisely, and .we .present:a

theorem supporting their usefulness. Let 4 be a state.machine and. let B be: an -exception

.algebra such that the signature of . is contained: in. the signature of -A.. A correspondence

function from A to B is a family of functions ¢, :.4» phyla, x A phylay —» B.phyla, -where

a € B.typenames and where s = 4. 5. is the pame of; the phylum of smmfbrtbem

machine 4. A correspondence ¢ must satisfy the following property. _

Let P = A.phyla, F = A. operations, § ¢ B.opnames, n = 4. arghmth(ﬂ).
let a, = A. argtypelfl, Y.and x; ¢ Py for each { in.the range 1.5 {50, .

let 0 ¢ PS.

Tt (7, €0 gy, P ) ) = FQO, %) %),
_where T ¢ 4. 109’ ¢ Pyum -A-!lmgm(‘!;ﬁ)y

andwhererj A.rtype(fﬂj)andyj( ijoreachjlnthenngel<]$m. '
Let G = B.operations. : |

Then Gpleg (0. %)) - . ¢q (0. %)) = (T, {6 (0" " c',;'(or'; LR

x € Py & @ € A statenzmes & x-¢- popubstion(0) = {5, x) = of0”, )
and x € P, & — a ¢ A.statenames => (0, x) = (0", x).

-

The correspondence property says that the correspondence miust pf_esénérall of the operations of

the target algebra. Noté that the tiew state 0 produced by thie operation of the state maehine is

used to determine the correspondefice between the resiiits of the dpetition in the state machine

and in the exception algebra. - A cofrespondence function must also satisfy the monotonicity

‘requirement; as stated il the st two clauses.

A correspondence function is distinguished fom a homomorphisim since it takes the

system state as an extra argument, and since it satisfies the monotonicity property specified by
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the second clause of the conclusion. Since thé range of the mapping is an exception alg»ebf‘a.
there is no component of the correspondence function for the ph;l;l({;\ of systcm states.

The correspondence theorem assures us that two models are bc!::aworally‘equvivé:lgnt
whenever there is a correspondence function fro;tmto the other. s -

iz

Theorem 8 : Let Ml be a state machine model and-let M2 be'an-exception alkgebra modet. If
there is a correspondence function from M1 to M2 which reduces to the- adentlty wmppmg en
the subordinate types, then M1 and M2 are behaviorally equivalemt:.+i - ‘

Proof : By induction on the length of the computation. Be!alls in Appendix 1L
End of Proof S

The proof is very similar to the proof of the homomoréﬁism theorem, except that the
monotonicity property is required to transfer properties of a data object from the state in.which

- it was created to the state in which it is used 35 an.argumenttoa subsequent operation.
5.3.2 Simple Exami)ler |

A very simple example to illustrate .2 proof - of ~the cerrectness: of ‘a : dynamic
implementatian of a static data abstraction-ia. developed in this-subsection. | We will consider an
implementation of g@:e;intﬁaiz abstraction in.terms. of asrays.of integess::.Intpairs are immutable
pairs of integers, such as might be used to.rapresent rational numbers or:gaussian integers. |
Operatigpé for constructing pairs, .and for. extracting : the -left -and tight: components -are
provjdfedv.;. The intpair abstraction is. very similar to-tuplsltight :int, left 2 int}.  An exception
algebra model for the intpgir abstraction.is shewnin-Figure td. - *.

A state machine model-for arrays is shewn in Figure45. -Arrays-are mutable; and have’
a variable size. It is not possible to. create an awray with uninitialized elements. The arrays’

defineq here are a simplified version of CLU arrays, which: have:more operations.
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Figure 14, Pairs of integers

type intpair as P

with create: int x int > P
left: P—rint
right: P — int

vepresentation P = tuplelleft: int, right: int}
restrictions = none -
identity tuplefequal -

"operations - create(x, y) = ( right : x, left-: y )
. left(x) = x. left
right(x) = x. right
end intpair

An implementation is shewn in Figure 16, and the ifplementation model is shown in
Figure 17. The derivation ' of the‘ implementation model from the 1mple§rtmntim is
straightforward. The operations of the implementation modelP are ;iescribe;l in lﬁe same
notation. as the operations of-the standard model to-avol introdacing ‘s host programming
language. We claim that it is useful to define the implementation: thadel in this $tyle in doing’
practical proofs as well, thus separating the issues finVoWédf in establishing the cofrespondence
between two different representations for a data abstraction ff"um the problem of preving that a
procedure written in a pa'niwlar programming language implements a particultar function. |

To prove the correctness of this implemeritation; we have to exhibit a mapping ¢ and
demonstrate that it is indeed a correspondence funetion.’ ?hehe'hiﬂoral—equw:"iéric“ef of the
standard model and the implementation :model ‘will then foflow from the correspondence
theorem. In order to distinguish the operations of ‘the implementation model from the

operations of the standard model in the proof, we will prefix the'mﬁmntation operations |
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Figure 15. Arrays

type array[E] as A
requires E : type

with create: int —> A
addh: AXxint—> A
addl: Axint—> A
remh: A — + (bounds : )
remt: A — + { bounds : ) :
store: A xint x E—>+ (bounds :) asargl[arg2):= arg3
fetch: ‘A x int = E + ( bounds : ) asargl{arg?2]
equal: A x A —> boolean asargl = arg 2
low: : A—>int '
high: A —> int
length: A~ int
data states . D = tuplellow: int, e: sequence(E])
restrictions none
identity tuplefequal
operations create(s)i) = state[D)fextend(s, (Jow: i, e: OO ))

addh(sXa, x) = (state{D]JBupdate(s, a, (low: s(a). low, e: s(a). e [+ X)), a)
addl(sXa, x) = (state[D]§update(s, a, (low: s(a). low - 1, e: x + s(a). €)), a)
remh(sXa) = if #(s(a). e) = 0 then ( bounds : s )
else (state[D)Rupdate(s, a, (low: s(a). low, e: butiast(s(a). e), a)
remi(sXa) = if #(s(a). e) = 0 then { bounds : s')
else (state[D]J§update(s, a, Clow: s(a). low + |, e: butfirst(s(a). e)), a)
store(s)a, i, X) = if s(a). low < i < s(a) low + #(s(a). €) - |
then state[D}update(s, a, <low: s{(a). low, e: s(a)s el.. i-1] |s x 4| s(a). eli+! .]))
else ( bounds : s )
fetch(sXa, i) = if s(a). low < i < s(a). low + #(s(a). €} - |
then (s, s(a).ell - ow «i] )
else { bounds : s )
equal(sKal, a2) = (s, token§equakal, a2))
low(s}a) = (s, s(a). low)
high(sXa) = (s, s(a). low + #(s(a). €) -
length(sXa) = (s, #(s(a). €}
end array :

with a "I". To help the reader distinguish elements of the standard model from elements of the

implementation model, variables ranging over implementation objects will also be prefixed with
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Figure 16. Implementation
representation array{int]

operations create(x, y) = addh(addh(array‘creale(l) x), y)
left(p) = fetch(p, 1)
right(p) = fetch(p, 2)

Figure 17. kuplcm.mnbnﬂodci L . o

rcprescntation array[mt]

operations  create(sXx, y) = addh(s2)p2.y)
where (s2, p2) = addh(siXpf, x)

(sl, pD) = arrayfcreate(s)l). .- ..

left(sXp) = fetch(sXp, 1)

right(sXp) = fetch(sXp, 2) |
a1”

The éérrespondeﬁ& f un;tm for tpnsmlek !hc Wu, S
cls, a) = dleft: sta). eul;n;ggmg@i;e{i]>f L

We have shown only the componem of the cotrespendcnce for the princrpal type impair The
correspondences for all other types are:- idenwg funcgiom. S

The proofs for the operations. create and left apg sshown btbp The proof for the
operation right is similar to the proof for left, md Is Ieﬂ as an ‘exercise for the reader... The
proof relies on the implementation invariant X shown below, which is a restriction on the data

state of every object representing an intpair. .
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Let X, y be integers,
{a, lp be lintpairs,
Is, 1s0 be system states for lintpairs,

Let I = is(ip). low = 1 & »(Is(Ip).€) = 2

create

Let (s, la) = Icreate(1s0Xx, y).

We have to show that c(ls, la) = create(x, y).

From the definition of create, create(x, y) = (left: x, right: y). :
From the definition of ¢, c{ls, {a) = (left: 1s(la). e[l], right: Is(la). e[2]).
Using the definition of tuplefequal, we have to show that

Is(la). ell] = x and !s(la).e[2] = y.

From the definition of the array operations create and addh,

Is(ia) = Clow: 1, e: {x, y>) and {s(ip) = Is0(ip) for ip = la,

so Is(la). ell] = x and is(la). ef2] = y.

So c(ls, la) = create(x, y).

Since la is newly created and !s(lp) = 1s0(ip) for all ip = la,

the monotonicity property holds.

Since the array operations create and addh can only terminate in the normal condition,
¢ preserves the termination condition of the create operation.

So ¢ preserves the create operation.

Also Is(la). low = 1 & s(Is(la). e) = 2 and Is(ip) = isO(ip) for ip = la,
so that the implementation invariant holds in state Is if it holds in s0.

left

Let (s, x) = lleft(1s0, {a).

Let a = ¢c(1s, {a).

We must show that x = left(a).

By the definition of ¢, a = (left: Is(la). ell], right: is(la). e[2)).
By the definition of left, left(a) = 1s(la). efl].

From the invariant, 1s0(la). low = | & #({s0(la). e) = 2

50 150(1a). tow < 1| € {s0{ia). low + «(150{la). e) - I,

and by the definition of lleft and array#fetch, Is = 1s0 and

x = Is0(la). efl - 1 + 1] = is0(4a). ll].

So x = left(a).

left and lleft always terminates in the normal condition.

So the correspondence ¢ preserves the left operation.

Since Is = 150 the monotonicity requirement is trivially satisfied.
The implementation invariant holds since {s = {s0.

right -
Proof left to the reader.



-4 -

For the purposes of comparison, if immutable sequences had been used as the
representation of intpair instead of arrays, the ho'mmorphism would have been the following

for the analogous representation:
A(x) =  left: x[1], right: x[2] ).

The proof would have been similar for the immutable case, cxiépt that zhere wouﬂ h&ve been
no need to show the monotonicity preperty, ard no. need to argue thﬂt tbe data states of
previously existing data objects satisfy the implementation innﬂam. a8 ‘we did for thc creau
operation. For a mutable implementation, it-is important to.include. this part of the argumem.
because the implementation invariant is 2 constraint on {M entim sys!gm sta&g. rather than just
on the images under the new system state of the data objects fetumed A corrcaly mplement!d
operauon must preserve the invariant, which means that the inyariant must ho!d with respect
to all data objects after the operauon is performed Thns mcludcs the objects retumed by the
operation, as well as any others whose state may have changed as a resuk oithe.operatm:

Note that the proof me(hodology presemed here has no d;ﬂ'lcukms handﬂng
implementations with benevolent snde eﬁects If the couespondeat,e functnn 8. many 40: Qne
" then an operation may change the state of an- imphm&tatm abjoct withou& affecting the
correctness argument, as long as the image of :he impkmematim object under the
correspondence function does not change. - Such: side. eﬁu:ts can be usefuJ in icases where an
operation rearranges a data structure to nake fu(ufe apolaums on that structurc more zfﬁc;em

~ without changing the externally observable behavior of the structure.
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5.4 Dynamic Specification, Dynamic Implementation

The correctness of a dynamic implementation of a dynamic data abstraction can be
proved by constructing a simulation relation, and by showing that the simulation relation holds
for all closed computations. The method of simulation relations is a general solution to the
problem of proving the behavioral equivalence of two models, since it can be applied to both
static and dynamic models. If the standard model is static, then some simplifications are
possible, as illustrated by the homomorphism theorem and the correspondence theorem
presented in the previous sections. In this section we consider the fully dynamic case, where the
full power of simulation relations is needed.

Recall that each object. of a dynamic type is modeled by a token. Tokens have no
distinguishing features other than their identities. The properties of a data object represented
by a token are modeled by the images of the token under the current system state function. To
establish the behavioral equivalence of two models, we must specify the correspondence between
the tokens of the two models, and also the relations that must hold between the states of
corrésponding tokens. The first of the two correspondences is the correspondence relation «
described below, and the second is described oy the simulation relation. For a pair of state
machine models, the simulation relation is typically defined in terms of the correspondence
relation.

Since tokens do not have any distinguishing properties other than their identities, it is
generally not possible to describe the correspondence between the tokens of the implementation
model and the tokens of the standard model without reference to the computation that produced

the current state. The correspondence relation for tokens is easy to describe in terms of the



U6~
computation, sinice the results of corresponding steps of the computation in the two models must
correspond to each other. The correspondence relation is defined mere precisely as follows.
Deﬂnmon 20 Correspondence Relation

If the computation C is feasible in models M1 and M2, if x is the.i-th return. value of
the jth step of the interpretation of C in M1, and if J is the i-th return value of the

Jth step of the interpretation of C in M2, then we will say.that:x-correspondsitoy
and wewﬁlwritexuy
The correspondence relation applies to system states as well as to data objects | Thé
correspondence relation is symactk in nature: it ls deﬂned in terms of thc structure of the
computation, without any regard for the ~meantngs of the opemions. 0 that the same definition
applies to all data abstractions. | o
“The simulation relation describes the rehtion that must hold betwecn the states of
correspondmg data objects in the two models for the objects to have the same externally
observable behavior. Examples of simulanon rehtions can be folmd in thc proofs of correctness
given in’ ‘the I‘ollowing sections. o e o
A typical proof of correctness proceeds by mductnon on the length of the computationr
to show that for any closed computauon the tefminauon condmon of the last step is the same in
both models, and that the simulation relation hokds in the fmal states of the two models The
_ proof splits upinto cases on the type of the last operatlon of the compumnon wlth one case for“-
each primitive operation. |
To establlsh behavioral equivalence, the snmubtion rehnon must imply that
-corresponding’ boolean values are cqual. Typncally the simuhuon relauon will be the |

cmjunchoh of a number of clauscs, where each clause is an implicatlon The hypothesls of the

lmpticauon says that a number of pairs of objects have given types and are related by thc'
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correspondence relation . The conclusion describes the relations that must hold between the
identities and states of corresponding objects. The clause stating the standard requirement on

boolean values is the following:
belb=>b-=ib,

where we follow the convention that variables prefixed by a "L" refer to elements of the
implementation model, while variables without such a prefix refer to elements of the standard
model. Just as we required the homomorphism or correspondence function used in a proof of
correctness of a static data abstraction to be the identity mapping on the subordinate types, we
will in general réquire a clause in the simulation relation for each subordinate type, stating that
corresponding objects of the subordinate type must be equal.

In order for the induction to go through, the simulation relation must be strong
enough to enable the simulation relation to be proved in the final state, given that the
simulation relation holds in all previous states. In working out sample proofs, we have found
that the definition of the simulation relation usually evolves along with the proof. In the
beginning, the simulation relation states just the required constraints on the boolean domain
and on the other subordinate types. In considering each operation, it is often found that an
additional hypothésis is required to show that the operation preserves the simulation relation
defined so far. As clauses are added to the simulation relation, it is of course necessary to go
back and show that the other operations preserve the new clause as well. If the implementation
Is in fact correct, then this process will eventually terminate in a proof that every operation
preser\;es every clause of the simulation relation.

The use of the correspondence function & is one difference between proofs of
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correctness for dynamic abstractions ah& for static abstractions. Another phen&ncnon that
occut only for dynamic abstractions is tHat sometinés It is necessary to consider the operations’
of the subordinate‘typgs in tbe.correctncss proof, as well as theopentimsof the pﬂncipal type
The operations of any mutable subordinate type must be considered, since they can modify the.
system state, and since the simulation relation (usually) depends on the system state. " The
operations of static subordinate types ‘need ot be comtdcred. bccausethcy cannot ﬁchatyugc the
| systeni state or return objects of the principal tipeSmce ailof the subordinate ly'pe;si:of a static
abstrattion are Static, the opefations of the subordinate types of any ‘satié abstraction need not
Explicity enter into the correctriess proof. e
" Any interactions between the observable behavforaf a mutable data ‘abstracti:on and
the operations of its mutable subordinaté types depemi on the mutation of shafed data objects
SHice the subordinate relition on ‘models isa “well founded pamal order. it is not posslbte for
any of the 'opé’fhtions of a subordihate type toopemedltectlymanyobjectof the priﬁcipal-
type. It’is possible Tor an objéct x of subordinate 'ty;").e: to share some substructure with an _
object y of the principal fype, so that theextemsﬁydﬁs‘ernﬁebehasméf y can depmd on the
state of x. ‘SNaring of this kind can occur by construction or by decomposmon In the first case,
some primitive (;iaefattbn'ialiésli: as ana?gumen’taﬁd WtﬂklﬂtO’. where ei.ihér 1; is
passed ﬁs an argument to the operation or cfeated by ‘the operatm and mumed n the second |
case, some primitive operation takes yas an argumént ‘and retums the compmem x. o
 For an example of 4 case Where ah intefaciion with the operations of a subordinate
type is possible, consider the mset abtraction described as follows, 'Mets ate mutable ’séts,-'\éith;r
 the usual set operations, and also an elements oper:mon thatre’tumsan ‘aki?'ra'lgy; A"cﬁﬁ“tainingi th;

elements of the tet. I the'stindard model, the elements operation returns a newly created array,
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without affecting the state of any mset. Consequently, a subsequent assignment to some element
of the array returned by the elements operation does not aff‘ect. the contents of the mset from
which the array was derived. An implementation in which such an assignment did affect the
con.tenfs of vthe mset would not be behaviorally equivalent to the standard model, but the only
way to detect the difference is to perform an array§store operation, which is an operation of a
mutabl'e type subordinate to mset. (Such an incorrect implementation of mset is plausible, ‘
since it would arise if the programmer chose to represent msets as arrays, and in implementing
the elements operation forgot to return a. copy of the array representing the mset, rather than
the representation itself) For such an incorrect implementation, it would not be possible to
prove that the arrayfistore operation preserves the simulation relation, even though it could be

possible to show that every operation of the principal type does preserve the simulation relation.
6.4.1 Simple Example

In this section we present a proof of correctness of an implementation of the unique_id
Aabstraction.  This is just about the simplest possible data abstraction that requires a state
machine model. Recall that unique_ids are immutable, but they can be dynamically created.
The standard model for the unique_id abstraction is repeated for the reader's convenience in
Figure 18. An implementation of unique_ids in terms of arrays is shown in Figure 19. In this
implementation, we are taking advantage of the fact that array8create always returns a new
array (one that has not been used yet in the current computation). The implementation
depends only on the identity of the array, so that the contents of the array can be changed
arbitrarily without affecting the correctness of the implementation. A newly created array has a

length equal to zero, and a specified lower bound for the indices. The standard model for
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Figure 18, Standard Model for Unique_id
type unique_id- asU

with ‘ create: -»U
equal: U x U —> boolean

data states D= ljnull }

operations create(sX) = extend(s, null)

a o eqtiasXxy) S s, v)
where v = if tokenfequal(x, y) then true eise false
end unique_id

Figure 19. lmplementatbn of Unquq_ﬁd
representation array[lnt]

operatlom create() = array[lnt]kreate(l)
equal(x, y) = arraylintMequakx, y)

arrays is shown in Figure 15 in Section 532. ‘The proof of correctness is shown below. As

befove; we will-prefix operations, objects, dnd-sites bebhgmg to the impknwntation with a "}"
to-distinguish fhem from their counterparts th the standard médel. .

To prove that unique_id and 1umque id are behavnorally equwalent

Proof by induction on the-length of the computation: °

Assuming the simulation refation R holds for all computatms c such that] < Iength(C) <N,
stow that R holds for-all'€ sdch that ¥hgth{CP= N ‘

Let s, 30, sl be system ‘states for unique:id, -
1s, 150, isl be system states for lumquc_:d
"X, X1, y; ¢ beuniqie_ids A
Ix, ix1, ly, i1 be 1umque ids
‘b, b be booleans. '

Let R = x & IX & s & Is = used{x, s) = used{!x, Is)
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Exolix&yoly=(x=y)={x=1y)
&belb=b=1b

Proof by cases on the name of the last operation in C.
Case I: create

Let 50 & Is0.

Let unique_id$create(s0)) = (sl, x1> and {unique_idfcreate(4s0X) = Usl, 1xD),
so that sl & sl and x1 & Ixl

By the definition of unique_id§create, stateflextend, and state$used,
used(x!, sb) & — used{xi, s0)

and used(z, s0) = used(z, sl) for z = xl.

By the definition of arrayficreate, state§extend, and state$used,
used(1x1, is1) & — used(ixl], 1s0)

and used(lz, 150) = used(iz, Isl) for iz = Ixl.

So z & 1z = used(z, sl) = used(iz, isl) for any z, 1.

So the first clause of R is established for s, isl.

“(lemma 1) if z = xl and 7 & 1z then lz = Ixi:
used(lxt, Is1) & — used(ix}, 1s0),
but used(lz, Isl) = used(z, st) = used(z, s0) = used(lz, 1s0),
So lz = Ixl.

(temma 2) if z = xl and 2 & 11 then iz = ixl:
Since z = x1, used(z, sl) & — used(z, s0).
By the first clause of R, used(lz, isl) & — used(lz, 1s0).
used(lz, 1s0) = used(lz, Isi) for lz = Ixl.
So lz = IxlL

Let x o {x and y & ly.
Case ll: x = xl,y = x|
By lemma |, ix = Ixl and ly = lyl.
So x & Ix and y & ly in the prefix of the computation C.
So the second clause of R holds by the induction hypothesis.
Case 1.2: x = xl, y = xl
Then x = y.
By lemma |, ly = ixl.

By lemma 2, Ix = Ixl.
So Ix # ly and the second clause of R holds.
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Case 1.3: x = xl, y = xi
Similar to Case 1.2.
Casel4: x = xl, y =xl
Then x = y.
By lemma 2, Ix = Ixl = ly..

So the second clause of R holds.

The third clause of R holds since create and lcmte do not nturn my boolean values.
So R holds. R .

Both create and Icreate always terminate in the llonn-l condition
Case 2: equal

Let sO ¢ 150, x0 & {x0, and y0 & 1y0.

Let equaks0Xx0, y0) = (sl, b) and 1equal(lsOX1x0 110) (1sl ib).

By the definition of equal, sl = s0 and b = (x0 = y0), .

By the definition of lequal, isi = §s0 and Ib = (Ix0 = lyo), 5

Since R holds in 50, (x0 = 0) = (Ix0 = {y6), s0:b = ib, mx ,hglds,

Both equal and lequal always terminate in the normal condition.
So & preserves termination conditions and truth values. ,
Therefore unique_id and 1umque_jd are behavmmﬂy ,quiulem

The most important property of a unique;id- is tﬁat it is unique Thls ;s expressed by

the second clause of the simulation relation R, which says that two xnigue.id’s have the same
representation if and only if the abstract objects they represent are jdemkally: the same. The
third clause of R is juct the standard requuremem on. bmlun values, from which» the behavioral
equwalence of the two models rollows m:ly The onty optmim of. u.rdquc...id that _produces a
boolean value is equal, and for that case the third clause of R follgws easily from the second
clause and the definition of equal. Establishing the second clause is harder, requiring the

addition of the first clause to the simulation relation, to strengthen the. induction -hypothesis.

The first clause is based on that fact that correspondmg objects iﬂ the Implcmemmon and in
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the standard model are created at the same time, so that either both exist (in states after the
abstract object has been created) or both do not exist (in states before the abstract object has
been created). Since the object returned by unique_id§create is always newly created (and hence
distinct from previously existing objects), and since only one object at a time is created, the
unique representation property is preserved.

The proof shown above is a typical example of the argument used to establish a
unique representation property, treated in detail. Similar properties will be required in later
examples, and we will sketch the proofs without filling in all of the details, assuming that the

reader can adapt the argument given in this section.
5.4.2 Typical Example

A simple example of a proof of correctness for a dynamic data abstraction is presented
in this section. We have adapted the intset example from [18], without incorporating the bound

I A standard model for intsets is shown in Figure 20. Intsets are mutable

on the size of a set.
sets of integers. The empty operation creates a new intset, which is initially empty. The insert
operation inserts a given integer into a given intset, returning no values and changing the state
of the jntset. The remove operation removes a given integer from a given intset. The Aas

operation tests to see if a given integer is a member of a given intset.

An implementation of intsets in terms of arrays is shown in Figure 2I. This

1. If sets with a bounded size are desired, then an exception conditions should be associated
with the insert operation to indicate when an attempt has been made to exceed the size bound.
This will add another case to the proof without further illuminating the methodology, and
hence is omitted.
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Figure 20. Standard Model for Intset

type intset as |

with ' empty: —>1
: insert: I xint —>
‘remove: Ixint—>
has: I x int — boolean
data states D - set{mt]
restrictions = none’
identity setfequal
operations empty(sX) = extend(s, setfnulk))

insert(sXx, i) = update(s, setfadd(i, s(x)))
remove(sXx, I) = update(s, setiremave(l, (x)))
has(sXx, i) = (s, setbmember(i, s{x)))

end intset

Figure 21. intset lmplemen_tqtlon ’

representation intset = arrayfint) o o -
restrictions a such that low(a) = I'& (low{a) < j, k < higha) & j = k => a(j) = a(k) )
identity o arraykqual

operations empty() = arraylinticreate()
‘ ~insert(a, i) = if ~ has(a, i) then addh(a, i)
remove(a. i) = if has(a, i) then { store(a, find(a, 1), albigh(a)] ; remh(a) }.
‘ ‘has(a, 1) = if Jjllow(a) < j < high(a) & alji-i) then true else false
definition fmd(a i) = if 3}( aljl = i ] then j: alj) = i else 0 .

implementation keeps at most one instance of any glven integer _in_an array, but the order of
the elements is arbitrary. The standard model for arrays is shown in Figure 15 in Section 53.2.

The proof of correctness is shown below. An explanation follows the proof.
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To show that intset and lintset are behaviorally equivalent.

Proof by induction on the length of the computation:

Assuming R & II for all computations C such that | < length(C) < N,
show R & T for all C such that length(C) = N.

Let s, 80, sl be system states for intset
1s, 150, Isl be system states for lintset
X, x1, z be intsets
Ix, Ix1, i1 be lintsets
i, i}, 1, lil, k, n be integers
b, b, ib, Ibl be booleans

LetR=lsos&ixox&lioi=>(ics(x)s= Jjl1 < j < a(ts(ix)e ) & Li = Is(4x). elj] )
&lbeb=>ib=H .

Let I = ts(ix)dow =1 & (1< j,k € o(Is(Ix). €) & j = k => Is(Ix). efj] = Is(ix). e[k] )
R is the simulation relation and I is the implementation invariant. '

Proof by cases on the name of the last operation of C.

Case I create

Let 1s0 & 50, icreate(s0)) = (Isl, IxD), create(sOX) = ¢sl, x1)

Then we have Isl o sl and ixl o xI

By the definition of create, si(z) = s0(z) for z = xI

By the definition of lcreate, Isl(lz) = Ls0(1z) for Lz = Ix|

So R and I hold for s = sl, Is = dsl, x = xI, Ix = IxI

For x = xl and ix = Ix] we have

sl(x1) = sethnull(), so i ¢ si(x) is false for all i.

Lsi(Ix1) = Clow: 1, e: O)), #(Is(ix). €) = 0,and | < j < 0 is false for all i.
So R holds for the pair of states sl, Isl. '

Isl(ixl). low = 1and 1 £ j, k < 0 is false, so I holds.

© preserves termination conditions since both create and lcreate always
terminate in the normal condition.

Case 2: insert

Let s0 & 130, x1 & ixl, il o lil.

Let insert(s0Xxl, i) = sl, {insert(1sOXdxl, $il) = Isl.

Then sl & sl

We have s0(z) = sKz) for z = xI, and similarly for {s0,

$0 we have to show R and I only for x = xI, Ix = Ix], s = si, {s = Lsl.
By the definition of insert, sl(xI) = sO(x1) U { it }.
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Case 2.1: il ¢ sO{x}).

Then sKx1) = sO{xI), and hmce sh=s0,, . .-

Since R holds in s0, Jjfl < j < «(1s0{1x1). e) & uo(lxl). e[j] 1ill
So sl = 150 by the defmttmn of linsert. .

So R and X hold by the induction hypothesis. ..

Case 2.2: — il ¢ s&x]).

From R in 50, ~ 3jll < j < o(is0(IxI). &) & Is0(ix1). elgh = 1if)
From the definition of linsert, {sl{{x1) = (low: I, e: 1sO(Ixl). e ). u)
j,u < § S o(sQxt)e ) & Js04x1). efjl = il E -
it < § < o{IsHixi). €) - | & SsKix1). elj) = dil)
and {sKixi). elj] = di for j = o(lsl(lxl). °),
. 50.R holds insl, Isl.
From the definition of linsert, Ls(lxl) low =1
I holds for 1 < §,k £ o{dsO{ixi)s-e) = atiaKixl). €) = | by the induction hypothesis,
and X holds for 1 < j <k = s(isKixl). e),
since = Jifl < j < o(150{Ix1). €) & 4s0lhukhr olj] = $i
So X holds.
& preserves termination conditions since both insert and linsert
always terminate in the normal condition.

Case 3: remove

Let sO & Is0, xI & Ix], il & Lif, A

Let remove{sOXxl, il) = sl, lremove(lsl))(txl lrl) lsl.

Then sl o Ist.

We have s(z) = sl(z) for z = x|, and similarly. for#!)‘ o
s8 we have to show R@n&l only for ¥ « Khdx: -Lxl.s-il ds.= m.r -
By the definition of remove, sKxI) « s0{x1) - { Ib}. S

Case 3.1 il ¢ sO(xl)-

Since R holds in 50, 150, 3jl1 < j < o{4s0(Ix1). €) & $s0x1). efj] = dif]
Choose n such that | < n < o(Is0{ixl). ) & Is0{ixl). eln]} = $il.
I holds in sO so n is unique and n = find(JsOXixI, 4it).

Case 311 n = o(1sO{{xl). e)

Then from the definition of lremove,. -
IsKix1) = Clow: 1, e: 1s0(ix1). el.n-1]).

From X with k = n and the previous line,

- BJ(I < § < o(isi(ixD). e) & Isk(ixi). e[j] = Jil]),
so R holds for i = il.
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Since Isi(ix1). elk] = 1s0(ix1). e{k) for | <k < n, :
N for i = il, 31 < j < o(150(Tx1). €) & 150(3x1). elj) = 1i) =
CO3j S < s ) & M(Txn em Ii]
So R is established in si, Isl. o
X in 151 follows from X in 0.

© Case 312: n = o{{s0(Ix1). €)

Then from the definition of lremove, =~
~IsK(ixD) = Qow: 4, & q[i n- ll J+ qoq] o]kq[ml cq-l])
* whete q-=  s0(Ixte.
From I with k = n and the previous line,
= i1 < < 1siixD). € & Lskixt). efj) = uu
so R holds for i = il.
" “since IsHIxD. elk] = 1so{ix1). kY for T'< k <'n- land nel<k< oq - l
and Isl(ix1). eln] = LsO(ix1). e[sq), )
Cfori= il A << .(156(1,(!). o) & 150(ix1). elj] = lil =
< < oisiint). ) & dskonl), el 2 0
$o R is established in s1, 1,
- X in U5l follows from X in 0.

Case 3.?: = il ¢ sO{x1)

Then sl(xl) = sO(xl) {il}= sO(xI) 508 =50,
Since’R hols in 0, - 33(1 < i< o(lsO(le. ¢) & 1s0{1xh). e[j] hl].
so sl = 150, by the definition of lremove and lhas.
So R and I hold in s, Isl.
« preserves termination conditions since both remove and 1remove
always terminate in the noﬂnd condition. =

* Case 4: has

"~ Let 30 o 150, x1 & ix1, jl o dil. I
Let has(sOXxl i) = (sl, bD, lhas(lso)(lxl hl) (lsl lbl)

THen'si' & Ist and bls 5]
From the definitions of has and lhas, sl - sO and lsl = 150
S0 ¥ holds. -
We need to show that bl = ibl.

By the deffnition of hasbl = it ¢ sii). 2 '
By the definition of lhas, 1bl = JjfI < is ousouxl). e) & lso(lxl). e[;] u]
By the first clause'of R; bl = bl
« preserves termination conditions since both has and lhas always
tertinate in the noraal tondition. )

‘Since o preserves termination conditions and the simulation relation,
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all computations are equeasublc in lm:et and in. Jinuet and each

computation producing a boolean value ,produccs the same valuq{a both models.
So intset and lintset are beﬁaviéraﬂy equivalent. C

The only primitive intset operation that can produce a boolean. value is Aas, and the

relationship reqmred for the Aas operation to give the same results jn bqgly {nodels is expressed

by the first clause of the simulation rehtion R. The o invqriant X expresses a

restriction on the implementation strudures thqt must I;e matmt;ped h’ chc operations of the
lmplementauon Note that the imp{ementation invamm dog aot.mention any objects of the
standard model, in contmst to the nmnhtioh reﬁtion, whidl k goncemed w!th the relations
between the two models. The hnplemenmim m\vamm ays, t&n all of the elements of the
array representing an infset must be distinct, and tbat “the low bound of the array must be
always equal to I (recall that arrays can grow and shrink from both cnds). The lmpiemntatlon

invariant is needed in_the proof to show that the rnqgﬂpenﬁpn ,pgm Ibe simutation

relation. T PR 5
Whenever there is a state transnﬂonmuaﬂjytlglyym&@nfm operation of the |
state machine, we have to reestablish that the properties required for our proof of correctness
are still true in the final state. There can be no s:mpk gegcral mk for transfcmng gmpertm '
from one state to the next, because there is no simple synncuc rdatkn bemeup tbc text
specifying an operanon and the set of data objects that can be affected by thq operauon In
general, the effects of an operatlon are not hmued to the dm ;obpﬂs that are, passed as
arguments to the operauon because tbe data state of au nbpa an, oomain ubcr data objects
which in turn can have data states cmtémllig still mpre dm ntgje;xs, L_;A,‘n jnyor.‘aftjpn of an

operation can potentially affect every object in the reachability closuse of the arguments, which
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can vary from one state to the next. Consequently we must establish the invariance of
properties of data objects with respect to state transitions on a case by case basis.

As can be seen in the proof above, explicitly arguing that each property is transferred
from one state to the next need not lead to unmanageable complexity. In a correctness proofv we
are typically trying to show that the simulation relation and the implementation invariant
remain true in spite of any state transitions that may be caused by the operations of the data
abstraction we are trying to verify. In the example above, the arguments are very simple, since
there is no potential for data sharing between intsets. In the example shown in the next section,
there is potential sharing among the objects of the principal type, so that the arguments
required to show that the simulation relation is preserved by a state transition have more

content.
5.4.3 Sophisticated Example

A sophisticated example, consisting of the nonstandard implementation for mutable
lists discussed at the end of Chapter 3, is presented in this section. This example treats a
mutable absfraction whose objects may share subcomponents. The implementation is not
reduced, so that more than one object (token) in the implementation may represent the same
abstract mutable list. The standard model for mutable lists is shown in Figure 22. The
implementat'ion model for mutable lists is shown in Figure 23. We have defined the
implementation model in the same notation as the standard model in order to keep the example
as simple as possible. Strictly speaking, this example shows a proof of the behavioral
equivalence of two models. The proof of correctness is outlined below. The proof for t‘he cdr

operation is very similar to the proof of the car operation, and similarly for rplaca and rplacd,
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Figure 22. Standard Model for Mutable Lists

type list as L

with ik =L
: - cons: - Lxd =L
car: : E—>L+{(nocar:)
odr: L=>L+(nnedr:) - -
rplaca LxL-—>L+{(nocar:)
rplacd:. . L xL-—»Le(nopdr:) -
eq: LxL—>boolean '

S ;«"“"

data states D = oneof[null { nil } palr tuple[& L r: L]]
restrictions. none . - .
identity token!equal
- operations niksX) = state{D)¥extend(s, nil in pull)
: ... cons(skx, y) = statefDIBextend(s, & x; 1: y).in pair) . .
car(s)x) = if is{pairXs(x)) then (s, tolpairKs(x)). D)
eke (no_car: s)
cdr{sXx) = if is[pairXs(x)) then (s, tolpairXs(x)). 5%
_else {no_ cdr s)
rplaca(sXx, y) = if islpairXs(x)) = -fcarssti Tiedsiege R
then (state[D]tupdate(s, X, (l y, r to(paurls(x)). r) in pair) x)
else (no_car: 5)
rplacd(sXx, y) = if islpairXex))..
then (mte[D]!update(s. X, (I to[pa:rls(x)) Lr y) in pair) x)
: - Ch! (ﬁm&f‘ﬂ Gotatges :
eq(sXx y) - token!equa(x y)

end list

S

so-that only one proef.is given for each pair of operations, and:the other is left-to: the reader.

An explanation is given after the text of the proof;-

To show that list and list are behavnora"y equwalent

Proof by induction an the length of the computation: .

Assuming R holds for all computations C such that | < Iength(C) < N
show that R holds for all.C such that length{C)} = N. -

Let 5, 50, st be system states for list,
Is, 150, Isl be system states for ilist,
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Figure 23. implementation Model for Mutahle_l.ists, .
data states D - cellloneof{null: { nil }, pair: tuple{l L r, L]]]

operations niksX) = state[hst]!extend‘(s?ate{tem:(‘teqd(s, ) ih nulf))‘ o
cons(sXx, y) = state[list)lextend(stﬂﬁ B ‘
car{sKx) = if islpairXs(s(x))) " * PERE R T

then (s, to[paers(s(x))) l)

else (nocar: 8y =~~~
cdt(sXx) = if ls{palr)(s(s(xm T

" thel &,to{pm:(iﬁ)» r?

étse o edr 55°
rplaca(sXx, y) = if is[pairXs(s(x))

then stateftistifextend(
state{cetlffupdate(
s s(x), (I L to{pﬁn]s(i(x)ﬁ r) iu pair ),

else (no _car: §)
rplacd(s)x, y) = if is[pairXs(s{x))
T thﬂl Stat&ﬂ‘ f g

w, X, ¥, z, x0, yO be lists

lw, Ix, ly, 1z, 1x0, 1y0 be llists,
b, ib be booleans,

ic be a cell.

" LetR =(xo0lx&s o ls& islullXs(x)) => isfraf)ististix) )
E(xeolx&ksolsk |s[palr](s(x)) => is{paar]ls(lﬂlx)))
o 3 sm.h bﬂs(lx)) 1
v : - B D)ot o IsldEi%)). £)
&(xelx&yaly&salsﬂb(x-ay)a' 1x)-iﬂiy)}’) e
&(bolb=>ba=lb) - i ‘

Proof by cases on the name of the last operation of C. o
Case I: nil

Let 50 & 1s0.
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Let nil(sOX) = (I, w) and IniKisOX) = (Ish, dw).

Thensl e lsland w e iw.. e
. sKz) = s0(z) for z * w, and strmhrly for 4sl. '

So we need to show R oy for x sy dx wdw. . .. . o

By the deﬁgltlmq(n&mm(‘!» g R —

By 'the defirition of Inil, is[nuﬂllﬂ(isl(w))L -

So the first clause of R holds. . S

The second clause is trivially true for x = w, 3; " 1\0 i

since the hypothesis of the implication is fale. . . ST

Since w and IsKiw) are newly created, the. &lﬁ@ chim oﬁg holds.

Both nil and inil always terminate in the mm

A N T
.L:‘n&a i H ," ERLR LS

Case 2: cons

Let 50 «» 150, x0 « ix0, 104» y0.

Let cons(s0)x0, y0) = ‘1, w) and 1cons(150)(§x0, lyo) - Clsl, tw).
Then st & Isl and w & iw.

si(z) = s0(z) for z = w, and similarly for ;sl e

So we Reed to show R only for x = w, Jx=dw. ' .
By the definition of cons, is[pau;_x Qw))ﬁékw{ 1= x0, and sKw)e 1 = y0.

By the definition of dcons, i3 ﬁxﬂm)}, UsisKiw)). 1 = 4x0, and dsi(isKiw))e 1 = 1y0.
The first clause of R is trivia

Since x0 & 1x0 and y0 & ly0, the second chuge af R holds.

Since w and IsKiw) are newly created, th; M :hug‘gg R holds..

Both cons and lcons always termimte condition.

Case:car
Let sO & 1s0 and x0 & Ix0.

Case 3.1 is[pairKs0(x0)) !
!
Let car{s0Xx0) - (sl w) and kar(MXle) = (sl dw).
Thensl e Istand w e dw.
By the definition of car, sl = .0 and v- 50(5:0)“!
. By the dehmugn of lm. l;! - lsQ agd Iw = §30(1s0(x0)). |
Since sl = 50 and sl = J50, R. hoids in 3}, lforx,y=w. :
Since R holds in 50, 150, islpairXisO(isO(tx0)) and s(xQ)s | - La0{404xONx |
So w & lw for the prefix of C.
So R holds for s, Isl. . : ael
Both car and lcar terminate in the nortn.l condmon for this case.

Case 3.2: isinullXs0{(x0))

Then since R holds in s0, is[nullX1s0(4s0{1x0))).
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Let car(sOXx0) = sl and icar(4sOX$x0) = Isi.

Then sl » Isk.

By the defmmon of car and mr st = somd L;I 430, s0 R holds. -
Both car and {car terminate in the no _car condition for this case.

Case ¢: cdr
Similar to Case 3, proof left to the reader.
Case 5: rplaca
Let 50 « 150, X0 & 1x0, and y0 & iy0. -
Case 5.1: is[pairKs0(x0))

From R, is[pairX!s0{1s0{x0))).
Let GI, w) = rplaca{s0Xx0, y0). .
Let Clsl, iw) = rplaca(!s0X1x0, 1y0).
Then sl & Isl and w o 1w,
By the definition of rplaca,
si(z) = s0(z) for z = x0 = w.
By the definition. of rplaca,, .
1s1{1z7) = 1s0(Lz) for iz = lw and 1si(1c) 150(1c) for k * 190(1w) lsO(le)
R holds in 50, 150, and.from.the third clause of R, g :

Tz iz & 1 * x0 => 150{1z) 150{1x0).

. So lsl(lsl(u)) = 450(1s0(12)) for 4z« 1 % %0

~ So R holds for x = x0.
The first clause of R holds for x = X0 = w since b&[ﬁuﬁxsl(w»
From the definition of rplaca, w = x0.
From the definition of {rplaca, Isi{iw) = 1s0(ix0),
and N(lz) = 150{iz) for 1z = lw.
So the third clause of R in si, Is] follows.from R in s0, 4s0.
From the defmition of rplaca, sl{w) = < yO r: s0(x0). r)
Suppose x = X0 = w. C o
Then from the third clause of R,
X & Ix => Isi(1x) = {si{iw), and ksi(isi(ix)).» Lsi(Isk(iw)).

" From the definition of 1rplaca is[pairXisi{isi{$w))) and
Ist(Isi{iw)) = Ck: 1y0, r: IsO{{sO{dx0)e r).
‘We have y0 o 1y0, and since R holds in sO 150,
s0(x0). r & l{O(lsO(lXO)) t. . .
So the second clause of R holds in s, isl.
So R holds. :
Both rplaca and 1rplaca terminate in the normal condmon for this case.

Case 52 islnultXs({x0))
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Let rplaca(s0Xx0, y0) = sl and irplaca(4s0Xix0, 1y0) « ist. : 1
By the definitions of rplaca and Irplaca, 50 = sl and 150 = Isl, so R holds.
Both rplica:and drplaca terminate in the no_car tondition for this case.
Case 6: rplacd
Similar to Case 5, proof left to reader.
Case 7: eq
Let 50 «i50, X0 ¢ 1x0,and y0 & 1y0.
Let eq(s0Xx0, y0) = (st, b) and leq(¢s0X4x0, 1y0) Vs, 3B,
By the definition of eq, st = s0 and b = (x0 = y0).
By the definition of leq, Isl = 450 and Ib = (1s0(x0) = 4s0(y0)). -
Since R holds in 50, x0 & {x0, and y0 & Ly0, (x0 = yo) = (uO(JxO) 150(110))
So b = Ib, and R holds.
Both eq and leq terminate in the normal condition. -

So list and Llist are behaviorally equivalent.

The mutable list example was chosen to Illustrﬂe several issues arismé from the
sharing of mutablc data objects Smce we have made @ imct dis:imtim bel’ween the identity of
a token and its state, there is no notational difficulty 0 statlng that one object is a
s_ubcon"uponent of the states of several other objects ﬂ.e.,» thitthe ﬁrsfobjectis shared by the
latter objects). Note the use of the cormspondenceﬂ.'htibno inﬁieconduslon of the second
" clause of the simulation relation R. to indicate ‘that'ﬂnv‘id@‘nm‘ié; of thc Wents of a
non-null list must correspond in the two models. |

The example illustrates a case where the’ré may be many distmct tgpygseqtatims for
the same mutable object. Every time a rplaca or rplacd operation 1 ‘péfl‘orméd on a list, 2 new
représentation object for that list 'is created in the implementation. Despitethg multipl.e
representations, the externally observable behavior of mptable lists is correctly reali?éd in. the

implementation, so that the non-uniqueness of the representation used by the implementation is
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not externally observable. Whenever the state of a list is modified by a rplaca or rplacd
operation, the change is reflected in the states of all of the repr.esentations for the abstract list
that was modified, and not just in the particular representation that is returned as the result.
This is accomplished by introducing an extra level of indirection: the state of a hst in the
implementation model is a cell containing the abstract state of the list. In our notation, if s « s
are two corresponding states and if x o Ix are two corresponding lists, then the abstract state
s(x) corresponds to the concrete state Is(ls(1x)), where 1s(1x) denotes the identity of the shared
cell. The cell is shared by all of the representations of the same abstract list, and all of the
relevant state information is contained in this cell, so that any state changes are automatically
reflected in all “copies” of the list object. The eq operation computes the identity relation on
abstract lists, rather than the identity relation of the implementation model, which is not
externally observable. The identity relation on abstract lists is described by the third clause of
the simulation relation R. Note that the implementation depends critically on the fact that the
data state of a token representing a list (the identity of the shared cell) never changes, although
the data state of the data state of the token (the contents of the cell) may change. It is easy to
check that this property is maintained, since none of the llist operations applies a statefupdate
operation directly to a token representing a list.

The interésting part of the proof is case 51, where the normal termination of the state
changing rplaca operation is treated. Note the use of the third clause of the simulation relation
R to implicitly describe the set of representation objects affected by the operatibn.
Implementation objects other than those passed as arguments can be affected by a rplaca
operation, due to the shared mutable cell in the state of a list in the implementation model. In

the argument to establish that the rplaca operation does not damage the simulation relation for
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objects other than those passed as arguments the retation gn;en by the third clause ot R is used
to distingmsh between the set of objects that is supposedtobeaffected t:y tlie operation frorgi
those objects that are not suppoted to be affected; ;‘I}t is justJ a; important to establlsh that a{ll‘of

s THRE TR R o sscbmr s Doutadapnis

the ob_pects whose states 2 are supposed to be affected by the opention reﬂect the change as it is

RIITOr T e ¥

to show that the objects that are not supposed to be affected retam their prevnous properties

Whiie it may be dimcutt to denve a descnptton of the set of ob]ects that is supposed
Fiugtiel VIR PR T
to be affected by a given operation from an implementation of an arbitrary mutable data

R I o oA

abstraction it is impomnt to make this set explxit because errors stemming from hldden

IgH e TSI 2 UL IARTED GraAs T
[+ : .

interactions due to umntended shanng relations are very dit‘t‘icuk to track down. The desrgner
.vi ST PR

wiF TRETIC LTS FATIEED it

should therefore paiy exphcnt and careful attention to the ctnracteriution of the set of data

) anr.i
objects that should ‘be affected by an operatton durtng the design of the implementation The
it poiizla divacin ad ] eide LR

intended restr ictions on the sharing rehtionships should be written down as part of the destgn

process, for latet referénce and for posslble use in proofs This suggestion is analogous to the

~ H

suggetted prattice of developmg ioops together vmh the associated loop invamnts The

suggestion is’ motivated by the fact that the required mformation must be informally considered

S5 44 M

by the’ designer anyway and that it is easier to t‘ormaiue a fammar but informal notion than it

is to derive the required properties from an unfamlliar implementztion

.3 !
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6. Conclusions

In this chapter we review the concepts central to this work, present a comparison of

the algebraic and abstract model specifications, and suggest some directions for future research.
8.1 Central Concepts

We have been concerned with treating potentially sha:;ed mutable data. This
orientation has lead us to adopt an object oriented viewpoint, and to define the correctness of
an implementation of a data abstraction in terms of the behavioral equivalence of the
implementation and the standard model. To prove the correctness of an implementation, we
have found> it necessary to replace the representation function introduced by Hoare {18] with the
simufation relation. We have also found that a form of computation induction is an

appropriate method for proving properties of mutable data abstractions.
6.1.1 Data Objects

In this work we have adopted an object oriented viewpoint, rather than the more
conventional variable oriented view. This choic.e was motivated by our desire to treat shared
mutable data. If there is no sharing of data, then a change in the state of a data object can
affect at most one variable, and the change can be modeled as the assignment of a new
immutable value to the affected variable. If data can be shared, then a change in the state of a
mutable data object can affect arbitrarily many variables, so that the simplicity of the variable
oriented viewpoint breaks down.

In our approach, states are associated with data objects as well as with variables. A
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mutable data object is modeled as a featureless token, which sen-res to identify the ob;ect The
value of a variable is a data object (or token). The value of a variable is affected by
as'signmer;t statements. ffThe system state function maps each token ui_tgmcumnt data state.
For most‘ mut.able data abstractions all of the interesting properties of a mutable data object
other than its identity are subject to change, and are reprcsemed ”t;y the data state associated
_with the object by the curfemjsy;gggpq;tg;gj function. The state of 2 tata pbject of a given type
can be affected by the p{il’piti_iil!!‘ operations of thetype. .

By vinm')duc‘ing}_ an extra level of indirection in our quel, -we_achieve jocalized
descriptions of operations that modd‘y po;emiaﬂy shgreddg(a if two variables share the same
e bjc, then ey deoethe s ke, cangs e s e o hatchen il
be reﬂected fn both v’ariaéiles. After such a state transition, both varibles retain their original

values, since the identity of the shared data object is not changed, b

shared object are different in the new state.
6.1.2 Behavioral Equivalence

The concept of kpehaviorar_l equwa!epct%f_modek is central to this work, .. Two. models .
are behaviqr?!!y equivalent if everycom?utauon resutsinche Same termination condition. in -
both modelsand if a;iy computanon with aboo!$2n resg}t Yields the same value in both .
model.  This formal charggtgg‘iza;ign of the externally. observable_hehaviot of a medel. is..
intg?gively sa!isfying. smce it says ;hat two mode!s are behawgfgljy@ujvgkm if they have the
samev externafly observz;ble properties. The characterization is also useful because it allows us to.
compare models with quite differenti internal structures. We have to examine mly the.pames of

termination conditions and boolean values to apply our definition of behavioral equivalence.
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The representation of the objects of all other typés is not explicitly mentioned, and can be
different in the two models to be compared. System state functions are never explicitly
compared, and it does not matter whether a model has a phylum of system states or not. It is
quite possible for a state machine model (with system states) to be behaviorally equivalent to an
exception algebra model (without system states).

An implementation of a data abstraction is correct if and only if it is behaviorally
equivalent to the standard model of the abstraction. We feel that this definition of correctness
with respect to an abstract model specification is the right one to use, because it reduces to the
classical one (existence of a homomorphism) for the case where both the standard model and
the implementation model are static (see theorems 4 and 7), and because it applies also to

dynamic models, whereas the classical criterion does not.
6.1.3 Simulation Relations

We have developed a method based on simulation relations for proving the
behavioral equivalence of two models. The method can be used to brove the correctness of an
implementation of a data abstraction with respect to an abstract model specification. The
method is applicable to all models satisfying the assumptions set down at the beginning of this
work, but it is most useful in the case where bath models are dynamic. Simpler methods based
on correspondence functions and homomorphisms are available for the cases where one or both
models are static, as described in Chapter 5. Simulation relations and correspondence functions
were introduced because it was found that homomorphisms do not suffice for dynamic models.

A simulation relation describes the relation that must hold between the representations

and data states of corresponding objects in the implementation and standard models in order
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for the externally observable behavior of the objects tb be'the same. To show that two models
are behaviorally equivatent, a simulation relation is explicitly constructed, and it is established
that the simulation retation holds fof alt reachable states by induction over all computation
sequences. To establish ‘behavidral equivalence, the Simulation relation must imply that
corresponding operations on corresponding objeéts resukt if the same termination conditions
and boolear values. The simulation Tetation must also bestrmgenough to establish all of the
properties of-the inputs that the operations depend on, so that theinduction ’w'ilfiébf"t‘hr&ot'lgh.

Stmulation relations are defiried in terrs of he cofrespondence relation o, which
refates the identities of corresponding data objects in the two models.  is defined in terms of
the compiation sequence, by Saying that thie resuks of corresponding ‘steps 'or}ff‘ié_ computation
in the two models are related by &. Since the tokens of a dynamicmodel are anonymous, ‘and
since operations that create new data objects result in .“tqke:n%sfan;ggatgd’ toprevnously lgﬁqéw&
tokens, the only generally applicable method for establishing the correspondence is to appeal to
the history of the computation. A simufation relation “has ‘the same purpose as a
homemorphism, but it cannot be defined a5 2 function in ‘the dynamic case because of the |
dependence on the-hisory of the-temputation. I the static casé; a simulation refation would
require that objects velated by « are homomorphic imiges, but sincé'there is no need to separate
the identity of an object from its properties in the static case, the horfomorphism can be used in.

the proof directly, without intreduting:the « relation.
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6.1.4 Proving Theorems about Data Abstractions

In the main b'ody of this work we have concentrated on proving the correctness of an
implementation of a data abstraction with respect to a standard model specification. This is
only haif of the process required to verify programs that use data abstractions. The other half
of the process involves proving that the invocations of the operations of a data abstraction in a
program written using the abstraction have the specified effect.

The intended behavior of a program is typically described by giving assertions
expressing the relations that must hold between the data objects manipulated by the program at
vario‘us points in its execution. For programs that use data abstractions, the assertions will be
written in terms of the primitive operations of the abstraction. For dynamic abstractions, the
system state must be explicitly included in the assertions, so that the operations can be treated as
functions, and used without regard for the context in which they appear (i.e, there are no side
effects 1n the assertion language).

The problem of showing that a program satisfies its assertions can be reduced to the
problem of proving theorems about the data abstractions it uses, by using an axiomatic
definition of the control constructs of the programming language to eliminate the program texts
from the correctness requirements. The theorems derived from the annotated program texts,
which must be proved in order to establish its correctness, are called verification conditions.
The process of deriving» the verification conditions from an annotated program text has been
extensively treated in the literature on program verification for the case where the data
abstractions uséd by the program are well understood domains such as the integers. The

process is not significantly affected by the introduction of static user defined data abstractions.



- 142 -
The introduction of dynamic abstractions raises theprobiemof imroducmg symbollc name; for
the mtermedaate system states, which are |mpﬁcit in.the program text but which are required in
the assertions. This process will require a ﬂow analys:s of thc program.  Previoys work . on
automatic venflcatlon of programs operating on mutable data_[5], 32) has ot explicitly
mtroduced states imo assertlons avmdmg this issue. While we, have not investigated..the
problem in detail, we foresee no essential dlfflcu;ty in producing. verification condiuom for

programs that use mutable datg abstractmsi o
The probkem of provig the verfcaion condions bt on an absrat el
specification éff*("? no mﬂ"°d°'°s'ﬂ' problems, akthough just about any interesting data
domain has theorems which are hard to prove. It is sufﬂdgnt o prove the Interpretations of
the verlf:cauon condmons in the standard models of the data abstractions.used by the program,
since bghavuora! equivalence guarantees that all of the ground terms . composed. from. the:
p;irﬁitive operations of theb abstractioﬁ will have the sacﬁe truth va;uesinpojh the standard .
model and any bghav_ior‘auyue;quiya_!;ep_t implementguonm@eL ‘sugce quann&en can be
re;friéteé t§ ;ra’ngve over only thecomputabk objects of a data ahstracum. behavioral .

equivalence implies that any assertion will have the same truth valyes in both models.
6.1.6 Computation Induction

In doing the proofs of correctness cfﬁ imp!ememanmin Chapter 5 we have used a°
form of com{putation} induction to'gstab}ti,sh,gbat‘_the; simulation rehtionholds for all (ruchable)
objéc:ts and states of an abs(raéim. This (eg!ag!que is useful for proving properties of dynamic
data abstractions, and performs the same function as thegewatgriaduﬂm sule for-static data’

abstractions. There are two essential differences between the two kinds of induction.
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The generator induction rule requires us to showﬁ@hat al? -qf the operations of a qam
abstraction preserve the property to be provedj;y;(/)‘\;r'c;ve ra' pn‘)‘pérty; of the data aﬁstraction d
using the computation: induction -rule, we must-show-that the eperations of any mutable
abstraction subordinate to-d preserve the propeny,‘ inaddition to the operations of d. This is
{;ecessary because the operations:of.the mutable: sebordinte types can cause ‘state transifions
that can affect the truth of an assertion.involving objects of type:d {see Chapter 5).

The generator induction rule requives us mahow that the objects returned by eacks
operation satisfy the property. we are tryig: te«préut ~The: computation iduct’én rule also
requires us to show that all of the values fmﬂmgimmm operation satisfy the preperty ‘we
are trying to. prove, including the néwsy'steru‘f'mte*ﬁlﬁcﬁon that is af implicit resuk of each
operation of a state machine. Since the system state funttion ‘describes the carrént states of all
of the data objects in-the system, we have: te'shew that the property we are trying to prove
holds in the new.system state for all data objects; and wet fust:for’thie data’ objects that' were
passed as arguments to the.gperation or that were retirned-ds results: This is necessary because’
an. operation can cause state chianges'in  objecis that'were not passed-as argomets; but which
are:reachable.from the arguments: - - ' no T e

ipns

[

6.2 Algebraic vs. Abstract Model Speélﬁicaf

N

+In this section we point out-some of the relations between thie ‘abstract’modél and the

algebraic specification techiniques, and present a criticaf compatison between' the two techniiques:
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6.2.1 Relation of the Téchniq;les' |

The algebraic and the abstract model: techniques ase:bothconcerned :with specifying
the behavior of a daia abstraction, and hence bath ave: desling * with' the “same class -of
m;ihemz:ical structures, although :there are slight: technical diffetences in' the way in whith
different researchers defing the.class. ‘There are. several welt known:results relating an algebraic
specification to the class of mwodels satisfying the specification.

One- of the main algebraic results relevant to the algebraic spedification technique {9}
is a uniform construction of a.canomical model for:any. axiomatization “consisting ‘of a set of
equations, where the exprcssiomon§bo!_h~siduzapf<mitreqtntiur are composed fromi the
operations -of the data abstraction.. The model resuking: from this construction 1s-a quotient
structure, whose elements are equivalence classes of expressions; where ‘two expressions are
equivalent if one is derivable from the other fronv the axioms: in finitely -many- steps. - Tms‘:
theorem establishes a connection. between the proof theory of:an:awi& specification and an;
algebraic model for the specified abstraction. The ithesrem allows -us to view an algebraic
specification as a prescription for constructing a standard model for the datk abstraction ﬂiﬁt-’#
specified, so that an algebraic specification can be'kconsidered either as an axiomatization or as
the definition of a standard model D o o | |

. Another important algebraic result is that the. canomical. model constructed as
described abave is an initial algebra in the category of .algebras satisfying the axioms {9). which
means that there is a homomorphism from the initial algebra to any other algebra in the
category. In view of theor'em 7, and the existencébf the homombrphisms guaranteed by the

initiality property, all of the elements of the category are behaviorally equivalent to the initial
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algebra. In view of theorem 4, if the initial algebra is reduced, then there is a homomorphism
from the initial algebra to every other algebra behavroratly equrvalent to it, so that the whole

category is an equwalence class wrth respect to behavroral equrva!ence lf we restnct ourselves

NS L A

to static abstracnons and to axiomatizations that defme a reduced canomcal model then the set

of alt models samfymg the axioms is the same as the set of all models behaviorally equrvalent to

. R T RSO S o | 2
the canonical model and our definition of correctness agrees wtth those used in the axromatlc
approaches [17 10, 0] For the case where the canomcal model defmed by the axioms is not
reduced there is a lack of agreement on the proper defmitron of the set of |mp|ementatlons

Y

consistent with an algebrarc specrﬁcatlon [12 9 221
6.2.2 Critical Comparison

" The criteria for evatuatmg specmcahon techmques glven in [3!] are: (I) formahty, (2)

¥

constructlbrllty, 3 comprehensrbtltty (1) mrmmahty, (5) range of appllcabihty, and (6)
extensrbrllty B
" Both the algebraic techmque and the abstract model techmque as developed in this
work are suffrcrently formal, since both techmques have been glven mathematrcat vdeflmtlons
" Both techmques result in mrmmal specrfrcatrons »«“ has oﬂeh been (mcorrectly) said
that abstract model specrflcattonsiare not mrmmal because the ’rrrodet may have trrelevant.
characteristics. As our definition of correctness |llustrates”.fohl; thosepropertlesof a modellthat
are externally observable in terms of ‘th‘e operation‘syof the abstractron are relevant, and those
propertres must be defmed byany complleteispeuﬁcatrouu Nerther abstract model specrfrcatlons

nor algebralc specrfrcatlons constrain elther the representatlon structure or the algorrthms that

may be used by an rmplementatron as Iong as the externatly observable behavror of the
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abstraction rs realized.
From a less formal pornt of view, it could beargued that the abstract representatton is
not dtrectly observable in terms of the operatrons arailabie to the user of the abstractlon. and

L i X TR

that thts mttoduces the burden of keeping track of whrch details are dlrectly observable and

i

Awhich details are not The axiomatic approach has advantages with respect to thrs criterion,
since there is no explrctt mention of the representatlon vit‘has been shown [52] that there are
»abstractrons that cannot be axromatrzed without mtroducing auatlsary functions Since the
auxrlrary functtons also compute \ralues that'are not dtrectly‘observable in terms oi the
operatrons axiomatic specifications can also have details that ’need not appear in an
implementation. I
Another argument that has been used to suggest that abstract model specrfrcatrons are
not mmimal is that the abstract representauon tends to suggest an implementauon Thrs is
possrble but concern with issues of time. and space efficiency oiten requrres that the
representatron used in an rmpiementauon differ stgmhcantly l‘rom the representatton used in
the standard model whrch is usually the srmpiest structure that will exhlbrt the destred
behavior. The abstract representatton is often deﬁned in terms oi:mathemattcal structures not
dlrectlysupported by the host programmmg 'ianguage sothat rn many 'cases tis not posstble to -
use the specrfrcatron structure in the rmplementation
o At the time of this wr mng, the abstract ntodel techmoue has a clear advantage wrth
respect to range of apphcabrhty over the algebratc specritcation technrque smce it treats shared}
mutable data while the algebraic techmque does not. We expect thts advantage to be a
temporary one whrch wtll dtsappear as further research Je:ttends axromatic specificattons to

o ST

apply to thrs domam also
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We have found abstract model speciﬁcations significantiy easier to construct and to
understand than aigeb’raic specifications. Thisf.vis a subjective i{mpression‘bas’ed on our own
experience, and we urge the reader to try both techniques and to i’orm his or he_r own opinion.
We con;ecture that part of the reason for our expencnce is that the set of data objects is
exphcrtiy described .by an abstract mode| spectficatton whtie it ts tmphcitly det‘ined by the

interaction of potentlally lat'ge number of axioms in the algebralc technique. The result is

TS TN R ETREEY

that the operations can often be understood and defined one at a time and based on fairly local

considerations when using the abstract model technique, whereas the interactions between a

5 - XL T B LS

number of operations must be considered in the algebraic approach, requiring a more global
analysis.

We have found that abstract modei speciﬁcations are stgmftcantly easier to modify

B

than algebratc specifications, especraily in the case where the meanmg of one operatlon s

changed but the meanmg of the abstract representation is not changed because only the

uperatton that is changed need be constdered ln an algebratc specnfication every axiom that

_mentions the operation that waschanged must be (reexamined and usuaiiy each operatton is
mentioned in more than one axiom. " The ‘efiort of extendtng the specrfication of an abstraction
by adding a new operation”ls roughly the same as that requtred to defme an operatlon in the’
mmai destgn and aéatn we have found that the nrocess is easier usmg the abstract modei

techmque.

An algebraic specification can also be viewed as the definition of an abstract model

on

whose representation is the word algebra, containing all of the expression that can be
constructed from the names of the primitive operations. For abstractions whose operations are

relatively easy to define using this representation (ie, syntax trees), the algebraic specifications

g
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are relatrvely simple, while for other abstractions the operations may be qmte awkward to defme

using this representatton ‘and an abstract model usmg a representatton algebra with a

A f

stgmncantly dtfferent structure may be much sirnpler than the corresponding algebraic
specification From this point of view the abstract modei technique is easier to use simply

because it offers a wider choice of representation structures to start from By ustng the fixpoint

g

construction to define a representauon domain of syntax trees. it is always possible to define an

ESE] H B

abstract model with essentia lly the same structure as any giyen aigebraic defimtion

Another criterion l‘or Judgmg a spectﬁcation technique is the relatlve dlfficulty of
checking whether a given spectftcation is well formed lf we are interested in ustng
spectftcations in the destgn process, itis helpful for the process of constructing the specifications

to pomt out inconsistenctes in the design. or at least to make them easier to ftnd We would like

[P R ]
Al
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ill formed specificattons to be easy to recognue

To check that an abstract model speciftcation is well formed it is necessary to check

S I UE: B eoTE

that the operattons are well defmed functlons and that the operations preserve the constraints

adopted when defrmng the model For each operatton it is necessary to check that the results
N - EA S T

of the operation satisfy the invariant relation speciﬁed by the reatrictions sectton of the
iy m‘“-ﬁ 18 SR .

-spectficatron lt is also necessary to check that each operation will yield equivalent resuhs when

SHOERE pre iOmE

applied to either of two data objects related by the equrvalence relatton defined by the identlty

......

section of the speclftcatton ‘These properties are l'atrly easy to check informally. and they are

generally not too difftcult to prove rigorously lt is also usually fairly straightforward to check
R T3 o

that the operatrons are deflned for al lnputs. and result in unique values. lt is necessary to

show that each invocation of an operatton that an raise an exception will terminate in the

R

expected termmatton condmon and that each recursive dérmtion and each iota expression (see
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Chapter 4) is well founded. Showing that a recursive function terminates is undecidable in the
general case, but that seems to have little practical significance. In cases where something is
wrong with the design, the designer will usually be unable to produce a function definition that
even appears to be well formed.

In the algebraic approach, there is no analog to the data invariant, and the
equivalence is guaranteed to be consistent with the operauons by construction (of the canonical
madel). If an attempt is made to define an operation that attempts to produce different value
for expressions representing equivalent abstract objects, then the result will be an inconsistent
axiomatization, where the multiple values are redefined to be equivalent. In such a case the
subordinate types of the canonical model often collapse into singleton sets. Incomplete
definitions introduce extra data objects into the subordinate types, which are produced by
expressions that cannot be reduced to bona fide elements of the subordinate types by the
axiomatic definition. ~Rather than leading to an easily recognized failure, the algebraic
technique will typically redefine the previously defined types in cases where the basic design is
flawed.

Determining whether a given axiomatization is complete and consistent is generallf
acknowledged to be a difficult problem in modern mathematics, and there does not seem to be
any straightforward procedure for checking the well formedness of an axiomatization. There
are mechanical procedures for checking whether an axiomatization is complete and consistent
that apply in restricted cases (the general problem is undecidable), but it is not clear whether
these procedures can be used as practical aids in the design process.

An advantage of algebraic specifications is that fairly powerful automatic theorem

provers for algebraically defined data abstractions have been developed. This advantage is
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probably also temporary, pending the development of good domain specrfrc theorem provers for
the domains used to construct ‘standard rrodel specifications. ' For the domain of static data
abstractions, it is possible to define an abstract modet uslngequatronal ’axi‘o‘ms‘ by introducmg
an auxiliary operation that maps an object of the representation atéabra into the abstract object
it represents (cf. Hoare's abstraction function, (18]). Such an approach allows taking advantage
of _known properties of the medeling domain, and ako of exrsting theorem provers for
equational. axiomatizations.: It ‘Sufférs from the dlsadvantage of not bemg lmmediately
applicable to mutable data abstractions. . o
In- our opinioh ubstract model spccifitatims are’ éiéarly superior to algebraic
spectftcataons for the purpose of desig‘amg programs. The algebratc specmcation technique has
advantages for the purpose of- provirrg the correctncss of programs at the current ume since it
has been more extensively developed, but we feel that a Iong term advantagc has not been-

o

demonstrated.
63 ‘Direrztions for Future Research

One imteresting question that has been’ raised’ but not resolved by thc current work is
whether ar not abstract modet specifications sre bettér than axiomatic specrfrcanons wrth respectr
to.program verification. Since the abstract representation of each data tybé:mtrst be conatd;red
when using abstract model specifications, and need not be considered whcn usmg axromatic |
specifications,. a naive analysis would indicate that - proofs with _respect to abstract modeli
specifications are more complicated” than the corresponding ‘proofs with respect to axiomatic
specifications, based on the sheer volume of detait to be expected. However, in the proofs we

have dane (manually), we have found that known propertiei of the modeling domain can often
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be carried over to the abstract domain, leading to short and simple arguments. This
phenomenon may have an analog for mechanical theorem provers, since special purpose
theorem provers designed for the particular modeling domains used in constructing abstract
models may be more efficient and more powerful than a general purpose theorem prover that
must work with arbitrary axiomatizations.

If proofs of correctness are to be used for certifying software, then it is necessary to
develop mechanical proof checking procedures, because proofs developed manually are at least
as susceptible to errors as programs written by people. While a completely automated theorem
proving facility would be nice to have, it looks Iikeiy that in a practical system the theorem
prover will need human guidance, perhaps in the form of an informal outline of a proof, which
the mechanical proceﬂtnre tries to augment until it either discovers a formal proof or an error.

Our experience with proofs in terms of abstract model specifications indicates that an
intuitive understanding of the model derived from familiarity with the underlying modeling
domain often acts as a valuable guide to discovering a successful proof strategy. For axiomatic
specifications this intuition is often lacking, and the process of trying to construct a proof
degenerates into fairly blind symbol manipulation and syntax directed searching more often
than for abstract model specifications. If the theorem ppover must rely on human guidance,
then the ease of finding intuitive insights can be an important consideration. We also
conjecture that the extra structure provided by the abstract model is useful in constructing
heuristics to guide the search strategy of a completely automated theorem prover.

In order to settle these questions, special purpose theorem provers oriented to the
modeling domains used in abstract model specifications should be constructed and integrated

into a program verification system.
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Another question that is of mterest is the extenston of the framework developed here
to incorporate nondeterminism and partial operatrons | Both of 'these extensions require a
refinement of the idea of behavroral equivalence | o | |

Rl the operattons of a data abstractron can be nondeterministicthen a computation no
longer has a unique value, but rather a set of possible values Strict.equivalence of the
behavior of two models would require that the set of possible results of a computation be the
same in both models. Since a more determmisttc lmplementation of a nondeterministrc
operatron is presumably correct if it always exhibits one of the possible behaviors for the
standard model an approxrmation relation that requires the set ol‘ possible results for the
implementatlon to be a subset of the set ol‘ posstble results for the standard model ts a more
approprlate metnc for the correctness of an implementatton. provided that the set of possible
results is never empty | ‘

Some abstracuons have potentially usel‘ul operations tl\at are4inherently partialr
l‘unctions One example is the domain ot‘ expresstons t’or a Turlng complete programmmg%
language with an operatlon l‘or evaluating expresslons ln order to develop a model for such ',»
structure, some sort of provision has to be made for cases in which the operations do not

%
5

terminate. The rmpact of such an extensron on tbe rest ol‘ the tlreory should be mvestigated



- 153 -

Appendix I - ASS“"‘R?!?:“??@‘,‘;‘% Restrictions

1. Partial Operations

The operattons that can be dermed m a programming laqguage are in general partial

’2

furictions since there may be cncumstanccs under which they do not, termmate - We will require
’the operatrons of a data abstractron to be total, because we feel that it is bad progr;lmmmg
practice to design (abstractions W|th primtttve operattons that may faii 1o terminate. Some recent
work on specrfymg data ab<tracuons with ?artlai operattom can be found in {27).

| Many data abstractrons have operations that make sense only for some proper subset
of the mput domain (le dwrdmg by zero is not weil defmed) li‘ an operation is invoked with
arguments that are outsrde its natural domam of defimtiun the qperatton should terminate by

raismg an exceptron to mdrcaie that somethmg unusual has happengd The reader should

note that it is possrble to transform a computable partial functroq into a computable total

4847

function that raises an exception oniy if the domam of dehmtiori of thc partial function_is a

HEE '-:',st

LR r‘

recursive set. An mterpreter for any Turmg-compiete Ianguage has a domam of defmition that.

is not recursive (otherwrse the halttng problem would be decrdabie) demonstratmg that there

sl JYEET %

IEEE

are mterestmg functrons that cannot be made to satlsf! our restriction .Partia) recursive
procedures that compute such functtons can of course be det‘ined in terms of the primitive

"i’

operations of a suitabie data abstraction but ‘we do not aliow them to be included as primitive

operations of the abstraction.
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2. Nondeterministic Operations

We would like to distinguish' between ' partially: - specificd operations and
nondeterministic operations. A partially speuﬁed operation is deﬁned only for some proper
‘subSet of its input type, and’ presumably the designet ‘does not care what the operatton does lf it
is ‘presented with an mput outstde of that subset We feel that it is bad destgn practlse to

. produce’ specifications of this type, ‘because of the posnbiltty of undetected errors in the use of

R -
EATEY

the abstraction. The only case in which we truly do not care what an operation does on a

certain input is if we know that it wiil never be caHed with that tnput A weii designed data'
ST ETT S AR S

abstraction should raise an exception for aii inputs for which no normal response is specified 0

that attempts to use the operatton outside ot‘ tts domain of validity wili not pass undetected
s R

Data abstractions with nondeterministic opemions are potentiaiiy interesting, but are
not treated in the § main body of this worlt An operatton can be descnbed by an’ input-output
tetation R, which relates the inputs of an operatton to the iegal output values for those inputs

For a deterministic operatron such a refation is stngle vaiued and is in fact an ordtnary

TR

function. Some operations are most naturaiiy described by reiattons that are not smgie valued.

N e R
q. H

the programmer wants the operauon to sattsfy certain crtteria (eg the reiatton R) and does not

o

care if there is a umque resuit or which vahd result is actuaily chosen if there is more than one
valid choice.’ We do not recommend introducing extra constraints withtl:e soie purpose of ﬁ
restricting R to the point where it becomes a functton Such constraints comphcate the ;
spectftcatton by introducing irrelevant details, and also may exclude some of the simplest and |
most efficient implementations, which would be perfectly acceptable without the artificial

constraints.
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A non functional input-output relation R is consistent with a whole class of operations,
some of which are deterministic, and some of which are not. The reader should note that it is
quite possible to implement a data abstraction with nondeterministic ope?atlons on a
deterministic machine, because an abstract data ObjCCt need not have a unique representation in
the lmplententatton For example consxdet the data abstractlon conststtng of the finite sets of
natural numbers together with the usual set‘theorettc operauons and a choose operation. The
choose operation returns’an element of a given set if the set is nonempty, and Faises an exception
otherwise. It is not specmed whrch element of the set is to be chosen if there is more than one.

Abstlact sets are |mmutable and two  sets are equal if and only if they have the same elements.

ln an lmplementatton sets mlght be represented as hnked hsts and the clmose operation might
PR . - :

SR
Rt

return the flrst element in the ||st However since there are many dlfferent representations. for.

: the same set, wnth the elements stored in different orders. the choose operation appears.ta. be.

e Ty trgesnny R

nondetermlmsuc when vuewed as an operauon on abstract sets.
We know of no work that has been done on specnfymg data abstractlons with
nondetermlmstlc operatnons Some work on speclfymg nondetermrmstnc operatlons in terms of.

relations is |eported in [31]

3. Concurrency

N

Concurrent access to data objects by paratlel processes is an mterestmg subject that is
beyond the scope of this Thesls It is profltable to conslder parallel processmg in the context, of
data abstractions {20, 16,6 38, 21] because processes need to be synchromzed only if they

ooerate on shared data. Even though a qunte a b|t of work has been done in thls area, the

issues involved in specifying the correctness of a data abstraction in the presence of concurrent
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mutation of data objects are not yet well understood.
4. Exceptions

Since there is no generaiiy accepted modei of exoepttons and exception handltng we
have chosen a pomt of view that stmpltfies the rnterface presented by an operation and which
helps to separate the extemally vrsible behavior of an operation from the internal processes that
produice that behavior. | |

We assume that an operation termmates whenever it raises an exceptlon Thus ian
operation may terminate in any one of 2 number of conditions. one ofdwhrscjh‘ is normal and the
rest of which are exceptional. In general the results of the operation in each condition‘ {mi be
different, and must be specii‘ied for all possible termination;ondmons ina complete description
of the operation. R

The alternative to our pomt of vnete is to aiiow an exceptron to cause some events and
then to continue performing the ongmal operation at the pomt where it left off This\
aiternative is not attractive because the separation between the specmcations of an operatlon{
and the details of its implementation breaks down. Given a speciflcai;on of anlo‘peratton that
describes the results of the operation for the normal termination cm&iﬂdﬁf'iﬂ’g’iﬁes the
conditions under which each exception occurs, and given a specmcatlon of an exception
handler for each exception raised by the operation we Stl“ do nothave enough mi‘ormatlon to
predict the behavior of the operatlon in the context of the specrfied exceptlon handlers lt is
necessary to analyle the mplementauon of the operatton with respect to the spectficattons of the

exception handlers in order to determme the eﬂ'ects oi' the operation Since different

invocations of the operation can occur in the contexts of difi‘erent exception handlers, we cannot
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treat an operation as a dosed module tf we adopt the resumptton model of .exception handling.

Exceptions are dlscussed further in Chapter 2.
5. ¥ OWR I}It& ’

We assume that the operanons of a data abstraction are t‘unctlonat Thts means that
an operatron must not have any mternal state, so that the results of an operatlon depend only

on the mformanon contained in the data objects passed to the operatton as arguments (which

g

R N 51 3

may mclude references to other objects) Data objects may themselves have states, so that we are,
not excludmg the posstbrhty that an operatlon may return dtfferent results if it is invoked with
the same arguments at two drﬂerent times. This restriction is meant to prohibit type managers
(ie. SIMULA classes, CLU clusters, ALPHARD forms, etc) from keeptng mutab!e own data.
which introduces a component of the state associated with the type asa whole rather than with’

" the individual data objects This issue is discussed further in Secuon 32
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Appéndixﬁ II - Basio Type Del’iniﬂons

A N

The definitions of the natural numbers and the integers are imporsed:directly: from
the underlymg standard mathematics. The definition of the natural number abstractlon is

shown in Flgure 24 As in the defmtnon of sct ln Chapter 1 tbe standard notatlons for

natural numbers and integers are used in the deﬁnmons of the operatlons to refer to the

standard operations of the undeflymg malhemancal domains. whﬂe the same notations are
introduced as abbreviations for the operanons of the excepmn algebra for use in the

definitions of other modules. The only nonstandard feature of thls defmltlon of the natural

Flgure 24, Natural Nmnbers
type nat as NN

with constant{n} — NN asn fornc N

zero: —> NN as 0
successor: NN — NN as 0(arg 1)
plus: - NN x NN — NN asargl+arg?2
times: NN x NN — NN as argl v arg 2
Jess: NN x NN — boolean asargl < arg 2
equal: NN x NN — boclean as argl = arg 2
representation natural numbers N
restrictions none
identity natfequal
operations constant[nX) = n
zero{) = 0

successor{x) = o(x)
plus(x, y) = x + y
times(x, y) = X « y
less(x, y) =x <y

end nat
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numbers is the infinite parameterized family of constants. These operatiag;i_a‘rfe_intrqducgcluLs,p
that we can use the familiar decimal notation for natural numbers in our specification language,
 rather than having to build up each number from zero using jthgaq»c‘cie‘ssor function, which
quickly ge;s cumbersome. | '

The defmm;aﬁ of the integers is shown m Flgure 25. lntegers also have an infinite
supply of constant opmnms Note the conversmn operanbns mteger and nn, which serve to
convert integers to natural numbers 'ahd’ vice versa. Th‘e‘quolienl*a'n'd r’e’maindcr operations
have exceptlon candltlona in the cases where the standard mathematical definitions are
undefined. - '{he quatmu operation rounds down" irres;ﬁec’hve of the sign of its arguments, in
agreement with the usual mathematical definition, and in contrast to the‘wa‘y diyisioq‘ worksln
most programming languages {(e.g., FORTRAN).

The astute reader will have noticed that we haveormtted tt_y_e definitions of the
operations >, #, <, and 2, even though we have used themfr&'imthcmiﬁcanon language.
The astute reader will also be able to supply the standard defmitiﬁrﬁxforthe,se operations, and
is advised to do 50.

These types are mtended for me in tﬁe specuﬁczuon hnguage The corresponding
types for a programmmg language should prdB&My be designed dm‘erently. to include
limitations on ‘the sizes of the numbers exception condmons l‘ér cases m which thosc size

limitations are exceeded, and additional operations for convertmg strings of decimal digits into”

numbers, and for printing out numbers.



Figure 25,

type int as |

with

representation
restrictions

identity

operations

end int

integers

constant{n}

integer:
minus:
plus:
difference:
times:
quotient
remainder:
abs:

nn:

~ less:

equal:

integers Z
none

int§equal

constant{n)) = n

>
nat —> |
I—1
Ix]—=>]
IxI—1
Ixi—>1]

Fx 1= 1+ Gero_divide - )
I x1—>14 (zero divide:)

1—>1

[— na,,t} (wrong sign : 2.
I x 1 = boolean
1 xJ]—> boolean .. .

integer(n) =n in Z.

minus{x) = -x

difference(x. y) = x - y .
times(x, y) = x 0 y

quetient(x, y) = if y = 0 then (zero_divide : )

;s n fornc Z
as - &gl
. a8 arg:le arg.2:

as argl + arg 2

as.argl « arg 2

aslargl]

as arg ! < arg 2

cesergl-arg2 -

else q: 3r[x-q¢yor&0<r<ab5()')]

temainder(x, y) = if y = 0 then Gera.givide : )
elser: 3q(x-qoyor&0<r<abs(y)]
abs(x) = if x <O then -x elsex

nn(x) = if X < 0 then (wrong_ gn )elsexlnl

Cless(x, Y =x <y

equak(x, y) = x = y
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Appendix III - Proofs

An exception-algebra differs from a heterogenewsaigebraasdeﬂnedmm by h;vinxg
a disjoint union structure for the ranges of fhé’iiipefatidhs. wlic;re’_, the disjvci;ltv‘union is mdexed
by termination condmons and wheae the componen!s of the. disjaint. umon are:. caftt;-slan
products of the phyla ln a heterogemous algebra ‘the range o[ each operaunn has to: be some
phylum of the algebra. The definitions of basic algebra.ic con,cepQ such as. subalgebras.
congruence relations, quotient structures, and homomorphisms have to be adapted mghﬂy to fit:
into our framework. The required extensions are concerned mostly with termination conditions.
For example, a congruence relation is an equivalence etation that éresen)es all of the‘
operations of an exception algebra, so that if corresppgcjing Arguments -of an operau'on are -
 related by the congruence, then the tenmmatlon condltm; q[ tl\e WO mvocatiom must be»yl
identical, and corresponding return values must be rdated by the compments of the cmum« :
relation for the appropnate phyla Asin [}, an equiva!cnce re!gtwn Qn an excepuon llgcbra is

defined to be an mdexed set of equivalence relations, ore Tor each phylum

Theorem 2: Every equivalence class of static models with respect to the behavioral equivalence

relation contains a reduced model.

Proof: Let £ be an eqmvalence class of models wnh Jespect,to hehavioral equivalence,

and. choose.M <« E. This wmalw'ays be poisnble

since equivalence classes are nonempty by definition. ' :
Let M’ be the subalgebra of M containing only the reachable objects of the prmupal type
and with the same subordinate types as M.

M’ is closed with respect to the operations of M, since it contains all reachable data objects.
M’ is behaviorally equivalent to M

since the value of any closed computation C in M’ is the same as the value of C in M.

Let M™ = M'/=, where = is the external equivalence relation defined in Chapter 3.
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M is well defined because = js consistem with all of the operatiom by construction.
Then M” is reduced and behaviorally equivalent to M.

Every element of the principal type of M” is reachable,

because any such element is equal to [x] for some x in the principal type of M’,

and every such ¥ s reachible, by the construction of A", :
Any two elements of the principal type of M” that are externally equivalent: must be ienitical,
by the construction 6F'M® frbm M° ‘ '
Hence M” is reduced. i

M’ iy behaviorally equivalent to M’ because it is a homomorphic image of M’

under the natural homomorphlsm A deﬁnedrby,&(x}s » [} if 3. €4 and MX) s.x otherwise,
where d.is the principat type of A" '

Since behavioral equivalence is transitive,

M is:behaviorally equivalent to M,

and the theorem is estabhshed

End of Proof -

Theorem 3: If two reduced models are behaviorally equivalent, then they are:isomorphic.

Proof: Let AMtand M2 be reduced and beh'avia‘auy equivalent.

Define the isomorphism / as follows.

Far every closed computation C, let fivatue(C, m) - value(C, M2)

By Lemma | below, whenever value(C Ml) = value(C', MQ

then value(C. M2) - valu¥C’, #12),

so that £ is single valued, and hence a function.

The inverte mapping is obtained by | mfmhmging M and M2 in the above de!miﬂon
and it is also single valued, by (he same argument. I ST S -
Sofist:l

The operations of the algebra are preserved by construction,

so the lsomorphlsm is estabhshed ,_ .

~ Lemma I: Let M1l and M2 be behaviorally equivalent exception algebra madels, let C and c be

it

closed computations, and ‘et vatue(C. MI) = vahe(C Ml}, Th@ vahle(c M2) ts extcm:ﬂy

equivalent to value(C’ M2)
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Proof: let M1 and M2 be behaviorally equivalent exception algebras,
let € and C’ be closed computations, Pl T e
let vailue(C, M) = value(C', M),
and let CO be an open computation.
Then value(CO, value(C*, M), M) = value(C"§CO:: M),
for any exception algebra M, 1 L -
where C”[ICO is the concatenation of the computations C” and CO2 .. length(C0)],
and where the step indices of all of the argument specifications in CO =
have been increased by length(C")-1. ‘
then  value(C0, value(C, M2), M2) - SRR D
value(ClICO, M) = - by.the definition of coficatenation.
value(CliC0, MI) = - since M1 and M2 are beha viorally equivalent
value(CO0, value(G, M), M) = <. oy thie detitition’ of ‘dontitenation
value(CO, value(C', M1), MI) = by assumption,
value(C'llCO, M1) = by the definition of concatenation,
value(C'liCo, M2) = since Ml and M2 are behaviorallyequivalent,
value(CO, value(C', M2), M2) by the definition of concatenatjon.
So value(C, M?2) is externally equivalent to value(C', M2).; o
End of Proof o

i

gzi L

Theorem 4 If M is behaviorally equivalent to M* andNM is re;:luced, v'tﬁe\il‘:g‘thete.j;wa

homomorphism from a subalgebra of M’ onto M.
Proof: Let M" Be the suba lgebra of M’ containing only the reachable
objects of the principal type of M",

and with the same subordinate types as M'. :
The quotient of M™ with respect to the external equivalence relation is reduced,

and behaviorally equivalent to M’ by Thedrém 2, 7 - - -
and by transitivity of behavioral equivalence, it is also behaviorally equivalemtito' M.
Then by Theorem 3, the quotient is isomorphic to M. Cee

The composition of the natural homomorphism from.A to the quotient-and
the isomorphism guaranteed by Theorem 3 is a homomorphism from M” to M,
so the theorem is established.

End of Proof

Theorem 5: Every chain of algebras with rgs;}éct:to € has afleasg upperbound
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Proof: Let 4, : i ‘N be a chain of algebras with respect to C.

Then 4 = U" A;, where A is defined as follows.
ic

Ya ¢ A.typenames [ 4. phyla, = U A plivia, ]

VY8 ¢ A« opnames [ A.operanonsa U "i'm’ﬂ"

A¢x= U A-x
CN

where x can be any one of the following components:
typenames, opnames, tcnamasglmgu; afgtype, tc.fﬂength nype or pt

By Lemma 2 the operanons and typeduqm fnmaons m*&%&hﬁd

AiEAforallz( N,

_ since s; U s.forany j¢ N ~ 
JS g n s

So A is an upper bound for the chain Ai N
lfA,-EBfora"i( Nthen 4 C B,
since s; C 5 for all i ¢ Nimplies U sigs.

So A is the least upper bound for ;he chain A;.
Endof Proor

Lemma 2: If f;:i ¢ N is a chain of functions with respect to E, then'j-i I(J lff*‘ is 2 well

i H
PR Aot & SR

defined function.

Proof. We have to show’ thatf- U ]}ls smgle !IM | N

Proof by contradiction, -

Suppose f is not single valued.

Then for some x, (x, a) < f:ﬁd(x W(jwher!a #b
Sincefrr U j; . :

pick n, m tuch that (x, a) ¢ f, and (x, b) C f,.

Since f; is a chain, f, € froax(n m) a0 S € /max(n, my
S0 (x. @) ¢ fron m)and @, b)(f;n;x(g mywherea=bd

1S

But f; is a single vahred fimmm"‘!‘or all i ¢ N, contradiction.

So f must be single valued.
End of Proof
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Note that we are tieating a funcuonfas the. set of aﬂ*patm (x.ﬂx)) such:that x ¢ domam(f)

Theorem 6: The tuple nansfom;auon is commuous with rgspecuo Q

Proof: Let '44' be a chain with respect to &,

Let U denote the least upper bound with respect to C.: - Aot
( u A,‘)XS?X...XSR-_- u (",xsﬂxm)(ﬁ“* L Do . [
iCN it N < :

from the definition of union and cross product.

The definition of each operation is a functional F from the phyla to gperations on the phyla,
with the property that the value of an operation on any input depends only on the mput values,
and not on the phylum as a whole. :

(T he finite qmntmcatmn in the deﬁnmon of eqyaf can be cxpanded

into an equivalent finite con;unchon) L

So F(U S_)(x) = F($ )(x) for any Sj such that x ¢ Sj

F(Sj)(x) 15 undeﬁned if~x¢ Sj

So F(U SXx) =U F(Sj)(x).

The definitions of the signature furictions’ 3WMiE‘tﬁffﬁ%yr"' saifiy e i \
So the tuptetransformation:on algebrus is ahtiﬁuﬁ; mmmwc S
End of Proof

T

Theorem 7: Let M1 and M2 be complete excepuoma‘!gﬂm moiieis*' wﬁ'h fﬁé‘m ﬁgnature and
I RS S RN (LR
the same interpretations for- the suqulmwxﬁypes. Mm&hhi homhm I!‘Dm Ml to

if KRR $s
TR I

M2, such that A is the identity mapping on all df the suborqgnatg type& Tpen Mi and M2 are

behaviorally eqmvalent ‘

Proof: For every init'e closed computation C, we h,axchtg:st}qg:; that:

A. C is feasible in M1 if and only if C is feasible in MZ N

B. value(C, MIJ = vahielC. :ﬁﬁf‘viﬁehév& Cis f"e'asil‘)vl;.'ii‘n Mlaaggroduces abmleanvalue
Let H(C) = ( feasible(C, M1) = feasible(C M2y ) & ey

- (length(C) 2 1 & feasible(C, #H) )= MvaluetC; Ml)):» VM Mﬁ) g

Assuming that H{(C") holds for all C’ such that length(C’) < length{C);
show that H(C) holds.

Case L: length(C) = 0
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H(C) is trivially true, since the antecedent of the tinplication is false.
A. holds since the empty computation is feasible in any model.

B. holds since there are mo: computations of length O protiicing 3 boolean value.

Case 2: length(C) > 0

Let length{(C) =nand let C' = Cl1 .. n-11 4
Then H(C’) since length(C") = n-l < length(C).

A. To show feasible(C, M1) if and only if feasible(C, M2)
Case 21: C" 1s ot feasible in_Mi.

Then by the induction hypothesls H(C’), C' is not l‘easibk in uz
Since C' is a prefix of C, C is not feasitle in M1 or M2 o
So A. holds for case 2.

Case 2.2: €' js feasible in M1,

Then by the induction hypothesis C'is feasibledn M2 .~ :
Therefore the termination conditiens of:the argwments match:the mpmmem
for every step of C' in both models. T
C is feasible in M1 if and only if the termination conditions of the atguments of C[nl
match the requirements of step C(n}

- -Each argument-xpis the Yalol €y oo v v n e v e assna
where length(C;) 2 1 and where C, is a proper preﬂx of C.

* By theinduction hypotfiesis Wvillae(C,; M1 = vanielC, M2)."

Then te(k(value(C;, M) = tc(value(Cat M2),
since homdmorphi:ms préserve tefmination conditions.
Therefore the arguments will match the requirements for the interpretation of
C in M2 whenever they will match for the interpretation of C in M2.
So A. is established for case 2.2.

B. Assume C is feasible in 'M1 and leﬁgth(C) 2t
Show Al{value(C, M) = vatue(C, MZ),;; o

Each argument x; of the last operation of C is the result of some prefix C; of C,
where | < length(( )< <length{C).
By the induction hypothesis, Kvalue(C;, M1) = value(C,, M2).

Since 4 is a homomorphism, A preserves the opentlom of Ml and MZ
So Kvahue(C, MD)) = value(C, M2).

S0 H(C) for all computations C.
If the principal type of Ml is boolean then Ml = M2,
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since there is a unique standard model for the boolean domain,
and otherwise boolean is a subordinate type.
In either case, fboolean 15 the identity mapping.

So if a computation results in a boolean value,
it must result in the same boolean value in 'Mi and i M2
So M1 and M2 are behaviorally equivatent. =

Then H(C) holds for all finite computations C.

End of Proof

Theorem 8: Let M1 be a state machine modet and fet M2 be an exception algebra model with
the same signature and the 'same interpretéiions forthe Eyp@‘ri{idate types. Let ¢ be a
correspondence function from Ml to M2 such. that ¢ retums its second argument for all

subordinate types. Then Ml and M&zfe behavlonl!y quivam

Proof: For every finite closed gompg‘lta.tiog C. we ‘ha,‘ve;&‘n show that:
A. C is feasible in M1 if and only if C is feasible in M2.

B. value(C, M) = value(C, M2) whenever C is feasible in Ml and produces a boolean value

Spe {nile

Let state(C, M) denote the final state produced by
the interpretation of the closed computation C in the state machine model M

Let H(C) = ( feasible(C, M) = feaslble((‘ M2))& S ’
(length(C) 2 1 & feasible(C, MI) ) => c(state(C, M), value(C, MI)) - value(C MZ)
Assuming that H(C'} helds for alt C’ such that lcnglh(C') < lcngth(C) R

show that H(C) holds.

Case I: lengtth)- 0

H(C) is trivially true, since the antecedent of the implication is false

A. holds since the empty computation is feasible in any model. -

B. holds since there are no cemputations of !engtﬂ o prﬁduting a bootean vaiue
Case 2: length(C) > 0

Let length(C) = n and let C' = C{I .. n-1}.
Then H(C') since length(C") = n-| < length(C).
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A. To show feasible(C, M1) if and only if {easible{C. M2)
Case 2.I: C’ is not feasible in M. . :’é' R

Then by the induction hypothesis H‘C’LC’ lsmunﬂblldn M2
Since C' is a prefix of C, C is not feasible i Mios M2 . foes o
So A. holds for case 2.1.

Case 2.2: C' is feasible in M1

Then by the induction hypothesis C' is feasible in M2.

Therefore the Stermination sonditions of the-arguments-maich tbe requirements -
for every step of C’ in both modets.

C is feasible in M1 if.and enly.if the termination canditions of the. arguments.of Cin}
match the requirements of step Cln ’
Each argumem X is is the value ofCp - T S AR

where length(C ) 2 1 and where C; is a prefix of C ‘

By the induction hypethesis sistale(G;, M1), vaee(C;, M1) « valie(C,'M9)."

Then te(c(state(C;, Ml), value(C;, M) = te(value(C,, M2)),

since correspondence functions preserve termumion oendithqs ot s e 1 YT
Therefore the argufits: wiFmatch' the reql for T ’
the interpretation of C in M2

whenever they will match for the interprétation of € i ‘M2~

SoA isestablishcdforcase22 L

B. Assume C is feasible in Ml and length(C) 2l
Show c(state(C, MI) vaiue(C Ml)) - value(t bﬁ)

.....

Each argument x, of the last operation of C is thc resui; of some. preﬂx Ct of C,

where | < length(C,) < length(C). o ‘,

By the induction” h’f’pothgsis, c(state(C‘. MI), yah;g(%ﬁ!-l) - vahe(C*.MQ).

Since C; is a prefix of C, t(state(cl. M), "i) = c(state(C, M1), x,), areond U T
by the monotonicnty property of correspondence functions.

Since ¢ is a correspondence function, ¢ preserves the operations of M1 and M2.

So c(state(C, M1), value(C, M1)) = value(C M2)

PR TS A N

So H(C) for ali computatnons G :
By the hypothesis of thgngbeotqmcis the Mrmmmmmm
So if a computation results in‘a boolean value,

it must resulit in the same boolean value in M1 and in M2,

So Ml and M are behaviorally equivalent.

Then H(C) holds for all finite computations C.
End of Proof
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Appendix IV - Byntax. <~

The s'vmax of an abstract model spgcs{;cam is given below in an extended form of
bnf. [X] means that X is opt;ona(l. Larg'e paremheses ( ) are symbols of the meta Ianguage
used for grouping terms. Small parentheses and squarc bmkets "(" '): T, and T are : terminal
symbols denoting the respective characters theniselve‘s,% X*meamé i_X qq ,bc ;epeated« lgxg or

more times. X" is the same as X X* (X may occur one or more times).

]

<specification>:= <module> | <type definition> -
<modules:~ module <type definition>* end moduh '

<type definition>:= type <type'names {anparammr lm}{«bﬁfevhtmb]
[ <requires>]
<signature>
<rep spec>
<0PS>
[<auxiliary: signarre>} -
[ <definitions> ]
end <type name>

<parameter list>;:= [ <parameter-name> { , <parameter name> )* ]
<abbreviation>:= as <abbreviation body> '

<reqmres>:= requires <parameter type> (. <parameter type> )*
<parameter type>;= <patameter name> : <type.name> | such-that qpredicate> ]

<signatuyse>:= with <function type>' SO R
<auxiliary signature>:= internal <function type>*
<function type>:= <function name> : [ <domain spec> ] —> [ <domain spec> ] <condition spec>

<domain spec>:= <type name> ( x <type name> )*
<condition spec>:= + { <exception name> : [ <domain spec> ])

@




-
<rep spec>:= <domain equation> f<restriction>J f<oquivatences]
<domain equation>:= <domain name> = <domain expression>
<domain expression>:= <domain name> | { <domain name>*} . '
| tuplel [ <hbe|edexpmsson tist> ]1
 onowtE{ <tabited éxpresston Hist> 11
| setl <domain expression> ]

o | sequene el ddomdim-expression> ]
<labe!ed expression list>:= <labeled expmshn >, <labeled exprgmt» Y
<labefed expressions>:= <label> : ciomatn expressions
<restriction>:= restrictions none | restrictions <identmer> such that <predicate>
<equivalences:= identity eopeﬂtbn name>

<ops>:= operations <operation definition>* .
<definitions>:= definition <operation definition>* _ .
<operation definition>:= <operation name> a;gument
<argument list>:= [ ( <identifier> ) ] ( <identifiers®)
<operation body>:= <identifier>.| saperation name>. W% L A
| <identifier> : <predicate> P
| if <boolean expression>
then <operation body>
else <operation body> g
<expression list>:= () | ( <operation body> (, ap«atioh«qup)’)
<locals>:= where ( <variable> = <operation body> )’ SR I

Siik

The grammar shown’ above specifies only tbe mxt ﬁu m of: due hngulgc
There are a number of addmonal constralms that must be met for a we“ formed specmcation
For example, the number of wgmem exptadons w: an opemm i;un:opemtm body ‘must
be the same as the number of type names in the domain specificasion of ithe* operation in the

signature.
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